14.11.2014 Views

Chapter 14 Resource: Exploring Space

Chapter 14 Resource: Exploring Space

Chapter 14 Resource: Exploring Space

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Glencoe Science<br />

<strong>Chapter</strong> <strong>Resource</strong>s<br />

<strong>Exploring</strong> <strong>Space</strong><br />

Includes:<br />

Reproducible Student Pages<br />

ASSESSMENT<br />

✔ <strong>Chapter</strong> Tests<br />

✔ <strong>Chapter</strong> Review<br />

HANDS-ON ACTIVITIES<br />

✔ Lab Worksheets for each Student Edition Activity<br />

✔ Laboratory Activities<br />

✔ Foldables–Reading and Study Skills activity sheet<br />

MEETING INDIVIDUAL NEEDS<br />

✔ Directed Reading for Content Mastery<br />

✔ Directed Reading for Content Mastery in Spanish<br />

✔ Reinforcement<br />

✔ Enrichment<br />

✔ Note-taking Worksheets<br />

TRANSPARENCY ACTIVITIES<br />

✔ Section Focus Transparency Activities<br />

✔ Teaching Transparency Activity<br />

✔ Assessment Transparency Activity<br />

Teacher Support and Planning<br />

✔ Content Outline for Teaching<br />

✔ Spanish <strong>Resource</strong>s<br />

✔ Teacher Guide and Answers


Glencoe Science<br />

Photo Credits<br />

Section Focus Transparency 1: Andrew Cunningham/Visuals Unlimited, Section Focus Transparency 2:<br />

Claus Lunau/Foci/Bonnier Publications/Science Photo Library/Photo Researchers, Section Focus<br />

Transparency 3: NASA<br />

Copyright © by The McGraw-Hill Companies, Inc. All rights reserved.<br />

Permission is granted to reproduce the material contained herein on the condition<br />

that such material be reproduced only for classroom use; be provided to students,<br />

teachers, and families without charge; and be used solely in conjunction with the<br />

<strong>Exploring</strong> <strong>Space</strong> program. Any other reproduction, for use or sale, is prohibited<br />

without prior written permission of the publisher.<br />

Send all inquiries to:<br />

Glencoe/McGraw-Hill<br />

8787 Orion Place<br />

Columbus, OH 43240-4027<br />

ISBN 0-07-866959-6<br />

Printed in the United States of America.<br />

1 2 3 4 5 6 7 8 9 10 071 09 08 07 06 05 04


Table of Contents<br />

To the Teacher<br />

iv<br />

Reproducible Student Pages<br />

■ Hands-On Activities<br />

MiniLAB: Try at Home Observing Effects of Light Pollution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

MiniLAB: Modeling a Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Lab: Building a Reflecting Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Lab: Using the Internet Star Sightings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Laboratory Activity 1: Star Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Laboratory Activity 2: Star Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Foldables: Reading and Study Skills . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

■ Meeting Individual Needs<br />

Extension and Intervention<br />

Directed Reading for Content Mastery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Directed Reading for Content Mastery in Spanish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Enrichment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Note-taking Worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

■ Assessment<br />

<strong>Chapter</strong> Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

<strong>Chapter</strong> Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

■ Transparency Activities<br />

Section Focus Transparency Activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

Teaching Transparency Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

Assessment Transparency Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

Teacher Support and Planning<br />

Content Outline for Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T2<br />

Spanish <strong>Resource</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T5<br />

Teacher Guide and Answers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T9<br />

Additional Assessment <strong>Resource</strong>s available with Glencoe Science:<br />

• ExamView ® Pro Testmaker<br />

• Assessment Transparencies<br />

• Performance Assessment in the Science Classroom<br />

• Standardized Test Practice Booklet<br />

• MindJogger Videoquizzes<br />

• Vocabulary PuzzleMaker at msscience.com<br />

• Interactive Chalkboard<br />

• The Glencoe Science Web site at: msscience.com<br />

• An interactive version of this textbook along with assessment resources are available<br />

online at: mhln.com<br />

iii


To the Teacher<br />

This chapter-based booklet contains all of the resource materials to help you teach<br />

this chapter more effectively. Within you will find:<br />

Reproducible pages for<br />

■ Student Assessment<br />

■ Hands-on Activities<br />

■ Meeting Individual Needs (Extension and Intervention)<br />

■ Transparency Activities<br />

A teacher support and planning section including<br />

■ Content Outline of the chapter<br />

■ Spanish <strong>Resource</strong>s<br />

■ Answers and teacher notes for the worksheets<br />

Hands-On Activities<br />

MiniLAB and Lab Worksheets: Each of these worksheets is an expanded version of each lab<br />

and MiniLAB found in the Student Edition. The materials lists, procedures, and questions<br />

are repeated so that students do not need their texts open during the lab. Write-on rules are<br />

included for any questions. Tables/charts/graphs are often included for students to record<br />

their observations. Additional lab preparation information is provided in the Teacher Guide<br />

and Answers section.<br />

Laboratory Activities: These activities do not require elaborate supplies or extensive pre-lab<br />

preparations. These student-oriented labs are designed to explore science through a stimulating<br />

yet simple and relaxed approach to each topic. Helpful comments, suggestions, and<br />

answers to all questions are provided in the Teacher Guide and Answers section.<br />

Foldables: At the beginning of each chapter there is a Foldables: Reading & Study Skills<br />

activity written by renowned educator, Dinah Zike, that provides students with a tool that<br />

they can make themselves to organize some of the information in the chapter. Students may<br />

make an organizational study fold, a cause and effect study fold, or a compare and contrast<br />

study fold, to name a few. The accompanying Foldables worksheet found in this resource<br />

booklet provides an additional resource to help students demonstrate their grasp of the<br />

concepts. The worksheet may contain titles, subtitles, text, or graphics students need to<br />

complete the study fold.<br />

Meeting Individual Needs (Extension and Intervention)<br />

Directed Reading for Content Mastery: These worksheets are designed to provide students<br />

with learning difficulties with an aid to learning and understanding the vocabulary and<br />

major concepts of each chapter. The Content Mastery worksheets contain a variety of formats<br />

to engage students as they master the basics of the chapter. Answers are provided in the<br />

Teacher Guide and Answers section.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

iv


Directed Reading for Content Mastery (in Spanish): A Spanish version of the Directed<br />

Reading for Content Mastery is provided for those Spanish-speaking students who are<br />

learning English.<br />

Reinforcement: These worksheets provide an additional resource for reviewing the concepts<br />

of the chapter. There is one worksheet for each section, or lesson, of the chapter.<br />

The Reinforcement worksheets are designed to focus primarily on science content and less<br />

on vocabulary, although knowledge of the section vocabulary supports understanding of<br />

the content. The worksheets are designed for the full range of students; however, they will<br />

be more challenging for your lower-ability students. Answers are provided in the Teacher<br />

Guide and Answers section.<br />

Enrichment: These worksheets are directed toward above-average students and allow them<br />

to explore further the information and concepts introduced in the section. A variety of<br />

formats are used for these worksheets: readings to analyze; problems to solve; diagrams<br />

to examine and analyze; or a simple activity or lab which students can complete in the<br />

classroom or at home. Answers are provided in the Teacher Guide and Answers section.<br />

Note-taking Worksheet: The Note-taking Worksheet mirrors the content contained in the<br />

teacher version—Content Outline for Teaching. They can be used to allow students to take<br />

notes during class, as an additional review of the material in the chapter, or as study notes<br />

for students who have been absent.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Assessment<br />

<strong>Chapter</strong> Review: These worksheets prepare students for the chapter test. The<br />

<strong>Chapter</strong> Review worksheets cover all major vocabulary, concepts, and objectives<br />

of the chapter. The first part is a vocabulary review and the second part is a concept review.<br />

Answers and objective correlations are provided in the Teacher Guide and Answers section.<br />

<strong>Chapter</strong> Test: The <strong>Chapter</strong> Test requires students to use process skills and understand content.<br />

Although all questions involve memory to some degree, you will find that your students will<br />

need to discover relationships among facts and concepts in some questions, and to use higher<br />

levels of critical thinking to apply concepts in other questions. Each chapter test normally<br />

consists of four parts: Testing Concepts measures recall and recognition of vocabulary and<br />

facts in the chapter; Understanding Concepts requires interpreting information and more<br />

comprehension than recognition and recall—students will interpret basic information and<br />

demonstrate their ability to determine relationships among facts, generalizations, definitions,<br />

and skills; Applying Concepts calls for the highest level of comprehension and inference;<br />

Writing Skills requires students to define or describe concepts in multiple sentence answers.<br />

Answers and objectives are provided in the Teacher Guide and Answers section.<br />

Transparency Activities<br />

Section Focus Transparencies: These transparencies are designed to generate interest<br />

and focus students’ attention on the topics presented in the sections and/or to assess<br />

prior knowledge. There is a transparency for each section, or lesson, in the Student Edition.<br />

The reproducible student masters are located in the Transparency Activities section. The<br />

teacher material, located in the Teacher Guide and Answers section, includes Transparency<br />

Teaching Tips, a Content Background section, and Answers for each transparency.<br />

v


Teaching Transparencies: These transparencies relate to major concepts that will benefit<br />

from an extra visual learning aid. Most of these transparencies contain diagrams/photos<br />

from the Student Edition. There is one Teaching Transparency for each chapter. The Teaching<br />

Transparency Activity includes a black-and-white reproducible master of the transparency<br />

accompanied by a student worksheet that reviews the concept shown in the transparency.<br />

These masters are found in the Transparency Activities section. The teacher material includes<br />

Transparency Teaching Tips, a Reteaching Suggestion, Extensions, and Answers to Student<br />

Worksheet. This teacher material is located in the Teacher Guide and Answers section.<br />

Assessment Transparencies: An Assessment Transparency extends the chapter content and<br />

gives students the opportunity to practice interpreting and analyzing data presented in<br />

charts, graphs, and tables. Test-taking tips that help prepare students for success on standardized<br />

tests and answers to questions on the transparencies are provided in the Teacher<br />

Guide and Answers section.<br />

Teacher Support and Planning<br />

Content Outline for Teaching: These pages provide a synopsis of the chapter by section,<br />

including suggested discussion questions. Also included are the terms that fill in the blanks<br />

in the students’ Note-taking Worksheets.<br />

Spanish <strong>Resource</strong>s: A Spanish version of the following chapter features are included in this<br />

section: objectives, vocabulary words and definitions, a chapter purpose, the chapter Activities,<br />

and content overviews for each section of the chapter.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

vi


Reproducible<br />

Student Pages<br />

Reproducible Student Pages<br />

■ Hands-On Activities<br />

MiniLAB: Try at Home Observing Effects of Light Pollution . . . . . . . . 3<br />

MiniLAB: Modeling a Satellite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4<br />

Lab: Building a Reflecting Telescope . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Lab: Using the Internet Star Sightings . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Laboratory Activity 1: Star Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9<br />

Laboratory Activity 2: Star Positions . . . . . . . . . . . . . . . . . . . . . . . . . 11<br />

Foldables: Reading and Study Skills. . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

■ Meeting Individual Needs<br />

Extension and Intervention<br />

Directed Reading for Content Mastery . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Directed Reading for Content Mastery in Spanish . . . . . . . . . . . . . . 19<br />

Reinforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Enrichment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Note-taking Worksheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29<br />

■ Assessment<br />

<strong>Chapter</strong> Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33<br />

<strong>Chapter</strong> Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35<br />

■ Transparency Activities<br />

Section Focus Transparency Activities . . . . . . . . . . . . . . . . . . . . . . . . 40<br />

Teaching Transparency Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43<br />

Assessment Transparency Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . 45<br />

<strong>Exploring</strong> <strong>Space</strong> 1


Hands-On Activities<br />

Hands-On<br />

Activities<br />

2 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Observing Effects<br />

of Light Pollution<br />

Procedure<br />

1. Obtain a cardboard tube from an empty roll of paper towels.<br />

2. Go outside on a clear night about two hours after sunset. Look through<br />

the cardboard tube at a specific constellation decided upon ahead of time.<br />

3. Count the number of stars you can see without moving the observing<br />

tube. Repeat this three times. Record your data in the Data and<br />

Observations section.<br />

4. Calculate the average number of observable stars at your location.<br />

Hands-On Activities<br />

Data and Observations<br />

Observations<br />

Your reflections<br />

Object’s reflections<br />

Flashlight beam in convex mirror<br />

Flashlight beam in plane mirror<br />

Candle through hand lens<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Analysis<br />

1. Compare and contrast the number of stars visible from other students’ homes.<br />

2. Explain the causes and effects of your observations.<br />

<strong>Exploring</strong> <strong>Space</strong> 3


Name Date Class<br />

Hands-On Activities<br />

Modeling a Satellite<br />

WARNING: Stand a safe distance away from classmates.<br />

Procedure<br />

1. Tie one end of a 50-cm-long string to a small cork.<br />

2. Hold the other end of the string tightly with your arm fully extended.<br />

3. Move your hand back and forth so that the cork swings in a circular motion.<br />

4. Gradually decrease the speed of the cork.<br />

Analysis<br />

1. What happened as the cork’s motion slowed?<br />

2. How does the motion of a cork resemble that of a satellite in orbit?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

4 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Building a Reflecting Telescope<br />

Lab Preview<br />

Directions: Answer these questions before you begin the Lab.<br />

1. What object will you choose to look at?<br />

Hands-On Activities<br />

2. Which mirror will you look at to view the image of the object?<br />

Nearly four hundred years ago, Galileo Galilei saw what no human had ever<br />

seen. Using the telescope he built, he saw moons around Jupiter, details of<br />

lunar craters, and sunspots. What was it like to make these discoveries? Find<br />

out as you make your own reflecting telescope.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Real-World Question<br />

