16.11.2014 Views

Spontaneous reduction of Eu3q ion in Al co ... - Davidson Physics

Spontaneous reduction of Eu3q ion in Al co ... - Davidson Physics

Spontaneous reduction of Eu3q ion in Al co ... - Davidson Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

May 1999<br />

Ž .<br />

Materials Letters 39 1999 227–231<br />

www.elsevier.<strong>co</strong>mrlocatermatlet<br />

<strong>Spontaneous</strong> <strong>reduct<strong>ion</strong></strong> <strong>of</strong> Eu 3q <strong>ion</strong> <strong>in</strong> <strong>Al</strong> <strong>co</strong>-doped sol–gel silica<br />

matrix dur<strong>in</strong>g densificat<strong>ion</strong><br />

A. Biswas ) , C.S. Friend, P.N. Prasad<br />

Photonics Research Laboratory, State UniÕersity <strong>of</strong> New York at Buffalo, Buffalo, NY 14260, USA<br />

Received 7 December 1998; accepted 11 December 1998<br />

Abstract<br />

Eu and Eu-<strong>Al</strong> <strong>co</strong>-doped silica glasses have been prepared by impregnat<strong>in</strong>g the pores <strong>of</strong> a base catalysed tetraethylorthosilicate<br />

Ž TEOS.<br />

gel with the nitrate salt <strong>of</strong> Eu and <strong>Al</strong> and subsequent densificat<strong>ion</strong> around 1125 to 11508C. Absorpt<strong>ion</strong>,<br />

emiss<strong>ion</strong> and excitat<strong>ion</strong> spectra <strong>of</strong> these glasses <strong>in</strong>dicate that Eu 3q <strong>ion</strong>s are spontaneously reduced to Eu 2q <strong>in</strong> the presence<br />

<strong>of</strong> <strong>Al</strong> 3q dur<strong>in</strong>g s<strong>in</strong>ter<strong>in</strong>g <strong>of</strong> the glasses above 10008C. q 1999 Published by Elsevier Science B.V. <strong>Al</strong>l rights reserved.<br />

Keywords: Sol–gel; Silica glass; Post-dop<strong>in</strong>g; Divalent europium; Optical properties<br />

1. Introduct<strong>ion</strong><br />

Glasses <strong>in</strong><strong>co</strong>rporated with lum<strong>in</strong>escent species are<br />

<strong>of</strong> <strong>co</strong>nsiderable <strong>in</strong>terest for applicat<strong>ion</strong>s as solid state<br />

lasers wx 1 , optical data storage units w2–4 x, chemical<br />

sensors w5,6x and waveguides w7,8 x. The silica glass<br />

Ž SiO .<br />

2 is one <strong>of</strong> the most technologically important<br />

materials <strong>in</strong> optical Ž e.g., fibers. and electrical Že.g.,<br />

<strong>in</strong>sulator.<br />

applicat<strong>ion</strong>s due to its many attractive<br />

properties w9,10 x. These properties <strong>in</strong>clude high UV<br />

transparency, high mechanical strength, high T g,ex-<br />

tremely low thermal expans<strong>ion</strong>, and low refractive<br />

<strong>in</strong>dex. These features make the glass a strong candidate<br />

as a host for rare earth dopants.<br />

Of particular <strong>in</strong>terest among the rare earth <strong>ion</strong>s<br />

are Eu 2q and Sm 2q s<strong>in</strong>ce the electronic transit<strong>ion</strong>s,<br />

4f ny1 5d4f n , <strong>of</strong> these divalent <strong>ion</strong>s are dipole<br />

) Correspond<strong>in</strong>g author. Tel.: q1-716-6800-x2098; Fax: q1-<br />

716-645-6915<br />

allowed. Therefore, the emiss<strong>ion</strong> <strong>of</strong> divalent rare<br />

earth <strong>ion</strong>s should be approximately 10 6 times more<br />

<strong>in</strong>tense than the f–f transit<strong>ion</strong>s <strong>of</strong> the <strong>co</strong>rrespond<strong>in</strong>g<br />

trivalent rare earth <strong>ion</strong>s. The divalent rare earth <strong>ion</strong><br />

may be <strong>in</strong><strong>co</strong>rporated <strong>in</strong> a glass through a melt method,<br />

but this requires high temperature, a strong reduc<strong>in</strong>g<br />

atmosphere and usually results <strong>in</strong> <strong>co</strong>ntam<strong>in</strong>at<strong>ion</strong> from<br />

