16.11.2014 Views

Math 230 Exam 2 Review Sheet Spring 2007

Math 230 Exam 2 Review Sheet Spring 2007

Math 230 Exam 2 Review Sheet Spring 2007

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Math</strong> <strong>230</strong> <strong>Exam</strong> 2 <strong>Review</strong> <strong>Sheet</strong> <strong>Spring</strong> <strong>2007</strong><br />

The following basic trig identies will be the only formulas provided for you. They will be provided in the<br />

following forms:<br />

sin(x + y) = sin x cos y + cos x sin y<br />

cos(x + y) = cos x cos y − sin x sin y<br />

tan x + tan y<br />

tan(x + y) =<br />

1 − tan x tan y<br />

sin 2 1 − cos 2x<br />

x =<br />

2<br />

sin x cos x = 1 2 sin(2x)<br />

sin A sin B = 1 [cos(A − B) − cos(A + B)]<br />

2 cos<br />

sin(x − y) = sin x cos y − cos x sin y<br />

cos(x − y) = cos x cos y + sin x sin y<br />

tan x − tan y<br />

tan(x − y) =<br />

1 + tan x tan y<br />

cos 2 1 + cos 2x<br />

x =<br />

2<br />

sin A cos B = 1 [sin(A − B) + sin(A + B)]<br />

2 A cos B = 1 [cos(A − B) + cos(A + B)]<br />

2<br />

The ∫ following are forms∫that you should ∫be able to recognize ∫ (these will not be provided for you):<br />

1<br />

x n dx (n ≠ −1)<br />

x dx e x dx a x dx<br />

∫<br />

∫<br />

∫<br />

∫<br />

sin xdx<br />

cos xdx sec 2 xdx csc 2 xdx<br />

∫<br />

∫<br />

∫<br />

∫<br />

sec x tan xdx csc x cot xdx tan xdx cot xdx<br />

∫<br />

∫<br />

∫<br />

∫<br />

1<br />

sec xdx<br />

csc xdx<br />

x 2 + a 2 dx 1<br />

√<br />

∫<br />

a2 − x dx 2<br />

1<br />

x √ x 2 − 1 dx<br />

Definite integrals must be completely evaluated (i.e. you must be able to plug in standard angles for<br />

trig and inverse trig functions) in order to receive full credit. You will not be told what technique to apply<br />

to an integral. You need to make sure that you can do each of the techniques correctly, and you must do<br />

enough problems to be able to recognize a viable approach to an integral. The first part of this review breaks<br />

down each of the sections with some typical integrals from those sections. The second part of the review is<br />

a strategy for integration and some integrals for you to practice identifying techniques to use.<br />

1. L’Hospital’s Rule: Know when to apply it and verification of all conditions must be shown in order to<br />

receive full credit. You must be able to state the conditions necessary for application of the rule.<br />

x + tan 2x (ln x) 3 e x (<br />

− 1<br />

1<br />

lim<br />

lim<br />

x→0 x − tan 2x x→∞ x 2 lim<br />

lim<br />

x→0 sin x x→1 ln x − 1 )<br />

x − 1<br />

lim<br />

x→0<br />

sin x<br />

x 3<br />

sin x<br />

lim<br />

x→0 e x<br />

lim (cos x)1/x2 lim<br />

x→∞<br />

→∞<br />

(1 − 5 x<br />

2. Inverse Trig Functions: No integral or differentiation formulas will be provided.<br />

(a) Differentiate the following:<br />

y = √ tan −1 x 2 y = e sec−1 t<br />

y = x cos −1 x − √ 1 − x 2<br />

y = sin −1 (2x 2 + e x2 ) y = sin(cos −1 (2x − 1)) y = ln(2x 2 ) tan −1 (x 2 + x)<br />