How do you construct a reflecting telescope?<br />

Materials<br />

flat mirror<br />

shaving or cosmetic mirror (a curved,<br />

concave mirror)<br />

magnifying lenses of different<br />

magnifications (3–4)<br />

Goals<br />

■ Construct a reflecting telescope.<br />

■ Observe magnified images using the telescope<br />

and different magnifying lenses.<br />

Safety Precautions<br />

WARNING: Never observe the Sun directly or<br />

with mirrors.<br />

Lens<br />

1<br />

2<br />

3<br />

Procedure<br />

1. Position the cosmetic mirror so that you<br />

can see the reflection of the object you<br />

want to look at. Choose an object such as<br />

the Moon, a planet, or an artificial light<br />

source.<br />

2. Place the flat mirror so that it is facing the<br />

cosmetic mirror.<br />

3. Adjust the position of the flat mirror until<br />

you can see the reflection of the object in it.<br />

4. View the image of the object in the flat<br />

mirror with one of your magnifying lenses.<br />

Observe how the lens magnifies<br />

the image.<br />

5. Use your other magnifying lenses to view<br />

the image of the object in the flat mirror.<br />

Observe how the different lenses change<br />

the image of the object.<br />

Image Characteristics<br />

4<br />

<strong>Exploring</strong> <strong>Space</strong> 5


Name Date Class<br />

(continued)<br />

Hands-On Activities<br />

Analyze Your Data<br />

1. Describe how the image changed when you used different magnifying lenses.<br />

2. Identify the part or parts of your telescope that reflected the light of the image.<br />

3. Identify the parts of your telescope that magnified the image.<br />

Conclude and Apply<br />

1. Explain how the three parts of your telescope worked to reflect and magnify the light<br />

of the object.<br />

2. Infer how the materials you used would have differed if you had constructed a refracting<br />

instead of a reflecting telescope.<br />

Communicating Your Data<br />

Write an instructional pamphlet for amateur astronomers about how to construct a<br />

reflecting telescope.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

6 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Use the Internet<br />

Star Sightings<br />

For thousands of years, people have measured their position on Earth using<br />

the position of Polaris, the North Star. At any given observation point, it<br />

always appears at the same angle above the horizon. For example, at the<br />

north pole, Polaris appears directly overhead, and at the equator, it is just<br />

above the northern horizon. Other locations can be determined by measuring<br />

the height of Polaris above the horizon using an instrument called an<br />

astrolabe. Could you use Polaris to determine the size of Earth?<br />

Hands-On Activities<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Real-World Question<br />

You know that Earth is round. Knowing this,<br />

do you think you can estimate the circumference<br />

of Earth based on star sightings?<br />

Form a Hypothesis<br />

Think about what you have learned about<br />

sightings of Polaris. How does this tell you<br />

that Earth is round? Knowing that Earth is<br />

round, form a hypothesis about how you can<br />

estimate the circumference of Earth based on<br />

star sightings.<br />

Goals<br />

■ Record your sightings of Polaris.<br />

■ Share the data with other students to<br />

calculate the circumference of Earth.<br />

Safety Precautions<br />

WARNING: Do not use the astrolabe during the<br />

daytime to observe the sun.<br />

Data Sources<br />

Go to msscience.com for<br />

more information about<br />

health risks from heavy metals, hints on health<br />

risks, and data from other students.<br />

Make a Plan<br />

1. Obtain an astrolabe or construct one using<br />

the instructions posted by visiting the link<br />

below.<br />

2. Record your information in the Data and<br />

Observations table.<br />

3. Decide as a group how you will make your<br />

observations. Does it take more than one<br />

person to make each observation? When<br />

will it be easiest to see Polaris?<br />

Follow Your Plan<br />

1. Make sure your teacher approves your plan<br />

before you start.<br />

2. Carry out your observations.<br />

3. Record your observations in the data table<br />

in the Data and Observations section.<br />

4. Average your readings and post them in<br />

the table provided at the link shown below.<br />

<strong>Exploring</strong> <strong>Space</strong> 7


Name Date Class<br />

(continued)<br />

Hands-On Activities<br />

Analyze Your Data<br />

1. Research the names of cities that are at approximately the same longitude as your hometown.<br />

Gather astrolabe readings at msscience.com from students in one of those cities.<br />

2. Compare your astrolabe readings. Subtract the smaller reading from the larger one.<br />

3. Determine the distance between your star sighting location and the other city.<br />

4. Calculate the circumference of Earth using the following relationship:<br />

(distance between locations)<br />

Circumference = (360°) ✕<br />

difference between readings<br />

Data and Observations<br />

Polaris Observations<br />

Your Location:<br />

Date Time Astrolabe Reading<br />

Conclude and Apply<br />

1. Analyze how the circumference of Earth that you calculated compares with the accepted value<br />

of 40,079 km.<br />

2. Determine some possible sources of error in this method of establishing the size of Earth.<br />

What improvements would you suggest.<br />

Communicating Your Data<br />

Find this lab using the link below. Create a poster that includes a table of your data and data<br />

from students in other cities. Perform a sample circumference calculation for your class.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

msscience.com<br />

8 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

1<br />

Laboratory<br />

Activity<br />

Star Colors<br />

In 1665, Isaac Newton demonstrated that sunlight is composed of many colors. Today the spectra<br />

of a star is one of the most important tools scientists use to determine the star’s surface temperature<br />

and composition. The Draper system of spectral classification is used in this activity.<br />

Strategy<br />

You will define the term star.<br />

You will observe and record star colors.<br />

You will classify stars based on their color.<br />

Materials<br />

binoculars or telescope (optional)<br />

graph paper<br />

Hands-On Activities<br />

Procedure<br />

1. On a clear, bright night observe the stars<br />

with your eyes or with the binoculars<br />

or telescope.<br />

2. Use some landmarks and divide the sky<br />

into four sections. Label the landmarks in<br />

the diagram under Data and Observations.<br />

3. Observe and record the color of each star in<br />

each section. Record your observations on<br />

your diagram under Data and Observations.<br />

4. Using the information in Table 1, compile<br />

your data in a table showing the star color,<br />

spectral type, and number of stars in each<br />

section. Set up your table on one end of<br />

your graph paper.<br />

5. Under the table on the graph paper, draw a<br />

bar graph showing the star spectral types and<br />

the number of stars in each spectral type.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Table 1<br />

Draper’s Star Classification Chart<br />

Star spectral type<br />

Color Surface temperature (K)<br />

M<br />

K<br />

G<br />

F<br />

A<br />

B<br />

O<br />

red<br />

red to orange<br />

yellow<br />

yellow-white<br />

white<br />

bluish-white<br />

bluish-white<br />

2,000–4,000<br />

3,500–5,000<br />

5,000–6,000<br />

6,000–7,500<br />

9,000<br />

11,000–25,000<br />

60,000<br />

<strong>Exploring</strong> <strong>Space</strong> 9


Name Date Class<br />

Laboratory Activity 1 (continued)<br />

Hands-On Activities<br />

Data and Observations<br />

Diagram night sky here.<br />

Questions and Conclusions<br />

1. What property did you use to classify a celestial body as a star?<br />

2. Which star spectral type is the most abundant?<br />

3. Which star spectral type is our Sun?<br />

4. What is the surface temperature of our Sun?<br />

5. The temperature of stars is given in Kelvins. Changing from the Celsius scale to the Kelvin scale<br />

is very easy: K = °C + 273°. What is the temperature of the Sun in Celsius degrees?<br />

Strategy Check<br />

Can you define the term star?<br />

Can you observe and record the colors of the stars?<br />

Can you classify stars based on their color?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

10 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

2<br />

Laboratory<br />

Activity<br />

Star Positions<br />

When you watch the stars on a clear night, do you get the impression that you are in an upsidedown<br />

bowl? The ancient Greeks believed that the stars were fixed to a clear bowl that slowly<br />

rotated around Earth. Although today we know that Earth rotates, the celestial sphere is still a<br />

good model to use to locate stars and other celestial bodies.<br />

Strategy<br />

You will construct a model of the north celestial hemisphere.<br />

You will plot the stars on the celestial sphere.<br />

Materials<br />

globe (mounted)<br />

hemisphere (clear plastic or terrarium top)<br />

Procedure<br />

1. The celestial sphere appears to move<br />

around a line that is an extension of Earth’s<br />

axis. The north and south celestial poles<br />

are the points where Earth’s geographic<br />

axis intersects the celestial sphere. See Figure<br />

1. Label the north celestial pole with a<br />

dot on the inside of the hemisphere.<br />

2. The celestial equator is the intersection of a<br />

plane that passes through Earth’s equator<br />

and the celestial sphere. Place the clear<br />

hemisphere over the globe so that the<br />

north pole and the north celestial pole are<br />

in line. Mark the celestial equator on the<br />

hemisphere. The celestial equator is 90°<br />

from the celestial poles. See Figure 1.<br />

3. Planes comparable to latitude on Earth are<br />

called declination on the celestial sphere.<br />

Positions north of the celestial equator are<br />

called plus declination and are measured in<br />

degrees. Positions south of the celestial<br />

equator are called minus declination, also<br />

measured in degrees.<br />

4. The celestial circles that correspond to longitude<br />

on Earth are called right ascension.<br />

Right ascension is measured from the point<br />

where the sun crosses the celestial equator<br />

about March 21 (the vernal equinox).<br />

5. Right ascension is measured in hours, minutes,<br />

and seconds, moving eastward from<br />

the vernal equinox. On the equator, 15<br />

degrees of arc equals 1 hour.<br />

pen (felt-tip)<br />

string to go around celestial equator<br />

Figure 1<br />

Starting circle<br />

for right ascension<br />

Prime<br />

meridian<br />

South pole<br />

North celestial pole<br />

North pole<br />

Celestial equator<br />

Equator<br />

Take a length of string and measure the<br />

distance around the celestial equator in<br />

centimeters. Record your answer in the<br />

Data and Observations section. Divide this<br />

distance by 24. Measure and mark these<br />

spaces around the celestial equator. Each<br />

mark represents 1 hour. Start at the prime<br />

meridian and move eastward around the<br />

celestial equator. See Figure 1.<br />

6. Now you have a grid system similar to<br />

latitude and longitude.<br />

7. Map the locations of the stars in Table 1 on<br />

the celestial sphere.<br />

Hands-On Activities<br />

<strong>Exploring</strong> <strong>Space</strong> 11


Name Date Class<br />

Laboratory Activity 2 (continued)<br />

Hands-On Activities<br />

Table 1<br />

Common name Scientific name<br />

hr<br />

R. A.<br />

min<br />

Dec. (°)<br />

Vega<br />

Arcturus<br />

Altair<br />

Lyrae<br />

Bootes<br />

Aquilae<br />

18<br />

<strong>14</strong><br />

19<br />

36<br />

15<br />

50<br />

38<br />

19<br />

8<br />

Betelgeuse<br />

Orionis<br />

05 55<br />

7<br />

Aldebaran<br />

Tauri<br />

04 35<br />

16<br />

Deneb<br />

Cygni<br />

20 41<br />

45<br />

Regulus<br />

Leonis<br />

10 08<br />

12<br />

Castor<br />

Geminorum<br />

07 34<br />

32<br />

Data and Observations<br />

Celestial equator = _____________ cm<br />

Questions and Conclusions<br />

1. How is right ascension like longitude?<br />

How is it different?<br />

2. Compare declination to latitude.<br />

3. What does the vernal equinox on the celestial sphere correspond to on geographic maps?<br />

4. Why are different stars visible during the year?<br />

5. Why can’t you see a star with a minus declination from the northern hemisphere?<br />

Strategy Check<br />

Can you construct a model of the north celestial hemisphere?<br />

Can you locate stars on the celestial sphere?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

12 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

<strong>Exploring</strong> <strong>Space</strong><br />

Directions: Use this page to label your Foldable at the beginning of the chapter.<br />

Know?<br />

Hands-On Activities<br />

Like to know?<br />

Learned?<br />

Hubble <strong>Space</strong> Telescope<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

International <strong>Space</strong> Station<br />

Mariner 2<br />

Next Generation<br />

<strong>Space</strong> Telescope<br />

Viking<br />

<strong>Exploring</strong> <strong>Space</strong> 13


Meeting Individual Needs<br />

Meeting Individual<br />

Needs<br />

<strong>14</strong> <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Overview<br />

<strong>Exploring</strong> <strong>Space</strong><br />

Directions: Complete the concept map using the terms in the list below.<br />

radio telescopes satellites visible light<br />

space probes rockets reflecting telescopes<br />

space shuttles<br />

refracting telescopes<br />

with<br />

1.<br />

using<br />

using<br />

2.<br />

3.<br />

Meeting Individual Needs<br />

4.<br />

using<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

People<br />

explore<br />

space<br />

with<br />

with<br />

radio waves<br />

5.<br />

using<br />

using<br />

using<br />

6.<br />

7.<br />

8.<br />

<strong>Exploring</strong> <strong>Space</strong> 15


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Section 1 ■<br />

Directions: Use the clues below to complete the crossword puzzle.<br />

Radiation<br />

from <strong>Space</strong><br />

speed of light optics lens electromagnetic<br />

spectrum convex radio stars telescope<br />

1<br />

2 3<br />

Meeting Individual Needs<br />

5<br />

6<br />

4<br />

9<br />

7<br />

8<br />

Across<br />

2. A piece of curved glass that magnifies objects<br />

4. These waves carry energy through empty space.<br />

6. Active__________ uses a computer to correct for changes.<br />

8. This appears when white light passes through a prism.<br />

9. 300,000 km/s<br />

Down<br />

1. An instrument that produces magnified images of distant objects<br />

3. These can be seen in the night sky.<br />

5. Refracting telescopes use _________ lenses.<br />

7. Radio telescopes pick up these waves.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

16 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Section 2 ■ Early <strong>Space</strong><br />