the substrate w11 x. The sol–gel process has been<br />

shown to be a better choice due to its moderate<br />

<strong>co</strong>ndit<strong>ion</strong>s <strong>of</strong> temperature and atmosphere w11–13 x.<br />

w x<br />

2q<br />

Nogami et al. 11 have prepared Sm doped<br />

porous alum<strong>in</strong>osilicate glasses by the sol–gel method<br />

us<strong>in</strong>g H 2–N2<br />

gas at 8008C. They also demonstrated<br />

persistent spectral hole burn<strong>in</strong>g at room temperature<br />

w x<br />

2q<br />

14 . The same group has also prepared Eu doped<br />

glasses by reduc<strong>in</strong>g Eu 3q <strong>ion</strong>s with a H 2–N2<br />

gas<br />

mixture at 8008C w12,15 x. An enhanced emiss<strong>ion</strong> <strong>of</strong><br />

Eu 2q at 440 nm was observed <strong>in</strong> <strong>Al</strong> 2O3<br />

<strong>co</strong>-doped<br />

silica glasses.<br />

w x<br />

3q<br />

Zaitoun et al. 16 prepared Eu doped silica<br />

gels and found the presence <strong>of</strong> Eu 2y . They argued<br />

00167-577Xr99r$ - see front matter q 1999 Published by Elsevier Science B.V. <strong>Al</strong>l rights reserved.<br />

Ž .<br />

PII: S0167-577X 99 00011-7


228<br />

( )<br />

A. Biswas et al.rMaterials Letters 39 1999 227–231<br />

that the electron hole carrier was responsible for the<br />

surface-assisted <strong>reduct<strong>ion</strong></strong> <strong>of</strong> Eu 3q .<br />

Recently, Cordoncillo et al. w17x<br />

have <strong>in</strong><strong>co</strong>rporated<br />

Eu 2q <strong>in</strong> an organic <strong>in</strong>organic hybrid matrix at<br />

room temperature. They used zir<strong>co</strong>nium tetrapropoxide<br />

to liberate the H 2 gas, which reduced Eu 3q to<br />

Eu 2q <strong>in</strong> situ.<br />

In this letter, we report for the first time, to our<br />

knowledge, spontaneous <strong>reduct<strong>ion</strong></strong> <strong>of</strong> Eu 3q to Eu 2q<br />

<strong>in</strong> an <strong>Al</strong> <strong>co</strong>-doped sol–gel silica matrix.<br />

2. Experimental<br />

Ž .<br />

Tetraethylorthosilicate TEOS was hydrolyzed<br />

with a 0.1 N NH OH solut<strong>ion</strong>. The molar ratio <strong>of</strong><br />

4<br />

TEOS:H 2O was 1:10. The mixture was magnetically<br />

stirred to obta<strong>in</strong> a clear homogeneous solut<strong>ion</strong> Ž sol ..<br />

The sol was cast <strong>in</strong>to a polystyrene petri-dish and<br />

<strong>co</strong>vered with a polyethylene film. The sol transformed<br />

<strong>in</strong>to a gel with<strong>in</strong> 24 h at room temperature.<br />

The gels were aged and dried at 458C for 2 weeks<br />

and f<strong>in</strong>ally heat treated at 10008C to form a rigid<br />

porous silica matrix.<br />

The porous silica gels were soaked with an<br />

ethanolic solut<strong>ion</strong> <strong>of</strong> EuŽ NO .<br />

3 3P5H 2O for 12 h. For<br />

alum<strong>in</strong>um <strong>co</strong>-dop<strong>in</strong>g, <strong>Al</strong>Ž NO .<br />

3 3P9H 2O was added<br />

to the solut<strong>ion</strong>. The <strong>co</strong>ncentrat<strong>ion</strong> <strong>of</strong> EuŽ NO .<br />

3 3P<br />

5H 2O was varied from 0.01 to 0.1 M and that for<br />

<strong>Al</strong>Ž NO . P9H O from 0.1 to 0.5 M. After remov<strong>in</strong>g<br />

3 3 2<br />

from the solut<strong>ion</strong>, the gels were dried at 508C for 12<br />

h and then densified at around 1125 to 11508C to<br />

form dense, pore free silica glasses.<br />

The pore volume and size were measured by<br />

nitrogen adsorpt<strong>ion</strong> on a Micromeritics AFAP-2010.<br />

The UV–Vis absorpt<strong>ion</strong> spectra were measured on a<br />

Shimadzu UV-3101 spectrophotometer. Emiss<strong>ion</strong> and<br />

excitat<strong>ion</strong> spectra were re<strong>co</strong>rded on a Shimadzu<br />

