12.11.2014 Views

Examples of Use of Significant Figures/Error Propagation in Problems

Examples of Use of Significant Figures/Error Propagation in Problems

Examples of Use of Significant Figures/Error Propagation in Problems

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Significant</strong> <strong>Figures</strong> <strong>in</strong> Calculations<br />

<strong>Error</strong> Analysis<br />

Every lab report must have an error analysis. For many experiments, significant figure<br />

rules are sufficient. Remember to carry at least one extra significant figure to avoid round<br />

<strong>of</strong>f error through <strong>in</strong>termediate calculations. Non-significant figures are <strong>of</strong>ten written<br />

smaller or like "subscripts" to avoid confusion. For example, 0.1234 ± 0.0001 would be<br />

written 0.123 4 . On the other hand, 0.1234 ± 0.003 would be written 0.12 3 or 0.12 34 .<br />

Keep<strong>in</strong>g track <strong>of</strong> significant figures <strong>in</strong> long calculations is easy. Just underl<strong>in</strong>e the<br />

<strong>in</strong>significant digit for all the <strong>in</strong>termediate and f<strong>in</strong>al results us<strong>in</strong>g a pen or pencil. To f<strong>in</strong>d<br />

the uncerta<strong>in</strong>ties and approximate number <strong>of</strong> significant figures when us<strong>in</strong>g volumetric<br />

glassware use Table 1.<br />

Table 1. Tolerances <strong>of</strong> Class A Pipets and Volumetric Flasks<br />

Pipets Sig. Figs Flasks Sig. Figs<br />

1 mL ± 0.006 3 10 mL ± 0.02 4<br />

2 0.006 3 25 0.03 3<br />

5 0.01 3 50 0.05 3<br />

10 0.02 4 100 0.08 4<br />

15 0.03 4 200 0.10 4<br />

20 0.03 4 250 0.12 4<br />

25 0.03 4 1000 0.30 4<br />

From the discussion on p. 59 <strong>of</strong> our text, a 10-mL pipet is listed as 10.00 ± 0.02, which is<br />

close enough to 4 significant figures, 10.00 mL. But a 1-mL pipet is listed as 1.000 ±<br />

0.006, which is really only 3 significant figures, 1.00 mL.<br />

The significant figure rules are:<br />

SF Rule 1: In multiplication and division the number <strong>of</strong> significant figures <strong>in</strong> the result<br />

is the same as the smallest number <strong>of</strong> significant figures <strong>in</strong> the data.<br />

SF Rule 2: In addition and subtraction the number <strong>of</strong> decimal places <strong>in</strong> the result is the<br />

same as the smallest number <strong>of</strong> decimal places <strong>in</strong> the data.<br />

SF Rule 3: The number <strong>of</strong> significant figures <strong>in</strong> the mantissa <strong>of</strong> log x is the same as the<br />

number <strong>of</strong> significant figures <strong>in</strong> x. <strong>Use</strong> the same rule for ln x. (In log 4.23 × 10 -3 = -<br />

2.374, the mantissa is the .374 part and the characteristic is 2.)<br />

SF Rule 4: The number <strong>of</strong> significant figures <strong>in</strong> 10 x is the number <strong>of</strong> significant figures <strong>in</strong><br />

the mantissa <strong>of</strong> x. <strong>Use</strong> the same rule for e x .


Example 1: Concentration Calculations: A solution is made by transferr<strong>in</strong>g 1 mL <strong>of</strong> a<br />

0.1245 3 M solution, us<strong>in</strong>g a volumetric pipet, <strong>in</strong>to a 200-mL volumetric flask. Calculate<br />

the f<strong>in</strong>al concentration.<br />

Solution: The 1-mL volumetric pipet has 3 significant figures; all the other values have<br />

4. The calculations all <strong>in</strong>volve multiplication and division, so the f<strong>in</strong>al answer should be<br />

expressed with 3 significant figures.<br />

1.00 × 0.1245 3 M / 200.0 = 0.000622 6 M = 6.22 × 10 -4 M<br />

Example 2: Logs: The equilibrium constant for a reaction at two different temperatures<br />

is 0.032 2 at 298.2 and 0.47 3 at 353.2 K. Calculate ln(k 2 /k 1 ).<br />

Solution: Both k’s have 2 significant figures, so k 2 /k 1 should also have 2 significant<br />

figures: k 2 /k 1 = 13. 89 . Then us<strong>in</strong>g SF Rule 3 shows that ln k 2 /k 1 should have 2 significant<br />

figures <strong>in</strong> the “mantissa:”<br />

ln k 2 /k 1 = ln 13. 89 = 2.63 1<br />

Example 3: Antilogs: The rate <strong>of</strong> a reaction depends on temperature as ln k = ln A –<br />

