13.11.2014 Views

(PCW) satellite system - Agence spatiale canadienne

(PCW) satellite system - Agence spatiale canadienne

(PCW) satellite system - Agence spatiale canadienne

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Canadian Polar Communication and<br />

Weather (<strong>PCW</strong>) <strong>satellite</strong> <strong>system</strong>: New<br />

capabilities for mapping Arctic snow and<br />

ice dynamics from Highly Elliptical Orbit<br />

Alexander P. Trishchenko* and Louis Garand<br />

Environment Canada<br />

and the <strong>PCW</strong> Science Team<br />

* on secondment from the Canada<br />

Centre for Remote Sensing, NRCan<br />

6th EARSeL Workshop<br />

Cryosphere, Hydrology & Climate interactions<br />

February 7, 2011<br />

University of Berne, Switzerland


Outline<br />

• Why <strong>satellite</strong> <strong>system</strong> on Highly Elliptical Orbit (HEO) is<br />

needed ?<br />

• Features of new Polar Communications and Weather<br />

(<strong>PCW</strong>) <strong>satellite</strong> <strong>system</strong> under development in Canada<br />

– Orbital configuration<br />

– Planned imager specs<br />

– Products and services<br />

– Status of the project<br />

• International dimension<br />

Page 2 – February 7, 2011


Why HEO <strong>system</strong>?<br />

• Polar orbiters have been a workhorse of <strong>satellite</strong> Earth Observation<br />

for decades, but their ability for repeated imagery is limited by<br />

– a) orbital period (~ 100min)<br />

– b) swath width ( ~ 100km-2500km)<br />

– c) clouds (70% cloud fraction on average) for surface applications<br />

• Geostationary <strong>satellite</strong>s (GEO) can provide nearly continuous<br />

imagery, but not over Polar Regions. Practical limit is


Ice motion from MODIS: Northwest Passage<br />

Page 4 – February 7, 2011


Ice motion from MODIS: Northwest Passage<br />

Source: Yi Luo<br />

Canadian Ice Service<br />

Page 5 – February 7, 2011


Ice motion from MODIS: Hudson Bay<br />

Page 6 – February 7, 2011


Ice motion from MODIS: Hudson Bay<br />

Source: Yi Luo<br />

Canadian Ice Service<br />

Page 7 – February 7, 2011


Refresh rate and spatial coverage are<br />

key requirements<br />

• New generation of GEO imagers (ABI/GOES-R,<br />

FCI/MTG, AHI/Himawari)<br />

– 15 min full disk<br />

– 1-5 min regional subsets<br />

• Cloud tracking => improved wind retrievals<br />

• Improved surface observations due to collecting all<br />

possible clear-sky pixels<br />

• Resolving diurnal cycle of clouds, radiation, snow/ice<br />

cover dynamics<br />

Page 8 – February 7, 2011


Improved clear-sky statistics<br />

due to high temporal frequency<br />

(1-day model data for July 1, 2008)<br />

Start: July 1, 2008 3:00UT<br />

Daily mean cloud fraction :<br />

69% (64%)<br />

Mean cloud fraction after<br />

clear-sky compositing :<br />

(every 15min over 24hrs)<br />

34% (32%)<br />

(50 0 N-90 0 N)<br />

Initial clear-sky mask<br />

Accumulated clear-sky mask after 24hrs<br />

clear<br />

cloud<br />

Page 9 – February 7, 2011


WMO vision for HEO <strong>satellite</strong> <strong>system</strong><br />

• World Meteorological Organization (WMO) in its “Vision<br />

for the Global Observing System (GOS) in 2025”<br />

adopted by the sixty-first session of the WMO Executive<br />

Council (EC-LXI) (WMO, 2009) endorsed the concept of<br />

HEO <strong>satellite</strong> <strong>system</strong> to improve Earth observations over<br />

polar latitudes;<br />

• The WMO document recommends operational<br />

implementation of visible (VIS) and infrared (IR) HEO<br />

imagers in order to monitor high latitude phenomena<br />

related to winds, clouds, volcanic ash plumes, sea ice,<br />

snow cover, vegetation properties and wild fires with<br />

sufficient temporal resolution (WMO, 2009).<br />

Page 10 – February 7, 2011


Canadian Polar Communication and Weather (<strong>PCW</strong>) <strong>system</strong><br />

