16.11.2014 Views

a delay differential equation model for dengue fever transmission in ...

a delay differential equation model for dengue fever transmission in ...

a delay differential equation model for dengue fever transmission in ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A DELAY DIFFERENTIAL EQUATION MODEL FOR DENGUE FEVER<br />

TRANSMISSION IN SELECTED COUNTRIES OF SOUTH-EAST ASIA<br />

MR.WERAPONG SAKDANUPAPH<br />

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS<br />

FOR THE DEGREE OF MASTER OF SCIENCE IN APPLIED MATHEMATICS<br />

DEPARTMENT OF MATHEMATICS<br />

GRADUATE COLLEGE<br />

KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH BANGKOK<br />

ACADEMIC YEAR 2007<br />

COPYRIGHT OF KING MONGKUT'S UNIVERSITY OF TECHNOLOGY NORTH BANGKOK


Name<br />

: Mr.Werapong Sakdanupaph<br />

Thesis Title : A Delay Differential Equation Model <strong>for</strong> Dengue Fever<br />

Transmission <strong>in</strong> Selected Countries of South-East Asia<br />

Major Field : Applied Mathematics<br />

K<strong>in</strong>g Mongkut’s University of Technology North Bangkok<br />

Thesis Advisor : Dr. Elv<strong>in</strong> James Moore<br />

Academic Year : 2007<br />

Abstract<br />

Dengue Fever is a dangerous virus <strong>in</strong>fection caused by the Dengue virus.<br />

Dengue Fever is a viral disease transmitted by female Aedes mosquitoes.<br />

Mathematicians have created <strong>model</strong>s of Dengue Fever to study the causes of the<br />

spread of the disease and to try to develop methods <strong>for</strong> reduc<strong>in</strong>g the spread of the<br />

disease. In this research we study a <strong>model</strong> <strong>for</strong> Dengue <strong>fever</strong> consist<strong>in</strong>g of a system of<br />

four nonl<strong>in</strong>ear <strong>differential</strong> <strong>equation</strong>s with time <strong>delay</strong>s. The <strong>model</strong> <strong>in</strong>cludes <strong>in</strong>fected<br />

humans, <strong>in</strong>fectious humans, <strong>in</strong>fected mosquitoes and <strong>in</strong>fectious mosquitoes. The<br />

equilibrium po<strong>in</strong>ts and asymptotic stability of the equilibrium po<strong>in</strong>ts are studied<br />

analytically. The Matlab computer program is used to obta<strong>in</strong> numerical solutions of<br />

the <strong>model</strong> of Dengue Fever <strong>for</strong> both zero and nonzero time <strong>delay</strong>s <strong>for</strong> a range of<br />

parameter values.<br />

The results obta<strong>in</strong>ed from the <strong>model</strong> are compared with actual data of Dengue<br />

Fever <strong>in</strong> Thailand, Malaysia and S<strong>in</strong>gapore.<br />

(Total 79 pages)<br />

Keywords: Dengue <strong>fever</strong>, Delay Differential Equations<br />

______________________________________________________________Advisor<br />

ii


ชื่อ : นายวีรพงศ ศักดานุภาพ<br />

ชื่อวิทยานิพนธ : แบบจําลองสมการเชิงอนุพันธที่มีการหนวงเวลาสําหรับ<br />

การแพรเชื้อ ของโรคไขเลือกออกในบางประเทศของ<br />

เอเชียตะวันออกเฉียงใตที่เลือกมา<br />

สาขาวิชา<br />

: คณิตศาสตรประยุกต<br />

มหาวิทยาลัยเทคโนโลยีพระจอมเกลาพระนครเหนือ<br />

อาจารยที่ปรึกษาวิทยานิพนธหลัก : Dr. Elv<strong>in</strong> James Moore<br />

ปการศึกษา : 2550<br />

บทคัดยอ<br />

โรคไขเลือดออกเปนโรคติดตอที่อันตรายซึ่งมีสาเหตุมาจากไวรัสเดงกี (Dengue Virus)<br />

และเปนโรคติดตอที่มียุงลายเปนพาหะ นักคณิตศาสตรไดสรางแบบจําลองของไขเลือดออกเพื่อ<br />

ศึกษาสาเหตุของการแพรเชื้อของโรคไขเลือดออก และ ไดพัฒนาวิธีการลดการแพรระบาดของ<br />

โรคไขเลือดออก ในงานวิจัยนี้ไดศึกษาแบบจําลองของโรคไขเลือดออกที่อธิบายดวยระบบ<br />

สมการเชิงอนุพันธซึ ่งประกอบดวยสี่สมการซึ่งเปนสมการไมเปนเชิงเสนที่มีการหนวงเวลา ใน<br />

แบบจําลองประกอบไปดวย คนที่ไดรับเชื้อแตยังไมเปนโรค คนที่เปนโรค ยุงที่ไดรับเชื้อแตไม<br />

สามารถแพรโรคและยุงที่รับเชื้อจนเชื้อฟกตัวสามารถแพรโรค ในงานวิจัยนี้เราศึกษาจุดสมดุล<br />

และ เสถียรภาพของจุดสมดุลโดยใชวิธีเชิงวิเคราะหและ หาคําตอบเชิงตัวเลขของแบบจําลอง<br />

โรคไขเลือดออกทั้งชนิดที่มี การหนวงเวลา และ ไมมีการหนวงเวลาโดยใชโปรแกรม Matlab<br />

ผลที่ไดจากแบบจําลองจะนํามาเปรียบเทียบกับขอมูลจริงของโรคไขเลือดออกในประเทศ<br />

ไทย มาเลเซีย และ สิงคโปร<br />

(วิทยานิพนธมีจํานวนทั้งสิ้น 79 หนา)<br />

คําสําคัญ : โรคไขเลือดออก สมการเชิงอนุพันธที่มีการหนวงเวลา<br />

iii<br />

อาจารยที่ปรึกษาวิทยานิพนธหลัก


ACKNOWLEDGEMENTS<br />

I would like to thank my advisor, Dr.Elv<strong>in</strong> James Moore, <strong>for</strong> helpful<br />

discussions and advice dur<strong>in</strong>g the preparation of this thesis. I would also like to thank<br />

the other lecturer <strong>in</strong> the Department of Mathematics who have taught me dur<strong>in</strong>g my<br />

study <strong>for</strong> the degree of Master of Science at K<strong>in</strong>g Mongkut’s University of<br />

Technology North Bangkok and who have also made helpful suggestions <strong>for</strong> my<br />

thesis research. Appreciation is extended to the Graduate College of K<strong>in</strong>g Mongkut’s<br />

University of Technology North Bangkok <strong>for</strong> the award of a scholarship.<br />

Lastly, I want to express my gratitude to my parents, my brother, and my friends<br />

who have always been supportive of what I do. Thank you <strong>for</strong> all that you have<br />

provided <strong>for</strong> me dur<strong>in</strong>g these years.<br />

Werapong Sakdanupaph<br />

iv


TABLE OF CONTENTS<br />

Page<br />

Abstract (<strong>in</strong> English)<br />

ii<br />

Abstract (<strong>in</strong> Thai)<br />

iii<br />

Acknowledgements<br />

iv<br />

List of Tables<br />

vii<br />

List of Figures<br />

viii<br />

Chapter 1 Introduction 1<br />

1.1 Background and General Statement of the Problem 1<br />

1.2 Purpose of the Study 5<br />

1.3 Scope of the Study 5<br />

1.4 Method 5<br />

1.5 Utilization of the Study 6<br />

Chapter 2 Literature Review 7<br />

2.1 Background <strong>for</strong> Dengue <strong>fever</strong> 7<br />

2.2 Mathematical Models <strong>for</strong> Malaria 9<br />

2.3 Mathematical Models of Dengue Fever 16<br />

2.4 Mathematics of Equilibrium Po<strong>in</strong>t and Stability of Dynamical<br />

Systems 18<br />

2.5 Basic reproduction rate 19<br />

2.6 L<strong>in</strong>earization Stability Analysis 19<br />

2.7 Routh - Hurwitz Criteria 23<br />

2.8 Dynamical Systems with Time Delays 25<br />

Chapter 3 Methodology 29<br />

3.1 The mathematical <strong>model</strong> 29<br />

3.2 Existence of Steady States 31<br />

3.3 Asymptotic stability of steady states 33<br />

3.4 Numerical Solution of Delay Differential Equations 42<br />

Chapter 4 Numerical Results 43<br />

4.1 Asymptotically Stable Disease-Free Equilibrium State 43<br />

4.2 Asymptotically Stable Endemic-Disease Equilibrium State 48<br />

v


TABLE OF CONTENTS (CONTINUED)<br />

Page<br />

4.3 Numerical results <strong>for</strong> Dengue <strong>fever</strong> <strong>in</strong> Thailand, Malaysia and<br />

S<strong>in</strong>gapore 54<br />

Chapter 5 Conclusion and Recommendations 65<br />

5.1 Conclusion 65<br />

5.2 Suggestions <strong>for</strong> Future Work 66<br />

References 68<br />

Appendix A 70<br />

Biography 79<br />

vi


LIST OF TABLES<br />

Table<br />

Page<br />

2-1 Macdonald’s stability <strong>in</strong>dex <strong>for</strong> several regions where malaria is<br />

<strong>in</strong>digenous 12<br />

4-1 Parameters <strong>for</strong> disease-free equilibrium state 44<br />

4-2 Parameters <strong>for</strong> endemic-disease equilibrium state 49<br />

vii


LIST OF FIGURES<br />

Figure<br />

Page<br />

1-1 A diagram of a basic <strong>model</strong> <strong>for</strong> malaria 2<br />

2-1 Dengue Fever <strong>in</strong> South-East Asia from 1895 to 2005 8<br />

2-2 Dengue <strong>fever</strong> <strong>in</strong> S<strong>in</strong>gapore from 2005 to 2007 8<br />

2-3 Dengue Fever <strong>in</strong> Malaysia from 1991-2000 9<br />

2-4 Transmission cycle of malaria and <strong>dengue</strong> <strong>fever</strong> <strong>in</strong>clud<strong>in</strong>g time <strong>delay</strong>s 10<br />

2-5 Graph of Numerical methods <strong>for</strong> Delay Differential Equations 28<br />

4-1 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> disease-free<br />

equilibrium state 45<br />

4-2 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> disease-free equilibrium<br />

state 46<br />

4-3 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> disease-free<br />

equilibrium state 47<br />

4-4 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> disease-free equilibrium<br />

state 48<br />

4-5 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> endemic-disease<br />

equilibrium state 51<br />

4-6 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> endemic-disease equilibrium<br />

state 52<br />

4-7 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> endemic-disease<br />

equilibrium state 53<br />

4-8 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> endemic-disease<br />

equilibrium state 54<br />

4-9 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> Thailand data 56<br />

4-10 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> Thailand data 56<br />

4-11 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> Thailand data 57<br />

4-12 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> Thailand data 58<br />

4-13 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data 59<br />

4-14 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data 60<br />

4-15 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data 61<br />

4-16 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data 61<br />

viii


LIST OF FIGURES (CONTINUED)<br />

Figure<br />

Page<br />

4-17 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> Malaysia data 63<br />

4-18 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> Malaysia data 63<br />

4-19 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> Malaysia data 64<br />

4-20 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> Malaysia data 64<br />

ix


CHAPTER 1<br />

INTRODUCTION<br />

1.1 Background & General Statement of the Problem<br />

Dengue <strong>fever</strong> is a dangerous disease which is common <strong>in</strong> South East Asia.<br />

Dengue <strong>fever</strong> is a viral disease transmitted by Aedes mosquitoes, usually Aedes<br />

aegypti. There are four <strong>dengue</strong> viruses (DEN-1 through DEN-4) which are<br />

immunologically related, but they do not provide cross-protective immunity aga<strong>in</strong>st<br />

each other [2,3,4,5].<br />

Dengue Fever epidemics first occurred almost simultaneously <strong>in</strong> Asia, Africa,<br />

and North America <strong>in</strong> the 1780s. The disease was identified and named <strong>in</strong> 1779. A<br />

global pandemic began <strong>in</strong> Southeast Asia <strong>in</strong> the 1950s and by 1975 the disease<br />

appeared frequently <strong>in</strong> this region. In Thailand Dengue Fever almost always appears<br />

<strong>in</strong> the ra<strong>in</strong>y season between May-August. In 2005 there were about 31,000 reported<br />

cases of Dengue <strong>fever</strong>. In the same year there were about 12,000 reported cases of<br />

Dengue <strong>fever</strong> <strong>in</strong> S<strong>in</strong>gapore, and about 32,000 reported cases of Dengue <strong>fever</strong> <strong>in</strong><br />

Malaysia [5,16,17].<br />

The method of <strong>transmission</strong> of Dengue <strong>fever</strong> is similar to the method of<br />

<strong>transmission</strong> of Malaria, i.e., an <strong>in</strong>fectious female mosquito bites a human who might<br />

become <strong>in</strong>fected. The disease develops <strong>in</strong> the <strong>in</strong>fected human who then becomes<br />

<strong>in</strong>fectious. A female mosquito bites an <strong>in</strong>fectious human and it becomes <strong>in</strong>fected.<br />

The disease develops <strong>in</strong> the <strong>in</strong>fected mosquito which then becomes <strong>in</strong>fectious. The<br />

cycle then repeats [1]. A diagram of the <strong>transmission</strong> cycle of malaria and Dengue<br />

<strong>fever</strong> is shown <strong>in</strong> Figure 2-4.


2<br />

A summary of some of the mathematical <strong>model</strong>s developed <strong>for</strong> malaria has been<br />

given by Anderson and May [1]. They describe two basic <strong>model</strong>s. The first <strong>model</strong>,<br />

which is based on the work of Ross [15] and Macdonald [15,20], is a two-<strong>equation</strong><br />

<strong>differential</strong> <strong>equation</strong> system with no time <strong>delay</strong>. The second <strong>model</strong>, which is based on<br />

the work of Macdonald [15,20], is a four-<strong>equation</strong> <strong>differential</strong> <strong>equation</strong> system with<br />

two time <strong>delay</strong>s. A diagram his <strong>model</strong> is shown <strong>in</strong> follow<br />

acy(1 − yˆ<br />

)<br />

y<br />

ŷ<br />

γ<br />

Nˆ<br />

abyˆ (1 − y)<br />

N<br />

u<br />

Figure 1-1 A diagram of a basic <strong>model</strong> <strong>for</strong> malaria [1]<br />

Ross’s basic <strong>model</strong> consisted of 2 <strong>differential</strong> <strong>equation</strong>s:<br />

No time <strong>delay</strong>:<br />

where<br />

y is proportion of <strong>in</strong>fected humans<br />

dy<br />

= (abN ˆ / N)y(1 ˆ −y) −γy<br />

dt<br />

dyˆ<br />

= acy(1 −y) ˆ −uyˆ<br />

dt<br />

ŷ is proportion of <strong>in</strong>fected mosquitoes<br />

a is the rate of bit<strong>in</strong>g on humans by a s<strong>in</strong>gle mosquito<br />

b is the proportion of mosquito bites on humans that produce <strong>in</strong>fectious <strong>in</strong><br />

humans<br />

c is the proportion of mosquito bites on humans that produce <strong>in</strong>fectious <strong>in</strong><br />

mosquitoes<br />

N is the size of human population


3<br />

ˆN is the size of the female mosquito population (only females transmit the<br />

disease)<br />

γ is the rate per human of human recovery from <strong>in</strong>fection<br />

u is the mortality rate <strong>for</strong> mosquitoes<br />

The equilibrium populations of humans and mosquitoes have been obta<strong>in</strong>ed <strong>for</strong><br />

the <strong>model</strong> with no time <strong>delay</strong> (see, [1], 392-399). It is found that there are 2<br />

equilibrium po<strong>in</strong>ts which correspond to a disease-free equilibrium and an endemic<br />

disease equilibrium. The asymptotic stability of the two equilibrium po<strong>in</strong>ts has also<br />

been analyzed. The asymptotic stability of the disease-free equilibrium has been<br />

2<br />

ma bc<br />

ˆN<br />

<strong>in</strong>vestigated and found to depend on a parameter R<br />

0<br />

= , where m = is the<br />

uγ<br />

N<br />

ratio of the female mosquito and human populations. R 0 is called the basic<br />

reproduction rate. The disease-free equilibrium is asymptotically stable if R0<br />

< 1 and<br />

the endemic disease equilibrium exists and is stable <strong>for</strong> R0<br />

> 1.<br />

As stated above, Anderson and May [1] also describe a 4-<strong>equation</strong> <strong>model</strong> <strong>for</strong><br />

malaria which <strong>in</strong>cludes the time <strong>delay</strong>s τ<br />

1<br />

and τ<br />

2<br />

shown <strong>in</strong> Figure 1-1. Their <strong>model</strong><br />

with time <strong>delay</strong> is:<br />

dh(t)<br />

= abmy(t)(1 ˆ −y(t)) −u1h(t) −abmy(t ˆ −τ1)(1 −y(t −τ1))<br />

dt<br />

dy(t)<br />

= abmy(t ˆ −τ1)(1 −y(t −τ1)) −u1y(t) −γy(t)<br />

dt<br />

dh(t) ˆ<br />

= acy(t)(1 −y(t)) ˆ −u ˆ<br />

ˆ<br />

2h(t) −acy(t −τ2)(1 −y(t −τ2))<br />

dt<br />

dy(t) ˆ<br />

= acy(t −τ ˆ<br />

ˆ<br />

2)(1 −y(t −τ2)) − u2y(t)<br />

dt<br />

where<br />

h(t) is proportion of humans who are <strong>in</strong>fected but not yet <strong>in</strong>fectious<br />

(0


4<br />

ŷ(t) is proportion of mosquitoes that are <strong>in</strong>fectious<br />

u<br />

1<br />

is mortality rate <strong>in</strong> the human population<br />

u<br />

2<br />

is mortality rate <strong>in</strong> the mosquito population<br />

ˆN<br />

m is number of female mosquitoes per human ( m = ) N<br />

τ<br />

1<br />

is time <strong>delay</strong> <strong>in</strong> humans from <strong>in</strong>fected to <strong>in</strong>fectious stage<br />

τ<br />

2<br />

is time <strong>delay</strong> <strong>in</strong> mosquitoes from <strong>in</strong>fected to <strong>in</strong>fectious stage<br />

Anderson and May [1] also give an analysis of the equilibrium po<strong>in</strong>ts of this 4-<br />

<strong>equation</strong> <strong>model</strong> and their asymptotic stability. They f<strong>in</strong>d 2 equilibrium po<strong>in</strong>ts<br />

correspond<strong>in</strong>g to a disease-free and an endemic disease equilibrium po<strong>in</strong>t. The<br />

asymptotic stability of the disease-free equilibrium po<strong>in</strong>t is aga<strong>in</strong> described <strong>in</strong> terms<br />

of a basic reproductive rate R<br />

0<br />

with R0<br />

< 1 correspond<strong>in</strong>g to asymptotic stability.<br />

In Chapter 2, we discuss previous mathematical <strong>model</strong>s which have been used<br />

to describe malaria and Dengue Fever. We also adapt the <strong>model</strong> <strong>for</strong> malaria given <strong>in</strong><br />

[1] to describe Dengue Fever. The new <strong>model</strong> is a modified version of the four<br />

<strong>equation</strong> system of time <strong>delay</strong> <strong>differential</strong> <strong>equation</strong> with two time <strong>delay</strong>s given above<br />

and describes the movement of humans from <strong>in</strong>fected to <strong>in</strong>fectious stage and of<br />

mosquitoes from <strong>in</strong>fected to <strong>in</strong>fectious stage. In Chapter 3, an analysis is given of the<br />

equilibrium populations and their asymptotic stability <strong>for</strong> our modified four-<strong>equation</strong><br />

<strong>model</strong>. We aga<strong>in</strong> f<strong>in</strong>d disease-free and endemic disease equilibrium po<strong>in</strong>ts. We have<br />

analyzed the asymptotic stability of the equilibrium po<strong>in</strong>ts us<strong>in</strong>g a l<strong>in</strong>earization<br />

method (Liapunov’s first method) [7,14] to convert the <strong>model</strong>s <strong>in</strong>to l<strong>in</strong>earized systems<br />

and have found the characteristic <strong>equation</strong> <strong>for</strong> these l<strong>in</strong>earized systems. The Routh-<br />

Hurwitz criteria [7,13] are then used to determ<strong>in</strong>e the asymptotic stability of all of the<br />

equilibrium po<strong>in</strong>ts. In Chapter 4, we use numerical methods to solve the <strong>model</strong><br />

<strong>equation</strong>s <strong>for</strong> typical values of the parameters and compare the results with the<br />

available data <strong>for</strong> prevalence of Dengue <strong>fever</strong> <strong>in</strong> Thailand, S<strong>in</strong>gapore and Malaysia.<br />

In Chapter 5, we discuss the results and draw conclusions about the usefulness of the<br />

<strong>model</strong>s <strong>in</strong> understand<strong>in</strong>g the occurrence and <strong>transmission</strong> of Dengue <strong>fever</strong> <strong>in</strong> these<br />

three countries.


5<br />

A summary of the purpose, scope, methods and utilization of the research <strong>in</strong> this<br />

thesis is as follows:<br />

1.2 Purpose of the Study<br />

1.2.1 To study <strong>model</strong>s <strong>for</strong> Dengue <strong>fever</strong> <strong>transmission</strong> <strong>in</strong> Selected Countries of<br />

South-East Asia.<br />

1.2.2 To use numerical methods to compute approximate solutions to the <strong>model</strong>s<br />

<strong>for</strong> Dengue <strong>fever</strong> <strong>transmission</strong> <strong>in</strong> South-East Asia and to exam<strong>in</strong>e the behavior of<br />

solutions <strong>for</strong> reasonable values of parameters <strong>in</strong> the <strong>model</strong>.<br />

1.2.3 To create a Matlab program to show the behavior of the solutions of the<br />

<strong>model</strong>s <strong>for</strong> Dengue <strong>fever</strong> <strong>transmission</strong> <strong>in</strong> Selected Countries of South-East Asia.<br />

1.2.4 To exam<strong>in</strong>e actual data <strong>for</strong> Dengue <strong>fever</strong> <strong>transmission</strong> <strong>in</strong> Selected<br />

Countries of South-East Asia.<br />

1.3 Scope of the Study<br />

We shall study the <strong>model</strong> <strong>for</strong> Dengue Fever Transmission <strong>in</strong> Selected Countries<br />

of South-East Asia and create a program to show the behavior of the solutions. We<br />

shall exam<strong>in</strong>e the effects of time <strong>delay</strong>s and compare solutions with actual disease<br />

data.<br />

1.4 Method<br />

1.4.1 Study relevant background of <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s.<br />

1.4.2 Study methods <strong>for</strong> comput<strong>in</strong>g solutions of systems of <strong>delay</strong> <strong>differential</strong><br />

<strong>equation</strong>s.<br />

1.4.3 Analyze the equilibrium po<strong>in</strong>ts and their asymptotic stability <strong>for</strong> the 4-<br />

<strong>equation</strong> <strong>model</strong>.<br />

1.4.4 Use numerical methods to show the behavior of the solution of the <strong>model</strong>s<br />

<strong>for</strong> Dengue <strong>fever</strong> <strong>transmission</strong> <strong>in</strong> Selected Countries of South-East Asia.<br />

1.4.5 Create computer Matlab programs to show the behavior of solutions of<br />

<strong>model</strong>s of Dengue <strong>fever</strong> <strong>transmission</strong> <strong>in</strong> Selected Countries of South-East Asia.<br />

1.4.6 Compare the numerical solutions from the <strong>model</strong>s with actual data on<br />

Dengue <strong>fever</strong> <strong>in</strong> selected countries of South-East Asia.


6<br />

1.5 Utilization of the Study<br />

1.5.1 We learn about <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s and their solutions.<br />

1.5.2 We learn about Dengue <strong>fever</strong>.<br />

1.5.3 We learn numerical methods <strong>for</strong> f<strong>in</strong>d<strong>in</strong>g solutions of <strong>delay</strong> <strong>differential</strong><br />

<strong>equation</strong>s.<br />

1.5.4 We use numerical methods to f<strong>in</strong>d solutions of the <strong>model</strong> <strong>for</strong> Dengue Fever<br />

Transmission <strong>in</strong> Selected Countries of South-East Asia.<br />

1.5.5 We get a Matlab program to f<strong>in</strong>d behavior of solutions of the <strong>model</strong> <strong>for</strong><br />

Dengue Fever Transmission <strong>in</strong> Selected Countries of South-East Asia.<br />

1.5.6 The Matlab program could be useful <strong>for</strong> explor<strong>in</strong>g possible methods <strong>for</strong><br />

reduc<strong>in</strong>g the level of this dangerous disease <strong>in</strong> Selected Countries of South-East Asia.


