13.11.2014 Views

Unreinforced masonry Shear loading - Eurocodes

Unreinforced masonry Shear loading - Eurocodes

Unreinforced masonry Shear loading - Eurocodes

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

EUROCODE 6<br />

Background and applications<br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 1 out of 23<br />

EUROCODE 6<br />

Design of <strong>masonry</strong> structures<br />

<strong>Unreinforced</strong> <strong>masonry</strong><br />

<strong>Shear</strong> <strong>loading</strong><br />

Prof. Dr.-Ing. Wolfram Jäger<br />

Dresden University of Technology<br />

Dr.-Ing. Sebastian Ortlepp<br />

Jaeger Consulting Engineers Ltd., Office for Structural Design<br />

Dipl.-Ing. Carola Hauschild<br />

Jaeger Consulting Engineers Ltd., Office for Structural Design


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 2 out of 23<br />

Types of actions for verification against shear<br />

In plane<br />

• transmission of wind<br />

loads<br />

• stiffening forces<br />

Out of plane<br />

• wind action perpendicular to<br />

the wall<br />

• pressure of earth.


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 3 out of 23<br />

Bracing of buildings<br />

The layout of the walls in the ground plan of the building should<br />

be foreseen in such a way that the sufficient bracing of a<br />

building should be guaranteed.<br />

The principles of bracing are:<br />

• concrete ceiling or ring beam<br />

• more than 3 walls<br />

• the axes should not intersect in one point


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 4 out of 23<br />

Bracing of buildings<br />

• favourable<br />

• unfavourable<br />

• instable<br />

M 0<br />

M 0<br />

M 0<br />

M 0<br />

high<br />

excentricity


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 5 out of 23<br />

Verification format EN 1996-1-1<br />

V<br />

Rd<br />

=<br />

filled head joints<br />

f<br />

vd<br />

⋅t<br />

⋅l<br />

f<br />

vk<br />

c<br />

=<br />

f<br />

vk<br />

0 + 0,4 ⋅σ<br />

d<br />

NDP - 2<br />

⎧0,065⋅<br />

≤ ⎨<br />

⎩ f vlt<br />

f<br />

b<br />

unfilled head joints<br />

f<br />

vk<br />

=<br />

0,5<br />

⋅ f 0 + 0,4 ⋅σ<br />

vk<br />

d<br />

≤<br />

⎧0,045⋅<br />

⎨<br />

⎩ f vlt<br />

f<br />

b<br />

shell bedded <strong>masonry</strong><br />

NDP - 1<br />

f<br />

vk<br />

=<br />

g<br />

t<br />

⋅<br />

f<br />

vk<br />

0 + 0,4 ⋅σ<br />

d<br />

≤<br />

⎧0,045<br />

⋅<br />

⎨<br />

⎩ f vlt<br />

f<br />

b


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 6 out of 23<br />

Verification format<br />

Variables:<br />

f vk0 : initial shear strength without load<br />

σ d : compressive stress, perpendicular with shear load<br />

f b : normalized compressive strength of <strong>masonry</strong><br />

f vlt : limit of shear strength<br />

g: overall with of mortar strips<br />

t: thickness of the wall


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 7 out of 23<br />

Verification format EN 1996-3<br />

Simplified calculation methods<br />

V<br />

Rd<br />

=<br />

c<br />

v<br />

⎡ l ⎤<br />

N<br />

⋅ ⎢ − eEd<br />

⎥ ⋅ t ⋅ f vdo + 0,4 ⋅<br />

⎣ 2 ⎦<br />

γ<br />

Ed<br />

M<br />

≤<br />

⎡ l<br />

3⎢<br />

⎣ 2<br />

−<br />

e<br />

Ed<br />

⎤<br />

⎥<br />

⎦<br />

⋅<br />

t<br />

⋅<br />

f<br />

vdu<br />

with:<br />

c v = 3 filled head joints<br />

c v = 1,5 unfilled head joints<br />

e Ed : excentricity of load<br />

t: thickness of the wall<br />

f vd0 =f vk0 /γ M<br />

N Ed : vertical load<br />

l: length of the wall<br />

f vdu : ultimate shear strength (0,065 f b or f vlt<br />

/γ M<br />

)


