14.11.2014 Views

Bioelectrochemical systems for wastewater treatment

Bioelectrochemical systems for wastewater treatment

Bioelectrochemical systems for wastewater treatment

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Bioelectrochemical</strong><br />

<strong>wastewater</strong> <strong>treatment</strong>:<br />

not so elementary<br />

René Rozendal,<br />

Bert Hamelers<br />

Cees Buisman<br />

Korneel Rabaey<br />

Jurg Keller<br />

MFCs First International symposium, 29 May 2008, Penn State


<strong>Bioelectrochemical</strong> <strong>systems</strong><br />

• Exponential increase<br />

over the years<br />

• Currents approach levels<br />

suitable <strong>for</strong> practical<br />

implementation<br />

– ~10 A/m 2


<strong>Bioelectrochemical</strong> <strong>wastewater</strong><br />

<strong>treatment</strong><br />

• 1000 A/m 3<br />

– 10 A/m 2<br />

– Cell thickness 1 cm<br />

• ~7 kg COD/m 3 /day<br />

– Aerobic: 0.5‐2 kg COD/m 3 /day<br />

– Anaerobic: 8‐20 kg COD/m 3 /day<br />

•BUT…


Reality check<br />

• Size matters!<br />

– Smaller better than larger<br />

• Real <strong>wastewater</strong>s?!<br />

– Synthetic media outper<strong>for</strong>m real WW


Why not implemented already?<br />

• Microbiological challenges<br />

• Technological challenges<br />

• Economic challenges<br />

Rozendal et al. (2008), Trends Biotechnol., In press


Microbiological challenges<br />

• Complex matter<br />

– Polymers/particulates<br />

– More experience required<br />

• Methanogenesis<br />

• Biofilm gradients


Biofilm gradients<br />

(Concentration polarization)<br />

[Reactants]<br />

[Products]<br />

pH!!!


Why not implement already?<br />

• Microbiological challenges<br />

• Technological challenges<br />

• Economic challenges


Technological challenges<br />

• Ohmic losses<br />

• Membrane pH gradients


Rozendal et al. (2008), Trends Biotechnol., In press<br />

Real<br />

Laboratory<br />

Keep the electrode spacing as small as possible!!!


Ohmic loss across the electrodes<br />

Single cell design<br />

= Travel distance electrons<br />

= Travel distance ions<br />

Rozendal et al. (2008), Trends Biotechnol., In press


Ohmic losses<br />

GRAPHITE<br />

• Resistivity of material: 10 mΩ cm<br />

• 10 A/m 2 (assume on average half of this passes true the plane of the electrode)<br />

Laboratory scale (10×10×0.3 cm):<br />

L<br />

10cm<br />

R = ρ = 10mΩ<br />

cm = 33mΩ<br />

A<br />

3cm2<br />

I=10 A/m 2 ×0.01=0.1 A ΔV = 0.033×0.1×0.5=0.0017 V<br />

Large scale (100×100×0.3 cm):<br />

L<br />

100cm<br />

R = ρ = 10mΩ<br />

cm = 33mΩ<br />

A<br />

30cm2<br />

I=10 A/m 2 ×1=10 A ΔV = 0.033×10×0.5=0.17 V


Technological challenges<br />

• Ohmic losses<br />

• Membrane pH gradients


Cation Exchange Membranes<br />

• Wastewater:<br />

– pH 7 [H + ] = 10 ‐4 mM<br />

– [Na + ], [K + ], [NH 4+ ] ≈ 10 mM<br />

×100000!!!<br />

• Not much protons available to transport!!!<br />

• Other cations also transported!<br />

Rozendal et al. (2006), Environ. Sci. Technol. 40, 5206-5211


Membrane Ion Transport<br />

Ideal:<br />

H +<br />

H +<br />

H +<br />

pH<br />

Practice:<br />

Per<strong>for</strong>mance<br />

Na +<br />

K +<br />

NH 4<br />

+


Per<strong>for</strong>mance loss


Per<strong>for</strong>mance loss due to pH effects!<br />

Rozendal et al. (2006), Environ. Sci. Technol. 40, 5206-5211


Alternative Types of Membranes<br />

Rozendal et al. (2008), Water Sci. Technol. Accepted


Why not implement already?<br />

• Microbiological challenges<br />

• Technological challenges<br />

• Economic challenges


Case (1000 A/m 3 )<br />

• Laboratory materials (lifetime 5 year)<br />

– Anode: 100 €/m 2 (graphite felt)<br />

– Membrane: 400 €/m 2 (Nafion)<br />

– Cathode: 500 €/m 2 (Pt catalyzed)<br />

– Collector: 25 €/m 2<br />

• Other cost (lifetime 25 years)<br />

– Reactor: 4000 €/m3<br />

– Rest: 1000 €/m3


Rozendal et al. (2008), Trends Biotechnol., In press<br />

Capital costs<br />

TOO<br />

EXPENSIVE!!!<br />

For comparison: Anaerobic Digestion ~0.01-0.05 €/kg COD


Case (1000 A/m 3 )<br />

• Future materials (lifetime 5 year)<br />

– Anode: 100 5 €/m 2 (graphite paper)<br />

– Membrane: 400 10 €/m 2 (CEM)<br />

– Cathode: 500 5 €/m 2 (biocathode)<br />

– Collector: 25 10 €/m 2<br />

• Other cost (lifetime 25 years)<br />

– Reactor: 4000 €/m3<br />

– Rest: 1000 €/m3


Rozendal et al. (2008), Trends Biotechnol., In press<br />

Capital costs<br />

For comparison: Anaerobic Digestion ~0.01-0.05 €/kg COD


System<br />

Product<br />

Revenue<br />

Capital<br />

costs<br />

(€/kg COD)<br />

Product<br />

revenue<br />

(€/kg COD)<br />

Offset<br />

(€/kg COD)<br />

Aerobic - -0.1 -0.2 -0.3<br />

AD CH 4 ­0.05 0.1 0.05<br />

MFC Electricity ­0.4 0.2 ­0.2<br />

MEC H 2 ­0.4 0.6 0.2<br />

MEC ??? ­0.4 $$$ $$$


Conclusion<br />

• <strong>Bioelectrochemical</strong> <strong>wastewater</strong><br />

<strong>treatment</strong> promising, but…<br />

– Microbiological,…<br />

– Technological, and…<br />

– Economic challenges!<br />

• Much to gain beyond electricity<br />

– Biocathodes (See: Korneel Rabaey)


ACKNOWLEDGEMENTS<br />

Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!