CHAPTER 2<br />

LITERATURE REVIEW<br />

In this chapter we will talk about the background of Dengue <strong>fever</strong>, the<br />

occurrence of Dengue <strong>fever</strong> <strong>in</strong> S<strong>in</strong>gapore, Thailand, and Malaysia, and some of the<br />

mathematical <strong>model</strong>s that have been proposed <strong>for</strong> malaria and Dengue <strong>fever</strong>. We<br />

will also discuss mathematical methods that are required to analyze and solve the<br />

mathematical <strong>model</strong>s. These methods <strong>in</strong>clude solution of ord<strong>in</strong>ary <strong>differential</strong><br />

<strong>equation</strong>s and <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s.<br />

2.1 Background <strong>for</strong> Dengue <strong>fever</strong><br />

Dengue <strong>fever</strong> [10,11] is a dangerous disease, afflict<strong>in</strong>g ma<strong>in</strong>ly older children<br />

and adults and often rema<strong>in</strong><strong>in</strong>g unapparent <strong>in</strong> young children. The sudden onset of<br />

<strong>fever</strong> and a variety of non-specific signs and symptoms characterize Dengue Fever.<br />

The high <strong>fever</strong> lasts <strong>for</strong> two or three days, followed by additional symptoms. Its<br />

cl<strong>in</strong>ical presentations are similar to those of several other diseases, mean<strong>in</strong>g thereby<br />

that many of the reported cases of Dengue <strong>fever</strong> could be due to other febrile illnesses<br />

and also that many <strong>dengue</strong> <strong>in</strong>fections are not recognized.<br />

2.1.1 Occurrence<br />

The first reported epidemics of Dengue <strong>fever</strong> occurred <strong>in</strong> 1779-1780 <strong>in</strong> Asia,<br />

Africa, and North America [11]; the near simultaneous occurrence of outbreaks on<br />

three cont<strong>in</strong>ents <strong>in</strong>dicates that these viruses and their mosquito vector have had a<br />

worldwide distribution <strong>in</strong> the tropics <strong>for</strong> more than 200 years. Dur<strong>in</strong>g most of this<br />

time, Dengue <strong>fever</strong> was considered a benign, nonfatal disease of visitors to the<br />

tropics. Generally, there were long <strong>in</strong>tervals (10-40 years) between major epidemics,


8<br />

ma<strong>in</strong>ly because the viruses and their mosquito vector could only be transported<br />

between population centers by sail<strong>in</strong>g vessels.<br />

Dengue <strong>fever</strong> is now a common disease <strong>in</strong> South-East Asia. In Thailand <strong>in</strong> May<br />

2005 Dengue <strong>fever</strong> <strong>in</strong>fected 31000 people and 12 people died. A graph of the<br />

frequency of Dengue <strong>fever</strong> <strong>in</strong> South and South-East Asia from 1985 to 2005 is shown<br />

<strong>in</strong> Figure 2-1.<br />

Figure 2-1 Dengue Fever <strong>in</strong> South-East Asia from 1985 to 2005 [16]<br />

In S<strong>in</strong>gapore <strong>in</strong> 2003 Dengue Fever <strong>in</strong>fected 4,788 people and <strong>in</strong> 2004 it<br />

<strong>in</strong>fected 9,460 people. In 2005 it <strong>in</strong>fected 12700 people. In 2007 it <strong>in</strong>fected 4,029<br />

people and 8 people died. A graph of the frequency of Dengue <strong>fever</strong> <strong>in</strong> S<strong>in</strong>gapore<br />

from 2005 to 2007 is shown <strong>in</strong> Figure 2-2.<br />

Figure 2-2 Dengue <strong>fever</strong> <strong>in</strong> S<strong>in</strong>gapore from 2005 to 2007 [5]


9<br />

In Malaysia <strong>in</strong> 2005 Dengue Fever <strong>in</strong>fected 32,950 people. A graph of the<br />

frequency of Dengue <strong>fever</strong> <strong>in</strong> Malaysia from 1991 to 2000 is shown <strong>in</strong> Figure 2-3.<br />

Figure 2-3 Dengue Fever <strong>in</strong> Malaysia from 1991-2000 [17]<br />

These data show that Dengue <strong>fever</strong> is a common disease <strong>in</strong> South-East Asia. As<br />

stated <strong>in</strong> Chapter 1, the method of <strong>transmission</strong> of Dengue <strong>fever</strong> is similar to the<br />

method of <strong>transmission</strong> of malaria and mathematical <strong>model</strong>s of malaria can also be<br />

applied to Dengue <strong>fever</strong>. We will now give a survey of some of the mathematical<br />

<strong>model</strong>s developed <strong>for</strong> malaria.<br />

2.2 Mathematical Models <strong>for</strong> Malaria<br />

In 1911 Ronald Ross [1, :392-9] created a basic <strong>model</strong> <strong>for</strong> malaria describ<strong>in</strong>g<br />

the <strong>in</strong>teraction between the number of <strong>in</strong>fected humans at a time t (y(t) ) and the<br />

number of <strong>in</strong>fected mosquitoes at time t ( ŷ(t) ). A diagram of his <strong>model</strong> is shown <strong>in</strong><br />

Figure 1-1.<br />

Ross’s basic <strong>model</strong> consisted of 2 <strong>differential</strong> <strong>equation</strong>s<br />

dy<br />

= (abN ˆ / N)y(1 ˆ −y) −γ y<br />

(2-1)<br />

dt<br />

dyˆ<br />

acy(1 y) ˆ uyˆ<br />

dt = − − (2-2)


10<br />

where y(t) is proportion of <strong>in</strong>fected humans, ŷ(t) is proportion of <strong>in</strong>fected<br />

mosquitoes, a is the rate of bit<strong>in</strong>g on humans by a s<strong>in</strong>gle mosquito, b is the proportion<br />

of mosquito bites on humans that are <strong>in</strong>fectious, c is the proportion of bites by<br />

susceptible mosquitoes on <strong>in</strong>fected people, N is the size of human population, ˆN is<br />

the size of the female mosquito population (only females transmit the disease), γ is<br />

the rate per human of human recovery from <strong>in</strong>fection, u is the mortality rate <strong>for</strong><br />

mosquitoes.<br />

Equation (2-1) represents the proportion of <strong>in</strong>fected humans. The term<br />

(abN ˆ / N)y(1 ˆ − y) represents the rate at which humans are <strong>in</strong>fected by mosquitoes.<br />

The term γ y represents the rate at which the <strong>in</strong>fected humans recover and return to<br />

the un<strong>in</strong>fected class. Equation (2-2) represents the proportion of <strong>in</strong>fected mosquitoes.<br />

The term acy(1 − y) ˆ represents the rate at which mosquitoes are <strong>in</strong>fected. The term<br />

ˆ uy represents the death rate of <strong>in</strong>fected mosquitoes.<br />

For a disease <strong>model</strong>, the basic reproduction rate R<br />

0<br />

is the expected number of<br />

secondary cases directly caused by an <strong>in</strong>fected <strong>in</strong>dividual which is <strong>in</strong>troduced <strong>in</strong>to an<br />

otherwise susceptible population.<br />

For the Ross <strong>model</strong>, the basic reproduction rate ( R<br />

0<br />

) is as follows [1]<br />

2<br />

ma bc<br />

R<br />

0<br />

=<br />

(2-3)<br />

uγ<br />

Equation (2-3) is usually derived algebraically by analysis of the stability<br />

properties of the <strong>differential</strong> <strong>equation</strong>s (2-1) and (2-2). However, <strong>in</strong> 1982 Aron and<br />

May [1,16] used a geometric “phase-plane” analysis of the dynamical behavior of the<br />

<strong>model</strong> to derive the <strong>equation</strong> which they said gave a more transparent and<br />

generalizable derivation of the <strong>equation</strong>.<br />

It has been shown that there are two equilibrium solutions of <strong>equation</strong>s (2-1)<br />

and (2-2). The first equilibrium is a disease-free equilibrium with<br />

y= yˆ<br />

= 0 which is<br />

stable <strong>for</strong> R0<br />

< 1. The second equilibrium solution is an endemic-disease equilibrium<br />

with the equilibrium proportion of <strong>in</strong>fected humans (the prevalence of <strong>in</strong>fection)<br />

be<strong>in</strong>g


11<br />

y<br />

(R −1)<br />

=<br />

R + (ac/u)<br />

* 0<br />

and the correspond<strong>in</strong>g prevalence of <strong>in</strong>fection <strong>for</strong> mosquitoes be<strong>in</strong>g<br />

0<br />

(2-4)<br />

ŷ<br />

⎛R −1⎞⎛ ac / u ⎞<br />

= ⎜ ⎟⎜ ⎟<br />

* 0<br />

⎝ R0<br />

⎠⎝1+<br />

ac/u⎠<br />

(2-5)<br />

It can be seen that the endemic equilibrium corresponds to positive proportions when<br />

R0<br />

> 1 (i.e., when the disease-free equilibrium becomes unstable).<br />

Macdonald [15] concluded that ac / u is an <strong>in</strong>dex of stability where ac / u<br />

represents the average number of bites on human host made by a mosquito <strong>in</strong> its<br />

lifetime. If this number is high, then changes <strong>in</strong> mosquito populations or bit<strong>in</strong>g rates<br />

produce only a small change <strong>in</strong> the values of<br />

*<br />

y and<br />

*<br />

ŷ . In this case, the number of<br />

malaria cases is relatively stable. If the number is low, then changes <strong>in</strong> mosquito<br />

populations or bit<strong>in</strong>g rates can produce a large change <strong>in</strong> the values of<br />

*<br />

y and<br />

*<br />

ŷ. In<br />

this case, the number of malaria cases can have large changes with time. A table of<br />

the values of Macdonald’s stability <strong>in</strong>dex <strong>for</strong> several regions <strong>in</strong> which malaria is<br />

<strong>in</strong>digenous is given <strong>in</strong> Table 2-1.<br />

Table 2-1 Macdonald’s stability <strong>in</strong>dex ac / u <strong>for</strong> several regions where malaria is<br />

<strong>in</strong>digenous<br />

Anopheles spp Location/time period Stability Reference<br />

<strong>in</strong>dex<br />

A. punctulatus Maprik, New gu<strong>in</strong>ea 2.9 Peters and Standfast (1960)<br />

(1957-8)<br />

A. balabacensis Khmer(1960) 4.9 Slooft and Verdrager (1972)<br />

A. m<strong>in</strong>imus Bangladesh (1966-7) 4.4 Khan and Talibi (1972)<br />

A. gambiae Kankiya, Nigeria<br />

(1967)<br />

3.4 Garrett-Jones and Shidrawi<br />

(1969)<br />

A. gambiae Garki, Nigeria (1972) 3.9 Mol<strong>in</strong>eaux et al. (1979)<br />

A. gambiae Khashm, El Girba,<br />

Sudan (1967)<br />

0.47 Zahar (1974)


12<br />

Macdonald used the stability <strong>in</strong>dex to make broad geographical comparisons<br />

between the stable malaria of Africa and the unstable malaria of parts of India.<br />

However, the values of the stability <strong>in</strong>dex are difficult to determ<strong>in</strong>e [1], especially <strong>in</strong><br />

areas where the stability <strong>in</strong>dex is small and the malaria is unstable. In 1982 Aron and<br />

May [15] described the dynamical behaviour of the <strong>model</strong> both when the <strong>transmission</strong><br />

rate is very high and when the <strong>transmission</strong> rate is just above a threshold.<br />

A modification of the basic 2-<strong>equation</strong> <strong>model</strong> [1] is the <strong>in</strong>corporation of the<br />

latent periods dur<strong>in</strong>g which <strong>in</strong>fected hosts are <strong>in</strong>fected but not yet <strong>in</strong>fectious.<br />

A<br />

diagram of the <strong>model</strong> has been given <strong>in</strong> Figure 1-1. The <strong>model</strong> is a system of<br />

nonl<strong>in</strong>ear <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s <strong>for</strong> the <strong>in</strong>fected human population (h(t) ), the<br />

<strong>in</strong>fectious human population ( y(t) ), the <strong>in</strong>fected mosquito population ( ˆ (h(t) ) and the<br />

<strong>in</strong>fectious mosquito population ( ˆ (y(t)). The <strong>model</strong> is given by (see Chapter 1) A<br />

diagram of the <strong>transmission</strong> cycle of malaria and Dengue <strong>fever</strong> is shown <strong>in</strong> Figure<br />

2-4.<br />

Infected Human<br />

h(t)<br />

1<br />

Infectious<br />

mosquito<br />

ŷ(t)<br />

Infectious<br />

human<br />

y(t)<br />

2<br />

Infected<br />

mosquito<br />

ĥ(t)<br />

Figure 2-4 Transmission cycle of malaria and <strong>dengue</strong> <strong>fever</strong> <strong>in</strong>clud<strong>in</strong>g time <strong>delay</strong>s


13<br />

dh(t)<br />

= abmy(t)(1 ˆ −y(t)) −u1h(t) −abmy(t ˆ −τ1)(1 −y(t −τ1))<br />

dt<br />

dy(t)<br />

= abmy(t ˆ −τ1)(1 −y(t −τ1)) −u1y(t) −γy(t)<br />

dt<br />

dh(t) ˆ<br />

= acy(t)(1 −y(t)) ˆ −u ˆ<br />

ˆ<br />

2h(t) −acy(t −τ2)(1 −y(t −τ2))<br />

dt<br />

dy(t) ˆ<br />

= acy(t −τ ˆ ˆ<br />

2)(1 −y(t −τ2)) − u2y(t)<br />

dt<br />

where all symbols have already been def<strong>in</strong>ed <strong>in</strong> chapter 1.<br />

In 1957 Macdonald analyzed the equilibrium solutions of this <strong>model</strong> and solved<br />

the ensu<strong>in</strong>g set of algebraic <strong>equation</strong>s. He found that the basic reproduction rate of<br />

malaria <strong>in</strong> this <strong>model</strong> is now<br />

2<br />

⎛ma cb ⎞<br />

R<br />

0<br />

= ⎜ ⎟exp( −u1τ1−u 2τ2)<br />

⎝ γu<br />

2 ⎠<br />

Here b is now the proportion of bites by sporozoite-bear<strong>in</strong>g mosquitoes that<br />

result <strong>in</strong> <strong>in</strong>fection and c is the proportion of bites by susceptible mosquitoes on<br />

gametocyte-bear<strong>in</strong>g people that result <strong>in</strong> the mosquito <strong>in</strong>fection.<br />

A more detailed <strong>model</strong> of Plasmodium Vivax malaria has been given by<br />

Kammanee et al [8]. This <strong>model</strong> <strong>in</strong>cludes susceptible ( S′ h<br />

), <strong>in</strong>fected ( I′ h<br />

) and dormant<br />

human populations ( D′<br />

h<br />

) and susceptible ( S′ v<br />

) and <strong>in</strong>fected ( I′ v<br />

) mosquito<br />

populations. The dormant human population consists of humans who have recovered<br />

from malaria and have some immunity but could still get the disease aga<strong>in</strong>. The<br />

dynamic <strong>equation</strong>s describ<strong>in</strong>g the density of the human populations are as follows:<br />

dS′<br />

h<br />

dt<br />

dI′<br />

h<br />

dt<br />

dD′<br />

h<br />

dt<br />

=λ N + (1 −α )rI′ + rD ′ −( γ ′ I ′ +µ )S′<br />

(2-6)<br />

h 1 h 3 h h v h h<br />

=γ ′ I′ S′ + r D ′ − (r +µ )I′<br />

(2-7)<br />

h v h 2 h 1 h h<br />

=αrI ′ − (r + r +µ )D′<br />

(2-8)<br />

1 h 2 3 h h<br />

dN′<br />

h<br />

= (h γ −µ<br />

h)Nh<br />

(2-9)<br />

dt


14<br />

where all parameters <strong>in</strong> the <strong>model</strong> are assumed positive. S′ h is the susceptible human<br />

population, I′ h is the <strong>in</strong>fected human population, D′<br />

h is the dormant human population,<br />

N h is the total human population, λ is the natural birth rate of human population, µ<br />

h<br />

is the natural mortality rate of human population which will be same <strong>for</strong> all classes,<br />

1<br />

r −<br />

1<br />

is the mean life time <strong>for</strong> the parasite to rema<strong>in</strong> <strong>in</strong>fectious <strong>in</strong> the human, α is the<br />

percentage of <strong>in</strong>dividuals leav<strong>in</strong>g the <strong>in</strong>fected state and enter<strong>in</strong>g the dormant state, r 2<br />

is the relapse rate, and r 3<br />

is the recovery rate.<br />

Equation (2-6) represents the proportion of susceptible population. The term<br />

λ N h<br />

represents the rate of natural birth rate of total population. The term (1 −α )r1I′<br />

h<br />

represents the death rate of <strong>in</strong>fected population. The term rD′ 3 h<br />

represents the<br />

recovery rate of dormant population and the term ( γ ′ h<br />

I ′ v<br />

+µ h<br />

)S′<br />

h<br />

represents the<br />

mortality rate of human susceptible population.<br />

Equation (2-7) represents the proportion of <strong>in</strong>fected population, The term<br />

γ ′′ IS′<br />

represents the rate at which the susceptible population becomes <strong>in</strong>fected. The<br />

h v h<br />

term rD′<br />

2 h<br />

represents the relapse rate of dormant population. The term (r 1<br />

+µ h<br />

)I′ h<br />

represents the mortality rate of <strong>in</strong>fected population.<br />

Equation (2-8) represents the proportion of dormant population. The term<br />

α rI′<br />

1 h<br />

represents the mortality rate of <strong>in</strong>fected population. The term (r 2<br />

+ r 3<br />

+µ h<br />

)D′ h<br />

represents relapse and recovery rate of dormant population.<br />

Equation (2-9) represents the proportion of total population. The term<br />

(h γ −µ )N represents the mortality rate of total population. The <strong>transmission</strong> rate<br />

h<br />

h<br />

<strong>for</strong> malaria is given by<br />

βh<br />

γ ′<br />

h<br />

= b N + p<br />

where b is the species-dependent bit<strong>in</strong>g rate of mosquitoes, p is the population of<br />

other animals the mosquitoes can feed on and β<br />

h<br />

is the probability that the P.vivax is<br />

passed on by the mosquito to the human.<br />

The dynamic <strong>equation</strong>s <strong>for</strong> the mosquito population are as follows:<br />

h


15<br />

dS′<br />

v<br />

= A−γ′ vI′ hS′ v−µ vS′<br />

v<br />

dt<br />

(2-10)<br />

dI′<br />

v<br />

= γ′ vIS<br />

′ ′<br />

h v−µ vI′<br />

v<br />

dt<br />

(2-11)<br />

dN′<br />

v<br />

= A−µ vNv<br />

dt<br />

(2-12)<br />

where S′<br />

v<br />

is the susceptible mosquitoes population, I′ v<br />

is the <strong>in</strong>fected mosquitoes<br />

population,<br />

N′<br />

v<br />

is the total mosquitoes population. A is the recruitment rate, λ<br />

v<br />

is the<br />

mosquitoes lay eggs which give rise to larvae stage of the mosquitoes.<br />

Equation (2-10) represents the proportion of susceptible mosquitoes. The term<br />

γ ′′ IS′<br />

represents <strong>transmission</strong> rate <strong>for</strong> <strong>in</strong>fected human and susceptible mosquitoes.<br />

v h<br />

v<br />

And the term µ<br />

vS′<br />

v<br />

represents the mortality rate of susceptible mosquitoes.<br />

v h<br />

Equation (2-11) represents the proportion of <strong>in</strong>fected mosquitoes. The term<br />

γ ′′ IS′<br />

represents <strong>transmission</strong> rate <strong>for</strong> <strong>in</strong>fected human and susceptible mosquitoes.<br />

v<br />

And the term µ<br />

vI′<br />

vrepresents the mortality rate of <strong>in</strong>fected mosquitoes.<br />

Equation (2-12) represents the proportion of total mosquitoes. The term µ<br />

vNv<br />

represents the mortality rate of total mosquitoes.<br />

Kammanee et al [8] found the equilibrium populations <strong>for</strong> the <strong>model</strong> <strong>in</strong><br />

Equations (2-6)-(2-9) and analyzed the local stability us<strong>in</strong>g the l<strong>in</strong>earization method<br />

and the Jacobian matrix. From the analysis they obta<strong>in</strong>ed the basic reproduction rate<br />

R<br />

0<br />

such that if R0<br />

< 1 then the malaria becomes ext<strong>in</strong>ct whereas if R0<br />

> 1 then the<br />

disease-free equilibrium po<strong>in</strong>t is not asymptotically stable and an endemic state<br />

occurs.<br />

As stated previously, the method of <strong>transmission</strong> of Dengue <strong>fever</strong> is similar to<br />

that of malaria and the <strong>model</strong>s developed <strong>for</strong> malaria have been adapted to Dengue<br />

<strong>fever</strong>. We will now give a review of some Dengue <strong>fever</strong> <strong>model</strong>s.


16<br />

2.3 Mathematical Models of Dengue Fever<br />

Derouich and Boutayeb [6] have analyzed a <strong>model</strong> <strong>for</strong> Dengue <strong>fever</strong>. They<br />

divide the human population <strong>in</strong>to a susceptible group ( S h<br />

), an <strong>in</strong>fected group ( I h<br />

) and<br />

a removed group ( R ). They assume that the removed group cannot get the disease<br />

h<br />

because of immunity obta<strong>in</strong>ed either by recover<strong>in</strong>g from the disease or by<br />

immunization. They divide the mosquito population <strong>in</strong>to a susceptible group ( S v<br />

)<br />

and an <strong>in</strong>fected group ( I v<br />

). Their <strong>model</strong> is as follows:<br />

Human population<br />

dS<br />

dt<br />

h<br />

dIh<br />

dt<br />

dR<br />

dt<br />

h<br />

=Λ − ( µ + p+ C I /N )S<br />

(2-13)<br />

h h vh v h h<br />

= (C I / N )S − ( µ +γ +α )I<br />

(2-14)<br />

vh v h h h h h h<br />

= pS +γ I −µ R<br />

(2-15)<br />

h h h h h<br />

dNh<br />

=Λh −µ<br />

hNh −α<br />

hIh<br />

(2-16)<br />

dt<br />

Vector (mosquito) population<br />

Here<br />

N<br />

h<br />

and<br />

dS<br />

dt<br />

v<br />

dIv<br />

dt<br />

=µ N − ( µ + C I /N )S<br />

(2-17)<br />

v v v vh v h v<br />

= (C I / N )S −µ I<br />

(2-18)<br />

vh v h v v v<br />

N<br />

v<br />

denote the human and vector population sizes. In this <strong>model</strong> µ<br />

h<br />

is<br />

the proportional death rate of human population, µ<br />

v<br />

is the proportional death rate of<br />

vector population, and<br />

Λ<br />

h<br />

is a population <strong>in</strong>crease due to births and immigrations. S<br />

h<br />

is the susceptible human population, I h<br />

is the <strong>in</strong>fected human population,<br />

removed human population.<br />

R<br />

h<br />

is the<br />

S<br />

v<br />

is the susceptible vector population, I v<br />

is the<br />

<strong>in</strong>fected vector population. p is fraction of susceptible humans P hv<br />

is the average<br />

<strong>transmission</strong> probability of disease from <strong>in</strong>fected human to a susceptible vector, P<br />

vh<br />

is<br />

the average <strong>transmission</strong> probability of disease from <strong>in</strong>fected vector to human and I v<br />

is the <strong>in</strong>fected vector population,<br />

C<br />

hv<br />

is the rate of adequate contact of humans to


17<br />

vectors,<br />

C<br />

vh<br />

is the rate of adequate contact of vectors to humans. Equation (2-13)<br />

represents the proportion of susceptible human population. The term<br />

( µ<br />

h<br />

+ p+ CvhI v<br />

/N<br />

h)Sh<br />

represents proportional death rate of susceptible population.<br />

Equation (2-14) represents the proportion of <strong>in</strong>fected human population. The term<br />

(CvhI v<br />

/ N<br />

h<br />

)S<br />

h<br />

represents contact rate of <strong>in</strong>fected human population. The term<br />

( µ<br />

h<br />

+γ<br />

h<br />

+α<br />

h)Ih<br />

represents death rate of <strong>in</strong>fected population. Equation (2-15)<br />

represents the proportion of removed human population. The term µ h<br />

R h<br />

represents<br />

death rate of removed population. Equation (2-16) represents the proportion of the<br />

human populations. The term µ h<br />

N h<br />

represents death rate of human population.<br />

Equation (2-17) represents the proportion of susceptible vector population. The term<br />

µ<br />

vNv<br />

represents the death rate of vector population. The term ( µ<br />

v<br />

+ CvhI v<br />

/N<br />

h)Sv<br />

represents the adequate contact death rate of susceptible vector. Equation (2-18)<br />

represents the proportion of <strong>in</strong>fected vector population. The term (CvhI v<br />

/ N<br />

h<br />

)S<br />

v<br />

represents the adequate contact rate of susceptible vector. The term µ<br />

vIv<br />

represents<br />

the death rate of <strong>in</strong>fected vector.<br />

Derouich and Boutayeb used their <strong>model</strong> to analyze the equilibrium<br />

populations, the stability of the equilibrium populations and the dynamics of Dengue<br />

