13.11.2014 Views

Label-free optical biosensor for probing receptor biology: theory

Label-free optical biosensor for probing receptor biology: theory

Label-free optical biosensor for probing receptor biology: theory

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Label</strong>-<strong>free</strong> <strong>optical</strong> <strong>biosensor</strong> <strong>for</strong><br />

<strong>probing</strong> <strong>receptor</strong> <strong>biology</strong>: <strong>theory</strong>,<br />

modeling and applications<br />

Ye Fang, Ann M. Ferrie, Elizabeth Tran, Gary Li,<br />

Florence Verrier, Jun Xi, and Meenal Soni


Abstract<br />

<strong>Label</strong>-<strong>free</strong> <strong>optical</strong> <strong>biosensor</strong>s have migrated from a tool solely <strong>for</strong> biomolecular<br />

interaction analysis to a universal plat<strong>for</strong>m <strong>for</strong> both biochemical and cell-based<br />

assays. This poster presents the theoretical analysis and experimental data <strong>for</strong> the<br />

use of resonant waveguide grating (RWG) <strong>biosensor</strong>s to characterize stimulusmediated<br />

cell responses including <strong>receptor</strong> signaling. The <strong>biosensor</strong> is capable of<br />

detecting redistribution of cellular contents in both directions that are perpendicular<br />

and parallel to the sensor surface. This capability relies on online monitoring cell<br />

responses with multiple <strong>optical</strong> output parameters, including the changes in incident<br />

angle and the shape of the resonant peaks. When the changes in the peak shape<br />

are mainly contributed to stimulation-modulated inhomogeneous redistribution of<br />

cellular contents parallel to the sensor surface, the shift in the incident angle<br />

primarily reflects the stimulation-triggered dynamic mass redistribution (DMR)<br />

perpendicular to the sensor surface. The <strong>optical</strong> signatures are obtained and used<br />

to characterize several cellular processes, particularly <strong>receptor</strong> signaling. A<br />

mathematical model is developed to link the bradykinin-mediated DMR signals to<br />

the dynamic relocation of intracellular proteins and the <strong>receptor</strong> internalization<br />

during B2 <strong>receptor</strong> signaling cycle. Chemical <strong>biology</strong> and cell <strong>biology</strong> analysis<br />

provides evidence linking specific cellular events to a ligand-induced DMR signal.<br />

Together with recent advancement in instruments <strong>for</strong> high throughput screening, the<br />

newly discovered ability of <strong>optical</strong> <strong>biosensor</strong>s <strong>for</strong> assaying living cells will accelerate<br />

wide adoption of label-<strong>free</strong> <strong>biosensor</strong>s in both drug discovery processes and<br />

fundamental research.<br />

Corning Incorporated<br />

2


Corning ® Epic ® System<br />

The Corning Epic System is a high-throughput, label-<strong>free</strong> detection plat<strong>for</strong>m that<br />

consists of SBS-standard 384-well microplates with <strong>optical</strong> sensors inside each well,<br />

an HTS-compatible microplate reader and a set of label-independent assay<br />

protocols. The Epic System is applicable to both biochemical and cell-based assays,<br />

and enables high-throughput screening of “intractable” targets.<br />

8<br />

+<br />

=<br />

Response (pm)<br />

6<br />

4<br />

2<br />

K D = 53 nM<br />

R 2 = 0.9707<br />

0<br />

0 500 1000 1500 2000 2500 3000<br />

[Acetazolamide] (nM)<br />

Microplate<br />

• 384-well <strong>for</strong>mat<br />

• Optical <strong>biosensor</strong> in each well<br />

• Surface chemistry<br />

Plate Reader<br />

• Compatible w/ HTS automation<br />

• ≥ 40,000 wells/8hrs<br />

• Sensitivity of 5pg/mm 2<br />

(300Da drug to 75kDa target)<br />

Binding Data<br />

• Manipulated and<br />

analyzed by<br />

customer<br />

Corning Incorporated<br />

3


Corning ® Epic ® system is centered around resonant waveguide<br />

grating (RWG) <strong>biosensor</strong><br />

• An <strong>optical</strong> <strong>biosensor</strong> comprise an <strong>optical</strong> transducer <strong>for</strong> converting a molecular recognition<br />

