19.11.2014 Views

Flatspace Holography as a Limit of AdS/CFT

Flatspace Holography as a Limit of AdS/CFT

Flatspace Holography as a Limit of AdS/CFT

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong><br />

Reza Fareghbal<br />

School <strong>of</strong> Particles and Accelerator,IPM,Tehran<br />

Seventh Crete Regional Meeting in String Theory<br />

June 2013<br />

B<strong>as</strong>ed on:<br />

A. Bagchi, R. F. (arXiv:1203.5795),<br />

A. Bagchi, S. Detournay, R. F. , Joan Simon (arXiv:1208.4372)<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Motivation<br />

<strong>AdS</strong>/<strong>CFT</strong> provides a holographic picture for the gravitational<br />

theory.<br />

Is it possible to generalize holography for gravity in other<br />

backgrounds?<br />

Our universe is more like flat rather than <strong>AdS</strong>!<br />

Does flat space have a holographic picture <strong>as</strong> a lower<br />

dimensional field theory!<br />

Our answer is yes! Starting from <strong>AdS</strong>/<strong>CFT</strong>, one can study<br />

flat-space holography.<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


First step: Symmetries<br />

<strong>AdS</strong> d isometry= SO(2, d − 1) = symmetries <strong>of</strong> <strong>CFT</strong> d−1 .<br />

Dictionary <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong> → (Asymptotic symmetries <strong>of</strong><br />

gravity=symmetries <strong>of</strong> dual theory)<br />

Often, ASG→ isometry <strong>of</strong> the vacuum:<br />

ASG(<strong>AdS</strong> d+2 ) = SO(d + 1, 2). (for d > 1.)<br />

Famous exception: ASG(<strong>AdS</strong> 3 ) = Vir<strong>as</strong>oro ⊗ Vir<strong>as</strong>oro.<br />

[Brown, Henneaux 1986]<br />

Another interesting example: Near Horizon Extreme Kerr.<br />

[Bardeen, Horowitz 1999]; [Guica, Hartman, Song, Strominger 2008]<br />

Non-trivial ASG for <strong>as</strong>ymptotically Minkowski spacetimes at<br />

null infinity in three and four dimensions.<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Asymptotic Symmetries and Flat-spacetimes<br />

BMS 3 :<br />

[J m , J n ] = (m − n)J m+n , [J m , P n ] = (m − n)P m+n , [P m , P n ] = 0.<br />

(1)<br />

J m = Global Conformal Generators <strong>of</strong> S 1 .<br />

P m = ”Super” translations (depends on θ) → Infinite<br />

dimensional.<br />

[Ashtekar, Bicak, Schmidt 1996]<br />

Further Extension: Can compute central extensions:<br />

[Barnich-Compere 2006]<br />

C JJ = 0, C JP = 3 G , C PP = 0 (2)<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Asymptotic Symmetries and Flat-spacetimes .<br />

BMS 4 :<br />

[l m , l n ] = (m − n)l m+n , [¯l m ,¯l n ] = (m − n)¯l m+n , [l m ,¯l n ] = 0,<br />

[l l , T m,n ] = ( l + 1 − m)T m+l,n , [¯l l , T m,n ] = ( l + 1 − n)T m,n+l .<br />

2<br />

2<br />

l m ,¯l m = Global Conformal Generators <strong>of</strong> S 2 .<br />

T m,n = ”Super” translations → Infinite dimensional.<br />

(m, n = 0, ±1): Poincare group in 4d.<br />

[ Bondi, van der Burg, Metzner; Sachs 1962]<br />

Vir<strong>as</strong>oros can have central extensions. [ Barnich, Troessaert 2009]<br />

One may expect that holographic dual <strong>of</strong> flat space h<strong>as</strong> BMS<br />

symmetry.What is this theory?<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Flat space limit <strong>of</strong> <strong>AdS</strong><br />