Fever <strong>for</strong> one epidemic of the disease. They also considered the case of two epidemics<br />

follow<strong>in</strong>g each other. In the second epidemic the human population would <strong>in</strong>clude<br />

people who had acquired immunity dur<strong>in</strong>g the first epidemic. They compared the<br />

proportions of the human populations <strong>in</strong> the three groups <strong>for</strong> the two epidemics and<br />

found the typical behavior of the solutions <strong>for</strong> the two epidemics. They found that the<br />

rate of susceptible, <strong>in</strong>fectious and removed populations <strong>for</strong> the two epidemics<br />

approached each other asymptotically. They were particularly <strong>in</strong>terested <strong>in</strong><br />

understand<strong>in</strong>g of the dynamics of Dengue <strong>fever</strong> and its evolution to the haemorrhagic<br />

<strong>for</strong>m.<br />

Derouich and Boutayeb conclude that by nature, Dengue <strong>fever</strong> is a complex<br />

disease result<strong>in</strong>g from the <strong>in</strong>teraction of human, biological, environmental,<br />

geographical and socio-economic factors. They also concluded that their <strong>model</strong> shows<br />

that environmental management alone is not sufficient as a means of vector control


18<br />

and that it can only <strong>delay</strong> the outbreak of the epidemics. They state that the<br />

eventuality of a vacc<strong>in</strong>e protect<strong>in</strong>g simultaneously aga<strong>in</strong>st the four different serotypes<br />

of Dengue <strong>fever</strong> rema<strong>in</strong>s a hope <strong>for</strong> the future, but that meanwhile, partial vacc<strong>in</strong>ation<br />

could be part of a preventive strategy based on the control of environmental and<br />

socio-economic factors.<br />

As stated <strong>in</strong> chapter 1, we want to exam<strong>in</strong>e a <strong>model</strong> conta<strong>in</strong><strong>in</strong>g <strong>delay</strong> times.<br />

This <strong>model</strong> will be a system of four <strong>differential</strong> <strong>equation</strong>s conta<strong>in</strong><strong>in</strong>g two constant<br />

<strong>delay</strong> times. In the follow<strong>in</strong>g sections of this chapter, we will review the methods<br />

used to analyze the equilibrium po<strong>in</strong>ts, the stability of the equilibrium po<strong>in</strong>ts and the<br />

numerical methods of solv<strong>in</strong>g <strong>differential</strong> <strong>equation</strong>s.<br />

2.4 Mathematics of Equilibrium Po<strong>in</strong>t and Stability of Dynamical Systems [7,14]<br />

In this section we will review the mathematical methods <strong>for</strong> analyz<strong>in</strong>g<br />

equilibrium po<strong>in</strong>ts and their stability <strong>for</strong> a system of first-order nonl<strong>in</strong>ear <strong>differential</strong><br />

<strong>equation</strong>s with no time <strong>delay</strong>s. The methods <strong>for</strong> systems with time <strong>delay</strong>s are similar<br />

and will be considered <strong>in</strong> chapter 3.<br />

The def<strong>in</strong>itions of equilibrium po<strong>in</strong>t and stability are as follows:<br />

Def<strong>in</strong>ition A po<strong>in</strong>t<br />

Xe<br />

∈ R<br />

n<br />

is an equilibrium po<strong>in</strong>t (or stationary po<strong>in</strong>t or s<strong>in</strong>gular<br />

po<strong>in</strong>t or critical po<strong>in</strong>t or rest po<strong>in</strong>t) of the <strong>differential</strong> <strong>equation</strong><br />

dX f(t,X)<br />

dt =<br />

*<br />

if there exists a f<strong>in</strong>ite time t* such that f(t,X )=0 <strong>for</strong> all t ≥ t<br />

Note: In the special case of an autonomous system <strong>in</strong> which f is a function of X only,<br />

i.e., f(t,X) = f(X), then if X<br />

e<br />

is an equilibrium po<strong>in</strong>t of dX f(X)<br />

dt = at t * , then it is an<br />

*<br />

equilibrium po<strong>in</strong>t <strong>for</strong> all t ≥ t<br />

Def<strong>in</strong>ition An equilibrium po<strong>in</strong>t<br />

X<br />

e<br />

of<br />

any t0<br />

∈ R + there is a ωδ (,t)<br />

0<br />

> 0such that<br />

e<br />

dX<br />

= f(t,X) is stable if <strong>for</strong> every δ> 0 and<br />

dt<br />

u(t,t<br />

0, γ) − X<br />

e<br />


19<br />

whenever γ− X<br />

e<br />

0 such that<br />

lim u(t, t , γ ) = X whenever γ− X<br />

e<br />

1 then the number of<br />

secondary <strong>in</strong>fections is greater than the number of <strong>in</strong>itial <strong>in</strong>fections and the number of<br />

people <strong>in</strong>fected with the disease will <strong>in</strong>crease and an epidemic may occur. The basic<br />

reproduction rate also gives a measure of the stability of any disease-free equilibrium<br />

po<strong>in</strong>t of the mathematical <strong>model</strong> of the disease.<br />

2.6 L<strong>in</strong>earization Stability Analysis [7,14]<br />

Although it is usually not easy to determ<strong>in</strong>e the stability of an equilibrium po<strong>in</strong>t<br />

of a system of <strong>differential</strong> <strong>equation</strong>s, the determ<strong>in</strong>ation of the asymptotic stability is<br />

usually quite easy. The method <strong>in</strong>volves l<strong>in</strong>earization of the <strong>equation</strong>s about the<br />

equilibrium po<strong>in</strong>t and the determ<strong>in</strong>ation of the stability of the l<strong>in</strong>earized <strong>equation</strong>s.


20<br />

The l<strong>in</strong>earization method is often called Liapunov’s first method. As the <strong>model</strong> of<br />

Dengue <strong>fever</strong> that we will exam<strong>in</strong>e will be a system of four autonomous first-order<br />

<strong>differential</strong> <strong>equation</strong>s, we will consider a system of four <strong>equation</strong>s here. The system<br />

is as follows:<br />

dh(t)<br />

= F(h, y,h,y) ˆ ˆ<br />

(2-19)<br />

dt<br />

dy(t)<br />

= G(h, y, h, ˆ y) ˆ<br />

(2-20)<br />

dt<br />

dh(t) ˆ<br />

= H(h, y,h, ˆ y) ˆ<br />

(2-21)<br />

dt<br />

dy(t) ˆ<br />

= I(h, y, h, ˆ y) ˆ<br />

(2-22)<br />

dt<br />

* * * *<br />

where F,G,H and I are nonl<strong>in</strong>ear function. We let (h ,y ,h ˆ ,y ˆ ) be the equilibrium<br />

po<strong>in</strong>t and then<br />

* * ˆ* * * * ˆ* * * * ˆ* * * * ˆ* *<br />

F(h,y,h,y) ˆ = G(h,y,h,y) ˆ = H(h,y,h,y) ˆ = I(h,y,h,y) ˆ = 0 (2-23)<br />

The l<strong>in</strong>earization method exam<strong>in</strong>es the behavior of the system close to an<br />

equilibrium po<strong>in</strong>t. We def<strong>in</strong>e:<br />

*<br />

h(t) = h + h<br />

(2-24)<br />

*<br />

y(t) = y + y<br />

(2-25)<br />

*<br />

ˆ ˆ ˆ<br />

y(t) = y + y<br />

(2-26)<br />

ˆ ˆ*<br />

ˆ<br />

h(t) = h + h<br />

(2-27)<br />

This method is called perturbation of equilibrium po<strong>in</strong>t. We substitute h(t), y(t),<br />

ĥ(t) and ŷ(t) <strong>in</strong> (2-24),(2-25),(2-26) and (2-27) <strong>in</strong>to (2-19),(2-20),(2-21) and (2-22),<br />

*<br />

d(h + h) * * * ˆ*<br />

ˆ<br />

dt<br />

= F(h + h, y + y, yˆ<br />

+ y, ˆ h + h)<br />

(2-28)<br />

*<br />

d(y + y) * * * ˆ*<br />

ˆ<br />

ˆ<br />

dt<br />

ˆ<br />

= G(h + h,y + y,yˆ<br />

+ y,h ˆ + h)<br />

(2-29)<br />

*<br />

d(h + h) * * * ˆ*<br />

ˆ<br />

dt<br />

= H(h + h,y + y,yˆ<br />

+ y(,h ˆ + h)<br />

(2-30)


21<br />

*<br />

d(yˆ<br />

+ y) ˆ * * * ˆ*<br />

= I(h + h, y + y, yˆ<br />

+ y,h ˆ + h) ˆ<br />

(2-31)<br />

dt<br />

We then expand F,G,H and I <strong>in</strong> a Taylor series about the equilibrium po<strong>in</strong>t<br />

* * ˆ * *<br />

(h ,y ,h ,y ˆ ) and obta<strong>in</strong><br />

where<br />

*<br />

dh dh * * * * * * * * * * * *<br />

+ = ˆ ˆ + ˆ ˆ ˆ ˆ<br />

h<br />

+<br />

y<br />

F(h,y,y,h) F(h,y,y,h)h F(h,y,y,h)y<br />

dt dt<br />

+ F (h , y , y ˆ , h ˆ )yˆ + F (h , y , y ˆ , h ˆ )hˆ + term of order h , y , y ˆ , h ˆ , hy (2-32)<br />

ŷ<br />

* * * * * * * * 2 2 2 2<br />

hˆ<br />

ˆ ˆ ˆ<br />

ˆ ˆ ˆ<br />

, hy, hh, yy, yh, yh and higher<br />

*<br />

dy dy * * * * * * * * * * * *<br />

+ = ˆ ˆ + ˆ ˆ ˆ ˆ<br />

h<br />

+<br />

y<br />

G(h,y,y,h) G(h,y,y,h)h G(h,y,y,h)y<br />

dt dt<br />

+ G (h , y , y ˆ , h ˆ )yˆ + G (h , y , y ˆ , h ˆ )hˆ + term of order h , y , y ˆ , h ˆ , hy (2-33)<br />

ŷ<br />

* * * * * * * * 2 2 2 2<br />

hˆ<br />

ˆ ˆ ˆ<br />

ˆ ˆ ˆ<br />

, hy, hh, yy, yh, yh and higher<br />

*<br />

dhˆ<br />

dhˆ<br />

* * * * * * * * * * * *<br />

+ = H(h,y,y,h) ˆ ˆ + H(h,y,y,h)h ˆ ˆ ˆ ˆ<br />

h<br />

+ H(h,y,y,h)y<br />

y<br />

dt dt<br />

+ H (h , y , y ˆ , h ˆ )yˆ + H (h , y , y ˆ , h ˆ )hˆ + term of order h , y , y ˆ , h ˆ , hy (2-34)<br />

ŷ<br />

* * * * * * * * 2 2 2 2<br />

hˆ<br />

ˆ ˆ ˆ<br />

ˆ ˆ ˆ<br />

, hy, hh, yy, yh, yh and higher<br />

*<br />

dyˆ<br />

dyˆ<br />

* * * * * * * * * * * *<br />

+ = I(h,y,y,h) ˆ ˆ + I(h,y,y,h)h ˆ ˆ ˆ ˆ<br />

h<br />

+ I(h,y,y,h)y<br />

y<br />

dt dt<br />

+ I (h , y , y ˆ ,h ˆ )yˆ + I (h , y , y ˆ , h ˆ )hˆ + term of order h , y , y ˆ ,h ˆ ,hy (2-35)<br />

ŷ<br />

* * * * * * * * 2 2 2 2<br />

hˆ<br />

ˆ ˆ ˆ<br />

ˆ ˆ ˆ<br />

,hy,hh, yy, yh, yh and higher<br />

* * * *<br />

F(h,y,y,h)<br />

h<br />

is<br />

ˆ<br />

ˆ<br />

∂F<br />

calculated at<br />

∂h<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y ) and similarly <strong>for</strong><br />

F (h ,y ,y ˆ ,h ˆ ),F (h ,y ,y ˆ ,h ˆ ),F (h ,y ,y ˆ ,h ˆ ),G (h ,y ,y ˆ ,h ˆ )<br />

* * * * * * * * * * * * * * * *<br />

y yˆ<br />

hˆ<br />

h<br />

* * * * * * * * * * * * * * * *<br />

ˆ ˆ<br />

y yˆ<br />

ˆ ˆ<br />

hˆ<br />

ˆ ˆ ˆ ˆ<br />

h<br />

* * * ˆ* * * * ˆ* * * * ˆ* * * * *<br />

ˆ<br />

y yˆ<br />

ˆ<br />

hˆ<br />

ˆ h ),I ˆ ˆ<br />

h<br />

(h ,y ,y ,h )<br />

,G (h ,y ,y ,h ),G (h ,y ,y ,h ),G (h ,y ,y ,h ),H (h ,y ,y ,h )<br />

,H (h ,y ,y ,h ),H (h ,y ,y ,h ),H (h ,y ,y ,<br />

,I (h ,y ,y ˆ ,h ˆ ),I (h ,y ,y ˆ ,h ˆ ),I (h ,y ,y ˆ ,h ˆ ) and other terms<br />

* * * * * * * * * * * *<br />

y yˆ<br />

hˆ<br />

By the def<strong>in</strong>ition of the equilibrium po<strong>in</strong>t we have<br />

ˆ ˆ ˆ ˆ ˆ ˆ<br />

* * * * * * * * * * * *<br />

F(h,y,h,y) = G(h,y,h,y) = H(h,y,h,y)<br />

* * * ˆ *<br />

dh dy dyˆ<br />

dh<br />

= = = = 0<br />

dt dt dt dt<br />

= ˆ ˆ = .<br />

* * * *<br />

I(h,y,h,y) 0<br />

We consider only l<strong>in</strong>ear terms. Thus, from (2-32), (2-33), (2-34) and (2-35) we obta<strong>in</strong>


22<br />

dh<br />

= a11h+ a12y+ a13hˆ + a14yˆ<br />

dt<br />

dy<br />

= a21h+ a22y+ a ˆ ˆ<br />

23h+<br />

a24y<br />

dt<br />

dhˆ<br />

= a ˆ ˆ<br />

31h+ a32y+ a33h+<br />

a34y<br />

dt<br />

dyˆ<br />

= a ˆ ˆ<br />

41h+ a42y+ a43h+<br />

a44y<br />

dt<br />

This system can be written <strong>in</strong> vector <strong>for</strong>m as dx = J(x*)x where x is column vector<br />

dt<br />

of (h,y,h,y) ˆ ˆ<br />

We now def<strong>in</strong>e the Jacobian matrix J of <strong>equation</strong> (2-19),(2-20),(2-21) and (2-22) to be<br />

* * * * *<br />

J(x ) J(h ,y ,h ,y )<br />

⎡∂F ∂F ∂F ∂F⎤<br />

⎢∂h ∂y hˆ<br />

∂yˆ<br />

⎥<br />

⎢<br />

∂<br />

⎥<br />

⎡a a a a ⎤ ⎢∂G ∂G ∂G ∂G⎥<br />

11 12 13 14<br />

⎢<br />

a21 a22 a23 a<br />

⎥ ⎢<br />

24 h y hˆ<br />

yˆ<br />

⎥<br />

⎢ ⎥<br />

∂ ∂ ∂<br />

⎢<br />

∂<br />

⎥<br />

⎢a31 a32 a33 a ⎥<br />

34 ⎢∂H ∂H ∂H ∂H⎥<br />

⎢ ⎥<br />

a h y ˆ yˆ<br />

41<br />

a42 a43 a<br />

⎢ ⎥<br />

⎣ ∂ ∂<br />

44 ⎦ ∂h<br />

∂<br />

⎢ ⎥<br />

= ˆ ˆ = =<br />

⎢ ∂I ∂I ∂I ∂I<br />

⎥<br />

⎢<br />

∂h ∂y hˆ<br />

∂yˆ<br />

⎥<br />

⎣ ∂ ⎦<br />

* * ˆ* *<br />

(h ,y ,h ,y ˆ )<br />

(2-36)<br />

The l<strong>in</strong>ear system <strong>in</strong> dX = f(t,X) has an equilibrium po<strong>in</strong>t at x*=0. In the<br />

dt<br />

theory of equilibrium po<strong>in</strong>ts of l<strong>in</strong>ear systems of the <strong>for</strong>m dx J(x*)x<br />

dt = , it is known<br />

that x = 0 is an equilibrium po<strong>in</strong>t and that solutions have the time dependence e λt ,<br />

where λ is an eigenvalue of J(x*) [7,14,21]. There<strong>for</strong>e the equilibrium po<strong>in</strong>t 0 is<br />

asymptotically stable if the real parts of all eigenvalues of J(x*) are negative and not<br />

asymptotically stable if the real part of some eigenvalue is greater than zero. A<br />

critical value <strong>for</strong> asymptotic stability is there<strong>for</strong>e that the real part of some eigenvalue<br />

is zero and the real parts of all eigenvalues are less than or equal to zero.<br />

Us<strong>in</strong>g the l<strong>in</strong>ear results, the l<strong>in</strong>earized test <strong>for</strong> the equilibrium po<strong>in</strong>t of a<br />

nonl<strong>in</strong>ear system will be asymptotically stable if the real parts of all eigenvalues of<br />

the Jacobian are negative and not asymptotically stable if the real part of some<br />

eigenvalue is positive. The test fails if the real part of any eigenvalue is zero and the


23<br />

real parts of all eigenvalues are less than or equal to 0. There<strong>for</strong>e the equilibrium<br />

po<strong>in</strong>t ˆ dX<br />

(h,y,h,y) ˆ of = f(t,X) will be asymptotically stable if the real parts of all<br />

dt<br />

eigenvalues of the Jacobian matrix <strong>in</strong> Eq. (2-36) are negative.<br />

2.7 Routh - Hurwitz Criteria [7,13]<br />

Although the numerical calculation of eigenvalues of matrices can now easily<br />

be carried out with many mathematical software packages (e.g., Matlab, Maple,<br />

Mathematica), the analytical calculation of eigenvalues can usually only be carried<br />

out <strong>for</strong> very small systems with less than or equal to 4 <strong>equation</strong>s.<br />

One method of test<strong>in</strong>g if all eigenvalues of a matrix have negative real parts is<br />

through the Routh-Hurwitz criteria.<br />

An eigenvalue λ of a matrix A must be a solution of the characteristic <strong>equation</strong>:<br />

Det( λI − A) =λ + b λ + ... + b = 0<br />

(2-37)<br />

k k−1<br />

1 k<br />

The stability of the equilibrium po<strong>in</strong>t can be determ<strong>in</strong>ed without solv<strong>in</strong>g the<br />

characteristic <strong>equation</strong> <strong>for</strong> the actual values of the eigenvalues by us<strong>in</strong>g the Routh-<br />

Hurwitz criteria.<br />

The Routh-Hurwitz criteria <strong>for</strong> asymptotic stability<br />

Given the characteristic <strong>equation</strong> (2-37), def<strong>in</strong>e k matrices as follows :<br />

H<br />

H<br />

H<br />

=<br />

[ b ]<br />

1 1<br />

⎡b 1 ⎤<br />

1<br />

2<br />

= ⎢<br />

b3 b ⎥<br />

2<br />

⎣<br />

⎡b1<br />

1 0⎤<br />

H3 =<br />

⎢<br />

b3 b2 b<br />

⎥<br />

⎢<br />

1 ⎥<br />

⎢⎣<br />

b5 b4 b ⎥<br />

3⎦<br />

⎡b1<br />

1 0 0 ⎤<br />

⎢<br />

b b b 1<br />

⎥<br />

⎢<br />

⎥<br />

3 2 1<br />

4<br />

= ⎢ b5 b4 b3 b2<br />

⎥<br />

⎢⎣<br />

b7 b6 b5 b4⎥⎦<br />


24<br />

H<br />

⎡ b1<br />

1 0 0 0⎤<br />

⎢<br />

b b b 1 0<br />

⎥<br />

⎢<br />

<br />

⎥<br />

3 2 1<br />

j<br />

= ⎢ b5 ⎢<br />

b4 b3 b2<br />

0⎥<br />

⎥<br />

H<br />

where the term (l,m) <strong>in</strong> the matrix<br />

⎢ ⎥<br />

⎢b2j −1 b2j −2 b2j −3 b2j −4 b ⎥<br />

⎣<br />

<br />

j⎦<br />

k<br />

⎡ b1<br />

1 0 0 ⎤<br />

⎢<br />

b3 b2 b1<br />

0<br />

⎥<br />

⎢<br />

<br />

= ⎥<br />

⎢ ⎥<br />

⎢<br />

⎥<br />

⎢⎣<br />

b2j −1 b2j −2 b2j −3 bk⎥⎦<br />

H<br />

j<br />

is<br />

b<br />

2l− m<br />

<strong>for</strong> 0 < 2l − m<br />

1 <strong>for</strong> 2l = m<br />

0 <strong>for</strong> 2l < m<br />

If all of the determ<strong>in</strong>ants of the Routh-Hurwitz matrices are positive, then all<br />

eigenvalues have negative real parts. This means that the equilibrium po<strong>in</strong>t<br />

X<br />

e<br />

is<br />

asymptotically stable if and only if the determ<strong>in</strong>ants of all Routh-Hurwitz matrices are<br />

positive which is<br />

Det H<br />

j<br />

> 0 <strong>for</strong> j = 1,2,3,...,k<br />

For the special case of k=4, the Routh-Hurwitz criteria <strong>for</strong> case k = 4 we need<br />

to show that Det H<br />

j<br />

> 0 <strong>for</strong> j = 1,2,3 and 4 . S<strong>in</strong>ce coefficients b<br />

5,b 6<br />

and b<br />

7<br />

<strong>in</strong> a<br />

order characteristic polynomial <strong>equation</strong> are equal to zero, we have the conditions<br />

H<br />

H<br />

[ b ]<br />

= ; Det H1 = b1<br />

1 1<br />

⎡b 1 ⎤<br />

1<br />

2<br />

= ⎢<br />

b3 b ⎥<br />

2<br />

⎣<br />

⎦<br />

; Det H2 = b1b2 − b3<br />

rd<br />

4<br />

⎡b1<br />

1 0⎤<br />

H3 =<br />

⎢<br />

b3 b2 b<br />

⎥<br />

⎢<br />

1 ⎥<br />

; Det<br />

⎢⎣0 b4 b ⎥<br />

3⎦<br />

H = b b b −b − b b<br />

2 2<br />

3 1 2 3 3 1 4


25<br />

H<br />

⎡b1<br />

1 0 0 ⎤<br />

⎢<br />

b b b 1<br />

⎥<br />

⎢<br />

⎥<br />

2 2<br />

; Det H4 = b<br />

4(b1b2b3 −b3 − b1b 4)<br />

⎢<br />

⎥<br />

⎣0 0 0 b4<br />

⎦<br />

3 2 1<br />

4<br />

= ⎢ 0 b4 b3 b2<br />

⎥<br />

So, the four conditions which correspond to Det<br />

H<br />

j<br />

> 0 <strong>for</strong> j = 1,2,3 and 4 are<br />

b > 0, bb − b > 0, b (bb −b ) − bb > 0 and b (bbb −b − bb ) > 0<br />

2 2 2<br />

1 1 2 3 3 1 2 3 1 4 4 1 2 3 3 1 4<br />

Note that if det H3<br />

> 0, then det H4<br />

> 0if and only if b4<br />

> 0 The four conditions then<br />

reduce to the simpler <strong>for</strong>m<br />

b1<br />

> 0 , b1b2 − b3<br />

> 0,<br />

2<br />

b<br />

3(b1b2 − b<br />

3) − b1b4<br />

> 0 , b4<br />

> 0<br />

There<strong>for</strong>e the three conditions of Routh-Hurwitz criteria <strong>for</strong> local asymptotical<br />

stability <strong>for</strong> a<br />

i) b1<br />

> 0<br />

rd<br />

4 order characteristic polynomial <strong>equation</strong> are<br />

ii) b1b2 − b3<br />

> 0<br />

iii)<br />

b (b b −b ) − b b > 0<br />

2<br />

3 1 2 3 1 4<br />

iv) b4<br />

> 0<br />

2.8 Dynamical Systems with Time Delays<br />

In a time-<strong>delay</strong> system, the derivative of the unknown function y(t) ′ at a certa<strong>in</strong><br />

time t is given <strong>in</strong> terms of the values of the functions at previous times. A typical<br />

first-order time-<strong>delay</strong> <strong>differential</strong> <strong>equation</strong> is of the <strong>for</strong>m:<br />

( )<br />

y ′(t) = f t, y(t), y(t −τ ), y(t −τ ),..., y(t −τ )<br />

(2-38)<br />

1 2 k<br />

and this <strong>equation</strong> has to be solved on a time <strong>in</strong>terval a≤ t≤ b with given history<br />

y(t)<br />

= S(t) <strong>for</strong> t ≤ a. The <strong>delay</strong>s are such that τ = m<strong>in</strong>( τ1,..., τ<br />

k) > 0 . Although <strong>delay</strong><br />

<strong>differential</strong> <strong>equation</strong>s with variable <strong>delay</strong>s (i.e., the <strong>delay</strong>s might be functions of y or<br />

t) do occur <strong>in</strong> applications, the <strong>delay</strong>s that appear most frequently <strong>in</strong> the <strong>model</strong><strong>in</strong>g<br />

literature are constants [9]. In this thesis we will only consider systems with constant<br />