Missions<br />

Section 3 ■ Current and Future<br />

<strong>Space</strong> Missions<br />

Directions: Explain how each technological advancement listed below has improved or will improve space<br />

exploration or our knowledge of the universe.<br />

1. <strong>Space</strong> probes such as Pioneer 10 and Voyager<br />

2. International <strong>Space</strong> Station<br />

Meeting Individual Needs<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

3. Next Generation <strong>Space</strong> Telescope<br />

<strong>Exploring</strong> <strong>Space</strong> 17


Name Date Class<br />

Directed Reading for<br />

Content Mastery<br />

Key Terms<br />

<strong>Exploring</strong> <strong>Space</strong><br />

Directions: Complete the sentences using the terms listed below.<br />

satellite space probe reflecting<br />

refracting Mars Project Apollo Sputnik I<br />

observatory spectrum rocket orbit<br />

space station space shuttle Project Gemini<br />

Meeting Individual Needs<br />

1. Any object that revolves around another object is a(n) ____________________.<br />

2. A(n) ____________________ telescope uses mirrors to focus light.<br />

3. The curved path that a satellite follows is a(n) ____________________.<br />

4. ____________________ was the last stage in the American effort to land<br />

people on the Moon.<br />

5. A(n) ____________________ telescope uses convex lenses to focus light.<br />

6. The ____________________ is a reusable spacecraft that transports astronauts,<br />

satellites, and other materials to and from space.<br />

7. A(n) ____________________ is an instrument that gathers information and<br />

sends it back to Earth.<br />

8. During ____________________ teams of astronauts orbited Earth to practice<br />

skills that would be needed to land on the moon.<br />

9. A(n) ____________________ is a building that houses an optical telescope.<br />

10. The different forms of radiation arranged according to their wavelengths is<br />

called the electromagnetic ____________________.<br />

11. A(n) _____________________ is an engine that burns fuel without requiring air.<br />

12. Mir is an example of a ____________________.<br />

13. The first artificial satellite was ____________________.<br />

<strong>14</strong>. Viking I was the first spacecraft to land on ____________________.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

18 <strong>Exploring</strong> <strong>Space</strong>


Nombre Fecha Clase<br />

Lectura dirigida para<br />

Dominio del contenido<br />

Sinopsis<br />

Explorando el espacio<br />

Instrucciones: Completa el mapa de conceptos usando los siguientes términos.<br />

radiotelescopios satélites luz visible<br />

sondas espaciales cohetes telescopios reflectores<br />

transbordadores espaciales<br />

telescopios refractores<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

La gente<br />

explora<br />

el espacio<br />

con<br />

con<br />

con<br />

1.<br />

ondas radiales<br />

5.<br />

usando<br />

usando<br />

usando<br />

usando<br />

usando<br />

usando<br />

2.<br />

3.<br />

4.<br />

6.<br />

7.<br />

8.<br />

Satisface las necesidades individuales<br />

Explorando el espacio 19


Nombre Fecha Clase<br />

Lectura dirigida para<br />

Dominio del contenido<br />

Sección 1 ■<br />

Instrucciones: Usa las claves para completar el crucigrama.<br />

Radiación proveniente<br />

del espacio<br />

velocidad de la luz óptica lente electromagnéticas<br />

espectro convexas radiales estrellas telescopio<br />

1<br />

2<br />

Satisface las necesidades individuales<br />

9<br />

6<br />

7<br />

5<br />

3 4<br />

8<br />

Horizontales<br />

1. Fragmento de vidrio curvo que amplía los objetos.<br />

5. Estas ondas transportan energía a través del vacío del espacio.<br />

7. Los telescopios de refracción usan lentes _________ .<br />

8. Los radiotelescopios captan estas ondas.<br />

9. 300,000 km/s.<br />

Verticales<br />

2. Instrumento que produce imágenes ampliadas de objetos distantes.<br />

3. Pueden verse en el cielo nocturno.<br />

4. El(la)__________ activa usa una computadora para corregir los cambios.<br />

6. Aparece cuando la luz banca atraviesa un prisma.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

20 Explorando el espacio


Nombre Fecha Clase<br />

Lectura dirigida para<br />

Dominio del contenido<br />

Sección 2 ■<br />

Sección 3 ■<br />

Primeras<br />

misiones espaciales<br />

Misiones espaciales<br />

actuales y futuras<br />

Instrucciones: Explica cómo cada avance tecnológico que se enumera abajo ha mejorado o mejorará la exploración<br />

del espacio o nuestro conocimiento acerca del universo.<br />

1. Las sondas espaciales como Pioneer 10 y Voyager.<br />

2. La Estación Espacial Internacional<br />

Satisface las necesidades individuales<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

3. Telescopio espacial New Generation<br />

Explorando el espacio 21


Nombre Fecha Clase<br />

Lectura dirigida para<br />

Dominio del contenido<br />

Términos claves<br />

Explorando el espacio<br />

Instrucciones: Completa las oraciones con los términos que se enumeran abajo.<br />

Satisface las necesidades individuales<br />

satélite sonda espacial de reflexión<br />

de refracción Marte Proyecto Apollo Sputnik I<br />

observatorio espectro cohete órbita<br />

estación espacial transbordador espacial Proyecto Gemini<br />

1. Cualquier astro que gira alrededor de otro astro es un(a) _____________.<br />

2. Un telescopio ____________________ usa espejos para enfocar la luz.<br />

3. La trayectoria curva que sigue un satélite se llama ________________.<br />

4. El(la) ____________________ fue la última etapa en el objetivo norteamericano<br />

de llevar seres humanos a la Luna.<br />

5. Un telescopio ____________________ usa lentes convexas para enfocar la luz.<br />

6. El(la) ____________________ es una nave espacial que se puede volver a usar<br />

para transportar astronautas, satélites y otros materiales hacia y desde el espacio.<br />

7. Un(a) ____________________ es un instrumento que recoge información y la<br />

envía de regreso a la Tierra.<br />

8. Durante el(la) ____________________ varios equipos de astronautas estuvieron<br />

en órbita alrededor de la Tierra para practicar destrezas que necesitarían<br />

al bajar a la Luna.<br />

9. Un(a) ____________________ es un edificio que contiene un telescopio óptico.<br />

10. Las diferentes formas de radiación, organizadas de acuerdo a su longitud de<br />

onda, se llama el ____________________ electromagnético.<br />

11. Un(a) _____________ es un motor que quema combustible sin necesidad de aire.<br />

12. El Mir es un ejemplo de un(a) ____________________.<br />

13. El primer satélite artificial fue el (la) ____________________.<br />

<strong>14</strong>. El Viking I fue la primera nave espacial que se posó en __________________.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

22 Explorando el espacio


Name Date Class<br />

1<br />

Reinforcement<br />

Radiation from <strong>Space</strong><br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Directions: Complete the following sentences using the correct terms.<br />

1. A refracting telescope is a type of ______ telescope.<br />

2. Radio waves and gamma rays are two types of ______ waves.<br />

3. Sound waves are examples of ______.<br />

4. A ______ uses mirrors to focus light from the object being viewed.<br />

5. Because radio waves can pass freely through Earth’s atmosphere,<br />

______ are useful under most weather conditions.<br />

6. A ______ is a motor that burns fuel without air.<br />

7. In a ______, a convex lens focuses light to form an image at the<br />

focal point.<br />

8. To hear astronauts in space, the sound waves are converted to<br />

______ and then back to sound waves.<br />

9. All electromagnetic waves travel at the same ______.<br />

10. ______ travels at 300,000 km/s in a vacuum.<br />

11. In a radio telescope, radio waves strike a large, concave ______.<br />

12. Today the largest optical telescope has four 8.2-meter ______.<br />

13. Because the Hubble <strong>Space</strong> Telescope uses mirrors, it is a ______ type<br />

of optical telescope.<br />

<strong>14</strong>. Optical telescopes allow scientists to study the ______ from objects<br />

in space.<br />

15. At the end of the reflecting telescope is a ______ mirror.<br />

16. Most optical telescopes used by professional astronomers<br />

are in ______.<br />

17. The ______ is the arrangement of the forms of electromagnetic<br />

radiation according to their wavelengths.<br />

18. The ______ views stars from orbit<br />

19. Earth’s ______ makes it difficult for astronomers to view the<br />

universe clearly from the surface.<br />

Meeting Individual Needs<br />

<strong>Exploring</strong> <strong>Space</strong> 23


Name Date Class<br />

2<br />

Reinforcement<br />

Early <strong>Space</strong> Missions<br />

Meeting Individual Needs<br />

Directions: Circle the term in the puzzle that fits each clue. Then write the term on the line. The terms read<br />

across or down.<br />

S<br />

P<br />

A<br />

C<br />

E<br />

P<br />

R<br />

O<br />

B<br />

E<br />

A<br />

R<br />

R<br />

T<br />

O<br />

R<br />

B<br />

I<br />

T<br />

S<br />

T<br />

O<br />

M<br />

N<br />

T<br />

O<br />

S<br />

A<br />

B<br />

P<br />

1. The Moon is a natural ____________________ of Earth.<br />

E<br />

J<br />

A<br />

E<br />

E<br />

J<br />

A<br />

C<br />

V<br />

U<br />

L<br />

E<br />

R<br />

G<br />

L<br />

E<br />

N<br />

N<br />

O<br />

T<br />

2. The first human to set foot on the Moon was Neil ____________________.<br />

3. The path of one object circling another is an ____________________.<br />

4. ____________________ was the program that first sent people to the Moon.<br />

L<br />

C<br />

M<br />

E<br />

R<br />

C<br />

U<br />

R<br />

Y<br />

N<br />

I<br />

T<br />

S<br />

S<br />

D<br />

T<br />

Y<br />

O<br />

A<br />

I<br />

5. The ____________________ probes flew past Jupiter and other planets before heading<br />

outward toward deep space.<br />

6. The first citizen of the United States to orbit Earth was John ____________________.<br />

7. In ____________________, a team of American astronauts first met and connected with a<br />

spacecraft in orbit.<br />

8. A ____________________ travels far into the solar system, collecting information and<br />

returning it to Earth.<br />

9. Galileo dropped a smaller probe into Jupiter’s ____________________.<br />

10. Cooperative missions between countries are being planned to send spacecraft to<br />

____________________ and elsewhere.<br />

11. Launched in 1989, ____________________ provided information about Jupiter.<br />

12. <strong>Space</strong> exploration began when the Soviets launched ____________________, the first<br />

artificial satellite.<br />

13. The simplest _____________________ engine is made of a burning chamber and a nozzle.<br />

<strong>14</strong>. Weather satellites provide information about the global weather systems on______________.<br />

15. Project ____________________ began the United States’ effort to reach the Moon.<br />

T<br />

G<br />

T<br />

A<br />

I<br />

A<br />

S<br />

C<br />

G<br />

K<br />

E<br />

E<br />

R<br />

J<br />

U<br />

P<br />

I<br />

K<br />

E<br />

R<br />

A<br />

M<br />

O<br />

L<br />

N<br />

O<br />

J<br />

E<br />

R<br />

R<br />

R<br />

I<br />

N<br />

S<br />

T<br />

L<br />

P<br />

T<br />

D<br />

M<br />

T<br />

N<br />

G<br />

G<br />

A<br />

L<br />

I<br />

L<br />

E<br />

O<br />

H<br />

I<br />

I<br />

A<br />

E<br />

O<br />

M<br />

A<br />

R<br />

S<br />

A<br />

T<br />

M<br />

O<br />

S<br />

P<br />

H<br />

E<br />

R<br />

E<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

24 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

3<br />

Reinforcement<br />

Directions: Identify Figure A and Figure B as a space station or a space shuttle. Before each statement at<br />

the bottom of the page, write the name of the spacecraft that the item describes. If an item describes both types<br />

of spacecraft, write both.<br />

A. ______________________________<br />

B. ______________________________<br />

Current and Future<br />

<strong>Space</strong> Missions<br />

A.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

A<br />

_________________________ 1. This spacecraft orbits Earth.<br />

_________________________ 2. Astronauts were able to conduct experiments when working<br />

in this.<br />

_________________________ 3. This glides back to Earth and lands like an airplane.<br />

_________________________ 4. The Americans launched Skylab in 1973.<br />

_________________________ 5. This reusable spacecraft transports astronauts and<br />

other materials.<br />

_________________________ 6. A former Soviet cosmonaut spent a record 438 days aboard<br />

one of these.<br />

_________________________ 7. The Hubble <strong>Space</strong> Telescope was launched in 1990 by<br />

one of these.<br />

_________________________ 8. This spacecraft provides living quarters and working space<br />

for people living and working in space.<br />

_________________________ 9. Several countries may cooperatively build one of these<br />

in the future.<br />

_________________________10. Its astronauts move mechanical arms to launch and<br />

recover satellites.<br />

_________________________11. The Soviet craft is named Mir.<br />

_________________________12. Its solid-fuel booster rockets are reused.<br />

_________________________13. American astronauts spent up to 84 days working in this.<br />

B.<br />

Meeting Individual Needs<br />

<strong>Exploring</strong> <strong>Space</strong> 25


Name Date Class<br />

Meeting Individual Needs<br />

1<br />

Enrichment<br />

More About Electromagnetic<br />

Waves<br />

Can you guess how electromagnetic waves got their name? They consist of both electric and<br />

magnetic forces produced when electric charges move up and down. Like ocean waves, electromagnetic<br />

waves have crests and troughs. The distance between one crest and the next is the wavelength.<br />

