15.11.2014 Views

Indoor Environment and Thermal Comfort

Indoor Environment and Thermal Comfort

Indoor Environment and Thermal Comfort

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Environment</strong>al Engineering<br />

1 <strong>Indoor</strong> <strong>Environment</strong> <strong>and</strong> <strong>Thermal</strong><br />

<strong>Comfort</strong><br />

Vladimír Zmrhal (room no. 814)<br />

Master degree course<br />

1 st semester<br />

Dpt<br />

Dpt. of<br />

<strong>Environment</strong>al<br />

Engineering<br />

1<br />

<strong>Environment</strong>al Engineering<br />

CONTENT<br />

Lecture no. Topic Lecturer<br />

1 <strong>Indoor</strong> <strong>Environment</strong> <strong>and</strong> <strong>Thermal</strong> <strong>Comfort</strong> Dr. Zmrhal<br />

2 – 4 Heat Transfer <strong>and</strong> Fluid Mechanics Dr. Barták<br />

5 – 7 Heating Dr. Hojer<br />

8 – 10 Ventilation <strong>and</strong> Air-conditioning Dr. Zmrhal<br />

11 Noise reduction Dr. Kučera<br />

Study Information System - KOS !!!<br />

Timetable<br />

2<br />

1


<strong>Environment</strong>al Engineering<br />

EXAM<br />

Exchange Students (Erasmus)<br />

4 tests (minimum 50 points from 100)<br />

Students of Master Study Programme Mechanical Engineering<br />

(Field of study: <strong>Environment</strong>al Engineering)<br />

4 test (minimum 50 points from 100)<br />

oral examination<br />

State Final Exam !!!<br />

(January)<br />

3<br />

<strong>Environment</strong>al Engineering<br />

TESTS<br />

Week no. Topic<br />

5 Heat Transfer <strong>and</strong> Fluid Mechanics<br />

8 Heating<br />

11 Ventilation <strong>and</strong> Air-conditioning<br />

12 Noise <strong>and</strong> Vibration, <strong>Indoor</strong> <strong>Environment</strong> <strong>and</strong> <strong>Thermal</strong> <strong>Comfort</strong><br />

13 Resit<br />

http://www.users.fs.cvut.cz/~zmrhavla/EE/EE.htm<br />

4<br />

2


<strong>Environment</strong>al Engineering<br />

LITERATURE<br />

ASHRAE H<strong>and</strong>book<br />

2008 HVAC Systems <strong>and</strong> Equipment<br />

2009 Fundamentals<br />

2010 Refrigeration<br />

2011 HVAC Application<br />

5<br />

<strong>Indoor</strong> <strong>Environment</strong><br />

Factors of <strong>Indoor</strong> <strong>Environment</strong><br />

<strong>Thermal</strong> environment<br />

<strong>Indoor</strong> contaminants (CO 2 , combustion products, VOC, tobacco<br />

smoke, …)<br />

Outdoor pollutants<br />

Odours<br />

Acoustic environment<br />

Lightning<br />

Ionizing radiation<br />

Electromagnetic waves<br />

…<br />

IAQ – <strong>Indoor</strong> Air Quality<br />

6<br />

3


Physiology<br />

Heat Production<br />

Q = Q −W : A<br />

m<br />

Q Qm<br />

W<br />

= −<br />

A A A<br />

D D D<br />

m<br />

D<br />

[W]<br />

[W/m 2 ]<br />

q = q − w<br />

[W/m 2 ]<br />

q m<br />

w<br />

…total metabolic rate<br />

…external mechanical work<br />

A D …body surface area [m 2 ]<br />

7<br />

Physiology<br />

DuBois surface area<br />

A = 0.202m h<br />

D<br />

0.425 0.725<br />

[m 2 ]<br />

f<br />

cl<br />

A<br />

A<br />

= cl<br />

D<br />

… clothing area factor - correction factor for<br />

clothed body<br />

A cl … area of clothed body [m 2 ]<br />

A D = 1.8 m 2<br />

… for man 70 kg <strong>and</strong> 1.73 m<br />

f cl = 1.1 ÷ 1.83<br />

8<br />

4


Physiology<br />

Human Thermoregulation<br />

metabolic activities of the body result almost completely in heat that<br />

must be continuously dissipated <strong>and</strong> regulated to maintain normal<br />