<strong>delay</strong>s. Although the behavior of time-<strong>delay</strong> nonl<strong>in</strong>ear systems can be very<br />

complicated, the behavior of the <strong>model</strong> we are consider<strong>in</strong>g is reasonably simple. We


26<br />

will only require results <strong>for</strong> equilibrium po<strong>in</strong>ts, their asymptotic stability and<br />

numerical programs <strong>for</strong> solv<strong>in</strong>g the <strong>equation</strong>s.<br />

2.8.1 Equilibrium po<strong>in</strong>ts and asymptotic stability<br />

The derivation of the equilibrium po<strong>in</strong>ts of a time-<strong>delay</strong> system is the same as<br />

the derivation <strong>for</strong> systems without time <strong>delay</strong>s, because at an equilibrium po<strong>in</strong>t y,<br />

*<br />

we must have<br />

*<br />

y = y(t) = y(t −τ ) However, the analysis of the asymptotic stability is<br />

more complicated. As we have seen <strong>in</strong> sections (2.7) and (2.8), the analysis of the<br />

asymptotic stability of an equilibrium po<strong>in</strong>t <strong>for</strong> a system with zero time <strong>delay</strong>s can be<br />

carried out by apply<strong>in</strong>g the Routh-Hurwitz criteria to the characteristic polynomial of<br />

the Jacobian of the system. However, <strong>for</strong> systems with time <strong>delay</strong>s the characteristic<br />

function is not a polynomial but conta<strong>in</strong>s factors such as e −λτ . We will discuss<br />

asymptotic stability of equilibrium po<strong>in</strong>ts <strong>for</strong> time-<strong>delay</strong> systems <strong>in</strong> chapter 3.<br />

2.8.2 Numerical Programs <strong>for</strong> Delay Differential Equations [9]<br />

Numerical programs <strong>for</strong> solv<strong>in</strong>g <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s are available <strong>in</strong><br />

Matlab as well as <strong>in</strong> some other packages such as Maple and Mathematica. In this<br />

thesis we will use Matlab which has a function dde23 that is able to solve <strong>delay</strong><br />

<strong>differential</strong> <strong>equation</strong>s.<br />

A popular approach to solv<strong>in</strong>g <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s is to extend one of<br />

the methods used to solve ord<strong>in</strong>ary <strong>differential</strong> <strong>equation</strong>s. The Matlab program dde23<br />

uses this approach by modify<strong>in</strong>g a Runge-Kutta order 2 solver (ode23 <strong>in</strong> Matlab) to<br />

<strong>in</strong>clude time <strong>delay</strong>s [9]. Solv<strong>in</strong>g a <strong>delay</strong> <strong>differential</strong> <strong>equation</strong> with dde3 is much like<br />

solv<strong>in</strong>g an ord<strong>in</strong>ary <strong>differential</strong> <strong>equation</strong> with ode23, but there are some notable<br />

differences because of the need to store and access the past history of the system at<br />

each po<strong>in</strong>t of the <strong>in</strong>tegration.<br />

We will now give an example of the use of dde23 <strong>in</strong> solv<strong>in</strong>g a system of <strong>delay</strong><br />

<strong>differential</strong> <strong>equation</strong>s. However, it is not unusual <strong>for</strong> <strong>equation</strong>s to have different<br />

<strong>for</strong>ms <strong>in</strong> different circumstances, which leads to discont<strong>in</strong>uities <strong>in</strong> low-order<br />

derivatives of the solution when the circumstances change. This matter is more<br />

serious <strong>for</strong> <strong>delay</strong> <strong>differential</strong> <strong>equation</strong> because discont<strong>in</strong>uities propagate and<br />

discont<strong>in</strong>uities can occur <strong>in</strong> the history [9].


27<br />

Example<br />

We illustrate the straight<strong>for</strong>ward solution of a <strong>delay</strong> <strong>differential</strong> <strong>equation</strong> by<br />

comput<strong>in</strong>g and plott<strong>in</strong>g the solution of the follow<strong>in</strong>g <strong>equation</strong>:<br />

y(t) ′<br />

1<br />

= y(t<br />

1<br />

−1)<br />

y ′<br />

2(t) = y<br />

1(t − 1) + y<br />

2(t −0.2)<br />

y(t) ′ = y(t)<br />

3 2<br />

on the <strong>in</strong>terval [0,5] with history y<br />

1(t) = 1, y<br />

2(t) = 1, y<br />

3(t) = 1 <strong>for</strong> t ≤ 0<br />

A typical <strong>in</strong>vocation of dde23 has the <strong>for</strong>m<br />

sol = dde23(ddefile,lags,history,tspan);<br />

The <strong>in</strong>put argument tspan is the <strong>in</strong>terval of <strong>in</strong>tegration, here [0, 5]. The history<br />

argument is the name of a function that evaluates the solution at the <strong>in</strong>put value of t<br />

and returns it as a column vector. Here exam1h.m can be coded as<br />

function v = exam1h(t)<br />

v = ones(3,1);<br />

Quite often the history is a constant vector. A simpler way to provide the history then<br />

is to supply the vector itself as the history argument. The <strong>delay</strong>s are provided as a<br />

vector of <strong>delay</strong>s, here [1, 0.2]. ddefile is the name of a function <strong>for</strong> evaluat<strong>in</strong>g the<br />

right hand sides of the <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>. Here exam1f.m can be coded as<br />

function v = exam1f(t,y,Z)<br />

ylag1 = Z(:,1);<br />

ylag2 = Z(:,2);<br />

v = zeros(3,1);<br />

v(1) = ylag1(1);<br />

v(2) = ylag1(1) + ylag2(2);<br />

v(3) = y(2);<br />

The <strong>in</strong>put t is the current t and y, an approximation to y(t) .<br />

The <strong>in</strong>put array Z<br />

conta<strong>in</strong>s approximations to the solution at all the <strong>delay</strong>ed arguments. Specifically,<br />

Z(:, j) approximates<br />

y(t −τ<br />

j)<br />

<strong>for</strong> the <strong>delay</strong>s τ<br />

j<br />

given as the vector component lags(j).<br />

It is not necessary to def<strong>in</strong>e local vectors ylag1, ylag2 as we have done here, but often<br />

this makes the cod<strong>in</strong>g of the <strong>delay</strong> <strong>differential</strong> equaiton clearer. The ddefile must<br />

return a column vector.


28<br />

The function dde23 does not actually assume that terms like<br />

y(t −τ<br />

j)<br />

appear <strong>in</strong><br />

the <strong>equation</strong>s. Because of this, it is possible to use dde23 to solve ord<strong>in</strong>ary <strong>differential</strong><br />

<strong>equation</strong>s. This can be useful to check the computer programs.<br />

The <strong>in</strong>put arguments of dde23 are much like those of ode23, but the output<br />

differs <strong>for</strong>mally <strong>in</strong> that it is one structure, here called sol, rather than several arrays as<br />

<strong>in</strong> the ode23 call:<br />

[t,y,...] = ode23(...<br />

The field sol.x corresponds to the array t of values of the <strong>in</strong>dependent variable<br />

returned by ode23 and the field sol.y, to the array y of solution values. So, one way to<br />

plot the solution is<br />

plot(sol.x,sol.y);<br />

After def<strong>in</strong><strong>in</strong>g the <strong>equation</strong>s <strong>in</strong> exam1f.m, the complete program exam1.m to compute<br />

and plot the solution is<br />

sol = dde23(’exam1f’,[1, 0.2],ones(3,1),[0, 5]);<br />

plot(sol.x,sol.y);<br />

title(’Figure 1. Example 3 of Wille’’ and Baker.’)<br />

xlabel(’time t’);<br />

ylabel(’y(t)’);<br />

Note that we must supply the name of the ddefile to the solver, i.e., the str<strong>in</strong>g<br />

’exam1f’ rather than exam1f. Also, we have taken advantage of the easy way to<br />

specify a constant history. A plot of the solution is shown <strong>in</strong> Fig. 2-5.<br />

Figure 2-5 Graph of Numerical methods <strong>for</strong> Delay Differential Equations


CHAPTER 3<br />

METHODOLOGY<br />

In this chapter, we first present the <strong>model</strong> that we will use to study the effect of<br />

time <strong>delay</strong>s <strong>in</strong> the <strong>transmission</strong> of Dengue <strong>fever</strong>. The <strong>model</strong> is an extension of the<br />

four <strong>equation</strong> <strong>model</strong> <strong>for</strong> malaria orig<strong>in</strong>ally discussed by Macdonald [15] and<br />

Anderson and May [1] that we have already given <strong>in</strong> section 2.2 and Figure 1-1. We<br />

then analyze the equilibrium po<strong>in</strong>ts and their stability <strong>for</strong> the two cases <strong>in</strong> which the<br />

time <strong>delay</strong>s are zero and the time <strong>delay</strong>s are nonzero. We then discuss the methods<br />

<strong>for</strong> numerical solution of these <strong>equation</strong>s us<strong>in</strong>g Matlab.<br />

3.1 The mathematical <strong>model</strong><br />

The <strong>model</strong> consists of two <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s <strong>for</strong> four populations<br />

consist<strong>in</strong>g of <strong>in</strong>fected humans (h(t)), <strong>in</strong>fectious humans (y(t)), <strong>in</strong>fected mosquitoes<br />

( ĥ(t) ) and <strong>in</strong>fectious mosquitoes ( ŷ(t) ). The <strong>model</strong> conta<strong>in</strong>s two time <strong>delay</strong>s <strong>for</strong><br />

transition from <strong>in</strong>fected to <strong>in</strong>fectious stage <strong>in</strong> humans ( τ 1<br />

) and from <strong>in</strong>fected to<br />

<strong>in</strong>fectious stage <strong>in</strong> mosquitoes ( τ 2<br />

). The <strong>equation</strong>s of the <strong>model</strong> are:<br />

dh(t)<br />

dt<br />

−u 1 τ<br />

= abmy(t)(1 ˆ −h(t) −y(t)) −u ˆ<br />

1<br />

1h(t) −abmy(t −τ1)(1−h(t −τ1) −y(t −τ<br />

1))e<br />

(3-1)<br />

dy(t)<br />

−u 1 τ<br />

= abmy(t ˆ −τ 1<br />

1)(1−h(t −τ1) −y(t −τ1))e −u1y(t) −γ y(t)<br />

(3-2)<br />

dt<br />

dh(t) ˆ<br />

acy(t)(1 h(t) ˆ y(t)) ˆ u h(t) ˆ acy(t )(1 h(t ˆ ) y(t ˆ ))e<br />

dt<br />

−u 2 τ<br />

= − − − 2<br />

2<br />

− −τ2 − −τ2 − −τ<br />

2<br />

(3-3)<br />

dy(t) ˆ<br />

ˆ −u 2 τ<br />

= acy(t −τ ˆ 2<br />

ˆ<br />

2)(1−h(t −τ2) −y(t −τ2))e − u2y(t)<br />

(3-4)<br />

dt<br />

where h(t) is the proportion of humans who are <strong>in</strong>fected but not yet <strong>in</strong>fectious<br />

(0


30<br />

proportion of mosquitoes that are <strong>in</strong>fected but not yet <strong>in</strong>fectious, ŷ(t) is the<br />

proportion of mosquitoes that are <strong>in</strong>fectious, u 1<br />

is mortality rate <strong>in</strong> the human<br />

population, u<br />

2<br />

is mortality rate <strong>in</strong> the mosquito population, γ is the recovery rate of<br />

<strong>in</strong>fectious humans from the disease, m is the number of female mosquitoes per human<br />

ˆN<br />

( m = , where ˆN is the mosquito population and N is the human population), τ<br />

1<br />

is a<br />

N<br />

time <strong>delay</strong> <strong>in</strong> humans from <strong>in</strong>fected to <strong>in</strong>fectious stage, and τ 2<br />

is time <strong>delay</strong> <strong>in</strong><br />

mosquitoes from <strong>in</strong>fected to <strong>in</strong>fectious stage.<br />

Eq. (3-1) represents the rate of change of the <strong>in</strong>fected human population. In Eq.<br />

(3-1) the term abmy(t)(1 ˆ −h(t) − y(t)) represents the rate of <strong>in</strong>fection of humans by<br />

<strong>in</strong>fectious mosquitoes at time t. The factor 1-h(t)-y(t) <strong>in</strong> this term represents the<br />

proportion of the human population who do not have the disease (i.e., who are not<br />

<strong>in</strong>fected or <strong>in</strong>fectious) at time t. The orig<strong>in</strong>al <strong>model</strong> given <strong>in</strong> [1] and section 2.2 has a<br />

factor 1-h(t) which we have replaced by 1-h(t)-y(t), i.e., <strong>in</strong> the orig<strong>in</strong>al <strong>model</strong> it was<br />

assumed that <strong>in</strong>fectious humans can become <strong>in</strong>fected. The term<br />

abmy(t ˆ )(1 h(t ) y(t ))e − τ<br />

u<br />

−τ 1 1<br />

1<br />

− −τ1 − −τ<br />

1<br />

represents the rate at which humans move<br />

from the <strong>in</strong>fected to the <strong>in</strong>fectious stage after a latency period of time τ 1<br />

. The factor<br />

u<br />

e − τ 1 1<br />

allows <strong>for</strong> the death rate of humans dur<strong>in</strong>g the period τ 1<br />

. In the orig<strong>in</strong>al <strong>model</strong><br />

u1 1<br />

given <strong>in</strong> [1] and section 2.2, this e − τ factor is not <strong>in</strong>cluded, i.e., no allowance is<br />

made <strong>for</strong> death of <strong>in</strong>fected humans <strong>in</strong> the period τ<br />

1<br />

. The term − uh(t)<br />

1<br />

represents the<br />

death rate of <strong>in</strong>fected humans at time t.<br />

Eq. (3-2) represents the rate of change of the <strong>in</strong>fectious human population. In<br />

u1 1<br />

Eq.(3-2) the term abmy(t ˆ −τ )(1−h(t −τ ) −y(t −τ ))e − τ aga<strong>in</strong> represents the rate at<br />

1 1 1<br />

which <strong>in</strong>fected humans move to the <strong>in</strong>fectious stage after a <strong>delay</strong> time τ 1<br />

. The term<br />

− uy(t)<br />

1<br />

represents the death rate of <strong>in</strong>fectious humans at time t and the term −γ y(t)<br />

represents the recovery rate of <strong>in</strong>fectious humans from the disease<br />

Eq. (3-3) represents the rate of change of the <strong>in</strong>fected mosquito population. In<br />

Eq. (3-3) the term acy(t)(1−h(t) ˆ − y(t)) ˆ represents the rate at which mosquitoes<br />

become <strong>in</strong>fected by bit<strong>in</strong>g an <strong>in</strong>fectious human. The factor 1−h(t) ˆ −y(t)<br />

ˆ represents


31<br />

the proportion of the mosquito population that do not carry the disease (i.e., that are<br />

not <strong>in</strong>fected or <strong>in</strong>fectious) at time t. The orig<strong>in</strong>al <strong>model</strong> given <strong>in</strong> [1] and section 2.2<br />

has a factor<br />

1− h(t) ˆ which we have replaced by 1−h(t) ˆ − y(t) ˆ , i.e., <strong>in</strong> the orig<strong>in</strong>al<br />

<strong>model</strong> it was assumed that <strong>in</strong>fectious mosquitoes can become <strong>in</strong>fected.<br />

acy(t )(1 h(t ˆ ) y(t ˆ ))e − τ<br />

The term<br />

u<br />

−τ 2 2<br />

2<br />

− −τ2 − −τ<br />

2<br />

represents the rate at which mosquitoes move<br />

from the <strong>in</strong>fected to the <strong>in</strong>fectious stage after a latency period τ 2<br />

. The factor<br />

u<br />

e − τ 2 2<br />

allows <strong>for</strong> the death rate of mosquitoes dur<strong>in</strong>g the period τ 2<br />

. In the orig<strong>in</strong>al<br />

u2 2<br />

<strong>model</strong> given <strong>in</strong> [1] and section 2.2, this e − τ factor is not <strong>in</strong>cluded, i.e., no allowance<br />

is made <strong>for</strong> death of <strong>in</strong>fected mosquitoes <strong>in</strong> the period τ<br />

2<br />

.The term<br />

−uh(t)<br />

represents<br />

the death rate of <strong>in</strong>fected mosquitoes at time t.<br />

Eq. (3-4) represents the rate of change of the <strong>in</strong>fectious mosquito population.<br />

u2 2<br />

The term acy(t −τ )(1 −h(t ˆ −τ ) −y(t ˆ −τ ))e − τ aga<strong>in</strong> represents the rate at which<br />

2 2 2<br />

mosquitoes move from the <strong>in</strong>fected to the <strong>in</strong>fectious stage after a time τ 2<br />

. The term<br />

− uy(t) represents the death rate of <strong>in</strong>fectious mosquitoes at time t.<br />

2 ˆ<br />

We now exam<strong>in</strong>e the steady states of the above system of <strong>equation</strong>s.<br />

2 ˆ<br />

3.2 Existence of Steady States<br />

We will set time derivatives of <strong>equation</strong> (3-1)-(3-4) equal to zero and look <strong>for</strong> a<br />

steady state solution<br />

*<br />

= −τ<br />

1<br />

= ,<br />

y(t) y(t ) y<br />

h(t) ˆ h(t ˆ ) hˆ<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y ) such that<br />

*<br />

= −τ<br />

2<br />

= ,<br />

y(t) ˆ y(t ˆ ) yˆ<br />

*<br />

= −τ<br />

1<br />

= ,<br />

h(t) h(t ) h<br />

*<br />

= −τ<br />

2<br />

= We obta<strong>in</strong> steady states<br />

by solv<strong>in</strong>g the <strong>equation</strong>s <strong>for</strong> all time derivatives equal to zero. The <strong>equation</strong>s then<br />

become:<br />

ˆ<br />

− − − − ˆ − − = (3-5)<br />

* * * * * * * −u 1 τ<br />

abmy(1 h y) uh 1<br />

1<br />

abmy(1 h y)e 0<br />

abmy ˆ (1 −h −y )e −u y −γ y = 0<br />

(3-6)<br />

* * * −u 1 τ 1 * *<br />

1<br />

− ˆ − ˆ − ˆ − − ˆ − ˆ = (3-7)<br />

* * * * * * * −u 2 τ<br />

acy(1 h y) uh 2<br />

2<br />

acy(1 h y)e 0<br />

acy (1 − hˆ −y ˆ )e − u y ˆ<br />

= 0<br />

(3-8)<br />

* * * −u 2 τ 2 *<br />

2


32<br />

We notice that (0,0,0,0) is always a steady state of the system. This steady<br />

state is called the disease-free equilibrium.<br />

Eq. (3-5)-(3-8) can be rewritten <strong>in</strong> the simpler <strong>for</strong>m:<br />

abmy ˆ (1 −h −y )(1 −e ) − u h = 0<br />

(3-9)<br />

* * * −u 1 τ 1 *<br />

1<br />

abmy ˆ (1 −h −y )e −u y −γ y = 0<br />

(3-10)<br />

* * * −u 1 τ 1 * *<br />

1<br />

acy(1−hˆ<br />

−y)(1 ˆ −e ) − uh ˆ = 0<br />

(3-11)<br />

* * * −u 2 τ 2 *<br />

2<br />

acy (1 −hˆ −y ˆ )e − u y ˆ = 0<br />

(3-12)<br />

* * * −u 2 τ 2 *<br />

2<br />

We will now exam<strong>in</strong>e the equilibrium states and their stability, first <strong>for</strong> the case of<br />

zero time <strong>delay</strong>s and then <strong>for</strong> the case with nonzero time <strong>delay</strong>s.<br />

3.2.1 Steady states <strong>for</strong> zero time <strong>delay</strong>s<br />

For the special case of τ<br />

1<br />

=τ<br />

2<br />

= 0 Eqs. (3-9-3-12) reduce to the <strong>for</strong>m<br />

* *<br />

There<strong>for</strong>e we must have h = 0,hˆ<br />

= 0and<br />

*<br />

u1h 0<br />

* * * * *<br />

ˆ − − −<br />

1<br />

−γ =<br />

*<br />

u ˆ<br />

2h 0<br />

* ˆ * * *<br />

− − ˆ − ˆ<br />

2<br />

=<br />

− =<br />

abmy (1 h y ) u y y 0<br />

− =<br />

acy (1 h y ) u y 0<br />

abmy ˆ (1 −h −y ) −u y −γ y = 0<br />

(3-13)<br />

* * * * *<br />

1<br />

acy (1 −hˆ −y ˆ ) − u y ˆ = 0<br />

(3-14)<br />

* * * *<br />

2<br />

There are two solutions <strong>for</strong> Eqs. (3-13) and (3-14). The first is<br />

*<br />

y = 0,<br />

*<br />

ŷ = 0. This<br />

corresponds to a disease-free equilibrium state.<br />

The second solution is a nonzero solution which is obta<strong>in</strong>ed as follows. From<br />

acy (1 −y ˆ ) − u yˆ<br />

= 0 we get<br />

* * *<br />

2<br />

ŷ<br />

*<br />

acy − acy<br />

=<br />

*<br />

acy + u<br />

* *<br />

and then substitut<strong>in</strong>g this result <strong>in</strong>to Eq. (3-14) we obta<strong>in</strong><br />

2<br />

(3-15)<br />

y<br />

2<br />

− abcm+ uu +γu<br />

abcm−<br />

uu<br />

1 2<br />

−γu2<br />

= =<br />

− − − γ<br />

2<br />

a bcm + acu + acγ<br />

2<br />

* 1 2 2<br />

2<br />

abcm acu1<br />

ac<br />

Then substitut<strong>in</strong>g this value <strong>for</strong> y* <strong>in</strong>to Eq. (3-15), we obta<strong>in</strong><br />

1


33<br />

ŷ<br />

*<br />

=<br />

( abmc 2 − uu<br />

1 2<br />

−γu2)<br />

2<br />

a bmc<br />

+ abmu<br />

We have there<strong>for</strong>e found a disease-free equilibrium state (0,0,0,0) and an endemicdisease<br />

equilibrium state<br />

2<br />

2 2<br />

* * ˆ * *<br />

⎛ abcm−uu 1 2<br />

−γu2 abmc−uu 1 2<br />

−γu<br />

⎞<br />

2<br />

(h , y ,h , y ˆ ) = ⎜0, ,0,<br />

2 2<br />

⎟<br />

⎝ abcm+ acu1+ acγ abmc+<br />

abmu2<br />

⎠<br />

(3-16)<br />

3.2.2 Steady states <strong>for</strong> nonzero time <strong>delay</strong>s<br />

We first note that (0,0,0,0) is a solution of Eqs. (3-9)-(3-12) and there<strong>for</strong>e there<br />

exists a disease-free equilibrium. Eqs. (3-9)-(3-12) are very complicated to solve by<br />

hand and there<strong>for</strong>e we have used Maple to solve the <strong>equation</strong>s. The Maple solution<br />

gives only two equilibrium solutions, the first is the disease-free equilibrium (0,0,0,0)<br />

and the second is a nonzero endemic-disease equilibrium. This shows that the<br />

existence of nonzero time <strong>delay</strong>s does not change the number of equilibrium<br />

solutions. The endemic-disease solution obta<strong>in</strong>ed from Maple is:<br />

h = {(u a bmc + a cbm γ)e −(a cbmγ+<br />

a cbmu )e<br />

* 2 2 ( −u1τ1−u 2τ2) 2 2<br />

( −2u1τ1−u 2τ2)<br />

1 1<br />

+ (u u + 2u u γ+ u γ )e −u u −2u u γ−u γ }<br />

2 2 −u1τ1<br />

2 2<br />

1 2 1 2 2 1 2 1 2 2<br />

{1/(ace (u + u γ+ (abmu + abm γ)e −abmγe ))}<br />

−u1τ1 2<br />

−u 2τ2 ( −u1τ1−u 2τ2)<br />

1 1 1<br />

(3-17)<br />

y<br />

ĥ<br />

ŷ<br />

(a bcme −u u −u γ)u<br />

a(u u (abmu abm )e abm e )c<br />

2 ( −u1τ1−u 2τ2)<br />

* 1 2 2 1<br />

=<br />

2<br />

−u 2τ2 ( −u1τ1−u 2τ2)<br />

1<br />

+<br />

1γ+ 1+ γ − γ<br />

(a bcme − a bcme + u u e + u γe −u u −u γ)u<br />

2 ( −u1τ1−u 2τ2) 2 ( −u1τ1−2u 2τ2) −u2τ2 −u2τ2<br />

* 1 2 2 1 2 2 1<br />

=<br />

−u2τ2 −u1τ1 −u1τ1<br />

abme (u1u2 + u2γ+ acu1e −u 2γe )<br />

u(acbme −uu −u γ)<br />

abm(u u u u ace u e )<br />

2 ( −u1τ1−u 2τ2)<br />

* 1 1 2 2<br />

=<br />

−u1τ1 −u1τ1<br />

1 2<br />

+<br />

2γ+ 1<br />

−<br />

2γ<br />

(3-18)<br />

(3-19)<br />

(3-20)<br />

3.3 Asymptotic stability of steady states<br />

We will analyze the asymptotic stability of the steady states by l<strong>in</strong>earization of<br />

the system Eq. (3-1)-(3-4) about a steady state<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y ), where<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y )<br />

will be any one of the four equilibrium states we have found <strong>in</strong> section (3.2) <strong>for</strong> the<br />

zero and nonzero time <strong>delay</strong> cases.