• 2-sat <strong>system</strong> on HEO orbit to provide continuous Arctic<br />

coverage<br />

– Communication payload<br />

– Meteo payload – provision of multi-spectral imagery with<br />

15-min refresh rate<br />

– Space Weather payload<br />

– Additional payloads possible including atmospheric science<br />

applications<br />

• Anticipated to begin operations in 2017<br />

• Project is in Phase A to be completed at the end of<br />

March 2011. Team is working hard to get approval for<br />

phase B.<br />

Page 11 – February 7, 2011


Highly Elliptical Orbit (HEO)<br />

• HEO is not be eccentric… it is to have high eccentricity<br />

of the orbit to achieve continuous Arctic coverage<br />

Earth’s spin axis<br />

z<br />

Apogee<br />

Equatorial plane<br />

Perigee<br />

Descending node<br />

i<br />

H p =a(1-e)<br />

O<br />

ω<br />

ν<br />

l<br />

H a =a(1+e)<br />

Ω<br />

x<br />

Vernal equinox<br />

y<br />

Ascending node<br />

Satellite spends 2x more time above 45 0 with e≈0.5 relative to circular orbit (e≈0)<br />

3x more time above 45 0 with e≈0.75 relative to circular orbit (e≈0)<br />

Page 12 – February 7, 2011


12-hr Molniya orbit<br />

• Molniya (12hrs) orbit is considered as a baseline scenario for<br />

Polar Communication and Weather (<strong>PCW</strong>) <strong>satellite</strong> <strong>system</strong><br />

due to superior imaging conditions over the Arctic;<br />

• Two <strong>satellite</strong>s in 1 orbital plane (6hrs apart) with 63.4 0<br />

inclination, i.e. 4 apogee points: 95 0 W, 175 0 E, 85 0 E, 5 0 W;<br />

• Critical inclination makes apogee location stable<br />

ω&<br />

=<br />

3<br />

4<br />

J<br />

2<br />

n<br />

⎛<br />

⎜<br />

⎝<br />

2<br />

( 1 − e ) 2<br />

• Rate of change for the argument of perigee ≈0<br />

rE<br />

a<br />

⎞<br />

⎟<br />

⎠<br />

2<br />

5<br />

cos<br />

2<br />

i<br />

−<br />

1<br />

Equatorial plane<br />

Descending node<br />

Perigee<br />

Earth’s spin axis<br />

H p =a(1-e)<br />

i<br />

z<br />

O<br />

ω<br />

ν<br />

l<br />

H a =a(1+e)<br />

Ω<br />

y<br />

x<br />

Vernal equinox<br />

Apogee<br />

Ascending node<br />

Page 13 – February 7, 2011


Some feature of Molniya HEO orbit<br />

vs LEO and GEO orbits<br />

Molniya orbit<br />

MODIS<br />

Terra/Aqua<br />

GEO<br />

Satellite ground track pattern is stable (repeatable), but the Local Solar Time<br />

(LST) of apogee point is drifting. This means that VZA-SZA relationship for<br />

