12.11.2014 Views

Improving the formulation of tree growth and succession in a ...

Improving the formulation of tree growth and succession in a ...

Improving the formulation of tree growth and succession in a ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

<strong>Improv<strong>in</strong>g</strong> <strong>the</strong> <strong>formulation</strong> <strong>of</strong> <strong>tree</strong> <strong>growth</strong> <strong>and</strong> <strong>succession</strong><br />

<strong>in</strong> a spatially explicit l<strong>and</strong>scape model<br />

Sab<strong>in</strong>e Schumacher a,∗ , Harald Bugmann a , David J. Mladen<strong>of</strong>f b<br />

a Department <strong>of</strong> Environmental Sciences, Swiss Federal Institute <strong>of</strong> Technology Zurich, Mounta<strong>in</strong> Forest Ecology,<br />

ETH–Zentrum, CH-8092 Zürich, Switzerl<strong>and</strong><br />

b Department <strong>of</strong> Forest Ecology <strong>and</strong> Management, University <strong>of</strong> Wiscons<strong>in</strong>-Madison, Madison, WI 53706, USA<br />

Received 17 June 2003; received <strong>in</strong> revised form 10 December 2003; accepted 30 December 2003<br />

Abstract<br />

Long-term forest l<strong>and</strong>scape dynamics are determ<strong>in</strong>ed by a set <strong>of</strong> driv<strong>in</strong>g forces <strong>in</strong>clud<strong>in</strong>g large-scale natural disturbances,<br />

l<strong>and</strong>-use, <strong>the</strong> physical environment, <strong>and</strong> st<strong>and</strong>-scale <strong>succession</strong> processes. L<strong>and</strong>scape models have an important role as tools for<br />

syn<strong>the</strong>siz<strong>in</strong>g exist<strong>in</strong>g <strong>in</strong>formation <strong>and</strong> mak<strong>in</strong>g projections <strong>of</strong> possible future vegetation dynamics on large spatial scales. However,<br />

current l<strong>and</strong>scape models cannot readily be used to study: (1) <strong>the</strong> change from weakly to strongly disturbed l<strong>and</strong>scapes; (2) <strong>the</strong><br />

impact <strong>of</strong> chang<strong>in</strong>g climatic parameters on l<strong>and</strong>scape-scale dynamics; <strong>and</strong> (3) <strong>the</strong> effects <strong>of</strong> such changes on vegetation structure.<br />

Us<strong>in</strong>g European mounta<strong>in</strong> forests as a case study, this paper focuses on improv<strong>in</strong>g <strong>the</strong> well-established LANDIS l<strong>and</strong>scape model<br />

so that it can be applied to study <strong>the</strong>se research questions.<br />

We <strong>in</strong>tegrated a simple <strong>tree</strong> <strong>succession</strong> sub-model <strong>in</strong> LANDIS, which <strong>in</strong>corporates quantitative descriptions <strong>of</strong> forest structure,<br />

<strong>and</strong> <strong>in</strong>cluded sub-models to capture <strong>the</strong> <strong>in</strong>fluences <strong>of</strong> competition as well as climatic <strong>and</strong> edaphic parameters on <strong>tree</strong> population<br />

dynamics.<br />

The new model was subjected to a number <strong>of</strong> quantitative tests aga<strong>in</strong>st measured data. It accurately predicted <strong>the</strong> altitud<strong>in</strong>al<br />

distribution <strong>of</strong> vegetation properties under managed as well as unmanaged conditions <strong>in</strong> <strong>the</strong> Dischma valley (Switzerl<strong>and</strong>), <strong>and</strong><br />

it provided realistic <strong>and</strong> accurate patterns <strong>of</strong> vegetation recovery follow<strong>in</strong>g w<strong>in</strong>d disturbance events, <strong>in</strong> spite <strong>of</strong> <strong>the</strong> very simple<br />

model <strong>formulation</strong>s.<br />

To demonstrate <strong>the</strong> utility <strong>of</strong> <strong>the</strong> added detail, we applied <strong>the</strong> model <strong>in</strong> scenario mode under a range <strong>of</strong> changes <strong>in</strong> climatic<br />

<strong>and</strong> disturbance parameters, assum<strong>in</strong>g a cont<strong>in</strong>uation <strong>of</strong> <strong>the</strong> current management regime. The simulations showed that <strong>the</strong><br />

various driv<strong>in</strong>g forces have quite different effects on different species, <strong>and</strong> that <strong>the</strong>ir comb<strong>in</strong>ed effect differs from one scenario<br />

to <strong>the</strong> next. Notably, <strong>the</strong>re are few models that <strong>in</strong>tegrate forest <strong>growth</strong> <strong>and</strong> <strong>succession</strong> with disturbance dynamics <strong>in</strong> a semimechanistic<br />

manner. Our version <strong>of</strong> LANDIS achieves this <strong>in</strong>tegration based on simple concepts <strong>and</strong> methods that do not require<br />

∗ Correspond<strong>in</strong>g author. Tel.: +41 1 6320 739; fax: +41 1 6321 146.<br />

E-mail address: sab<strong>in</strong>e.schumacher@env.ethz.ch (S. Schumacher).<br />

0304-3800/$ – see front matter © 2004 Elsevier B.V. All rights reserved.<br />

doi:10.1016/j.ecolmodel.2003.12.055


176 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

many parameter estimates. We conclude that <strong>the</strong> new model has <strong>the</strong> potential to provide an <strong>in</strong>tegrated picture <strong>of</strong> <strong>the</strong> impacts <strong>of</strong><br />

both direct <strong>and</strong> <strong>in</strong>direct effects <strong>of</strong> climate change on forest l<strong>and</strong>scape dynamics.<br />

© 2004 Elsevier B.V. All rights reserved.<br />

Keywords: Forest dynamics; Tree <strong>growth</strong>; Competition; Succession; L<strong>and</strong>scape model; LANDIS; Disturbances; Mounta<strong>in</strong> forest ecology<br />

1. Introduction<br />

Mounta<strong>in</strong> forests are characterized by complex spatial<br />

vegetation patterns. Steep environmental gradients<br />

<strong>and</strong> topographic differentiation generate micro-scale<br />

conditions that limit <strong>tree</strong> establishment <strong>and</strong> <strong>growth</strong> (Ott<br />

et al., 1997). In addition, periodic natural (e.g., w<strong>in</strong>dstorms,<br />

wildfires, avalanches) <strong>and</strong> anthropogenic (e.g.,<br />

management) disturbances strongly <strong>in</strong>fluence vegetation<br />

patterns <strong>in</strong> mounta<strong>in</strong> l<strong>and</strong>scapes. Underst<strong>and</strong><strong>in</strong>g<br />

<strong>the</strong> long-term dynamics <strong>of</strong> <strong>the</strong>se systems is essential<br />

for plann<strong>in</strong>g forest management <strong>and</strong> for predict<strong>in</strong>g <strong>the</strong><br />

consequences <strong>of</strong> environmental changes, to name just<br />

a few research issues. Thus, we need to be able to predict<br />

<strong>the</strong> effects <strong>of</strong> <strong>the</strong> complex <strong>in</strong>teraction <strong>of</strong> <strong>the</strong> various<br />

agents that drive forest dynamics at <strong>the</strong> l<strong>and</strong>scape scale.<br />

The limitations <strong>of</strong> empirical studies <strong>in</strong> address<strong>in</strong>g<br />

<strong>the</strong> questions that relate to l<strong>and</strong>scape dynamics are evident.<br />

To study l<strong>and</strong>scape changes, research on spatial<br />

<strong>and</strong> temporal scales larger than those amenable to<br />

experiments or st<strong>and</strong>-level observational studies is required.<br />

Often, models are <strong>the</strong> only way to consider <strong>the</strong><br />

<strong>in</strong>teractions <strong>and</strong> changes with<strong>in</strong> forest l<strong>and</strong>scape systems<br />

that cannot be tested under real-world conditions.<br />

Thus, l<strong>and</strong>scape-level ecological models are essential<br />

to improve our underst<strong>and</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> dynamics <strong>of</strong> largescale<br />

processes <strong>and</strong> as a crucial basis for analyz<strong>in</strong>g <strong>the</strong><br />

consequences <strong>of</strong> changes <strong>in</strong> <strong>the</strong> ecological factors <strong>in</strong>volved.<br />

Typically, <strong>the</strong> l<strong>and</strong>scape models developed <strong>in</strong> recent<br />

years were designed to predict changes <strong>in</strong> l<strong>and</strong><br />

cover patterns across large geographic areas (<strong>the</strong> scale<br />

<strong>of</strong> 10 3 –10 6 ha) <strong>and</strong> over long time spans (e.g., hundreds<br />

<strong>of</strong> years) (e.g., Baker, 1989; Mladen<strong>of</strong>f <strong>and</strong> Baker,<br />

1999). L<strong>and</strong>scape models usually focus on processes<br />

such as seed dispersal, w<strong>in</strong>d <strong>and</strong> fire disturbances, <strong>in</strong>sect<br />

<strong>in</strong>festations <strong>and</strong> harvest<strong>in</strong>g. For this reason, <strong>the</strong>y<br />

typically <strong>in</strong>clude simplified representations (parameterizations)<br />

<strong>of</strong> st<strong>and</strong>-scale ecological processes such as<br />

<strong>tree</strong> <strong>growth</strong> <strong>and</strong> competition. Also, <strong>the</strong> description <strong>of</strong><br />

st<strong>and</strong> structure <strong>in</strong> <strong>the</strong>se models is <strong>of</strong>ten greatly simplified<br />

(Roberts, 1996; He <strong>and</strong> Mladen<strong>of</strong>f, 1999b). Such<br />

simplified <strong>formulation</strong>s <strong>of</strong> vegetation dynamics may<br />

be sufficient to represent l<strong>and</strong>scapes where f<strong>in</strong>e-scale<br />

patterns <strong>and</strong> processes are frequently overridden by<br />

large-scale disturbances. In l<strong>and</strong>scapes that are disturbed<br />

only <strong>in</strong>frequently today, it is difficult to apply<br />

<strong>the</strong>se models. To study weakly disturbed systems<br />

<strong>and</strong> particularly those where a change <strong>of</strong> disturbance<br />

regime is anticipated <strong>in</strong> com<strong>in</strong>g decades as an impact<br />

<strong>of</strong> Global Changes, l<strong>and</strong>scape models that conta<strong>in</strong> a<br />

more detailed representation <strong>of</strong> st<strong>and</strong>-scale processes<br />

<strong>and</strong> <strong>of</strong> <strong>the</strong>ir <strong>in</strong>teractions with <strong>the</strong> large-scale disturbance<br />

regime may be required.<br />

European mounta<strong>in</strong> forests, on which our study focuses,<br />

are <strong>in</strong>fluenced today to a certa<strong>in</strong> extent by largescale<br />

processes such as w<strong>in</strong>dthrow, <strong>and</strong> may be <strong>in</strong>creas<strong>in</strong>gly<br />

subject to a chang<strong>in</strong>g wildfire regime. At <strong>the</strong> same<br />

time, l<strong>and</strong>scape-scale dynamics <strong>in</strong> <strong>the</strong>se systems are<br />

also strongly determ<strong>in</strong>ed by a range <strong>of</strong> factors <strong>and</strong> processes<br />

that operate at <strong>the</strong> st<strong>and</strong> <strong>and</strong> patch scales (Ott et<br />

al., 1997). To <strong>in</strong>vestigate <strong>the</strong> l<strong>and</strong>scape-scale dynamics<br />

<strong>of</strong> European mounta<strong>in</strong> forests, we based our study<br />

on <strong>the</strong> well-established LANDIS l<strong>and</strong>scape model (He<br />

<strong>and</strong> Mladen<strong>of</strong>f, 1999b; He <strong>and</strong> Mladen<strong>of</strong>f, 1999a; He et<br />

al., 1999a; He et al., 1999b; Mladen<strong>of</strong>f <strong>and</strong> He, 1999)as<br />

a start<strong>in</strong>g po<strong>in</strong>t. LANDIS <strong>in</strong>tegrates <strong>the</strong> range <strong>of</strong> largescale<br />

processes relevant for our project. However, we<br />

were not able to realistically reproduce l<strong>and</strong>scape patterns<br />

<strong>in</strong> <strong>the</strong> European Alps with <strong>the</strong> unmodified version<br />

3.40 (He <strong>and</strong> Mladen<strong>of</strong>f, 1999b) <strong>of</strong> this model, for <strong>the</strong><br />

reasons outl<strong>in</strong>ed below.<br />

LANDIS does not explicitly simulate <strong>tree</strong> <strong>growth</strong>,<br />

<strong>and</strong> does not account for <strong>in</strong>ter-specific competition effects<br />

dur<strong>in</strong>g st<strong>and</strong> development. Instead, it is based on<br />

<strong>the</strong> assumption that establishment probabilities reflect<br />

<strong>the</strong> factors affect<strong>in</strong>g <strong>the</strong> species’ performance dur<strong>in</strong>g<br />

<strong>succession</strong>. Once established, <strong>tree</strong>s die only because <strong>of</strong><br />

large-scale disturbances, or when <strong>the</strong>y approach <strong>the</strong>ir<br />

maximum lifespan. Thus, apply<strong>in</strong>g <strong>the</strong> model to weakly<br />

disturbed l<strong>and</strong>scapes resulted—<strong>in</strong> <strong>the</strong> long run—<strong>in</strong><br />

<strong>the</strong> dom<strong>in</strong>ation <strong>of</strong> shade-tolerant species with long


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 177<br />

lifespans, even if <strong>the</strong>y were assigned very low establishment<br />

probabilities. Under <strong>the</strong> current weak disturbance<br />

regime <strong>of</strong> <strong>the</strong> central European Alps, LANDIS<br />

produced a strong dom<strong>in</strong>ance <strong>of</strong> subalp<strong>in</strong>e (1600–2300<br />

m a.s.l.) l<strong>and</strong>scapes by P<strong>in</strong>us cembra <strong>in</strong>stead <strong>of</strong> <strong>the</strong><br />

widespread Picea abies (cf. Ellenberg, 1996). In reality,<br />

P. cembra may reach old age, but is not normally competitive<br />

aga<strong>in</strong>st P. abies except at <strong>the</strong> highest elevations<br />

<strong>and</strong> <strong>in</strong> dry cont<strong>in</strong>ental climates. We had to conclude that<br />

<strong>the</strong> forest st<strong>and</strong> description <strong>and</strong> st<strong>and</strong>-scale ecological<br />

processes <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> model were too simplistic to<br />

realistically simulate forest dynamics <strong>in</strong> weakly disturbed<br />

l<strong>and</strong>scapes, thus mak<strong>in</strong>g it impossible to study<br />

<strong>the</strong>ir fate under a chang<strong>in</strong>g disturbance regime.<br />

In addition, <strong>the</strong> establishment probabilities <strong>in</strong> LAN-<br />

DIS have to be def<strong>in</strong>ed by <strong>the</strong> user, i.e. <strong>the</strong>y do not<br />

emerge from <strong>the</strong> <strong>in</strong>teractions <strong>of</strong> <strong>the</strong> modeled processes.<br />

This does not allow <strong>the</strong> user to simulate <strong>the</strong> effects <strong>of</strong><br />

a chang<strong>in</strong>g environment (e.g. climate change) on l<strong>and</strong>scape<br />

properties, or to simulate transitions <strong>of</strong> species<br />

composition over a climatic gradient without basically<br />

prescrib<strong>in</strong>g <strong>the</strong> outcome <strong>of</strong> such changes via modified<br />

parameter values. Thus, establishment probabilities<br />

have a decisive effect with regard to determ<strong>in</strong><strong>in</strong>g<br />

species composition across <strong>the</strong> l<strong>and</strong>scape.<br />

F<strong>in</strong>ally, LANDIS <strong>in</strong>corporates only presence/<br />

absence data <strong>of</strong> <strong>tree</strong> age-classes, <strong>and</strong> thus does not provide<br />

any quantitative detail about st<strong>and</strong> composition or<br />

st<strong>and</strong> structure at <strong>the</strong> level <strong>of</strong> <strong>the</strong> <strong>in</strong>dividual grid cell.<br />

Therefore, based on <strong>the</strong>se simple variables it is difficult<br />

to model <strong>succession</strong> (i.e., processes such as competition<br />

between <strong>tree</strong>s) more accurately, or to use LANDIS<br />

to assess <strong>the</strong> effects <strong>of</strong> l<strong>and</strong>scape properties on, for example,<br />

ecologically relevant variables such as habitat<br />

suitability for wildlife.<br />

To overcome <strong>the</strong>se shortcom<strong>in</strong>gs, we replaced <strong>the</strong><br />

st<strong>and</strong>-level model parts <strong>of</strong> LANDIS with an improved<br />