body temperature<br />

internal temperature rise with the activity ∼ 37 °C<br />

temperature regulatory centre in the brain (hypothalamus)<br />

(36.8 °C at rest of comfort; 37.4 when walking)<br />

skin temperature 33 to 34 °C<br />

resting adults produces about 100 W of heat<br />

9<br />

Energy Balance<br />

Figure on the board<br />

q = qm − w = ± qc ± qr + qev ± qres ± q<br />

{<br />

con [W/m 2 ]<br />

0<br />

10<br />

5


Energy Balance<br />

Total metabolic rate<br />

m<br />

External mechanical work<br />

w = η ⋅q m<br />

[W/m 2 ]<br />

η<br />

…mechanical efficiency η = 0 …for most activities<br />

η max = 0.2 …bicycle ergometer<br />

11<br />

Energy Balance<br />

Metabolic heat generation<br />

Activity<br />

Sleeping<br />

Reading, seated<br />

Filing, seated<br />

Walking 2 km/h<br />

Dancing<br />

q … 1 met 2 q m<br />

[W/m 2 ] [met]<br />

46 0.8<br />

58<br />

1<br />

70 1.2<br />

110 1.9<br />

140 to 255 2.4 to 4.4<br />

= 58.1 W/m<br />

12<br />

6


Energy Balance<br />

Heat transfer by convection<br />

( )<br />

q = h f t − t [W/m 2 ]<br />

c c cl cl a<br />

Convective heat transfer coefficient h c [W/m 2 K]<br />

h = 2.38( t − t ) 0.25<br />

c cl a<br />

… free convection<br />

hc<br />

= 12.1<br />

w<br />

… forced convection<br />

13<br />

Energy Balance<br />

Heat exchange by radiation<br />

( )<br />

q = h f t − t [W/m 2 ]<br />

r r cl cl r<br />

Radiant heat transfer coefficient h r [W/m 2 K]<br />

h<br />

r<br />

A T −T<br />

= εσ<br />

A t − t<br />

4 4<br />

r cl r<br />

D cl r<br />

≈ 4.7ε<br />

[W/m 2 K]<br />

ε …emissivity of the clothing, usually 0.95 [-]<br />

σ …Stefan-Boltzmann constant 5.6710 -8 [W/m 2 K 4 ]<br />

A r …effective radiation area of the body [m 2 ], A r /A D ≈ 0.7<br />

14<br />

7


Energy Balance<br />

Conduction through clothing<br />

1<br />

qr + qc = ( tsk − tcl<br />

)<br />

[W/m 2 ]<br />

R<br />

cl<br />

R<br />

cl<br />

⎛ s ⎞ ⎛ s ⎞<br />

= ∑⎜ ⎟ + ∑⎜ ⎟<br />

⎝ λ ⎠ ⎝ λ ⎠<br />

cl<br />

air<br />

[W/m 2 K]<br />

Rcl<br />

= 0.155⋅ I<br />

… 1 clo = 0.155 m 2 K/W<br />

15<br />

Energy Balance<br />

Clothing insulation<br />

Clothing ensembles<br />

Trousers, long-sleeved shirt, longsleeved<br />

sweater, T-shirt<br />

Walking shorts, short-sleeved shirt<br />

R [m 2 K/W]<br />

0.155<br />

0.055<br />

I [clo]<br />

1<br />

0.36<br />

…<br />

…<br />

…<br />

16<br />

8


Energy Balance<br />

Respiration heat loss<br />