Electromagnetic waves exist in many different lengths, from very long to extremely short. Radio<br />

waves, for example, are sometimes as long as 10,000 meters. On the other hand, gamma rays—the<br />

smallest electromagnetic waves—are only trillionths of a meter long.<br />

Below is a table that shows the lengths of electromagnetic waves. Notice that microwaves are<br />

among the electromagnetic waves listed in the table. Microwaves are used in items such as television<br />

equipment and ovens. The microwaves used in these items aren’t captured from the atmosphere<br />

or outer space. They are produced electronically.<br />

Electromagnetic waves<br />

Radio waves<br />

Microwaves<br />

Infrared<br />

Visible light<br />

1 to 10,000 meters<br />

0.001 to 1 meter<br />

Length<br />

0.000001 to 0.001 meter<br />

400 to 800 nanometers*<br />

Ultraviolet<br />

X rays<br />

10 to 400 nanometers*<br />

0.0001 to 10 nanometers*<br />

Gamma rays<br />

*1 nanometer = 0.000000001 meter<br />

1. If an electromagnetic wave, from crest to crest, measured 30 nanometers, what kind of wave<br />

would it be?<br />

2. Convert 400 nanometers to meters.<br />

0.1 to 0.0000001 nanometer*<br />

3. Why do you think ultraviolet and visible light waves are usually measured in units of<br />

nanometers rather than meters or centimeters?<br />

4. Look at the electromagnetic spectrum in your textbook. Notice that it shows wavelengths<br />

measured using scientific notation. How many meters long is a wavelength that measures<br />

10 2 m? ______________________________________________________________________<br />

5. If a wavelength measures 1 nanometer, how would you write this in scientific notation?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

26 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

2<br />

Enrichment<br />

Magellan<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

After it was launched in May 1989 by a space<br />

shuttle, the spacecraft Magellan began its long<br />

journey to Venus, the planet closest to Earth. By<br />

August 10, 1990, Magellan began to orbit<br />

Venus. Once in orbit, the spacecraft started<br />

radar mapping the topography of the planet. By<br />

October, it had mapped about 1.5 percent of it.<br />

Magellan orbited Venus by flying a route<br />

that took it over the planet’s poles. It would fly<br />

over the north pole and then the south pole<br />

and back again, taking about 1 1/4 hours to<br />

complete one orbit. In that time it would<br />

record information on the part of Venus it was<br />

flying over—a stretch of land about 17,000<br />

km long and 20 km wide. Venus rotates on its<br />

axis once every 243 Earth days, and so after<br />

243 days the spacecraft was able to map<br />

almost the whole planet. Magellan gathered<br />

information about the planet in six cycles of<br />

243 days each.<br />

Close-up Details<br />

Magellan sent to Earth radar images of<br />

Venus. Its radar was able to detect features<br />

only 120 meters across–ten times smaller than<br />

anything ever detected on Venus before.<br />

The spacecraft revealed many features of the<br />

planet’s surface, including volcanic mountains<br />

and craters as large as major American cities.<br />

Second Time Around<br />

After completing the mapping of Venus,<br />

Magellan started mapping the planet again.<br />

Once scientists received the second set of maps,<br />

they began to use the two sets to compare sites<br />

on Venus. In studying the maps, they looked<br />

for changes that may have occurred between<br />

the times the two sets of maps were completed.<br />

Magellan helped scientists learn a lot about<br />

Venus. It sent back pictures of lava plains, lava<br />

channels, and millions of volcanoes. Because<br />

there were only a few impact craters, scientists<br />

deduced that the planet’s surface is relatively<br />

young—about 500 million years old. This figure,<br />

which may seem extremely old to us, is<br />

not considered old in a geological sense. Scientists<br />

saw little, if any, evidence of the kind of<br />

erosion that is caused by water. And they saw<br />

just a small amount of erosion caused by wind.<br />

Magellan’s mission ended on October 12, 1994,<br />

when the spacecraft was no longer able to<br />

maintain radio communications with Earth.<br />

1. What might scientists conclude if a new space probe mapped Venus in 2005 and showed new<br />

lava plains not seen on the earlier maps?<br />

2. Radar images sent back to Earth in October 1990 showed that Venus’s surface has faultlike<br />

cracks. Based on the information available in October 1990, could we generalize that the entire<br />

planet has these cracks?<br />

Meeting Individual Needs<br />

<strong>Exploring</strong> <strong>Space</strong> 27


Name Date Class<br />

3<br />

Enrichment<br />

Planning <strong>Space</strong> Colonies<br />

Meeting Individual Needs<br />

Directions: Some scientists are planning colonies in space. In this activity you will analyze their ideas and<br />

consider the answer to a related problem.<br />

1. One group has decided that a satellite colony should include 10,000 people. Thirty percent of<br />

the colony’s population will produce materials and perform services for the colony’s needs.<br />

Forty-four percent of the colony’s population will produce materials for export to Earth.<br />

a. How many people are to produce materials and perform services for the colony?<br />

b. How many people are to produce materials for export to Earth?<br />

Problem: Why do you suppose 26 percent of the colony’s population is unaccounted for in<br />

the production of materials and their performance of services?<br />

2. One design for a space colony is a large doughnut-shaped structure. The “doughnut” would be<br />

spun to give people inside a sense of gravity like that on Earth.<br />

a. If 60 percent of the inside volume of the structure can be inhabited and the total volume of<br />

the structure is 29,000,000 cubic meters, what is the actual volume that can be inhabited?<br />

b. What would be the average volume of living space for each of the 10,000 people?<br />

Problem: Think of necessary human activities. Describe one way designers might use space<br />

in the colony efficiently for one or more human activities.<br />

3. It’s suggested that each person in the colony will need 1.7 tons of material from Earth each<br />

year. Also, it’s thought that to help people avoid boredom, half of the people in the colony will<br />

return to Earth each year.<br />

a. How much material would be needed by 10,000 people in one year?<br />

b. How many of the 10,000 people would be rotated with people from Earth each year?<br />

Problem: If you were permitted only 50 kilograms for your personal belongings (excluding<br />

food, furniture, and your space suit), what would you take with you to spend a year as a<br />

space colonist?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

28 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Section 1<br />

Note-taking<br />

Worksheet<br />

Radiation from <strong>Space</strong><br />

<strong>Exploring</strong> <strong>Space</strong><br />

A. Electromagnetic waves—carry __________ through space and matter<br />

1. ___________________ radiation includes radio waves, visible light, gamma rays, X rays,<br />

ultraviolet light, infrared waves, and microwaves.<br />

2. ____________________________—electromagnetic radiation arranged by wavelength<br />

a. Forms of electromagnetic radiation differ in their _______________—the number of<br />

wave crests that pass a given point per unit of time.<br />

b. The ___________ the wavelength, the higher the frequency.<br />

3. All electromagnetic waves travel at the speed of _________, or 300,000 km/s.<br />

B. Optical telescopes—use light to produce magnified images<br />

1. ______________ telescopes—have convex lenses<br />

2. ______________ telescopes—use concave mirror<br />

3. Optical telescopes are often located in buildings called _________________, which often<br />

have roofs that can be opened for viewing.<br />

Meeting Individual Needs<br />

4. The Hubble <strong>Space</strong> Telescope is located outside ___________ atmosphere.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

a. Mistake made in shaping largest __________.<br />

b. Once the mistake was repaired in 1999, the Hubble <strong>Space</strong> Telescope sent back images of a<br />

large cluster of ____________.<br />

5. ____________________ optics—computer helps correct poor images.<br />

6. ______________________ optics—laser relays information to computer to adjust telescope’s<br />

mirror and make images clearer.<br />

C. A ___________________ telescope—studies radio waves that travel through space<br />

1. Because radio waves pass freely through Earth’s atmosphere, radio telescopes are usually<br />

useful ______ hours a day.<br />

2. Scientists use information from radio waves to detect objects in space, map the<br />

____________, and look for signs of life on other planets.<br />

<strong>Exploring</strong> <strong>Space</strong> 29


Name Date Class<br />

Note-taking Worksheet (continued)<br />

Meeting Individual Needs<br />

Section 2<br />

Early <strong>Space</strong> Missions<br />

A. Early space ____________ allowed astronomers to study space in ways not possible using<br />

telescopes.<br />

1. Special motors that don’t require air are called ___________.<br />

a. ____________________ rockets cannot be stopped once they are ignited.<br />

b. _____________________ rockets can be reignited after they are shut down.<br />

2. A _____________—any object that revolves around another object in an _________, or<br />

curved path<br />

a. In 1957 the former Soviet Union launched first artificial satellite, _____________.<br />

b. Today _____________ of communication, scientific, and weather satellites orbit Earth.<br />

B. A _______________ gathers and transmits information to Earth<br />

1. Voyager 1 and Voyager 2 are exploring space beyond the _________ system.<br />

2. ______________, first probe to travel through an asteroid belt<br />

3. Galileo, launched in 1989, studied Jupiter and two of its moons, __________ and Io.<br />

a. Gathered information about Jupiter’s _______________, temperature, and atmospheric<br />

pressure<br />

b. Studies of Europa indicate a possible ocean of _________ and the possible presence of life.<br />

C. United States began race for the ________ in 1960s.<br />

1. First step in program to reach the Moon began with Project ___________.<br />

a. In 1961, ___________________ became first U.S. citizen in space.<br />

b. In 1962, ______________ became first U.S. citizen to orbit Earth.<br />

2. Second step in the Moon race involved Project __________.<br />

a. Teams of astronauts met and _____________ with orbiting spacecraft.<br />

b. ___________ of space travel on humans studied.<br />

c. Unoccupied space __________ also studied the Moon during Projects Mercury and<br />

Gemini.<br />

3. Project __________—final step in U.S. program to reach the Moon<br />

a. On July 20, 1969, _____________ landed on the Moon’s surface, and Neil Armstrong<br />

and Edwin Aldrin became the first two people to set foot on the Moon.<br />

b. _______ lunar landings resulted from Project Apollo, which ended in 1972.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

30 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Note-taking Worksheet (continued)<br />

Section 3<br />

Current and Future <strong>Space</strong> Missions<br />

A. _________________—reusable spacecraft for transporting people, satellites, and other materials<br />

to and from space<br />

1. Launched standing on _______<br />

2. Glides back to Earth like an ____________<br />

B. __________________—permanent places in space for humans to live and work<br />

1. U.S. __________ orbited Earth from 1973 to 1979.<br />

a. Crews performed experiments and collected data on the effects of living in _________.<br />

b. Fell out of _________ and burned up as it entered Earth’s atmosphere<br />

2. Former Soviet Union _______ housed one cosmonaut for more than a year at a time.<br />

a. Crews from the former Soviet Union and American crews worked together aboard the Mir.<br />

b. Crews from the former Soviet Union spent more time aboard Mir than crews from any<br />

other country.<br />

C. The United States and Russia have ______________ in nine joint space missions.<br />

1. _______________________________ (ISS)—cooperation and resources of 16 countries<br />

2. ISS to be completed by 2006.<br />

Meeting Individual Needs<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

D. Several missions explore ________.<br />

1. _______________ Surveyor and Mars Pathfinder—scientists learned water may have covered<br />

planet in the past.<br />

2. In 2002, ________________ confirmed that Martian soil contained frozen water.<br />

E. __________________________ (NMP)—purpose is to create advanced technology that will<br />

let NASA send smart spacecraft into the solar system<br />

F. ____________________—Lunar Prospector mapped the Moon’s structure and compostition.<br />

1. Scientists wanted to know if water existed in craters at the Moon’s poles.<br />

2. Because no material was thrown up when Lunar ______________ was ordered to crash,<br />

more studies needed.<br />

G. <strong>Space</strong> probe ___________ will explore Saturn and its largest moon Titan.<br />

H. The _____________________________ <strong>Space</strong> Telescope will study star and galaxy processes.<br />

I. Many people have _________ from research and technology developed for the space program.<br />

<strong>Exploring</strong> <strong>Space</strong> 31


Assessment<br />

Assessment<br />

32 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

<strong>Chapter</strong><br />

Review<br />

<strong>Exploring</strong> <strong>Space</strong><br />

Part A. Vocabulary Review<br />

Directions: Use the following words to fill in the blanks below.<br />

electromagnetic spectrum orbit rockets Project Gemini<br />

reflecting telescopes space shuttle refracting telescopes Project Apollo<br />

observatories space station satellite Cassini<br />

space probes radio telescopes Project Mercury<br />

1. Most optical telescopes used by professional astronomers are housed<br />

in ______.<br />

2. The path of a satellite around Earth is called its ______.<br />

3. ______ was the final stage of the space program to reach the Moon.<br />

4. Any object that orbits Earth is a ______.<br />

5. The space probe _____ was launched in October 1997 to study<br />

Saturn.<br />

6. The ______ is the arrangement of electromagnetic waves according<br />

to wavelengths.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

7. As part of ______, John Glenn became the first American to orbit<br />

Earth.<br />

8. A cosmonaut spent 438 days living and working in the ______ Mir.<br />

9. Optical telescopes that use concave mirrors to focus light from<br />

objects are ______.<br />

10. The Voyagers were ______ that traveled beyond our solar system.<br />

11. Scientists use ______ to study radio waves traveling through space.<br />

12. A goal of ______ was to have two spacecraft hook up together while<br />

in orbit.<br />

13. The ______ is a reusable spacecraft that glides back to Earth after it<br />

leaves orbit.<br />

<strong>14</strong>. Reflecting telescopes and ______ are two types of optical telescopes.<br />

15. ______ are motors that don’t require air to burn fuel.<br />

Assessment<br />

<strong>Exploring</strong> <strong>Space</strong> 33


Name Date Class<br />

<strong>Chapter</strong> Review (continued)<br />

Directions: Identify each of the following as a natural satellite (N) or an artificial satellite (A).<br />

16. the Moon 19. _______Earth<br />

17. the space shuttle Discovery 20. _______Sputnik<br />

18. Skylab<br />

Part B. Concept Review<br />

1. Number the early space travel events below in the sequence that they occurred, beginning with 1.<br />

a. John Glenn is the first American to orbit Earth.<br />

b. Neil Armstrong and Edwin Aldrin land on the Moon.<br />

c. Yuri Gagarin becomes the first human to travel in space.<br />

d. President John F. Kennedy calls for the United States to place people on the Moon.<br />