<strong>tree</strong> <strong>growth</strong> <strong>and</strong> <strong>succession</strong> sub-model. This sub-model<br />

conta<strong>in</strong>s (1) a more detailed quantitative description <strong>of</strong><br />

forest structure <strong>in</strong> each simulated grid cell, <strong>and</strong> (2) more<br />

mechanistic <strong>formulation</strong>s <strong>of</strong> <strong>growth</strong> <strong>and</strong> competition<br />

than currently <strong>in</strong>corporated <strong>in</strong> l<strong>and</strong>scape models. Tree<strong>and</strong><br />

st<strong>and</strong>-scale ecological processes <strong>in</strong> <strong>the</strong> new model<br />

are mostly derived from approaches <strong>in</strong> <strong>the</strong> widely used<br />

gap models (e.g. Shugart, 1984; Urban <strong>and</strong> Shugart,<br />

1992; Liu <strong>and</strong> Ashton, 1995; Bugmann et al., 1996),<br />

but <strong>the</strong>y were simplified considerably compared to <strong>the</strong>ir<br />

orig<strong>in</strong>al implementation.<br />

We <strong>in</strong>troduced <strong>the</strong>se model modifications with <strong>the</strong><br />

follow<strong>in</strong>g three objectives: (1) to be able to <strong>in</strong>vestigate<br />

<strong>the</strong> <strong>in</strong>fluence <strong>of</strong> a chang<strong>in</strong>g disturbance regime on<br />

l<strong>and</strong>scape properties, i.e. to study <strong>the</strong> transition from<br />

currently weakly disturbed to more strongly disturbed<br />

l<strong>and</strong>scapes <strong>in</strong> <strong>the</strong> future; (2) to be able to study <strong>the</strong><br />

impacts <strong>of</strong> chang<strong>in</strong>g climatic parameters on l<strong>and</strong>scape<br />

dynamics without hav<strong>in</strong>g to make a priori assumptions<br />

about <strong>the</strong>se effects, i.e. to obta<strong>in</strong> a l<strong>and</strong>scape-level<br />

model that is sensitive to climate <strong>and</strong> soil properties,<br />

<strong>and</strong> (3) to <strong>in</strong>vestigate l<strong>and</strong>scape properties that are relevant<br />

for ecosystem management, based on variables relat<strong>in</strong>g<br />

to st<strong>and</strong> biomass, species composition, <strong>and</strong> st<strong>and</strong><br />

structure.<br />

2. Model description<br />

We first give a brief overview <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al LAN-<br />

DIS model, followed by a description <strong>of</strong> <strong>the</strong> exp<strong>and</strong>ed<br />

model that <strong>in</strong>troduces <strong>the</strong> overall model structure <strong>and</strong><br />

describes major model modifications.<br />

2.1. Overview <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al LANDIS model<br />

The LANDIS model has been described <strong>in</strong> detail<br />

elsewhere (He <strong>and</strong> Mladen<strong>of</strong>f, 1999b; He <strong>and</strong><br />

Mladen<strong>of</strong>f, 1999a; He et al., 1999a; He et al., 1999b;<br />

Mladen<strong>of</strong>f <strong>and</strong> He, 1999). It is a spatially explicit,<br />

raster-based, <strong>and</strong> stochastic model designed to simulate<br />

forest change <strong>in</strong> comb<strong>in</strong>ation with disturbance<br />

regimes, such as fire, w<strong>in</strong>dthrow, <strong>and</strong> forest management.<br />

The model simulates vegetation dynamics<br />

on large l<strong>and</strong>scapes (on a scale <strong>of</strong> 10 4 –10 6 ha) <strong>and</strong><br />

over long time spans (e.g. hundreds <strong>of</strong> years) <strong>in</strong> 10-<br />

year time steps. It simulates forest st<strong>and</strong>s on a rectangular<br />

grid with a user-def<strong>in</strong>ed size (usually 30 m<br />

× 30 m). Each grid cell conta<strong>in</strong>s coarse vegetation<br />

<strong>in</strong>formation at <strong>the</strong> species level. Vegetation status is<br />

def<strong>in</strong>ed by <strong>the</strong> presence/absence data <strong>of</strong> 10-year age<br />

cohorts <strong>of</strong> each species. Actual size <strong>and</strong> number <strong>of</strong><br />

<strong>tree</strong>s are not modeled. For each species, a set <strong>of</strong> attributes<br />

such as longevity, age <strong>of</strong> first reproduction,<br />

shade <strong>and</strong> fire tolerance, <strong>and</strong> seed<strong>in</strong>g distance are<br />

driv<strong>in</strong>g vegetation dynamics. Fur<strong>the</strong>rmore, each grid<br />

cell belongs to a so-called “l<strong>and</strong> type”. These userdef<strong>in</strong>ed<br />

l<strong>and</strong> types are <strong>the</strong> basis for dist<strong>in</strong>guish<strong>in</strong>g<br />

between different site characteristics, environmental


178 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

conditions, <strong>and</strong> species-specific establishment probabilities.<br />

The establishment <strong>of</strong> new <strong>tree</strong> cohorts is modeled<br />

based on seed availability <strong>and</strong> a simple parameterization<br />

<strong>of</strong> light <strong>and</strong> site conditions (Mladen<strong>of</strong>f <strong>and</strong><br />

He, 1999). Seed availability is determ<strong>in</strong>ed by seed<br />

travel distances <strong>and</strong> <strong>the</strong> age <strong>of</strong> maturity <strong>of</strong> each <strong>tree</strong><br />

species. Seed travel distance is def<strong>in</strong>ed by speciesspecific<br />

effective <strong>and</strong> maximum parameters (He <strong>and</strong><br />

Mladen<strong>of</strong>f, 1999a). Species’ differences <strong>in</strong> <strong>the</strong>ir ability<br />

to reproduce vegetatively after disturbances are also<br />

taken <strong>in</strong>to account <strong>in</strong> <strong>the</strong> model. For successful establishment,<br />

propagules have to be available <strong>in</strong> <strong>the</strong><br />

grid cell, <strong>and</strong> light conditions have to be favorable.<br />

Species can establish only if <strong>the</strong>y are more shadetolerant<br />

than any o<strong>the</strong>r species that is already occurr<strong>in</strong>g<br />

<strong>in</strong> <strong>the</strong> grid cell. Whe<strong>the</strong>r a new cohort will actually<br />

establish is fur<strong>the</strong>r dependent on species-specific<br />

establishment coefficients, as discussed above. They<br />

reflect <strong>the</strong> relative potential <strong>of</strong> <strong>the</strong> various species to<br />

successfully establish under different environmental<br />

conditions.<br />

In LANDIS, <strong>tree</strong> <strong>growth</strong> is not modeled explicitly.<br />

Only <strong>the</strong> age <strong>of</strong> <strong>the</strong> surviv<strong>in</strong>g <strong>tree</strong> cohorts (see below) is<br />

<strong>in</strong>cremented <strong>in</strong> each time step. Thus, <strong>the</strong> model is based<br />

on <strong>the</strong> implicit assumption that establishment probabilities<br />

also reflect <strong>the</strong> factors affect<strong>in</strong>g <strong>the</strong> species’<br />

<strong>growth</strong> success (cf. Roberts, 1996).<br />

Mortality is implemented <strong>in</strong> LANDIS as an agedependent<br />

function. Age-dependent background mortality<br />

occurs <strong>in</strong> <strong>the</strong> last fifth <strong>of</strong> a species’ potential lifespan,<br />

dur<strong>in</strong>g which <strong>the</strong> mortality probability <strong>in</strong>creases<br />

gradually with age. In addition (<strong>and</strong> very importantly),<br />

mortality is also caused by <strong>the</strong> various disturbance<br />

regimes, as outl<strong>in</strong>ed below.<br />

Wildfires are simulated stochastically us<strong>in</strong>g mean<br />

fire return <strong>in</strong>tervals <strong>and</strong> fire sizes, which are parameters<br />

by l<strong>and</strong> type. Fire severity is simulated based on fire <strong>in</strong>tensity<br />

(determ<strong>in</strong>ed by time s<strong>in</strong>ce last disturbance), <strong>the</strong><br />

age <strong>of</strong> a cohort, <strong>and</strong> fire tolerance (He <strong>and</strong> Mladen<strong>of</strong>f,<br />

1999b). W<strong>in</strong>dthrow is simulated stochastically, <strong>in</strong> a<br />

manner similar to fire. Susceptibility to w<strong>in</strong>dthrow is<br />

approximated based on <strong>the</strong> maximum lifespan <strong>and</strong> <strong>the</strong><br />

current age <strong>of</strong> <strong>the</strong> <strong>tree</strong>s. The <strong>in</strong>teraction <strong>of</strong> w<strong>in</strong>d <strong>and</strong> fire<br />

regimes is implemented by <strong>in</strong>creased fire <strong>in</strong>tensity after<br />

w<strong>in</strong>dthrows, to represent <strong>the</strong> effects <strong>of</strong> fuel accumulation<br />

(He <strong>and</strong> Mladen<strong>of</strong>f, 1999b). The harvest module<br />

is based on management areas with specific management<br />

objectives. Each management area is divided <strong>in</strong>to<br />

st<strong>and</strong>s. Timber harvest<strong>in</strong>g can be restricted to st<strong>and</strong><br />

boundaries or may be allowed to ‘spread’ until a def<strong>in</strong>ed<br />

harvest size is covered. The order <strong>in</strong> which st<strong>and</strong>s<br />

are treated is determ<strong>in</strong>ed by rank<strong>in</strong>g algorithms that prioritize<br />

st<strong>and</strong>s by criteria such as st<strong>and</strong> age or economic<br />

value. Harvest events remove selected age cohorts <strong>of</strong><br />

selected <strong>tree</strong> species from each cell (Gustafson et al.,<br />

2000).<br />

2.2. Design <strong>of</strong> <strong>the</strong> modified model<br />

We extended <strong>the</strong> patch-scale <strong>formulation</strong>s <strong>of</strong> LAN-<br />

DIS by (1) <strong>in</strong>troduc<strong>in</strong>g a more detailed description <strong>of</strong><br />

<strong>the</strong> properties <strong>of</strong> <strong>tree</strong> cohorts; (2) <strong>in</strong>corporat<strong>in</strong>g new<br />

<strong>formulation</strong>s for <strong>tree</strong> <strong>growth</strong> <strong>and</strong> <strong>succession</strong>; <strong>and</strong> (3)<br />

add<strong>in</strong>g rout<strong>in</strong>es describ<strong>in</strong>g <strong>the</strong> physical environment,<br />

i.e. light availability, temperature, <strong>and</strong> soil moisture.<br />

This resulted <strong>in</strong> a model that consists <strong>of</strong> two ma<strong>in</strong> parts:<br />

a ‘local’ <strong>succession</strong> model that operates on each grid<br />

cell with a time step <strong>of</strong> 1 year, <strong>and</strong> a l<strong>and</strong>scape model<br />

that conta<strong>in</strong>s processes operat<strong>in</strong>g over several cells <strong>in</strong><br />

10-year time steps (Fig. 1).<br />

2.2.1. St<strong>and</strong>-scale processes<br />

Forest st<strong>and</strong> structure is modeled based on quantitative<br />

<strong>in</strong>formation <strong>of</strong> <strong>tree</strong> age cohorts, i.e. groups <strong>of</strong><br />

<strong>tree</strong>s <strong>of</strong> <strong>the</strong> same species <strong>and</strong> age. These cohorts are<br />

characterized by <strong>the</strong> average biomass <strong>of</strong> an <strong>in</strong>dividual<br />

<strong>tree</strong> (B i ) <strong>and</strong> <strong>the</strong> number <strong>of</strong> <strong>tree</strong>s <strong>in</strong> <strong>the</strong> cohort (N c ), not<br />

just presence/absence data as <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al LANDIS<br />

model. Thus, <strong>the</strong> biomass <strong>of</strong> a cohort (B c ) is calculated<br />

Fig. 1. Basic structure <strong>of</strong> <strong>the</strong> modified LANDIS model.


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 179<br />

accord<strong>in</strong>g to Eq. (1).<br />

B c = B i N c (1)<br />

The change <strong>of</strong> cohort biomass is tracked us<strong>in</strong>g a<br />

yearly time step <strong>in</strong> <strong>the</strong> model (cf. Fig. 1). Differentiation<br />

<strong>of</strong> Eq. (1) yields<br />

dB c<br />

= dB i<br />

dt dt N c + dN c<br />

B i (2)<br />

dt<br />

The first term represents changes <strong>in</strong> biomass <strong>of</strong> <strong>in</strong>dividual<br />

plants (<strong>growth</strong>), whereas <strong>the</strong> second term tracks<br />

changes <strong>in</strong> <strong>the</strong> number <strong>of</strong> <strong>in</strong>dividuals that form an age<br />

cohort (mortality).<br />

2.2.1.1. Tree <strong>growth</strong>. The <strong>growth</strong> model is based on<br />

<strong>the</strong> a priori assumption <strong>of</strong> a logistic <strong>growth</strong> relation<br />

(Eq. (3)) for <strong>the</strong> isolated plant (Eq. (3)). Note that <strong>in</strong> <strong>the</strong><br />

present context, this equation simply represents a phenomenological<br />

description <strong>of</strong> <strong>in</strong>dividual <strong>tree</strong> <strong>growth</strong>,<br />

not a model <strong>of</strong> population-level dynamics.<br />

dB i<br />

dt<br />

= r i (t)<br />

(<br />

1 − B i(t)<br />

K i (t)<br />

)<br />

B i (t) (3)<br />

The <strong>in</strong>dividual <strong>growth</strong> rate, r i (t), is derived from<br />

a species-specific maximum <strong>growth</strong> rate (r s ), which<br />

represents <strong>growth</strong> under optimum environmental conditions.<br />

The <strong>growth</strong> rate r i (t) is calculated as a function<br />

<strong>of</strong> three <strong>growth</strong>-limit<strong>in</strong>g factors, light availability<br />

(light rf), <strong>the</strong> sum <strong>of</strong> degree-days (DD rf) <strong>and</strong> a<br />

drought <strong>in</strong>dex (DrStr rf), as described below. We applied<br />

Liebig’s “Law <strong>of</strong> <strong>the</strong> M<strong>in</strong>imum” to comb<strong>in</strong>e <strong>the</strong>se<br />

<strong>growth</strong> response factors.<br />

r i (t) = r s m<strong>in</strong>(light rf (t),DD rf (t), DrStr rf (t))<br />

(4)<br />

Table 1<br />

General parameters used <strong>in</strong> <strong>the</strong> modified LANDIS model<br />

Name Parameter description Value<br />

k Light ext<strong>in</strong>ction coefficient 0.5<br />

B i (t = 0) (kg) Tree biomass at <strong>the</strong> time (t =0) 10<br />

<strong>of</strong> cohort establishment<br />

avL open<br />

Threshold light availability to 0.6<br />

def<strong>in</strong>e open canopy conditions a<br />

m rf<br />

Threshold <strong>growth</strong> reduction for 0.1<br />

stress-related mortality<br />

m<strong>in</strong>Yrs M<strong>in</strong>imum <strong>of</strong> stress years 3<br />

a A relative light availability <strong>of</strong> 60% corresponds to a canopy<br />

closure <strong>of</strong> 15% (Kimm<strong>in</strong>s, 1987), which we def<strong>in</strong>ed as non-forest.<br />

Also, maximum plant size, K i (t), is implemented<br />

as a function <strong>of</strong> environmental conditions (Eq. (5)).<br />

It is reduced by degree-days (DD rf) <strong>and</strong> drought<br />

(DrStr rf), start<strong>in</strong>g from a species-specific maximum<br />

plant size under optimal environmental conditions<br />

(K s ).<br />

K i (t) = K s m<strong>in</strong>(DD rf (t), DrStr rf (t)) (5)<br />

The light response function (light rf) is implemented<br />

as it is <strong>in</strong> a range <strong>of</strong> gap models similar to <strong>the</strong><br />

<strong>formulation</strong> suggested by Urban <strong>and</strong> Shugart (1992)<br />

(cf. Fig. 2a). We assumed that this <strong>growth</strong> reduction is<br />

effective only with<strong>in</strong> a closed canopy; canopy openness<br />

is def<strong>in</strong>ed by available light at <strong>the</strong> forest floor (avL ff<br />

≥ avL open ; cf. Table 1). A proxy for light availability<br />

is calculated for each cohort us<strong>in</strong>g <strong>the</strong> Beer–Lambert<br />

law (Monsi <strong>and</strong> Saeki, 1953); <strong>the</strong> correspond<strong>in</strong>g light<br />

ext<strong>in</strong>ction coefficient is given <strong>in</strong> Table 1. Total leaf<br />

area for each <strong>tree</strong> cohort is estimated from <strong>tree</strong> diameter<br />

at breast height us<strong>in</strong>g <strong>the</strong> allometric equations<br />

by Bugmann (1994). Tree diameter is calculated<br />

from aboveground biomass based on <strong>the</strong> equation by<br />

Schroeder et al. (1997). In <strong>the</strong> model, a cohort is<br />

Fig. 2. Growth reduction functions used <strong>in</strong> <strong>the</strong> model: (a) light response factor (light rf), (b) degree-day response factor (DD rf), (c) drought<br />

response factor (DrStr rf).


