14.11.2014 Views

investigations on the photolysis of imazethapyr in aqueous solutions ...

investigations on the photolysis of imazethapyr in aqueous solutions ...

investigations on the photolysis of imazethapyr in aqueous solutions ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Academic Sciences<br />

Internati<strong>on</strong>al Journal <strong>of</strong> Chemistry Research<br />

ISSN- 0976-5689 Vol 3, Issue 1, 2012<br />

Research Article<br />

INVESTIGATIONS ON THE PHOTOLYSIS OF IMAZETHAPYR IN AQUEOUS SOLUTIONS UNDER<br />

DIRECT SUNLIGHT BY HPLC UV AND LC-MS/MS-ESI - APPLICATIONS OF GREEN ALGA AS A<br />

POTENTIAL BIOMARKER<br />

VELMURUGAN PANDISELVI 1 , SIVANANDAM SATHIYANARAYANAN 1 , SORNAM AYYAPPAN 2 AND<br />

ATMAKURU RAMESH 1*<br />

1<br />

Department <strong>of</strong> Analytical Chemistry, 2 Department <strong>of</strong> Ecotoxicology, Internati<strong>on</strong>al Institute <strong>of</strong> Bio-technology and Toxicology (IIBAT),<br />

Padappai, Chennai 601301, Tamil Nadu, India. Email: raamesh_a@yahoo.co.<strong>in</strong><br />

ABSTRACT<br />

Received: 20 Oct 2011, Revised and Accepted: 23 Nov 2011<br />

Photolysis <strong>of</strong> Imazethapyr was studied <strong>in</strong> Milli-Q water, <strong>in</strong> acidic (pH 5.0), neutral (pH 7.0) and basic (pH 7.0) buffer soluti<strong>on</strong>s at two c<strong>on</strong>centrati<strong>on</strong><br />

levels 1.0 µg/ml and 2.0 µg/ml under direct sunlight. Aliquots <strong>of</strong> water samples were collected, filtered and analysed by HPLC-UV detecti<strong>on</strong> at<br />

different predeterm<strong>in</strong>ed <strong>in</strong>tervals. The results showed a limit <strong>of</strong> quantificati<strong>on</strong> (LOQ) 0.01 µg/ml and <strong>the</strong> recovery was 96 to 105%. The degradati<strong>on</strong><br />

<strong>of</strong> Imazethapyr under direct sunlight was c<strong>on</strong>siderably more rapid than hydrolysis <strong>in</strong> dark with a half-life <strong>of</strong> 2.2, 2.4 and 2.6 days for acidic, neutral<br />

and basic buffer soluti<strong>on</strong>s respectively. The estimated DT 50 value <strong>of</strong> Imazethapyr <strong>in</strong> hydrolysis study was 22.7 days <strong>in</strong> acidic, 24.5 days <strong>in</strong> neutral<br />

and 26.4 days <strong>in</strong> basic buffer soluti<strong>on</strong>s. The dissipati<strong>on</strong> followed first order k<strong>in</strong>etics. The <strong>in</strong>fluence <strong>of</strong> cati<strong>on</strong>s - Fe 2+ , Cu 2+ , Co 2+ , Ni 2+ , Mn 2+ , Zn 2+ and<br />

ani<strong>on</strong>s - SO 4 2- , Cl - , ClO 4 - , CO 3 - , HCO 3 - and aerati<strong>on</strong> <strong>of</strong> oxygen was studied. Major photo transformati<strong>on</strong> products were identified <strong>in</strong> water us<strong>in</strong>g liquid<br />

chromatography electrospray tandem mass spectrometry (LC-MS/MS-ESI). The data was compared with similar hydrolysis study c<strong>on</strong>ducted at<br />

25°C. The impact <strong>of</strong> residues if any, present <strong>in</strong> <strong>the</strong> <strong>aqueous</strong> samples after <strong>the</strong> quantitative <strong>in</strong>dicati<strong>on</strong> <strong>of</strong> residues to below <strong>the</strong> detectable level was<br />

studied by alga bioassay test. Residues dissipated to below detectable level <strong>on</strong> 15 th day. The growth <strong>in</strong>hibiti<strong>on</strong> at this occasi<strong>on</strong> was 65%.<br />

Observati<strong>on</strong>s <strong>on</strong> 40 th day showed no sign <strong>of</strong> <strong>in</strong>hibiti<strong>on</strong> <strong>in</strong> <strong>the</strong> growth <strong>of</strong> green alga.<br />

Keywords: Imazethapyr, Photolysis, LC-MS/MS-ESI, Residues, Alga <strong>in</strong>hibiti<strong>on</strong>.<br />

INTRODUCTION<br />

C<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong> <strong>of</strong> water due to <strong>the</strong> c<strong>on</strong>t<strong>in</strong>uous use <strong>of</strong> crop protecti<strong>on</strong><br />

chemicals <strong>in</strong> agriculture poses a serious envir<strong>on</strong>mental problem.<br />

However, <strong>in</strong> <strong>aqueous</strong> media, many <strong>of</strong> <strong>the</strong>se chemicals are likely to<br />

undergo photochemical transformati<strong>on</strong>s under direct sunlight.<br />

Imazethapyr [(RS)-5-ethyl-2-(4-isopropyl-4-methyl-5-oxo-2-<br />

imidazol<strong>in</strong>-2-yl)nicot<strong>in</strong>ic acid] is a pre and post-emergence herbicide<br />

used to c<strong>on</strong>trol <strong>the</strong> grasses and broad leaved weeds <strong>in</strong> pulses and oil<br />

seeds. Photolysis and hydrolysis are <strong>the</strong> two ma<strong>in</strong> degradati<strong>on</strong><br />

pathways <strong>of</strong> herbicides <strong>in</strong> <strong>the</strong> envir<strong>on</strong>ment 1 . The abiotic degradati<strong>on</strong><br />

(photo degradati<strong>on</strong> and hydrolysis) <strong>of</strong> <strong>the</strong> imidazol<strong>in</strong><strong>on</strong>e herbicides -<br />

imazapyr, <strong>imazethapyr</strong> and imazaqu<strong>in</strong> were <strong>in</strong>vestigated <strong>in</strong> water and<br />

soil. Hydrolysis and photo degradati<strong>on</strong> followed first-order k<strong>in</strong>etics for<br />

all herbicides 2 . The photodegradati<strong>on</strong> <strong>of</strong> <strong>imazethapyr</strong> <strong>in</strong> pH 7.0<br />

<strong>aqueous</strong> soluti<strong>on</strong> <strong>in</strong> presence <strong>of</strong> titanium dioxide and humic acids at<br />

different ratios <strong>in</strong>creases <strong>the</strong> degradati<strong>on</strong> rate due to <strong>the</strong> presence <strong>of</strong><br />

semic<strong>on</strong>ductor photo catalyst and humic acids 3 . A capillary<br />

electrophoresis method was used to quantify <strong>the</strong> residues <strong>of</strong><br />

imidazol<strong>in</strong><strong>on</strong>e herbicides; imazapyr, imazamox, imazapic,<br />

