14.11.2014 Views

Static compression of fluffy dust aggregates in ... - Lund Observatory

Static compression of fluffy dust aggregates in ... - Lund Observatory

Static compression of fluffy dust aggregates in ... - Lund Observatory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Static</strong> <strong>compression</strong> <strong>of</strong> <strong>fluffy</strong> <strong>dust</strong> <strong>aggregates</strong><br />

<strong>in</strong> protoplanetary disks<br />

Akimasa Kataoka<br />

(National Astronomical <strong>Observatory</strong> <strong>of</strong> Japan / SOKENDAI)<br />

H.Tanaka (Hokkaido Univ.), S.Okuzumi (Nagoya Univ.), K.Wada (Chiba-tech)


Porosity <strong>in</strong> <strong>dust</strong> coagulation<br />

constant<br />

density<br />

coagulation<br />

unrealistic<br />

porosity<br />

evolution<br />

coagulation<br />

realistic<br />

Recent studies have shown that <strong>dust</strong> gra<strong>in</strong>s<br />

grow to <strong>fluffy</strong> <strong>aggregates</strong><br />

cf). Wada et al. 2007, 2009, 2011, Suyama et al. 2008,2012, Okuzumi et al. 2009,2012<br />

Akimasa Kataoka, Ice and Planet Formation @ <strong>Lund</strong>, May 16th, 2013<br />

2


Planetesimal formation with <strong>fluffy</strong> <strong>aggregates</strong><br />

<strong>in</strong>ternal density<br />

0.1μm<br />

1g/cm 3<br />

ISM<br />

1m 1km 10 2-4 km radius<br />

Planetesimals<br />

Other <strong>compression</strong> <br />

mechanisms are required<br />

cf). Wada et al. 2009,<br />

Okuzumi et al. 2009,2012 ,<br />

Suyama et al. 2008,2012<br />

10 -5 g/cm 3<br />

Collisional Compression<br />

Akimasa Kataoka, Ice and Planet Formation @ <strong>Lund</strong>, May 16th, 2013 3


Aim <strong>of</strong> this work<br />

<strong>in</strong>ternal density<br />

1μm<br />

1g/cm 3<br />

ISM<br />

<strong>Static</strong> <strong>compression</strong><br />

<br />

by gas pressure<br />

gas<br />

10 -5 g/cm 3<br />

1m 1km 10 2-4 km radius<br />

Planetesimals<br />

<strong>Static</strong> <strong>compression</strong><br />

by Self-gravity<br />

gravity<br />

r<br />

We <strong>in</strong>vestigate static <strong>compression</strong> <strong>of</strong><br />

highly porous <strong>aggregates</strong><br />

Akimasa Kataoka, Ice and Planet Formation @ <strong>Lund</strong>, May 16th, 2013 4


Strategy<br />

1. we drive static compressive strength by us<strong>in</strong>g N-body<br />

simulations (Kataoka et al. 2013, A&A accepted, arXiv:1303.3351)<br />

2. we apply the compressive Physical Model strength to protoplanetary disks<br />

with a given pressure = ram pressure <strong>of</strong> gas, self gravity.<br />

Particle-Particle Interaction<br />

(Kataoka et al. <strong>in</strong> prep)<br />

(a) Repulsion/Adhesion (Johnson<br />

et al., 1971)<br />

(b) Roll<strong>in</strong>g<br />

(Dom<strong>in</strong>ik & Tielens, 1995)<br />

(c) Slid<strong>in</strong>g<br />

(Dom<strong>in</strong>ik & Tielens, 1996)<br />

(d) Twist<strong>in</strong>g<br />

(Dom<strong>in</strong>ik & Tielens, 1996)<br />

Direct-<strong>in</strong>teraction model<br />

cf).Dom<strong>in</strong>ik & Tielens 1997, Wada et al. 2007<br />

(figure: Seiz<strong>in</strong>ger et al. 2012)<br />

Akimasa Kataoka, Ice and Planet Formation @ <strong>Lund</strong>, May 16th, 2013 5