180 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

assumed to be shaded by <strong>the</strong> leaf area <strong>of</strong> all cohorts<br />

<strong>in</strong> <strong>the</strong> same cell that have <strong>tree</strong>s <strong>of</strong> larger <strong>in</strong>dividual<br />

biomass, <strong>and</strong> thus can assumed to be taller than <strong>the</strong><br />

target cohort. In addition, based on empirical evidence<br />

from Schulze et al. (1977), we assume that one third <strong>of</strong><br />

<strong>the</strong> leaf area <strong>of</strong> a cohort is responsible for self-shad<strong>in</strong>g.<br />

To express temperature limitations on <strong>tree</strong> <strong>growth</strong>,<br />

we used <strong>the</strong> degree-day response function (DD rf) <strong>in</strong>troduced<br />

by Bugmann <strong>and</strong> Solomon (2000, p. 99, Eq.<br />

(3); cf. Fig. 2a). For this, <strong>the</strong> annual sum <strong>of</strong> grow<strong>in</strong>g<br />

degree-days (DD) is derived based on <strong>the</strong> method described<br />

by Bugmann (1996). F<strong>in</strong>ally, <strong>the</strong> drought response<br />

function (DrStr rf) is based on <strong>the</strong> relationship<br />

proposed by Bassett (1964), which was also used <strong>in</strong><br />

<strong>the</strong> model by Bugmann (1994, p. 66, Eq. (3.26); cf.<br />

Fig. 2c). This relationship is based on a drought <strong>in</strong>dex<br />

(Bugmann <strong>and</strong> Solomon, 2000, p. 98, <strong>the</strong>ir Eq. (1)),<br />

calculated us<strong>in</strong>g <strong>the</strong> water balance model by Bugmann<br />

<strong>and</strong> Cramer (1998).<br />

The latter two <strong>growth</strong>-limit<strong>in</strong>g factors require climatic<br />

<strong>in</strong>put data, i.e. <strong>the</strong> mean monthly temperatures<br />

<strong>and</strong> <strong>the</strong> monthly sums <strong>of</strong> precipitation. The simulation<br />

model obta<strong>in</strong>s this data for each simulation year by r<strong>and</strong>omly<br />

select<strong>in</strong>g a year from a historical climate data<br />

set from a nearby wea<strong>the</strong>r station. The climatic parameters<br />

for every grid cell are adjusted for elevation us<strong>in</strong>g<br />

lapse rates, thus result<strong>in</strong>g <strong>in</strong> a l<strong>and</strong>scape-wide <strong>in</strong>put<br />

data set <strong>of</strong> wea<strong>the</strong>r conditions <strong>in</strong> any given simulation<br />

year. In addition, each grid cell <strong>in</strong> <strong>the</strong> model has a userspecified<br />

elevation, slope, aspect, <strong>and</strong> soil type, which<br />

are required by <strong>the</strong> soil water balance model.<br />

2.2.1.2. Tree mortality. In analogy to <strong>the</strong> <strong>growth</strong> part<br />

<strong>of</strong> <strong>the</strong> model, a yearly mortality rate, m c (t), is implemented<br />

as follows:<br />

dN c<br />

=−m c (t)N c (6)<br />

dt<br />

The mortality rate is composed <strong>of</strong> a <strong>growth</strong>dependent<br />

(mStress), a density-dependent (mDense)<br />

<strong>and</strong> an <strong>in</strong>tr<strong>in</strong>sic (mAge) component. These three<br />

factors do not operate <strong>in</strong>dependently. The first two factors<br />

represent <strong>the</strong> effects <strong>of</strong> competition, <strong>and</strong> <strong>the</strong>refore<br />

cannot be effective simultaneously. In addition,<br />

it is well known that low <strong>growth</strong> rates <strong>of</strong>ten represent<br />

an adaptation to low resource availability (cf. Loehle,<br />

1988), which leads to potentially high longevity. To<br />

represent this ecological trade<strong>of</strong>f, we assume that <strong>tree</strong>s<br />

exposed to competition-related mortality are not at <strong>the</strong><br />

same time subject to <strong>in</strong>tr<strong>in</strong>sic mortality. Consequently,<br />

a maximum function was chosen to comb<strong>in</strong>e <strong>the</strong>se three<br />

mortality factors.<br />

m c (t) = max(mStress(t), mDense(t),mAge(t)) (7)<br />

The stress-dependent mortality factor (mStress) is<br />

based on <strong>the</strong> assumption that only 1% <strong>of</strong> species would<br />

survive 10 years <strong>of</strong> consecutive stress. Stress is def<strong>in</strong>ed<br />

here as <strong>the</strong> conditon when one <strong>of</strong> <strong>the</strong> three <strong>growth</strong> response<br />

factors described above drops below a threshold<br />

value, m rf. Stress-related mortality occurs only when a<br />

m<strong>in</strong>imum number <strong>of</strong> consecutive stress years (m<strong>in</strong>Yrs)<br />

has accumulated (Eq. (8)). The counter for <strong>the</strong> number<br />

<strong>of</strong> stress years (sYrs) is <strong>in</strong>creased by one each time<br />

‘stress’ occurs, <strong>and</strong> is set back to zero o<strong>the</strong>rwise.<br />

{<br />

1 − e<br />

ln(0.01)/10<br />

sYrs ≥ m<strong>in</strong> Yrs<br />

mStress =<br />

(8)<br />

0 else<br />

Density-dependent mortality (mDense) occurs if total<br />

st<strong>and</strong> biomass exceeds maximum st<strong>and</strong> biomass<br />

(maxB f ). This value approximates <strong>the</strong> carry<strong>in</strong>g capacity<br />

<strong>of</strong> a forest st<strong>and</strong> <strong>and</strong> is user-def<strong>in</strong>ed. The mortality<br />

rate is calculated based on <strong>the</strong> difference between<br />

maximum st<strong>and</strong> biomass, maxB f , <strong>and</strong> simulated st<strong>and</strong><br />

biomass B f . This excess cover is divided by <strong>the</strong> number<br />

<strong>of</strong> cohorts that occur on <strong>the</strong> cell (numCoho f ) to determ<strong>in</strong>e<br />

<strong>the</strong> excess biomass <strong>of</strong> each cohort. This biomass<br />

is <strong>the</strong>n used to reduce <strong>the</strong> cohort’s biomass:<br />

mDense = max[(B f − maxB f ), 0] 1<br />

(9)<br />

numCoho f B i N c<br />

Intr<strong>in</strong>sic mortality is accounted for by a constant<br />

probability <strong>of</strong> death throughout <strong>the</strong> lifetime <strong>of</strong> <strong>the</strong><br />

<strong>tree</strong>, assum<strong>in</strong>g that 1% <strong>of</strong> <strong>tree</strong>s belong<strong>in</strong>g to particular<br />

species reach <strong>the</strong>ir maximum longevity (maxAge s ). We<br />

used <strong>the</strong> equation as commonly implemented <strong>in</strong> forest<br />

gap models (e.g., Botk<strong>in</strong>, 1993; Bugmann, 1996):<br />

mAge = 1 − e ln(0.01)/maxAge s<br />

(10)<br />

In addition to <strong>the</strong>se annual mortality rates, largescale<br />

disturbances can cause mortality. These exogenous<br />

mortality causes are simulated only once each<br />

decade (see below).<br />

2.2.1.3. Tree regeneration. Tree regeneration is simulated<br />

based on seed availability <strong>and</strong> environmental


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 181<br />

conditions. Seed availability <strong>in</strong> each cell is checked every<br />

decade with <strong>the</strong> orig<strong>in</strong>al LANDIS seed<strong>in</strong>g rout<strong>in</strong>e<br />

(Mladen<strong>of</strong>f <strong>and</strong> He, 1999). For those species with available<br />

seeds, establishment potential over each decade is<br />

estimated as a function <strong>of</strong> environmental conditions,<br />

which are considered each year <strong>in</strong> two separate steps:<br />

firstly to determ<strong>in</strong>e <strong>the</strong> <strong>growth</strong> performance <strong>of</strong> newly<br />

establishment <strong>tree</strong> cohorts (over <strong>the</strong> last decade), <strong>and</strong><br />

secondly to determ<strong>in</strong>e <strong>the</strong> fraction <strong>of</strong> years that have<br />

been favorable for establishment.<br />

In <strong>the</strong> first step, <strong>the</strong> biomass <strong>of</strong> newly established<br />

cohorts (B i (t = 10)) at <strong>the</strong> end <strong>of</strong> a given decade is calculated<br />

from an <strong>in</strong>itial <strong>tree</strong> biomass, which is <strong>the</strong> same for<br />

all species (B i (t = 0)). Biomass <strong>in</strong>crement over 10 years<br />

is tracked by an exponential <strong>growth</strong> function (Eq. (11)).<br />

Growth rates (r i ) are reduced every year by environmental<br />

conditions <strong>in</strong> an analogous manner to those described<br />

<strong>in</strong> <strong>the</strong> ‘<strong>tree</strong> <strong>growth</strong>’ sub-model (Eq. (4)). This<br />

results <strong>in</strong> larger establishment biomass for species with<br />

higher <strong>growth</strong> rates <strong>and</strong> for those with a higher tolerance<br />

<strong>of</strong> unfavorable environmental conditions.<br />

B i (t = 10) : B i (t + 1) = B i (t)(1 + r i (t)) (11)<br />

In <strong>the</strong> second step, <strong>the</strong> model tracks <strong>the</strong> number<br />

<strong>of</strong> years (out <strong>of</strong> 10) <strong>in</strong> which environmental conditions<br />

have been favorable for <strong>the</strong> establishment <strong>of</strong> a<br />

given species (estYrs s ). The rout<strong>in</strong>e that checks site<br />

conditions every year was implemented similarly to<br />

those found <strong>in</strong> gap models (e.g., Bugmann, 1994, 1996;<br />

Shugart, 1984): a particular year is favorable for establishment<br />

only if <strong>the</strong> follow<strong>in</strong>g four criteria are met:<br />

(1) available light at forest floor has to be higher than<br />

a species-specific threshold value (m<strong>in</strong>L s ); (2) w<strong>in</strong>ter<br />

temperature (mean temperature <strong>of</strong> <strong>the</strong> coldest month)<br />

has to be higher than a threshold m<strong>in</strong>imum temperature<br />

(m<strong>in</strong>T s ); (3) <strong>the</strong> sum <strong>of</strong> grow<strong>in</strong>g degree-days has<br />

to exceed <strong>the</strong> m<strong>in</strong>imum species-specific requirement<br />

(m<strong>in</strong>DD s ); (4) brows<strong>in</strong>g probability is calculated after<br />

Bugmann (1994, p. 60, (Eq. (3.4)) based on brows<strong>in</strong>g<br />

pressure (brows f ) <strong>and</strong> a species-specific brows<strong>in</strong>g tolerance<br />

(brTol s ); it has to be smaller than a uniformly<br />

distributed r<strong>and</strong>om number. In addition, actual <strong>tree</strong> establishment<br />

occurs only <strong>in</strong> a fraction <strong>of</strong> <strong>the</strong> years when<br />

all four factors are favorable, to take <strong>in</strong>to account that<br />

additional factors which are not explicitly modeled may<br />

prevent establishment. This is expressed by <strong>the</strong> userdef<strong>in</strong>ed<br />

establishment coefficient (estCoeff f ). Fur<strong>the</strong>rmore,<br />

after each 10-year period, <strong>the</strong> establishment rout<strong>in</strong>e<br />

cont<strong>in</strong>ues only if total st<strong>and</strong> biomass is at least ten<br />

percent smaller than maximum st<strong>and</strong> biomass (maxB f ).<br />

If st<strong>and</strong> biomass is higher, newly established cohorts<br />

would die <strong>in</strong> <strong>the</strong> next <strong>growth</strong> period due to densityrelated<br />

mortality (see section ‘Tree mortality’, above).<br />

F<strong>in</strong>ally, if st<strong>and</strong> biomass permits establishment, <strong>the</strong><br />

density <strong>of</strong> newly established <strong>tree</strong>s (N c (t = 10)) is determ<strong>in</strong>ed.<br />

N c (t = 10) is calculated based on a user-def<strong>in</strong>ed<br />

maximum establishment density (potDens f ), which is<br />

reduced l<strong>in</strong>early by light availability at <strong>the</strong> forest floor<br />

(avL ff ), result<strong>in</strong>g <strong>in</strong> smaller densities <strong>of</strong> <strong>tree</strong> regeneration<br />

under a dense canopy. The result<strong>in</strong>g <strong>tree</strong> density is<br />

distributed among all <strong>tree</strong> species with available seeds<br />

(sumSpec f ) proportionally to <strong>the</strong> species’ <strong>growth</strong> performance<br />

<strong>in</strong> <strong>the</strong> establishment layer, as an assessment<br />

<strong>of</strong> plant vigor. Growth performance (grPer s ) is def<strong>in</strong>ed<br />

here as <strong>the</strong> ratio <strong>of</strong> realized <strong>growth</strong> <strong>in</strong>crement dur<strong>in</strong>g<br />

<strong>the</strong> last 10 years to <strong>the</strong> maximum possible <strong>growth</strong> <strong>in</strong>crement<br />

under optimal environmental conditions. We assumed<br />

that species with better <strong>growth</strong> performance are<br />

capable <strong>of</strong> establish<strong>in</strong>g more <strong>tree</strong>s than species whose<br />

sapl<strong>in</strong>gs do not grow well. Fur<strong>the</strong>rmore, <strong>the</strong> potential<br />

regeneration density <strong>of</strong> each species is reduced proportionally<br />

to <strong>the</strong> species-specific number <strong>of</strong> years over<br />

<strong>the</strong> last 10-year period when establishment would have<br />

been possible (estYrs s ), to take <strong>in</strong>to account that unfavorable<br />

establishment years cause a reduction <strong>of</strong> <strong>the</strong><br />

establishment density <strong>of</strong> a species cf. (Eq. (12)).<br />

N c (t = 10) = potDens f avL ff<br />

×<br />

grPer s estYrs s<br />

∑ sumSpecf<br />

x=1<br />

grPer s,x<br />

10<br />

(12)<br />

2.2.2. L<strong>and</strong>scape-scale processes<br />

Tree mortality is caused not only by <strong>the</strong> ‘endogenous’<br />

mechanisms <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> <strong>succession</strong> submodel<br />

described above. Exogenous sources <strong>of</strong> mortality<br />

<strong>in</strong>cluded <strong>in</strong> LANDIS are w<strong>in</strong>dthrow, fire <strong>and</strong> forest<br />

management. These large-scale disturbance regimes<br />

are simulated with a 10-year time-step <strong>and</strong> are largely<br />

unchanged from <strong>the</strong> orig<strong>in</strong>al LANDIS model. M<strong>in</strong>or<br />

modifications had to be made to adjust <strong>the</strong>se processes<br />

to <strong>the</strong> altered model structure described above. First, we<br />

def<strong>in</strong>ed <strong>tree</strong> susceptibility towards disturbances, <strong>and</strong><br />

<strong>tree</strong> selection for harvest<strong>in</strong>g based on <strong>the</strong> <strong>tree</strong> diameter<br />

classes (derived from biomass) <strong>in</strong>stead <strong>of</strong> life span <strong>and</strong>


182 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

Table 2<br />

W<strong>in</strong>dthrow susceptibility classes def<strong>in</strong>ed by diameter class with associated<br />

mortality probability <strong>of</strong> s<strong>in</strong>gle <strong>tree</strong>s for each class as implemented<br />

<strong>in</strong> <strong>the</strong> model. The values were estimated based on literature<br />

data (e.g. Canham et al., 2001)<br />

Diameter (dbh) class (cm)<br />

40 1.00<br />

Mortality probability<br />

age classes. For example, w<strong>in</strong>d mortality probabilities<br />

<strong>of</strong> <strong>in</strong>dividual <strong>tree</strong>s <strong>in</strong>crease with <strong>tree</strong> size (Table 2). Second,<br />

we took <strong>in</strong>to account <strong>the</strong> fact that only portions<br />

<strong>of</strong> cohorts, ra<strong>the</strong>r than entire cohorts, may be killed<br />

by natural disturbances or by harvest<strong>in</strong>g, <strong>and</strong> implemented<br />

this as <strong>the</strong> mortality probability <strong>of</strong> <strong>in</strong>dividual<br />