E a/ RT. Us<strong>in</strong>g curve fitt<strong>in</strong>g it was found that ln A = 9.87 4 . Calculate A.<br />

87<br />

Solution: The result is e 9.<br />

4<br />

= 1.9427 × 10<br />

4 . The mantissa has only 2 significant figures,<br />

so the result should only have two significant figures (SF Rule 4).<br />

1.9 4 × 10 4 , or just 1.9 × 10 4<br />

Example 4: Antilogs: The rate <strong>of</strong> a reaction depends on temperature as ln k = ln A –<br />

E a /RT. Us<strong>in</strong>g curve fitt<strong>in</strong>g it was found that ln A = 9.87 4 and E a = 28.2 6 kJ/mol. Calculate<br />

k at T = 298.15 K.<br />

Solution: The result for ln k has 2 significant figures: both ln A and E a have 3 significant<br />

figures (SF Rule 1), but the difference has only one past the decimal po<strong>in</strong>t:<br />

ln k = 9.87 4 – 28.2 6 × 10 3 /[(8.314)(298.15)] = 9.87 4 – 11.4 0 = -1.5 266<br />

The mantissa has only 1 significant figure. Then solv<strong>in</strong>g for k and us<strong>in</strong>g SF Rule 4 gives<br />

k = −1<br />

5 266<br />

= 0.217 or f<strong>in</strong>ally just 0.2<br />

e .


<strong>Propagation</strong> <strong>of</strong> <strong>Error</strong>s<br />

<strong>Significant</strong> figure rules are sufficient when you do not have good estimates for the<br />

measurement errors. If you do have good estimates for the measurement errors then a<br />

more careful error analysis based on propagation <strong>of</strong> error rules is appropriate. Least<br />

squares curve fitt<strong>in</strong>g provides very good estimates for uncerta<strong>in</strong>ties. For error analysis<br />

with the slope or <strong>in</strong>tercept from least squares curve fitt<strong>in</strong>g, a little more care is justified<br />

than is provided by significant figure rules. <strong>Use</strong> propagation <strong>of</strong> error rules to f<strong>in</strong>d the<br />

error <strong>in</strong> f<strong>in</strong>al results derived from curve fitt<strong>in</strong>g.<br />

The propagation <strong>of</strong> error rules are listed below. The variance <strong>of</strong> x, (σ x ) 2 , is the square <strong>of</strong><br />

the standard deviation, σ x (an e can also denote the error or uncerta<strong>in</strong>ty and an s the<br />

estimated standard deviation).<br />

Rule 1: Variances add on addition or subtraction. For z = x ± y, (σ z ) 2 = (σ x ) 2 + (σ y ) 2<br />

Rule 2: Relative variances add on multiplication or division. For z = x · y or z = x/y,<br />

2<br />

2<br />

2<br />

⎛ σ<br />

⎛ σ ⎞<br />

z ⎞ ⎛ σ<br />

x ⎞ y<br />

⎜ ⎟ = ⎜ ⎟ +<br />

⎜<br />

⎟<br />

⎝ z ⎠ ⎝ x ⎠ ⎝ y ⎠<br />

Rule 3: The variance <strong>in</strong> ln x is equal to the relative variance <strong>in</strong> x and the variance <strong>in</strong> log x<br />

is the (relative variance <strong>in</strong> x)/(2.303) 2 .<br />

⎛ σ<br />

⎝ x<br />

⎞<br />

2<br />

2 x<br />

For z = ln x, ( σ<br />

z<br />

) = ⎜ ⎟ and for z = log x, s<strong>in</strong>ce ln 10 = 2.303, ( σ<br />

z<br />

)<br />

⎠<br />

2<br />

=<br />

1<br />

( ln10)<br />

⎛ σ<br />

x<br />

⎜<br />

⎝ x<br />

Rule 4: The relative variance <strong>in</strong> e x is equal to the variance <strong>in</strong> x and the relative variance<br />