Directions: Use the figure to help you complete each statement. Write the term that completes each statement<br />

on the blank provided.<br />

Red<br />

Violet<br />

Wavelength (in meters)<br />

Visible light<br />

10 4 10 2 1 10 -2 10 -4 10 -6 10 -8 10 -10 10 -12 10 -<strong>14</strong><br />

Assessment<br />

Infrared<br />

Ultraviolet<br />

Radio waves Microwaves X rays<br />

2. Only X rays and gamma rays are shorter than ___________________ waves.<br />

Gamma rays<br />

3. The electromagnetic radiation with the longest wavelengths is ___________________.<br />

4. ___________________ waves are shorter than microwaves and longer than visible light.<br />

5. The electromagnetic radiation with the shortest wavelengths is ___________________.<br />

6. The wavelengths of visible light are ___________________ than those of X rays.<br />

Directions: Answer the following question in complete sentences.<br />

7. What are some benefits that the space shuttle provides that earlier spacecraft didn’t provide?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

34 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

<strong>Chapter</strong><br />

Test<br />

<strong>Exploring</strong> <strong>Space</strong><br />

I. Testing Concepts<br />

Directions: Circle the term that correctly completes the sentence.<br />

1. The Moon orbiting Earth is an example of a(n) (artificial, natural) satellite.<br />

2. In a (reflecting, refracting) telescope, light passes through convex lenses.<br />

3. The Hubble <strong>Space</strong> Telescope is an example of a (reflecting, refracting) telescope.<br />

4. The space probe (Cassini, Voyager) was launched in 1997 to study Saturn.<br />

5. The arrangement of electromagnetic radiation according to wavelengths is the<br />

(electromagnetic spectrum, electromagnetic waves).<br />

6. (Project Mercury, Project Apollo) was the first stage in the space program designed to send<br />

Americans to the moon.<br />

7. The Voyagers are (satellites, space probes) that have traveled beyond our solar system.<br />

8. On a (space shuttle, space station), astronauts can live and work in space for long periods of time.<br />

9. (Optical, Radio) telescopes allow us to study the visible light radiated by the stars.<br />

10. A(n) (artificial, natural) satellite is one that is built and launched by humans.<br />

11. As part of (Project Gemini, Project Apollo), Neil Armstrong and Edwin Aldrin became the<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

first humans to walk on the moon.<br />

12. A goal of (Project Mercury, Project Gemini) was to link two spacecraft together while they<br />

were in orbit.<br />

13. Most (radio, optical) telescopes used by professional astronomers are housed in observatories.<br />

<strong>14</strong>. A (reflecting, refracting) telescope uses concave mirrors to focus light.<br />

15. <strong>Space</strong> stations are (satellites, space probes).<br />

16. Because it can be used more than once to send people into space, the (space station,<br />

space shuttle) saves resources.<br />

17. (Radio, Optical) telescopes are useful under most weather conditions and at all times of night<br />

and day.<br />

18. In the future, the (space shuttle, space station) could be a construction site for ships traveling<br />

to the Moon and Mars.<br />

Assessment<br />

19. A (space shuttle, space station) is able to land like an airplane.<br />

<strong>Exploring</strong> <strong>Space</strong> 35


Name Date Class<br />

<strong>Chapter</strong> Test (continued)<br />

Directions: Use these words and phrases to identify the numbered parts of the illustration: space station,<br />

space shuttle, space probe, Earth, Moon.<br />

22.<br />

20.<br />

23.<br />

24.<br />

21.<br />

20.<br />

21.<br />

Assessment<br />

22.<br />

23.<br />

24.<br />

II. Understanding Concepts<br />

Skill: Sequencing<br />

1. Place the various forms of radiant energy in the electromagnetic spectrum in sequence from<br />

longest to shortest wavelength. Number the radiant energy with the longest wavelength 1.<br />

a. infrared waves<br />

b. ultraviolet waves<br />

c. visible light<br />

d. microwaves<br />

e. gamma rays<br />

f. radio waves<br />

g. X rays<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

36 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

<strong>Chapter</strong> Test (continued)<br />

Skill: Concept Mapping<br />

Directions: Write true in the blank if the statement is true. If the statement is false, change the boldfaced term<br />

to make the statement true and write the new term in the blank.<br />

2. In an events-chain concept map of the race to the moon, Project<br />

Gemini would follow Project Mercury.<br />

3. In a network-tree concept map of the race for space, Sputnik<br />

would be listed under the U.S. space program.<br />

Skill: Outlining<br />

Directions: Answer the following questions on the lines provided.<br />

4. In an outline of the American space program, John Glenn orbiting Earth would be listed under<br />

which space project?<br />

5. How would an entry for space shuttles be included in an outline for an article about spacecraft?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

III.<br />

Applying Concepts<br />

Writing Skills<br />

Directions: Answer the following questions using complete sentences.<br />

1. Can you study visible light using a radio telescope? Explain your answer.<br />

2. How are orbital space stations useful?<br />

3. Compare and contrast refracting and reflecting telescopes.<br />

Assessment<br />

<strong>Exploring</strong> <strong>Space</strong> 37


Name Date Class<br />

<strong>Chapter</strong> Test (continued)<br />

4. Summarize the importance of Projects Mercury, Gemini, and Apollo.<br />

5. Should the government of the United States continue to finance the space shuttle program?<br />

Why or why not?<br />

6. What are some of the exciting things planned for future space missions?<br />

Assessment<br />

7. Describe the difference between solid propellant rockets and liquid propellant rockets.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

38 <strong>Exploring</strong> <strong>Space</strong>


Transparency<br />

Activities<br />

Transparency Activities<br />

<strong>Exploring</strong> <strong>Space</strong> 39


Name Date Class<br />

1<br />

Section Focus<br />

Transparency Activity<br />

Superstar<br />

Evidence from many different cultures suggest that people have<br />

studied the skies for a very long time. For example, the Anasazi<br />

people of Chaco Canyon (New Mexico) recorded astronomical events<br />

on stone. Below is a drawing thought to record the appearance of a<br />

supernova, a massive exploding star, in 1054.<br />

Transparency Activities<br />

1. What can you identify in this picture that might represent an<br />

astronomical object?<br />

2. How did people study stars before telescopes were developed?<br />

What advantages do telescopes offer modern astronomers?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

40 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

2<br />

Section Focus<br />

Transparency Activity<br />

The Outer Limits of the<br />

Solar System<br />

Where does the solar system end? The planets end at Pluto, but the<br />

effects of the Sun’s gravitational pull extend much farther. The last<br />

items held by the Sun’s gravitational pull are in Oort’s Cloud.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

1. How can satellites and space probes help us get a better<br />

understanding of the planets in our solar system?<br />

2. How can space missions help us study Earth?<br />

Transparency Activities<br />

<strong>Exploring</strong> <strong>Space</strong> 41


Name Date Class<br />

3<br />

Section Focus<br />

Transparency Activity<br />

Hot Hot Hot Hot Hot . . .<br />

One of the missions NASA has planned for the future is a solar<br />

probe. It is scheduled for launch in February 2007, and it will make<br />

two close passes to the Sun—one in 2010 and one in 2015. The<br />

solar probe will pass so close to the Sun that it will be in the Sun’s<br />

atmosphere.<br />

Transparency Activities<br />

1. Why do you think the solar probe won’t be launched before 2007?<br />

2. How might conditions in the Sun’s atmosphere affect the design<br />

of the solar probe?<br />

3. What do you think scientists hope to learn from the solar probe?<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

42 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

1<br />

Teaching Transparency<br />

Activity<br />

Telescopes<br />

Eyepiece lens<br />

Focal point<br />

Convex lens<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Focal point<br />

Flat mirror<br />

Eyepiece lens<br />

Concave mirror<br />

Transparency Activities<br />

<strong>Exploring</strong> <strong>Space</strong> 43


Name Date Class<br />

Teaching Transparency Activity (continued)<br />

1. On the transparency, which figure shows a refracting telescope? a reflecting telescope?<br />

2. What is the focal point of a telescope?<br />

3. What is the purpose of the flat mirror in a reflecting telescope?<br />

4. How does a refracting telescope work?<br />

5. How does a reflecting telescope work?<br />

Transparency Activities<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

44 <strong>Exploring</strong> <strong>Space</strong>


Name Date Class<br />

Assessment<br />

Transparency Activity<br />

<strong>Exploring</strong> <strong>Space</strong><br />

Directions: Carefully review the table and answer the following questions.<br />

U.S. <strong>Space</strong> Missions<br />

Date<br />

Mission<br />

Duration<br />

(hours: minutes)<br />

Notable "Firsts"<br />

1961<br />

Mercury 3<br />

0:15<br />

U.S. citizen in space<br />

1962<br />

Mercury 6<br />

4:55<br />

U.S. citizen to<br />

orbit Earth<br />

1965<br />

Gemini 6A<br />

25:51<br />

<strong>Space</strong>crafts<br />

connected in orbit<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

1968<br />

1969<br />

1983<br />

Apollo 7<br />

Apollo 11<br />

Challenger<br />

260:09<br />

195:18<br />

<strong>14</strong>6:24<br />

Orbit of the Moon<br />

Human on the Moon<br />

U.S. woman in space<br />

1. According to the table, the first human on the Moon was part of<br />

space mission ___.<br />

A Mercury C Apollo 7<br />

B Gemini D Apollo 11<br />

2. According to this information, which space mission lasted less<br />

than one hour?<br />

F Mercury 3<br />

H Gemini 6A<br />

G Mercury 6 J Apollo 7<br />

3. According to the table, how long was it between the time the first<br />

U.S. citizen went into space and the time the first U.S. woman went<br />

into space?<br />

A 1 year<br />

C 22 years<br />

B 21 years<br />

D 32 years<br />

Transparency Activities<br />

<strong>Exploring</strong> <strong>Space</strong> 45


Teacher Support<br />

and Planning<br />

Teacher Support and Planning<br />

Content Outline for Teaching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T2<br />

Spanish <strong>Resource</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T5<br />

Teacher Guide and Answers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T9<br />

<strong>Exploring</strong> <strong>Space</strong><br />

T1


Teacher Support & Planning<br />

Section 1<br />

Content Outline<br />

for Teaching<br />

Radiation from <strong>Space</strong><br />

<strong>Exploring</strong> <strong>Space</strong><br />

Underlined words and<br />

phrases are to be filled<br />

in by students on the<br />

Note-taking Worksheet.<br />

A. Electromagnetic waves—carry energy through space and matter<br />

1. Electromagnetic radiation includes radio waves, visible light, gamma<br />

rays, X rays, ultraviolet light, infrared waves, and microwaves.<br />

2. Electromagnetic spectrum—electromagnetic radiation arranged by wavelength<br />

a. Forms of electromagnetic radiation differ in their frequencies—the number of wave<br />

crests that pass a given point per unit of time.<br />

b. The shorter the wavelength, the higher the frequency.<br />

3. All electromagnetic waves travel at the speed of light, or 300,000 km/s<br />

B. Optical telescopes—use light to produce magnified images<br />

1. Refracting telescopes—have convex lenses<br />

2. Reflecting telescopes—use concave mirror<br />

3. Optical telescopes are often located in buildings called observatories, which often have<br />

roofs that can be opened for viewing.<br />

4. The Hubble <strong>Space</strong> Telescope, is located outside Earth’s atmosphere.<br />

a. Mistake made in shaping largest mirror.<br />

b. Once the mistake was repaired in 1999, the Hubble <strong>Space</strong> Telescope sent back images of a<br />

large cluster of galaxies.<br />

5. Active optics—computer helps correct poor images.<br />

6. Adaptive optics—laser relays information to computer to adjust telescope’s mirror and<br />

make images clearer<br />

C. A radio telescope—studies radio waves that travel through space<br />

1. Because radio waves pass freely through Earth’s atmosphere, radio telescopes are usually<br />

useful 24 hours a day.<br />

2. Scientists use information from radio waves to detect objects in space, map the universe,<br />

and look for signs of life on other planets.<br />

DISCUSSION QUESTION:<br />

What is the main difference between an optical telescope and a radio telescope? Optical telescope<br />

uses visible light; and a radio telescope uses radio waves.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

T2<br />

<strong>Exploring</strong> <strong>Space</strong>


Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Content Outline for Teaching (continued)<br />

Section 2<br />

Early <strong>Space</strong> Missions<br />

A. Early space missions allowed astronomers to study space in ways not possible using telescopes<br />

1. Special motors that don’t require air are called rockets<br />

a. Solid-propellant rockets cannot be stopped once they are ignited.<br />

b. Liquid-propellant rockets can be reignited after they are shut down.<br />

2. A satellite—any object that revolves around another object in an orbit, or curved path<br />

a. In 1957 the former Soviet Union launched first artificial satellite Sputnik I.<br />

b. Today thousands of communication, scientific, and weather satellites orbit Earth.<br />

B. A space probe gathers and transmits information to Earth<br />

1. Voyager 1 and Voyager 2 are <strong>Exploring</strong> <strong>Space</strong> beyond the solar system.<br />

2. Pioneer 10, first probe to travel through an asteroid belt<br />

3. Galileo, launched in 1989, studied Jupiter and two of its moons, Europa and Io.<br />

a. Gathered information about Jupiter’s composition, temperature, and atmospheric pressure.<br />

b. Studies of Europa indicate a possible ocean of water and the possible presence of life.<br />

C. United States began race for the Moon in 1960s.<br />

1. First step in program to reach the Moon began with Project Mercury.<br />

a. In 1961, Alan B. Shepard became first U.S. citizen in space.<br />

b. In 1962, John Glenn became first U.S. citizen to orbit Earth.<br />

2. Second step in the Moon race involved Project Gemini.<br />

a. Teams of astronauts met and connected with orbiting spacecraft.<br />

b. Effects of space travel on humans studied<br />

c. Unoccupied space probes also studied the Moon during Projects Mercury and Gemini.<br />

3. Project Apollo—final step in U.S. program to reach the Moon.<br />

a. On July 20, 1969, Apollo 11 landed on the Moon’s surface, and Neil Armstrong and<br />