q<br />

res<br />

( − h )<br />

M hex<br />

=<br />

A<br />

D<br />

in<br />

[W/m 2 ]<br />

M<br />

h ex<br />

h in<br />

…pulmonary ventilation rate [kg/s]<br />

…enthalpy of exhaled air [J/kg]<br />

…ethalpy of inspired (ambient) air [J/kg]<br />

−<br />

M = ⋅ 6 ⋅q ⋅ A<br />

1.43 10<br />

m D<br />

[kg/s]<br />

17<br />

Energy Balance<br />

t = 32.6 + 0.066⋅ t + 32⋅<br />

x<br />

ex in in<br />

ϕ = 100<br />

ex<br />

[°C]<br />

[%]<br />

or<br />

x = 0.0277 + 0.000065 ⋅ t + 0.2⋅ x<br />

[kg w.v. /kg d.a. ]<br />

t in<br />

ex in in<br />

… temperature of inspired (ambient) air [°C]<br />

x in … humidity ratio [kg w.v. /kg d.a. ]<br />

18<br />

9


Energy Balance<br />

Evaporative heat loss from the skin<br />

q = q + q<br />

ev ev , dif ev , rsw<br />

[W/m 2 ]<br />

natural diffusion of water through the skin<br />

( )<br />

q = ⋅ ⋅t − − p<br />

−3<br />

ev , dif<br />

3.05 10 256<br />

sk<br />

3373<br />

v<br />

p v<br />

t sk<br />

… water vapor pressure in ambient air [Pa]<br />

… temperature of skin [°C]<br />

19<br />

Energy Balance<br />

heat loss by evaporation of sweat secretion<br />

A<br />

q = h p − p<br />

"<br />

( )<br />

ev<br />

ev , rsw ev v , sk v<br />

AD<br />

h ev … evaporative heat transfer coefficient [W/m 2 K]<br />

A ev … effective evaporative area of the body [m 2 ]<br />

p“ v,sk … saturated water vapor pressure at skin temperature [Pa]<br />

h<br />

ev<br />

16.7hc<br />

=<br />

⎡ ⎛ 1 ⎞<br />

1+ 2.22h ⎢R − ⎜1− ⎟ h + h<br />

⎣ ⎝ fcl<br />

⎠<br />

( )<br />

c cl c r<br />

⎤<br />

⎥<br />

⎦<br />

20<br />

10


Parameters Influenced <strong>Thermal</strong> <strong>Comfort</strong><br />

<strong>Indoor</strong> <strong>Environment</strong> Parametres<br />

air temperature t a [°C]<br />

relative humidity (RH) ϕ [%]<br />

mean radiant temperature (MRT) t r [°C]<br />

air velocity w a [m/s]<br />

turbulence intensity Tu [-]<br />

Personal Parameters<br />

metabolism q m <strong>and</strong> work w<br />

thermal insulation of the clothing<br />

<strong>and</strong> also age, sex (male/female), …<br />

21<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

condition of mind that expresses satisfaction with the thermal<br />

environment<br />

effect on health <strong>and</strong> performance<br />

Prediction of <strong>Thermal</strong> <strong>Comfort</strong><br />

Rohles <strong>and</strong> Nevins (1971) indicate values that provides thermal<br />