RF5000U spectr<strong>of</strong>luorophotometer.<br />

they became clear and pore free. Fig. 1 shows the<br />

pictures <strong>of</strong> porous gels heated to 10008C and s<strong>in</strong>tered<br />

at 11408C. The <strong>co</strong>ncentrat<strong>ion</strong>s <strong>of</strong> Eu 2O3 and <strong>Al</strong> 2O3<br />

<strong>in</strong> the f<strong>in</strong>al glasses were calculated to be 1.1 and<br />

0.325 wt.%, respectively, for the samples soaked <strong>in</strong> a<br />

0.1 M solut<strong>ion</strong> <strong>of</strong> their nitrate salts.<br />

Fig. 2 shows the room temperature absorpt<strong>ion</strong><br />

spectra <strong>of</strong> Eu and Eu–<strong>Al</strong> impregnated densified<br />

glasses. The Eu-doped glass Ž Fig. 2a.<br />

shows two<br />

absorpt<strong>ion</strong> peaks at 396 and 465 nm <strong>co</strong>rrespond<strong>in</strong>g<br />

to the transit<strong>ion</strong> from the fundamental 7 F0<br />

to the<br />

excited 5 L and 5 6 D2<br />

levels <strong>of</strong> Eu 3q <strong>ion</strong>s, respectively,<br />

and similar to those observed by others w13,17 x.<br />

The Eu–<strong>Al</strong> doped glass, on the other hand, shows an<br />

<strong>in</strong>tense peak at 288 nm Ž Fig. 2b.<br />

which <strong>co</strong>rresponds<br />

to the dipole allowed f–d transit<strong>ion</strong> <strong>of</strong> the Eu 2q <strong>ion</strong>s<br />

w15,16 x. Thus, <strong>in</strong> the <strong>Al</strong> <strong>co</strong>-doped glass Eu is present<br />

<strong>in</strong> its divalent state.<br />

Fig. 3 shows the fluorescence spectra <strong>of</strong> the Eu<br />

and Eu–<strong>Al</strong> <strong>co</strong>-doped gels fired at 8008C. The samples<br />

show similar spectra with peaks at 578, 590 and<br />

614 nm for both samples, except with higher <strong>in</strong>tensity<br />

<strong>in</strong> the Eu–<strong>Al</strong> <strong>co</strong>-doped gel. The emiss<strong>ion</strong> peaks<br />

are due to the 5 D 7 0 FjŽ js0, 1, 2. transit<strong>ion</strong>s <strong>of</strong> Eu 3q<br />

<strong>ion</strong>s and are <strong>in</strong> good agreement with those reported<br />

earlier w12,18,19 x. The <strong>in</strong>crease <strong>in</strong> emiss<strong>ion</strong> <strong>in</strong>tensity<br />

<strong>of</strong> Eu 3q with <strong>Al</strong> <strong>co</strong>-dop<strong>in</strong>g <strong>in</strong> a sol–gel glass has<br />

also been reported previously w12 x. In the <strong>Al</strong> <strong>co</strong>-doped<br />

silica matrix, the rare-earth <strong>ion</strong>s are preferentially<br />

surrounded by the <strong>Al</strong> 3q <strong>ion</strong>s form<strong>in</strong>g <strong>Al</strong>–O–RE<br />

bonds <strong>in</strong> order to share oxygen atoms w20 x. Thus, a<br />

3. Results and discuss<strong>ion</strong><br />

The 10008C fired undoped gels have a highly<br />

porous <strong>in</strong>ter<strong>co</strong>nnect<strong>in</strong>g network. The adsorpt<strong>ion</strong><br />

measurement shows the average pore size to be 8–10<br />

nm with 60% porosity. The gels have a fa<strong>in</strong>t milky<br />

appearance. However, when fired at 1125–11508C,<br />

Fig. 1. Photograph <strong>of</strong> Eu–<strong>Al</strong> impregnated gel fired at Ž. a 10008C<br />

and Ž. b 11408C.