<strong>tree</strong>s. Third, we extended <strong>the</strong> harvest module to <strong>in</strong>clude<br />

additional management prescriptions to be used when<br />

select<strong>in</strong>g st<strong>and</strong>s to harvest. Particularly, it can be specified<br />

that st<strong>and</strong>s are harvested only when <strong>the</strong> average<br />

diameter <strong>of</strong> <strong>the</strong> hundred largest <strong>tree</strong>s <strong>in</strong> <strong>the</strong> st<strong>and</strong> (calculated<br />

on a per hectare basis)—a common variable <strong>in</strong><br />

central European forestry (e.g., Anonymous, 1983)—is<br />

above a m<strong>in</strong>imum size. In addition, we exp<strong>and</strong>ed <strong>the</strong><br />

set <strong>of</strong> harvest rank<strong>in</strong>g algorithms by a) rank<strong>in</strong>g by <strong>tree</strong><br />

density <strong>and</strong> b) rank<strong>in</strong>g by biomass <strong>of</strong> <strong>the</strong> hundred tallest<br />

<strong>tree</strong>s per hectare.<br />

For a complete description <strong>of</strong> <strong>the</strong> modified LANDIS<br />

model, <strong>the</strong> reader is referred to Schumacher (2004).<br />

3. Methods used for model tests <strong>and</strong><br />

applications<br />

3.1. Study area<br />

We studied l<strong>and</strong>scape dynamics <strong>in</strong> <strong>the</strong> Dischma valley,<br />

which is located near Davos at 46.8 ◦ N, 9.8 ◦ E <strong>in</strong> <strong>the</strong><br />

eastern part <strong>of</strong> <strong>the</strong> Swiss Alps. It is a typical Alp<strong>in</strong>e valley<br />

extend<strong>in</strong>g from 1500 to 3200 m a.s.l. Mean annual<br />

ra<strong>in</strong>fall at 1560 m a.s.l. (climate station Davos–Platz)<br />

is 1043 mm, while nearby at 2560 m a.s.l. (Weissfluhjoch),<br />

it amounts to 1276 mm (SMA, 1960–2000).<br />

The mean annual temperature <strong>in</strong> Davos is 3.2 ◦ C <strong>and</strong> at<br />

Weissfluhjoch −2.4 ◦ C (SMA, 1960–2000). The ma<strong>in</strong><br />

soil types are brown soil, brown podzols, <strong>and</strong> podzols.<br />

In this study, we focused only on <strong>the</strong> nor<strong>the</strong>rn part <strong>of</strong> <strong>the</strong><br />

valley. This part <strong>of</strong> <strong>the</strong> valley consists <strong>of</strong> about 1700 ha<br />

<strong>of</strong> which 450 ha are forested today. Forests up to 2000<br />

m a.s.l. are typically dom<strong>in</strong>ated by Picea abies, while<br />

forest composition at higher elevations is dom<strong>in</strong>ated<br />

<strong>in</strong>creas<strong>in</strong>gly by Larix decidua <strong>and</strong> P<strong>in</strong>us cembra. The<br />

current <strong>tree</strong> l<strong>in</strong>e is located at ca. 2100 m a.s.l., well below<br />

<strong>the</strong> natural <strong>tree</strong> l<strong>in</strong>e because <strong>of</strong> century-long human<br />

<strong>in</strong>fluences (alp<strong>in</strong>e pastures).<br />

3.2. Model parameters<br />

The model requires parameter sets describ<strong>in</strong>g<br />

<strong>tree</strong> species, physical site conditions <strong>and</strong> disturbance<br />

regimes. General parameters used <strong>in</strong> <strong>the</strong> modified<br />

model are given <strong>in</strong> Table 1. Species parameters <strong>in</strong>clude<br />

life-history traits, environmental responses, <strong>and</strong> demographic<br />

rates. These were estimated based on data from<br />

literature <strong>and</strong> are summarized <strong>in</strong> Table 3. Site parameters<br />

can be def<strong>in</strong>ed by ecoregions (l<strong>and</strong> types), but <strong>in</strong><br />

this study, we def<strong>in</strong>ed only one ecoregion (cf. Table 4).<br />

Climate data conta<strong>in</strong><strong>in</strong>g <strong>in</strong>formation on monthly mean<br />

temperature <strong>and</strong> precipitation sum from <strong>the</strong> climate station<br />

Davos–Platz (SMA, 1960–2000) was used. Altitud<strong>in</strong>al<br />

lapse rates were derived by monthly l<strong>in</strong>ear <strong>in</strong>terpolations<br />

between <strong>the</strong> climate stations Davos–Platz<br />

(base station) <strong>and</strong> Weissfluhjoch (SMA, 1960–2000).<br />

Input maps consisted <strong>of</strong> 230 × 235-cell maps with a<br />

resolution <strong>of</strong> 25 m × 25 m. Elevation, slope <strong>and</strong> aspect<br />

for every grid cell were derived from a digital<br />

elevation model with a resolution <strong>of</strong> 25 m (DHM25, ©<br />

2002 Swiss Federal Office <strong>of</strong> Topography). Soil <strong>in</strong>formation<br />

was taken from <strong>the</strong> soil maps by Krause<br />

(1986). Avalanche tracks were del<strong>in</strong>eated based on an<br />

avalanche hazard map (Grunder <strong>and</strong> Kienholz, 1986).<br />

Note that avalanches were simulated but not <strong>in</strong>vestigated<br />

fur<strong>the</strong>r, as <strong>the</strong> behavior <strong>of</strong> this part <strong>of</strong> <strong>the</strong> l<strong>and</strong>scape<br />

is largely dictated by <strong>the</strong> pre-determ<strong>in</strong>ed high<br />

recurrence time <strong>of</strong> <strong>the</strong> avalanches. The characteristics<br />

<strong>of</strong> <strong>the</strong> current w<strong>in</strong>d disturbance regime <strong>in</strong> <strong>the</strong> study area<br />

were estimated based on <strong>in</strong>vestigations <strong>of</strong> <strong>the</strong> history<br />

<strong>of</strong> storms <strong>in</strong> Switzerl<strong>and</strong> (WSL <strong>and</strong> BUWAL, 2001).<br />

The mean return <strong>in</strong>terval was estimated as 600 years,<br />

<strong>and</strong> <strong>the</strong> mean disturbance size as 2.5 ha.<br />

3.3. Simulation experiments<br />

We ran various sets <strong>of</strong> simulation experiments to test<br />

<strong>and</strong> apply <strong>the</strong> model <strong>in</strong> <strong>the</strong> Dischma Valley. We started


Table 3<br />

Species life-history parameters<br />

Species<br />

r s<br />

(year −1 )<br />

K s<br />

(t)<br />

maxAge s<br />

(year)<br />

matu s<br />

(year)<br />

ED s<br />

(m)<br />

MD s<br />

(m)<br />

vegP s<br />

(−)<br />

sp ag s<br />

(year)<br />

E/D s<br />

(−)<br />

folType s<br />

(−)<br />

shdTol s<br />

(−)<br />

m<strong>in</strong>DD s<br />

(d)<br />

Abies alba 0.04 17.6 700 70 50 160 0 0 1 5 5 641 −6 3 3<br />

Larix deciduas 0.07 13.5 850 30 60 200 0 0 2 2 1 323 −11 3 2<br />

Picea abies 0.08 15.2 700 50 70 250 0 0 1 5 3 385 −11 2 2<br />

P<strong>in</strong>us cembra 0.03 5.9 1050 70 30 −1 0 0 1 5 3 323 −99 4 3<br />

P<strong>in</strong>us mugo 0.06 0.4 300 10 90 300 0 0 1 4 1 323 −99 5 2<br />

P<strong>in</strong>us silvestris 0.075 8.1 760 30 90 300 0 0 1 4 1 610 −99 5 2<br />

Alnus <strong>in</strong>cana 0.12 4.9 150 20 30 100 1 30 2 2 2 610 −99 1 2<br />

Alnus viridis 0.09 0.035 100 20 30 100 1 30 2 2 2 272 −99 2 2<br />

Betula pubescens 0.12 1.7 170 20 200 700 1 30 2 1 1 498 −99 3 1<br />

Populus nigra 0.12 10.6 280 20 240 800 1 30 2 2 3 662 −99 1 3<br />

Populus tremula 0.12 3.8 140 20 240 800 1 30 2 2 2 610 −99 3 3<br />

Salix caprea 0.12 0.4 170 20 430 1400 1 30 2 1 3 610 −99 2 1<br />

Sorbus aucuparia 0.12 1.8 110 10 30 −1 1 50 2 1 2 498 −99 4 2<br />

r: maximum above-ground biomass <strong>growth</strong> rate (Flury, 1895; Burger, 1945, 1947, 1948, 1950a,b, 1951, 1952, 1953; Anonymous, 1983; Schober, 1987; Lick <strong>and</strong> Sterba, 1991;<br />

Hillebr<strong>and</strong>, 1997); K: maximum aboveground <strong>tree</strong> biomass a species can potentially reach (Assmann, 1961; Grosser, 1977; Burger, 1945, 1947, 1948, 1950a,b, 1951, 1952, 1953;<br />

Bugmann, 1994); maxAge: expected longevity (Bugmann, 1994); matu: maturity age for seed production (Rohmeder, 1972, p. 35); ED: effective seed<strong>in</strong>g distance (m); MD: maximum<br />

seed<strong>in</strong>g distance (m) (Rohmeder, 1972); vegP: probability <strong>of</strong> vegetative reproduction, <strong>and</strong> spAge: maximum age for vegetative reproduction (Burschel <strong>and</strong> Huss, 1997); E/D: 1,<br />

denotes evergreen species; 2, deciduous species; folType: Foliage type (Bugmann, 1994); shdTol: species shad<strong>in</strong>g tolerance (ord<strong>in</strong>al number between 1 <strong>and</strong> 5, 1 denotes least<br />

shade-tolerant) (Ellenberg, 1996 p. 119); m<strong>in</strong>DD: m<strong>in</strong>imum annual degree-day sum (Bugmann, 1994); m<strong>in</strong>T: m<strong>in</strong>imum temperature for establishment (Bugmann, 1994); drTol:<br />

drought tolerance <strong>of</strong> species (1, very <strong>in</strong>tolerant; 5, very tolerant) (Bugmann, 1994; Bugmann <strong>and</strong> Cramer, 1998); brTol: brows<strong>in</strong>g tolerance (Bugmann, 1994).<br />

m<strong>in</strong>T s<br />

( ◦ C)<br />

drTol s<br />

(−)<br />

brTol s<br />

(−)<br />

S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 183


184 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

Table 4<br />

Site (l<strong>and</strong> type) parameters<br />

Name Parameter description Value<br />

maxB f (t/ha) Maximal st<strong>and</strong> biomass 300<br />

potDens f (m −2 ) Potential establishment density 1<br />

brows f Brows<strong>in</strong>g pressure 0.5<br />

estCoeff f<br />

Establishment coefficient<br />

(for all species)<br />

0.9<br />

all <strong>the</strong> simulations on an empty l<strong>and</strong>scape. At <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g<br />

<strong>of</strong> <strong>the</strong> simulations, all species had a probability<br />

<strong>of</strong> 10% to contribute seeds to a cell. The first 1000<br />

years <strong>of</strong> each simulation were used to allow for <strong>the</strong> establishment<br />

<strong>of</strong> <strong>tree</strong>s <strong>and</strong> to reach equilibrium between<br />

climatic conditions, <strong>the</strong> disturbance regime, <strong>and</strong> vegetation<br />

structure <strong>and</strong> composition. Model evaluation<br />

started follow<strong>in</strong>g this “sp<strong>in</strong>-up” period <strong>of</strong> <strong>the</strong> simulation.<br />

We ran <strong>the</strong> simulations on a Dell OptiPlex GX260<br />

computer with a Pentium 4 processor at 2 GHz. The current<br />

code, which has not yet been optimized for performance,<br />

required approximately 3 m<strong>in</strong> for a simulation<br />

<strong>of</strong> 100 years.<br />

The first test consisted <strong>of</strong> runn<strong>in</strong>g <strong>the</strong> model us<strong>in</strong>g<br />

a harvest regime similar to <strong>the</strong> harvest regime <strong>of</strong> <strong>the</strong><br />

last 300 years <strong>in</strong> <strong>the</strong> study area, so as to evaluate current<br />

l<strong>and</strong>scape composition. This simulated l<strong>and</strong>scape<br />

composition was compared with forest <strong>in</strong>ventory data<br />

collected <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> MAB project (Hefti et<br />

al., 1986). The comparisons were based on biomass<br />

<strong>and</strong> species composition, aggregated over an elevational<br />

gradient for <strong>the</strong> entire currently forested area<br />

(exclud<strong>in</strong>g avalanche tracks). The ‘historic’ harvest<strong>in</strong>g<br />

regime was started after <strong>the</strong> first 1000 simulation<br />

years (see above) <strong>and</strong> cont<strong>in</strong>ued for 200 years, to mimic<br />

<strong>the</strong> period from 1700 to 1900 a.d. (before 1700 a.d.,<br />

harvest<strong>in</strong>g activities had presumably been m<strong>in</strong>imal). In<br />

this period, <strong>the</strong> harvest<strong>in</strong>g regime was quite <strong>in</strong>tensive,<br />

as <strong>the</strong> forests were used by <strong>the</strong> local community for<br />

multiple purposes: mow<strong>in</strong>g, cattle <strong>and</strong> goat graz<strong>in</strong>g,<br />

firewood collection, wood extraction for fence posts,<br />

s<strong>in</strong>gle stem extraction for hous<strong>in</strong>g construction (local<br />

use), <strong>and</strong> clear-cutt<strong>in</strong>g for timber trad<strong>in</strong>g (Günter,<br />

1981). After 1900 a.d., <strong>the</strong> ‘historic’ harvest regime<br />

was replaced <strong>in</strong> <strong>the</strong> simulation by a ‘current’ harvest<strong>in</strong>g<br />

regime, which consists <strong>of</strong> s<strong>in</strong>gle <strong>tree</strong> selection <strong>in</strong><br />

only a small fraction <strong>of</strong> <strong>the</strong> area (Hefti et al., 1986).<br />

These simulations were conducted under current climatic<br />

conditions <strong>and</strong> <strong>the</strong> current w<strong>in</strong>d regime. To account<br />

for r<strong>and</strong>om effects, <strong>the</strong> mean values <strong>of</strong> fifty simulation<br />

runs were evaluated.<br />

In a second set <strong>of</strong> simulations, model behavior under<br />

potential natural conditions (i.e., current climatic<br />

conditions <strong>and</strong> no forest management) was tested at<br />

<strong>the</strong> l<strong>and</strong>scape scale by evaluat<strong>in</strong>g <strong>the</strong> distribution <strong>of</strong><br />

forest properties over an elevational transect from <strong>the</strong><br />

valley bottom to <strong>the</strong> <strong>tree</strong> l<strong>in</strong>e. The potential forest area<br />

for <strong>the</strong>se simulations was def<strong>in</strong>ed as <strong>the</strong> total area <strong>of</strong><br />

<strong>the</strong> valley except for current settlement <strong>and</strong> productive<br />

agricultural areas; that is, alp<strong>in</strong>e pastures above <strong>the</strong> current<br />

<strong>tree</strong> l<strong>in</strong>e were treated as potential forest area. This<br />

allowed us to <strong>in</strong>vestigate whe<strong>the</strong>r <strong>the</strong> model is able to<br />

realistically simulate <strong>the</strong> change <strong>of</strong> species composition<br />

with altitude <strong>and</strong> <strong>the</strong> location <strong>of</strong> <strong>the</strong> potential natural<br />

<strong>tree</strong> l<strong>in</strong>e. To account for w<strong>in</strong>d disturbance <strong>and</strong> o<strong>the</strong>r<br />

r<strong>and</strong>om effects, we averaged <strong>the</strong> years 1000–1500 <strong>of</strong><br />

s<strong>in</strong>gle simulations <strong>and</strong> <strong>the</strong>n took <strong>the</strong> average result <strong>of</strong><br />

25 such simulation experiments.<br />

In this second set <strong>of</strong> simulations, model behavior<br />

was also evaluated on a st<strong>and</strong>-scale. We exam<strong>in</strong>ed natural<br />

(i.e., no forest management) st<strong>and</strong> development patterns<br />

after disturbance events. To explore model behavior<br />

on scales smaller than <strong>the</strong> entire l<strong>and</strong>scape, we divided<br />

<strong>the</strong> l<strong>and</strong>scape <strong>in</strong>to elevation b<strong>and</strong>s with a width <strong>of</strong><br />

100 m, assum<strong>in</strong>g that vegetation behavior with<strong>in</strong> <strong>the</strong>se<br />

b<strong>and</strong>s would be comparable, as <strong>the</strong> climate is similar.<br />