comfort (optimum)<br />

required temperature of skin<br />

t<br />

,<br />

= 35.7 − 0.0275( q − w )<br />

sk req<br />

required evaporative heat loss<br />

m<br />

( )<br />

qev , rsw , req<br />

= 0.42 qm<br />

− w − 58.15<br />

22<br />

11


<strong>Thermal</strong> <strong>Comfort</strong><br />

<strong>Thermal</strong> comfort equation (TCE)<br />

( ) ( )<br />

q − w = h f t − t + h f t − t +<br />

m c cl cl a r cl cl r<br />

q c<br />

( ⎡<br />

( qm<br />

w ) ⎤ pa<br />

)<br />

−3<br />

+ 3.06⋅10 256 35.7 − 0.0275 − − − 3373 +<br />

⎣<br />

t sk,req<br />

⎦<br />

q ev,dif<br />

−6<br />

( q w ) q ( h h )<br />

+ 0.42 − − 58.15 + 1.43⋅10<br />

−<br />

m m ex in<br />

q res<br />

23<br />

q r<br />

q ev,rsw,req<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

where t cl calculates from the heat flow through clothing<br />

1<br />

qc + qr = ( tsk − tcl<br />

)<br />

Rcl<br />

1<br />

hcfcl ( tcl − ta ) + hrfcl ( tcl − tr ) = ⎡ 35.7 0.0275 ( qm w ) tcl<br />

R<br />

⎣ − − − ⎤⎦<br />

cl<br />

q c q r<br />

t sk,req<br />

tcl = 35.7 − 0.0275( qm − w ) − Rcl ⎡⎣<br />

hcfcl ( tcl − ta ) + hrfcl ( tcl − tr<br />

) ⎤⎦<br />

iteration<br />

24<br />

12


<strong>Thermal</strong> <strong>Comfort</strong><br />

Example: Heat flow through clothing<br />

???<br />

25<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

ASHRAE <strong>Thermal</strong> Sensation Scale<br />

+3 hot<br />

+2 warm<br />

+1 slightly warm<br />

0 neutral<br />

-1 slightly cool<br />

-2 cool<br />

-3 cold<br />

<strong>Thermal</strong> Sensation<br />

=<br />

Predicted Mean Vote<br />

(PMV)<br />

26<br />

13


<strong>Thermal</strong> <strong>Comfort</strong><br />

Fanger‘s Model of <strong>Thermal</strong> <strong>Comfort</strong> (St<strong>and</strong>ard Model)<br />

thermal load on the body<br />

L = actual heat flow from the body – heat loss to the<br />

actual environment for a person hypothetically kept at<br />

comfort values of t sk <strong>and</strong> q ev,rsw at the actual activity level<br />