( )<br />

A. Biswas et al.rMaterials Letters 39 1999 227–231 229<br />

Fig. 2. Room temperature absorpt<strong>ion</strong> spectra <strong>of</strong> Ž. a Eu-doped glass<br />

Ž. b Eu–<strong>Al</strong> <strong>co</strong>-doped glass, densified at 11408C. Inset shows<br />

magnified spectrum <strong>of</strong> Ž. a .<br />

Fig. 4. Fluorescence spectra <strong>of</strong> the glasses densified above and<br />

Ž. Ž.<br />

doped with a Eu and b Eu–<strong>Al</strong>.<br />

larger separat<strong>ion</strong> among the rare earth <strong>ion</strong>s is expected<br />

<strong>in</strong> alum<strong>in</strong>a <strong>co</strong>-doped silica.<br />

The fluorescence spectra <strong>of</strong> the Eu and Eu–<strong>Al</strong><br />

<strong>co</strong>-doped glasses densified at 11408C are shown <strong>in</strong><br />

Fig. 4. The Eu-doped sample shows emiss<strong>ion</strong> similar<br />

to that heated at 8008C Ž Fig. 4a .. The Eu–<strong>Al</strong> doped<br />

sample, however, does not exhibit any emiss<strong>ion</strong><br />

related to Eu 3q <strong>ion</strong>s. Instead, it shows a broad<br />

<strong>in</strong>tense peak at 430 nm Ž Fig. 4b .. The emiss<strong>ion</strong> at<br />

430 nm is due to the 4f 6 5d 1 4f 7 5d 0 transit<strong>ion</strong> <strong>of</strong><br />

Eu 2q <strong>ion</strong>s and similar to that observed by Nogami et<br />

al. w12x<br />

<strong>in</strong> a porous Eu-doped glass reduced by<br />

flow<strong>in</strong>g H 2. The spectrum also matches with that<br />

2q<br />

due to the Eu <strong>ion</strong>s <strong>in</strong> silica xerogel w16 x.<br />

The <strong>reduct<strong>ion</strong></strong> <strong>of</strong> Eu 3q <strong>ion</strong>s <strong>in</strong> <strong>Al</strong> <strong>co</strong>-doped glasses<br />

is further supported by the excitat<strong>ion</strong> spectra. Fig. 5<br />

shows the excitat<strong>ion</strong> spectra <strong>of</strong> Eu and Eu–<strong>Al</strong> <strong>co</strong>doped<br />

samples fired at 8008C, monitor<strong>in</strong>g the emiss<strong>ion</strong><br />

at 614 nm. Both spectra are identical with peaks<br />

at 368, 387, 396 and 463 nm. The peaks represent<br />

the typical transit<strong>ion</strong> <strong>of</strong> Eu 3q <strong>ion</strong>s <strong>in</strong> a silicate matrix<br />

as reported earlier w18,21 x.<br />

The excitat<strong>ion</strong> spectrum <strong>of</strong> a Eu-doped glass fired<br />

at 11408C Ž Fig. 6a.<br />

is similar to its 8008C fired<br />

<strong>co</strong>unterpart Ž Fig. 5a ., but no excitat<strong>ion</strong> peak is observed<br />

for the Eu–<strong>Al</strong> <strong>co</strong>-doped glass <strong>co</strong>rrespond<strong>in</strong>g<br />

to the 614 nm emiss<strong>ion</strong>. When monitored at 430 nm,<br />

the Eu–<strong>Al</strong> <strong>co</strong>-doped dense glass shows a broad<br />

Ž. Ž.<br />

Fig. 3. Fluorescence spectra <strong>of</strong> a Eu-doped gel and b Eu–<strong>Al</strong><br />

doped gel fired at 8008C.<br />

Fig. 5. Excitat<strong>ion</strong> spectra <strong>of</strong> the gels fired at 8008C <strong>co</strong>nta<strong>in</strong><strong>in</strong>g Ž. a<br />

Eu and Ž. b Eu–<strong>Al</strong>.


230<br />

( )<br />

A. Biswas et al.rMaterials Letters 39 1999 227–231<br />

excitat<strong>ion</strong> peak at 378 nm <strong>co</strong>rrespond<strong>in</strong>g to the Eu 2q<br />

<strong>ion</strong>s Ž Fig. 6b ..<br />

The emiss<strong>ion</strong> spectra, excitat<strong>ion</strong> spectra and UV–<br />

Vis absorpt<strong>ion</strong> spectra all po<strong>in</strong>t to the fact that the<br />

Eu 3q <strong>ion</strong>s have been reduced to Eu 2y <strong>in</strong> the presence<br />