each particular point on the Earth surface is time dependent.<br />

Page 14 – February 7, 2011


Location of apogees and coverage for<br />

<strong>PCW</strong> <strong>system</strong><br />

85 0 E<br />

Location of apogees was<br />

selected to maximize land<br />

mass observations at small<br />

viewing zenith angles<br />

(VZA), i.e. looking close to<br />

nadir over land<br />

175 0 E<br />

5 0 W<br />

95 0 W<br />

Page 15 – February 7, 2011


Spatio-temporal coverage from Molniya<br />

Map of coverage (% of time per day)<br />

zonal mean<br />

58 0 N-90 0 N - 100%<br />

above 55 0 N - >95%<br />

Page 16 – February 7, 2011


-4hrs<br />

Temporal Sequence of Earth Views<br />

-3hrs<br />

0hrs<br />

23.7 0 x 23.7 0 19.2 0 x 19.2 0 15.7 0 x 15.7 0<br />

+4hrs<br />

+3hrs<br />

Page 17 – February 7, 2011


Animation of Arctic coverage: July 1, 2008<br />

(CMC model results at 10-km resolution)<br />

R – B6 1.6µm<br />

G – B3 0.87µm<br />

B – B2 0.64µm<br />

Page 18 – February 7, 2011


Harsh ionizing radiation is Molniya orbit<br />

biggest challenge<br />

High energy trapped protons with E>10Mev are the most dangerous<br />

Page 19 – February 7, 2011


How to optimize HEO orbit ?<br />

One needs to increase the<br />

altitude of the orbit when it<br />

crosses the equatorial<br />

plane (i.e. the altitude of<br />

semi-latus rectum), but to<br />

keep semi-major axis<br />

reasonably low to achieve<br />

better spatial resolution<br />

Optimization leads<br />

to orbit parameters<br />

T=16hr<br />

e=0.55<br />

Page 20 – February 7, 2011


Comparison of radiation conditions<br />

between Molniya, GEO and TAP orbits<br />

3-4 order of magnitude smaller flux<br />

of high energy trapped protons<br />

trapped protons flux essentially<br />

vanishes after ≈7mm AL shielding<br />

after ≈9mm AL shielding TAP orbit<br />

becomes similar to GEO<br />

Page 21 – February 7, 2011


16hrs orbit is very good alternative<br />

candidate for <strong>PCW</strong><br />

Three APogee (TAP) orbit<br />

Suggested apogees:<br />

95 0 W; 25 0 E, 145 0 E<br />

Page 22 – February 7, 2011


Zonal mean coverage: 12-hr vs 16-hr orbit<br />

Page 23 – February 7, 2011


Viewing Earth from TAP(16-hr) orbit<br />

Animation over 48hr period with 15-min steps<br />

Satellite #1 Satellite #2<br />

Page 24 – February 7, 2011


<strong>PCW</strong> Imager Specifications<br />

Band<br />

No.<br />

subgroup<br />

Wavelength<br />

(microns)<br />

Heritage<br />

Priority<br />

GSD (km)<br />

Goal Max<br />

Main applications<br />

1<br />

VNIR<br />

0.45-0.49<br />

ABI, FDHSI<br />

1<br />

0.5 1.5<br />

Surface, clouds, aerosols<br />

2<br />

0.59-0.69<br />

ABI, FDHSI<br />

1<br />

0.5 1.5<br />

Wind, clouds, ice mapping<br />

3<br />

0.704-0.714<br />

MERIS-09<br />

2<br />

0.5 1.5<br />

Water quality, chlorophyll<br />

4<br />

0.85-0.89<br />

ABI, FDHSI<br />

1<br />

0.5 1.5<br />

Wind, aerosols, vegetation<br />

5<br />

SWIR<br />

1.04 – 1.06<br />

SGLI SW1<br />

2<br />

1.0 3.0<br />

Snow grain and clouds<br />

6<br />

1.37-1.39<br />

ABI, FDHSI<br />

2<br />

1.0 3.0<br />

Cirrus detection<br />

7<br />

1.58-1.64<br />

ABI, FDHSI<br />

1<br />

0.5 1.5<br />

Snow-cloud distinction, ice cover<br />

8<br />

2.22-2.28<br />

ABI, FDHSI<br />

1<br />

1.0 3.0<br />

Aerosol, smoke, cloud phase<br />

9<br />

MWIR<br />

3.80-4.00<br />

ABI, FDHSI<br />

1<br />

2.0 3.0<br />

Fog, fires, ice/cloud separation, wind, cld.phase<br />

10<br />

5.77-6.60<br />

ABI, FDHSI<br />

1<br />

2.0 3.0<br />

Wind, high level humidity<br />

11<br />

6.75-7.15<br />

ABI, MTSAT<br />

1<br />

2.0 3.0<br />

Wind, mid level humidity<br />

12<br />

7.24-7.44<br />

ABI, FDHSI<br />

1<br />

2.0 3.0<br />

Wind, low level humidity<br />

13<br />

LWIR<br />

8.30-8.70<br />

ABI, FDHSI<br />

1<br />

2.0 3.0<br />

Total water, cloud phase<br />

14<br />

9.42-9.80<br />

ABI, FDHSI<br />

2<br />

2.0 3.0<br />

Total ozone<br />

15<br />

10.1-10.6<br />

ABI, FDHSI<br />