event or a stimulus-induced cellular response into a quantifiable signal<br />

Resonant waveguide<br />

grating<br />

(RWG)<br />

Y<br />

Y<br />

Y Y Y Y<br />

Y<br />

Waveguide<br />

Glass<br />

Intensity<br />

Broadband light<br />

Reflected light<br />

Wavelength (pm)<br />

Epic Microplate<br />

• 384-well <strong>for</strong>mat<br />

• Optical <strong>biosensor</strong><br />

in each well<br />

Fang, Y. (2006) Assays Drug Dev. Tech. 4, 583-595<br />

Corning Incorporated<br />

4


Corning® Epic® system is applicable to both biochemical and cellbased<br />

assays<br />

• Corning® Epic® system is the first label-<strong>free</strong> and high throughput <strong>biosensor</strong><br />

system <strong>for</strong> both biochemical and cell-based assays<br />

Biochemical assays Cell-based assays<br />

Drug<br />

Cell<br />

Protein<br />

150 nm<br />

Pos<br />

DMR<br />

Neg<br />

DMR<br />

Detection Zone<br />

150 nm<br />

Epic ® Biosensor<br />

Epic ® Biosensor<br />

Fang, Y. (2006) Assay Drug Develop. Technol. 4, 583-595<br />

Cooper, M.A. (2006) Drug Discov. Today 11, 1061-1067<br />

Morrow, Jr. K.J. Genetic Engineering & Biotechnology News 36 (March 1, 2008)<br />

Corning Incorporated<br />

5


G protein-coupled <strong>receptor</strong> signaling: temporal and spatial dynamics<br />

Late endosomes<br />

Lysosomes<br />

Degradation<br />

Endocytosis<br />

Early endosomes<br />

Synthesis<br />

k on<br />

Recycling<br />

k off<br />

Golgi<br />

1-5min 5-20min 20-60min >60min<br />

Corning Incorporated<br />

6


Evolution of <strong>receptor</strong> signaling<br />

• Linear signaling cascades<br />

• Network interactions<br />

• Cross-talks<br />

– Receptor dimerization/oligomerization<br />

– Transactivation and transinactivation<br />

– Networks with critical nodes that<br />

participate in the crosstalk between<br />

the signaling networks<br />

• Signaling compartmentalization<br />

– Microdomains<br />

– Organization of signaling complexes<br />

– Restricted collusion and diffusion<br />

– Spatial and temporal gradients<br />

• Signaling integration<br />

• Phenotypic <strong>receptor</strong> <strong>biology</strong><br />

– Cellular context-dependent<br />

– Tissue-specific<br />

C.M. Taniguchi, B. Emanuelli, C. R.Kahn (2006)<br />

Nat. Rev. Mol. Cell Biol. 7, 85 - 96<br />

Corning Incorporated<br />

7


RWG <strong>biosensor</strong> detects stimulus-induced dynamic mass<br />

redistribution (DMR) within cells<br />

The effective refractive index of the sensor system is:<br />

N<br />

n<br />

i<br />

The stimulus-induced change in refractive index (Δn i<br />

) of the homogeneous layer i approximately<br />

<strong>for</strong>m a piece-wise continuous function:<br />

Δn<br />

=<br />

=<br />

f<br />

n<br />

N<br />

o<br />

= αΔ<br />

i<br />

C i<br />

( n , h,<br />

n , n , n , d , λ , m,σ<br />

)<br />

c<br />

+ αC<br />

i<br />

F<br />

S<br />

m<br />

F<br />

A stimulus-induced change in the effective refractive index of the sensor system is:<br />

( Δnc,<br />

d ) = S(<br />

N ΔnC<br />

Δ N = f<br />

)<br />

The refractive index of a given volume within cells is largely determined by the concentrations<br />

of bio-molecules, mainly proteins:<br />

The stimulus-induced change in the effective index of the cell layer is:<br />

− zi<br />

− zi+<br />

1<br />

⎡ ⎤<br />

ΔZC<br />

ΔZC<br />

ΔnC<br />

= α∑(<br />

ΔCi<br />

⎢e<br />

− e ⎥)<br />

Epic® signal = f(C, d, t)<br />

i ⎢⎣<br />

⎥⎦<br />

Penetration<br />

depth ΔZC<br />

n i , z i , c i<br />

n F , d F<br />

n s<br />

Fang, Y., et al. (2006) Biophys. J. 91, 1925-1940<br />

Corning Incorporated<br />

8


Dynamic relocation of cellular context in G q -couple <strong>receptor</strong> signaling:<br />

basis <strong>for</strong> numerical modeling<br />

• Common to Gq-coupled <strong>receptor</strong> is the dynamic relocation of cellular targets:<br />