34<br />

The method is similar to the l<strong>in</strong>earization method described <strong>in</strong> section 2.7, but<br />

with modifications due to the presence of the time <strong>delay</strong>s. We first def<strong>in</strong>e a function<br />

<strong>for</strong> each <strong>equation</strong> <strong>in</strong> the system<br />

dh(t)<br />

−u 1 τ<br />

= abmy(t)(1 ˆ −h(t) −y(t)) −u ˆ<br />

1<br />

1h(t) −abmy(t −τ1)(1 −h(t −τ1) −y(t −τ1))e<br />

dt<br />

= F(h, y, h, ˆ y) ˆ<br />

(3-21)<br />

dy(t)<br />

−u 1 τ<br />

= abmy(t ˆ −τ 1<br />

1)(1 −h(t −τ1) −y(t −τ1))e −u1y(t) −γy(t)<br />

dt<br />

= G(h, y,h, ˆ y) ˆ<br />

(3-22)<br />

dh(t) ˆ<br />

ˆ ˆ ˆ<br />

−u 2 τ<br />

= acy(t)(1 −h(t) −y(t)) ˆ −u ˆ<br />

2<br />

2h(t) −acy(t −τ2)(1−h(t −τ2) −y(t −τ2))e<br />

dt<br />

= H(h, y,h, ˆ y) ˆ<br />

(3-23)<br />

dy(t) ˆ<br />

ˆ −u 2 τ<br />

= acy(t −τ ˆ 2<br />

ˆ<br />

2)(1 −h(t −τ2) −y(t −τ2))e −u2y(t)<br />

dt<br />

= I(h, y, h, ˆ y) ˆ<br />

(3-24)<br />

then change variables by def<strong>in</strong><strong>in</strong>g<br />

ˆ ˆ ˆ<br />

ˆ ˆ ˆ<br />

* * * *<br />

h(t) = h + h(t) , y(t) = y + y(t) , y(t) = y + y(t) , h(t) = h + h(t)<br />

where<br />

h, y, y, ˆ h ˆ are deviations from the steady state value. Eq.(3-21)-(3-24) can then<br />

be rewritten as<br />

*<br />

d(h + h(t)) * * * ˆ*<br />

ˆ<br />

dt<br />

= F(h + h(t),y + y(t),yˆ<br />

+ y(t),h ˆ + h(t)) (3-25)<br />

*<br />

d(y + y(t)) * * * ˆ*<br />

ˆ<br />

ˆ<br />

dt<br />

ˆ<br />

= G(h + h(t),y + y(t),yˆ<br />

+ y(t),h ˆ + h(t)) (3-26)<br />

*<br />

d(h + h(t)) * * * ˆ*<br />

ˆ<br />

ˆ<br />

dt<br />

ˆ<br />

= H(h + h(t),y + y(t),yˆ<br />

+ y(t),h ˆ + h(t)) (3-27)<br />

*<br />

d(y + y(t)) * * * ˆ*<br />

ˆ<br />

dt<br />

= I(h + h(t),y + y(t),yˆ<br />

+ y(t),h ˆ + h(t)) (3-28)


35<br />

* * * *<br />

dh dy dyˆ<br />

dhˆ<br />

At steady state on the left hand side = = = = 0 s<strong>in</strong>ce<br />

dt dt dt dt<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y )<br />

are constant. On the right hand side, we expand F,G,H and I <strong>in</strong> a Taylor series about<br />

* * * *<br />

the equilibrium po<strong>in</strong>t (h , y ,h ˆ , y ˆ ) . By def<strong>in</strong>ition of the equilibrium po<strong>in</strong>t<br />

ˆ ˆ ˆ ˆ ˆ ˆ<br />

* * * * * * * * * * * *<br />

F(h,y,h,y) = G(h,y,h,y) = H(h,y,h,y)<br />

can rewrite the system <strong>in</strong> the new <strong>for</strong>m<br />

ˆ<br />

ˆ<br />

* * * *<br />

= I(h , y ,h , y ) = 0 so that we<br />

dh * * * * * * * * * * * *<br />

= F(h,y,h,y)h ˆ ˆ ˆ ˆ<br />

h<br />

+ F(h,y,h,y)y ˆ<br />

y<br />

+ F(h,y,h,y)y<br />

yˆ<br />

ˆ ˆ<br />

dt<br />

+ F (h , y ,h ˆ , y ˆ )hˆ + h (h , y ,h ˆ , y ˆ )<br />

* * * * * * * *<br />

hˆ 1<br />

dy * * * * * * * * * * * *<br />

= G(h,y,h,y)h ˆ ˆ ˆ ˆ<br />

h<br />

+ G(h,y,h,y)y ˆ<br />

y<br />

+ G(h,y,h,y)y<br />

yˆ<br />

ˆ ˆ<br />

dt<br />

+ G (h , y ,h ˆ , y ˆ )hˆ + h (h , y ,h ˆ , y ˆ )<br />

* * * * * * * *<br />

hˆ 2<br />

dhˆ<br />

* * * * * * * * * * * *<br />

= H(h,y,h,y)h ˆ ˆ ˆ ˆ<br />

h<br />

+ H(h,y,h,y)y ˆ<br />

y<br />

+ H(h,y,h,y)y<br />

yˆ<br />

ˆ ˆ<br />

dt<br />

+ H (h , y ,h ˆ , y ˆ )hˆ + h (h , y ,h ˆ , y ˆ )<br />

^<br />

h<br />

* * * * * * * *<br />

3<br />

(3-29)<br />

(3-30)<br />

(3-31)<br />

where<br />

dyˆ<br />

* * * * * * * * * * * *<br />

= I(h,y,h,y)h ˆ ˆ ˆ ˆ<br />

h<br />

+ I(h,y,h,y)y ˆ<br />

y<br />

+ I(h,y,h,y)y<br />

yˆ<br />

ˆ ˆ<br />

dt<br />

+ I (h , y ,h ˆ , y ˆ )h ˆ + h (h , y ,h ˆ , y ˆ )<br />

* * * * * * * *<br />

hˆ 4<br />

ˆ<br />

ˆ<br />

* * * *<br />

F(h,y,h,y)<br />

h<br />

is the partial derivative of function F with respect to h at<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h , y ,h , y ) and similarly<br />

ˆ<br />

ˆ<br />

(3-32)<br />

* * * *<br />

F(h,y,h,y)<br />

n<br />

is the partial derivative of function F<br />

with respect to n<br />

The l<strong>in</strong>earized system of <strong>equation</strong>s (3-29)-(3-32) is the l<strong>in</strong>ear system of <strong>delay</strong><br />

<strong>differential</strong> <strong>equation</strong>s given by<br />

dh<br />

dt<br />

= ˆ + − ˆ + − − ˆ + ˆ<br />

* * * * * −u1τ1<br />

-abmy u1h ( abmy )y (1 y h )abmy (abmy e )hτ1<br />

ˆ<br />

* −u1τ1 * *<br />

−u1τ1<br />

(abmy e )y<br />

τ<br />

+ (1 −y −h )( −abme )y<br />

1<br />

τ1<br />

ˆ<br />

(3-33)<br />

dy<br />

* −u1τ1 * * −u1τ1<br />

= ( − abmyˆ<br />

e )y (u ˆ<br />

τ<br />

+<br />

1 1<br />

−γ )y + (1−y − h )abme yτ<br />

(3-34)<br />

1<br />

dt


36<br />

ˆ<br />

dh * ˆ* −u2τ2 * ˆ* * −u2τ2<br />

= (1−yˆ<br />

− h )acy + ( −ace (1−yˆ<br />

− h ))y acy e hˆ<br />

τ<br />

+<br />

2<br />

τ2<br />

dt<br />

+ ˆ −<br />

* −u2τ2<br />

acy e yτ<br />

u<br />

2 2h<br />

ˆ<br />

(3-35)<br />

where<br />

dyˆ<br />

−u2τ2 * ˆ* * −u2τ2ˆ<br />

* −u2τ2<br />

= ace (1 −yˆ −h )y u ˆ ˆ<br />

τ<br />

−<br />

2 2y −acy e hτ<br />

− acy e y<br />

2 τ<br />

(3-36)<br />

2<br />

dt<br />

yτ = y(t −τ<br />

1 1)<br />

,<br />

hˆ<br />

h(t ˆ<br />

τ<br />

= −τ )<br />

2 2<br />

yˆ<br />

y(t ˆ<br />

τ<br />

= −τ ),<br />

1 1<br />

yτ = y(t −τ<br />

2 2)<br />

,<br />

yˆ<br />

y(t ˆ<br />

τ<br />

= −τ ),<br />

2 2<br />

hτ = h(t −τ<br />

1 1)<br />

,<br />

For convenience <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g the characteristic <strong>equation</strong> of the above system we<br />

rewrite Eq.(3-33)-(3-36) <strong>in</strong> the matrix <strong>for</strong>m<br />

⎡dh⎤<br />

⎢ ⎥<br />

⎢dt<br />

⎥<br />

h ⎡hτ<br />

⎤ ⎡<br />

1<br />

hτ<br />

⎤<br />

2<br />

⎢dy⎥ ⎡ ⎤<br />

⎢ ⎥ ⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥<br />

dt y ⎢yτ<br />

⎥ ⎢y<br />

1 τ ⎥<br />

2<br />

⎢ ⎥<br />

⎢ ⎥<br />

= A ⎢ ⎥+ A ⎢ ⎥+<br />

A ⎢ ⎥<br />

ˆ ˆ<br />

0 1 2<br />

⎢dhˆ ⎥ hˆ ⎢h ⎥ ⎢h<br />

⎥<br />

τ1 τ2<br />

⎢ ⎥<br />

⎢ ⎥<br />

⎢ ⎥ ⎢ ⎥<br />

⎢dt ⎥ ⎢⎣ŷ ⎥⎦ ⎢<br />

⎣<br />

yˆ yˆ<br />

τ<br />

⎥ ⎢<br />

1⎦ ⎣ τ<br />

⎥<br />

2⎦<br />

⎢dyˆ<br />

⎥<br />

⎢⎣dt<br />

⎥⎦<br />

(3-37)<br />

* * * *<br />

⎡-abmyˆ<br />

-u1<br />

-abmyˆ<br />

0 abm(1 −y −h ) ⎤<br />

⎢<br />

⎥<br />

0 −u1<br />

−γ 0 0<br />

A0 =<br />

⎢<br />

⎥<br />

⎢ * ˆ *<br />

0 ac(1−yˆ<br />

−h ) −u2<br />

0 ⎥<br />

⎢<br />

⎥<br />

⎢⎣<br />

0 0 0 −u2<br />

⎥⎦<br />

* −u1τ1 * −u1τ1 * * −u1τ1<br />

⎡abmyˆ<br />

e abmyˆ<br />

e 0 −abm(1 −y −h )e ⎤<br />

⎢<br />

* −u1τ1 * * −u1τ<br />

⎥<br />

1<br />

0 −abmyˆ<br />

e 0 abm(1 −y −h )e<br />

A1<br />

= ⎢<br />

⎥<br />

⎢ 0 0 0 0 ⎥<br />

⎢⎣<br />

0 0 0 0 ⎥⎦<br />

A<br />

⎡0 0 0 0 ⎤<br />

⎢<br />

0 0 0 0<br />

⎥<br />

=<br />

⎢<br />

⎥<br />

⎢ 0 −ac(1 −yˆ<br />

−h ˆ )e acy e acy e ⎥<br />

⎢<br />

⎥<br />

* ˆ * −u2τ2 * −u2τ2 * −u2τ<br />

⎢<br />

2<br />

⎣0 ac(1 −yˆ<br />

−h )e −acy e −acy e ⎥⎦<br />

2 * * −u2τ2 * −u2τ2 * −u2τ2


37<br />

We assume that solutions of the system (3-37) are <strong>in</strong> the <strong>for</strong>m<br />

h(t)<br />

t<br />

= c1e λ ,<br />

y(t)<br />

t<br />

= c2e λ ,<br />

ĥ(t)<br />

t<br />

= c3e λ and<br />

ŷ(t)<br />

t<br />

= c4e λ , where<br />

1<br />

constants. Substitut<strong>in</strong>g these <strong>in</strong>to Eq. (3-37) we obta<strong>in</strong><br />

c, c<br />

2<br />

, c<br />

3<br />

and c<br />

4<br />

are arbitrary<br />

λt λt λt −λτ1 λt<br />

−λτ2<br />

⎡λce ⎤ ⎡<br />

1<br />

ce ⎤ ⎡<br />

1<br />

ce<br />

1<br />

e ⎤ ⎡ce 1<br />

e ⎤<br />

⎢ λt⎥ ⎢ λt⎥<br />

⎢ λt −λτ ⎥ ⎢<br />

1 λt<br />

−λτ ⎥<br />

2<br />

⎢λce 2 ⎥ ce<br />

2<br />

ce<br />

2<br />

e ce<br />

2<br />

e<br />

= A ⎢ ⎥<br />

t 0<br />

+ A ⎢ ⎥<br />

t 1<br />

+ A ⎢ ⎥<br />

t −λτ 2<br />

⎢<br />

λ λ λ 1 λt<br />

−λτ2<br />

λce ⎥ ⎢<br />

3<br />

ce ⎥ ⎢<br />

3<br />

ce<br />

3<br />

e ⎥ ⎢ce 3<br />

e ⎥<br />

⎢<br />

λt⎥ ⎢<br />

λt⎥<br />

⎢<br />

λt −λτ<br />

⎥ ⎢<br />

1 λt<br />

−λτ<br />

⎥<br />

2<br />

⎢⎣λ<br />

ce<br />

4 ⎥⎦ ⎢⎣ce 4 ⎥⎦ ⎢⎣ ce<br />

4<br />

e ⎥⎦ ⎢⎣ce 4<br />

e ⎥⎦<br />

(3-38)<br />

⎡c1<br />

⎤<br />

⎢<br />

c<br />

⎥<br />

⎢ ⎥<br />

−λτ1 −λτ2<br />

2 λτ<br />

= (A0 + A1e + A2e ) e<br />

⎢c<br />

⎥<br />

3<br />

⎢⎣<br />

c4<br />

⎥⎦<br />

On divid<strong>in</strong>g by<br />

t<br />

e λ<br />

, we can rewrite Eq. (3-38) <strong>in</strong> the <strong>for</strong>m:<br />

λ c = (A + A e + A e )c (3-39)<br />

−λτ1 −λτ2<br />

0 1 2<br />

The characteristic <strong>equation</strong> associated with (3-39) is given by<br />

det( λI − A -A (e )-A (e )) = 0<br />

(3-40)<br />

−λτ1 −λτ2<br />

0 1 2<br />

From matrix A<br />

0<br />

, A,<br />

1<br />

A<br />

2<br />

we change variables <strong>in</strong> term<br />

ˆ<br />

*<br />

Q= abmy ,<br />

* *<br />

Q1<br />

abm(1 y h )<br />

= − − ,<br />

= − ˆ − ˆ ,<br />

* *<br />

Q2<br />

ac(1 y h )<br />

Q3<br />

= acy<br />

From Eq.(3.40) we get the characteristic <strong>equation</strong> (we used Maple <strong>for</strong> the calculation)<br />

λ + a λ + b λ + b λ e + b λ e + b λ e + cλ+ c λ e<br />

4 3 2 2 −2 λτ1 2 −λτ1 2 −λ( τ 1+τ2)<br />

−λτ1<br />

1 1 2 3 4 1 2<br />

+ cλ e + cλ e + cλ e + de + de + de + de<br />

−2 λτ1 −λ( τ 1+τ2) −λ(2 τ 1+τ2) −λτ1 −2 λτ1 −λ( τ 1+τ2) −λ(2 τ 1+τ2)<br />

3 4 5 1 2 3 4<br />

+ d5<br />

= 0<br />

(3-41)<br />

*<br />

where<br />

a1 =γ+ 2u2 + 2u1+<br />

Q<br />

b = 4u u + 2Qu + Qγ+ 2γ u + u + u + Qu + u γ<br />

2 2<br />

1 1 2 2 2 1 2 1 1<br />

2 2u<br />

b 1 1<br />

2<br />

=− Q e − τ<br />

2 u<br />

b 1 1<br />

3<br />

= ( −Qγ+<br />

Q )e − τ


38<br />

b =− Q Q e − τ − τ<br />

( u2 2 u 1 1)<br />

4 2 1<br />

c = Qu + 2Qu u + 2u u + 2u u +γ u + 2u u γ+ 2Qγ<br />

u<br />

2 2 2 2<br />

1 2 1 2 1 2 1 2 2 1 2 2<br />

c = (2Q u − 2Qru )e − τ<br />

2<br />

2 2 2<br />

c =− 2Q u e − τ<br />

2<br />

3 2<br />

2u 1 1<br />

u 1 1<br />

c = (Q Q Q −Q Q u −QQ Q − u Q Q )e − τ − τ<br />

4 3 1 2 2 1 2 2 1 1 2 1<br />

c = QQ Qe − τ − τ<br />

( 2u1 1 u 2 2)<br />

5 2 1<br />

d = (Q u −Qγ<br />

u )e − τ<br />

2 2 2<br />

1 2 2<br />

d =− Q u e − τ<br />

2 2<br />

2 2<br />

2u 1 1<br />

u 1 1<br />

( u2 2 u 1 1)<br />

d = (QQ Q Q − QQ Q u + u Q Q Q − u Q Q u )e − τ− τ<br />

3 3 1 2 2 1 2 1 3 1 2 1 2 1 2<br />

d = ( − QQ Q Q + QQ Q u )e − τ− τ<br />

4 3 1 2 2 1 2<br />

d = u γ u + Qγ u + u u + Qu u<br />

2 2 2 2 2<br />

5 1 2 2 1 2 1 2<br />

( 2u1 1 u 2 2)<br />

( u1 1 u 2 2)<br />

The local asymptotic stability of a steady state<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h , y ,h , y ) can be analyzed by<br />

look<strong>in</strong>g at the signs of the real parts of zeroes of Eq. (3-41).<br />

* * * *<br />

We recall (h , y ,h ˆ , y ˆ ) is locally asymptotically stable if and only if all roots of<br />

Eq.(3-41) have negative real parts, and its stability will be lost when roots cross the<br />

vertical axis and any root has positive real part. The critical values are those values<br />

when the real part of some root is zero.<br />

3.3.1 Asymptotic stability of the disease-free steady state <strong>for</strong> zero time <strong>delay</strong> and<br />

existence of endemic-disease state with positive populations<br />

For the asymptotic stability of the disease-free state we substitute<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y ) (0,0,0,0)<br />

= and τ<br />

1<br />

=τ<br />

2<br />

= 0 <strong>in</strong>to Eq. (3-41). We obta<strong>in</strong>:<br />

λ + f λ + f λ + f λ+ f = 0<br />

(3-42)<br />

4 3 2<br />

1 2 3 4<br />

where after substitut<strong>in</strong>g <strong>for</strong> Q, Q<br />

1,Q 2,Q<br />

3<br />

f1 = a1<br />

=γ+ 2u + 2u<br />

2 1


39<br />

f = b + b + b + b<br />

2 1 2 3 4<br />

2 2<br />

= 4u1u2 + 2γ u2 + u1 + u2 + u1γ−Q2Q1<br />

2 2 2<br />

=<br />

1 2<br />

+ γ<br />

2<br />

+<br />

1<br />

+<br />

2<br />

+<br />

1γ−<br />

4u u 2 u u u u a bcm<br />

f = c + c + c + c + c<br />

2u u 2u u u 2u u (Q Q u u Q Q )<br />

3 1 2 3 4 5<br />

2 2 2<br />

=<br />

1 2<br />

+<br />

1 2<br />

+γ<br />

2<br />

+<br />

1 2γ− 2 1 2<br />

+<br />

1 2 1<br />

2 2 2 2<br />

= 2u1u2 + 2u1u2 +γ u2 + 2u1u 2γ− (u2 + u<br />

1)a bcm<br />

f = d + d + d + d + d<br />

4 1 2 3 4 5<br />

2 2 2<br />

= u1γ u2 + u1u2 −u1Q2Q1u<br />

2<br />

2 2 2 2<br />

=<br />

1γ 2<br />

+<br />

1 2<br />

−<br />

1 2<br />

u u u u u u a bcm<br />

From the Routh-Hurwitz criterion, all eigenvalues of Eq.(3-42) have negative<br />

real parts if and only if<br />

i) f 1<br />

> 0,ii) ff 1 2<br />

− f 3<br />

> 0, iii)<br />

f(ff − f) − ff > 0, iv) f4<br />

> 0<br />

2<br />

3 1 2 3 1 4<br />

From the <strong>equation</strong>s it is clear that f 1<br />

> 0, s<strong>in</strong>ce r > 0, u1<br />

> 0 and u2<br />

> 0 The test<strong>in</strong>g<br />

of the conditions (ii) and (iii) is difficult <strong>in</strong> general. Condition (iv) gives us f 4<br />

> 0.<br />

We can rewrite<br />

f = u u ( γ+ u )(1− R ), where<br />

2<br />

4 1 2 1 0<br />

R<br />

0<br />

2<br />

ma bc<br />

=<br />

(u +γ)u<br />

1 2<br />

is called the basic<br />

reproductive rate (section 2.6). From the condition f 4<br />

> 0 we have that a necessary<br />

condition <strong>for</strong> asymptotic stability of the disease-free equilibrium is R0<br />

< 1.<br />

If we substitute the value of R 0<br />

<strong>in</strong>to the endemic-disease equilibrium state<br />

given <strong>in</strong> Eq. (3-16), we obta<strong>in</strong>:<br />

*<br />

h = 0,<br />

y<br />

(R − 1)(u +γ)u<br />

=<br />

+ + γ , *<br />

ĥ = 0,<br />

* 0 1 2<br />

2<br />

abmc acu1<br />

ac<br />

ŷ<br />

(R − 1)(u +γ)u<br />

=<br />

* 0 1 2<br />

2<br />

a bmc + abmu<br />

2<br />

There<strong>for</strong>e<br />

*<br />

y = 0 and<br />

*<br />

ŷ = 0 only if R0<br />

> 1.<br />

There<strong>for</strong>e we f<strong>in</strong>d that the disease-free equilibrium state is asymptotically stable<br />

only <strong>for</strong> R0<br />

< 1and that a positive endemic-disease equilibrium state exists only <strong>for</strong><br />

R0<br />

> 1.