2<br />

2.0 3.0<br />

Cloud, surface, cirrus<br />

16<br />

10.8-11.6<br />

ABI, HIRS<br />

1<br />

2.0 3.0<br />

Cloud, SST, ash<br />

17<br />

11.8-12.8<br />

ABI, FDHSI<br />

1<br />

2.0 3.0<br />

Ash, SST<br />

18<br />

LIRCO2<br />

13.0-13.6<br />

ABI, FDHSI<br />

1<br />

2.0 3.0<br />

Cloud height<br />

19<br />

13.5-13.8<br />

MODIS,HIRS<br />

2<br />

2.0 6.0<br />

Cloud height, low level temperature<br />

20<br />

13.8-14.1<br />

MODIS,HIRS<br />

2<br />

2.0 6.0<br />

Cloud height, mid level temperature<br />

21<br />

14.1-14.4<br />

MODIS,HIRS Page 25 – February 2 7, 2011 2.0 6.0<br />

Cloud height, high level temperature


Snow grain size<br />

1.04-1.06µm channel was selected: Band 5<br />

Page 26 – February 7, 2011


Angular sampling from Molniya HEO<br />

SZA-VZA sampling VZA-RAZ sampling<br />

Orbit precession around direction to the Sun: 1.14deg/day.<br />

Complete cycle is ~ 10.5 month (360 deg)<br />

Rich angular sampling from HEO Molniya orbit => better observations of angular<br />

anisotropy of the Earth radiation field than for polar orbiters and GEO<br />

Page 27 – February 7, 2011


Preliminary list of products from <strong>PCW</strong><br />

CATEGORY<br />

PRODUCT<br />

Repeat<br />

Cycle<br />

Latency<br />

COMMENT<br />

Imagery<br />

Level 1C imagery<br />

Level 2 imagery<br />

15 min<br />

15 min<br />

15 min<br />

30 min<br />

Calibrated, mapped to standard grid (15 min<br />

refresh)<br />

Composite of 2 <strong>satellite</strong>s<br />

AMV: Atmospheric Motion<br />

Vectors<br />

1 hour<br />

1 hour<br />

Latency is w.r.t. oldest image of triplets/duos<br />

used for tracking<br />

Cloud mask<br />

15 min<br />

30 min<br />

Important for direct assimilation of radiances<br />

Priority 1 - Near Real<br />

Time Level 2<br />

products derived<br />

from Level 1C<br />

Cloud height, amount,<br />

emissivity, temperature<br />

Volcanic ash height (optical<br />

depth)<br />

15 min<br />

15 min<br />

30 min<br />

30 min<br />

Important for AMV<br />

When active. Done at Dorval volcanic ash<br />

advisory center. Could develop a SO 2<br />

product<br />

as well.<br />

Fog and surface visibility<br />

15 min<br />

30 min<br />

Forest fires. Hot spots<br />

3 hours<br />

1 hour<br />

Product elaborated either, at CFS and/or<br />

another governmental entity<br />

Page 28 – February 7, 2011


Preliminary list of products from <strong>PCW</strong><br />

CATEGORY<br />

PRODUCT<br />

Repeat<br />

Cycle<br />

Latency<br />

COMMENT<br />

Snow/ice mapping (cover<br />

and depth)<br />

6 hours<br />

6hours<br />

Derived from 15 min. Resolution 2 km. May<br />

include snow grain size.<br />

SST: sea surface<br />

temperature<br />

1 hour<br />

2 hours<br />

Resolution 4 km<br />

Priority 2 - Level 2/3<br />

(see note below)<br />

LST: land surface<br />

temperature<br />

Surface albedo<br />

1 hour<br />

6 hours<br />

2 hours<br />

6 hours<br />

Resolution 4 km<br />

Resolution 10 km. Could be done at another<br />

governmental entity<br />

Aerosol optical depth<br />

3 hours<br />

6 hours<br />

Resolution 10 km<br />

Atmospheric stability index<br />

1 hour<br />

1 hour<br />

Resolution 10 km<br />

Aircraft icing threat<br />

1 hour<br />

15 min<br />

Resolution 10 km<br />

Total ozone<br />

1 hour<br />

1 hour<br />

Resolution 10 km<br />

Page 29 – February 7, 2011


Preliminary list of climate products from <strong>PCW</strong><br />

CATEGORY<br />

Priority 2 - Level 3<br />

climate essential<br />

variables – Not<br />

elaborated at<br />

EC Dorval<br />

Archive Products<br />

PRODUCT<br />

NDVI: Normalized Difference<br />

Vegetation Index<br />

FPAR<br />

LAI: Leaf Area Index<br />

Radiative fluxes<br />

Land surface emissivity<br />

Repeat<br />

Cycle<br />

1 day<br />

1 day<br />

1 day<br />

1 hour<br />

1 day<br />

Latency<br />

Resolution 4km<br />

Levels 0, 1C and 2 are archived forever at CMC, and Level 1B for 5 years. In addition rotating archive of<br />