Monomer radius r [µm] 0.1 0.6<br />

Surface energy<br />

0<br />

[mJ m 2 ] 100 20<br />

Young’s modulus E [GPa] 7.0 2.65<br />

Poisson’s ratio ⌫ 0.25 0.17<br />

Material density ⇢ 0 [g cm 3 ] 1.0 2.65<br />

critical roll<strong>in</strong>g displacement ⇠ crit [Å] 8 20<br />

Periodic boundary<br />

gure 2 <strong>in</strong> Wada et al. (2007)). We <strong>in</strong>troduce a damp<strong>in</strong>g<br />

etween contact particles <strong>in</strong> normal direction, def<strong>in</strong>ed as<br />

k n<br />

m 0<br />

t 0<br />

n c · v r , (4)<br />

n is the damp<strong>in</strong>g coe<br />

cient <strong>in</strong> normal direction and m 0 is<br />

nomer mass. The adopted value <strong>of</strong> k n is an order <strong>of</strong> 0.01.<br />

that the result is <strong>in</strong>dependent <strong>of</strong> the normal oscillation<br />

g, we perform N-body simulations with the damp<strong>in</strong>g facs<br />

a parameter.<br />

L timescale <strong>of</strong> damp<strong>in</strong>g is<br />

t 0<br />

k n<br />

⇠ 10 2 t 0 , (5)<br />

= 0.01, is much shorter than the simulation timescale,<br />

is typically ⇠ 10 7 t 0 . We show that the obta<strong>in</strong>ed comn<br />

strength is <strong>in</strong>dependent <strong>of</strong> the artificial normal damp<strong>in</strong>g<br />

our simulations (see Section 3.4).<br />

L<br />

Boundary condition<br />

L<br />

a part <strong>of</strong> a large aggregate<br />

iform Compression by Mov<strong>in</strong>g Boundaries<br />

Fig. 1. Schematic draw<strong>in</strong>g <strong>of</strong> the periodic boundary condition. Each<br />

pt the periodic boundary The condition <strong>dust</strong> <strong>in</strong> our <strong>aggregates</strong> simulations. <strong>of</strong>are the box compressed illustrates a boundary box by with themselves<br />

a side length L for all direction.<br />

When the boundary starts to get closer, the aggregate sticks to the<br />

gregate <strong>in</strong> the computational region is surrounded by its<br />

as shown <strong>in</strong> Figure 1. Initially, over wethe set aperiodic cubic box whose boundaries<br />

neighbor<strong>in</strong>g <strong>aggregates</strong> over the boundary and compressed by them. It<br />

re periodic boundaries withL<br />

should be noted that this picture is illustrated <strong>in</strong> 2D direction, but our<br />

a size <strong>of</strong> L to be larger than<br />

simulations are performed <strong>in</strong> 3D.<br />

regate. Thus, the <strong>in</strong>itial →natural BCCA cluster isand detached isotropic from <strong>compression</strong><br />

hbor<strong>in</strong>g copies over the periodic boundaries. In our sims,<br />

we gradually move the boundaries to the center <strong>of</strong> the The computational cubic region has length L and the coord<strong>in</strong>ates<br />

Planet <strong>in</strong>Formation x, y, and @ z directions <strong>Lund</strong>, May are 16th, set2013 to be L/2 < x < L/2, te to become closer to each other. As Akimasa a result, Kataoka, the aggre- Ice and 6<br />

L


Simulation sett<strong>in</strong>g<br />

BCCA (Ballistic Cluster-Cluster Aggregation)<br />

•Initial aggregate: BCCA<br />

= No <strong>compression</strong>, suitable for <strong>in</strong>itial<br />

condition<br />

•the fill<strong>in</strong>g factor φ <strong>in</strong>creases with time<br />