We sorted all cells with<strong>in</strong> each b<strong>and</strong> by age s<strong>in</strong>ce <strong>the</strong><br />

last disturbance, <strong>and</strong> <strong>the</strong>n averaged <strong>the</strong> simulated st<strong>and</strong><br />

structures accord<strong>in</strong>g to age s<strong>in</strong>ce <strong>the</strong> last disturbance.<br />

The basis for <strong>the</strong>se analyses was a 3000-year simulation,<br />

<strong>of</strong> which <strong>the</strong> last 2000 years were exam<strong>in</strong>ed.<br />

F<strong>in</strong>ally, <strong>the</strong> model was applied to a range <strong>of</strong> possible<br />

future climate <strong>and</strong> disturbance scenarios to assess<br />

<strong>the</strong> sensitivity <strong>of</strong> <strong>the</strong> forest cover to Global Change.<br />

Based on <strong>the</strong> Third IPPC Report (IPCC, 2001), we developed<br />

simple scenarios that comprised an <strong>in</strong>crease<br />

<strong>in</strong> temperature, a decrease <strong>of</strong> precipitation <strong>and</strong> an <strong>in</strong>crease<br />

<strong>in</strong> w<strong>in</strong>d disturbance frequency. We performed<br />

three sets <strong>of</strong> scenario runs: (a) ‘current’: current climate,<br />

current w<strong>in</strong>d regime (400 years mean return <strong>in</strong>terval);<br />

(b) ‘moderate’: mean temperature +2 ◦ C, precipitation<br />

−10%, mean return <strong>in</strong>terval w<strong>in</strong>d 400 years;<br />

<strong>and</strong> (c) ‘extreme’: temperature +4 ◦ C, precipitation<br />

−20%, return <strong>in</strong>terval w<strong>in</strong>d 200 years. The ‘current’<br />

harvest<strong>in</strong>g regime—s<strong>in</strong>gle <strong>tree</strong> selection <strong>in</strong> a small<br />

fraction <strong>of</strong> <strong>the</strong> area—was applied <strong>in</strong> all three scenarios.<br />

The simulation results from <strong>the</strong> three scenarios were


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 185<br />

tracks). To account for r<strong>and</strong>om effects, we aga<strong>in</strong> averaged<br />

<strong>the</strong> years 1000–1500 <strong>of</strong> s<strong>in</strong>gle simulations <strong>and</strong><br />

<strong>the</strong>n took <strong>the</strong> average result <strong>of</strong> 25 such simulation experiments<br />

for each <strong>of</strong> <strong>the</strong> three scenarios.<br />

4. Results<br />

4.1. Model tests<br />

Fig. 3. Def<strong>in</strong>ition <strong>of</strong> vertical structure classes as used <strong>in</strong> this paper.<br />

B canopy , total biomass <strong>of</strong> <strong>tree</strong>s bigger than 20 cm dbh (diameter<br />

at breast height); B under total biomass <strong>of</strong> species <strong>tree</strong>s smaller than<br />

20 cm dbh. avL under , portion <strong>of</strong> light that passes <strong>the</strong> cumulative leaf<br />

layer <strong>of</strong> <strong>tree</strong>s smaller than 20 cm dbh (corresponds roughly to a crown<br />

closure <strong>of</strong> 10%). DBH canopy , average diameter <strong>of</strong> <strong>tree</strong>s bigger than<br />

20 cm dbh.<br />

compared <strong>in</strong> terms <strong>of</strong> biomass distribution (total<br />

biomass <strong>and</strong> species composition) <strong>and</strong> vertical st<strong>and</strong><br />

structure classes (cf. Fig. 3), aggregat<strong>in</strong>g <strong>the</strong> results<br />

over <strong>the</strong> entire forested area (exclud<strong>in</strong>g avalanche<br />

4.1.1. L<strong>and</strong>scape-scale behavior<br />

Apply<strong>in</strong>g <strong>the</strong> management regime to <strong>the</strong> years<br />

1700–2000 a.d. resulted <strong>in</strong> a simulated l<strong>and</strong>scape <strong>in</strong><br />

<strong>the</strong> year 2000 a.d. which was dom<strong>in</strong>ated mostly by<br />

Picea abies, with scattered Larix decidua dom<strong>in</strong>ated<br />

cells <strong>and</strong> some P<strong>in</strong>us cembra dom<strong>in</strong>ated areas at higher<br />

elevations, but rarely at low elevations (Fig. 4b). It<br />

should be noted that <strong>the</strong> simulation shown <strong>in</strong> Fig. 4b<br />

is just one realization <strong>of</strong> <strong>the</strong> stochastic process underly<strong>in</strong>g<br />

<strong>the</strong> model, that is, depend<strong>in</strong>g on <strong>the</strong> particular<br />

simulation run, variation <strong>of</strong> <strong>the</strong> simulated patterns may<br />

occur. However, we found that <strong>the</strong> variation from one<br />

run to <strong>the</strong> o<strong>the</strong>r was not overwhelm<strong>in</strong>gly large <strong>in</strong> this<br />

weakly disturbed l<strong>and</strong>scape. The aboveground biomass<br />

<strong>and</strong> species composition <strong>in</strong> <strong>the</strong> simulated year 2000<br />

a.d. (mean <strong>of</strong> fifty simulation runs) exhibited gradual<br />

changes with altitude (Fig. 5b). Biomass at lower elevations<br />

is slightly above 200 t/ha; above 1750 m a.s.l.,<br />

it decreases gradually to about 50 t/ha at <strong>the</strong> upper<br />

Fig. 4. Dom<strong>in</strong>ant <strong>tree</strong> species (i.e., species with biggest biomass on cell): (a) current forest map (Hefti et al., 1986); (b) simulated l<strong>and</strong>scape<br />

with forest management <strong>and</strong> current alp<strong>in</strong>e l<strong>and</strong> use; <strong>and</strong> (c) simulated l<strong>and</strong>scape under potential natural conditions (i.e. <strong>the</strong> forest cover was<br />

able to exp<strong>and</strong> upwards until natural <strong>tree</strong> l<strong>in</strong>e).


186 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

Fig. 5. Biomass distribution aggregated over <strong>the</strong> entire l<strong>and</strong>scape (exclud<strong>in</strong>g avalanche tracks): (a) current forest properties (Hefti et al., 1986);<br />

(b) simulated l<strong>and</strong>scape with forest management <strong>and</strong> current alp<strong>in</strong>e l<strong>and</strong> use; <strong>and</strong> (c) simulated l<strong>and</strong>scape under potential natural conditions.<br />

forest border. Species composition changes from P.<br />

abies dom<strong>in</strong>ation to P. cembra dom<strong>in</strong>ated forests <strong>in</strong><br />

<strong>the</strong> uppermost forested areas.<br />

The simulations under natural conditions allowed<br />

forests to exp<strong>and</strong> beyond <strong>the</strong> current upper forest border<br />

(Fig. 4c). Accord<strong>in</strong>g to <strong>the</strong> model, <strong>the</strong>se areas are<br />

dom<strong>in</strong>ated by P<strong>in</strong>us cembra with a narrow Alnus viridis<br />

belt at <strong>the</strong> <strong>tree</strong> l<strong>in</strong>e. At lower elevations, st<strong>and</strong>s are dom<strong>in</strong>ated<br />

by Picea abies, but <strong>the</strong>re are also scattered areas<br />

dom<strong>in</strong>ated by Larix decidua (Fig. 4c). The simulated<br />

natural vegetation dynamics resulted <strong>in</strong> biomass values<br />

<strong>and</strong> species composition that also changed with<br />

altitude (Fig. 5c). Total aboveground biomass (exclud<strong>in</strong>g<br />

avalanche tracks) was highest at lower altitudes,<br />

decl<strong>in</strong>ed slightly with altitude between 1550 <strong>and</strong> 1850<br />

m a.s.l., <strong>and</strong> started to decrease more strongly at altitudes<br />

between 1850 m <strong>and</strong> 2250 m a.s.l. (Fig. 5c).<br />

Over <strong>the</strong> elevational gradient, <strong>the</strong>re was a transition<br />

from Picea abies dom<strong>in</strong>ated forests at lower elevations<br />

to a P<strong>in</strong>us cembra dom<strong>in</strong>ated forests <strong>in</strong> upper parts.<br />

Larix decidua biomass <strong>in</strong>creased with altitude, <strong>and</strong> after<br />

reach<strong>in</strong>g a maximum biomass at about 1800–1900<br />

m a.s.l., it started to decl<strong>in</strong>e aga<strong>in</strong> (Fig. 5c).<br />

4.1.2. St<strong>and</strong>-scale behavior<br />

The biomass development <strong>of</strong> st<strong>and</strong>s dur<strong>in</strong>g <strong>the</strong> 1000<br />

years after a w<strong>in</strong>d disturbance showed similar patterns<br />

at all elevations, <strong>the</strong>refore, only <strong>the</strong> results from one<br />

elevational b<strong>and</strong> are shown (Fig. 6). However, <strong>succession</strong><br />

was slower with <strong>in</strong>creas<strong>in</strong>g altitude. For example,<br />

<strong>the</strong> time until maximal st<strong>and</strong> biomass was atta<strong>in</strong>ed<br />

was 200 years at <strong>the</strong> lowest elevations, 300 years<br />

at 1850–1950 m a.s.l., <strong>and</strong> exceeded 400 years above<br />

1950 m a.s.l. Also, <strong>the</strong> relative abundance <strong>of</strong> different<br />

species changed with altitude (cf. Fig. 5c).<br />

Exam<strong>in</strong><strong>in</strong>g <strong>tree</strong> diameter distributions over time<br />

(Fig. 6), we found that some <strong>tree</strong>s, mostly small specimens,<br />

had typically survived <strong>the</strong> w<strong>in</strong>d disturbance<br />

event (Fig. 6a); that is, complete blowdown events<br />

with 100% mortality were rare (cf. Table 2). New <strong>tree</strong>s<br />

established ma<strong>in</strong>ly dur<strong>in</strong>g <strong>the</strong> first 20 years after <strong>the</strong><br />

w<strong>in</strong>dthrow, followed by a period <strong>of</strong> stem exclusion <strong>and</strong><br />

self-th<strong>in</strong>n<strong>in</strong>g (Fig. 7). Dur<strong>in</strong>g <strong>the</strong> stem exclusion period,<br />

<strong>the</strong> number <strong>of</strong> <strong>tree</strong>s <strong>in</strong> <strong>the</strong> smallest diameter class<br />

started to decl<strong>in</strong>e due to density-dependent mortality,<br />

<strong>and</strong> because some <strong>of</strong> <strong>the</strong>m were grow<strong>in</strong>g <strong>in</strong>to <strong>the</strong> larger<br />

diameter classes (Fig. 6b). As soon as some <strong>tree</strong>s atta<strong>in</strong>ed<br />

large dimensions (Fig. 6c), ongo<strong>in</strong>g stem exclusion<br />

created space for st<strong>and</strong> re-<strong>in</strong>itiation. Only shadetolerant<br />

species (P<strong>in</strong>us cembra, Picea abies) were able<br />

to establish under <strong>the</strong> exist<strong>in</strong>g canopy (Fig. 6c). St<strong>and</strong><br />

re-establishment, stem exclusion <strong>and</strong> <strong>growth</strong> <strong>in</strong>to larger<br />

diameter classes <strong>of</strong> <strong>the</strong> new cohorts took place cont<strong>in</strong>uously<br />

while old cohorts were still present (Fig. 6d).<br />

Some s<strong>in</strong>gle, large stems from <strong>the</strong> old cohorts rema<strong>in</strong>ed<br />

<strong>in</strong> <strong>the</strong> st<strong>and</strong> for several hundred years (Fig. 6e). Because<br />

<strong>of</strong> this overlap <strong>of</strong> development phases <strong>in</strong> <strong>the</strong> old <strong>and</strong><br />

new <strong>tree</strong> cohorts <strong>and</strong> <strong>the</strong> asynchronous <strong>succession</strong> <strong>of</strong><br />

<strong>growth</strong> phases <strong>in</strong> <strong>the</strong> different grid cells, st<strong>and</strong>s subsequently<br />

grew <strong>in</strong>to an equilibrium with a broad range <strong>of</strong>


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 187<br />

Fig. 6. Diameter (diameter at breast height, DBH) distribution dur<strong>in</strong>g st<strong>and</strong> development after w<strong>in</strong>d disturbance (1750–1850 m a.s.l.).<br />

diameter classes (Fig. 6f). The pattern <strong>of</strong> stem numbers<br />

over time was similar for all st<strong>and</strong>s up to 2050 m a.s.l.<br />

Above this altitude, stem number fluctuations ceased,<br />

<strong>and</strong> stem numbers were generally higher than those at<br />

<strong>the</strong> equilibrium phase <strong>in</strong> st<strong>and</strong>s at lower elevations.<br />

4.2. Model application<br />

The sensitivity <strong>of</strong> <strong>the</strong> model to future climate scenarios<br />

was <strong>in</strong>vestigated by compar<strong>in</strong>g total aboveground<br />

biomass, <strong>tree</strong> species composition <strong>and</strong> <strong>the</strong> fraction <strong>of</strong><br />

st<strong>and</strong> structure types aggregated over <strong>the</strong> entire forested<br />

area (exclud<strong>in</strong>g avalanche tracks) (Fig. 8).<br />

Under <strong>the</strong> ‘current’ scenario, total biomass yielded<br />

an average <strong>of</strong> 185 t/ha; under <strong>the</strong> ‘moderate’ future scenario,<br />

somewhat higher values were achieved, while <strong>the</strong><br />

‘extreme’ scenario resulted <strong>in</strong> less biomass (ca. −10%)<br />

than <strong>the</strong> ‘current’ scenario (Fig. 8a).<br />

Also, <strong>the</strong> three scenarios resulted <strong>in</strong> different<br />

average species compositions (Fig. 8a). While <strong>the</strong>


188 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

Fig. 7. Simulated average mean <strong>tree</strong> biomass <strong>and</strong> stem number dur<strong>in</strong>g<br />

st<strong>and</strong> development after w<strong>in</strong>dthrow (dots), displayed <strong>in</strong> 20 year<br />

time steps from right to left: <strong>the</strong> first dot (rightmost) is 20 year after <strong>the</strong><br />

w<strong>in</strong>dthrow, <strong>and</strong> <strong>the</strong> last dot (leftmost) 200 years after <strong>the</strong> w<strong>in</strong>dthrow.<br />

The solid l<strong>in</strong>e has a slope <strong>of</strong> −3/2, as suggested by self-th<strong>in</strong>n<strong>in</strong>g<br />

models (e.g., Yoda et al., 1963).<br />

‘moderate’ scenario was characterized by <strong>the</strong> cont<strong>in</strong>ued<br />

dom<strong>in</strong>ance <strong>of</strong> Picea abies at <strong>the</strong> l<strong>and</strong>scape scale,<br />

<strong>the</strong> biomass <strong>of</strong> Abies alba <strong>in</strong>creased strongly, <strong>and</strong> a<br />

number <strong>of</strong> deciduous species (e.g. Populus spp.) were<br />

also able to grow <strong>in</strong> <strong>the</strong> l<strong>and</strong>scape. In <strong>the</strong> ‘extreme’<br />

scenario, strong changes <strong>of</strong> species composition oc-<br />

cured. Abies alba <strong>and</strong> P. abies became co-dom<strong>in</strong>ant,<br />

<strong>and</strong> deciduous species had a much larger share <strong>in</strong> <strong>the</strong><br />

l<strong>and</strong>scape.<br />

The simulated effects on vertical st<strong>and</strong> structure<br />

were more gradual than those <strong>of</strong> total biomass <strong>and</strong><br />

species composition (Fig. 8b). While <strong>the</strong> l<strong>and</strong>scape<br />

properties under a perpetuated “current climate” scenario<br />

would be characterized by about 25% young<br />

st<strong>and</strong>s, <strong>and</strong> about equal fractions (30%) <strong>of</strong> mature<br />

mono-layer <strong>and</strong> multi-layer forests, <strong>the</strong> share <strong>of</strong> young<br />

st<strong>and</strong>s <strong>in</strong>creases to 30% <strong>and</strong> nearly 40% <strong>in</strong> <strong>the</strong> two climate<br />

change scenarios, mostly at <strong>the</strong> expense <strong>of</strong> <strong>the</strong><br />

fraction <strong>of</strong> mature mono-layer st<strong>and</strong>s.<br />

5. Discussion<br />

5.1. Model tests<br />

5.1.1. L<strong>and</strong>scape-scale behavior<br />

The simulated distribution <strong>of</strong> dom<strong>in</strong>ant <strong>tree</strong> species<br />

<strong>in</strong> <strong>the</strong> l<strong>and</strong>scape (Fig. 4b,c) is difficult to compare to<br />

<strong>the</strong> map <strong>of</strong> current species distribution, for two ma<strong>in</strong><br />

reasons. First, <strong>the</strong> map <strong>of</strong> current st<strong>and</strong>s (Fig. 4a) is derived<br />

from forest <strong>in</strong>ventory data, which describe st<strong>and</strong><br />

Fig. 8. L<strong>and</strong>scape properties under several scenarios <strong>of</strong> climate <strong>and</strong> disturbance change: ‘current’, ‘moderate’ <strong>and</strong> ‘extreme’ (see text for details):<br />

(a) species-specific biomass; (b) vertical structure (cf. Fig. 3). The data represent averages over <strong>the</strong> entire forested l<strong>and</strong>scape except for avalanche<br />

tracks.