<strong>in</strong> 10 x is equal to the (variance <strong>in</strong> x)(2.303) 2 .<br />

⎛ σ ⎞<br />

⎜ ⎟<br />

⎝ z ⎠<br />

2<br />

For z = e x z<br />

, ( ) 2<br />

and for z = 10 x z<br />

, = ( ln10) 2<br />

( σ ) 2<br />

=<br />

σ<br />

x<br />

⎛ σ ⎞<br />

⎜ ⎟<br />

⎝ z ⎠<br />

Rule 5: In calculations with only one error term, you can work with standard deviation<br />

<strong>in</strong>stead <strong>of</strong> variance.<br />

Rule 6: The variance <strong>of</strong> an average <strong>of</strong> N numbers, each with variance σ 2 , is σ 2 /N. (The<br />

standard deviation <strong>in</strong> the average improves as √(1/N)).<br />

2<br />

x<br />

2<br />

2<br />

⎞<br />

⎟<br />

⎠<br />

These rules all follow from the general formula from calculus for error propagation<br />

e<br />

2<br />

F<br />

2<br />

⎛ ∂ F ⎞<br />

= ⎜ ⎟<br />

⎝ ∂ x ⎠<br />

2<br />

2 ⎛ ∂ F ⎞<br />

ex<br />

+ ⎜ ⎟<br />

⎝ ∂ y ⎠<br />

2<br />

2 ⎛ ∂ F ⎞<br />

e<br />

y<br />

+ ⎜ ⎟<br />

⎝ ∂ z ⎠<br />

e<br />

2<br />

z<br />

K


where one is calculat<strong>in</strong>g some function F which depends upon experimental quantities x,<br />

y, z, … which have random errors e x , e y , e z , … associated with them (see Appendix C).<br />

These rules are also summarized <strong>in</strong> Table 3-1 <strong>of</strong> the text.<br />

.<br />

Example 5: Subtraction: If Z = A – B with A = 163.455 ± 0.002 and B = 1.34 ± 0.02<br />

calculate Z. F<strong>in</strong>d the uncerta<strong>in</strong>ty <strong>in</strong> the result.<br />

Solution: Work with absolute variances (Rule 1) and note that variances always add (i.e.<br />

the error always builds up):<br />

[variance <strong>in</strong> A = (0.002) 2 ] + [variance <strong>in</strong> B = (0.02) 2 ]<br />

variance <strong>in</strong> result (0.02) 2 => standard deviation = 0.02<br />

Result: (163.455 ± 0.002) – (1.34 ± 0.02) = 162.12 ± 0.02<br />

Example 6: Multiplication: The result <strong>of</strong> an experiment is given by (slope × Cp). Let<br />

slope = 123.2 ± 2.4 and Cp = 4.184 ± 0.031. F<strong>in</strong>d the uncerta<strong>in</strong>ty <strong>in</strong> the result.<br />

Solution: The relative variance <strong>of</strong> the result is the sum <strong>of</strong> the relative variances <strong>of</strong> the<br />

data (Rule 2).<br />

[relative variance <strong>in</strong> slope = (2.4/123.2) 2 = (0.019 48 ) 2 = 3.7 94 × 10 -4 ]<br />

+ [relative variance <strong>in</strong> Cp = (0.031/4.184) 2 = (0.0074 09 ) 2 = 5.4 89 × 10 -5 ]<br />

relative variance <strong>in</strong> product = 4.3 43 × 10 -4<br />

relative standard deviation <strong>in</strong> product = √(4.3 43 × 10 -4 ) = 0.020 84 or 2.0 84 %<br />

Result: (123.2 ± 2.4) × (4.184 ± 0.031) = 515.4 68 ± 2.0 84 % = 515 ± 11


Example 7: Logs: The equilibrium constant for a reaction at two different temperatures<br />

is K 1 = 0.0322 ± 0.0007 at 298.2 and K 2 =0.473 ± 0.006 at 353.2 K. Calculate ln(K 2 /K 1 )<br />

and f<strong>in</strong>d the uncerta<strong>in</strong>ty <strong>in</strong> the result.<br />