– Protein kinase C iso<strong>for</strong>ms<br />

– GPCR kinases<br />

– Arrestins<br />

– PIP-binding proteins<br />

– Diacylglycerol-binding proteins<br />

Bradykinin stimulation causes relocation of<br />

PKCθ-GFP to cell membrane in A431<br />

Sato, T.K., et al., Science<br />

294, 1881-1885.<br />

PKCθ-GFP<br />

0min<br />

6min<br />

Van Baal, et al. (2005) J. Biol.<br />

Chem. 2005, 280, 9870<br />

Corning Incorporated<br />

9


Numerical analysis predicts an <strong>optical</strong> signal that is similar to those<br />

obtained using RWG <strong>biosensor</strong><br />

L<br />

k<br />

+<br />

←<br />

k<br />

R ⎯⎯→<br />

f<br />

r<br />

k<br />

p<br />

LR ⎯⎯→ R<br />

*<br />

kin<br />

⎯⎯→ R<br />

in<br />

kre<br />

⎯⎯→ R<br />

For the net change in protein concentration adjacent to<br />

the cell surface :<br />

dC i<br />

dt<br />

= ak<br />

p<br />

[ LR]<br />

− bk [ R*]<br />

in<br />

Recruitment<br />

Internalization<br />

Theory predicated<br />

Experimental results<br />

Respones (unit)<br />

B<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 600 1200 1800<br />

Time (s)<br />

128nM<br />

64nM<br />

32nM<br />

16nM<br />

8nM<br />

4nM<br />

2nM<br />

1nM<br />

Response (unit)<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

32nM<br />

8nM<br />

2nM<br />

0.5nM<br />

64nM<br />

0 1000 2000 3000 4000 5000<br />

Time (sec)<br />

Bradykinin in A431<br />

(dual signaling)<br />

Fang, Y., et al. (2006) Biophys. J. 91, 1925-1940<br />

Corning Incorporated<br />

10


RWG <strong>biosensor</strong> differentiates cellular responses mediated through<br />

distinct classes of GPCRs<br />

thrombin<br />

epinephrine<br />

Lysophosphatidic acid<br />

G q<br />

β2AR<br />

G s<br />

LPA 1<br />

G i<br />

PAR 1<br />

Ca 2+ , Ca 2+<br />

DAG<br />

PKC<br />

PLC<br />

IP 3<br />

AC<br />

cAMP<br />

AC<br />

cAMP<br />

3.0<br />

1.0<br />

1.5<br />

Response (unit)<br />

2.0<br />

1.0<br />

0.0<br />

Response (unit)<br />

0.5<br />

0.0<br />

-0.5<br />

Response (unit)<br />

1.0<br />

0.5<br />

0.0<br />

-1.0<br />

0 600 1200 1800 2400 3000 3600<br />

Time (sec)<br />

-1.0<br />

0 600 1200 1800 2400 3000 3600<br />

Time (sec)<br />

-0.5<br />

0 600 1200 1800 2400 3000 3600<br />

Time (sec)<br />

Fang, Y., et al. (2007) J. Pharmacol. Tox. Methods 55, 314-322<br />

Corning Incorporated<br />

11


RWG <strong>biosensor</strong> assays detect complex GPCR signaling:<br />

Dual signaling pathways of endogenous bradykinin B 2 <strong>receptor</strong> in A431<br />

bradykinin<br />

G q<br />

G s<br />

B 2<br />

<strong>receptor</strong><br />

Response (unit)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

G q pathway modulators<br />

HBSS<br />

500nM GF109203x<br />

Ca 2+ , Ca 2+<br />

cAMP<br />

Response (unit)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

G s pathway modulators<br />

1μM KT5720<br />

HBSS<br />

-1<br />

0 1000 2000 3000 4000 5000 6000<br />

Time (sec)<br />

-1<br />

0 1000 2000 3000 4000 5000 6000<br />

Time (sec)<br />

Fang, Y., et al. (2005) FEBS Lett. 579, 6365-6374<br />

Corning Incorporated<br />

12


RWG <strong>biosensor</strong> cell assays differentiate ligand-directed functional<br />