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 189<br />

structure well, but less so species composition (Hefti<br />

et al., 1986); <strong>the</strong>refore, <strong>the</strong> estimated species distribution<br />

patterns may not be very accurate. Second, <strong>the</strong><br />

simulated distributions (Fig. 4b,c) varied between simulation<br />

runs due to <strong>the</strong> stochastic processes embedded<br />

<strong>in</strong> <strong>the</strong> model. Still, it is evident that <strong>the</strong> model yields<br />

spatial vegetation patterns under <strong>the</strong> harvest<strong>in</strong>g regime<br />

(Fig. 4b) that are similar to those <strong>of</strong> <strong>the</strong> current l<strong>and</strong>scape<br />

(Fig. 4a). Below, we discuss model behavior as<br />

aggregated over <strong>the</strong> elevational gradient, <strong>and</strong> also at <strong>the</strong><br />

st<strong>and</strong>-scale (cf. Section 5.1.2).<br />

The simulated l<strong>and</strong>scape for <strong>the</strong> year 2000 a.d.<br />

showed total biomass values <strong>of</strong> about 200 t/ha at lower<br />

elevations <strong>and</strong> gradually decreas<strong>in</strong>g values with altitude<br />

(Fig. 5b). These values are similar to those<br />

derived from forest <strong>in</strong>ventory data (Hefti et al.,<br />

1986; cf. Fig. 5a), <strong>and</strong> to values <strong>of</strong> 200–250 t/ha<br />

(300–400 m 3 /ha) for managed spruce forests reported<br />

by Leibundgut (1986). The simulation results match <strong>the</strong><br />

measured values at lower elevations quite accurately,<br />

whereas at higher altitudes biomass seems to be somewhat<br />

underestimated by <strong>the</strong> model. Also, <strong>the</strong> model<br />

projects a ra<strong>the</strong>r l<strong>in</strong>ear decrease <strong>of</strong> total biomass between<br />

1650 <strong>and</strong> 2100 m a.s.l., whereas <strong>the</strong> measured<br />

data may po<strong>in</strong>t at a slightly non-l<strong>in</strong>ear decrease, but<br />

<strong>the</strong>se differences are not large.<br />

The comparison between simulation results <strong>and</strong> <strong>in</strong>ventory<br />

data also suggests that <strong>the</strong> model correctly<br />

represents <strong>the</strong> dom<strong>in</strong>ance <strong>of</strong> Picea abies below 2000<br />

m a.s.l. However, <strong>the</strong> model seems to underestimate<br />

<strong>the</strong> amount <strong>of</strong> Larix decidua biomass, whereas P<strong>in</strong>us<br />

cembra is over-represented, particularly at higher altitudes.<br />

It is quite likely that <strong>the</strong>se differences are due<br />

to <strong>the</strong> fact that our management regime is not only relatively<br />

coarse, but did not <strong>in</strong>clude wooded pastures,<br />

where L. decidua is favored quite strongly over more<br />

shade-cast<strong>in</strong>g <strong>tree</strong>s such as P. abies or P. cembra (cf.<br />

Walder, 1983). Larix decidua is an early <strong>succession</strong>al<br />

species that can co-exist or dom<strong>in</strong>ate only after disturbances<br />

(Ott et al., 1997). Overall, we can conclude that<br />

<strong>the</strong> simulated biomass <strong>and</strong> species distribution are <strong>in</strong><br />

good agreement with <strong>the</strong> available measured data.<br />

The simulated forests under natural, unmanaged<br />

conditions (Figs.4c <strong>and</strong> 5c) cannot be compared<br />

directly with <strong>the</strong> <strong>in</strong>ventory data (Figs. 4a <strong>and</strong> 5a);<br />

however, literature data is available for this model test.<br />

The simulation yielded dom<strong>in</strong>ance by three species:<br />

Picea abies, Larix decidua <strong>and</strong> P<strong>in</strong>us cembra (Fig. 4c,<br />

Fig. 5c). These are <strong>the</strong> three ma<strong>in</strong> <strong>tree</strong> species <strong>of</strong> <strong>the</strong><br />

current forest cover (Walder, 1983) (Fig. 4a), <strong>and</strong> are<br />

also <strong>the</strong> three ma<strong>in</strong> species <strong>of</strong> <strong>the</strong> potential natural<br />

forest vegetation <strong>in</strong> this area (L<strong>and</strong>olt et al., 1986;<br />

Zumbühl <strong>and</strong> Burn<strong>and</strong>, 1986; Ellenberg, 1996; Ott et<br />

al., 1997). Compared to current conditions, L. decidua<br />

<strong>and</strong> P. cembra forests are thought to have covered<br />

larger areas before forest management began (L<strong>and</strong>olt<br />

et al., 1986), <strong>and</strong> this is reflected <strong>in</strong> <strong>the</strong> simulation<br />

results, where <strong>the</strong> share <strong>of</strong> <strong>the</strong>se two species is higher<br />

<strong>in</strong> Fig. 5c than <strong>in</strong> Fig. 5a, particularly at elevations between<br />

1650 <strong>and</strong> 2100 m a.s.l. The simulated fraction <strong>of</strong><br />

biomass <strong>of</strong> L. decidua (Fig. 5c) is considerably higher<br />

than under <strong>the</strong> management scenario (Fig. 5b), but still<br />

somewhat smaller than currently observed <strong>in</strong> <strong>the</strong> study<br />

area (Fig. 5a). Measurements <strong>of</strong> aboveground st<strong>and</strong><strong>in</strong>g<br />

volume <strong>in</strong> a P. abies virg<strong>in</strong> forest that is similar to<br />

potential natural forests <strong>in</strong> <strong>the</strong> lower elevations <strong>of</strong><br />

our study area resulted <strong>in</strong> biomass values <strong>of</strong> about<br />

300 t/ha (550 m 3 /ha) (Hillgarter, 1971). Simulated<br />

values at lower elevations (Fig. 5c) are considerably<br />

higher than under <strong>the</strong> management scenario (Fig. 5b),<br />

but still somewhat smaller than this measured data.<br />

The presence <strong>of</strong> a belt <strong>of</strong> L. decidua/P. cembra<br />

forests above 2000 m a.s.l. agrees with literature<br />

data (e.g., L<strong>and</strong>olt et al., 1986, Ellenberg, 1996). Its<br />

biomass has been estimated to amount to 50–100 t/ha<br />

(100–200 m 3 /ha) (Leibundgut, 1986); aga<strong>in</strong>, simulated<br />

values are very similar, although somewhat lower<br />

above 2150 m a.s.l. F<strong>in</strong>ally, <strong>the</strong> simulated presence<br />

<strong>of</strong> a strip <strong>of</strong> P<strong>in</strong>us-Alnus ‘krummholz’ just below<br />

<strong>the</strong> <strong>tree</strong> l<strong>in</strong>e is quite realistic (L<strong>and</strong>olt et al., 1986).<br />

Similar experiments were conducted with a forest gap<br />

model (Bugmann, 1999; Bugmann <strong>and</strong> Pfister, 2000).<br />

They showed that <strong>the</strong> sequence <strong>of</strong> <strong>tree</strong> species <strong>and</strong><br />

forest types simulated along altitud<strong>in</strong>al gradients is<br />

largely <strong>the</strong> result <strong>of</strong> competitive <strong>in</strong>teractions, i.e. <strong>the</strong><br />

realized niche <strong>of</strong> <strong>the</strong> species (Fig. 5c) is only partly<br />

dictated by <strong>the</strong> species’ autecological properties (<strong>the</strong>ir<br />

fundamental niche; cf. Table 3). Therefore, we can<br />

conclude that <strong>the</strong> simulated vegetation characteristics<br />

are an emergent property <strong>of</strong> <strong>the</strong> modeled processes.<br />

The potential timberl<strong>in</strong>e (<strong>the</strong> upper elevation limit<br />

<strong>of</strong> closed forest; cf. Körner, 1998) <strong>in</strong> <strong>the</strong> study area<br />

is estimated to be located at about 2200 m a.s.l., i.e.<br />

about 100 m higher than <strong>the</strong> current timberl<strong>in</strong>e (Walder,<br />

1983). This upper potential limit corresponds well to<br />

<strong>the</strong> simulated timberl<strong>in</strong>e elevation, where biomass <strong>of</strong>


190 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

P<strong>in</strong>us cembra drops below 50 t/ha <strong>and</strong> Alnus viridis<br />

starts to dom<strong>in</strong>ate (Fig. 5c). The <strong>tree</strong> l<strong>in</strong>e (i.e., <strong>the</strong> l<strong>in</strong>e<br />

connect<strong>in</strong>g <strong>the</strong> highest patches <strong>of</strong> forest) <strong>in</strong> <strong>the</strong> study<br />

area is estimated to be around 100–200 m higher than<br />

<strong>the</strong> potential natural timberl<strong>in</strong>e (Walder, 1983; Körner,<br />

1998). The highest A. viridis patches are simulated to<br />

occur roughly at this altitude. Hence, <strong>the</strong> simulated elevations<br />

<strong>of</strong> timberl<strong>in</strong>e <strong>and</strong> <strong>tree</strong> l<strong>in</strong>e agree quite well with<br />

empirical f<strong>in</strong>d<strong>in</strong>gs.<br />

Overall, <strong>the</strong>se results demonstrate <strong>the</strong> ability <strong>of</strong> <strong>the</strong><br />

modified LANDIS model to simulate species composition<br />

<strong>in</strong> complex mounta<strong>in</strong> l<strong>and</strong>scapes from climatic<br />

<strong>and</strong> edaphic <strong>in</strong>formation alone, which is a dist<strong>in</strong>ct advantage<br />

over previous model versions.<br />

5.1.2. St<strong>and</strong>-scale behavior<br />

Simulated st<strong>and</strong>-scale development is also an emergent<br />

property <strong>of</strong> <strong>the</strong> new model, i.e. <strong>the</strong>se dynamics are<br />

not prescribed by model parameters, but result from <strong>the</strong><br />

<strong>in</strong>teractions between species <strong>and</strong> <strong>tree</strong> cohorts with different<br />

properties. Simulated st<strong>and</strong> development after<br />

w<strong>in</strong>d disturbances showed <strong>the</strong> typical sequence that<br />

is well known from a host <strong>of</strong> empirical studies (cf.<br />

Oliver <strong>and</strong> Larson, 1996): st<strong>and</strong> <strong>in</strong>itiation, stem exclusion,<br />

understory re<strong>in</strong>itiation, <strong>and</strong> multi-aged stage<br />

(Fig. 6). Dur<strong>in</strong>g <strong>the</strong> st<strong>and</strong> <strong>in</strong>itiation phase, available<br />

grow<strong>in</strong>g space was partly occupied by advanced regeneration,<br />

<strong>and</strong> was filled with new <strong>tree</strong>s that established<br />

shortly after <strong>the</strong> disturbance. The <strong>in</strong>troduction<br />

<strong>of</strong> new <strong>tree</strong>s caused an <strong>in</strong>crease <strong>in</strong> stem numbers dur<strong>in</strong>g<br />

<strong>the</strong> first 20 years. Recent <strong>in</strong>vestigations <strong>of</strong> recovery<br />

success <strong>in</strong> w<strong>in</strong>d-disturbed areas at high altitudes suggest<br />

that <strong>the</strong> simulated establishment density <strong>of</strong> about<br />

2700 <strong>tree</strong>s per hectare 10 years after a disturbance<br />

may be high, but it is still with<strong>in</strong> a realistic range:<br />

Schönenberger (2002) reported 1000–2500 sapl<strong>in</strong>gs<br />

per hectare 10 years after w<strong>in</strong>d disturbance events.<br />

Note that <strong>the</strong> Schönenberger (2002) data is from areas<br />

that are subject to considerable brows<strong>in</strong>g by ungulates,<br />

which was not reflected entirely <strong>in</strong> our simulations.<br />

Competition between <strong>tree</strong>s <strong>in</strong>creased soon after st<strong>and</strong><br />

<strong>in</strong>itiation, thus caus<strong>in</strong>g stem exclusion <strong>and</strong> prevent<strong>in</strong>g<br />

<strong>the</strong> establishment <strong>of</strong> new <strong>tree</strong>s. This self-th<strong>in</strong>n<strong>in</strong>g with<br />

an associated <strong>in</strong>crease <strong>in</strong> st<strong>and</strong> biomass was estimated<br />

quite realistically by <strong>the</strong> model (Fig. 7) (cf. e.g., Yoda et<br />

al., 1963; Begon et al., 1996; Kikuzawa, 1999). Dur<strong>in</strong>g<br />

this stage, <strong>the</strong> forest develops to maturity: about 150<br />

years after <strong>the</strong> w<strong>in</strong>d disturbance, total biomass <strong>of</strong> <strong>tree</strong>s<br />

bigger than 20 cm DBH was larger than total biomass<br />

<strong>of</strong> those smaller than 20 cm DBH. This corresponds<br />

well with <strong>the</strong> f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> a primeval forest similar to<br />

semi-natural Picea abies st<strong>and</strong>s <strong>in</strong> <strong>the</strong> Dischma valley,<br />

where Hillgarter (1971) found that this ‘young forest’<br />

phase lasts for 80–130 years. Also, stem numbers <strong>and</strong><br />

diameter distributions were comparable between this<br />

field study <strong>and</strong> our simulation. For example, Hillgarter<br />

(1971) reported 500–800 stems per hectare <strong>in</strong> mature<br />

mono-layer st<strong>and</strong>s. In years 150 <strong>and</strong> 200, when <strong>the</strong><br />

majority <strong>of</strong> <strong>the</strong> simulated st<strong>and</strong> was composed <strong>of</strong> mature<br />

mono-layered forests, our simulation resulted <strong>in</strong><br />

652 <strong>and</strong> 411 stems per hectare, respectively. Fur<strong>the</strong>rmore,<br />

Hillgarter (1971) suggested that st<strong>and</strong>s rema<strong>in</strong> <strong>in</strong><br />

<strong>the</strong> mature forest phase for about 200–260 years. This<br />

corresponds well with <strong>the</strong> simulation results, where<br />

<strong>the</strong> process <strong>of</strong> st<strong>and</strong> decay <strong>and</strong> understory re-<strong>in</strong>itiation<br />

started after about 200 simulation years (Fig. 6c) <strong>and</strong><br />

cont<strong>in</strong>ued for <strong>the</strong> next 200 years (Fig. 6d,e) until <strong>the</strong><br />

majority <strong>of</strong> <strong>the</strong> st<strong>and</strong> was composed <strong>of</strong> new <strong>tree</strong> cohorts<br />

(Fig. 6e). In <strong>the</strong> model, understory re-<strong>in</strong>itiation started<br />

when <strong>the</strong> mortality <strong>of</strong> some larger <strong>tree</strong>s created enough<br />

grow<strong>in</strong>g space for late-<strong>succession</strong>al (here, moderately<br />

shade-tolerant) species to successfully establish under<br />

<strong>the</strong> canopy (Fig. 6d). Where <strong>the</strong> gaps created by <strong>the</strong><br />

death <strong>of</strong> large <strong>tree</strong>s are too big to be closed by o<strong>the</strong>r<br />

canopy species, <strong>the</strong> understorey vegetation grows <strong>in</strong>to<br />

<strong>the</strong> canopy, form<strong>in</strong>g multi-aged st<strong>and</strong>s (Fig. 6e,f). Thus,<br />

<strong>the</strong> early <strong>succession</strong>al species Larix decidua, a very<br />

shade <strong>in</strong>tolerant species, is replaced gradually (Fig. 6).<br />

This <strong>succession</strong> from forests with L. decidua (co-) dom<strong>in</strong>ation<br />

to forests composed <strong>of</strong> late <strong>succession</strong>al species<br />

has been observed <strong>in</strong> various studies (e.g., Mayer, 1966;<br />

Zöhrer, 1969).<br />

Thus, we can conclude that <strong>the</strong> modified LANDIS<br />

model is capable <strong>of</strong> accurately portray<strong>in</strong>g st<strong>and</strong>-level<br />

processes after disturbance events, <strong>in</strong> spite <strong>of</strong> <strong>the</strong> simple<br />

assumptions that were used for formulat<strong>in</strong>g <strong>the</strong> modified<br />