<strong>imazethapyr</strong>, imazaqu<strong>in</strong>, and imazamethabenz 4 <strong>in</strong> water and is<br />

subsequently c<strong>on</strong>firmed by liquid chromatography-electrospray<br />

i<strong>on</strong>izati<strong>on</strong> mass spectrometry 5 .<br />

The selective degradati<strong>on</strong> <strong>of</strong> enantiomers <strong>of</strong> <strong>the</strong> three imidazol<strong>in</strong><strong>on</strong>e<br />

herbicides, imazapyr, <strong>imazethapyr</strong> and imazaqu<strong>in</strong> were determ<strong>in</strong>ed <strong>in</strong><br />

a variety <strong>of</strong> soils. The R(+) enantiomer <strong>of</strong> all <strong>the</strong> three herbicides has<br />

greater herbicidal activity than <strong>the</strong> less active S(-) enantiomer 6<br />

.<br />

Enantiomers <strong>of</strong> imidazol<strong>in</strong><strong>on</strong>e herbicides were resolved us<strong>in</strong>g reversephase<br />

and normal-phase high-performance liquid chromatography<br />

with polysaccharide-type chiral columns 7 . The <strong>photolysis</strong> <strong>of</strong><br />

Imazethapyr <strong>in</strong> three paddy water samples was evaluated under<br />

laboratory c<strong>on</strong>diti<strong>on</strong>s. Imazethapyr is susceptible to both direct and<br />

<strong>in</strong>direct <strong>photolysis</strong> reacti<strong>on</strong>s <strong>in</strong> water and paddy 8 . Soil pH <strong>in</strong>fluenced<br />

<strong>the</strong> Imazethapyr sorpti<strong>on</strong>-desorpti<strong>on</strong>, which <strong>in</strong> turn had affected <strong>the</strong><br />

persistence and bioavailability <strong>of</strong> Imazethapyr at low pH than at high<br />

pH 9-10 . Sulf<strong>on</strong>ylurea, sulf<strong>on</strong>amide and imidazol<strong>in</strong><strong>on</strong>e herbicides were<br />

also analyzed <strong>in</strong> rivers, reservoirs and ground water <strong>in</strong> <strong>the</strong><br />

Midwestern United States us<strong>in</strong>g LC-MS/MS. At least <strong>on</strong>e <strong>of</strong> <strong>the</strong><br />

herbicide was detected above <strong>the</strong> MRL <strong>in</strong> 83% <strong>of</strong> <strong>on</strong>e thirty stream<br />

samples, 24% <strong>of</strong> twenty five ground water samples and 86% <strong>of</strong> seven<br />

reservoir samples 11 . The photocatalytic degradati<strong>on</strong> <strong>of</strong> Imazethapyr<br />

was determ<strong>in</strong>ed <strong>in</strong> <strong>aqueous</strong> suspensi<strong>on</strong>s us<strong>in</strong>g titanium dioxide as a<br />

catalyst. The effect <strong>of</strong> catalyst load<strong>in</strong>g, <strong>in</strong>itial c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong><br />

Imazethapyr, hydrogen peroxide, pH value and temperature were<br />

<strong>in</strong>vestigated. It was found that <strong>the</strong> additi<strong>on</strong> <strong>of</strong> hydrogen peroxide to<br />

<strong>the</strong> TiO 2 suspensi<strong>on</strong> enhanced <strong>the</strong> degradati<strong>on</strong> rate up to 5.0 x 10 -3<br />

mol/L but decreased at higher c<strong>on</strong>centrati<strong>on</strong> 12 . The imidazol<strong>in</strong><strong>on</strong>e<br />

herbicides imazapyr, m-imazamethabenz, p-imazamethabenz, m,pimazamethabenz-methyl,<br />

Imazethapyr and imazaqu<strong>in</strong> were quantified<br />

<strong>in</strong> ground, lake and river water us<strong>in</strong>g <strong>of</strong>f-l<strong>in</strong>e solid-phase extracti<strong>on</strong><br />

with a carbograph-1 cartridge by reverse-phase liquid<br />

chromatography us<strong>in</strong>g a UV detector (lambda = 240 nm) and soil<br />

samples us<strong>in</strong>g LC/ESI-MS under selected i<strong>on</strong> m<strong>on</strong>itor<strong>in</strong>g mode. The<br />

limit <strong>of</strong> detecti<strong>on</strong> was established as 0.1 - 0.05 ng/g 13 . The sorpti<strong>on</strong><br />

coefficient <strong>of</strong> eight herbicides (alachlor, amitrole, atraz<strong>in</strong>e, simaz<strong>in</strong>e,<br />

dicamba, imazamox, <strong>imazethapyr</strong> and pendimethal<strong>in</strong>) was determ<strong>in</strong>ed<br />

<strong>in</strong> seven agricultural soils from Lithuania. The leach<strong>in</strong>g <strong>of</strong> all<br />

herbicides <strong>in</strong> soils with high clay and low sand c<strong>on</strong>tents were<br />

predicted to be slow and it was faster <strong>in</strong> soils with high sand and low<br />

organic matter 14-16 . Two extracti<strong>on</strong> methods, supercritical fluid<br />

extracti<strong>on</strong> us<strong>in</strong>g CO 2 and solid-phase extracti<strong>on</strong> method are used for<br />

extract<strong>in</strong>g two imidazol<strong>in</strong><strong>on</strong>e herbicides AC263, 222 and Imazethapyr<br />

from three soils were alternatives to soxhlet and liquid/liquid<br />

extracti<strong>on</strong> 17 . Two-cartridge solid phase extracti<strong>on</strong> methods were<br />

developed to pre-c<strong>on</strong>centrate twelve Sulf<strong>on</strong>ylurea, three<br />

imidazol<strong>in</strong><strong>on</strong>e and <strong>on</strong>e sulf<strong>on</strong>amide herbicides from water samples.<br />

LC-ESI/MS/MS was used to identify and quantify <strong>the</strong> residues 18 .<br />

The photo degradati<strong>on</strong> <strong>of</strong> metribuz<strong>in</strong>, atraz<strong>in</strong>e, propaz<strong>in</strong>e and<br />

prometryne <strong>in</strong> water was studied. The photoproducts identified<br />

were desam<strong>in</strong>ometribuz<strong>in</strong>, diketometribuz<strong>in</strong> and<br />

desam<strong>in</strong>odiketometribuz<strong>in</strong>19 . The impact <strong>of</strong> humic substances <strong>on</strong><br />

decompositi<strong>on</strong> and degradati<strong>on</strong> k<strong>in</strong>etics was determ<strong>in</strong>ed 20 . A study<br />

was c<strong>on</strong>ducted <strong>on</strong> <strong>the</strong> <strong>photolysis</strong> <strong>of</strong> triflural<strong>in</strong> under sunlight and<br />

c<strong>on</strong>trolled atmosphere was studied 21 . Hence <strong>the</strong> reacti<strong>on</strong> rate<br />

c<strong>on</strong>stants are determ<strong>in</strong>ed. Photolysis <strong>of</strong> sulfadiaz<strong>in</strong>e 22 , atraz<strong>in</strong>e 23 ,<br />

triflural<strong>in</strong> 24 <strong>in</strong> water and manure was studied under simulated<br />

sunlight. First order k<strong>in</strong>etics is followed <strong>in</strong> <strong>aqueous</strong> soluti<strong>on</strong>. The<br />

phototransformati<strong>on</strong> <strong>of</strong> <strong>the</strong> herbicide fluometur<strong>on</strong> <strong>in</strong> natural<br />

sunlight was <strong>in</strong>vestigated <strong>in</strong> Milli-Q and syn<strong>the</strong>tic water. The<br />

degradati<strong>on</strong> followed pseudo-first order k<strong>in</strong>etics 25 . Photolysis <strong>of</strong>