Level 0 at ground receiving station.<br />

Note :Level 2 products are retrievals made from Level 1C. Level 3 products defined at a coarser resolution. Surface parameters<br />

are only available in clear air (mask =0) or when the sun angle allows. In areas devoid of observations, the pixels are either<br />

left blank or replaced by a previously obtained value.<br />

1 day<br />

1 day<br />

1 day<br />

1 day<br />

1 day<br />

COMMENT<br />

Resolution 1 km<br />

Fraction of Absorbed Photosynthetically<br />

Active Radiation. Resolution 1 km<br />

Resolution 2 km<br />

Resolution 10 km (SW, LW at surface and<br />

TOA)<br />

Page 30 – February 7, 2011


<strong>PCW</strong> Mission development in Phase A<br />

Lead<br />

Canadian Space Agency<br />

Partners<br />

Environment Canada<br />

Dept National Defense<br />

User and Science Team (U&ST):<br />

Environment Canada (EC),<br />

Dept. of National Defense (DND),<br />

Natural Resources Canada,<br />

Canadian Coast Guard,<br />

Transport Canada, NavCanada,<br />

Dept. of Indian and Northern Affairs,<br />

Gov. of Nunavut<br />

And other gov. agencies<br />

International Section of U&ST<br />

URD<br />

Industrial Team:<br />

MDA (prime),<br />

Com Dev,<br />

ABB Bomem,<br />

Magellan/Bristol Aerospace,<br />

ADVANTECH,<br />

SED,<br />

TELESAT<br />

Page 31 – February 7, 2011


International Engagement<br />

• NOAA, NASA, EUMETSAT, FMI, SHMI, ESA, ECMWF<br />

participation in International section of User & Science Team<br />

• NOAA<br />

– Contributions to <strong>PCW</strong> to be explored through EC-NOAA<br />

MOU, and Canada-US Agreement on space technology.<br />

• Russia Arktika Mission<br />

– liaison through WMO Focus Group on HEO and bi-laterally<br />

– agreement in principle to coordinated missions – e.g., orbital<br />

configuration, imaging frequency, etc<br />

Page 32 – February 7, 2011


Conclusions<br />

• HEO <strong>satellite</strong> <strong>system</strong> offers unique opportunity for continuous observations<br />

of polar regions and snow/ice dynamics;<br />

• Canada is planning to launch the Polar Communication and Weather<br />

(<strong>PCW</strong>) 2-sat <strong>system</strong> with operations beginning around 2017;<br />

• Phase A has been extended until the end of March 2011. Team is working<br />

hard to move project into Phase B;<br />

• 21 channel imager with spatial resolution from 0.5km to 2km will provide<br />

continuous observations over the Arctic with refresh rate 15minutes;<br />

• The set of operational products and Essential Climate Variables (ECVs) will<br />

be produced to be compatible with NOAA GOES-R ABI + some extras;<br />

• Observations from HEO orbit provide very rich geometry that should lead to<br />

improving the quality of atmospheric and surface products;<br />

• <strong>PCW</strong> data will be included as part of Global Space-Based Inter-Calibration<br />

System (GSICS) to ensure the quality of data products.<br />

• Proxy data are available for at 35km (globally) and 10km (Arctic) and 15min<br />

time steps for July 1, 2008:<br />

– ftp server: depot.cmc.ec.gc.ca; directory: upload/cmdd/pcw/.<br />

– Login as anonymous user<br />

Page 33 – February 7, 2011


References<br />

• Kidder, S.Q. and T.H.Vonder Haar, 1990: On the use of <strong>satellite</strong>s in<br />

Molniya orbits for meteorological observation of middle and high<br />

latitudes. J. Atm. Oceanic Tech., 7, 517-522<br />

• Trishchenko, A.P., and L.Garand, 2011: Spatial and temporal<br />

sampling of Polar Regions from two-<strong>satellite</strong> <strong>system</strong> on Molniya<br />

orbit. J. Atmos. Oceanic Tech., 45pp. In press.<br />

• Trishchenko, A.P., L.Garand, L.D.Trichtchenko, 2011: Three<br />

apogee 16-h highly elliptical orbit as optimal choice for continuous<br />

meteorological imaging of polar regions . J. Atmos. Oceanic Tech.,<br />

to be submitted.<br />

• WMO, 2009: WMO vision for the GOS in 2025. WMO (CM-9)/Doc. 8<br />

(14.I.2009). Port of Spain. Trinidad and Tobago. 19pp. [Available at:<br />

http://www.wmo.int/pages/prog/sat/meetings/documents/cm9_Doc_<br />

08_GOSVision2025.pdf]<br />

Page 34 – February 7, 2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!