40<br />

3.3.2 Asymptotic stability of the disease-free steady state <strong>for</strong> non-zero time <strong>delay</strong><br />

and existence of a positive endemic-disease equilibrium state<br />

For this case we substitute<br />

(3-41). We obta<strong>in</strong>:<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y ) (0,0,0,0)<br />

= and τ1 ≠0, τ2<br />

≠0<br />

<strong>in</strong>to Eq.<br />

λ + a λ + b λ + b λ e + cλ+ c λ e + d e + d = 0 (3-43)<br />

4 3 2 2 −λ( τ 1+τ2) −λ(2 τ 1+τ2) −λ( τ 1+τ2)<br />

1 1 4 1 5 3 5<br />

It is not possible to use the Routh-Hurwitz criterion on (3-43) because it is not a<br />

polynomial <strong>equation</strong>. However, we can obta<strong>in</strong> a condition <strong>for</strong> asymptotic stability as<br />

follows. We note that the condition <strong>for</strong> the equilibrium po<strong>in</strong>t to become unstable is<br />

that the real part of some eigenvalue changes from negative to positive, i.e. a critical<br />

condition is that the real part of an eigenvalue is zero with the real parts of all<br />

eigenvalues less than or equal to zero. There are two possibilities. One possibility is<br />

that the critical eigenvalue is real, the other possibility is that the critical eigenvalues<br />

are a complex conjugate pair. In the second case, we would be look<strong>in</strong>g <strong>for</strong> a Hopf<br />

bifurcation [18]. In this thesis, we will not exam<strong>in</strong>e the Hopf bifurcation case.<br />

We will look at the condition <strong>for</strong> the real case. If we substitute λ = 0 <strong>in</strong>to Eq. (3-43),<br />

we obta<strong>in</strong><br />

2 2 2 2<br />

( − u 1τ1− u 2τ2<br />

d )<br />

3<br />

d5 u1 u2 u1u2 u1a cbmu2e 0<br />

<strong>for</strong>m<br />

+ = γ + − = . This can also be written <strong>in</strong> the<br />

d<br />

(1−<br />

R<br />

0)<br />

+ d = = 0, where<br />

u(r+<br />

u)<br />

3 5<br />

2 1<br />

R<br />

0<br />

=<br />

2 −(u1τ1−u 2τ2)<br />

ma bce<br />

(u +γ)u<br />

1 2<br />

is called the basic reproductive number <strong>for</strong> the system. We can argue that the<br />

condition <strong>for</strong> asymptotic stability should be R0<br />

< 1 as follows. For λ close to zero<br />

the left-hand side of (3-43) can be approximated by a polynomial. We could then<br />

look at the Routh-Hurwitz conditions <strong>for</strong> this polynomial. One of the important<br />

Routh-Hurwitz conditions is that the constant term <strong>in</strong> the polynomial should be<br />

positive. The constant term <strong>for</strong> the approximat<strong>in</strong>g polynomial <strong>in</strong> Eq. (3-43) is d3 + d5<br />

which leads to the condition d 3<br />

+ d 5<br />

> 0, i.e., R0<br />

< 1.<br />

We now look at Eqs. (3-17)-(3-20) <strong>for</strong> the endemic-disease state with nonzero<br />

time <strong>delay</strong>s and we substitute the value of R<br />

0<br />

<strong>in</strong>to the endemic-disease state with<br />

nonzero time <strong>delay</strong>s and obta<strong>in</strong>


41<br />

{ [ ]}<br />

h = u (R − 1)(u +γ )u + R (u +γ)u ) γ−(a cbmγ+<br />

a cbmu )e<br />

* 2 2<br />

1 0 1 2 0 1 2 1<br />

+(u u + 2u u γ+ u γ )e −u u γ−u γ }<br />

{1/(ae (u u (abmu abm )e abm e )c)}<br />

2 2 −u1τ1<br />

2<br />

1 2 1 2 2 1 2 2<br />

−u1τ1 2<br />

−u 2τ2 ( −u1τ1−u 2τ2)<br />

1<br />

+<br />

1γ+ 1+ γ − γ<br />

2<br />

(( −u 1τ1) −u 2τ2)<br />

⎧<br />

* ⎪ ⎡ ⎛<br />

(u<br />

1+γ)u<br />

⎞⎤⎫<br />

2<br />

⎪<br />

y = ⎨u 1⎢(R0 −1)<br />

⎜ 2<br />

−u 2τ2 ( −u1τ1−u 2τ2)<br />

⎟⎥⎬<br />

⎪⎩<br />

⎣ ⎝a(u1 + u<br />

1γ+ (abmu1+ abm γ)e −abmγe )c ⎠⎦⎪⎭<br />

( −u 1τ 1+ ( −u 2τ2) {[ ]<br />

}<br />

2 ) −u2τ2 −u2τ2<br />

0 1 2 1 2 2<br />

* 2<br />

ĥ (R 1)(u )u a bcme u u e u e<br />

= − +γ − − − γ<br />

⎧<br />

u<br />

⎫<br />

1<br />

⎨ −u2τ2 −u1τ1 −u1τ<br />

⎬<br />

1<br />

⎩abme ( −u1u 2<br />

−u 2γ− acu1e + u2γe ) ⎭<br />

⎧<br />

* ⎪ ⎡ ⎛<br />

(u<br />

1+γ)u<br />

⎞⎤⎫<br />

2<br />

⎪<br />

ŷ = ⎨u 1⎢(R0 −1)<br />

⎜<br />

−u1τ1 −u1τ<br />

⎟⎥⎬<br />

1<br />

⎪⎩<br />

⎣ ⎝abm(u1u 2<br />

+ u<br />

2γ+ u1ace −u2γe ) ⎠⎦⎪⎭<br />

There<strong>for</strong>e<br />

> ˆ > > and<br />

* * *<br />

h 0,h 0,y 0<br />

*<br />

ŷ > 0 only if R0<br />

> 1<br />

There<strong>for</strong>e we f<strong>in</strong>d that the disease-free equilibrium state is asymptotically<br />

stable only <strong>for</strong> R0<br />

< 1 and that a positive endemic-disease equilibrium state exists<br />

only <strong>for</strong> R0<br />

> 1.<br />

3.3.3 Asymptotic stability of the Endemic Disease State <strong>for</strong> zero time <strong>delay</strong><br />

For this case we substitute<br />

2 2<br />

* * ˆ * *<br />

⎛ abcm−uu 1 2<br />

−γu2 abmc−uu 1 2<br />

−γu<br />

⎞<br />

2<br />

(h ,y ,h ,y ˆ ) = ⎜0, ,0,<br />

2 2<br />

⎟<br />

⎝ a bcm + acu1+ acγ a bmc + abmu<br />

2 ⎠<br />

(3-41). We obta<strong>in</strong>:<br />

4 3 2<br />

1 2 3 4<br />

where after substitut<strong>in</strong>g <strong>for</strong> Q, Q<br />

1,Q 2,Q<br />

3<br />

and τ<br />

1<br />

=τ<br />

2<br />

= 0 <strong>in</strong>to Eq.<br />

λ + f λ + f λ + f λ+ f = 0<br />

(3-44)<br />

f = a =− Q+γ+ 2u + 2u =− abmyˆ<br />

+γ+ 2u + 2u<br />

*<br />

1 1 2 1 2 1<br />

f = b + b + b + b<br />

2 1 2 3 4<br />

2 2<br />

= 4u1u2 + 2Qu<br />

2<br />

+ 2γ u2 + u1 + u2 + Qu1+ u1γ−Q2Q1<br />

* 2 2 *<br />

4u ˆ<br />

ˆ<br />

1u2 2abmy u2 2 u2 u1 u2 abmy u1 u1<br />

2 * *<br />

= + + γ + + + + γ<br />

−a bcm(1−y )(1−y<br />

ˆ )


42<br />

f = c + c + c + c + c<br />

Qu 2Qu u 2u u 2u u u 2u u Q Q Q Q Q (u u )<br />

3 1 2 3 4 5<br />

2 2 2 2<br />

=<br />

2<br />

+<br />

1 2<br />

+<br />

1 2<br />

+<br />

1 2<br />

+γ<br />

2<br />

+<br />

1 2γ+ 3 1 2<br />

−<br />

2 1 2<br />

+<br />

1<br />

* 2 * 2 2 2<br />

= abmyˆ<br />

u<br />

2<br />

+ 2abmyˆ<br />

u1u 2<br />

+ 2u1u 2<br />

+ 2u1u 2<br />

+γ u<br />

2<br />

+ 2u1u<br />

2γ<br />

3 2 * * * 2 * *<br />

+ a bc my ˆ (1−y )(1−y ˆ ) −a bcm(1−y )(1− y ˆ )(u2 + u<br />

1)<br />

f = d + d + d + d + d<br />

4 1 2 3 4 5<br />

2 2 2 2 2 2<br />

=−Qu γ<br />

2<br />

+ uQQQ<br />

1 3 1 2<br />

− uQQu<br />

1 2 1 2<br />

+ u1γ u2 + Qu γ<br />

2<br />

+ uu<br />

1 2<br />

+ Quu<br />

1 2<br />

* 2 3 2 * * * 2 * *<br />

=−abmyˆ γ u2 + a bc my ˆ (1 −y )(1 −y ˆ )u ˆ<br />

1−a bcm(1 −y )(1 −y )u1u2<br />

2 * 2 2 2 * 2<br />

+ u ˆ<br />

ˆ<br />

1γ u2 + abmy γ u2 + u1u2 + abmy u1u2<br />

From the Routh-Hurwitz criterion, all eigenvalues of Eq.(3-44) have negative<br />

real parts if and only if<br />

i) f 1<br />

> 0,ii) ff 1 2<br />

− f 3<br />

> 0, iii)<br />

2<br />

f(ff<br />

3 1 2<br />

− f)<br />

3<br />

− ff<br />

1 4<br />

> 0, iv) f4<br />

> 0<br />

The <strong>for</strong>mulae <strong>for</strong> the Routh-Hurwitz criterion are very complicated and it is<br />

extremely difficult, if not impossible, to obta<strong>in</strong> any general results from them. We<br />

will look at some numerical results <strong>for</strong> reasonable values of the parameters <strong>in</strong> Chapter<br />

4.<br />

3.3.4 Asymptotic stability of the Endemic Disease State <strong>for</strong> non-zero time <strong>delay</strong><br />

It is possible to obta<strong>in</strong> general analytic expressions <strong>for</strong> the characteristic<br />

<strong>equation</strong> <strong>for</strong> the endemic disease state <strong>for</strong> non-zero time <strong>delay</strong> by substitut<strong>in</strong>g the<br />

* * * *<br />

values of (h , y ,h ˆ , y ˆ ) <strong>in</strong> Eqs. (3-17)-(3-20) <strong>in</strong>to the characteristic <strong>equation</strong> Eq. (3-<br />

41). However, the expressions are too difficult to analyze <strong>in</strong> general. We will look at<br />

numerical results <strong>in</strong> chapter 4 <strong>for</strong> reasonable values of the parameters.<br />

3.4 Numerical Solution of Delay Differential Equations<br />

In chapter 4 we will use Matlab to obta<strong>in</strong> numerical solutions <strong>for</strong> the<br />

equilibrium states and asymptotic stability conditions discussed <strong>in</strong> this chapter. We<br />

will also use Matlab to obta<strong>in</strong> numerical solutions <strong>for</strong> the <strong>differential</strong> <strong>equation</strong>s of the<br />

<strong>model</strong> given <strong>in</strong> Eqs. (3-1)-(3-4) <strong>for</strong> a range of parameter values that are reasonable<br />

estimates <strong>for</strong> the <strong>transmission</strong> of Dengue <strong>fever</strong> <strong>in</strong> selected countries of South-East<br />

Asia. We will use the Matlab function dde23 which is designed to give numerical<br />

solutions of systems of first-order <strong>equation</strong>s that <strong>in</strong>clude time <strong>delay</strong>s.


CHAPTER 4<br />

NUMERICAL RESULTS<br />

In this chapter we will use numerical methods to study the mathematical <strong>model</strong><br />

<strong>for</strong> Dengue <strong>fever</strong> developed <strong>in</strong> Chapter 3. We will f<strong>in</strong>d numerical solutions of the<br />

<strong>equation</strong>s <strong>for</strong> a range of parameter values that have been suggested by previous<br />

workers and <strong>for</strong> parameter values that appear reasonable <strong>for</strong> Thailand, Malaysia and<br />

S<strong>in</strong>gapore. Some of these parameter values correspond to asymptotic stability of the<br />

disease-free equilibrium state and some values correspond to asymptotic stability of<br />

the endemic disease equilibrium state. For each set of parameter values we will first<br />

exam<strong>in</strong>e the asymptotic stability of equilibrium po<strong>in</strong>ts by comput<strong>in</strong>g eigenvalues of<br />

the Jacobian matrix and check<strong>in</strong>g the Routh-Hurwitz criteria. We will then use the<br />

Matlab <strong>delay</strong>-<strong>differential</strong> <strong>equation</strong> solver dde23 to compute the numerical solution of<br />

the <strong>differential</strong> <strong>equation</strong>s <strong>for</strong> nonzero time <strong>delay</strong>s and the Matlab ord<strong>in</strong>ary <strong>differential</strong><br />

<strong>equation</strong> solver ode45 to compute the numerical solution <strong>for</strong> zero time <strong>delay</strong>s.<br />

4.1 Asymptotically Stable Disease-Free Equilibrium State<br />

4.1.1 Parameter values<br />

The parameter values listed <strong>in</strong> Table 4-1 have been selected from the work of<br />

Tumwi<strong>in</strong>e et al. [15] and Torres-Sorando and Rodrigues [20]. Tumwi<strong>in</strong>e et al studied<br />

the occurrence of malaria <strong>in</strong> Uganda. The assumption that abm = ac was made by<br />

Torres-Sorando and Rodriques and they based it on the assumption that the proportion<br />

of bites that result <strong>in</strong> <strong>in</strong>fections is the same <strong>in</strong> humans and mosquitoes. They argued<br />

that this proportion should be less than or equal to 1 and proposed the value abm = ac<br />

−5<br />

= 8.33× 10 . Tumwi<strong>in</strong>e et al were <strong>in</strong>terested <strong>in</strong> the progress of short-term malaria<br />

epidemics <strong>in</strong> Uganda. We will use these parameters to exam<strong>in</strong>e the numerical<br />

solutions of our <strong>model</strong> <strong>for</strong> a disease-free equilibrium state.


44<br />

TABLE 4-1 Parameters <strong>for</strong> disease-free equilibrium state [15]<br />

Parameter name Values used Unit<br />

abm = ac<br />

8.33×<br />

10 −5<br />

u<br />

1<br />

0.333<br />

u<br />

2<br />

0.071<br />

γ 0.143<br />

day −1<br />

day −1<br />

day −1<br />

day −1<br />

4.1.2 Study of solutions <strong>for</strong> zero time <strong>delay</strong>s <strong>for</strong> parameters <strong>in</strong> Table 4-1<br />

For the disease-free equilibrium state with zero time <strong>delay</strong><br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y ) (0,0,0,0)<br />

= and τ<br />

1<br />

=τ<br />

2<br />

= 0 . For the parameter values given <strong>in</strong> Table 4-<br />

1, we can use Matlab to f<strong>in</strong>d the coefficients of the characteristic <strong>equation</strong> (3-41), i.e.,<br />

<strong>in</strong> the <strong>equation</strong><br />

λ + a λ + bλ + b λ e + b λ e + b λ e + cλ+ c λ e + c λ e<br />

4 3 2 2 −2 λτ1 2 −λτ1 2 −λ( τ 1+τ2) −λτ1 −2λτ1<br />

1 1 2 3 4 1 2 3<br />

+ c λ e + c λ e + d e + d e + d e + d e + d = 0<br />

−λ ( τ 1+τ2 ) −λ (2 τ 1+τ2 ) −λτ1 − 2 λτ1 −λ ( τ 1+τ2 ) −λ (2 τ 1+τ2<br />

)<br />

4 5 1 2 3 4 5<br />

The values of the coefficients are:<br />

−<br />

a1 = 0.951, b1 = 0.278427, b2 = 0, b3 = 0, b4<br />

=− 6.93889×<br />

10<br />

−9<br />

c1 = 0.026586, c2 = 0, c3 = 0 , c4 =− 2.80331× 10 , c5<br />

= 0<br />

−<br />

d = 0, d = 0, d =− 1.64056× 10 , d = 0, d = 7.9904×<br />

10<br />

10 −4<br />

1 2 3 4 5<br />

The value <strong>for</strong> the basic reproductive rate is:<br />

−7<br />

R<br />

0<br />

= 2.05317× 10 < 1<br />

For these coefficients, the characteristic <strong>equation</strong> reduces to (see Eq. 3.42)<br />

λ + f λ + f λ + f λ+ f = 0<br />

4 3 2<br />

1 2 3 4<br />

The Routh-Hurwitz criteria <strong>for</strong> this characteristic <strong>equation</strong> (see section 3.3.1) are:<br />

f1<br />

= 0.9510 > 0 , f 1<br />

f 2<br />

− f 3<br />

= 0.23820 > 0 ,<br />

−4<br />

f4<br />

= 7.99× 10 > 0<br />

f (f f − f ) − f f = 0.00561 > 0<br />

2<br />

3 1 2 3 1 4<br />

S<strong>in</strong>ce these values are all positive they satisfy the conditions of the Routh-Hurwitz<br />

criteria and there<strong>for</strong>e all eigenvalues have negative real parts<br />

We have also used Matlab to compute the eigenvalues of the Jacobian matrix<br />

<strong>for</strong> the disease-free equilibrium state <strong>for</strong> zero time <strong>delay</strong>s. We found four eigenvalues<br />

given by:<br />

9


45<br />

λ<br />

1<br />

=−0.47600001713306<br />

λ<br />

2<br />

=−0.33300000000000<br />

λ<br />

3<br />

=−0.07100000000000<br />

λ =−0.07099998286694<br />

4<br />

It can be seen that the real parts of all eigenvalues are negative, <strong>in</strong> agreement<br />

with the results from the Routh-Hurwitz critera. There<strong>for</strong>e the steady state solution<br />

ˆ<br />

ˆ<br />

* * * *<br />

(h ,y ,h ,y ) (0,0,0,0)<br />

= is asymptotically stable <strong>for</strong> R0<br />

< 1.<br />

From Eq. (3-16), we f<strong>in</strong>d that the endemic-disease equilibrium state<br />

correspond<strong>in</strong>g to these parameters is (h * , y * ,h ˆ * , y ˆ<br />

* ) = (0, −28.25,0, − 183.89) and<br />

there<strong>for</strong>e the endemic-disease equilibrium state does not exist s<strong>in</strong>ce negative values of<br />

populations are not allowed.<br />

We have used the Matlab <strong>differential</strong> <strong>equation</strong> solver ode45 to obta<strong>in</strong> a<br />

numerical solution of the <strong>equation</strong>s <strong>for</strong> the parameter values <strong>in</strong> Table 4-1 with zero<br />

time <strong>delay</strong>s. The <strong>in</strong>itial values <strong>for</strong> the 4 variables were taken as:<br />

(h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , i.e., proportions of 0.1 of the human and mosquito<br />

populations <strong>in</strong> the <strong>in</strong>fected stage, and proportions of 0.1 of the human and mosquito<br />

populations <strong>in</strong> the <strong>in</strong>fectious stage. The solutions are shown <strong>in</strong> Figure 4-1. Phase<br />

plane plots of the solutions <strong>for</strong> a range of <strong>in</strong>itial values are shown <strong>in</strong> Figure 4-2.<br />

Figure 4-1 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> disease-free equilibrium<br />

state <strong>for</strong> <strong>in</strong>itial state<br />

(h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1)


46<br />

Phase plane plots<br />

Figure 4-2 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> disease-free equilibrium<br />

state. The black solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of<br />

Figure 4-1.<br />

The numerical solutions show that the disease dies out and approaches the<br />

disease-free equilibrium state, as expected from the asymptotic stability of the<br />

disease-free state.<br />

4.1.2 Study of solutions <strong>for</strong> nonzero time <strong>delay</strong>s <strong>for</strong> parameters <strong>in</strong> Table 4-1<br />

For time <strong>delay</strong>s we use τ 5 days <strong>for</strong> the time <strong>delay</strong> <strong>for</strong> humans to change<br />

1 =<br />

from the <strong>in</strong>fected to the <strong>in</strong>fectious stage and τ<br />

2<br />

= 5 days <strong>for</strong> the mosquitoes to<br />

change from <strong>in</strong>fected to <strong>in</strong>fectious. These values have been suggested <strong>in</strong> Tumwi<strong>in</strong>e et<br />

al [16] as reasonable values.<br />

Because the characteristic <strong>equation</strong> Eq. (3-43) is not a polynomial <strong>equation</strong>, the<br />

Routh-Hurwitz criteria cannot be used directly to check stability. However, as<br />

expla<strong>in</strong>ed <strong>in</strong> section 3.3.2, the basic reproduction rate<br />

R<br />

0<br />

=<br />

2 −(u1τ1−u 2τ2)<br />

ma bce<br />

(u +γ)u<br />

1 2<br />

can still


47<br />

be used as a test <strong>for</strong> asymptotic stability of the disease-free equilibrium state. For the<br />

given values of time <strong>delay</strong>s, the value is<br />

0<br />

−8<br />

R = 2.7326× 10 < 1 and there<strong>for</strong>e the<br />

disease-free equilibrium state is asymptotically stable <strong>for</strong> the given nonzero time<br />

<strong>delay</strong>s. It is also possible to calculate eigenvalues of Eq. (3-43) numerically us<strong>in</strong>g<br />

Maple or Matlab. The results from Maple are:<br />

λ<br />

1<br />

=−0.47601016086605<br />

λ<br />

2<br />

=−0.33300000000000<br />

λ<br />

3<br />

=−0.07100000000000<br />

λ =−0.07099998286694<br />

4<br />

These are the same values as <strong>for</strong> the zero time <strong>delay</strong>, s<strong>in</strong>ce the Jacobian is<br />

<strong>in</strong>dependent of the time <strong>delay</strong>. S<strong>in</strong>ce all real parts are negative, the disease-free<br />

equilibrium state is asymptotically stable.<br />

For nonzero time <strong>delay</strong>s we have computed the solutions of the 4 <strong>equation</strong>s<br />

us<strong>in</strong>g the Matlab <strong>delay</strong>-<strong>differential</strong> <strong>equation</strong> solver dde23. The results of the<br />

numerical <strong>in</strong>tegration us<strong>in</strong>g dde23 are shown <strong>in</strong> Figure 4-3. The <strong>in</strong>itial values were<br />

aga<strong>in</strong> assumed to be<br />

(h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) . Phase plane plots of the solutions<br />

<strong>for</strong> a range of different <strong>in</strong>itial values are shown <strong>in</strong> Figure 4-4.<br />

Figure 4-3 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> disease-free equilibrium<br />

state <strong>for</strong> <strong>in</strong>itial state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ 5 , τ<br />

2<br />

= 5<br />

1 =


48<br />

Phase plane plots<br />

Figure 4-4 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> disease-free equilibrium<br />

State. The black solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of<br />

Figure 4-3.<br />

It can be seen that the disease aga<strong>in</strong> dies out, but at a faster rate than <strong>for</strong> the zero<br />

time <strong>delay</strong>s, e.g., after 25 days the <strong>in</strong>fectious mosquito population is approximately<br />

0.05 <strong>for</strong> zero time <strong>delay</strong>s and approximately 0.01 <strong>for</strong> the time <strong>delay</strong> case.<br />

4.2 Asymptotically Stable Endemic-Disease Equilibrium State<br />

4.2.1 Parameter values<br />

Wyse et al [15] have estimated parameters <strong>for</strong> malaria <strong>for</strong> the Brazilian Amazon<br />

region us<strong>in</strong>g 1 month as time unit. They chose parameter values from a comb<strong>in</strong>ation<br />

of direct observations of malaria and values based on data <strong>in</strong> Anderson and May [1].<br />

These parameter values are shown <strong>in</strong> Table 4-2.