<strong>of</strong> <strong>Al</strong> 3q dur<strong>in</strong>g the densificat<strong>ion</strong> <strong>of</strong> the gel<br />

around 10008C. The Eu-doped gel heat treated at<br />

10008C shows a broad emiss<strong>ion</strong> with a peak at 354<br />

nm Ž Fig. 7 .. This emiss<strong>ion</strong> is associated with oxygen<br />

Ž<br />

y<br />

associated hole centers O states.<br />

and was reported<br />

earlier w16 x. S<strong>in</strong>ce Eu <strong>ion</strong>s are <strong>in</strong> the trivalent state,<br />

there must be charge <strong>co</strong>mpensat<strong>ion</strong> with<strong>in</strong> the silica<br />

matrix from the nonbridg<strong>in</strong>g oxygen atoms. The<br />

absence <strong>of</strong> a sufficient number <strong>of</strong> nonbridg<strong>in</strong>g oxygen<br />

atoms to <strong>co</strong>ord<strong>in</strong>ate the isolated rare earth <strong>ion</strong>s<br />

<strong>in</strong> a rigid silica network may cause oxygen associated<br />

hole centers at high temperature. The electron<br />

emitted from the defect centers may react with Eu 3q<br />

<strong>in</strong> the silica matrix to form Eu 2q <strong>in</strong> the presence <strong>of</strong><br />

alum<strong>in</strong>a. Defect center <strong>in</strong>duced <strong>reduct<strong>ion</strong></strong> <strong>of</strong> Eu 3q<br />

<strong>ion</strong>s has already been reported <strong>in</strong> xerogels at room<br />

temperature w16 x.<br />

The spontaneous <strong>reduct<strong>ion</strong></strong> <strong>of</strong> Eu 3q <strong>ion</strong>s <strong>in</strong> <strong>Al</strong><br />

<strong>co</strong>-doped glasses can be expla<strong>in</strong>ed by the observaw<br />

x<br />

3q<br />

t<strong>ion</strong> <strong>of</strong> Nogami et al. 11 who found that the Sm<br />

<strong>ion</strong>s can only be reduced by flow<strong>in</strong>g H 2–N2<br />

gas<br />

mixture <strong>in</strong> the presence <strong>of</strong> <strong>Al</strong> 2O 3. They attributed<br />

this to a phenomenon classified as micros<strong>co</strong>pic basicity<br />

<strong>in</strong> which the electron donat<strong>in</strong>g ability <strong>of</strong> oxygen<br />

surround<strong>in</strong>g the rare earth <strong>ion</strong>s is affected by the<br />

3q<br />

<strong>Al</strong> <strong>ion</strong>s as proposed by Duffy and Ingram w22 x.<br />

Fig. 7. Emiss<strong>ion</strong> spectra <strong>of</strong> Eu 3q -doped gel heated to 10008C.<br />

The lowered basicity <strong>in</strong> <strong>Al</strong> 3q <strong>co</strong>-doped gel together<br />

with the low <strong>reduct<strong>ion</strong></strong> potential <strong>of</strong> Eu 3q Eu 2q<br />

Ž y0.32 E8, V. w23x<br />

may ac<strong>co</strong>unt for the spontaneous<br />

<strong>reduct<strong>ion</strong></strong> <strong>of</strong> Eu 3q by the electron ejected from the<br />

defect center at higher temperatures w17 x.<br />

4. Conclus<strong>ion</strong><br />

Eu-doped silica glasses with and without alum<strong>in</strong>a<br />

have been prepared by impregnat<strong>in</strong>g porous silica<br />

monoliths with ethanolic solut<strong>ion</strong>s <strong>of</strong> EuŽ NO .<br />

3 3P<br />

5H O and <strong>Al</strong>Ž NO .<br />

2 3 3P9H 2O and subsequent densificat<strong>ion</strong>.<br />

In the silica matrix, Eu ma<strong>in</strong>ta<strong>in</strong>s its trivalent<br />

state throughout the densificat<strong>ion</strong> process. In the<br />

Eu–<strong>Al</strong> <strong>co</strong>-doped silica, the Eu <strong>ion</strong> is <strong>in</strong> a trivalent<br />

state only up to around 10008C. In the presence <strong>of</strong><br />

<strong>Al</strong> 2O 3, it spontaneously reduces to its divalent state<br />

dur<strong>in</strong>g densificat<strong>ion</strong> above 11008C.<br />

Acknowledgements<br />

Fig. 6. Excitat<strong>ion</strong> spectra <strong>of</strong> the glasses densified above and doped<br />

Ž. Ž.<br />

with a Eu and b Eu–<strong>Al</strong>.<br />

This work was supported <strong>in</strong> part by the Directorate<br />

<strong>of</strong> Chemistry and Life Sciences <strong>of</strong> the Air<br />

Force Office <strong>of</strong> Scientific Research through <strong>co</strong>ntract<br />

number F496209610124 and <strong>in</strong> part by the MURI<br />

program through the University <strong>of</strong> Southern California<br />

primary <strong>co</strong>ntract number 000507.