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 8 out of 23<br />

Verification model<br />

Background – theory<br />

σσ σ Dd Dd Dd<br />

τ<br />

a<br />

b<br />

d<br />

c<br />

a<br />

b<br />

d<br />

initial shear strength <strong>Shear</strong> strength<br />

tensile strength<br />

σ Dd<br />

Failure due to<br />

a) gaping of bed joint<br />

b) friction of bed joint<br />

c) tensile failure of the units<br />

d) crushing


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 9 out of 23<br />

Verification model<br />

Background – theory<br />

σa<br />

σ<br />

σ<br />

Dd<br />

Δy<br />

equilibrium of forces at a<br />

<strong>masonry</strong> unit<br />

Δσ<br />

b Δσ 2 ( 2 ⋅ Δσ) ⋅ ⋅ = τ ⋅ Δx<br />

⋅ Δy<br />

2 4<br />

τ<br />

Q b<br />

τ<br />

Δx<br />

Δx<br />

theory of principle stresses<br />

Δx<br />

result:<br />

friction failure<br />

f<br />

=<br />

vk f vk0<br />

+ μ ⋅<br />

σ<br />

Dd<br />

f<br />

2<br />

σDd<br />

σDd<br />

vb = ± + 3<br />

2<br />

( 2, ⋅ τ) 2<br />

tensile failure (anisotrophy)<br />

f<br />

vk<br />

=<br />

0,45 f<br />

bt<br />

4<br />

1+<br />

σ<br />

f<br />

Dd<br />

bt


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 10 out of 23<br />

Comparison to theory<br />

AAC<br />

Brick with<br />

vertical holes


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 11 out of 23<br />

Procedure in plane shear <strong>loading</strong><br />

A) Actions<br />

• wind action<br />

• bracing forces<br />

• normal stresses/forces and<br />

compressed area<br />

– Bending action due to in plane lateral<br />

forces<br />

– Determination of the compressed area<br />

– Bending due to deflection of the ceilings<br />

B) Resistance<br />

• Determination of shear strength and<br />

shear resistance<br />

C) Verification<br />

• Design action ≤ Design resistance<br />

VEd ≤ V Rd<br />

H E<br />

k<br />

y<br />

z<br />

y<br />

z<br />

f<br />

k<br />

N E<br />

F<br />

N E<br />

k<br />

N E<br />

K<br />

N R<br />

F<br />

N E<br />

F<br />

N R<br />

N R<br />

F<br />

x<br />

f<br />

x


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 12 out of 23<br />

Procedure out of plane shear <strong>loading</strong><br />

A) Actions<br />

• Determination of wind action<br />

• Determination of normal stresses/forces<br />

and compressed area<br />

– Bending action due to out of plane lateral<br />

forces<br />

– Determination of the compressed area<br />

B) Resistance<br />

• Determination of shear strength and<br />

shear resistance<br />

C) Verification<br />

• Design action ≤ Design resistance<br />

VEd ≤ V Rd


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 13 out of 23<br />

Working example<br />

Building<br />

Brick with<br />

vertical holes<br />

longitudinal section A-A


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 14 out of 23<br />

Working example<br />

Building<br />

Beams<br />

first floor plan


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 15 out of 23<br />