49<br />

TABLE 4-2 Parameters <strong>for</strong> endemic-disease equilibrium state (Wyse etal. [19])<br />

Parameter name Values used Unit<br />

a 5.974<br />

month −1<br />

b 0.3<br />

month −1<br />

c 0.3<br />

month −1<br />

m 11.57 −<br />

u<br />

1<br />

0.00139<br />

month −1<br />

u<br />

2<br />

0.00238<br />

month −1<br />

γ 1.5<br />

month −1<br />

4.2.2 Study of solutions <strong>for</strong> zero time <strong>delay</strong>s <strong>for</strong> parameters <strong>in</strong> Table 4-2<br />

We first exam<strong>in</strong>e the asymptotic stability of the disease-free equilibrium state<br />

with zero time <strong>delay</strong><br />

ˆ<br />

ˆ<br />

* * * *<br />

(h , y , h , y ) (0,0,0,0)<br />

= and τ 1<br />

=τ 2<br />

= 0 . For the parameter<br />

values given <strong>in</strong> Table 4-2, we can use Matlab to f<strong>in</strong>d the coefficients of the<br />

characteristic <strong>equation</strong> (3-41). The values are:<br />

a = 1.508, b = 0.0092, b = 0, b = 0, b =−37.1626<br />

1 1 2 3 4<br />

c = 1.845× 10 , c = 0, c = 0 , c =− 0.1401, c = 0<br />

−5<br />

1 2 3 4 5<br />

d = 0, d = 0, d =− 1.229× 10 , d = 0, d = 1.182×<br />

10<br />

−4 −8<br />

1 2 3 4 5<br />

The value <strong>for</strong> the basic reproductive rate is:<br />

4<br />

R0<br />

= 1.04× 10 > 1<br />

The Routh-Hurwitz criteria <strong>for</strong> the coefficients f 1<br />

,f 2<br />

,f 3<br />

,f 4<br />

def<strong>in</strong>ed <strong>in</strong> Eq (3-42) are as<br />

follows;<br />

f1<br />

= 1.508 > 0 , f 1<br />

f 2<br />

− f 3<br />

=− 55.870 < 0 ,<br />

−4<br />

f4<br />

= − 1.229× 10 < 0<br />

f (f f − f ) − f f = 7.827 > 0<br />

2<br />

3 1 2 3 1 4<br />

S<strong>in</strong>ce the value of ff 1 2<br />

− f 3<br />

< 0 and f 4<br />

< 0, the Routh-Hurwitz criteria show that the<br />

real part of at least one eigenvalue is positive and that the disease-free equilibrium<br />

po<strong>in</strong>t is not asymptotically stable.<br />

We have also used Matlab to compute the eigenvalues of the Jacobian matrix<br />

<strong>for</strong> the disease-free equilibrium state <strong>for</strong> zero time <strong>delay</strong>s. We found four eigenvalues<br />

given by:


50<br />

λ<br />

1<br />

=−6.89390226339360<br />

λ<br />

2<br />

= 5.39013226339360<br />

λ<br />

3<br />

=−0.00238000000000<br />

λ =−0.00139000000000<br />

4<br />

It can be seen that the real part of one eigenvalue is positive. There<strong>for</strong>e the<br />

* * * *<br />

steady state solution (h ,y ,h ˆ ,y ˆ ) = (0,0,0,0) is not asymptotically stable <strong>for</strong> R 1.<br />

We then exam<strong>in</strong>ed the asymptotic stability of the endemic-disease equilibrium<br />

state:<br />

2 2<br />

* * ˆ * *<br />

⎛ abcm−uu 1 2<br />

−γu2 abmc−uu 1 2<br />

−γu<br />

⎞<br />

2<br />

(h , y ,h , y ˆ ) = ⎜0, ,0,<br />

2 2<br />

⎟<br />

⎝ abcm+ acu1+ acγ abmc+<br />

abmu2<br />

⎠<br />

From Matlab we f<strong>in</strong>d that<br />

* * * *<br />

h = 0, y = 0.9324, h = 0, y = 0.9986<br />

and there<strong>for</strong>e this solution exists with nonnegative populations. Us<strong>in</strong>g Matlab, we can<br />

f<strong>in</strong>d the coefficients of the characteristic <strong>equation</strong> (3-41)<br />

2 2<br />

a1 = 22.214, b1 = 31.196, b2 =− 4.287× 10 , b3 = 3.977× 10 , b4<br />

=−0.00357<br />

c1 = 0.14812, c2 = 1.893, c3 =− 2.0408 , c4 =− 0.068, c5<br />

= 0.07399<br />

d = 0.00225, d =− 0.0024286, d = 0.12347, d =− 0.12345, d = 1.761×<br />

10 −<br />

1 2 3 4 5<br />

The Routh-Hurwitz criteria <strong>for</strong> the coefficients f 1<br />

,f 2<br />

,f 3<br />

,f 4<br />

def<strong>in</strong>ed <strong>in</strong> Eq (3-42) are<br />

then as follows:<br />

f1<br />

= 22.2138 > 0 , f 1<br />

f 2<br />

− f 3<br />

= 2.9486 > 0 ,<br />

−6<br />

f4<br />

= 8.4629× 10 > 0<br />

4<br />

R<br />

0<br />

= 1.040× 10 > 1<br />

ˆ<br />

ˆ<br />

f (f f − f ) − f f = 0.01419 > 0<br />

2<br />

3 1 2 3 1 4<br />

The coefficients satisfy the conditions of the Routh-Hurwitz criteria and all<br />

eigenvalues have negative real parts. We have also used Matlab to compute the<br />

eigenvalues of the Jacobian matrix <strong>for</strong> the endemic-disease equilibrium state <strong>for</strong> zero<br />

time <strong>delay</strong>s. We found four eigenvalues given by:<br />

λ<br />

1<br />

=−22.20782578277732<br />

λ<br />

2<br />

=−0.00229348492224 - 0.01639805026737i<br />

λ<br />

3<br />

=−0.00229348492224 + 0.01639805026737i<br />

λ =−0.00139000000000<br />

4<br />

0<br />

><br />

4


51<br />

As expected from the Routh-Hurwitz criteria, all eigenvalues have negative real parts.<br />

There<strong>for</strong>e the endemic-disease equilibrium state<br />

2 2<br />

* * ˆ * *<br />

⎛ abcm−uu 1 2<br />

−γu2 abmc−uu 1 2<br />

−γu<br />

⎞<br />

2<br />

(h , y ,h , y ˆ ) = ⎜0, ,0,<br />

2 2<br />

⎟<br />

⎝ abcm+ acu1+ acγ abmc+<br />

abmu2<br />

⎠<br />

is asymptotically stable <strong>for</strong> R0<br />

> 1.<br />

We have used the Matlab <strong>differential</strong> <strong>equation</strong> solvers ode45 and dde23 to<br />

obta<strong>in</strong> numerical solution of the <strong>equation</strong>s <strong>for</strong> the parameter values <strong>in</strong> Table 4-2 <strong>for</strong><br />

both zero and nonzero time <strong>delay</strong>s. The <strong>in</strong>itial values <strong>for</strong> the 4 variables were taken<br />

as:<br />

(h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , i.e., 0.1 as <strong>in</strong>itial values <strong>for</strong> <strong>in</strong>fectious humans and<br />

mosquitoes and 0.1 as <strong>in</strong>itial values <strong>for</strong> <strong>in</strong>fected humans and mosquitoes. The<br />

solution <strong>for</strong> zero time <strong>delay</strong>s is shown <strong>in</strong> Figure 4-5. Phase plane plots of the<br />

solutions <strong>for</strong> a range of <strong>in</strong>itial values are shown <strong>in</strong> Figure 4-6. It can be seen that the<br />

solution is approach<strong>in</strong>g the endemic-disease equilibrium state<br />

* * ˆ * *<br />

h = 0, y = 0.9324, h = 0, yˆ<br />

= 0.9986<br />

However, it can be seen from Figure 4-5 that it takes approximately 900 months <strong>for</strong><br />

the system to reach its equilibrium values.<br />

Figure 4-5 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> endemic-disease<br />

equilibrium state <strong>for</strong> <strong>in</strong>itial state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ = 1<br />

0 ,<br />

τ = 0 2


52<br />

Phase plane plots<br />

Figure 4-6 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> endemic-disease equilibrium<br />

state. The black solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of<br />

Figure 4-5.<br />

4.2.3 Study of solutions <strong>for</strong> nonzero time <strong>delay</strong>s <strong>for</strong> parameters <strong>in</strong> Table 4-2<br />

For time <strong>delay</strong>s we use τ<br />

1<br />

= 5 days (0.167 months) <strong>for</strong> the time <strong>delay</strong> <strong>for</strong><br />

humans to change from the <strong>in</strong>fected to the <strong>in</strong>fectious stage and τ<br />

2<br />

= 5 days (0.167<br />

months) <strong>for</strong> the mosquitoes to change from <strong>in</strong>fected to <strong>in</strong>fectious. These values have<br />

been suggested <strong>in</strong> Wyse et al [15] as reasonable values.<br />

As be<strong>for</strong>e, because the characteristic <strong>equation</strong> Eq. (3-43) is not a polynomial<br />

<strong>equation</strong>, the Routh-Hurwitz criteria cannot be used directly to check stability.<br />

However, as expla<strong>in</strong>ed <strong>in</strong> section 3.3.2, the basic reproduction rate<br />

R<br />

0<br />

=<br />

2 −(u1τ1−u 2τ2)<br />

ma bce<br />

(u +γ)u<br />

1 2<br />

can still be used as a test <strong>for</strong> asymptotic stability of the<br />

disease-free equilibrium state. For the given values of time <strong>delay</strong>s, the value is<br />

4<br />

R<br />

0<br />

1.039 10 1<br />

= × > and there<strong>for</strong>e the disease-free equilibrium state is not


53<br />

asymptotically stable. It is also possible to calculate eigenvalues of Eq. (3-43)<br />

numerically us<strong>in</strong>g Maple or Matlab. The results from Matlab are:<br />

λ =−0.002380000012867<br />

1<br />

λ = 2.000095177646546<br />

2<br />

λ =−0.002380000000000<br />

3<br />

λ =−0.001390000000000<br />

4<br />

Due to numerical difficulties, the first eigenvalue is a repeat of the third eigenvalue.<br />

However, the second eigenvalue is positive show<strong>in</strong>g that the disease-free equilibrium<br />

state is not asymptotically stable <strong>for</strong> nonzero time <strong>delay</strong>s.<br />

The results of the numerical <strong>in</strong>tegration us<strong>in</strong>g dde23 are shown <strong>in</strong> Figure 4-7. It<br />

can be seen that the solution is approach<strong>in</strong>g the endemic-disease equilibrium state<br />

= = ˆ = ˆ = and<br />

* * * *<br />

h 0.1895, y 0.7557, h 0.00396, y 0.9978<br />

4<br />

R<br />

0<br />

= 1.039× 10 > 1<br />

The <strong>in</strong>itial values are assumed to be the same as <strong>for</strong> Figure 4-5. As <strong>in</strong> the case of zero<br />

time <strong>delay</strong>s, the system takes approximately 900 months to approach the equilibrium<br />

solutions. Phase plane plots <strong>for</strong> a range of <strong>in</strong>itial values are shown <strong>in</strong> Figure 4-8.<br />

Figure 4-7 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> endemic-disease<br />

equilibrium state <strong>for</strong> <strong>in</strong>itial state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) ,<br />

τ<br />

1<br />

= 0.167 , τ<br />

2<br />

= 0.167


54<br />

Phase plane plots<br />

Figure 4-8 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> endemic-disease<br />

equilibrium state. The black solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial<br />

values of Figure 4-7.<br />

4.3 Numerical results <strong>for</strong> Dengue <strong>fever</strong> <strong>in</strong> Thailand, Malaysia and S<strong>in</strong>gapore<br />

4.3.1 Thailand<br />

As stated <strong>in</strong> section 2.1, there were 31,000 cases of Dengue <strong>fever</strong> <strong>in</strong> Thailand <strong>in</strong><br />

2005 out of a total population of 65.4 million. This gives an estimate of<br />

4.7368×<br />

10 −4<br />

of the population <strong>in</strong>fected. From the graph given <strong>in</strong> Figure 2-1 of Dengue <strong>fever</strong> cases<br />

<strong>in</strong> Thailand from 1985 to 2005, Dengue <strong>fever</strong> appears to be endemic <strong>in</strong> Thailand. As<br />

estimates <strong>for</strong> the parameters <strong>in</strong> the <strong>model</strong>, we will use the estimates given <strong>in</strong> Table 4-2<br />

<strong>for</strong> a,b,c,u<br />

1,u 2,γ as a guide. As stated <strong>in</strong> Section 4.3, these values were estimated<br />

<strong>for</strong> malaria-carry<strong>in</strong>g mosquitoes <strong>in</strong> Brazil [19]. However, as we have been unable to<br />

f<strong>in</strong>d reliable date <strong>for</strong> Dengue <strong>fever</strong>-carry<strong>in</strong>g mosquitoes <strong>in</strong> South-East Asia we have<br />

used them as an <strong>in</strong>dication of the results that might be expected <strong>for</strong> Dengue <strong>fever</strong>. We


55<br />

will then try to estimate the parameter m (the ratio of the Dengue carry<strong>in</strong>g mosquito<br />

population to the human population) by compar<strong>in</strong>g the number of observed cases with<br />

the population of <strong>in</strong>fectious humans <strong>in</strong> the endemic disease equilibrium state:<br />

2 2<br />

* * ˆ * *<br />

⎛ abcm−uu 1 2<br />

−γu2 abmc−uu 1 2<br />

−γu<br />

⎞<br />

2<br />

(h , y ,h , y ˆ ) = ⎜0, ,0,<br />

2 2<br />

⎟<br />

⎝ abcm+ acu1+ acγ abmc+<br />

abmu2<br />

⎠<br />

The estimated value we obta<strong>in</strong> is m = 0.00151 From Matlab we f<strong>in</strong>d that the endemic<br />

disease equilibrium state <strong>for</strong> zero time <strong>delay</strong>s is:<br />

= = × ˆ = ˆ = and the basic reproductive rate is<br />

* * −4 * *<br />

h 0, y 4.7368 10 , h 0, y 0.2629<br />

R<br />

0<br />

= 1.3573 > 1.<br />

We have also used Matlab to compute the eigenvalues of the Jacobian matrix<br />

<strong>for</strong> the endemic-disease equilibrium state <strong>for</strong> zero time <strong>delay</strong>s. We found four<br />

eigenvalues given by:<br />

λ<br />

1<br />

=−1.50448685348144<br />

λ<br />

2<br />

=−0.001189890853106 −0.000785908455457i<br />

λ<br />

3<br />

=− 0.001189890853106 + 0.000785908455457i<br />

λ =−0.00139000000000<br />

4<br />

It can be seen that that all eigenvalues have negative real parts. There<strong>for</strong>e the<br />

endemic disease state * * ˆ * * −<br />

(h , y ,h , y ˆ ) = (0,4.7368× 10 4 ,0,0.2629) is asymptotically<br />

stable <strong>for</strong> R<br />

0<br />

> 1. The fact that R<br />

0<br />

= 1.3573 > 1 is consistent with our assumption that<br />

Dengue <strong>fever</strong> is endemic <strong>in</strong> Thailand. However, <strong>for</strong> these parameter values, the value<br />

of R 0 is close to 1, i.e., to the value at which the disease-free state would become<br />

asymptotically stable.<br />

For zero time <strong>delay</strong>s, we have used the Matlab ord<strong>in</strong>ary <strong>differential</strong> <strong>equation</strong><br />

solver ode45 to obta<strong>in</strong> a numerical solution of the <strong>equation</strong>s <strong>for</strong> the parameter values<br />

<strong>for</strong> Thailand given <strong>in</strong> Table 4-2 <strong>for</strong> a,b,c,u<br />

1,u 2,γ and with ratio of mosquito to<br />

human population m = 0.00151 <strong>for</strong> Thailand. The <strong>in</strong>itial values <strong>for</strong> the 4 variables<br />

were taken as:<br />

(h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , i.e., 0.1 <strong>for</strong> <strong>in</strong>fected and <strong>in</strong>fectious<br />

humans and <strong>for</strong> <strong>in</strong>fected and <strong>in</strong>fectious mosquitoes. The solution is shown <strong>in</strong> Figure<br />

4-9. It can be seen that the solution approaches the equilibrium solution, but at a very


56<br />

slow rate. Phase plane plots of the solutions <strong>for</strong> a range of <strong>in</strong>itial values are shown <strong>in</strong><br />

Figure 4-10.<br />

Figure 4-9 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> Thailand data <strong>for</strong> <strong>in</strong>itial<br />

state<br />

(h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ<br />

1<br />

= 0 , τ<br />

2<br />

= 0<br />

Phase plane plots<br />

Figure 4-10 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> Thailand data. The black<br />

solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of Figure 4-9.


57<br />

We have used Matlab to compute the endemic-disease equilibrium state state <strong>for</strong><br />

nonzero time <strong>delay</strong>s τ<br />

1<br />

= 0.167, τ<br />

2<br />

= 0.167 . This gave an estimate of<br />

4.7368× 10 −4 of<br />

the population <strong>in</strong>fected. The estimated value we obta<strong>in</strong> <strong>for</strong> m is m = 0.00151 and the<br />

endemic-disease equilibrium is:<br />

ˆ<br />

ˆ<br />

* * * * −4 −4 −4<br />

(h , y ,h , y ) (1.188 10 ,4.737 10 ,1.0477 10 ,0.2628)<br />

= × × × . The basic<br />

reproductive rate is R 0<br />

= 1.35766 > 1 show<strong>in</strong>g that the disease-free state is not<br />

asymptotically stable. However, this value is close to the value of 1 at which the<br />

disease-free state would become asymptotically stable.<br />

We have used Matlab to compute the solution of the <strong>differential</strong> <strong>equation</strong>s <strong>for</strong><br />

non zero <strong>delay</strong>s τ 1<br />

= 0.167, τ 2<br />

= 0.167 with the same <strong>in</strong>itial conditions as <strong>for</strong> the zero<br />

time <strong>delay</strong> case shown <strong>in</strong> Figure 4-9. The results are shown <strong>in</strong> Figure 4-11. The<br />

solutions can be seen to approach the equilibrium solutions, but at a very slow rate.<br />

Phase plane plots are shown <strong>in</strong> Figure 4-12 <strong>for</strong> a range of <strong>in</strong>itial conditions. The ma<strong>in</strong><br />

difference that can be seen between the zero <strong>delay</strong> solutions and nonzero <strong>delay</strong><br />

solutions is that <strong>in</strong> the nonzero <strong>delay</strong> solutions there is a nonzero population of<br />

<strong>in</strong>fected humans and <strong>in</strong>fected mosquitoes.<br />

Figure 4-11 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> Thailand data <strong>for</strong> <strong>in</strong>itial<br />

state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ<br />

1<br />

= 0.167 , τ<br />

2<br />

= 0.167


58<br />

Phase plane plots<br />

Figure 4-12 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> Thailand data. The black<br />

solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of Figure 4-11.<br />

4.3.2 S<strong>in</strong>gapore<br />

As stated <strong>in</strong> section 2.1, there were 12,700 cases of Dengue <strong>fever</strong> <strong>in</strong> S<strong>in</strong>gapore<br />

<strong>in</strong> 2005 out of a total population of 4.35 million. This gives an estimate of<br />

2.917× 10 −3 of the population <strong>in</strong>fected. From the graph given <strong>in</strong> Figure 2-2 of<br />

Dengue <strong>fever</strong> cases <strong>in</strong> S<strong>in</strong>gapore from 2005 to 2007, Dengue <strong>fever</strong> appears to be<br />

endemic <strong>in</strong> S<strong>in</strong>gapore. As estimates <strong>for</strong> the parameters <strong>in</strong> the <strong>model</strong>, we will use the<br />

estimates given <strong>in</strong> Table 4.2 <strong>for</strong> a,b,c,u<br />

1,u 2,γ as a guide. As expla<strong>in</strong>ed <strong>in</strong> Section<br />

4.3.1, we have used the data shown <strong>in</strong> Table 4-2 estimated <strong>for</strong> malaria-carry<strong>in</strong>g<br />

mosquitoes <strong>in</strong> Brazil [19] as an estimate <strong>for</strong> Dengue <strong>fever</strong>-carry<strong>in</strong>g mosquitoes <strong>in</strong><br />

South-East Asia. We will then try to estimate the parameter m (the ratio of the<br />

Dengue carry<strong>in</strong>g mosquito population to the human population) by compar<strong>in</strong>g the


59<br />

number of observed cases with the population of <strong>in</strong>fectious humans <strong>in</strong> the endemic<br />

disease equilibrium state:<br />

2 2<br />

* * ˆ * *<br />

⎛ abcm−uu 1 2<br />

−γu2 abmc−uu 1 2<br />

−γu<br />

⎞<br />

2<br />

(h , y ,h , y ˆ ) = ⎜0, ,0,<br />

2 2<br />

⎟<br />

⎝ abcm+ acu1+ acγ abmc+<br />

abmu2<br />

⎠<br />

The estimated value we obta<strong>in</strong> is m=0.00357. From Matlab we f<strong>in</strong>d that<br />

= = × ˆ = ˆ = and R<br />

0<br />

= 3.2059 > 1<br />

* * −3 * *<br />

h 0, y 2.917 10 , h 0, y 0.68716<br />

We have also used Matlab to compute the eigenvalues of the Jacobian matrix<br />

<strong>for</strong> the endemic-disease equilibrium state <strong>for</strong> zero time <strong>delay</strong>s. We found four<br />

eigenvalues given by:<br />

λ<br />

1<br />

=−1.50818348861158<br />

λ<br />

2<br />

=−0.00118935000632 − 0.00332324855962i<br />

λ<br />

3<br />

=− 0.00118935000632 + 0.00332324855962i<br />

λ =−0.00139000000000<br />

4<br />

It can be seen that all eigenvalues have negative real parts. There<strong>for</strong>e the<br />

* * * * 3<br />

endermic state solution ˆ<br />

−<br />

(h , y ,h , y ˆ ) = (0,2.917× 10 ,0,0.68716) is asymptotically<br />

stable <strong>for</strong> R0<br />

> 1. The fact that R<br />

0<br />

= 3.2059 > 1 is consistent with our assumption<br />

that Dengue <strong>fever</strong> is endemic <strong>in</strong> S<strong>in</strong>gapore. The value <strong>for</strong> R 0 <strong>for</strong> S<strong>in</strong>gapore is greater<br />

than the value <strong>for</strong> Thailand.<br />

The results of numerical solutions of the <strong>differential</strong> <strong>equation</strong>s are shown <strong>in</strong><br />

Figure 4-13 <strong>for</strong> zero time <strong>delay</strong>s. The slow rate of convergence to the endemicdisease<br />

steady state can aga<strong>in</strong> be seen <strong>in</strong> this figure. Phase plane plots of the solutions<br />

<strong>for</strong> a range of <strong>in</strong>itial conditions are shown <strong>in</strong> Figure 4-14.<br />

Figure 4-13 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data <strong>for</strong> <strong>in</strong>itial<br />

state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ<br />

1<br />

= 0 , τ<br />

2<br />

= 0


60<br />

Phase plane plots<br />

Figure 4-14 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data. The black<br />

solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of Figure 4-13.<br />

For nonzero time <strong>delay</strong>s τ 1<br />

= 0.167, τ 2<br />

= 0.167 , we estimate the value of m to<br />

be m=0.00358. From Matlab we f<strong>in</strong>d that the endemic-disease equilibrium state is:<br />

ˆ<br />

ˆ<br />

* * * * −4 −3 −3<br />

(h , y ,h , y ) (7.315 10 ,2.917 10 ,2.38 10 ,0.6869)<br />

= × × × and the basic<br />

reproductive rate is R<br />

0<br />

= 3.21057 > 1. The numerical solutions obta<strong>in</strong>ed from dde23<br />

are shown <strong>in</strong> Figure 4-15. The slow rate of convergence to the equilibrium state can<br />

aga<strong>in</strong> be seen <strong>in</strong> Figure 4-15. Phase plane plots of the solutions <strong>for</strong> a range of <strong>in</strong>itial<br />

conditions are shown <strong>in</strong> Figure 4-16.


61<br />

Figure 4-15 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data <strong>for</strong><br />

<strong>in</strong>itial state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ<br />

1<br />

= 0.167 , τ<br />

2<br />

= 0.167<br />

Phase plane plots<br />

Figure 4-16 Phase plane plots with nonzero time <strong>delay</strong>s <strong>for</strong> S<strong>in</strong>gapore data. The<br />

black solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of Figure 4-15.<br />

4.3.3 Malaysia<br />

As stated <strong>in</strong> section 2.1, there were 32,950 cases of Dengue <strong>fever</strong> <strong>in</strong> Malaysia <strong>in</strong><br />

2005 out of a total population of 23.95 million. This gives an estimate of<br />

1.3756× 10 −3 of the population <strong>in</strong>fected. From the graph given <strong>in</strong> Figure 2-3 of


62<br />

Dengue <strong>fever</strong> cases <strong>in</strong> Malaysia from 1991 to 2000, Dengue <strong>fever</strong> appears to be<br />

endemic <strong>in</strong> Malaysia. As estimates <strong>for</strong> the parameters <strong>in</strong> the <strong>model</strong>, we will use the<br />

estimates given <strong>in</strong> Table 4.2 <strong>for</strong> a,b,c,u<br />

1,u 2,γ as a guide. As expla<strong>in</strong>ed <strong>in</strong> Section<br />

4.3.1, we have used the data shown <strong>in</strong> Table 4-2 estimated <strong>for</strong> malaria-carry<strong>in</strong>g<br />

mosquitoes <strong>in</strong> Brazil [19] as an estimate <strong>for</strong> Dengue <strong>fever</strong>-carry<strong>in</strong>g mosquitoes <strong>in</strong><br />

South-East Asia. We will then try to estimate the parameter m (the ratio of the<br />

Dengue carry<strong>in</strong>g mosquito population to the human population) by compar<strong>in</strong>g the<br />

number of observed cases with the population of <strong>in</strong>fectious humans <strong>in</strong> the endemic<br />

disease equilibrium state:<br />

2 2<br />

* * ˆ * *<br />

⎛ abcm−uu 1 2<br />

−γu2 abmc−uu 1 2<br />

−γu<br />

⎞<br />

2<br />

(h , y ,h , y ˆ ) = ⎜0, ,0,<br />

2 2<br />

⎟<br />

⎝ abcm+ acu1+ acγ abmc+<br />

abmu2<br />

⎠<br />

The estimated value we obta<strong>in</strong> is m=0.00227 From Matlab we f<strong>in</strong>d that<br />

= = × ˆ = ˆ = and R<br />

0<br />

= 2.03867 > 1. This value <strong>for</strong> R 0<br />

* * −3 * *<br />

h 0, y 1.376 10 , h 0, y 0.5088<br />

is between the values <strong>for</strong> Thailand and S<strong>in</strong>gapore.<br />

We have also used Matlab to compute the eigenvalues of the Jacobian matrix<br />

<strong>for</strong> the endemic-disease equilibrium state <strong>for</strong> zero time <strong>delay</strong>s. We found four<br />

eigenvalues given by:<br />

λ<br />

1<br />

=−1.505848304357893<br />

λ<br />

2<br />

=−0.001189687389878 −0.002114123714916i<br />

λ<br />

3<br />

=− 0.001189687389878 + 0.002114123714916i<br />

λ =−0.00139000000000<br />

4<br />

It can be seen that that all eigenvalues have negative real parts. There<strong>for</strong>e the<br />

* * * * 3<br />

endermic state solution ˆ<br />

−<br />

(h , y ,h , y ˆ ) = (0,1.376× 10 ,0,0.5088) is asymptotically<br />

stable <strong>for</strong> R0<br />

> 1. The fact that R<br />

0<br />

= 2.03867 > 1 is consistent with our assumption<br />

that Dengue <strong>fever</strong> is endemic <strong>in</strong> Malaysia.<br />

The results of numerical solutions of the <strong>differential</strong> <strong>equation</strong>s are shown <strong>in</strong><br />

Figure 4-17 <strong>for</strong> zero time <strong>delay</strong>s. The slow rate of convergence to the endemicdisease<br />

steady state can aga<strong>in</strong> be seen <strong>in</strong> this figure. Phase plane plots of the solutions<br />

<strong>for</strong> a range of <strong>in</strong>itial conditions are shown <strong>in</strong> Figure 4-18.