selectivity acting on β 2 AR<br />

250<br />

200<br />

-logEC 50 ±S.E. P-DMR(pm) N-DMR(pm) τ (s) t 1/2 (s)<br />

Weak partial agonist<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

catechol<br />

HO<br />

HO<br />

3.30±0.07 152±13 0±3 130±15 289±42<br />

250<br />

200<br />

Partial agonist<br />

150<br />

100<br />

50<br />

0<br />

HO<br />

dopamine<br />

5.96±0.06 214±32 31±4 252±15 480±23<br />

-50<br />

HO NH 2<br />

250<br />

Strong partial agonist<br />

200<br />

150<br />

100<br />

50<br />

norepinephrine<br />

HO<br />

7.99±0.07 209±16 29±5 180±17 559±15<br />

0<br />

-50<br />

HO NH 2<br />

HO<br />

Full agonist<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

HO<br />

HO<br />

(-)-epinephrine<br />

HO<br />

N<br />

H<br />

10.13±0.06 232±12 37±7 132±20 521±25<br />

Potency<br />

Efficacy Ability to cause<br />

<strong>receptor</strong> internalization<br />

60min<br />

Fang, Y. & Ferrie, A.M. (2008) FEBS Lett. 582, 558-564<br />

Corning Incorporated<br />

13


RWG <strong>biosensor</strong> cell assays enable systems cell <strong>biology</strong> analysis of<br />

<strong>receptor</strong> signaling<br />

EGFR<br />

EGF<br />

The MAPK pathway<br />

determines the EGFinduced<br />

DMR signal<br />

MEKK-1<br />

JNKK1<br />

JNK<br />

Ras<br />

Raf<br />

MEK<br />

ERK<br />

Sos-1<br />

Grb2<br />

Shc<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

STAT3<br />

p<br />

PIP2<br />

p<br />

p<br />

p<br />

DAG<br />

p<br />

PLCγ<br />

p<br />

p<br />

PI3K IP3<br />

PKC<br />

JAK1<br />

Ca 2+ , Ca 2+<br />

STAT1<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

p<br />

Dynamin<br />

Inhibitor<br />

AG1478<br />

Cytochalasin B<br />

DIPC<br />

GF109203x<br />

KN62<br />

KT5720<br />

KT5823<br />

Latrunculin A<br />

Milrinone<br />

Nocodazole<br />

PD98059<br />

Phalloidin<br />

PP1<br />

Ro 20-1724<br />

R(-)rolipram<br />

SB203580<br />

SB202190<br />

SP600125<br />

U0126<br />

Vinblastine<br />

Wortmainnin<br />

Zardaverine<br />

Target<br />

EGFR<br />

Actin<br />

Dynamin<br />

Protein Kinase C<br />

CaM Kinase II<br />

Protein Kinase A<br />

Protein kinase G<br />

Actin<br />

Phosphodiesterases<br />

Microtubule<br />

MEK<br />

Actin<br />

Src<br />

Phosphodiesterases<br />

Phosphodiesterases<br />

p38 MAPK<br />

p38 MAPK<br />

JNK<br />

MEK1/2<br />

Microtubule<br />

PI3K<br />

Phosphodiesterases<br />

c-Jun<br />

STAT3<br />

ELK-1 FAK<br />

Cell detachment<br />

STAT1<br />

Response (unit)<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

HBSS<br />

ELK-1<br />

AG1478<br />

U0126<br />

SB203580<br />

SB202190<br />

SP600125<br />

GF109203x<br />

KT5720<br />

KN62<br />

KT5823<br />

Wortmannin<br />

DIPC<br />

Cytochalasin B<br />

Latrunculin A<br />

Milrinone<br />

Zardaverine<br />

Ro20-1724<br />

Rolipram<br />

Compound<br />

Modulation Profile<br />

Fang, Y., et al. (2005) Anal. Chem. 77, 5720-6725<br />

Fang, Y., et al. (2006) Biochem. Biophys. Acta 1763, 254-261<br />

Corning Incorporated<br />

14


Summary<br />

• Epic ® cell assays employ label-<strong>free</strong> <strong>optical</strong> <strong>biosensor</strong> to measure stimulusinduced<br />

dynamic mass redistribution in cells within the detection zone of the<br />

<strong>biosensor</strong><br />

• The DMR signal is a novel physiologically relevant and kinetic response of living<br />

cells<br />

• The DMR signal is a global representation of <strong>receptor</strong> <strong>biology</strong> and ligand<br />

pharmacology<br />

• Epic cell assays have broad applicability in many classes of targets, and have<br />

potentials in drug discovery and development process as well as others<br />

Corning Incorporated<br />

15

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!