(b) Evaluate the following:<br />

∫ 1/2<br />

0<br />

∫ √ 3<br />

dx<br />

√<br />

1 − x<br />

2<br />

∫<br />

6<br />

1 1 + x 2 dx ∫<br />

3. Integration by parts:<br />

∫ x + 4<br />

x 2 + 4 dx<br />

e 2x<br />

√<br />

1 − e<br />

4x dx<br />

∫<br />

udv = uv −<br />

∫ tan −1 x<br />

1 + x 2 dx<br />

∫<br />

e x<br />

e 2x + 1 dx<br />

vdu<br />

) x


∫<br />

∫<br />

e −x (x 3 + 7x + 2)dx<br />

x 3 tan −1 xdx<br />

∫<br />

∫<br />

x cos xdx<br />

(ln x) 2 dx<br />

∫<br />

x5 x dx<br />

∫<br />

x 5 e x2 dx<br />

4. Trigonometric Integrals:<br />

∫<br />

(a) the form sin m x cos n xdx<br />

i. cos x power odd - save one cos x factor<br />

ii. sin x power odd - save one sin x factor<br />

iii. both cos x and sin x have odd powers - can save your favorite<br />

iv. both cos x and sin x have even powers - use the half-angle identites to convert to an easier<br />

form<br />

∫<br />

(b) the form tan m x sec n xdx<br />

i. sec x power even - save one sec 2 x factor<br />

ii. tan x power is odd - save one sec x tan x factor<br />

∫<br />

∫<br />

∫<br />

(c) the forms sin(mx) cos(nx)dx, sin(mx) sin(nx)dx, and cos(mx) cos(nx)dx require the appropriate<br />

conversions using formulas for products of trig functions.<br />

∫ π/2<br />

∫<br />

∫ π/4<br />

cos 4 xdx tan 4 xdx<br />

sec 6 xdx<br />

∫0<br />

∫ 0<br />

sec<br />

sin 6 x cos 3 2 ∫<br />

x<br />

xdx<br />

cot x dx sin(5x) sin(2x)dx<br />

5. Trig Substitution: can be used when √ a 2 − x 2 , √ a 2 + x 2 , √ x 2 − a 2 show up in an integral.<br />

∫ 3<br />

∫<br />

dx<br />

1 √ ∫<br />

dx<br />

√ x2 + 1dx √<br />

0 9 + x<br />

2<br />

∫<br />

∫ 0<br />

x2 − 6x + 13<br />

dx<br />

√ e t√ ∫ 3<br />

9 − e 2t dt x √ 9 − x 2 dx<br />

9x2 + 6x − 8<br />

0<br />

6. Partial Fractions: you will be asked to express a complicated rational function in partial fraction<br />

terms without solving for the constants or evaluating the integral. You will also be asked to solve one<br />

completely. Remember that it is only applicable when the degree of the denominator is larger than<br />

the degree of the numerator and that the denominator must be completely factored into irreducible<br />

quadratics and linear factors.<br />

(a) Express the following in a partial fraction decomposition without solving for the terms.<br />

i.<br />

ii.<br />

4x 2 − 2x + 9<br />

x 3 (x + 1) 2 (x − 1)(x 2 − 4) 2 (x 2 + 2)(x 2 + 3) 3<br />

6x 2 − x + 13<br />

x 2 (x − 1)(x + 3) 2 (x 2 + 7)(x 2 − 7) 2 (x 2 + x + 1) 3<br />

(b) Solve the following completely<br />

∫ x 3 + x 2 ∫<br />

− 12x + 1 x 3 − 2x 2 + x + 1<br />

x 2 dx<br />

+ x − 12<br />

x 4 + 5x 2 dx<br />

∫ + 4<br />

x 2 ∫<br />

+ 1<br />

1<br />

x 2 − x dx<br />

Strategy for integration:<br />

1. Simplify the Integrand if Possible:<br />

(a) distribution of terms<br />

(b) splitting of fractions<br />

0<br />

∫<br />

1<br />

x 3 + x 2 − 2x dx<br />

x 2 − x + 6<br />

x 3 + 3x dx ∫ x 3 + x 2 + 2x + 1<br />

(x 2 + 1)(x 2 + 2) dx


(c) trig identities<br />

2. Look for an obvious substitution. This is why you need to KNOW the list of integrals at the beginning<br />

of this sheet.<br />

3. Classify the integrand according to its form<br />

(a) Powers of trig functions? – trigonometric integrals good place to start<br />

(b) Rational function? – partial fractions a good place to start<br />

(c) Product of two functions? – parts a good place to start<br />

(d) Radicals? – perhaps a trig sub will get you there<br />

4. Still no answer? Try again.<br />

(a) Did you miss a substitution?<br />

(b) Will parts work? Although it is usually used on products of functions, it can be used on single<br />

functions.<br />

(c) Can you manipulate the integrand? i.e. rationalize the denominator, trig identities, etc.<br />