Pos. W2 interior wall<br />

Geometry<br />

t = 0,24m<br />

l = 2,24m<br />

l 1 = 3,60m<br />

Material parameters<br />

clay bricks, group 2<br />

f b =15N/mm²<br />

mortar M 2,5,<br />

f m = 2,5 N/mm²<br />

Verification of shear <strong>loading</strong><br />

acc. EN 1996-1-1 beam<br />

zone of<br />

beam load<br />

g = 5,5 kN/m²; q = 1,5 kN/m²<br />

A g = 56,6 kN; A p = 16,9 kN


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 16 out of 23<br />

Vertical loads<br />

beam<br />

A g =56,6 kN; A q =16,9 kN<br />

angle of load distribution 60°<br />

line force from dead load of the wall<br />

g wall =4,67 kN/m²<br />

line supporting force from dead load of the ceiling<br />

g = 5,5 kN/m²; q = 1,5 kN/m²<br />

verification of bending in plane: see 3_am_6_Jäger.pdf on the stick<br />

determination of input data for shear check from bending in<br />

plane<br />

l c = l = 2,24 m (linear stress distribution)<br />

min N = 22,96 kN


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 17 out of 23<br />

Load case combinations<br />

1,35 N<br />

g+1,5Nq 1,35 N<br />

g+1,5Nq 1,35 N g<br />

1,35 N g<br />

1,35 N g<br />

1,35g+1,5q<br />

1,35g<br />

1,35g+1,5q<br />

1,35g+1,5q<br />

1,35g<br />

1,5H,w 1,5H,w 1,5H,w<br />

1,35g 1,35g+1,5q 1,35g 1,35g<br />

1,35g+1,5q<br />

LFK 1<br />

LFK 2<br />

LFK 3 LFK 4 LFK 5<br />

1,0 N g 1,0 N g 1,0 N g<br />

1,35 N g+1,5Nq<br />

1,0 g<br />

1,0g+1,5q<br />

1,0g<br />

1,35 g+1,5q<br />

1,5H,w<br />

1,0g<br />

1,0g<br />

1,0g+1,5q<br />

1,35 g+1,5q<br />

LFK 6<br />

LFK LFK 8 LFK 9


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 18 out of 23<br />

Verification to shear <strong>loading</strong><br />

Design value of the shear resistance (load case 1)<br />

V<br />

Rd<br />

with<br />

f<br />

=<br />

f<br />

vk<br />

⋅ t ⋅ l<br />

γ<br />

M<br />

c<br />

vk = fvko<br />

+ 0, 4<br />

⋅<br />

σ<br />

f vko = 0,20MN/ m²<br />

d<br />

γ M =1,7 from NA<br />

(see table 1 DIN EN 1996-1-1)<br />

unit group 2, mortar M2,5 from table NA<br />

vorhσ<br />

minN<br />

t ⋅ l<br />

0,23<br />

0,24 ⋅ 2,24<br />

d = = =<br />

c<br />

0,427MN/ m<br />

2<br />

f vk = 0,20 + 0,4 ⋅ 0,427 = 0,371MN/ m²<br />

< 0,065<br />

⋅ fb = 0,065 ⋅15<br />

= 0,975 MN / m²<br />

(filled head joints)


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 19 out of 23<br />

Verification to shear <strong>loading</strong><br />

Design value of the shear resistance<br />

f vk = 0,5 ⋅ 0,20 + 0,4 ⋅ 0,427 =<br />

0,271MN / m²<br />

(unfilled head joints)<br />

<<br />

0,045<br />

⋅ fb = 0,045 ⋅15<br />

=<br />

0,675 MN / m²<br />

f vk = 0,5 ⋅ 0,20 + 0,4 ⋅ 0,427 =<br />

< 0,045<br />

⋅ fb = 0,045 ⋅15<br />

=<br />

0,271MN / m²<br />

0,371⋅<br />

0,24 ⋅ 2,24<br />

V Rd =<br />

= 117,3 kN<br />

1,7<br />

0,271⋅<br />

0,24 ⋅ 2,24<br />

V Rd =<br />

= 85,7 kN<br />

1,7<br />

V = 29,61kN < 117,3kN (85,7kN) =<br />

0,675 MN / m²<br />

Ed V Rd<br />

(shell bedded joints)<br />

(g/t = 0,5)<br />

(filled head joints)<br />

(unfilled/shell bedded)