Edwin Aldrin became the first two people to set foot on the Moon.<br />

b. Six lunar landings resulted from Project Apollo, which ended in 1972.<br />

DISCUSSION QUESTION:<br />

What were the three main phases of the United States moon mission, and during what years did<br />

this moon mission occur? Phases: Projects Mercury, Gemini, and Apollo; years 1961 to 1972<br />

Section 3<br />

Current and Future <strong>Space</strong> Missions<br />

A. <strong>Space</strong> shuttle—reusable spacecraft for transporting people, satellites, and other materials to<br />

and from space.<br />

1. Launched standing on end<br />

2. Glides back to Earth like an airplane<br />

Teacher Support & Planning<br />

<strong>Exploring</strong> <strong>Space</strong><br />

T3


Teacher Support & Planning<br />

Content Outline for Teaching (continued)<br />

B. <strong>Space</strong> stations—permanent places in space for humans to live and work<br />

1. U.S. Skylab orbited Earth from 1973 to 1979.<br />

a. Crews performed experiments and collected data on the effects of living in space.<br />

b. Fell out of orbit and burned up as it entered Earth’s atmosphere.<br />

2. Former Soviet Union Mir housed one cosmonaut for more than a year at a time<br />

a. Crews from the former Soviet Union and American crews worked together aboard the Mir.<br />

b. Crews from the former Soviet Union spent more time aboard Mir than crews from any<br />

other country<br />

C. The United States and Russia have cooperated in nine joint space missions<br />

1. International <strong>Space</strong> Station (ISS)—cooperation and resources of 16 countries<br />

2. ISS to be completed by 2006.<br />

D. Several missions explore Mars.<br />

1. Mars Global Surveyor and Mars Pathfinder—scientists learned water may have covered<br />

planet in the past.<br />

2. In 2002, Odyssey confirmed that Martian soil contained frozen water.<br />

E. New Millennium Program (NMP)—purpose is to create advanced technology that will let<br />

NASA send smart spacecraft into the solar system<br />

F. Moon exploration—Lunar Prospector mapped the Moon’s structure and composition.<br />

1. Scientists wanted to know if water existed in craters at the Moon’s poles.<br />

2. Because no material was thrown up when Lunar Prospector was ordered to crash, more<br />

studies needed.<br />

G. <strong>Space</strong> probe Cassini will explore Saturn and its largest moon Titan.<br />

H. The Next Generation <strong>Space</strong> Telescope will study star and galaxy processes.<br />

I. Many people have benefited from research and technology developed for the space program.<br />

DISCUSSION QUESTION:<br />

Why is space exploration becoming a more cooperative activity among nations? No one country<br />

has all the resources for complex space missions<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

T4<br />

<strong>Exploring</strong> <strong>Space</strong>


Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Spanish<br />

<strong>Resource</strong>s<br />

Radiación proveniente<br />

del espacio<br />

Lo que aprenderás<br />

■ A explicar qué es el espectro electromagnético.<br />

■ A identificar las diferencias entre telescopios<br />

refractores y telescopios reflectores.<br />

■ A reconocer las diferencias entre telescopios<br />

ópticos y radiotelescopios.<br />

Por qué es importante<br />

Aprender sobre el espacio nos puede ayudar a<br />

entender nuestro mundo mejor.<br />

Vocabulario<br />

electromagnetic spectrum / espectro electromagnético:<br />

arreglo de ondas electromagnéticas<br />

según sus longitudes de onda.<br />

refracting telescope / telescopio refractor:<br />

telescopio óptico que usa una lente convexa<br />

doble para doblar la luz y formar una imagen<br />

en el punto focal.<br />

reflecting telescope / telescopio reflector: telescopio<br />

óptico que usa un espejo cóncavo para<br />

enfocar la luz y formar una imagen en el punto<br />

focal.<br />

observatory / observatorio: centro que puede<br />

albergar un telescopio óptico; tiene a menudo<br />

un techo en forma de domo que se puede<br />

abrir para observar el espacio.<br />

radio telescope / radiotelescopio: recopila y<br />

registra ondas radiales que viajan por el espacio;<br />

se puede usar de día o de noche bajo casi<br />

cualquier condición meteorológica.<br />

Construye un telescopio<br />

reflector<br />

Hace casi cuatrocientos años, Galileo Galilei vio<br />

lo que ningún ser humano había visto antes.<br />

Usando el telescopio que inventó, Galileo descubrió<br />

las lunas de Júpiter, observó detalladamente<br />

los cráteres de la Luna y vio las manchas<br />

solares en la superficie del Sol. ¿Cómo será<br />

Explorando el espacio<br />

hacer estos descubrimientos? Descúbrelo al<br />

construir tu propio telescopio reflector.<br />

Preguntas del mundo real<br />

¿Cómo construir un telescopio reflector?<br />

Metas<br />

■ Construir un telescopio reflector.<br />

■ Observar imágenes ampliadas usando el<br />

telescopio y distintas lupas.<br />

Materiales<br />

un espejo plano<br />

un espejo para maquillarse (un espejo curvo y<br />

cóncavo)<br />

lupas de potencias de distintas amplificación<br />

Medidas de seguridad<br />

PRECAUCIÓN: Nunca mires el Sol directamente<br />

o con espejos.<br />

Procedimiento<br />

1. Coloca el espejo para maquillarse de modo<br />

que puedas ver la reflexión del objeto que<br />

quieres mirar. Escoge un objeto, como la<br />

Luna, un planeta o una fuente artificial de luz.<br />

2. Coloca el espejo plano de modo que<br />

enfrente el espejo para maquillarse.<br />

3. Ajusta la posición del espejo plano hasta que<br />

veas el objeto reflejado en él.<br />

4. Con una de las lupas, mira la imagen del<br />

objeto en el espejo plano. Observa cómo la<br />

lente amplía la imagen.<br />

5. Usa las otras lupas para ver la imagen del<br />

objeto en el espejo plano. Observa cómo las<br />

distintas lentes alteran la imagen del objeto.<br />

Analiza tus datos<br />

1. Describe cómo cambió la imagen al usar<br />

distintas lupas.<br />

2. Identifica las partes de tu telescopio que<br />

reflejaron la luz de la imagen.<br />

3. Identifica las partes de tu telescopio que<br />

ampliaron la imagen.<br />

Teacher Support & Planning<br />

Explorando el espacio<br />

T5


Teacher Support & Planning<br />

Spanish <strong>Resource</strong>s ( continued)<br />

Concluye y aplica<br />

1. Explica cómo funcionaron las tres partes de<br />

tu telescopio para reflejar y ampliar la luz<br />

del objeto.<br />

2. Deduce cómo habrían diferido los materiales<br />

que empleaste si hubieses construido un<br />

telescopio refractor en vez de un telescopio<br />

reflector.<br />

Comunica tus datos<br />

Escribe un folleto educativo para astrónomos<br />

aficionados sobre cómo construir un telescopio<br />

reflector.<br />

Las primeras misiones<br />

espaciales<br />

Lo que aprenderás<br />

■ A comparar los satélites naturales y artificiales.<br />

■ A identificar las diferencias entre satélites<br />

artificiales y sondas espaciales.<br />

■ A explicar la historia de la carrera por llegar a<br />

la Luna.<br />

Por qué es importante<br />

Las primeras misiones espaciales que enviaron<br />

objetos y gente al espacio inauguraron una<br />

nueva era de exploración humana.<br />

Vocabulario<br />

rocket / cohete: motor especial que funciona en<br />

el espacio y que quema combustible líquido o<br />

sólido.<br />

satellite / satélite: cualquier objeto natural o<br />

artificial que gira alrededor de otro objeto.<br />

orbit / órbita: trayectoria curva que sigue un<br />

satélite a medida que gira alrededor de un<br />

cuerpo.<br />

space probe / sonda espacial: instrumento que<br />

viaja a gran distancia en el sistema solar,<br />

recopila datos y los envía a la Tierra.<br />

Project Mercury / Proyecto Mercurio: primer<br />

paso en el programa espacial de EE.UU. para<br />

llegar a la Luna que orbitó una astronave<br />

piloteada alrededor de la Tierra, la cual<br />

regresó a salvo.<br />

Project Gemini / Proyecto Géminis: segunda<br />

etapa del programa espacial de EE.UU. para<br />

llegar a la Luna, en la cual un equipo de<br />

astronautas se conectó con otra astronave en<br />

órbita.<br />

Project Apollo / Proyecto Apolo: etapa final del<br />

programa espacial de EE.UU. para llegar a la<br />

Luna, en la cual el astronauta Neil Armstrong<br />

fue el primer ser humano en poner pie sobre<br />

la superficie lunar.<br />

Misiones espaciales actuales y<br />

futuras<br />

Lo que aprenderás<br />

■ A explicar los beneficios del transbordador<br />

espacial.<br />

■ A identificar la utilidad de las estaciones espaciales<br />

en órbita.<br />

■ A explorar las misiones espaciales futuras.<br />

■ A identificar las aplicaciones de la tecnologiá<br />

espacial a la vida diaria.<br />

Por qué es importante<br />

Muchas misiones espaciales futuras han planificado<br />

experimentos que podrían beneficiarte.<br />

Vocabulario<br />

space shuttle / transbordador espacial: astronave<br />

reutilizable que puede transportar cargamento,<br />

astronautas y satélites hacia y desde el<br />

espacio.<br />

space station / estación espacial: instalaciones<br />

con zonas de habitación, de trabajo y de ejercicio<br />

y equipo y sistemas de apoyo para que<br />

los seres humanos vivan y trabajen en el espacio<br />

y efectúen investigación que no es posible<br />

llevar a cabo en la Tierra.<br />

Usa Internet<br />

Observa las estrellas<br />

Durante miles de años, las personas han usado<br />

la posición de la Estrella Polar para ubicar la<br />

propia posición en la Tierra. Desde cualquier<br />

punto de observación, la Estrella Polar, o<br />

Estrella Boreal, siempre aparece en el mismo<br />

ángulo sobre el horizonte. Por ejemplo, en el<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

T6<br />

Explorando el espacio


Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Spanish <strong>Resource</strong>s (continued)<br />

Polo Norte, la Estrella Polar aparece en lo alto;<br />

en el Ecuador, aparece apenas por encima del<br />

horizonte boreal. Otras ubicaciones pueden<br />

determinarse midiendo la altura de la Estrella<br />

Polar sobre el horizonte con un instrumento<br />

llamado astrolabio. ¿Podrías usar la Estrella<br />

Boreal para determiñar el tamaño de la Tierra?<br />

Preguntas del mundo real<br />

Sabes que la Tierra es redonda. ¿Piensas que<br />

puedes estimar la circunferencia de la Tierra<br />

observando las estrellas?<br />

Metas<br />

■ Anotar tus observaciones de la Estrella Polar.<br />

■ Compartir tus datos con otros alumnos para<br />

calcular la circunferencia terrestre.<br />

Fuente de datos<br />

Ve a msscience.com para<br />

obtener instrucciones sobre<br />

cómo hacer un astrolabio. Visita el sitio web<br />

para más información sobre la Estrella Polaris y<br />

datos de otros estudiantes.<br />

Medidas de siguridad<br />

PRECAUCIÓN: No uses el astrolabio durante el<br />

día para observar el Sol.<br />

Diseña un plan<br />

1. Consigue un astrolabio o construye uno<br />

usando las instrucciones en el sitio web de<br />

msscience.com.<br />

2. Construye en tu Diario de ciencias un tabla<br />

de datos semejante a la siguiente.<br />

Observaciones de la Estrella Polar<br />

Tu ubicación:<br />

Fecha Hora<br />

Lectura del<br />

astrolabio<br />

3. Decide con tu grupo cómo harán las observaciones.<br />

¿Se necesita más de una persona<br />

para hacer cada observación? ¿Cuándo es<br />

más fácil observar la Estrella Polar?<br />

Sigue tu plan<br />

1. Antes de comenzar, asegúrate que tu maestro(a)<br />

apruebe tu plan.<br />

2. Realiza tus observaciones.<br />

3. Anota tus observaciones en la tabla de<br />

datos.<br />

4. Saca un promedio tus lecturas y escríbelas<br />

en la tabla provista en el sitio web de<br />

msscience.com.<br />

Analiza tus datos<br />

1. Investiga los nombres de las ciudades que<br />

poseen aproximadamente la misma longitud<br />

que tu ciudad. Recopila del sitio web de<br />

msscience.com las lecturas de astrolabio de<br />

los alumnos en una de esas ciudades.<br />

2. Compara las lecturas de tu astrolabio. Sustrae<br />

la lectura menor de la mayor.<br />

3. Determina la distancia entre la posición de<br />

tu observación estelar y la de la otra ciudad.<br />

4. Calcula la circunferencia de la Tierra<br />

usando la siguiente relación<br />

Circunferencia = (360°) (distancia entre<br />

las posiciones) / diferencia de las lecturas<br />

Concluye y aplica<br />

1. Analiza cómo se compara la circunferencia<br />

de la Tierra que calculaste con el valor aceptado<br />

de 40,079 km.<br />

2. Determina cuáles son las fuentes posibles de<br />

error en este método para determinar el<br />

tamaño de la Tierra? ¿Qué mejoras sugerirías?<br />

Comunica tus datos<br />

Halla este Lab usando el enlace msscience.com.<br />

Crea un póster que incluya la tabla de datos<br />

tuya y la de estudiantes de otra ciudades. Realiza<br />

un cálculo de circunferencia como ejemplo<br />

para tu clase.<br />

Teacher Support & Planning<br />

Explorando el espacio<br />

T7


Teacher Support & Planning<br />

Spanish <strong>Resource</strong>s ( continued)<br />

Repasa las ideas principales<br />

Sección 1 La radiación proveniente<br />

del espacio<br />

1. El espectro electromagnético es la distribución<br />

de las ondas electromagnéticas según<br />

sus longitudes de onda.<br />

2. Los telescopios ópticos producen imágenes<br />

ampliadas de los objetos. ¿Qué usa este telescopio<br />

reflector para enfocar la luz que produce<br />

la imagen?<br />

3. Los radiotelescopios recopilan y graban las<br />

ondas radiales enviadas por algunos objetos.<br />

Sección 2 Las primeras misiones<br />

espaciales<br />

1. Un satélite es un objeto que gravita alrededor<br />

de otro. Las lunas de los planetas son<br />

satélites naturales. Los satélites artificiales<br />

son los que fabrican los seres humanos.<br />

2. Una sonda espacial viaja por el sistema solar,<br />

recopila datos y los envía a la Tierra. ¿A qué<br />

distancia pueden viajar las sondas, como la<br />

que se muestra en esta foto?<br />

3. Los primeros programas espaciales estadounidenses<br />

tripulados incluyen los proyectos<br />

Géminis y Apolo.<br />

Sección 3 Misiones espaciales<br />

actuales y futuras<br />

1. Las estaciones espaciales proveen la oportunidad<br />

de conducir investigaciones que no<br />

son posibles en la Tierra. La Estación Espacial<br />

Internacional se construirá en el espacio<br />

con la cooperación de más de una docena de<br />

países.<br />

2. Los transbordadores espaciales son naves<br />

espaciales reutilizables que transportan<br />

astronautas, satélites y otros tipos de carga<br />

hacia el espacio y de regreso.<br />

3. La tecnología espacial se utiliza en la Tierra<br />

para resolver problemas no necesariamente<br />

relacionados con los viajes espaciales.<br />

Avances en ingeniería relacionados con los<br />

viajes espaciales han llevado a la solución de<br />

problemas en los campos de la medicina y<br />

de las ciencias ambientales, entre otras disciplinas.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