•We measure φ and P at each time<br />

→to derive P=P(φ)<br />

•The pressure measur<strong>in</strong>g method is<br />

the same as molecular dynamics<br />

cf)<br />

= / 0<br />

movie: H.Tanaka<br />

: <strong>in</strong>ternal desnity<br />

0: material density(=1 g/cc)<br />

Purpose: we derive P=P(φ)<br />

Akimasa Kataoka, Ice and Planet Formation @ <strong>Lund</strong>, May 16th, 2013 7


Initial condition : BCCA<br />

Particle number : 6×10 4<br />

Monomer : 0.1μm, ice<br />

<br />

http://www.youtube.com/watch?<br />

feature=player_embedded&v=AY6eq_S6uKE


sumed to be a BCCA clu<br />

5. Summary<br />

Fig. 3. Time evolution <strong>of</strong><br />

Results<br />

static <strong>compression</strong> <strong>in</strong> the<br />

:<br />

case<br />

<strong>compression</strong><br />

<strong>of</strong> N = 16384. The three figures have<br />

strength<br />

model is based on Dom<strong>in</strong><br />

0.1<br />

the same scale with di↵erent time epoch. The<br />

white particles are <strong>in</strong>side a box enclosed by the periodic boundaries. The yellow particles are <strong>in</strong> neighbor<strong>in</strong>g boxes to the box <strong>of</strong> white particles.<br />

For Fig. visualization, 13. we Same do notas draw Figure the copies 12, <strong>in</strong> back butand plotted front side with <strong>of</strong> thel<strong>in</strong>ear boundaries scale but only <strong>of</strong> 8 copies andWe (2007). <strong>in</strong>vestigate We the <strong>in</strong>troduce static comp a ne<br />

<strong>of</strong> the white particles across the boundaries.<br />

reversal <strong>of</strong> xy axis to compare with previous studies (see Figure 4 <strong>in</strong><strong>dust</strong>the <strong>aggregates</strong>, periodic boundary whose fill<strong>in</strong>g cond<br />

0.0 Individual runs<br />

Average<br />

Seiz<strong>in</strong>ger et al.<br />

10 5 (2012)). The dotted (a) l<strong>in</strong>e is the result <strong>of</strong> numerical<br />

10 5 simulations<br />

<strong>in</strong> the<br />

(b) gregate <strong>of</strong> ten uniformly runs<br />

10 4 10 3 10 2 10 1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 perform numerical N-body and natu sim<br />

10 4 high density region<br />

P [Pa]<br />

( & 0.1) <strong>in</strong> Seiz<strong>in</strong>ger et al.<br />

10 4 average (2012) highly ary<br />

<strong>of</strong> ten runs porous condition, <strong>dust</strong>the <strong>aggregates</strong> <strong>dust</strong> and the th<strong>in</strong> solid l<strong>in</strong>e is the fitt<strong>in</strong>g formula proposed by GüttlerE roll et<br />

10 3<br />

10 3<br />

⇥al.<br />

sumed resents to bea part a BCCA <strong>of</strong> a large cluster. ag<br />

3<br />

r0<br />

(2009). Our results consistently connect to the previous simulations 3 <strong>in</strong>model theis <strong>compression</strong> based on Dom<strong>in</strong>ik <strong>of</strong> a large &<br />

the high density<br />

10 2 region.<br />

10 2 (2007). moveWe toward <strong>in</strong>troduce the center a newan<br />

m<br />

. 13. Same as Figure 12,<br />

10 1 time<br />

but plotted with l<strong>in</strong>ear scale <strong>of</strong> and<br />

10 1<br />

becomes small. To measu<br />

ersal <strong>of</strong> xy axis to compare with previous studies (see Figure 4 <strong>in</strong><br />

the timeperiodic<br />

boundary conditio<br />

z<strong>in</strong>ger by cluster-cluster et al. (2012)).<br />

10 0 aggregation. The dotted l<strong>in</strong>eA islarge the result void<strong>of</strong>exists numerical 10 0 between simtions<br />