<strong>succession</strong> sub-model.<br />

5.2. Model application<br />

Total aboveground biomass averaged across <strong>the</strong> entire<br />

l<strong>and</strong>scape <strong>in</strong>creased under <strong>the</strong> ‘moderate’ scenario<br />

<strong>of</strong> environmental change, compared to current conditions.<br />

The temperature <strong>in</strong>crease led to <strong>in</strong>creased productivity<br />

<strong>and</strong> thus <strong>in</strong>creased biomass storage, whereas<br />

a moderate <strong>in</strong>crease <strong>of</strong> drought occurrence (through


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 191<br />

<strong>the</strong> <strong>in</strong>crease <strong>of</strong> temperature coupled with <strong>the</strong> decrease<br />

<strong>of</strong> precipitation) <strong>and</strong> <strong>the</strong> <strong>in</strong>creased <strong>in</strong>cidence <strong>of</strong><br />

w<strong>in</strong>dthrow events, reduced biomass. Taken toge<strong>the</strong>r,<br />

<strong>the</strong> temperature effect by far outweighed <strong>the</strong> o<strong>the</strong>r<br />

two effects <strong>in</strong> this scenario. Under <strong>the</strong> ‘extreme’ scenario,<br />

however, aboveground biomass decreased considerably<br />

compared to current conditions, <strong>in</strong>dicat<strong>in</strong>g<br />

that <strong>the</strong> effects <strong>of</strong> drought <strong>and</strong> w<strong>in</strong>dthrow are becom<strong>in</strong>g<br />

more important than fur<strong>the</strong>r temperature-<strong>in</strong>duced<br />

<strong>in</strong>creases <strong>of</strong> productivity.<br />

No pronounced changes <strong>of</strong> species composition<br />

(Fig. 8a) are simulated under <strong>the</strong> ‘moderate’ scenario<br />

compared to current conditions, with Picea abies still<br />

keep<strong>in</strong>g its dom<strong>in</strong>ant role at <strong>the</strong> scale <strong>of</strong> <strong>the</strong> entire valley.<br />

The <strong>in</strong>creased abundance <strong>of</strong> Abies alba <strong>in</strong> this scenario<br />

is due to <strong>the</strong> <strong>in</strong>creased temperature, whereas deciduous<br />

species such as Populus <strong>and</strong> Salix are favored<br />

due to <strong>the</strong> <strong>in</strong>creased <strong>in</strong>cidence <strong>of</strong> w<strong>in</strong>d disturbances.<br />

Under <strong>the</strong> ‘extreme’ scenario, deciduous species are<br />

favored even more because <strong>of</strong> <strong>the</strong> strongly <strong>in</strong>creased<br />

<strong>in</strong>cidence <strong>of</strong> w<strong>in</strong>dthrow events, whereas drought limits<br />

<strong>the</strong> abundance <strong>of</strong> Picea abies, limits lead<strong>in</strong>g to a<br />

biomass decrease. Overall, both scenario results show<br />

that <strong>the</strong> various driv<strong>in</strong>g forces have quite different effects<br />

on <strong>the</strong> abundance <strong>of</strong> <strong>the</strong> different <strong>tree</strong> species.<br />

The modified LANDIS model projects gradual<br />

changes <strong>in</strong> st<strong>and</strong> structure types (Fig. 8b) under this<br />

set <strong>of</strong> environmental scenarios. The simulated changes<br />

mostly reflect <strong>the</strong> changes <strong>in</strong> <strong>the</strong> disturbance regime,<br />

with more frequent w<strong>in</strong>d disturbances lead<strong>in</strong>g to a<br />

higher fraction <strong>of</strong> young st<strong>and</strong>s. The reduction <strong>of</strong> <strong>the</strong><br />

fraction <strong>of</strong> mature mono-layer st<strong>and</strong>s <strong>and</strong> old st<strong>and</strong>s<br />

with rejuvenation may be counter-<strong>in</strong>tuitive at first sight,<br />

but ow<strong>in</strong>g to more frequent w<strong>in</strong>d disturbances, an <strong>in</strong>creas<strong>in</strong>g<br />

portion <strong>of</strong> <strong>the</strong> st<strong>and</strong>s does not have enough<br />

time to develop <strong>in</strong>to mature mono-layer forests, let<br />

alone <strong>in</strong>to old-<strong>growth</strong> forests. The ‘mature multi-layer’<br />

st<strong>and</strong>s simulated by <strong>the</strong> model are <strong>of</strong>ten st<strong>and</strong>s that are<br />

<strong>in</strong> <strong>the</strong> transition from young st<strong>and</strong>s to mature monolayer<br />

forests. Multi-layered forests also result when a<br />

w<strong>in</strong>d disturbance does not blow down all <strong>of</strong> <strong>the</strong> large<br />

<strong>tree</strong>s.<br />

The <strong>tree</strong> <strong>growth</strong> model <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> present version<br />

<strong>of</strong> LANDIS is far less sophisticated compared to<br />

<strong>the</strong> carbon balance equations <strong>of</strong> global biogeochemistry<br />

models (e.g. Sitch et al., 2003; Churk<strong>in</strong>a et al.,<br />

2003). However, <strong>the</strong>re are few models at <strong>the</strong> l<strong>and</strong>scape<br />

scale that <strong>in</strong>tegrate forest <strong>growth</strong> <strong>and</strong> <strong>succession</strong><br />

with disturbance dynamics <strong>in</strong> a semi-mechanistic manner<br />

(e.g. Keane et al., 1996). Our version <strong>of</strong> LANDIS<br />

achieves this <strong>in</strong>tegration based on simple concepts <strong>and</strong><br />

methods that do not require many parameter estimates.<br />

Thus, we suggest that <strong>the</strong> modified LANDIS model<br />

can be used as a basis for evaluat<strong>in</strong>g <strong>the</strong> relative importance<br />

for l<strong>and</strong>scape-scale aboveground biomass storage<br />

<strong>of</strong>: (1) climate-<strong>in</strong>duced changes <strong>in</strong> productivity;<br />

(2) <strong>tree</strong> population dynamics; <strong>and</strong> (3) chang<strong>in</strong>g disturbance<br />

regimes. This feature may be <strong>of</strong> utmost importance<br />

for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> terrestrial carbon balance (cf.<br />

Körner, 2003).<br />

6. Conclusions<br />

Forest dynamics at <strong>the</strong> l<strong>and</strong>scape scale are <strong>in</strong>fluenced<br />

by species-specific responses to environmental<br />

factors, by <strong>in</strong>tra- <strong>and</strong> <strong>in</strong>ter-specific competition as well<br />

as by exogenous disturbance regimes. We have <strong>in</strong>tegrated<br />

a new <strong>succession</strong> model with<strong>in</strong> a l<strong>and</strong>scapescale<br />

model framework (LANDIS) to exam<strong>in</strong>e <strong>the</strong>se<br />

complex <strong>in</strong>teractions.<br />

We tested <strong>the</strong> new model’s ability to simulate forest<br />

dynamics <strong>in</strong> <strong>the</strong> European Alps on both <strong>the</strong> l<strong>and</strong>scape<br />

<strong>and</strong> <strong>the</strong> st<strong>and</strong>-scale. We were able to show that<br />

<strong>the</strong> model simulates accurate biomass distribution <strong>and</strong><br />

species composition for both managed <strong>and</strong> unmanaged<br />

st<strong>and</strong>s, <strong>and</strong> it also simulates <strong>the</strong> characteristics <strong>and</strong><br />

<strong>the</strong> elevation <strong>of</strong> <strong>the</strong> potential natural timberl<strong>in</strong>e well.<br />

Fur<strong>the</strong>rmore, <strong>the</strong> model produces patterns <strong>of</strong> st<strong>and</strong> recovery<br />

<strong>and</strong> <strong>the</strong> development <strong>of</strong> st<strong>and</strong> structure after<br />

w<strong>in</strong>dthrow events that are congruent with empirical<br />

f<strong>in</strong>d<strong>in</strong>gs. Thus, <strong>the</strong> modified LANDIS model is able to<br />

simulate vegetation processes <strong>in</strong> accordance with current<br />

ecological underst<strong>and</strong><strong>in</strong>g, while <strong>the</strong> model structure<br />

is still simple <strong>and</strong> does not <strong>in</strong>clude <strong>the</strong> detail <strong>of</strong><br />

st<strong>and</strong>-scale models.<br />

The simulation results under several scenarios <strong>of</strong><br />

environmental change show that <strong>the</strong> new model can<br />

be used to study <strong>the</strong> transition from weakly disturbed<br />

to strongly disturbed l<strong>and</strong>scapes, a feature that was<br />

not present <strong>in</strong> earlier model versions. Particularly,<br />

by <strong>in</strong>clud<strong>in</strong>g a range <strong>of</strong> <strong>tree</strong>–<strong>tree</strong> <strong>in</strong>teractions, <strong>the</strong><br />

new model is able to simulate realistic vegetation<br />

development even <strong>in</strong> weakly disturbed l<strong>and</strong>scapes, <strong>and</strong><br />

is capable <strong>of</strong> simulat<strong>in</strong>g <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> disturbances<br />

on vegetation properties as well as st<strong>and</strong> recovery


192 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

after such events. Study<strong>in</strong>g transitions from weakly<br />

to strongly disturbed l<strong>and</strong>scapes is an important issue,<br />

as global environmental change is likely to br<strong>in</strong>g<br />

about changes <strong>in</strong> <strong>the</strong> distribution <strong>of</strong> extreme climatic<br />

events, which may trigger changes <strong>in</strong> <strong>the</strong> large-scale<br />

disturbance regimes <strong>in</strong> many l<strong>and</strong>scapes.<br />

Because <strong>the</strong> modified model explicitly <strong>in</strong>corporates<br />

<strong>the</strong> effects <strong>of</strong> a range <strong>of</strong> climatic factors on <strong>tree</strong> regeneration<br />

<strong>and</strong> <strong>growth</strong>, it is more suitable for address<strong>in</strong>g<br />

<strong>the</strong> direct impacts <strong>of</strong> climatic changes on forested<br />

l<strong>and</strong>scapes. Through a simple set <strong>of</strong> scenario calculations<br />

(which should not be mistaken as predictions),<br />

we were able to demonstrate that <strong>the</strong> model is sensitive<br />

to chang<strong>in</strong>g climatic parameters. Notably, <strong>the</strong> effects<br />

<strong>of</strong> climatic changes on forest l<strong>and</strong>scape dynamics<br />

are emergent properties <strong>of</strong> <strong>the</strong> modified model, ra<strong>the</strong>r<br />

than be<strong>in</strong>g prescribed through site-specific or speciesspecific<br />

parameters, which was <strong>the</strong> case <strong>in</strong> earlier versions<br />

<strong>of</strong> LANDIS.<br />

The modified model can also serve as a tool to<br />

help with decision-mak<strong>in</strong>g <strong>in</strong> <strong>the</strong> context <strong>of</strong> longterm<br />

forest management. It provides variables—such<br />

as biomass, st<strong>and</strong> density, species dom<strong>in</strong>ance, or vertical<br />

structure—that can be used for assess<strong>in</strong>g, for<br />

example, <strong>the</strong> habitat requirements <strong>of</strong> wildlife, <strong>and</strong> <strong>in</strong>dices<br />

that are relevant to a range <strong>of</strong> o<strong>the</strong>r ecological<br />

questions. Also, variables, such as st<strong>and</strong> density <strong>and</strong><br />

vertical st<strong>and</strong> structure are crucial for predict<strong>in</strong>g <strong>the</strong><br />

long-term consequences <strong>of</strong> forest management decisions,<br />

e.g. with respect to <strong>the</strong> ability <strong>of</strong> mounta<strong>in</strong> forests<br />

to avert natural hazards, such as avalanches, rockfall or<br />

l<strong>and</strong>slides.<br />

F<strong>in</strong>ally, <strong>the</strong> ability <strong>of</strong> <strong>the</strong> model to simulate<br />

l<strong>and</strong>scape-scale aboveground biomass storage allows<br />

us to determ<strong>in</strong>e <strong>the</strong> effect <strong>of</strong> Global Change scenarios<br />

on aspects <strong>of</strong> <strong>the</strong> carbon balance <strong>of</strong> mounta<strong>in</strong><br />

ecosystems. Hence, <strong>the</strong> modified LANDIS model as<br />

described <strong>in</strong> this study has <strong>the</strong> potential to provide an<br />

<strong>in</strong>tegrated picture <strong>of</strong> <strong>the</strong> impact <strong>of</strong> both direct <strong>and</strong> <strong>in</strong>direct<br />

effects <strong>of</strong> climate change on forest l<strong>and</strong>scape<br />

dynamics.<br />

Acknowledgment<br />

Thanks are due to Hong He, University <strong>of</strong><br />

Missouri—Columbia, who supplied <strong>the</strong> LANDIS<br />

model <strong>and</strong> helped us to get acqua<strong>in</strong>ted with it. Dean<br />

Urban <strong>and</strong> an anonymous reviewer provided constructive<br />

criticisms <strong>of</strong> an earlier version <strong>of</strong> this manuscript.<br />

References<br />

Anonymous, 1983. Ertragstafeln für Buche, Lärche, Fichte und<br />

Tanne, third ed., Eidg. Anstalt für das forstliche Versuchswesen,<br />

CH-8903 Birmensdorf, Switzerl<strong>and</strong>.<br />

Assmann, E., 1961. Waldertragskunde: organische Produktion,<br />

Struktur, Zuwachs und Ertag von Waldbeständen. BLV, München<br />

a.o.<br />

Baker, W.L., 1989. A review <strong>of</strong> models <strong>of</strong> l<strong>and</strong>scape change. L<strong>and</strong>sc.<br />

Ecol. 2 (2), 111–133.<br />

Bassett, J.R., 1964. Tree <strong>growth</strong> as affected by soil moisture availability.<br />

Soil Sci. Proc. 28, 436–438.<br />

Begon, M., Mortimer, M., Thompson, D.J., 1996. Population Ecology:<br />

A Unified Study <strong>of</strong> Animals <strong>and</strong> Plants. Oxford University<br />

Press, Oxford.<br />

Botk<strong>in</strong>, D.B., 1993. Forest dynamics: An ecological model. Oxford<br />

University Press, Oxford/New York.<br />

Bugmann, H., 1994. On <strong>the</strong> ecology <strong>of</strong> mounta<strong>in</strong>ous forests <strong>in</strong> a<br />

chang<strong>in</strong>g climate: a simulation study. Ph.D. Thesis no. 10638,<br />

Swiss Federal Institute <strong>of</strong> Technology. Zurich, Switzerl<strong>and</strong>.<br />

Bugmann, H., 1996. A simplified forest model to study species composition<br />

along climate gradients. Ecology 77 (7), 2055–2074.<br />

Bugmann, H., 1999. Anthropogene Klimaveränderung, Sukzessionsprozesse<br />

und forstwirtschaftliche Optionen. Schweiz. Z.<br />

Forstwes. 150, 275–287.<br />

Bugmann, H., Cramer, W., 1998. <strong>Improv<strong>in</strong>g</strong> <strong>the</strong> behaviour <strong>of</strong> forest<br />

gap models along drought gradients. Forest Ecol. Manage. 103<br />

(2–3), 247–263.<br />

Bugmann, H., Pfister, C., 2000. Impacts <strong>of</strong> <strong>in</strong>terannual climate variability<br />

on past <strong>and</strong> future forest composition. Reg. Environ.<br />

Change 1, 112–125.<br />

Bugmann, H.K.M., Solomon, A.M., 2000. Expla<strong>in</strong><strong>in</strong>g forest composition<br />

<strong>and</strong> biomass across multiple biogeographical regions.<br />

Ecol. Appl. 10 (1), 95–114.<br />

Bugmann, H.K.M., Yan, X., Sykes, M.T., Mart<strong>in</strong>, P., L<strong>in</strong>dner, M.,<br />

Desanker, P.V., Cumm<strong>in</strong>g, S.G., 1996. A comparison <strong>of</strong> forest<br />

gap models: model structure <strong>and</strong> behaviour. Clim. Change 34,<br />

289–313.<br />

Burger, H., 1945. Holz Blattmenge und Zuwachs. Part VII. Die<br />

Lärche: Mitt. Schweiz. Anst. forstl. Versuchswes 24, 7–103.<br />

Burger, H., 1947. Holz Blattmenge und Zuwachs. Part VIII. Die<br />

Eiche: Mitt. Schweiz. Anst. forstl. Versuchswes 25, 211–279.<br />

Burger, H., 1948. Holz Blattmenge und Zuwachs. Part IX. Die Föhre:<br />

Mitt. Schweiz. Anst. forstl. Versuchswes 25, 435–493.<br />

Burger, H., 1950a. Forstliche Versuchsflächen im schweizerischen<br />

Nationalpark: Mitt. Schweiz. Anst. forstl. Versuchswes 26,<br />

583–634.<br />

Burger, H., 1950b. Holz Blattmenge und Zuwachs. Part X. Die<br />

Buche: Mitt. Schweiz. Anst. forstl. Versuchswes 26, 419–<br />

468.<br />

Burger, H., 1951. Holz Blattmenge und Zuwachs. Part XI. Die Tanne:<br />

Mitt. Schweiz. Anst. forstl. Versuchswes 27, 247–286.