(d) Have you seen the problem before? Can you relate it to a previous homework problem or example<br />

from class?<br />

(e) Sometimes more than one method is required. You might need to do substitutions within parts<br />

or some other combination of techniques.<br />

Integrate ∫ the following by any method or combination of methods.<br />

e x<br />

∫<br />

1.<br />

1 + e x dx 2. e x<br />

∫<br />

1 + e 2x dx 3. e √x dx<br />

∫<br />

∫<br />

∫<br />

1<br />

4.<br />

1 + e 2x dx 5. t 3 e −t2 dt 6. sin(ln x)dx<br />

∫<br />

∫<br />

∫<br />

sin(2x)<br />

7.<br />

1 + sin 2 x dx 8. sin 3 x ln(cos x)dx 9. (sin x) e (cos x) 3 dx<br />

∫<br />

∫<br />

∫<br />

10. sec 3 x tan 3 xdx 11. (ln x) 2 ln x<br />

dx 12.<br />

x √ 1 + ln x dx<br />

∫<br />

13. tan −1 ( √ ∫ sin −1 ∫<br />

x<br />

1<br />

t)dt 14.<br />

x 2 dx 15.<br />

∫<br />

∫<br />

∫ sec x + tan x dx<br />

1<br />

tan −1<br />

16. sin(3θ) cos(θ)dθ 17.<br />

1 − sin x dx 18. (e x )<br />

e x dx<br />

∫<br />

x 2<br />

∫ sin 2<br />

19.<br />

(1 + x 2 ) 2 dx 20. x − cos 2 ∫<br />

x<br />

√3<br />

dx 21. − x2 dx<br />

∫<br />

∫ √ cos x<br />

∫<br />

x<br />

3 − x<br />

22. √ dx 23. 2<br />

1<br />

dx 24.<br />

3 − x<br />

2 x<br />

(x 2 − 4x + 4)(x 2 − 4x + 5) dx<br />

∫<br />

∫<br />

∫<br />

1<br />

25.<br />

(a sin x + b cos x) 2 dx 26. 1<br />

π/2<br />

a 2 sin 2 x + b 2 cos 2 x dx 27. sin x<br />

0 1 + cos x + sin x dx<br />

(a ≠<br />

∫<br />

0) (ab<br />

∫<br />

≠ 0)<br />

1<br />

28. √<br />

x2 + x dx<br />

29. x 4 ∫<br />

+ 1<br />

x(x 2 + 1) 2 dx 30. 4x 5 − 1<br />

∫<br />

∫<br />

(x 5 + x + 1) 2 dx<br />

1<br />

31.<br />

x − √ x dx<br />

32. sin x sin 2x sin 3xdx


<strong>Math</strong> <strong>230</strong> <strong>Exam</strong> 2 <strong>Spring</strong> 2002<br />

1. Find the derivatives of the following functions:<br />

(a) y = ln(2x) tan −1 (x 2 )<br />

(b) y = sin(cos −1 (2x − 1))<br />

2. Find the following limits:<br />

(a) lim<br />

x→0<br />

1 − cos 2x<br />

x sin s<br />

(b)<br />

lim<br />

x→∞ (1 − 5 x )x<br />

3. Evaluate the following integrals:<br />

∫<br />

(a) (4 − x)e −3x dx<br />

∫<br />

(b) x 2 tan −1 xdx<br />

(c)<br />

∫<br />

e<br />

cos −1 x<br />

√<br />

1 − x<br />

2 dx<br />

(d)<br />

(e)<br />

(f)<br />

(g)<br />

∫ 1<br />

∫<br />

∫<br />

0<br />

x 2<br />

√<br />

4 − x<br />

2 dx<br />

sin 3 x cos 4 xdx<br />

dx<br />

x 4√ x 2 − 1<br />

∫<br />

dx<br />

x(x 2 + 1)<br />

4. Let a curve C be defined by y = sin −1 (x 2 ), 0 ≤ x ≤ 1. Set up an integral for the length of this curve.<br />

Do not evaluate it.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!