Ramesh et al.<br />

Int J Chem Res, Vol 3, Issue 1, 2012, 45-51<br />

metamitr<strong>on</strong> <strong>in</strong> water and soil were studied, <strong>the</strong> photodegradati<strong>on</strong><br />

was faster <strong>in</strong> <strong>aqueous</strong> soluti<strong>on</strong> than <strong>in</strong> soil 26 . The photochemistry <strong>of</strong><br />

triadimef<strong>on</strong> and triadimenol was studied <strong>in</strong> <strong>aqueous</strong> soluti<strong>on</strong>,<br />

methanol/water mixtures, <strong>in</strong> c<strong>on</strong>trolled and natural c<strong>on</strong>diti<strong>on</strong>s. The<br />

k<strong>in</strong>etics was faster <strong>in</strong> water than methanol/water mixtures 27 .<br />

From <strong>the</strong> review <strong>of</strong> literature, it was observed that <strong>the</strong> dissipati<strong>on</strong> <strong>of</strong><br />

Imazethapyr <strong>in</strong> soil was studied us<strong>in</strong>g various techniques. However,<br />

<strong>the</strong> data perta<strong>in</strong><strong>in</strong>g to <strong>the</strong> dissipati<strong>on</strong> <strong>of</strong> Imazethapyr <strong>in</strong> <strong>aqueous</strong><br />

soluti<strong>on</strong>s under direct sunlight is sparse. The ma<strong>in</strong> objectives <strong>of</strong><br />

present study are to determ<strong>in</strong>e <strong>the</strong> dissipati<strong>on</strong> <strong>of</strong> Imazethapyr under<br />

direct sunlight and to compare <strong>the</strong> hydrolytic behavior <strong>in</strong> dark, <strong>in</strong><br />

different <strong>aqueous</strong> systems. It is to <strong>in</strong>vestigate <strong>the</strong> effect <strong>of</strong> cati<strong>on</strong>s,<br />

ani<strong>on</strong>s and oxygen aerati<strong>on</strong>, to identify <strong>the</strong> photo transformati<strong>on</strong><br />

products by LC-MS/MS-ESI and to assess <strong>the</strong> impact <strong>of</strong> residues <strong>on</strong><br />

<strong>the</strong> growth <strong>of</strong> green alga.<br />

MATERIALS AND METHODS<br />

Chemicals<br />

The Imazethapyr (purity 99.8%) reference analytical standard and<br />

<strong>the</strong> Imazethapyr water dispersible granule formulati<strong>on</strong> (70%WG)<br />

commercial grade, obta<strong>in</strong>ed from <strong>the</strong> pesticide market outlet were<br />

used. HPLC grade acet<strong>on</strong>itrile and ortho phosphoric acid were<br />

obta<strong>in</strong>ed from Merck India Limited. The chemicals supplied by<br />

Merck India Limited were ferrous sulfate, copper sulfate, cobalt<br />

nitrate, nickel sulfate, manganese sulfate, z<strong>in</strong>c sulfate, sodium<br />

sulfate, sodium chloride, sodium perchlorate, sodium carb<strong>on</strong>ate and<br />

sodium bicarb<strong>on</strong>ate. All <strong>the</strong> chemicals used were analytical reagent<br />

grade. Distilled water was purified us<strong>in</strong>g a Milli-Q apparatus.<br />

(Millipore, Bedford, MA, USA).<br />

Instrumentati<strong>on</strong><br />

A Shimadzu® prom<strong>in</strong>ence High Performance Liquid Chromatograph<br />

equipped with Ultra Violet detector was used for <strong>the</strong> quantificati<strong>on</strong><br />

<strong>of</strong> residues. The wavelength <strong>of</strong> <strong>the</strong> detector was 230 nm. The<br />

Phenomenex® C 18 column (4.6 mm i.d. and 250 mm length) was<br />

used for chromatography. Acet<strong>on</strong>itrile, pH 3.0 ortho phosphoric acid<br />

buffer soluti<strong>on</strong>s (40:60) were used as mobile phase for <strong>the</strong><br />

separati<strong>on</strong> <strong>of</strong> Imazethapyr. The flow rate was set as 1.0 ml per<br />

m<strong>in</strong>ute. The retenti<strong>on</strong> time <strong>of</strong> Imazethapyr was 6.2 m<strong>in</strong>utes.<br />

The active Imazethapyr and its breakdown products were<br />

c<strong>on</strong>firmed by a High Capacity I<strong>on</strong> Trap (HCT plus) LC-MS/MS<br />

system supplied by Bruker Dalt<strong>on</strong>ik, GmbH, Germany. Dry<strong>in</strong>g gas<br />

nitrogen was generated us<strong>in</strong>g <strong>the</strong> Nitrox UHPLCMS nitrogen<br />

generator. The nebuliser gas nitrogen flow was fixed at 9 lit/m<strong>in</strong>.<br />

MS/MS mode operati<strong>on</strong> was d<strong>on</strong>e with helium as collisi<strong>on</strong> gas.<br />

Capillary voltage <strong>of</strong> 4.5 kV was used <strong>in</strong> positive i<strong>on</strong>izati<strong>on</strong> mode.<br />

The <strong>in</strong>terface temperature was 340 °C. The scan range was 50 -<br />

400 m/Z. Agilent 1200 HPLC system with Zorbax SB C18 column<br />

(5 µm particle size, 4.6 mm i.d., 75 mm length) with gradient<br />

eluti<strong>on</strong> <strong>of</strong> 0.25 ml per m<strong>in</strong>ute hav<strong>in</strong>g 0.1% formic acid <strong>in</strong><br />

acet<strong>on</strong>itrile as mobile phase A, 0.1% formic acid <strong>in</strong> Milli-Q water as<br />

mobile phase B were used.<br />

Method validati<strong>on</strong><br />

Specificity, l<strong>in</strong>earity and recovery studies were c<strong>on</strong>ducted by<br />

<strong>in</strong>ject<strong>in</strong>g <strong>the</strong> c<strong>on</strong>trol samples <strong>of</strong> acidic, neutral, basic buffer<br />

soluti<strong>on</strong>s, mobile phase, Milli-Q water and acet<strong>on</strong>itrile. Different<br />

known c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong> l<strong>in</strong>earity soluti<strong>on</strong>s 2.0, 1.0, 0.5, 0.1, 0.05,<br />

0.01 and 0.001 µg/ml were prepared by serial diluti<strong>on</strong> method us<strong>in</strong>g<br />

mobile phase and <strong>in</strong>jected <strong>in</strong> HPLC-UV. The limit <strong>of</strong> detecti<strong>on</strong> was<br />

determ<strong>in</strong>ed as 0.001 µg/ml based <strong>on</strong> signal to noise ratio 3:1. A<br />

calibrati<strong>on</strong> curve was plotted between <strong>the</strong> peak area and<br />

c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>the</strong> Imazethapyr.<br />