T8<br />

Explorando el espacio


Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Teacher Guide<br />

& Answers<br />

Hands-On Activities<br />

MiniLAB: Try at Home (page 3)<br />

1. Students in areas away from street lights will see<br />

more stars than students in urban areas or on<br />

main streets.<br />

2. More stars are visible in areas with less background<br />

light.<br />

MiniLAB (page 4)<br />

1. It dropped out of orbit.<br />

2. The force of gravity pulls the satellite toward<br />

Earth; the satellite’s inertia keeps it moving in a<br />

straight line. Together, these forces keep a satellite<br />

in orbit.<br />

Lab (page 5)<br />

Lab Preview<br />

1. Answers will vary, but students should choose a<br />

bright object such as the Moon, a planet, or an<br />

artificial light source.<br />

2. the flat mirror<br />

Analyze Your Data<br />

1. The object’s image will appear larger or smaller<br />

depending on the level of magnification of each lens.<br />

2. The cosmetic mirror reflects the light onto the flat<br />

mirror. The flat mirror reflects the light onto the<br />

magnifying lens.<br />

3. Magnifying lenses<br />

Conclude and Apply<br />

1. The curved mirror gathered the light reflecting<br />

from the object and focused the light on the flat<br />

mirror. The flat mirror reflected the light onto the<br />

magnifying lens, and each lens magnified the image.<br />

2. Convex lenses would have been used instead of<br />

mirrors.<br />

Lab (page 7)<br />

Analyze Your Data<br />

1. Students can use an atlas to locate cities at approximately<br />

the same longitude as your hometown.<br />

2. Answers will vary depending on readings.<br />

3. Answers will vary on cities chosen.<br />

4. Earth’s circumference at the equator is 24,901 mi.<br />

(40,079 km).<br />

Conclude and Apply<br />

1. Values should be close.<br />

2. Possible answers: making errors in calculations,<br />

choosing a city not on your longitude, misreading<br />

the astrolabe. Students might suggest being more<br />

careful in repeating calculations several times.<br />

Laboratory Activity 1 (page 9)<br />

Lab Note: The number of stars visible at any one<br />

time from one place may vary greatly. Usually, the<br />

number does not exceed one or two thousand.<br />

Data and Observations<br />

Diagrams will vary. Landmarks should be included<br />

and labeled. Stars and colors should be recorded.<br />

Questions and Conclusions<br />

1. apparent brightness, color; All stars “twinkle” and<br />

seem to occupy fixed positions in the sky. Students<br />

may suggest other properties they used.<br />

2. Answers will vary. Most stars fit into one of the<br />

seven spectral types given at the beginning of this<br />

activity.<br />

3. G<br />

4. 5000–6000 K<br />

5. 4727–5727ºC<br />

Laboratory Activity 2 (page 11)<br />

Data and Observations<br />

Answers will vary, depending on the size of the<br />

hemisphere used.<br />

Questions and Conclusions<br />

1. Right ascension lines pass through the celestial<br />

poles; Right ascension is measured in hours, minutes,<br />

and seconds.<br />

2. Both are measured in degrees. Declination gives<br />

the location of a star above or below the celestial<br />

equator.<br />

3. the prime meridian<br />

4. Different stars are visible because as Earth<br />

revolves around the Sun, different parts of the sky<br />

become visible to us.<br />

5. These stars are below the horizon.<br />

Meeting Individual Needs<br />

Directed Reading for Content Mastery (page 15)<br />

Overview (page 15)<br />

1. visible light<br />

2.–3. reflecting telescopes, refracting telescopes<br />

4. radio telescopes<br />

5. rockets<br />

6.–8. space probes, space shuttles, satellites<br />

Section 1 (page 16)<br />

1<br />

T<br />

2 3<br />

E L E N S<br />

4<br />

E L<br />

L<br />

E C T R O M<br />

T<br />

A G N E T I C<br />

5<br />

C S<br />

R<br />

6<br />

7<br />

8<br />

O P T I C S R S P E C T R U M<br />

N O A<br />

9<br />

V S<br />

E<br />

X<br />

P<br />

E<br />

E E D<br />

I<br />

O<br />

O F L I G H T<br />

<strong>Exploring</strong> <strong>Space</strong><br />

T9<br />

Teacher Support & Planning


Teacher Support & Planning<br />

Teacher Guide & Answers (continued)<br />

Sections 2 and 3 (page 17)<br />

1. These probes explored the planets in our solar<br />

system, sending data back to Earth that may<br />

someday help us send manned missions to<br />

the planets. The probes are now outside the<br />

solar system.<br />

2. It will be a permanent laboratory designed for<br />

long-term research projects. Among the topics<br />

to be studied are the growth of protein crystals<br />

that could enhance work on drug design and<br />

treatment of many diseases. It also could be a<br />

construction site for ships that will travel to the<br />

Moon or Mars.<br />

3. Successor to the Hubble Telescope, the Next Generation<br />

<strong>Space</strong> Telescope will allow scientists to<br />

study the evolution of galaxies, the production<br />

of elements by stars, and the process of star and<br />

planet formation.<br />

Key Terms (page 18)<br />

1. satellite<br />

2. reflecting<br />

3. orbit<br />

4. Project Apollo<br />

5. refracting<br />

6. space shuttle<br />

7. space probe<br />

8. Project Gemini<br />

9. observatory<br />

10. spectrum<br />

11. rocket<br />

12. space station<br />

13. Sputnik 1<br />

<strong>14</strong>. Mars<br />

Lectura dirigida para Dominio del contenido (pág. 19)<br />

Sinopsis (pág. 19)<br />

1. luz visible<br />

2.–3. telescopios reflectores, telescopios refractores<br />

4. radiotelescopios<br />

5. cohetes<br />

6.–8. sondas espaciales, transbordadores espaciales,<br />

satélites<br />

Sección 1 (pág. 20)<br />

9<br />

V<br />

6<br />

E<br />

S<br />

P<br />

E<br />

C<br />

T<br />

R<br />

O<br />

1<br />

L<br />

L<br />

2<br />

E N T E<br />

E<br />

L<br />

E<br />

5<br />

E L<br />

S<br />

7<br />

C O N V E X A<br />

O<br />

P<br />

O C I D A D D E<br />

O<br />

3<br />

E<br />

4<br />

O<br />

S<br />

P<br />

E C T R O M A G N E T<br />

R<br />

S E<br />

L<br />

L<br />

L<br />

A L U Z<br />

I C A S<br />

I<br />

C<br />

8<br />

R A D I A L E S<br />

Secciones 2 y 3 (pág. 21)<br />

1. Las sondas exploraron los planetas de nuestro<br />

sistema solar y enviaron información a la Tierra.<br />

Algún día esa información nos ayudará a enviar<br />

misiones tripuladas a los planetas. Ahora las<br />

sondas están fuera del sistema solar.<br />

2. Será un laboratorio permanente diseñado para<br />

proyectos de investigación a largo plazo. Entre<br />

los temas de estudio se encuentran el crecimiento<br />

de cristales proteicos que podrían<br />

realzar el trabajo sobre diseño de drogas y<br />

tratamiento de muchas enfermedades. También<br />

podría ser un lugar de construcción de naves<br />

para los viajes a la Luna o a Marte.<br />

3. Sucesor al telescopio espacial Hubble, el telescopio<br />

espacial Next Generation permitirá a los<br />

científicos estudiar la evolución de las galaxias,<br />

la producción de elementos en las estrellas y el<br />

proceso de formación de estrellas y planetas.<br />

Términos claves (pág. 22)<br />

1. satélite<br />

2. reflector<br />

3. órbita<br />

4. Proyecto Apolo<br />

5. refractor<br />

6. transbordador espacial<br />

7. sonda espacial<br />

8. Proyecto Géminis<br />

9. observatorio<br />

10. espectro<br />

11. cohete<br />

12. estación espacial<br />

13. Sputnik 1<br />

<strong>14</strong>. Marte<br />

Reinforcement (page 23)<br />

Section 1 (page 23)<br />

1. optical<br />

2. electromagnetic<br />

3. mechanical<br />

4. reflecting telescope<br />

5. radio telescopes<br />

6. rocket<br />

7. refracting telescope<br />

8. radio waves<br />

9. speed<br />

10. Light<br />

11. dish<br />

12. reflectors<br />

13. reflecting<br />

<strong>14</strong>. visible light<br />

15. concave<br />

16. observatories<br />

17. electromagnetic spectrum<br />

18. Hubble <strong>Space</strong> Telescope<br />

19. atmosphere<br />

Section 2 (page 24)<br />

1. satellite<br />

2. Armstrong<br />

3. orbit<br />

4. Project Apollo<br />

5. Voyager<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

T10<br />

<strong>Exploring</strong> <strong>Space</strong>


Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Teacher Guide & Answers (continued)<br />