gregate adopt uniformly a similarand manner naturall use<br />

the<br />

two<br />

<strong>in</strong><br />

smaller<br />

the high<br />

10 clusters 1 density<br />

and<br />

region<br />

they<br />

(<br />

are<br />

&<br />

connected<br />

0.1) <strong>in</strong> Seiz<strong>in</strong>ger<br />

with10 one<br />

et 1 al.<br />

connection<br />

(2012) ary As condition, a result the <strong>of</strong> the <strong>dust</strong> numeric aggreg<br />

the th<strong>in</strong> solid l<strong>in</strong>e is the fitt<strong>in</strong>g formula proposed by Güttler et al. resents as follows. a part <strong>of</strong> a large aggre<br />

<strong>of</strong> monomers<br />

10 2 <strong>in</strong> contact, represented by dashed10 l<strong>in</strong>e 2 <strong>in</strong> the right<br />

09). Our results consistently connect to the previous simulations <strong>in</strong> the <strong>compression</strong> <strong>of</strong> a large ag<br />

panel <strong>of</strong> Figure<br />

10 3 14. The <strong>compression</strong> <strong>of</strong> the BCCA<br />

10 3 cluster occurs<br />

by crash<strong>in</strong>g<br />

– The <strong>compression</strong> stren<br />

high density region.<br />

move toward the center and th<br />

10 4 the large void, which requires only roll<strong>in</strong>g <strong>of</strong><br />

the monomers at the connection.<br />

10 4 becomes small.<br />

P = E roll To 3 measure<br />

Now, 10 let us 5 estimate the <strong>compression</strong> strength. 10 In 5 adopt a similar<br />

static <strong>compression</strong>,<br />

10 the aggregate<br />

r 3 manner , used <strong>in</strong><br />

cluster-cluster aggregation. A large void exists between the<br />

0<br />

10 6<br />

As a result <strong>of</strong> the numerical s<br />

smaller clusters 4 and they is<br />

10 3 compressed are connected<br />

10 2 by<br />

10 1 with external one<br />

10 0 10connection<br />

pressure.<br />

10 6 4 Each<br />

10 3 as follows. 10 2 where 10 1 E 10<br />

BCCA cluster feels a similar pressure, P. Us<strong>in</strong>g the pressure, the<br />

0 roll is the roll<strong>in</strong><br />

monomers <strong>in</strong> contact, represented by dashed l<strong>in</strong>e <strong>in</strong> the right<br />

(density)<br />

(density) the monomer radius, a<br />

el force <strong>of</strong> Figure on the BCCA 14. Thecluster <strong>compression</strong> is approximately <strong>of</strong> the BCCA givencluster by ocs<br />

by crash<strong>in</strong>g<br />

– The<br />

the<br />

<strong>compression</strong><br />

fill<strong>in</strong>g factor<br />

strength<br />

as<br />

Fig. 4. (a) Pressure P <strong>in</strong> [Pa] aga<strong>in</strong>st the fill<strong>in</strong>g factor . The ten th<strong>in</strong> solid l<strong>in</strong>es show the results for the <strong>in</strong>itial BCCA clusters with di↵erent<br />

<strong>in</strong>itial<br />

F ⇠random P · r 2 numbers BCCA . the large void, which requires only roll<strong>in</strong>g <strong>of</strong><br />

(30) <strong>of</strong> the whole aggregate<br />

monomers at the and thick We connection.<br />

solid derive l<strong>in</strong>e showsthe arithmetic compressive average <strong>of</strong> the tenstrength runs. (b) Same as the thick P solid = Equation E roll<br />

l<strong>in</strong>e <strong>in</strong> (a) 3 , plotted (35) . withisa dotted <strong>in</strong>dep<br />

l<strong>in</strong>e Now, <strong>of</strong> Equation let us (25). estimate The parameters theare <strong>compression</strong> N = 16384, C v = strength. 3 ⇥ 10 7 , k n = In 0.01, static and ⇠ crit comssion,<br />