Recovery studies <strong>in</strong> Milli-Q water, acidic, neutral and basic buffer<br />

soluti<strong>on</strong>s were c<strong>on</strong>ducted by fortify<strong>in</strong>g different c<strong>on</strong>centrati<strong>on</strong>s <strong>of</strong><br />

standard soluti<strong>on</strong>s (0.01, 0.05 and 0.1 µg/ml) <strong>of</strong> Imazethapyr <strong>in</strong> <strong>the</strong><br />

range <strong>of</strong> LOQ: 5 x LOQ: 10 x LOQ. For <strong>the</strong> repeatability analysis, five<br />

replicate determ<strong>in</strong>ati<strong>on</strong>s were made at each c<strong>on</strong>centrati<strong>on</strong> level.<br />

After fortificati<strong>on</strong> <strong>of</strong> standards, <strong>the</strong> water samples were mixed<br />

thoroughly and analysed us<strong>in</strong>g HPLC-UV. The method has a limit <strong>of</strong><br />

quantificati<strong>on</strong> (LOQ) 0.01 µg/ml. The RSD% for each c<strong>on</strong>centrati<strong>on</strong><br />

studied was calculated us<strong>in</strong>g ‘Horwitz equati<strong>on</strong>’.<br />

RSD% < 2<br />

(1-0.5 logC)<br />

x 0.67<br />

Where C is <strong>the</strong> c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> <strong>the</strong> analyte expressed <strong>in</strong> percentage.<br />

Experimental<br />

The <strong>photolysis</strong> <strong>of</strong> Imazethapyr <strong>in</strong> water was <strong>in</strong>vestigated at<br />

c<strong>on</strong>centrati<strong>on</strong>s 1 µg/ml and 2 µg/ml. The study was c<strong>on</strong>ducted <strong>in</strong><br />

Milli-Q water, acidic, neutral and basic buffer soluti<strong>on</strong>s. Three<br />

replicate determ<strong>in</strong>ati<strong>on</strong>s were made at each fortificati<strong>on</strong> level al<strong>on</strong>g<br />

with a c<strong>on</strong>trol sample. Two sets <strong>of</strong> samples were prepared. One set<br />

<strong>of</strong> sample was exposed to direct sunlight. The photolytic activity was<br />

m<strong>on</strong>itored by collect<strong>in</strong>g and analyz<strong>in</strong>g <strong>the</strong> aliquots <strong>of</strong> water samples<br />

periodically <strong>on</strong> 0, 1, 3, 5, 7, 10 and 15 days. The day temperature <strong>of</strong><br />

<strong>the</strong> water samples dur<strong>in</strong>g <strong>the</strong> period varied between 27 to 43 °C.<br />

Dur<strong>in</strong>g <strong>the</strong> exposure, <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> <strong>the</strong> sunlight was also<br />

measured. On each sampl<strong>in</strong>g occasi<strong>on</strong>, aliquots <strong>of</strong> collected samples<br />

were filtered us<strong>in</strong>g 0.2 µm PTFE filter and stored <strong>in</strong> amber colored<br />

vials at


Ramesh et al.<br />

Int J Chem Res, Vol 3, Issue 1, 2012, 45-51<br />

Pre-culture preparati<strong>on</strong><br />

Pseudokirchneriella subcapitata pre-culture was prepared three days<br />

before <strong>in</strong>itiati<strong>on</strong> <strong>of</strong> <strong>the</strong> study. The <strong>in</strong>oculated flasks were kept <strong>in</strong><br />

shaker <strong>in</strong>cubator at 114 - 118 RPM and ma<strong>in</strong>ta<strong>in</strong>ed with c<strong>on</strong>t<strong>in</strong>uous<br />

illum<strong>in</strong>ati<strong>on</strong> <strong>of</strong> 6942 - 7012 Lux light <strong>in</strong>tensity at 21.9 to 22.8°C for<br />

three days. The culture was exam<strong>in</strong>ed after three days under <strong>the</strong><br />

microscope and checked for any abnormality or microbial<br />

c<strong>on</strong>tam<strong>in</strong>ati<strong>on</strong>.<br />

Test procedure<br />

Aliquot <strong>of</strong> 35 ml was taken from exposed samples and diluted with<br />

315 ml <strong>of</strong> OECD medium. The f<strong>in</strong>al c<strong>on</strong>centrati<strong>on</strong> was 1 µg/ml. By<br />

us<strong>in</strong>g 0.1N NaOH, <strong>the</strong> <strong>in</strong>itial pH was measured and adjusted to 8.12.<br />

The test soluti<strong>on</strong> (100 ml) was transferred to 250 ml Erlenmeyer<br />

flask. Three replicate determ<strong>in</strong>ati<strong>on</strong>s were made at 1 µg/ml<br />

c<strong>on</strong>centrati<strong>on</strong> and six replicates for c<strong>on</strong>trol. From <strong>the</strong> pre-culture,<br />

100 µl <strong>of</strong> Pseudokirchneriella subcapitata culture was <strong>in</strong>oculated <strong>in</strong><br />

<strong>the</strong> c<strong>on</strong>trol and treated flasks to get an <strong>in</strong>itial cell c<strong>on</strong>centrati<strong>on</strong> <strong>of</strong><br />

approximately 1 × 10 4 cells per ml. By visual count<strong>in</strong>g, <strong>the</strong> cell<br />

counts <strong>of</strong> Pseudokirchneriella subcapitata (cells per ml) were made<br />

us<strong>in</strong>g an improved Neubauer’s Haemocytometer under illum<strong>in</strong>ati<strong>on</strong><br />

<strong>of</strong> <strong>the</strong> microscope at 24, 48 and 72 hours after <strong>in</strong>oculati<strong>on</strong>. At test<br />

term<strong>in</strong>ati<strong>on</strong>, <strong>the</strong> f<strong>in</strong>al pH was recorded.<br />

The yield was calculated us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g formula<br />

Where,<br />

Y i – j = X j - Xi<br />

Y i – j = biomass from <strong>the</strong> start <strong>of</strong> <strong>the</strong> test to <strong>the</strong> end <strong>of</strong><br />

<strong>the</strong> test<br />

X i = biomass (cells per ml) at time i (0 hour)<br />

X j = biomass (cells per ml) at time j (72 hours)<br />

The percent <strong>in</strong>hibiti<strong>on</strong> <strong>of</strong> <strong>the</strong> yield (% I y) at test c<strong>on</strong>centrati<strong>on</strong> was<br />

calculated as,<br />

(YC– YT)<br />

% I y = ---------------- × 100<br />

Y C<br />

Where,<br />

% I y = percent <strong>in</strong>hibiti<strong>on</strong> <strong>of</strong> yield<br />

Yc = mean value for yield <strong>in</strong> <strong>the</strong> c<strong>on</strong>trol group<br />

Y T<br />

= value for yield for <strong>the</strong> treatment replicate<br />

Validati<strong>on</strong> <strong>of</strong> <strong>the</strong> alga study<br />