Solution: Just like Example 6 the relative variance <strong>in</strong> K 2 /K 1 is the sum <strong>of</strong> the relative<br />

variances:<br />

[relative variance <strong>in</strong> K 2 = (0.0007/0.0322) 2 = (0.02 17 ) 2 = 4. 72 × 10 -4 ]<br />

+ [relative variance <strong>in</strong> K 1 = (0.006/0.473) 2 = (0.01 26 ) 2 = 1. 60 × 10 -4 ]<br />

relative variance <strong>in</strong> K 2 /K 1 = 6. 33 × 10 -4<br />

Us<strong>in</strong>g Rule 3 shows that absolute variance <strong>in</strong> ln K 2 /K 1 is the relative variance <strong>in</strong> K 2 /K 1 .<br />

variance <strong>in</strong> ln K 2 /K 1 = relative variance <strong>in</strong> K 2 /K 1 = 6. 33 × 10 -4<br />

standard deviation <strong>in</strong> result = √(6. 33 × 10 -4 ) = 0.02 51<br />

Result: ln(K 2 /K 1 ) = ln 14.6 89 => 2.687 12 ± 0.02 51 = 2.69 ± 0.03<br />

See Example 2 for the significant figure version <strong>of</strong> this error analysis.<br />

Example 8: Antilogs: The rate <strong>of</strong> a reaction depends on temperature as ln k = ln A –<br />

E a /RT. Us<strong>in</strong>g curve fitt<strong>in</strong>g it was found that ln A = 9.874 ± 0.041. Calculate A and f<strong>in</strong>d<br />

the uncerta<strong>in</strong>ty.<br />

Solution: The result is e 9.874 = 1.94 18 × 10 4 . The relative variance <strong>of</strong> the result is the<br />

absolute variance <strong>of</strong> A (Rule 4):<br />

relative variance <strong>of</strong> e 9.874 = variance <strong>of</strong> A = (0.041) 2 = 1.6 81 × 10 -3<br />

relative standard deviation <strong>in</strong> result = √(1.6 81 × 10 -3 ) = 0.041 00 or 4.1 00 %<br />

Result: 1.94 18 × 10 4 ± 4.1 00 % = (1.94 18 ± 0.079 61 ) × 10 4 = (1.94 ± 0.08) × 10 4<br />

See Example 3 for the significant figure version <strong>of</strong> this error analysis.<br />

Example 9: Multiplication with 'certa<strong>in</strong>' numbers: The result <strong>of</strong> a calculation is (slope ×<br />

R), where R is the gas constant <strong>in</strong> J K -1 mol -1 . Let slope = 1.23 ± 0.02. F<strong>in</strong>d the<br />

uncerta<strong>in</strong>ty <strong>in</strong> the result.<br />

Solution: S<strong>in</strong>ce R is known to several more significant figures than the slope, the<br />

uncerta<strong>in</strong>ty <strong>in</strong> R will add very little to the error <strong>in</strong> the f<strong>in</strong>al result. Therefore, R is 'certa<strong>in</strong>'<br />

for this calculation. Rule 5 applies s<strong>in</strong>ce only the slope is <strong>in</strong> error. Therefore, the error <strong>in</strong><br />

the f<strong>in</strong>al result is then just the standard deviation <strong>in</strong> the slope multiplied by R:<br />

Result: slope × R = 1.23 ± 0.02 × 8.31441 26 = 10.2 26 ± 0.1 66 = 10.2 ± 0.2<br />

Example 10: The Inverse <strong>of</strong> the Slope or Intercept: The result <strong>of</strong> an experiment is the<br />

<strong>in</strong>verse <strong>of</strong> the <strong>in</strong>tercept from a graph, 1/b. Let b = 0.523 ± 0.043. F<strong>in</strong>d the uncerta<strong>in</strong>ty <strong>in</strong><br />

the result.