S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194 193<br />

Burger, H., 1952. Holz Blattmenge und Zuwachs. Part XII. Fichten<br />

im Plenterwald: Mitt. Schweiz. Anst. forstl. Versuchswes 28,<br />

109–156.<br />

Burger, H., 1953. Holz Blattmenge und Zuwachs. Part XIII. Fichten<br />

im gleichaltrigen Hochwald: Mitt. Schweiz. Anst. forstl. Versuchswes<br />

29, 38–130.<br />

Burschel, P., Huss, J., 1997. Grundriss des Waldbaus. E<strong>in</strong> Leitfaden<br />

für Studium und Praxis, Parey, Berl<strong>in</strong>.<br />

Canham, C.D., Papaik, M.J., F., L.E., 2001. Interspecific variation <strong>in</strong><br />

susceptibility to w<strong>in</strong>dthrow as a function <strong>of</strong> <strong>tree</strong> size <strong>and</strong> storm<br />

severity for nor<strong>the</strong>rn temperate <strong>tree</strong> species. Can. J. Forest Res.<br />

31, 1–10.<br />

Churk<strong>in</strong>a, G., Tenhunen, J., Thornton, P., Falge, E.M., Elbers, J.A.,<br />

Erhard, M., Grünwald, T., Kowalski, A.S., Rannik, Ü., Spr<strong>in</strong>z, D.,<br />

2003. Analyz<strong>in</strong>g <strong>the</strong> ecosystem carbon dynamics <strong>of</strong> four European<br />

coniferous forests us<strong>in</strong>g a biogeochemistry model. Ecosystems<br />

6, 168–184.<br />

Ellenberg, H., 1996. Vegetation Mitteleuropas mit den Alpen<br />

<strong>in</strong> ökologischer, dynamischer und historischer Sicht. Ulmer,<br />

Stuttgart.<br />

Flury, P., 1895. Untersuchungen über die Entwicklung der Pflanzen<br />

<strong>in</strong> der frühsten Jungendperiode. Schweiz. Centralanst. für das<br />

forstl. Versuchswes., Mitt., Bd. IV, pp. 189–202.<br />

Grosser, D., 1977. Die Hölzer Mitteleuropas—E<strong>in</strong> mikroskopischer<br />

Lehratlas. Spr<strong>in</strong>ger-Verlag, Berl<strong>in</strong> a.o.<br />

Grunder, M., Kienholz, H., 1986. Gefahrenkartierung. In: Wildi, O.,<br />

Ewald, K. (Eds.), Der Naturraum und dessen Nutzung im alp<strong>in</strong>en<br />

Tourismusgebiet von Davos. Ergebnisse des MAB-Projektes<br />

Davos. Berichte. Eidg. Anstalt für das forstliche Versuchswesen,<br />

Birmensdorf, pp. 67–78.<br />

Günter, T.F., 1981. Die Entwicklung der Waldnutzung <strong>in</strong> der L<strong>and</strong>schaft<br />

Davos: E<strong>in</strong> Beitrag zur bündnerischen Forstgeschichte.<br />

Bündnerwald 34 (7), 523–551.<br />

Gustafson, E.J., Shifley, S.R., Mladen<strong>of</strong>f, D.J., Nimerfro, K.K., He,<br />

H.S., 2000. Spatial simulation <strong>of</strong> forest <strong>succession</strong> <strong>and</strong> timber<br />

harvest<strong>in</strong>g us<strong>in</strong>g LANDIS. Can. J. Forest Res. 30, 32–43.<br />

He, H.S., Mladen<strong>of</strong>f, D.J., 1999a. The effects <strong>of</strong> seed dispersal on <strong>the</strong><br />

simulation <strong>of</strong> long-term forest l<strong>and</strong>scape change. Ecosystems 2,<br />

308–319.<br />

He, H.S., Mladen<strong>of</strong>f, D.J., 1999b. Spatially explicit <strong>and</strong> stochastic<br />

simulation <strong>of</strong> forest-l<strong>and</strong>scape fire disturbance <strong>and</strong> <strong>succession</strong>.<br />

Ecology 80, 81–99.<br />

He, H.S., Mladen<strong>of</strong>f, D.J., Boeder, J., 1999a. An object-oriented forest<br />

l<strong>and</strong>scape model <strong>and</strong> its representation <strong>of</strong> <strong>tree</strong> species. Ecol.<br />

Model. 119, 1–19.<br />

He, H.S., Mladen<strong>of</strong>f, D.J., Crow, T.R., 1999b. L<strong>in</strong>k<strong>in</strong>g an ecosystem<br />

model <strong>and</strong> a l<strong>and</strong>scape model to study forest species response to<br />

climate warm<strong>in</strong>g. Ecol. Model. 114, 213–233.<br />

Hefti, R., Schmid-Haas, P., Bühler, U., 1986. Zust<strong>and</strong> und<br />

Gefährdung der Davoser Waldungen. MAB-Schlussberichte, 23.<br />

Bundesamt für Umweltschutz. Bern.<br />

Hillebr<strong>and</strong>, K. (Ed.), 1997. Vogelbeere (Sorbus aucuparia L.) im<br />

Westfälischen Bergl<strong>and</strong>—Wachstum, Ökologie, Waldbau. L<strong>and</strong>esanstalt<br />

für Ökologie, Bodenordnung und Forsten/L<strong>and</strong>esamt<br />

für Agrarordnung NRW. LÖBF-Schriftreihe, B<strong>and</strong> 15.<br />

Hillgarter, F.-W., 1971. Waldbauliche und ertragskundliche Untersuchungen<br />

im subalp<strong>in</strong>en Fichtenurwald Scatlé/Brigels. Ph.D.<br />

Thesis 4619, Swiss Federal Institute <strong>of</strong> Technology, Zurich,<br />

Switzerl<strong>and</strong>.<br />

IPCC, 2001. Climate Change 2001: Syn<strong>the</strong>sis Report. A contribution<br />

<strong>of</strong> Work<strong>in</strong>g Groups I, II <strong>and</strong> III to <strong>the</strong> Third Assessment Report<br />

<strong>of</strong> <strong>the</strong> Intergovernmental Panel on Climate Change. Cambridge<br />

University Press, Cambridge, New York.<br />

Keane, R.E., Morgan, P., Runn<strong>in</strong>g, S.W., 1996. FIRE-BGC—A<br />

mechanistic ecological process model for simulat<strong>in</strong>g fire <strong>succession</strong><br />

on coniferous forest l<strong>and</strong>scapes <strong>of</strong> <strong>the</strong> nor<strong>the</strong>rn Rocky<br />

Mounta<strong>in</strong>s, USDA Forest Service Research Paper INT-RP-484,<br />

Ogden, Utah.<br />

Kikuzawa, K., 1999. Theoretical relationships between mean plant<br />

size size distribution <strong>and</strong> self th<strong>in</strong>n<strong>in</strong>g under one-sided competition.<br />

Ann. Bot. 83, 11–18.<br />

Kimm<strong>in</strong>s, J.P. (Ed.), Forest Ecology. Macmillan, New York, 1987.<br />

Körner, C., 1998. A re-assessment <strong>of</strong> high elevation <strong>tree</strong>l<strong>in</strong>e positions<br />

<strong>and</strong> <strong>the</strong>ir explanation. Oecologia 115, 445–459.<br />

Körner, C., 2003. Slow <strong>in</strong>, rapid out—carbon flux studies <strong>and</strong> Kyoto<br />

targets. Science 300, 1242–1243.<br />

Krause, M., 1986. Die Böden von Davos—Ertragspotential Belastbarkeit<br />

und Gefährdung durch Nutzungsänderungen. Schlussberichte<br />

zum Schweizerischen MAB-Programm, 18.<br />

L<strong>and</strong>olt, E., Zumbühl, G., Krüsi, B., 1986. Vegetation und l<strong>and</strong>wirtschaftliche<br />

Nutzungsmöglichkeiten. In: Wildi, O., Ewald,<br />

K. (Eds.), Der Naturraum und dessen Nutzung im alp<strong>in</strong>en<br />

Tourismusgebiet von Davos. Ergebnisse des MAB-Projektes<br />

Davos. Berichte. Eidg. Anstalt für das forstliche Versuchswesen,<br />

Birmesdorf, pp. 139–173.<br />

Leibundgut, H., 1986. Unsere Gebirgswälder. Haupt, Bern a.o.<br />

Lick, H., Sterba, H., 1991. Neue Ertragstafel für Zirbe. Österr.<br />

Forstztg. 12, 61–63.<br />

Liu, J., Ashton, P.S., 1995. Individual-based simulation models for<br />

forest <strong>succession</strong> <strong>and</strong> management. Forest Ecol. Manage. 73,<br />

157–175.<br />

Loehle, C., 1988. Tree life history strategies: <strong>the</strong> role <strong>of</strong> defenses.<br />

Can. J. Forest Res. 18, 209–222.<br />

Mayer, H., 1966. Analyse e<strong>in</strong>es urwaldnahen, subalp<strong>in</strong>en Lärchen-<br />

Fichtenwaldes (Piceetum subalp<strong>in</strong>um) im Lungau. Cbl. ges.<br />

Forstwesen. 83 (3), 129–151.<br />

Mladen<strong>of</strong>f, D.J., Baker, W.L., 1999. Development <strong>of</strong> forest <strong>and</strong><br />

l<strong>and</strong>scape model<strong>in</strong>g approaches. In: Mladen<strong>of</strong>f, D.J., Baker,<br />

W.L. (Eds.), Spatial Model<strong>in</strong>g <strong>of</strong> Forest L<strong>and</strong>scape Change: Approaches<br />

<strong>and</strong> Applications. Cambridge University Press, Cambridge<br />

a.o., pp. 1–13.<br />

Mladen<strong>of</strong>f, D.J., He, H.S., 1999. Design, behavior <strong>and</strong> application<br />

<strong>of</strong> LANDIS, an object-oriented model <strong>of</strong> forest l<strong>and</strong>scape disturbance<br />

<strong>and</strong> <strong>succession</strong>. In: Mladen<strong>of</strong>f, D.J., Baker, W.L. (Eds.),<br />

Spatial Model<strong>in</strong>g <strong>of</strong> Forest L<strong>and</strong>scape Change: Approaches <strong>and</strong><br />

Applications. Cambridge University Press, Cambridge a.o., pp.<br />

125–162.<br />

Monsi, M., Saeki, T., 1953. Über den Lichtfaktor <strong>in</strong> den Pflanzengesellschaften<br />

und se<strong>in</strong>e Bedeutung für die St<strong>of</strong>fproduktion. Jpn. J.<br />

Bot. 14, 22–52.<br />

Oliver, C.D., Larson, B.C., 1996. Forest st<strong>and</strong> dynamics. John Wiley<br />

& Sons Inc., New York a.o.<br />

Ott, E., Frehner, M., Frey, H.-U., Lüscher, P., 1997.<br />

Gebirgsnadelwälder—E<strong>in</strong> praxisorientierter Leitfaden für


194 S. Schumacher et al. / Ecological Modell<strong>in</strong>g 180 (2004) 175–194<br />

e<strong>in</strong>e st<strong>and</strong>ortgerechte Waldbeh<strong>and</strong>lung. Verlag Paul Haupt,<br />

Bern, Stuttgart, Wien.<br />

Roberts, D.W., 1996. L<strong>and</strong>scape vegetation modell<strong>in</strong>g with vital attributes<br />

<strong>and</strong> fuzzy systems <strong>the</strong>ory. Ecol. Model. 90, 175–184.<br />

Rohmeder, E., 1972. Das Saatgut <strong>in</strong> der Forstwirtschaft. Verlag Paul<br />

Parey, Hamburg.<br />

Schober, R., 1987. Ertragstafeln wichtiger Baumarten bei verschiedener.<br />

Durchforstung. Sauerländer, Frankfurt a.M.<br />

Schönenberger, W., 2002. Post w<strong>in</strong>dthrow st<strong>and</strong> regeneration <strong>in</strong><br />

Swiss mounta<strong>in</strong> forests: <strong>the</strong> first 10 years after <strong>the</strong> 1990 strom<br />

Vivian. For. Snow L<strong>and</strong>sc. Res. 77 (1–2), 61–80.<br />

Schroeder, P., Brown, S., Mo, J., Birdsey, R., Cieszewski, C., 1997.<br />

Biomass estimation for temperate broadleaf forests <strong>of</strong> <strong>the</strong> United<br />

States us<strong>in</strong>g <strong>in</strong>ventory data. Forest Sci. 43 (3), 424–434.<br />

Schulze, E.D., Fuchs, M., Fuchs, M.I., 1977. Spatial distribution <strong>of</strong><br />

photosyn<strong>the</strong>tic capacity <strong>and</strong> performance <strong>in</strong> a mounta<strong>in</strong> spruce<br />

forest <strong>of</strong> Nor<strong>the</strong>rn Germany. Part I. Biomass distribution <strong>and</strong><br />

daily CO 2 uptake <strong>in</strong> different crown layers. Oecologia 29, 43–61.<br />

Schumacher, S., 2004. The role <strong>of</strong> large-scale disturbances <strong>and</strong><br />

climate for <strong>the</strong> dynamics <strong>of</strong> forested l<strong>and</strong>scapes <strong>in</strong> <strong>the</strong> European<br />

Alps. Ph.D. Thesis no. 15573, Swiss Federal Institute<br />

<strong>of</strong> Technology, Zurich, Switzerl<strong>and</strong>. Available: http://ecollection.ethbib.ethz.ch/show?type=diss&nr=15573.<br />

Shugart, H.H., 1984. A <strong>the</strong>ory <strong>of</strong> forest dynamics. The ecological<br />

implications <strong>of</strong> forest <strong>succession</strong> models. Spr<strong>in</strong>ger-Verlag, New<br />

York.<br />

Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer,<br />

W., Kaplan, J.O., Levis, S., Lucht, W., Sykes, M.T., Thonicke, K.,<br />

Venevsky, S., 2003. Evaluation <strong>of</strong> ecosystem dynamics, plant geography<br />

<strong>and</strong> terrestrial carbon cycl<strong>in</strong>g <strong>in</strong> <strong>the</strong> LPJ dynamic global<br />

vegetation model. Global Change Biol. 9, 161– 185.<br />

SMA, Annalen der Schweizerischen Meteorologischen Anstalt,<br />

Swiss Meteorological Agency, Zürich, 1960–2000.<br />

Urban, D.L., Shugart, H.H., 1992. Individual-based models <strong>of</strong> forest<br />

<strong>succession</strong>. In: Glenn-Lew<strong>in</strong>, D.C., Peet, R.K., Veblen, T.T.<br />

(Eds.), Plant Succession: Theory <strong>and</strong> Prediction. Population <strong>and</strong><br />

Community Biology Series. Chapman <strong>and</strong> Hall, London a.o., pp.<br />

249–292.<br />

Walder, U., 1983. Ausaperung und Vegetationsverteilung im Dischmatal<br />

Mitt. Eidgenöss. Forsch. Anst. Wald Schnee L<strong>and</strong>sch.<br />

59, 81–206.<br />

WSL, BUWAL (Eds.), Lothar. Der Orkan 1999. Ereignisanalyse.<br />

Eidg. Forschungsanstalt WSL, Bundesamt für Umwelt, Wald und<br />

L<strong>and</strong>schaft BUWAL, Birmensdorf, Bern, 2001.<br />

Yoda, K., Kira, T., Ogawa, H., Hozumi, K., 1963. Self-th<strong>in</strong>n<strong>in</strong>g <strong>in</strong><br />

overcrowded pure st<strong>and</strong>s under cultivated <strong>and</strong> natural conditions.<br />

J. Biol. Osaka City Univ., 107–129.<br />

Zöhrer, F., 1969. Best<strong>and</strong>eszuwachs und Leistungsvergleich montansubalp<strong>in</strong>er<br />

Lärchen–Fichten–Mischbestände. Forstw. Cbl. 88,<br />

41–63.<br />

Zumbühl, G., Burn<strong>and</strong>, J., 1986. Vegetationskarte Davos–Parsenn–<br />

Dischma. In: Wildi, O., Ewald, K. (Eds.), Der Naturraum<br />

und dessen Nutzung im alp<strong>in</strong>en Tourismusgebiet von Davos.<br />

Ergebnisse des MAB-Projektes Davos. Berichte. Eidg. Anstalt<br />

für das forstliche Versuchswesen, Birmensdorf, pp. 139–<br />

173.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!