With<strong>in</strong> <strong>the</strong> 72 hours test period, <strong>the</strong> biomass <strong>in</strong> <strong>the</strong> c<strong>on</strong>trol flasks<br />

should be <strong>in</strong>creased exp<strong>on</strong>entially by a factor <strong>of</strong> 16 times 28 . The<br />

mean coefficient <strong>of</strong> variati<strong>on</strong>, for secti<strong>on</strong> by secti<strong>on</strong> specific growth<br />

rates <strong>in</strong> <strong>the</strong> c<strong>on</strong>trol must not exceed 35%. The coefficient <strong>of</strong><br />

variati<strong>on</strong> <strong>of</strong> average specific growth rate <strong>in</strong> c<strong>on</strong>trol replicates must<br />

not exceed 7%.<br />

RESULTS AND DISCUSSION<br />

Analytical data - L<strong>in</strong>earity, Recovery and Repeatability<br />

The method was found to be l<strong>in</strong>ear with a correlati<strong>on</strong> coefficient <strong>of</strong><br />

0.9999 when tested <strong>in</strong> <strong>the</strong> range 0.001 to 2.0 µg/ml. The limit <strong>of</strong><br />

detecti<strong>on</strong> was established as 0.001 µg/ml based <strong>on</strong> signal to noise<br />

ratio 3:1. The LOQ for Imazethapyr was established as 0.01 µg/ml<br />

based <strong>on</strong> <strong>the</strong> recovery study and signal to noise ratio 10:1. The<br />

recovery <strong>of</strong> Imazethapyr <strong>in</strong> water ranges from 96 to 105%.<br />

Repeatability <strong>of</strong> <strong>the</strong> method showed acceptable RSD% which is<br />


Ramesh et al.<br />

Int J Chem Res, Vol 3, Issue 1, 2012, 45-51<br />

Residue <strong>in</strong> µg/ml<br />

2.5<br />

2<br />

1.5<br />

1<br />

Acidic water T1<br />

Basic water T1<br />

Neutral water T2<br />

Neutral water T1<br />

Acidic water T2<br />

Basic water T2<br />

0.5<br />

0<br />

0 5 10 15 20<br />

Occasi<strong>on</strong> <strong>in</strong> days<br />

Fig. 1: Dissipati<strong>on</strong> Curve <strong>of</strong> Imazethapyr under Direct Sunlight<br />

Table II: Influence <strong>of</strong> cati<strong>on</strong>s <strong>on</strong> <strong>the</strong> <strong>photolysis</strong> <strong>of</strong> <strong>imazethapyr</strong><br />

Time (Days) Cati<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> Residue (µg/ml)<br />

C<strong>on</strong>trol Ir<strong>on</strong> Copper Cobalt Nickel Manganese Z<strong>in</strong>c<br />

0 10 -1 M 0.95 0.91 0.89 0.99 0.93 0.98 0.88<br />

1 0.81 0.76 0.73 0.87 0.8 0.85 0.71<br />

3 0.63 0.58 0.55 0.69 0.65 0.67 0.56<br />

5 0.49 0.42 0.38 0.56 0.51 0.54 0.40<br />

7 0.12 0.099 0.091 0.42 0.11 0.39 0.084<br />

10 0.031 0.028 0.024 0.23 0.030 0.19 0.026<br />

15


Ramesh et al.<br />

Int J Chem Res, Vol 3, Issue 1, 2012, 45-51<br />

Influence <strong>of</strong> oxygen aerati<strong>on</strong><br />

The degradati<strong>on</strong> <strong>of</strong> residue was rapid <strong>in</strong> presence <strong>of</strong> oxygen<br />

aerati<strong>on</strong>. The rate <strong>of</strong> degradati<strong>on</strong> <strong>of</strong> Imazethapyr <strong>in</strong> water was<br />

significantly <strong>in</strong>fluenced. The residues went to below <strong>the</strong> limit <strong>of</strong><br />

determ<strong>in</strong>ati<strong>on</strong> by 15 th day while aerat<strong>in</strong>g <strong>the</strong> water. In <strong>the</strong> absence <strong>of</strong><br />

aerati<strong>on</strong>, <strong>the</strong> degradati<strong>on</strong> was slow and went to below <strong>the</strong> limit <strong>of</strong><br />

determ<strong>in</strong>ati<strong>on</strong> by 25 th day. This may be due to enhancement <strong>of</strong> <strong>the</strong><br />

amount <strong>of</strong> dissolved oxygen <strong>in</strong> water samples have c<strong>on</strong>tributed to<br />

<strong>the</strong> formati<strong>on</strong> <strong>of</strong> ox<strong>on</strong>ium i<strong>on</strong>s facilitat<strong>in</strong>g rapid degradati<strong>on</strong> 19 .<br />

Dissipati<strong>on</strong> k<strong>in</strong>etics<br />

The rate c<strong>on</strong>stant k was calculated from <strong>the</strong> dissipati<strong>on</strong> <strong>of</strong><br />

Imazethapyr with time us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g first order rate equati<strong>on</strong><br />

k = ln a/a-x/dt<br />

Where,<br />

dt - Time <strong>in</strong>terval between t 1 and t 2<br />

a, x - C<strong>on</strong>centrati<strong>on</strong> <strong>of</strong> residues at times t 1 and t 2 respectively.<br />

A graph was plotted between c<strong>on</strong>centrati<strong>on</strong>s versus rate. The R2<br />

value 1.000 <strong>in</strong>dicates first order k<strong>in</strong>etics <strong>in</strong> dissipati<strong>on</strong>. The rate<br />

c<strong>on</strong>stant <strong>of</strong> Imazethapyr under direct sunlight <strong>in</strong> two spiked<br />

c<strong>on</strong>centrati<strong>on</strong>s was 0.489, 0.464 <strong>in</strong> Milli-Q water; 0.545, 0.523 <strong>in</strong><br />

acidic water, 0.599, 0.596 <strong>in</strong> neutral water and 0.588, 0.589 <strong>in</strong> basic<br />

water. The rate c<strong>on</strong>stant values for hydrolysis were 0.312, 0.340 <strong>in</strong><br />

Milli-Q water; 0.287, 0.272 <strong>in</strong> acidic water, 0.322, 0.349 <strong>in</strong> neutral<br />

water and 0.362, 0.345 <strong>in</strong> basic water. This clearly <strong>in</strong>dicates that<br />

sunlight enhanced <strong>the</strong> degradati<strong>on</strong> <strong>of</strong> residues when compared to<br />

analysis <strong>in</strong> dark.<br />

C<strong>on</strong>firmati<strong>on</strong> <strong>of</strong> residues and its metabolite<br />

The residues <strong>of</strong> Imazethapyr and its breakdown products were<br />

analyzed us<strong>in</strong>g LC-MS/MS-ESI. The herbicide, Imazethapyr got<br />

eluted at 15.0 m<strong>in</strong>utes and showed a molecular i<strong>on</strong> peak at m/Z 290<br />

and <strong>the</strong> fragment i<strong>on</strong>s appeared at 262, 248 and 177. The<br />

breakdown product was eluted at 11.2 to 11.5 m<strong>in</strong>utes. The major<br />

break down product identified <strong>in</strong> <strong>the</strong> water samples had <strong>the</strong><br />

molecular i<strong>on</strong> peak at m/Z 262. The limit <strong>of</strong> quantificati<strong>on</strong> for this<br />

method was 0.1 µg/lit. The representative spectra were presented <strong>in</strong><br />