( )<br />

A. Biswas et al.rMaterials Letters 39 1999 227–231 231<br />

References<br />

wx 1 M.J. Weber, J. Non-Cryst. Solids 123 Ž 1990.<br />

208.<br />

wx 2 M. Nogami, Y. Abe, K. Hirao, D.H. Cho, Appl. Phys. Lett.<br />

22 Ž 1995.<br />

2952.<br />

wx 3 M. Nogami, Y. Abe, Phys. Rev. B 56 Ž 1997.<br />

182.<br />

wx 4 Y. Mao, P. Gavrilovic, S. S<strong>in</strong>gh, A. Bruce, W.H. Grodkiewicz,<br />

Appl. Phys. Lett. 26 Ž 1996.<br />

3677.<br />

wx 5 O.S. Wolfbeis, R. Reisfeld, I. Oehme, Structure Bond<strong>in</strong>g 85<br />

Ž 1996.<br />

51.<br />

wx 6 J. Samuel, A. Str<strong>in</strong>kovski, S. Shalom, K. Lieberman, M.<br />

Ottolenghi, D. Avnir, A. Lewis, Mater. Lett. 21 Ž 1994.<br />

431.<br />

wx 7 S. Sakka, Structure Bond<strong>in</strong>g 85 Ž 1996.<br />

1.<br />

wx 8 X. Orignac, D. Barbier, X.M. Du, R.M. <strong>Al</strong>meida, Appl.<br />

Phys. Lett. 69 Ž 1996.<br />

895.<br />

wx 9 A.J. Berry, T.A. K<strong>in</strong>g, J. Phys. D: Appl. Phys. 22 Ž 1989.<br />

1419.<br />

w10x<br />

T. Fujiyama, M. Hori, M. Sasaki, J. Non-Cryst. Solids 121<br />

Ž 1990.<br />

273.<br />

w11x<br />

M. Nogami, N. Hayakawa, N. Sugioka, Y. Abe, J. Am.<br />

Ceram. Soc. 79 Ž 1996.<br />

1257.<br />

w12x M. Nogami, Y. Abe, Appl. Phys. Lett. 69 Ž 1996.<br />

3776.<br />

w13x<br />

R. Campostr<strong>in</strong>i, G. Carturan, M. Ferrari, M. Montagna, O.<br />

Pilla, J. Mater. Res. 7 Ž 1992.<br />

745.<br />

w14x<br />

M. Nogami, Y. Abe, K. Hirao, D.H. Cho, Appl. Phys. Lett.<br />

66 Ž 1995.<br />

2952.<br />

w15x M. Nogami, T. Yamazaki, Y. Abe, J. Lum<strong>in</strong>. 78 Ž 1998.<br />

63–68.<br />

w16x<br />

M.A. Zaitoun, T. Kim, C.T. L<strong>in</strong>, J. Phys. Chem. B 102<br />

Ž 1998.<br />

1122.<br />

w17x<br />

E. Cordoncillo, B. Viana, P. Escribano, C. Sanchez, J. Mater.<br />

Chem. 8 Ž 1998.<br />

507.<br />

w18x M. Nogami, Y. Abe, J. Non-Cryst. Solids 197 Ž 1996.<br />

73.<br />

w19x X. Fan, M. Wang, G. X<strong>ion</strong>g, J. Mater. Sci. Lett. 12 Ž 1993.<br />

1552.<br />

w20x<br />

H. Okumura, N. Kakuta, A. Veno, R. Mor<strong>in</strong>o, T. Mizushima,<br />

Y. Udagawa, H. Namikawa, Chem. Lett. Ž 1989.<br />

829.<br />

w21x X. Fan, M. Wang, G. X<strong>ion</strong>g, Mater. Sci. Eng. B 21 Ž 1993.<br />

55.<br />

w22x J.A. Duffy, M.D. Ingram, J. Non-Cryst. Solids 21 Ž 1976.<br />

373.<br />

w23x D.R. Lide Ž Ed. ., CRC Handbook <strong>of</strong> Chemistry and <strong>Physics</strong>,<br />

CRC Press, Boston, MA, 1991.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!