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 20 out of 23<br />

Verification to shear <strong>loading</strong> simplified method<br />

Requirements<br />

EN 1996-3<br />

• stores above ground level ≤ 3;<br />

• the walls are fixed either through the ceiling or through appropriate<br />

constructions, such as ring beams;<br />

• load depth of the ceiling and the roof on the wall is at least 2 / 3 of wall<br />

thickness, but not less than 85 mm;<br />

• floor height ≤ 3.0 m;<br />

• the smallest dimensions in the building floor plan is at least 1 / 3 of<br />

building height;<br />

• the characteristic values of the variable loads on the ceiling and the roof<br />

≤ 5.0 kN / m²;<br />

• span of the ceiling ≤ 6.0 m;


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 21 out of 23<br />

Verification to shear <strong>loading</strong> - simplified method<br />

Design value of the shear resistance<br />

V<br />

Rd<br />

=<br />

c<br />

v<br />

⎡<br />

⋅ ⎢<br />

⎣<br />

l<br />

2<br />

Ed<br />

⋅ t ⋅ f<br />

vdo<br />

c v = 3 (filled head joints)<br />

V Rd<br />

V Rd<br />

⎡2,24<br />

≤ 3⎢<br />

⎣ 2<br />

−<br />

⎡2,24<br />

= 3 ⋅ ⎢<br />

⎣ 2<br />

e<br />

⎤<br />

⎥<br />

⎦<br />

⎤<br />

− 0,376⎥<br />

⎦<br />

⎤<br />

− 0,376⎥<br />

⎦<br />

= 180kN ≤ 117kN<br />

⋅ 0,24 ⋅<br />

⋅ 0,24 ⋅<br />

V = 29,61kN < 117kN =<br />

Ed V Rd<br />

N<br />

+ 0,4 ⋅<br />

γ<br />

0,2<br />

1,7<br />

0,371<br />

1,7<br />

Ed<br />

M<br />

⎡<br />

≤ 3⎢<br />

⎣<br />

+ 0,4 ⋅<br />

e<br />

l<br />

2<br />

−<br />

0,229<br />

1,7<br />

M<br />

=<br />

N<br />

e<br />

Ed<br />

⎤<br />

⎥<br />

⎦<br />

⋅ t ⋅ f<br />

vdu<br />

77,031<br />

229,585<br />

Ed<br />

Ed<br />

= =<br />

Ed<br />

0,376m


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 22 out of 23<br />

Verification to shear <strong>loading</strong> - simplified method<br />

Design value of the shear resistance<br />

c v = 1,5 (unfilled head joints)<br />

V Rd<br />

V Rd<br />

⎡2,24<br />

= 1,5 ⋅ ⎢<br />

⎣ 2<br />

⎡2,24<br />

≤ 1,5 ⎢<br />

⎣ 2<br />

=<br />

90kN<br />

≤<br />

⎤<br />

− 0,376⎥<br />

⎦<br />

⎤<br />

− 0,376⎥<br />

⎦<br />

58,5kN<br />

⋅ 0,24 ⋅<br />

⋅ 0,24 ⋅<br />

V = 29,61kN < 58,5kN =<br />

Ed V Rd<br />

0,2<br />

1,7<br />

+<br />

0,371<br />

1,7<br />

0,4<br />

⋅<br />

0,229<br />

1,7


EUROCODE 6<br />

Background and applications<br />

<strong>Unreinforced</strong> <strong>masonry</strong> – shear <strong>loading</strong><br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 23 out of 23<br />