Figure 2.<br />

Intens.<br />

x10 8<br />

0.8<br />

+MS2(290.31), 14.8-15.2m<strong>in</strong> #(1298-1341)<br />

248.10<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Intens.<br />

x10 7<br />

2.0<br />

262.14<br />

230.12<br />

201.19<br />

177.16<br />

272.14<br />

180 200 220 240 260 280 m/z<br />

+MS2(262.29), 11.2-11.5m<strong>in</strong> #(977-1001)<br />

245.12<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

177.14<br />

201.18<br />

227.15<br />

170 180 190 200 210 220 230 240 250 260 m/z<br />

Fig. 2: Representative LC-MS/MS-ESI Spectra <strong>of</strong> Imazethapyr and its Breakdown Product<br />

Green alga as a biomarker - Impact <strong>of</strong> residues <strong>on</strong> alga growth<br />

Dur<strong>in</strong>g <strong>the</strong> study period, all <strong>the</strong> flasks were <strong>in</strong>cubated <strong>in</strong> <strong>the</strong> shaker<br />

<strong>in</strong>cubator. The test c<strong>on</strong>diti<strong>on</strong>s viz., temperature, light <strong>in</strong>tensity and<br />

RPM <strong>of</strong> <strong>the</strong> shaker <strong>in</strong>cubator were recorded daily. The temperature<br />

<strong>of</strong> <strong>the</strong> medium was 21.2 to 23.1°C, <strong>the</strong> light <strong>in</strong>tensity was 6785 to<br />

6849 lux and <strong>the</strong> RPM was 111 – 115.<br />

In <strong>the</strong> c<strong>on</strong>trol, <strong>the</strong> <strong>in</strong>itial cell count was 1 × 10 4 (10000) cells per ml.<br />

The average f<strong>in</strong>al cell count (at 72 hours) <strong>in</strong> <strong>the</strong> c<strong>on</strong>trol at 0 th , 15 th ,<br />

25 th and 40 th days were 159×10 4 , 57×10 4 , 58×10 4 and 57×10 4 cells<br />

per ml respectively. The cells <strong>of</strong> Pseudokirchneriella subcapitata<br />

were <strong>in</strong>creased approximately 159, 57, 58 and 57 times <strong>in</strong> c<strong>on</strong>trol <strong>on</strong><br />

0 th , 15 th , 25 th and 40 th day respectively. The percent coefficient <strong>of</strong><br />

variati<strong>on</strong> (% CV) for secti<strong>on</strong> by secti<strong>on</strong> specific growth rate <strong>in</strong> <strong>the</strong><br />

c<strong>on</strong>trols (0-24 hours, 24-48 hours and 48-72 hours) were 10.59%,<br />

24.87%, 24.15% and 22.71% at 0 th , 15 th , 25 th and 40 th day<br />

respectively (less than 35% as per <strong>the</strong> OECD guidel<strong>in</strong>e). The percent<br />

co-efficient <strong>of</strong> variati<strong>on</strong> <strong>of</strong> average specific growth rate dur<strong>in</strong>g <strong>the</strong><br />

whole test period (0-72 hours) <strong>in</strong> replicate c<strong>on</strong>trol flasks was 0.7%,<br />

2.5%, 2.9% and 2.5% at 0 th , 15 th , 25 th and 40 th day respectively (less<br />

than 7% as per <strong>the</strong> OECD guidel<strong>in</strong>e). These above f<strong>in</strong>d<strong>in</strong>gs validate<br />

<strong>the</strong> results <strong>of</strong> <strong>the</strong> present study.<br />

Initially, (before exposed to sunlight) 84% <strong>in</strong>hibiti<strong>on</strong> was observed<br />

at 1.0 µg/ml c<strong>on</strong>centrati<strong>on</strong> level. The compound dissipated to below<br />

49


Ramesh et al.<br />

Int J Chem Res, Vol 3, Issue 1, 2012, 45-51<br />

detectable level at 15 th day when analysed by HPLC, whereas 65%<br />

<strong>in</strong>hibiti<strong>on</strong> was observed by cell count. On 25 th day <strong>the</strong> <strong>in</strong>hibiti<strong>on</strong> was<br />

16%. The <strong>in</strong>hibiti<strong>on</strong> may be due to <strong>the</strong> presence <strong>of</strong> persistent<br />

metabolites / breakdown products <strong>of</strong> Imazethapyr <strong>in</strong> water samples.<br />

This was also c<strong>on</strong>firmed by <strong>the</strong> LC- MS/MS-ESI analysis. The<br />

breakdown product identified <strong>on</strong> this occasi<strong>on</strong> was 2-[4- methyl-= 5-<br />

oxo-4-(propan-2-yl)-4,5-dihydro-1H-imidazol-2-yl]pyrid<strong>in</strong>e-3-<br />

carboxylic acid and its molecular mass is 261. Analysis <strong>of</strong> 40 th day<br />

samples showed no sign <strong>of</strong> <strong>in</strong>hibiti<strong>on</strong> <strong>in</strong> <strong>the</strong> growth <strong>of</strong> green alga and<br />

<strong>the</strong> growth was <strong>on</strong> par with <strong>the</strong> c<strong>on</strong>trol.<br />

H<br />

CH 3<br />

O<br />

O<br />

H 3 C<br />

O<br />

H NH<br />

3<br />

O<br />

OH<br />

NH<br />

N<br />

OH<br />

N<br />

CC<br />

N<br />

3 C<br />

N<br />

N<br />

CH 3<br />

N<br />

CH 3<br />

5-ethyl-2-(4-methyl-5-oxo-4,5-=<br />

dihydro-1H-imidazol-2-yl)pyrid<strong>in</strong>e-3-=<br />

carboxylic acid<br />

m/Z - 247<br />

CH 3<br />

CH 3<br />

H 3 C<br />

N<br />

O<br />

N<br />

H<br />

CH 3<br />

O<br />

N<br />

N<br />

HO<br />

H<br />

HO<br />

O CH 3<br />

H 3 C<br />

H 3<br />

2-[4-methyl-5-oxo-4-(propan-2-yl)-4,5-=<br />

dihydro-1H-imidazol-2-yl]pyrid<strong>in</strong>e-3-=<br />

carboxylic acid<br />

m/Z - 261<br />

5-methyl-5-(propan-2-yl)-3,5-<br />

= dihydro-4H-imidazol-4-<strong>on</strong>e<br />

m/Z - 140<br />

O<br />

Imazethapyr<br />

m/Z - 289<br />

5-ethylpyrid<strong>in</strong>e-3-=<br />

carboxylic acid<br />

m/Z - 151<br />

The degradati<strong>on</strong> pathway <strong>of</strong> Imazethapyr was presented <strong>in</strong> Figure 3.<br />

Fig. 3: Photolytic Pathway <strong>of</strong> Imazethapyr <strong>in</strong> Water<br />