<strong>AdS</strong> 3 space-time:<br />

ds 2 = −(1 + r 2<br />

l 2 )dt2 + (1 + r 2<br />

l 2 )−1 dr 2 + r 2 dφ 2 (3)<br />

In the limit l → ∞(zero cosmological constant), we find flat<br />

space.<br />

Asymptotic Symmetry is Vir ⊗ Vir:<br />

[L m , L n ] = (m − n)L m+n + c 12 m(m2 − 1)δ m+n,0<br />

[¯L m , ¯L n ] = (m − n)¯L m+n + ¯c 12 m(m2 − 1)δ m+n,0<br />

where c = ¯c = 3l/2G.<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Flat space limit <strong>of</strong> <strong>AdS</strong>.<br />

Define: L n = L n − ¯L −n ,<br />

l → ∞ is well-defined and yields<br />

where<br />

M n = (L n + ¯L −n )/l.<br />

[L m , L n ] = (m − n)L m+n + C 1<br />

12 m(m2 − 1)δ m+n,0<br />

[L m , M n ] = (m − n)M m+n + C 2<br />

12 m(m2 − 1)δ m+n,0<br />

[Barnich-Compere 2006]<br />

C 1 = c − ¯c = 0, C 2 =<br />

(¯c + c)<br />

l<br />

= 3 G<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Making sense <strong>of</strong> flat space limit in the <strong>CFT</strong> side<br />

What does flat space limit mean in the <strong>CFT</strong> side?<br />

Dual <strong>of</strong> <strong>AdS</strong> 3 in the global coordinate is a two dimensional<br />

<strong>CFT</strong> on the cylinder with generators:<br />

L n = −e nw ∂ w , ¯Ln = −e n ¯w ∂ ¯w (w = t + ix, ¯w = t − ix)<br />

(4)<br />

Define L n = L n − ¯L −n , M n = ɛ(L n + ¯L −n ).<br />

Use a spacetime contraction: t → ɛt, x → x.<br />

Final generators in the ɛ → 0 limit:<br />

L n = −e inx (i∂ x + nt∂ t ), M n = −e inx ∂ t (5)<br />

The resultant algebra in the ɛ → 0 limit is BMS 3 with central<br />

charges: c LL = C 1 = c − ¯c, c LM = C 2 = ɛ(c + ¯c)<br />

[A. Bagchi, R. F. (2012)]<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Making sense <strong>of</strong> flat space limit in the <strong>CFT</strong> side.<br />

Proposal: Holographic dual <strong>of</strong> flat space-time is a<br />

t-contracted <strong>CFT</strong>.<br />

For the two-dimensional c<strong>as</strong>e, it is a non-relativistic field<br />

theory which h<strong>as</strong> Galilean Conformal symmetry.<br />

For the higher-dimensional c<strong>as</strong>es we can apply contraction <strong>of</strong><br />

time. The resultant algebra is higher-dimensional BMS.<br />

Correlation function<br />

The limit from the correlation functions <strong>of</strong> parent <strong>CFT</strong> yield<br />

interesting structures.<br />

Two point function <strong>of</strong> two primary operators is given by<br />

G (2) (φ 1 , τ 1 , φ 2 , τ 2 ) = C 1 (1 − cos φ 12 ) −2h L<br />

e ih Mτ 12 cot(φ 12 /2)<br />

where h L = lim ɛ→0 (h − ¯h), h M = lim ɛ→0 ɛ(h + ¯h)<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Next Step: Flat limit <strong>of</strong> BTZ<br />