6. Glenn<br />

7. Project Gemini<br />

8. space probe<br />

9. atmosphere<br />

10. Mars<br />

11. Galileo<br />

12. Sputnik<br />

13. rocket<br />

<strong>14</strong>. Earth<br />

15. Mercury<br />

S<br />

P<br />

A<br />

C<br />

E<br />

P<br />

R<br />

O<br />

B<br />

E<br />

A<br />

R<br />

R<br />

T<br />

O<br />

R<br />

B<br />

I<br />

T<br />

S<br />

T<br />

O<br />

M<br />

N<br />

T<br />

O<br />

S<br />

A<br />

B<br />

P<br />

E<br />

J<br />

A<br />

E<br />

E<br />

J<br />

A<br />

C<br />

V<br />

U<br />

L<br />

E<br />

R<br />

G<br />

L<br />

E<br />

N<br />

N<br />

O<br />

T<br />

Section 3 (page 25)<br />

A. space station<br />

B. space shuttle<br />

1. both<br />

2. both<br />

3. space shuttle<br />

4. space station<br />

5. space shuttle<br />

6. space station<br />

7. space shuttle<br />

8. space station<br />

9. space station<br />

10. space shuttle<br />

11. space station<br />

12. space shuttle<br />

13. space station<br />

L<br />

C<br />

M<br />

E<br />

R<br />

C<br />

U<br />

R<br />

Y<br />

N<br />

I<br />

T<br />

S<br />

S<br />

D<br />

T<br />

Y<br />

O<br />

A<br />

I<br />

T<br />

G<br />

T<br />

A<br />

I<br />

A<br />

S<br />

C<br />

G<br />

K<br />

Enrichment (page 26)<br />

Section 1 (page 26)<br />

1. ultraviolet<br />

2. 0.0000004 meter<br />

3. It’s easier to work with numbers that are shorter.<br />

4. 100 meters<br />

5. 10 –9 m<br />

Section 2 (page 27)<br />

1. They might conclude that Venus has active volcanoes.<br />

2. No, because by October 1990, the spacecraft had<br />

mapped only 1.5 percent of the planet.<br />

E<br />

E<br />

R<br />

J<br />

U<br />

P<br />

I<br />

K<br />

E<br />

R<br />

A<br />

M<br />

O<br />

L<br />

N<br />

O<br />

J<br />

E<br />

R<br />

R<br />

R<br />

I<br />

N<br />

S<br />

T<br />

L<br />

P<br />

T<br />

D<br />

M<br />

T<br />

N<br />

G<br />

G<br />

A<br />

L<br />

I<br />

L<br />

E<br />

O<br />

H<br />

I<br />

I<br />

A<br />

E<br />

O<br />

M<br />

A<br />

R<br />

S<br />

A<br />

T<br />

M<br />

O<br />

S<br />

P<br />

H<br />

E<br />

R<br />

E<br />

Section 3 (page 28)<br />

1. a. 3,000<br />

b. 4,400<br />

Problem: Answers will vary, but students may<br />

point out that some may be scientists or astronauts<br />

who have different responsibilities.<br />

2. a. 17,400,000 m 3<br />

b. 1,740 m 3<br />

Problem: Answers may include such ideas as<br />

using large common areas such as cafeterias for<br />

recreation.<br />

3. a. 170,000 tons<br />

b. 5,000<br />

Problem: Answers will vary, but may include<br />

entertainment items such as DVDs or books.<br />

Note-taking Worksheet (page 29)<br />

Refer to Teacher Outline, student answers are<br />

underlined<br />

Assessment<br />

<strong>Chapter</strong> Review (page 33)<br />

Part A. Vocabulary Review<br />

1. observatories (3/1)<br />

2. orbit (4/2)<br />

3. Project Apollo (6/2)<br />

4. satellite (4/2)<br />

5. Cassini (5/2)<br />

6. electromagnetic spectrum (1/1)<br />

7. Project Mercury (6/2)<br />

8. space station (8/3)<br />

9. reflecting telescopes (2/1)<br />

10. space probes (5/2)<br />

11. radio telescopes (3/1)<br />

12. Project Gemini (6/2)<br />

13. space shuttle (7/3)<br />

<strong>14</strong>. refracting telescopes (2/1)<br />

15. rockets (6/2)<br />

16. N (4/2)<br />

17. A (4/2)<br />

18. A (4/2)<br />

19. N (4/2)<br />

20. A (4/2)<br />

Part B. Concept Review<br />

1. a. 3 (6/2)<br />

b. 4 (6/2)<br />

c. 1 (6/2)<br />

d. 2 (6/2)<br />

2. ultraviolet (1/1)<br />

3. radio waves (1/1)<br />

4. infrared (1/1)<br />

5. gamma rays (1/1)<br />

6. longer (1/1)<br />

7. The space shuttle orbiter can be reused, as can<br />

its solid-fuel booster rockets. Reusing the shuttle<br />

saves money and conserves resources. Earlier<br />

spacecraft could be used only once. (7/3)<br />

Teacher Support & Planning<br />

<strong>Exploring</strong> <strong>Space</strong><br />

T11


Teacher Support & Planning<br />

Teacher Guide & Answers (continued)<br />

<strong>Chapter</strong> Test (page 35)<br />

I. Testing Concepts<br />

1. natural (4/2)<br />

2. refracting (2/1)<br />

3. reflecting (2/1)<br />

4. Cassini (5/2)<br />

5. electromagnetic spectrum (1/1)<br />

6. Project Mercury (6/2)<br />

7. space probes (5/2)<br />

8. space station (8/3)<br />

9. Optical (2/1)<br />

10. artificial (4/2)<br />

11. Project Apollo (6/2)<br />

12. Project Gemini (6/2)<br />

13. optical (3/1)<br />

<strong>14</strong>. reflecting (2/1)<br />

15. satellites (5/2)<br />

16. space shuttle (7/3)<br />

17. Radio (3/1)<br />

18. space station (8/3)<br />

19. space shuttle (7/3)<br />

20. Earth (4/2)<br />

21. space shuttle (4/2)<br />

22. space station (4/2)<br />

23. Moon (4/2)<br />

24. space probe (5/2)<br />

II. Understanding Concepts<br />

1. a. 3<br />

b. 5<br />

c. 4<br />

d.2<br />

e. 7<br />

f. 1<br />

g. 6 (a–g, 1/1)<br />

2. true (6/2)<br />

3. Soviet, or Russian (6/2)<br />

4. Project Mercury (6/2)<br />

5. The entry would be included under reusable<br />

spacecraft. (7/3)<br />

III. Applying Concepts<br />

1. No. You need an optical telescope to study visible<br />

light. Visible light is not detected by radio<br />

telescopes. Radio telescopes study radio waves<br />

that penetrate Earth’s atmosphere. (3/1)<br />

2. Orbital space stations are useful because they<br />

can remain in space for long periods of time.<br />

Therefore, scientists in space can perform longterm<br />

experiments. (7/3)<br />

3. Both are optical telescopes that magnify images<br />

of objects in space. Both can be used to view<br />

only visible light waves, and the images picked<br />

up by both may be distorted by Earth’s atmosphere.<br />

Reflecting telescopes use concave mirrors<br />

to focus light from the objects viewed. Refracting<br />

telescopes use convex lenses to focus light.<br />

(2/1)<br />

4. They were part of the U.S. “race to the Moon”<br />

with the former Soviet Union. Project Mercury<br />

was the first leg in the race, providing data and<br />

basic experience for piloted space flight. Project<br />

Gemini took up the baton next. It practiced<br />

techniques for linking up two spacecraft in<br />

orbit. Project Apollo finished the race, actually<br />

putting astronauts on the Moon. (6/2)<br />

5. Students’ opinions may vary. Many are likely to<br />

favor continuation of the program because it<br />

has provided such benefits as launching satellites<br />

as well as space probes. Because the shuttle<br />

can be reused, the cost of the program is not as<br />

great as it would be if the shuttles could not be<br />

reused. Other students may say the money could<br />

be better used for other government programs.<br />

(7/3)<br />

6. Answers will vary and may include recent developments<br />

in the news. They also should note several<br />

items in the text, such as the International<br />

<strong>Space</strong> Station and explorations of the Moon,<br />

Mars, and Saturn by space probe. (9/3)<br />

7. Solid-propellant rockets are generally simpler,<br />

but can’t be shut down after they are ignited.<br />

Liquid-propellant rockets can be shut down<br />

after they are ignited, and can be restarted.<br />

Transparency Activities<br />

Section Focus Transparency 1 (Page 40)<br />

Superstar<br />

Transparency Teaching Tips<br />

■ This is an introduction to electromagnetic radiation<br />

from space. Point out that people were<br />

observing the stars long before the invention of<br />

the telescope. Ask the students to interpret the<br />

symbols on the Chaco Canyon stone. (The crescent<br />

is the Moon, the star is a supernova, and the<br />

hand acts as a sort of star-position guide.)<br />

■ Explain that the light from the supernova is electromagnetic<br />

radiation, traveling at almost 300,000<br />

km/s (186,000 mps). The supernova in question<br />

was 6,300 light years away. Ask the students why<br />

the Anasazi observation is so unusual. (It was<br />

made without the aid of an optical telescope.<br />

Given the distance, it must have been a powerful<br />

burst of light to be so visible.)<br />

Content Background<br />

■ On Earth, the light generated by this supernova<br />

appeared six times brighter than Venus. It could<br />

be seen at noon and was visible for 23 days.<br />

■ It is believed that the hand is a positional guide. If<br />

you extend a hand towards the sky and wait until<br />

the Moon is in the indicated position, then the<br />

supernova, which condensed into the Crab Nebula,<br />

will appear down and to the left. Remember,<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

T12<br />

<strong>Exploring</strong> <strong>Space</strong>


Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

Teacher Guide & Answers (continued)<br />

however, that the relative positions of Moon and<br />

Earth vary over the years.<br />

■ Archaeastronomy is a developing discipline that<br />

studies the meaning of celestial observations in<br />

different cultures and periods. It is an interdisciplinary<br />

field that includes professionals and amateurs<br />

with backgrounds in physics, astronomy,<br />

anthropology, and religion, among others.<br />

Answers to Student Worksheet<br />

1. There’s the Moon and exploding star.<br />

2. They used the naked eye. Telescopes magnify<br />

images many times over.<br />

Section Focus Transparency 2 (Page 41)<br />

The Outer Limits of the Solar System<br />

Transparency Teaching Tips<br />

■ The concept presented is space exploration. Ask<br />

the students if they have ever heard of Sputnik 1.<br />

Explain that it was the first artificial satellite,<br />

launched in 1957 by the Soviet Union. Fearing a<br />

missile and space exploration gap, the United<br />

States created NASA (1958) and began an all-out<br />

effort to achieve superiority in space exploration.<br />

The United States continued its efforts, eventually<br />

putting the first person on the Moon (Neil Armstrong,<br />

1969).<br />

■ Point out that we are now cooperating with Russia<br />

on a joint space station endeavor.<br />

■ Explain that the space exploration program has<br />

included launching various space probes. Two<br />

such satellites, Voyagers I and II, have sent back<br />

images of Jupiter, Saturn, and Neptune.<br />

Content Background<br />

■ Oort’s Cloud is a source of comets. It is composed<br />

of the nuclei of future comets. The Voyager space<br />

probes, launched in 1972, are beyond the planets,<br />

but they are not near Oort’s Cloud.<br />

■ Named after Netherlands astronomer Jan Oort,<br />

the Oort Cloud is about one light year from the<br />

Sun. Oort first proposed that comets originate<br />

from this enormous cloud of matter. It will take<br />

Voyager approximately 20,000 years to reach this<br />

cloud; by then, Voyager won’t be transmitting<br />

data.<br />

■ In hopes of finding extraterrestrial life,<br />

astronomer Carl Sagan headed a team that created<br />

visual and aural messages for the Pioneer and<br />

Voyager probes.<br />

Answers to Student Worksheet<br />

1. The information and photographs gathered and<br />

sent back to Earth by the probes allow scientists to<br />

study planet and moon composition and formation.<br />

<strong>Space</strong> probes give scientists a much closer<br />

view of objects in the solar system than instruments<br />

from Earth’s surface provide.<br />

2. By studying the data gathered, scientists can analyze<br />

the information and, perhaps, discover<br />

answers to questions concerning the origin of<br />

Earth and the Moon and the origins of life.<br />

Images from space also offer broad overviews of<br />

Earth or parts of Earth. These can be useful in<br />

studying features and processes like land formations<br />

and weather systems.<br />

Section Focus Transparency 3 (Page 42)<br />

Hot Hot Hot Hot Hot . . .<br />

Transparency Teaching Tips<br />

■ This is an introduction to future space missions.<br />

Ask the students to discuss problems related to a<br />

solar mission (distance, fuel, communication, trajectory,<br />

and heat shields, among others).<br />

■ Ask the students to conjecture as to why the solar<br />

probe won’t be launched until 2007. (The probe’s<br />

approach to the Sun is timed to coincide with the<br />

peak of the Sun’s 11 year sunspot cycle.)<br />

Content Background<br />

■ The solar probe will be launched toward Jupiter,<br />

using the planet to slingshot itself toward the Sun.<br />

Scientists hope to discover more about the solar<br />

corona, acceleration of solar wind, the source of<br />

the solar wind, the role of turbulence in the coronal<br />

heating process, and the nature of the Sun’s<br />

polar regions.<br />

■ The probe will be exposed to temperatures in the<br />

neighborhood of 2,400 K (3,800°F).<br />

■ Two previous solar probes were launched in 1974<br />

and 1976, but they could only withstand temperatures<br />

of 700°F.<br />

■ The Sun’s corona (outermost atmosphere) may<br />

consist of plasma shaped by magnetic fields.<br />

Answers to Student Worksheet<br />

1. Answers will vary and will probably include better<br />

technology for the probe and its communications<br />

to Earth. In addition, the probe is timed to arrive<br />

at the Sun during the most intense part of the<br />

eleven year cycle of sunspots, around 2010.<br />

2. It will need special shields due to the heat and<br />

electrical interference from the Sun.<br />

3. Answers will vary. Possibilities include information<br />

about the temperature and composition of<br />

the Sun.<br />

Teaching Transparency (page 43)<br />

Telescopes<br />

Section 1<br />

Transparency Teaching Tips<br />

■ Allow each student to look through reflecting and<br />

refracting telescopes. Explain that the transparency<br />

shows how light is bent within the two<br />

types of telescopes to provide an image.<br />

Teacher Support & Planning<br />

<strong>Exploring</strong> <strong>Space</strong><br />

T13


Teacher Support & Planning<br />

Teacher Guide & Answers (continued)<br />

■ If possible, display a picture of the telescope at<br />

Mount Palomar in California. Then explain to<br />

students that refracting telescopes have size limitations.<br />

It’s difficult to produce perfect, bubblefree<br />

glass for a large lens. Imperfections in the lens<br />

can reduce optical qualities. The mass of a large<br />

lens can also reduce optical qualities. In addition,<br />

the mass of a large lens is difficult to support. In<br />

contrast, a reflecting telescope can be built larger<br />

and stronger because the mirrors can be reinforced<br />

with metal without reducing optical qualities.<br />

Ask students to decide whether the telescope<br />

at Mount Palomar is a reflecting or refracting telescope.<br />

(reflecting)<br />

Reteaching Suggestion<br />

■ Prepare a blackline copy of the transparency without<br />

labels and lines showing the path of the light.<br />

Have students label the parts of the telescope and<br />

draw in the paths of light.<br />

Extensions<br />

Activity: Have students report on the types of<br />

observations that have been made at Mount Palomar.<br />

Challenge: Have students work in cooperative<br />

groups to build their own refracting or reflecting<br />

telescopes.<br />

Answers to Student Worksheet<br />

1. top; bottom<br />

2. the point on a telescope where the image is<br />

formed<br />

3. to reflect the image to the eyepiece<br />

4. Light passes through an objective lens. The image<br />

formed by this lens is further magnified by a second<br />

lens, called the eyepiece.<br />

5. Light is reflected from a concave mirror onto a<br />

flat mirror. The second mirror reflects the image<br />

to the eyepiece which enlarges the image.<br />

Assessment Transparency (page 45)<br />

<strong>Exploring</strong> <strong>Space</strong><br />

Section 3<br />

Answers<br />

1. D. For this question, students need to read<br />

through the table to choose the correct space mission.<br />

Only choice D, Apollo 11, is listed as getting<br />

the first human on the Moon.<br />

2. F. Students must read down the column headed<br />

Duration to identify which mission lasted less<br />

than an hour. All of the missions lasted more than<br />

an hour except Mercury 3.<br />

3. C. In order to answer the question, students must<br />

find the dates of the two missions mentioned and<br />

subtract them to get the time between them. In<br />

this case, the first U.S. citizen went into space in<br />

1961 and the first U.S. woman went into space in<br />

1983. There was a 22-year period of time between<br />

them.<br />

Test-Taking Tip<br />

Instruct students to check before they fill in an<br />

answer on the test’s answer sheet to be sure that they<br />

are writing it next to the correct question number.<br />

Copyright © Glencoe/McGraw-Hill, a division of the McGraw-Hill Companies, Inc.<br />

T<strong>14</strong><br />

<strong>Exploring</strong> <strong>Space</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!