CONCLUSION<br />

Under direct sunlight, <strong>the</strong> <strong>photolysis</strong> <strong>of</strong> Imazethapyr <strong>in</strong> water was<br />

very rapid when compared to hydrolysis study c<strong>on</strong>ducted at 25°C.<br />

The dissipati<strong>on</strong> <strong>of</strong> Imazethapyr <strong>in</strong> water followed first order<br />

k<strong>in</strong>etics. Metabolite <strong>of</strong> Imazethapyr 2-[4-methyl-5-oxo-4-(propan-2-<br />

yl)-4,5-dihydro-= 1H-imidazol-2-yl]pyrid<strong>in</strong>e-3-carboxylic acid was<br />

identified us<strong>in</strong>g <strong>the</strong> LC-MS/MS-ESI. The rate <strong>of</strong> degradati<strong>on</strong> was<br />

<strong>in</strong>fluenced due to presence <strong>of</strong> cati<strong>on</strong>s and ani<strong>on</strong>s. The degradati<strong>on</strong> <strong>of</strong><br />

Imazethapyr was rapid while aerat<strong>in</strong>g <strong>the</strong> water. Under direct<br />

sunlight, residues <strong>of</strong> Imazethapyr dissipated to below detectable<br />

level by 15 th day but <strong>the</strong> impact <strong>of</strong> residues <strong>on</strong> <strong>the</strong> growth <strong>of</strong> green<br />

alga <strong>in</strong>dicates <strong>the</strong> growth <strong>in</strong>hibiti<strong>on</strong> up to 25 th day. This may be due<br />

to <strong>the</strong> presence <strong>of</strong> breakdown product (2-[4-methyl-5-oxo-4-<br />

(propan-2-yl)-4,5-dihydro-1H-= imidazol-2-yl]pyrid<strong>in</strong>e-3-carboxylic<br />

acid) <strong>in</strong> <strong>the</strong> water samples. Present <str<strong>on</strong>g><strong>in</strong>vestigati<strong>on</strong>s</str<strong>on</strong>g> successfully<br />

highlighted <strong>the</strong> applicati<strong>on</strong>s <strong>of</strong> green alga as a biomarker <strong>in</strong><br />

identificati<strong>on</strong> <strong>of</strong> potential xenobiotics.<br />

50


Ramesh et al.<br />

Int J Chem Res, Vol 3, Issue 1, 2012, 45-51<br />

ACKNOWLEDGEMENT<br />

The authors thank <strong>the</strong> management and Dr. P. Balakrishnamurthy,<br />

Director, IIBAT for provid<strong>in</strong>g necessary facilities to c<strong>on</strong>duct <strong>the</strong><br />

experiment.<br />

REFERENCES<br />

1. Campbell S, David MD, Woodwar LA, Li QX. Persistence <strong>of</strong><br />

Carb<strong>of</strong>uran <strong>in</strong> Mar<strong>in</strong>e sand and Water. Chemosphere 2004; 54:<br />

1155-1161.<br />

2. Ramezani M, Oliver DP, Kookana RS, Gill G, Prest<strong>on</strong> C. Abiotic<br />

Degradati<strong>on</strong> (Photodegradati<strong>on</strong> and Hydrolysis) <strong>of</strong><br />

Imidazol<strong>in</strong><strong>on</strong>e Herbicides. J Envir<strong>on</strong> Sci Health B 2008; 43 (2):<br />

105-112.<br />

3. Elazzouzi M, Mekkaoui M, Zaza S, Madani EM, Zr<strong>in</strong>eh A,<br />

Chovel<strong>on</strong> JM. Abiotic Degradati<strong>on</strong> <strong>of</strong> Imazethapyr <strong>in</strong> Aqueous<br />

Soluti<strong>on</strong>. J Envir<strong>on</strong> Sci Health B 2002; 37 (5): 445-451.<br />

4. Nejad H, Safarpour MM, Cavalier T, Picard G, Souza M,<br />

Krynitsky AJ, Chiu S, Miller P, Stout SJ. Capillary Electrophoresis<br />

Determ<strong>in</strong>ative and LC-MS C<strong>on</strong>firmatory Method for Screen<strong>in</strong>g<br />

Selected Imidazol<strong>in</strong><strong>on</strong>e Herbicides from Soil. J Capillary<br />

Electrophor 1998; 5 (1-2): 81-87.<br />

5. Ascenzo DG, Gentili A, Marchese S, Perret D. Development <strong>of</strong> a<br />

Method Based <strong>on</strong> Liquid Chromatography-Electrospray Mass<br />

Spectrometry for Analyz<strong>in</strong>g Imidazol<strong>in</strong><strong>on</strong>e Herbicides <strong>in</strong><br />

Envir<strong>on</strong>mental Water at Part-per-trilli<strong>on</strong> Levels. J Chromatogr<br />

A 1998; 800 (1): 109-119.<br />

6. Ramezani MK, Oliver DP, Kookana RS, Lao W, Gill G, Prest<strong>on</strong> C.<br />

Faster Degradati<strong>on</strong> <strong>of</strong> Herbicidally-active Enantiomer <strong>of</strong><br />

Imidazol<strong>in</strong><strong>on</strong>es <strong>in</strong> Soils. Chemosphere 2010; 79 (11): 1040-<br />

1045.<br />

7. Lao W, Gan J. High-performance Liquid Chromatographic<br />

Separati<strong>on</strong> <strong>of</strong> Imidazol<strong>in</strong><strong>on</strong>e Herbicide Enantiomers and Their<br />

Methyl Derivatives <strong>on</strong> Polysaccharide-coated Chiral Stati<strong>on</strong>ary<br />

Phases. J Chromatogr A 2006; 1117 (2): 184-193.<br />

8. Avila LA, Massey JH, Senseman SA, Armbrust KL, Lancaster SR,<br />

McCauley GN, Chandler JM. Imazethapyr Aqueous Photolysis,<br />

Reacti<strong>on</strong> Quantum Yield and Hydroxyl Radical Rate C<strong>on</strong>stant. J<br />

Agric Food Chem 2006; 54 (7): 2635-2639.<br />

9. Bresnahan GA, Kosk<strong>in</strong>en WC, Dexter AG, Lueschen WE.<br />

Influence <strong>of</strong> Soil pH-Sorpti<strong>on</strong> Interacti<strong>on</strong>s <strong>on</strong> Imazethapyr<br />

Carry-over. J Agric Food Chem 2000; 48 (5): 1929-1934.<br />

10. Le<strong>on</strong>e P, Gennari M, Gre NM, Boero V. Role <strong>of</strong> Ferrihydrite <strong>in</strong><br />

Adsorpti<strong>on</strong> <strong>of</strong> Three Imidazol<strong>in</strong><strong>on</strong>e Herbicides. J Agric Food<br />

Chem 2001; 49 (3): 1315-1320.<br />

11. Battagl<strong>in</strong> WA, Furl<strong>on</strong>g ET, Burkhardt MR, Peter CJ. Occurrence<br />

<strong>of</strong> Sulf<strong>on</strong>ylurea, Sulf<strong>on</strong>amide, Imidazol<strong>in</strong><strong>on</strong>e and O<strong>the</strong>r<br />