63<br />

Figure 4-17 Numerical solution with zero time <strong>delay</strong>s <strong>for</strong> Malaysia data <strong>for</strong> <strong>in</strong>itial<br />

state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ<br />

1<br />

= 0 , τ<br />

2<br />

= 0<br />

Phase plane plots<br />

Figure 4-18 Phase plane plots with zero time <strong>delay</strong>s <strong>for</strong> Malaysia data. The<br />

black solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of Figure 4-17.<br />

For nonzero time <strong>delay</strong>s τ 1<br />

= 0.167, τ 2<br />

= 0.167 , we estimate the value of m to<br />

be m=0.00227. From Matlab we f<strong>in</strong>d that the endemic-disease equilibrium state is:<br />

* * ˆ * * −4 −3 −4<br />

(h , y ,h , y ˆ ) = (3.449× 10 ,1.3756× 10 ,2.022× 10 ,0.5086) , and the basic


64<br />

reproductive rate is R 0 =2.04007 > 1.<br />

The results of the numerical solution of the <strong>differential</strong> <strong>equation</strong>s us<strong>in</strong>g dde23<br />

<strong>for</strong> nonzero <strong>delay</strong>s τ 1<br />

= 0.167, τ 2<br />

= 0.167 are shown <strong>in</strong> Figure 4-19. The slow rate of<br />

convergence to equilibrium can aga<strong>in</strong> be seen <strong>in</strong> this figure. Phase plane plots of the<br />

solutions <strong>for</strong> a range of <strong>in</strong>itial conditions are shown <strong>in</strong> Figure 4-20.<br />

Figure 4-19 Numerical solution with nonzero time <strong>delay</strong>s <strong>for</strong> Malaysia data <strong>for</strong> <strong>in</strong>itial<br />

state (h, y,h, ˆ y) ˆ = (0.1,0.1,0.1,0.1) , τ<br />

1<br />

= 0.167 , τ<br />

2<br />

= 0.167<br />

Phase plane plots<br />

Figure 4-20 Phase plane plot with nonzero time <strong>delay</strong>s <strong>for</strong> Malaysia data. The<br />

black solid l<strong>in</strong>e shows solutions <strong>for</strong> the <strong>in</strong>itial values of Figure 4-19.


CHAPTER 5<br />

DISCUSSION AND CONCLUSIONS<br />

5.1 Discussion and Conclusions<br />

We have extended a <strong>model</strong> <strong>for</strong> malaria orig<strong>in</strong>ally discussed by Macdonald [15]<br />

and Anderson and May [1] and used it as a <strong>model</strong> <strong>for</strong> <strong>transmission</strong> of Dengue <strong>fever</strong> <strong>in</strong><br />

Thailand, S<strong>in</strong>gapore and Malaysia. The mathematical <strong>model</strong> used <strong>in</strong> this thesis is a<br />

system of four nonl<strong>in</strong>ear <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s which <strong>in</strong>clude <strong>in</strong>fected humans,<br />

<strong>in</strong>fectious humans, <strong>in</strong>fected mosquitoes and <strong>in</strong>fectious mosquitoes. The <strong>model</strong><br />

conta<strong>in</strong>s two time <strong>delay</strong>s which are associated with the transitions from the <strong>in</strong>fected to<br />

<strong>in</strong>fectious stage <strong>in</strong> humans and from the <strong>in</strong>fected to the <strong>in</strong>fectious stage <strong>in</strong> mosquitoes.<br />

We have found that the <strong>model</strong> has two equilibrium po<strong>in</strong>ts, a disease-free equilibrium<br />

po<strong>in</strong>t and an endemic-disease equilibrium po<strong>in</strong>t. We have analyzed the asymptotic<br />

stability of the equilibrium po<strong>in</strong>ts by two methods. In the first method, we have used<br />

an analytical method <strong>in</strong> which we l<strong>in</strong>earized the nonl<strong>in</strong>ear <strong>equation</strong>s about the<br />

equilibrium po<strong>in</strong>ts. In the second method we used Matlab to compute numerical<br />

solutions <strong>for</strong> the orig<strong>in</strong>al nonl<strong>in</strong>ear <strong>delay</strong> <strong>differential</strong> <strong>equation</strong>s. We have exam<strong>in</strong>ed<br />

two cases correspond<strong>in</strong>g to zero time <strong>delay</strong>s and nonzero time <strong>delay</strong>s.<br />

For the case when all time <strong>delay</strong>s are zero, we found an analytic <strong>for</strong>mula <strong>for</strong> the<br />

endemic-disease equilibrium po<strong>in</strong>t and analytic <strong>for</strong>mulas giv<strong>in</strong>g necessary and<br />

sufficient conditions <strong>for</strong> asymptotic stability <strong>for</strong> both the disease-free and the<br />

endemic-disease case. These asymptotic stability conditions were obta<strong>in</strong>ed by us<strong>in</strong>g<br />

the Routh-Hurwitz criteria. We found that the basic reproductive rate parameter gave<br />

necessary conditions <strong>for</strong> asymptotic stability of the disease-free equilibrium and <strong>for</strong><br />

the existence of the endemic-disease equilibrium.<br />

For the second case with nonzero time <strong>delay</strong>s, we obta<strong>in</strong>ed an analytical<br />

<strong>for</strong>mula <strong>for</strong> the endemic-disease equilibrium po<strong>in</strong>t and necessary conditions <strong>for</strong> the<br />

asymptotic stability of the disease-free equilibrium po<strong>in</strong>t and the existence of the<br />

endemic-disease equilibrium po<strong>in</strong>t.


66<br />

We have used Matlab to numerically <strong>in</strong>tegrate the four nonl<strong>in</strong>ear <strong>delay</strong><br />

<strong>differential</strong> <strong>equation</strong>s both <strong>for</strong> zero time <strong>delay</strong>s and <strong>for</strong> a range of nonzero values of<br />

the time <strong>delay</strong>s. We have used a selection of parameter values <strong>in</strong> our <strong>model</strong> obta<strong>in</strong>ed<br />

from previous authors [15, 19]. In one case, these values corresponded to an<br />

asymptotically stable disease-free equilibrium po<strong>in</strong>t and <strong>in</strong> other cases these values<br />

corresponded to an endemic-disease equilibrium po<strong>in</strong>t. In each case we compared the<br />

results obta<strong>in</strong>ed from the analytic conditions <strong>for</strong> asymptotic stability with the results<br />

from the numerical <strong>in</strong>tegrations and found good agreement.<br />

F<strong>in</strong>ally, we exam<strong>in</strong>ed the data <strong>for</strong> occurrence of Dengue <strong>fever</strong> <strong>in</strong> Thailand,<br />

Malaysia and S<strong>in</strong>gapore. In each country the data suggest that Dengue <strong>fever</strong> is<br />

endemic. For all parameters except the number of mosquitoes, we used values that<br />

appeared to be reasonable from Wyse et al [19]. The values of Wyse et al. were<br />

estimated <strong>for</strong> malaria-carry<strong>in</strong>g mosquitoes <strong>in</strong> Brazil [19]. However, as we have been<br />

unable to f<strong>in</strong>d reliable date <strong>for</strong> Dengue <strong>fever</strong>-carry<strong>in</strong>g mosquitoes <strong>in</strong> South-East Asia<br />

we have used them as an <strong>in</strong>dication of the results that might be expected <strong>for</strong> Dengue<br />

<strong>fever</strong>. Us<strong>in</strong>g the Wyse et al. parameter values we then estimated the ratio m of<br />

number of female mosquitoes to human population <strong>for</strong> Thailand, Malaysia and<br />

S<strong>in</strong>gapore. For each country, we found that the mathematical <strong>model</strong> had an endemicdisease<br />

equilibrium po<strong>in</strong>t and that the disease-free equilibrium po<strong>in</strong>t was not<br />

asymptotically stable. We also found differences between the three countries. The<br />

basic reproduction rates <strong>for</strong> the three countries <strong>in</strong>creased from approximately 1.36 <strong>for</strong><br />

Thailand to 2.04 <strong>for</strong> Malaysia to 3.21 <strong>for</strong> S<strong>in</strong>gapore. A noticeable feature of our<br />

numerical results was the long time period of approximately 900 months be<strong>for</strong>e the<br />

system reached equilibrium. If our <strong>model</strong> accurately reflects the actual time scale to<br />

reach equilibrium, then an equilibrium po<strong>in</strong>t analysis of the <strong>model</strong> would appear to<br />

have limited value and the short-term behavior of the <strong>model</strong> would be of greater<br />

<strong>in</strong>terest. The existence of the time <strong>delay</strong>s will affect this short-term behavior.<br />

5.2 Suggestions <strong>for</strong> Further Study<br />

In this thesis we have not attempted to <strong>model</strong> the quite complicated variation <strong>in</strong><br />

disease levels shown <strong>in</strong> the data <strong>in</strong> Figures 2-1, 2-2 and 2-3. In our analysis we have<br />

assumed that the parameters <strong>in</strong> the <strong>model</strong> are constants. In particular, we have


67<br />

assumed that the population of female Dengue-carry<strong>in</strong>g mosquitoes is constant, that<br />

the immunity of the human population does not change and that the death rate of<br />

mosquitoes does not change. A more accurate <strong>model</strong> would have to <strong>in</strong>clude<br />

variations <strong>in</strong> each of these factors. The use of Brazil data <strong>for</strong> parameter values or<br />

malaria-carry<strong>in</strong>g mosquitoes should also be replaced <strong>in</strong> a more accurate <strong>model</strong> by<br />

obta<strong>in</strong><strong>in</strong>g estimates of the parameter values <strong>for</strong> the Dengue <strong>fever</strong>-carry<strong>in</strong>g mosquitoes<br />

of South-East Asia.


REFERENCES<br />

1. Roy M. Anderson and Robert M. May. Infectious Diseases of Humans:<br />

Dynamics and Control. Ox<strong>for</strong>d University Press, 1992.<br />

2. “Bureau Of Epidemiology, Department of Disease Control, M<strong>in</strong>istry of Public<br />

Health.” Available from: http://epid.moph.go.th/dssur/vbd/df.htm.<br />

3. “Dengue Fever Statistics <strong>in</strong> Malaysia.” Available from :<br />

http://www.chhs.com.my/<strong>dengue</strong>stat.htm.<br />

4. “2005 Dengue Outbreak <strong>in</strong> S<strong>in</strong>gapore.” Available from :<br />

http://en.wikipedia.org/wiki/2005_<strong>dengue</strong>_outbreak_<strong>in</strong>_S<strong>in</strong>gapore.<br />

5. “Compaign Aga<strong>in</strong>st Dengue.” Available from : http://www.<strong>dengue</strong>.gov.sg.<br />

6. M. Derouich, A. Boutayeb.. “Dengue <strong>fever</strong>: Mathematical <strong>model</strong>l<strong>in</strong>g and computer<br />

Simulation.” Journal of Applied Mathematics and Computation . 177<br />

(2006) : 528–544.<br />

7. Aekabut Sirijampa. A Mathematical Model of Periodic Chronic Myelogenous<br />

Leukemia with Delay Diffferential Equations. A thesis submitted <strong>in</strong> partial<br />

fulfillment of the requirements <strong>for</strong> the Master of Science <strong>in</strong> Applied<br />

Mathematics. K<strong>in</strong>g Mongkut’s University of Technology North Bangkok,<br />

2006.<br />

8. A. Kammanee,Y. Lenbury and I.M. Tang. Transmission of Plasmodium Vivax<br />

Malaria A thesis submitted <strong>in</strong> partial fulfillment of the requirements <strong>for</strong> the<br />

Master of Science <strong>in</strong> Mathematics. Mahidol Unoversity, 2006.<br />

9. L.F. Shamp<strong>in</strong>e. Solv<strong>in</strong>g Delay Differential Equations with DDE23. Mathematics<br />

Department, Southern Methodist University, 2000.<br />

10. M Sriprom, et al. Dengue Haemorrhagic Fever <strong>in</strong> Thailand, 1998-2003: Primary<br />

or Secondary Infection. A thesis submitted <strong>in</strong> partial fulfillment of the<br />

requirements <strong>for</strong> the Master of Science <strong>in</strong> Mathematics. Mahidol University,<br />

2003.<br />

11. “Dengue <strong>fever</strong>.” Available from: http://en.wikipedia.org/wiki/Dengue_<strong>fever</strong>.<br />

12. J.Guardiola, A. Vecchio. Basic Reproduction number <strong>for</strong> Infectious Dynamics


69<br />

Models and the Global Stability of Stationary Po<strong>in</strong>ts. Napoli – Italy, 2003.<br />

13. J.D. Murray. Mathematical Biology Spr<strong>in</strong>ger-Verlag New York Berl<strong>in</strong><br />

Heidelberg, 2002.<br />

14. Dennis G. Zill, Michael R. Cullen. Differential Equations with Boundary-Value<br />

Problems. Thomson Brooks/Cole a division of Thomson Learn<strong>in</strong>g, 2005.<br />

15. J. Tumwi<strong>in</strong>e, L.S. Luboobi & J.Y.T. Mugisha. Modell<strong>in</strong>g the Effect of<br />

Treatment and Mosquito Control on Malaria Transmission. Department of<br />

Mathematics & Statistics. Makerere University, Uganda, 1998.<br />

16. “Dengue, Reported cases <strong>in</strong> SEAR from 1985-2005.” Available from:<br />

http://www.searo.who.<strong>in</strong>t/EN/Section10/Section332_1101.htm.<br />

17. Ang Kim Teng and Satwant S<strong>in</strong>gh. Epidemiology and New Initiatives <strong>in</strong> the<br />

Prevention and Control of Dengue <strong>in</strong> Malaysia. M<strong>in</strong>istry of Health, Kuala<br />

Lumpur, Malaysia, 2001.<br />

18. Charoen Kaewpradit, Wannapong Triampob and I-M<strong>in</strong>g Tang. “Limit Cycle <strong>in</strong> a<br />

Herbivore-Plant-Bee Model Conta<strong>in</strong><strong>in</strong>g a Time Delay.” Department of<br />

Mathematics and Physics. Mahidol University, 2005.<br />

19. Ana Paula P. Wyse, Luiz Bevilacqua, Marat Rafikov. “Simulat<strong>in</strong>g malaria <strong>model</strong><br />

<strong>for</strong> different treatment <strong>in</strong>tensities <strong>in</strong> a variable environment” Journal of<br />

Ecological Modell<strong>in</strong>g. 206 (2007) : 322-330.<br />

20. Torres-Sorando, L. and Rodriguez, D.J. “Models of spatio-temporal<br />

dynamics <strong>in</strong> malaria”. Journal of Ecological Modell<strong>in</strong>g. 104 (1997) :<br />

231-240.<br />

21. Luenberger, D.G., Introduction to Dynamical Systems: Theory, Models and<br />

Applications, John Wiley and Sons, New York, 1979.


APPENDIX A<br />

MATLAB AND MAPLE PROGRAMMING


71<br />

A1. Characteristic Equation.<br />

Maple program to f<strong>in</strong>d Characteristic Equation (3-41).<br />

> restart;<br />

> with(L<strong>in</strong>earAlgebra):<br />

> A[0]=Matrix([[-a*b*m*yhat-u[1],-a*b*m*yhat,0,(1-y-<br />

h)*a*b*m],[0,-u[1]-r,0,0],[0,a*c*(1-yhat-hhat),-<br />

u[2],0],[0,0,0,-u[2]]]);<br />

A 0<br />

⎡− a b m yhat − u 1<br />

−a b m yhat 0 ( 1 − y − h)<br />

a b m⎤<br />

0 − u =<br />

1<br />

− r 0 0<br />

0 ac( 1 − yhat − hhat ) −u 2<br />

0<br />

⎢<br />

⎥<br />

⎢ 0 0 0 −u ⎥<br />

⎣<br />

2 ⎦<br />

> A[1]=Matrix([[a*b*m*yhat*exp(-<br />

u[1]*tau[1]),a*b*m*yhat*exp(-u[1]*tau[1]),0,-a*b*m(1-y-<br />

h)*exp(-u[1]*tau[1])],[0,-a*b*m*yhat*exp(-<br />

u[1]*tau[1]),0,(1-y-h)*a*b*m*exp(-<br />

u[1]*tau[1])],[0,0,0,0],[0,0,0,0]]);<br />

A 1<br />

⎡<br />

a b m yhat e<br />

=<br />

⎢<br />

⎢<br />

⎣<br />

( −u τ )<br />

( )<br />

1 1<br />

a b m yhat e<br />

−u τ 1 1<br />

0 −a b m ( 1 − y − h)<br />

e<br />

0<br />

( −u τ ) 1 1<br />

−a b m yhat e 0 ( 1 − y − h)<br />

a b m e<br />

0 0 0 0<br />

0 0 0 0<br />

> A[2]=Matrix([[0,0,0,0],[0,0,0,0],[0,-a*c*(1-yhat-<br />

hhat)*exp(-u[2]*tau[2]),a*c*y*exp(-<br />

u[2]*tau[2]),a*c*y*exp(-u[2]*tau[2])],[0,a*c*(1-yhat-<br />

hhat)*exp(-u[2]*tau[2]),-acy*exp(-u[2]*tau[2]),-<br />

a*c*y*exp(-u[2]*tau[2])]]);<br />

A 2<br />

( −u τ ) 1 1<br />

( −u τ ) 1 1<br />

⎡0 0 0 0 ⎤<br />

0 0 0 0<br />

=<br />

( −u τ )<br />

( −u τ )<br />

( −u τ )<br />

2 2 2 2 2 2<br />

0 −a c( 1 − yhat − hhat ) e acye acye ⎢<br />

( −u τ )<br />

( −u τ )<br />

( −u τ ) ⎥<br />

⎢<br />

2 2 2 2 2 2<br />

⎥<br />

⎣0 ac( 1 − yhat − hhat ) e −acy e −acye ⎦<br />

⎤<br />

⎥<br />

⎥<br />


72<br />

> A[lambda] :=<br />

Matrix([[lambda,0,0,0],[0,lambda,0,0],[0,0,lambda,0],[0,0<br />

,0,lambda]]);<br />

A λ<br />

⎡λ 0 0 0⎤<br />

:=<br />

0 λ 0 0<br />

0 0 λ 0<br />

⎢<br />

⎥<br />

⎣0 0 0 λ⎦<br />

> sol:=A[lambda]-(A[0]+A[1]*exp(-lambda*tau[1])+A[2]*exp(-<br />

lambda*tau[2]));<br />

Change variable <strong>in</strong> to<br />

⎡λ 0 0 0⎤<br />

( −λ τ ) ( −λ τ )<br />

1 2<br />

sol := − A 0<br />

− A 1<br />

e − A 2<br />

e +<br />

0 λ 0 0<br />

0 0 λ 0<br />

⎢<br />

⎥<br />

⎣0 0 0 λ⎦<br />

> Q:=a*b*m*yhat;Q[1]:=a*b*m*(1-y-h);Q[2]:=a*c*(1-yhathhat);Q[3]:=a*c*y;<br />

> sol1:=Determ<strong>in</strong>ant(k);<br />

( e )<br />

( e )<br />

Q := a b m yhat<br />

Q 1<br />

:= abm( 1 − y − h )<br />

Q 2<br />

:= ac( 1 − yhat − hhat )<br />

Q 3<br />

:= acy<br />

2<br />

2 Q 2 λ 2 Q 2 2<br />

u 2 Q 2 λ 2<br />

2 λ u 1<br />

u 2<br />

+ Q λ u 2<br />

+ + −<br />

( u τ ) ( λτ ) ( u τ ) ( λτ )<br />

2<br />

2<br />

1 1 1 1 1 1 ( u τ ) ( λτ )<br />

e e e e 1 1 1<br />

( e ) ( e )<br />

Q 2 2<br />

u 2<br />

− + 2 Qu<br />

2<br />

2 1<br />

λ u 2<br />

+ 2 Qrλ u 2<br />

+ 2 u 1<br />

r λ u 2<br />

+ λ 4 + 4 u 1<br />

λ 2 u 2<br />

( u τ ) ( λτ )<br />

1 1 1<br />

2 r λ 2 2<br />

u 2<br />

2 u 1 λ u2 2 λ 3 u 2<br />

λ 2 2<br />

u 2<br />

2 u 1<br />

λ 3 r λ 3 Q λ 3 2<br />

u 1 λ<br />

2 2 2<br />

+ + + + + + + + + u u2 1<br />

Q 2<br />

Q 1<br />

λ 2<br />

2 Q 2 λ u 2 Qrλ 2<br />

2<br />

− + − + λ ru<br />

( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( λτ ) 2<br />

+ 2 Q λ 2 u 2<br />

2 2 2 1 1 1 1 1 1 1 1 1<br />

e e e e e e e e<br />

Qu 1<br />

λ 2 2<br />

Qu 1<br />

u 2<br />

Qrλ 2 2<br />

Qru 2<br />

u 1<br />

r λ 2 2<br />

2 Q r λ u 2<br />

+ + + + + + u 1<br />

ru 2<br />

−<br />

e<br />

( u τ ) ( λτ )<br />

1 1 1<br />

e


73<br />

2<br />

Qru 2<br />

2 Q 2 λ u 2<br />

QQ 3<br />

Q 1<br />

Q 2<br />

− − −<br />

( u τ ) ( λτ )<br />

2<br />

2<br />

2<br />

2<br />

1 1 1 ( u τ ) ( λτ ) ( u τ ) ( λτ )<br />

e e 1 1 1 1 1 1<br />

( e ) ( e ) ( e ) ( e )<br />

QQ 2<br />

Q 1<br />

λ<br />

QQ 2<br />

Q 1<br />

u 2<br />

+ +<br />

2<br />

2<br />

2<br />

2<br />

( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( λτ )<br />

1 1 1 2 2 2 1 1 1<br />

( e ) ( e ) e e ( e ) ( e )<br />

λ Q 3<br />

Q 1<br />

Q 2<br />

λ Q 2<br />

Q 1<br />

u 2<br />

+ −<br />

( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( λτ )<br />

2 2 2 1 1 1 2 2 2 1 1 1<br />

e e e e e e e e<br />

QQ 3<br />

Q 1<br />

Q 2<br />

QQ 2<br />

Q 1<br />

λ<br />

+ −<br />

( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( λτ )<br />

2 2 2 1 1 1 2 2 2 1 1 1<br />

e e e e e e e e<br />

QQ 2<br />

Q 1<br />

u 2<br />

u 1<br />

Q 3<br />

Q 1<br />

Q 2<br />

− +<br />

( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( )<br />

2 2 2 1 1 1 2 2<br />

e e e e e e<br />

u 1<br />

Q 2<br />

Q 1<br />

λ<br />

u 1<br />

Q 2<br />

Q 1<br />

u 2<br />

−<br />

−<br />

( u τ ) ( λτ ) ( u τ ) ( λτ ) ( u τ ) ( )<br />

2 2 2 1 1 1 2 2<br />

e e e e e e<br />

A2 Check Routh-Hurwitz Criteria<br />

λτ ( u τ ) ( λτ )<br />

2 1 1 1<br />

e e<br />

λτ ( u τ ) ( λτ )<br />

2 1 1 1<br />

e e<br />

( u τ ) ( λτ )<br />

2 2 2<br />

e e<br />

( u τ ) ( λτ )<br />

2 2 2<br />

e e


74<br />

A3 Numerical Solutions<br />

First is function used <strong>in</strong> ode23 command when the <strong>model</strong> has no time <strong>delay</strong>.


75<br />

Second is function used <strong>in</strong> dde23 command when the <strong>model</strong> has 2 <strong>delay</strong>.<br />

Third is m-file to show numerical solutions.<br />

This m-file <strong>for</strong> solve numerical <strong>for</strong> non <strong>delay</strong>


76<br />

And this m-file <strong>for</strong> solve numerical <strong>for</strong> <strong>delay</strong><br />

A4 F<strong>in</strong>d Eigenvalue<br />

This m-file to f<strong>in</strong>d the Eigenvalue of Eq.(3-41)


79<br />

BIOGRAPHY<br />

Name<br />

Thesis title<br />

: Mr.Werapong Sakdanupaph<br />

: A Delay Differential Equation <strong>model</strong> <strong>for</strong> Dengue Fever<br />

Transmission <strong>in</strong> Selected Countries of South-East Asia<br />

Major Field : Applied Mathematics<br />

Biography<br />

Born 23 october 1982<br />

Education<br />

Bachelor Degree <strong>in</strong> Science (Mathematics) at Silpakorn<br />

University<br />

Address 197/1 M.6 T.Kur<strong>in</strong>g A.Thasae Chumphon 86140

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!