Applikation of f vlt<br />

tensile failure of the unit<br />

f<br />

vklt<br />

σ<br />

= 0,45 fbt<br />

1+<br />

f<br />

Dd<br />

bt<br />

f bt : tensile strength of the unit<br />

f bt = 0,025 · f b hollow blocks;<br />

f bt = 0,033 · f b vertically perforated bricks and units with grip hole;<br />

f bt = 0,040 · f b full blocks without grip hole;<br />

simplified<br />

f vklt = 0,065 f b<br />

f vklt = 0,045 f b<br />

(filled head joints)<br />

(unfilled head joints)


EUROCODE 6<br />

Background and applications<br />

Hint to ESECMaSE-Project<br />

ESECMaSE<br />

Enhanced Safety and Efficient Construction of Masonry Structures in Europe<br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 24 out of 23<br />

Reason:<br />

1,5⋅H/1.0⋅N = 1,5⋅e previous<br />

Aim:<br />

description of the shear<br />

failure closer to reality to use<br />

the reserves<br />

Done:<br />

a) Matrial tests/test methods<br />

b) Static/cyclic shear tests<br />

c) Pseudodynamic tests<br />

d) Shaking tabel tests<br />

e) Theoretical analyses<br />

f) Engineering model<br />

g) Recommandations for the practice<br />

Collapse analyses<br />

Test on shaking<br />

table in Athens (CS)


EUROCODE 6<br />

Background and applications<br />

Hint to ESECMaSE-Project<br />

ESECMaSE<br />

Enhanced Safety and Efficient Construction of Masonry Structures in Europe<br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 25 out of 23<br />

Eng.-Model: From stress level to force level<br />

Bending<br />

Proposal from WP 4<br />

V<br />

bending<br />

2<br />

1 ⎛ N ⎞<br />

= ⋅<br />

⎜ N −<br />

⎟<br />

2⋅λv<br />

⎝ t ⋅l<br />

⋅ f ⎠<br />

Gaping<br />

V<br />

gaping<br />

=<br />

l<br />

b<br />

⋅ N<br />

2<br />

⎛ 1<br />

⎜<br />

⎝ hb<br />

+<br />

1 ⎞<br />

⎟<br />

h ⎠<br />

Friction<br />

V friction<br />

= μ ⋅<br />

N<br />

Tensile<br />

failure of<br />

the unit<br />

V<br />

unit<br />

unit,<br />

AAC<br />

1<br />

−<br />

= ⋅ fbt,<br />

cal ⋅ l ⋅ t ⋅<br />

c<br />

*<br />

F = 1.2 + 0. 85 f bt<br />

V<br />

⎛<br />

* 2<br />

( ) ( )<br />

⎜<br />

⎜ +<br />

* 2<br />

⎜ σ<br />

d<br />

F 1 F 1<br />

⎟ −1<br />

⎟ ⎟ ⎝ fbt,<br />

cal ⎠ ⎠<br />

⎝<br />

for AAC:<br />

1<br />

−<br />

= ⋅ fbt,<br />

cal ⋅ l ⋅ t ⋅ 2 ⋅<br />

c<br />

⎛ +<br />

⎛<br />

*<br />

* 2<br />

( )<br />

⎜ +<br />

( F )<br />

F 1<br />

⎜<br />

⎝<br />

4<br />

2<br />

⎛<br />

⎜<br />

1 +<br />

⎝<br />

⎞<br />

σ<br />

d<br />

f<br />

bt,<br />

cal<br />

⎞<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

−1<br />

⎟<br />

⎟<br />


EUROCODE 6<br />

Background and applications<br />

Anauncement of 8 th IMC Dresden 2010<br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 26 out of 23


EUROCODE 6<br />

Background and applications<br />

Anauncement of 8 th IMC Dresden 2010<br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 27 out of 23


EUROCODE 6<br />

Background and applications<br />

Anauncement of 8 th IMC Dresden 2010<br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 28 out of 23


EUROCODE 6<br />

Background and applications<br />

Anauncement of 8 th IMC Dresden 2010<br />

Dissemination of information for training – Brussels, 2-3 April 2009 slide 29 out of 23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!