S<strong>in</strong>cethe aggregate crash<strong>in</strong>g <strong>of</strong> isthe compressed large voidbyisexternal accompanied pressure. by roll<strong>in</strong>g Each <strong>of</strong><br />

= 8 Å.<br />

r<br />

the 3 0number <strong>of</strong> particles<br />

the boundary speed, th<br />

CA a When pair cluster <strong>of</strong> the monomers <strong>compression</strong> feels a similar proceeds <strong>in</strong> contact, Akimasa pressure, and Kataoka, the the density P. Ice work Us<strong>in</strong>g and becomes Planet required the Formation e↵ective pressure, for @ sound the <strong>Lund</strong>, the speed crash-<br />

where E<br />

May 16th, can be 2013 estimated as roll is the roll<strong>in</strong>g e<br />

9<br />

P [Pa]


ticles, which is equivalent toWe the <strong>in</strong>vestigate di↵erentthe sizes static <strong>of</strong> <strong>compression</strong> the <strong>in</strong>il<br />

<strong>dust</strong> <strong>aggregates</strong>. Figure 6 shows dependence on the num-<br />

10highly 0 porou<br />

strength <strong>of</strong><br />

rmula proposed by<br />

r <strong>of</strong> particles <strong>of</strong> the Results<br />

<strong>dust</strong> Güttler<br />

<strong>in</strong>itial BCCA: cluster. dependence<br />

<strong>aggregates</strong>, et whose al. resents a part <strong>of</strong> a l<br />

fill<strong>in</strong>g<br />

The <strong>in</strong>itial numbers on<br />

factor<br />

size<br />

is lower than<br />

10 1 0.1. W<br />

1<br />

ct10 2 to10the 3 4 previous<br />

10 5 10 6<br />

simulations<br />

perform numerical<br />

<strong>in</strong><br />

N-body<br />

the<br />

simulations<br />

<strong>compression</strong><br />

<strong>of</strong> static <strong>compression</strong><br />

<strong>of</strong><br />

o<br />

a]<br />

highly porous <strong>dust</strong> <strong>aggregates</strong>. The <strong>in</strong>itial <strong>dust</strong> aggregate<br />

10 5<br />

10 2 is a<br />

sumed to be a BCCA cluster. The particle-particle <strong>in</strong>teractio<br />

10 4 N=16384 model is based on Dom<strong>in</strong>ik & Larger Tielens N (1997) 10and 3 Wada et a<br />

N=4096 (2007). We <strong>in</strong>troduce a newbecomes method → well forfitted <strong>compression</strong>. small. to lower<br />

10 3<br />

10 4 We φTo<br />

adop<br />

tted with l<strong>in</strong>ear scale <strong>of</strong> and<br />

evious studies (see Figure N=1024 4 <strong>in</strong><br />

the periodic boundary condition <strong>in</strong> order to compress the <strong>dust</strong> ag<br />

e is the result<br />

10 2 <strong>of</strong> numerical E roll<br />

⇥sim-<br />

gregate uniformly and naturally. adopt 10 5<br />

3 →The<br />

Because a similar <strong>compression</strong><br />

<strong>of</strong> the periodic man bound<br />

large<br />

r0<br />

0.1) <strong>in</strong> Seiz<strong>in</strong>ger voidet al. exists 3 (2012) ary<br />

between<br />

condition, the<br />

the<br />

<strong>dust</strong> aggregate <strong>in</strong> computational<br />

10 1<br />

strength formula 10<br />

10 6 region rep<br />

As a result <strong>of</strong>is<br />

mula proposed by Güttler et al.<br />

valid to lower φ<br />

4 the n<br />

resents a part <strong>of</strong> a large aggregate, and thus we can <strong>in</strong>vestiga<br />