respectively<br />

L = left side of theTCE – right side of the TCE<br />

27<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

Predicted Mean Vote – PMV index<br />

PMV predicts the mean response of a large group of people<br />

according to thermal sensation scale<br />

−0.036q ( 0.303<br />

m<br />

0.028)<br />

PMV = e + L<br />

Predicted Percent of Dissatisfied – PPD index<br />

PPD = − ⎡<br />

⎣− PMV + PMV<br />

4 2<br />

100 95exp (0.03353 0.2179 )<br />

⎤<br />

⎦<br />

28<br />

14


<strong>Thermal</strong> <strong>Comfort</strong><br />

PMV = 0 → about 5 % of the people will be dissatisfied<br />

29<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

Category of global<br />

thermal comfort<br />

A<br />

B<br />

C<br />

PPD [%]<br />


<strong>Thermal</strong> <strong>Comfort</strong><br />

Operative temperature<br />

( ) ( )<br />

q + q = h + h f t − t<br />

c r c r cl cl o<br />

h = h + h<br />

c<br />

r<br />

( − ) + ( − ) = ( + )( − )<br />

h t t h t t h h t t<br />

c cl a r cl r c r cl o<br />

t<br />

o<br />

h t<br />

=<br />

h<br />

c a<br />

c<br />

+ h t<br />

+ h<br />

r r<br />

r<br />

[°C]<br />

31<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

=<br />

c<br />

hc<br />

+<br />

r<br />

A h h<br />

= + ( 1−<br />

)<br />

t At A t<br />

o a r<br />

w [m/s]<br />

A [-]<br />


<strong>Thermal</strong> <strong>Comfort</strong><br />

Operative temperature necessary for comfort (PMV = 0) of person<br />

in summer clothing at RH = 50 %<br />

33<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

Mean radiant Temperature<br />

the uniform temperature of an imaginary enclosure in which radiant<br />

heat transfer from the human equals the radiant heat transfer in the<br />

actual nonuniform enclosure<br />

t F T F T F T<br />

4<br />

4 4 4<br />

r<br />

=<br />

p−1 1<br />

+<br />

p−2 2<br />

+ ... +<br />

p−n n<br />

− 273.15<br />

[°C]<br />

F p-n<br />

T n<br />

…angle factor between a person <strong>and</strong> surface n<br />

…surface temperature of the surface [K]<br />

34<br />

17


<strong>Thermal</strong> <strong>Comfort</strong><br />

35<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

Simplification - elementary case (rectangle vs. point)<br />

Eckert<br />

F<br />

1−2<br />

1 1 c a + b + c<br />

= − arctg<br />

8 4π<br />

ab<br />

2 2 2<br />

In the room:<br />

∑F1 − 2<br />

= 1<br />

36<br />

18


<strong>Thermal</strong> <strong>Comfort</strong><br />

Angle factor algebra<br />

[°C]<br />

F = F + F + F + F<br />

B−A B−11 B−12 B−21 B−22<br />

F = F − F<br />

B−A B−11 B−12<br />

( )<br />

F = F − F + F + F<br />

B−A B−11 B−12 B−21 B−22<br />

37<br />

<strong>Thermal</strong> <strong>Comfort</strong><br />

Example: Calculation of MRT <strong>and</strong> t o<br />

Room: L = 6 m, W = 4 m, H = 2.7 m<br />

t a = 28 °C<br />

t w = t a<br />

t ceiling = 18 °C<br />

w = 0.15 m/s<br />

Calculate MRT <strong>and</strong> t o in the middle of the room at hight h = 1.5 m.<br />

MRT = ?<br />

t o = ? 2 2 2<br />

F<br />

1−2<br />

1 1 c a + b + c<br />

= − arctg<br />

8 4π<br />

ab<br />

38<br />

19


Local Discomfort<br />

<strong>Thermal</strong> non-uniform conditions<br />

radiant temperature asymmetry<br />

draft<br />

vertical air temperature difference<br />

warm or cold floors<br />

Source: <strong>Thermal</strong> comfort. The booklet. INNOVA 2002. <br />

39<br />

Local Discomfort<br />

Radiant temperature asymmetry<br />

the difference between the<br />

plane radiant temperature of<br />

the opposite sides of a small<br />

plane element<br />

∆ t = t − t<br />

pr pr 1 pr 2<br />

40<br />

20


Local Discomfort<br />

Radiant temperature asymmetry ∆t pr [°C]<br />

Category of thermal comfort<br />

A,B<br />

Warm ceiling<br />


Local Discomfort<br />

Draft Rate<br />

DR = − t w − w ⋅ Tu +<br />

0.62<br />

(34<br />

a<br />

)(<br />

a<br />

0.05) (0.37<br />

a<br />

3.14)<br />

Source: <strong>Thermal</strong> comfort. The booklet. INNOVA 2002. <br />

43<br />

Local Discomfort<br />

Vertical air temperature difference<br />

100<br />

PD =<br />

1 + exp 5.67 − 0.856 ∆ta<br />

, v<br />

( )<br />

Source: <strong>Thermal</strong> comfort. The booklet. INNOVA 2002. <br />

44<br />

22


Local Discomfort<br />

Warm or cold floors<br />

Category<br />

of thermal<br />

comfort<br />

A,B<br />

C<br />

Percentage<br />

of<br />

dissatisfied<br />

PD [%]<br />


Adaptive Model of <strong>Thermal</strong> <strong>Comfort</strong><br />

Adaptation – people can acclimatize themselves<br />

changing posture <strong>and</strong> activity<br />

clothing changing<br />

leaving the space / move<br />

opening a window, shading …<br />

For buildings without mechanical cooling (air-conditioning) or with lowenergy<br />

cooling systems (night ventilation, …)<br />

47<br />

Thank you for your<br />

attention<br />

48<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!