Herbicides <strong>in</strong> Rivers, Reservoirs and Ground Water <strong>in</strong> <strong>the</strong><br />

Midwestern United States, 1998. Sci Total Envir<strong>on</strong> 2000; 248<br />

(2-3): 123-133.<br />

12. Rumi IR, Mitsugu IH, Takashima K. Photocatalytic Degradati<strong>on</strong><br />

<strong>of</strong> Imazethapyr Herbicide at TiO 2/H 2O Interface. Chemosphere<br />

2005; 58 (10): 1461-1469.<br />

13. Lagan AA, Fago G, Mar<strong>in</strong>o A. Simultaneous Determ<strong>in</strong>ati<strong>on</strong> <strong>of</strong><br />

Imidazol<strong>in</strong><strong>on</strong>e Herbicides from Soil and Natural Waters Us<strong>in</strong>g<br />

Soil Column Extracti<strong>on</strong> and Off-l<strong>in</strong>e Solid-phase Extracti<strong>on</strong><br />

Followed by Liquid Chromatography With UV Detecti<strong>on</strong> or<br />

Liquid Chromatography/Electrospray Mass Spectroscopy. Anal<br />

Chem 1998; 70 (1): 121-130.<br />

14. Sakaliene O, Papiernik SK, Kosk<strong>in</strong>en WC, Spokas KA. Sorpti<strong>on</strong><br />

and Predicted Mobility <strong>of</strong> Herbicides <strong>in</strong> Baltic Soils. J Envir<strong>on</strong><br />

Sci Health B 2007; 42 (6): 641-647.<br />

15. Ahmad R, Rahman A. Sorpti<strong>on</strong> Characteristics <strong>of</strong> Atraz<strong>in</strong>e and<br />

Imazethapyr <strong>in</strong> Soils <strong>of</strong> New Zealand: Importance <strong>of</strong><br />

Independently Determ<strong>in</strong>ed Sorpti<strong>on</strong> Data. J Agric Food Chem<br />

2009; 57 (22): 10866-10875.<br />

16. Ahmad R, Kookana RS, Alst<strong>on</strong> AM. Sorpti<strong>on</strong> <strong>of</strong> Ametryn and<br />

Imazethapyr <strong>in</strong> Twenty-five Soils from Pakistan and Australia. J<br />

Envir<strong>on</strong> Sci Health B 2001; 36 (2): 143-160.<br />

17. Pace PF, Senseman SA, Ketchersid ML, Cralle HT. Supercritical<br />

Fluid Extracti<strong>on</strong> and Solid-Phase Extracti<strong>on</strong> <strong>of</strong> AC 263, 222 and<br />

Imazethapyr from Three Texas Soils. Arch Envir<strong>on</strong> C<strong>on</strong>tam<br />

Toxicol 1999; 37 (4): 440-444.<br />

18. Furl<strong>on</strong>g ET, Burkhardt MR, Gates PM, Werner SL, Battagl<strong>in</strong> WA.<br />

Rout<strong>in</strong>e Determ<strong>in</strong>ati<strong>on</strong> <strong>of</strong> Sulf<strong>on</strong>ylurea, Imidazol<strong>in</strong><strong>on</strong>e, and<br />

Sulf<strong>on</strong>amide Herbicides at Nanogram-per-liter C<strong>on</strong>centrati<strong>on</strong>s<br />

by Solid-phase Extracti<strong>on</strong> and Liquid Chromatography Mass<br />

Spectrometry. Sci Total Envir<strong>on</strong> 2000; 248: 135-146.<br />

19. Raschke U, Werner G, Wilde H, Stottmeister U. Photolysis <strong>of</strong><br />

Metribuz<strong>in</strong> <strong>in</strong> Oxygenated Aqueous Soluti<strong>on</strong>s. Chemosphere<br />

1998; 36 (8): 1745-1758.<br />

20. K<strong>on</strong>stant<strong>in</strong>ou IK, Zarkadis AK, Albanis TA. Photodegradati<strong>on</strong> <strong>of</strong><br />

Selected Herbicides <strong>in</strong> Various Natural Waters and Soils under<br />

Envir<strong>on</strong>mental C<strong>on</strong>diti<strong>on</strong>s. J Envir<strong>on</strong> Qual 2001; 30 (1): 121-<br />

130.<br />

21. Le AP, Mellouki A, Munoz A, Borras E, Mart<strong>in</strong>-Reviejo M,<br />

Wirtz K. Triflural<strong>in</strong>: Photolysis Under Sunlight C<strong>on</strong>diti<strong>on</strong>s<br />

and Reacti<strong>on</strong> With HO . Radicals. Chemosphere 2007; 67: 376-<br />

383.<br />

22. Premasis S, Marc L, Sebastian Z, Michael S. Photolysis <strong>of</strong><br />

14C-<br />

Sulfadiaz<strong>in</strong>e <strong>in</strong> Water and Manure. Chemosphere 2008; 71:<br />

717-725.<br />

23. Helena P, Lucija ZK. Evaluati<strong>on</strong> <strong>of</strong> Photolysis and Hydrolysis <strong>of</strong><br />

Atraz<strong>in</strong>e and Its First Degradati<strong>on</strong> Products <strong>in</strong> <strong>the</strong> Presence <strong>of</strong><br />

Humic Acids. Envir<strong>on</strong> Pollut 2005; 133: 517-529.<br />

24. Aikater<strong>in</strong>i DD, Sakkas VA, Triantafyllos AA. Triflural<strong>in</strong><br />

Photolysis <strong>in</strong> Natural Waters and Under <strong>the</strong> Presence <strong>of</strong><br />

Isolated Organic Matter and Nitrate I<strong>on</strong>s: k<strong>in</strong>etics and<br />

photoproduct analysis. J Photochem Photobiol A Chem 2004;<br />

163: 473-480.<br />

25. Sabr<strong>in</strong>a H, Am<strong>in</strong>a AK, Alexandrater H, Abdelaziz B, Claire R.<br />

Photolysis <strong>of</strong> Fluometur<strong>on</strong> <strong>in</strong> <strong>the</strong> Presence <strong>of</strong> Natural Water<br />

C<strong>on</strong>stituents. Chemosphere 2007; 69: 1647-1654.<br />

26. Cox L, Hermosfn MC, Cornejo J, Mansour M. Photolysis <strong>of</strong><br />

Metamitr<strong>on</strong> <strong>in</strong> Water <strong>in</strong> <strong>the</strong> Presence <strong>of</strong> Soils and Soil<br />

Comp<strong>on</strong>ents. Chemosphere 1996; 33 (10): 2057-2064.<br />

27. Da Silva JP, Vieira Ferreira LF, Da Silva AM. Aqueous<br />

Photochemistry <strong>of</strong> Pesticides Triadimef<strong>on</strong> and Triadimenol. J<br />

Photochem Photobiol A Chem 2003; 154: 293-298.<br />

28. OECD. Freshwater Alga and Cyanobacteria, Growth Inhibiti<strong>on</strong><br />

Test. Guidel<strong>in</strong>es for <strong>the</strong> Test<strong>in</strong>g <strong>of</strong> Chemicals 2006; 201.<br />

51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!