No <strong>as</strong>ymptotically flat black hole solutions in the three<br />

dimensional gravity. [D. Ida, 2000]<br />

The flat limit <strong>of</strong> BTZ is well-defind!<br />

BTZ black holes:<br />

ds 2 = − (r 2 − r+)(r 2 2 − r−)<br />

2<br />

r 2 l 2 dt 2 r 2 l 2<br />

+<br />

(r 2 − r+)(r 2 2 − r−) 2 dr 2<br />

l → ∞ :<br />

+ r 2 ( dφ − r +r −<br />

lr 2 dt ) 2<br />

r − → r 0 =<br />

√<br />

2G<br />

M |J|, r + → lˆr + = l √ 8GM (6)<br />

Flat BTZ: a cosmiological solution <strong>of</strong> 3d Einstein gravity<br />

ds 2 FBTZ = ˆr 2 +dt 2 −<br />

r 2 dr 2<br />

ˆr 2 +(r 2 − r 2 0 ) + r 2 dφ 2 − 2ˆr + r 0 dtdφ (7)<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Next Step: Flat limit <strong>of</strong> BTZ.<br />

FBTZ is a shifted- boost orbifold <strong>of</strong> R 1,2<br />

[L. Cornalba, M. S. Costa(2002)]<br />

r = r 0 is a cosmological horizon:<br />

T = ˆr +<br />

2 , S = πr 0<br />

2πr 0 2G<br />

(8)<br />

Satisfy the inner horizon first law!<br />

TdS = −dM + ΩdJ (9)<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Dual field theory analysis: a Cardy-like formula<br />

3d <strong>as</strong>ymptotically flat spacetimes −→ states <strong>of</strong> field theory<br />

with BMS symmetry.<br />

The states are labelled by eigenvalues <strong>of</strong> L 0 and M 0 :<br />

where<br />

L 0 |h L , h M 〉 = h L |h L , h M 〉, M 0 |h L , h M 〉 = h M |h L , h M 〉,<br />

h L = lim<br />

ɛ→0<br />

(h − ¯h) = J,<br />

h M = lim<br />

ɛ→0<br />

ɛ(h + ¯h) = GM + 1 8 (10)<br />

Degeneracy <strong>of</strong> states with (h L , h M ) −→ Entropy <strong>of</strong><br />

cosmological solution with (r 0 , ˆr + )<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Dual field theory analysis: a Cardy-like formula<br />

Is there any Cardy-like formula? YES<br />

Partition function <strong>of</strong> t-contracted <strong>CFT</strong>:<br />

Z(η, ρ) = ∑ d(h L , h M )e 2π(ηh L+ρh M )<br />

(11)<br />

where<br />

η = 1 2 (τ + ¯τ), ρ = 1 ɛ(τ − ¯τ) (12)<br />

2<br />

S-transformation:<br />

(τ, ¯τ) → (− 1 τ , − 1¯τ ) ⇒ (η, ρ) → (− 1 η , ρ η 2 ) (13)<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Dual field theory analysis: a Cardy-like formula .<br />

Modular invariance <strong>of</strong><br />

Z 0 (η, ρ) = e −πiρC M<br />

Z(η, ρ) (14)<br />

results in<br />

S = log d(h L , h M ) = 2πh L<br />

√<br />

C M<br />

2h M<br />

(15)<br />

[A. Bagchi, S. Detournay, R. F. , Joan Simon (2012)]<br />

In agreement with the entropy <strong>of</strong> cosmological solution!<br />

At sufficiently high temperature hot flat space tunnels into a<br />

universe described by flat space cosmology.[A. Bagchi, S.<br />

Detournay, D. Grumiller, J. Simon ]<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Current Directions<br />

Extension <strong>of</strong> BMS algebra to higher spin c<strong>as</strong>e [Work in progress<br />

with Hamid Afshar, Daniel Grumiller and Jan Rosseel]<br />

sl(3, R) algebra:<br />

[L m , L n ] = (m − n)L m+n<br />

[L m , W n ] = (2m − n)W m+n<br />

[W m , W n ] = (m − n)(2m 2 + 2n 2 − mn − 8)L m+n (16)<br />

where m, n are 0, ±1 in L m and 0, ±1, ±2 in W m .<br />

New generators:<br />

L m = L m − ¯L −m , M m = ɛ(L m + ¯L −m )<br />

U m = (W m − ¯W −m ), V m = ɛ(W m + ¯W −m ) (17)<br />

ɛ → 0 is well-defined:<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Current Directions<br />