Solution: The relative variance <strong>in</strong> the result is equal to the relative variance <strong>in</strong> the<br />

<strong>in</strong>tercept (Rule 2). We can also work directly <strong>in</strong> terms <strong>of</strong> standard deviation (Rule 5):<br />

relative standard deviation <strong>in</strong> b = 0.043/0.523 = 0.082 21 or 8.2 21 %<br />

relative standard deviation <strong>of</strong> result = relative standard deviation <strong>in</strong> b = 8.2 21 %<br />

Result: 1/b = 1/0.523 = 1.91 20 ± 8.2 21 % = 1.91 20 ± 0.15 71 = 1.91 ± 0.16<br />

Example 11: Division and Subtraction: The term (1/T 2 – 1/T 1 ) is a very common factor<br />

<strong>in</strong> many equations. For T 1 = 298.2 ± 0.2 K and T 2 = 353.2 ± 0.2 K calculate (1/T 2 – 1/T 1 ).<br />

F<strong>in</strong>d the uncerta<strong>in</strong>ty <strong>in</strong> the result.<br />

Solution: Do not be put <strong>of</strong>f by multi-step problems, just work one step at a time. First,<br />

get the uncerta<strong>in</strong>ty <strong>in</strong> 1/T 2 and 1/T 1 . S<strong>in</strong>ce both <strong>of</strong> these are divisions the relative variance<br />

<strong>of</strong> 1/T is just the relative variance <strong>of</strong> T (Rule 2). Then convert to absolute variance to<br />

calculate the error <strong>in</strong> (1/T 2 – 1/T 1 ) us<strong>in</strong>g Rule 1:<br />

relative variance <strong>in</strong> T 2 = (0.2/353.2) 2 = 3. 20 × 10 -7<br />

relative variance <strong>in</strong> T 1 = (0.2/298.2) 2 = 4. 49 ×10 -7<br />

[variance <strong>in</strong> 1/T 2 = 3.2 × 10 -7 (1/353.2) 2 = 2. 57 × 10 -12 ]<br />

+ [variance <strong>in</strong> 1/T 1 = 4.5 ×10 -7 (1/298.2) 2 = 5. 05 × 10 -12 ]<br />

variance <strong>in</strong> (1/T 2 – 1/T 1 ) = 7. 62 × 10 -12<br />

standard deviation <strong>in</strong> result = √(7. 62 × 10 -12 ) = 2. 76 × 10 -6<br />

Result: -5.221 96 × 10 -4 ± 2. 76 × 10 -6 = (-5.22 ± 0.03) × 10 -4<br />

Example 12: A Multi-Step Problem: An example <strong>of</strong> a more realistic problem is the<br />

temperature dependence <strong>of</strong> the equilibrium constant. We wish to evaluate ΔH, know<strong>in</strong>g<br />

K 1 , K 2 , R, T 1 , and T 2 <strong>in</strong> the equation:<br />

ln(K 2 /K 1 ) = – ΔH/R (1/T 2 – 1/T 1 )<br />

where K 1 = 0.0322 ± 0.0007 at 298.2 and K 2 = 0.473 ± 0.006 at 353.2 K with T = ± 0.2 K<br />

(The same data as <strong>Examples</strong> 7 and 11). F<strong>in</strong>d the uncerta<strong>in</strong>ty <strong>in</strong> the result.<br />

Solution: Solv<strong>in</strong>g for ΔH: ΔH = – 8.31441[ln(K 2 /K 1 )]/(1/T 2 – 1/T 1 ) = 42.78 44 kJ/mol<br />

We already know the uncerta<strong>in</strong>ty <strong>in</strong> ln(K 2 /K 1 ) from Example 7, 2.687 12 ± 0.02 51 , and the<br />

uncerta<strong>in</strong>ty <strong>in</strong> (1/T 2 – 1/T 1 ) from Example 11, (-5.221 96 ± 0.02 76 ) × 10 -4 . R is a certa<strong>in</strong><br />

number. The relative variance <strong>in</strong> ΔH is then just the sum <strong>of</strong> the relative variances:<br />

relative variance ΔH = (0.02 51 /2.687 12 ) 2 + (0.02 76 × 10 -4 / 5.221 96 × 10 -4 ) 2 = 1.1 51 × 10 -4<br />

relative standard deviation <strong>of</strong> ΔH = √(1.1 51 × 10 -4 ) = 0.010 73 or 1.0 73 %<br />

standard deviation <strong>of</strong> ΔH = (0.010 73 )(42.78 44 ) = 0.45 91 kJ/mol<br />

Result: ΔH = 42.78 ± 0.46 => 42.8 ± 0.5 kJ/mol

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!