10<br />

onnected t to the previous<br />

10 0<br />

simulations with one <strong>in</strong> time theconnection<br />

<strong>compression</strong> <strong>of</strong> a large<br />

as<br />

aggregate.<br />

follows.<br />

The periodic boundarie<br />

move toward the center and the distance between the boundarie<br />

ed by dashed<br />

10 1 l<strong>in</strong>ebecomes the small. right To measure the pressure <strong>of</strong> the aggregate, w<br />

arge void<br />

10<br />

exists 2<br />

adopt a similar manner used <strong>in</strong> molecular dynamics simulation<br />

ion <strong>of</strong> the between BCCA the cluster oc-<br />

by dashed requires l<strong>in</strong>e <strong>in</strong> the right only<br />

– The Fig. 7. compressio<br />

As a result <strong>of</strong> the numerical simulations, our Dependence ma<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs onar<br />

th<br />

nnected with<br />

10 3 one connection<br />

ten <strong>in</strong>itial conditions varyi<br />

dhich<br />

as follows.<br />

roll<strong>in</strong>g <strong>of</strong><br />

k n = 10 2 , and k n = 10 1 .<br />

on <strong>of</strong> the BCCA<br />

10 4 cluster ocich<br />

requires<br />

– The <strong>compression</strong> strength can beother written parameters as are N = 1<br />

P = E roll 3<br />

10 5 only roll<strong>in</strong>g <strong>of</strong><br />

P = E roll<br />

ssion strength. In static 3 , and ⇠ crit = 8 Å. Each(35<br />

l<br />

ssion strength.<br />

10 6 In static comd<br />

by external 10 pressure. 4 10Each<br />

3 10 2 0<br />

r 3 comed<br />

by external pressure. where E 10 Each<br />

1 10 0 that the<br />

r 3 ,<br />

k n = 0, 10 0 2 , and 10 1 , r<br />

(<br />

normal<br />


ht<br />

c-<br />

<strong>of</strong><br />

as follows.<br />

The compressive strength<br />

– The <strong>compression</strong> strength can be writte<br />

Eroll<br />

P = E roll<br />

3 ,<br />

m-<br />

ch<br />

he<br />

cf)<br />

r 3 0<br />

where E roll is the roll<strong>in</strong>g energy <strong>of</strong> mon<br />

the monomer radius, and is the fill<strong>in</strong><br />

the fill<strong>in</strong>g factor<br />

= / 0<br />

as<br />

Energy required<br />

= ⇢/⇢<br />

<strong>of</strong> monomers<br />

0 , where ⇢<br />

Eroll: roll<strong>in</strong>g energy<br />

r0: monomer radius<br />

φ: fill<strong>in</strong>g factor ( )<br />

<strong>in</strong> contact to rotate 90°<br />

0)<br />

<strong>of</strong><br />

h-<br />

<strong>of</strong> the whole aggregate, and ⇢ 0 is the m<br />

Equation (35) is <strong>in</strong>dependent <strong>of</strong> the nu<br />

the number <strong>of</strong> particles, the size <strong>of</strong> the<br />

the boundary speed, the normal damp<strong>in</strong><br />

In application:<br />

We use the compressive strength formula as φ=φ(P), to obta<strong>in</strong><br />

the φ <strong>in</strong> a given pressure (=ram pressure <strong>of</strong> gas, self gravity)<br />

Akimasa Kataoka, Ice and Planet Formation @ <strong>Lund</strong>, May 16th, 2013 11


sal <strong>of</strong> xy axis to compare with previous studies (see Figure 4 <strong>in</strong><br />

nger et al. (2012)). The dotted l<strong>in</strong>e is the result <strong>of</strong> numerical simns<br />

<strong>in</strong> the high density region ( & Conclusions<br />

0.1) <strong>in</strong> Seiz<strong>in</strong>ger et al. (2012)<br />

he th<strong>in</strong> solid l<strong>in</strong>e is the fitt<strong>in</strong>g formula proposed by Güttler et al.<br />

). Our results consistently connect to the previous simulations <strong>in</strong><br />

igh density region.<br />

• We <strong>in</strong>vestigate the the static compressive strength <strong>of</strong> highly<br />

porous <strong>aggregates</strong> (φ

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!