[L m , L n ] = (m − n)L m+n [L m , M n ] = (m − n)M m+n<br />

[L m , U n ] = (2m − n)U m+n [L m , V n ] = (2m − n)V m+n<br />

[M m , U n ] = (2m − n)V m+n<br />

[U m , U n ] = (m − n)(2m 2 + 2n 2 − mn − 8)L m+n<br />

[U m , V n ] = (m − n)(2m 2 + 2n 2 − mn − 8)M m+n (18)<br />

Extension <strong>of</strong> BMS algebra−→ WBMS algebra!<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Current Directions<br />

Question: Is WBMS a symmetry <strong>of</strong> higher spin gravity in the<br />

flat spacetimes?<br />

Spin 2 c<strong>as</strong>e: Chern-Simons formulation<br />

A flat = A n M M n + A n L L n, n = 0, ±1 (19)<br />

L n and M n are generators <strong>of</strong> BMS and<br />

A M = e 1 , A 1 M = 1 2 (e0 + e 2 ), A −1<br />

M = 1 2 (e0 − e 2 ),<br />

A 0 L = ω1 , A 1 L = 1 2 (ω0 + ω 2 ), A −1<br />

L<br />

= 1 2 (ω0 − ω 2 ).<br />

(20)<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Current Directions<br />

Our observation:<br />

L n = lim<br />

l→∞<br />

(L n − ¯L −n ),<br />

1<br />

M n = lim<br />

l→∞ l (L n + ¯L −n ),<br />

A n L = lim 1<br />

l→∞ 2 (An + Ān ), A n M = lim l<br />

l→∞ 2 (An − Ān ). (21)<br />

A proposal: 3d spin three flat gravity with WBMS symmetry<br />

where<br />

A flat = A n M M n + A n L L n + A m U U m + A m V V m, (22)<br />

U m = lim<br />

l→∞<br />

(W m − ¯W −m ),<br />

n = 0, ±1, m = 0, ±1, ±2<br />

1<br />

V m = lim<br />

l→∞ l (W m + ¯W −m )<br />

A m U = lim 1<br />

l→∞ 2 (Am W + Ām W ), Am V = lim<br />

l→∞<br />

Poisson-brackets <strong>of</strong> boundary preserving gauge<br />

transformations results in WBMS algebra.<br />

l<br />

2 (Am W − Ām W ).<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Summary<br />

Flat space limit in the bulk side is equivalent to t-contraction<br />

in the boundary theory.<br />

Equivalence <strong>of</strong> symmetries is an evidence.<br />

Correlation functions are well-defined.<br />

Counting <strong>of</strong> states supports this proposal.<br />

One can talk about higher-spin gravity in the 3d flat<br />

spacetime.<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Future Direction<br />

Entanglement Entropy <strong>of</strong> BMS field theory<br />

l → ∞ limit <strong>of</strong> holographic entanglement entropy in the<br />

global <strong>AdS</strong> 3 is well-defined:<br />

S = Λ ( ) ∆φ<br />

2G sin = 1 ( ) ∆φ<br />

2 6 c MΛ sin<br />

2<br />

(23)<br />

Is it possible to derive it from BMS field theory?<br />

Black Hole Entropy<br />

Possible existence <strong>of</strong> BMS algebra in the NH geometries <strong>of</strong><br />

non-extremal Black holes (Branes).<br />

Can we reproduce entropy <strong>of</strong> non-extremal black holes through<br />

a microscopic description in terms <strong>of</strong> contracted <strong>CFT</strong>?<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>


Thank you<br />

Reza Fareghbal<br />

<strong>Flatspace</strong> <strong>Holography</strong> <strong>as</strong> a <strong>Limit</strong> <strong>of</strong> <strong>AdS</strong>/<strong>CFT</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!