19.11.2014 Views

ROMS-PISCES-APECOSM coupling compared to NEMO ... - meece

ROMS-PISCES-APECOSM coupling compared to NEMO ... - meece

ROMS-PISCES-APECOSM coupling compared to NEMO ... - meece

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>ROMS</strong>-<strong>PISCES</strong>-<strong>APECOSM</strong> <strong>coupling</strong><br />

<strong>compared</strong> <strong>to</strong> <strong>NEMO</strong>-<strong>PISCES</strong>-<strong>APECOSM</strong><br />

Eric Machu (CEES/IRD)<br />

Olivier Aumont (IRD/LPO)<br />

Olivier Maury (IRD/EME)<br />

1. Coupling and formalism<br />

2. Few words about <strong>APECOSM</strong><br />

3. Processes involved in the <strong>coupling</strong> LTLs<br />

<strong>to</strong> HTLs<br />

4. Main differences between RPA and NPA<br />

Meeting, Héraklion, 1 st -4 th February 2010


Formalism coherence<br />

Hydrodynamics: Primitive equations for describing the motion<br />

Navier-S<strong>to</strong>kes<br />

Forcing<br />

Advection-diffusion equations<br />

For T & S<br />

Dissipation<br />

Equation of state<br />

Boussinesq approximation<br />

Incompressible fluid


Biogeochemistry: Primitive equation for describing the evolution of<br />

concentrations<br />

Forme, taille et<br />

fonctionnement<br />

fortement<br />

variable ...<br />

Advection<br />

Vertical<br />

Diffusion<br />

Horizontal<br />

Diffusion<br />

Source-minus-Sink<br />

terms


Open Ocean Pelagic Communities: Primitive equation for<br />

describing the energy content in each community (epipelagic,<br />

migrants & mesopelagic)<br />

∂<br />

t<br />

ξ<br />

i<br />

=<br />

div<br />

− ∂<br />

−<br />

(<br />

i i i i<br />

) (<br />

i i i i<br />

)<br />

x,y<br />

d ∇<br />

x,yξ<br />

− v ξ + ∂<br />

z<br />

d<br />

z∂<br />

zξ<br />

− vzξ<br />

(<br />

i ii<br />

)<br />

w<br />

γ ξ<br />

Growth<br />

( λ<br />

i + m + s<br />

i ) ξ<br />

i<br />

Sink terms: preda<strong>to</strong>ry, non-preda<strong>to</strong>ry & starvation<br />

] w , w ] ( 0, t )<br />

in Ω× ×<br />

egg<br />

max<br />

Diffusion /<br />

Advection terms<br />

max<br />

γ<br />

Reproduction<br />

Boundary condition in size<br />

( x,<br />

y,<br />

z,<br />

t) ∈ Ω [ 0 ]<br />

c<br />

t, x,<br />

y,<br />

z,<br />

w<br />

ξt,<br />

x,<br />

y,<br />

z,<br />

w<br />

= rt<br />

, x,<br />

y,<br />

z<br />

∀<br />

,<br />

, t<br />

×<br />

egg egg<br />

max


Energy<br />

<strong>NEMO</strong>- <strong>PISCES</strong>-<strong>APECOSM</strong><br />

PAR<br />

Predation<br />

Nanophy<strong>to</strong>plank<strong>to</strong>n 1-10 mm<br />

Dia<strong>to</strong>ms 10-100 mm<br />

Micro-zooplank<strong>to</strong>n<br />

Mesozooplank<strong>to</strong>n<br />

Predation<br />

Fishes<br />

NH4 +<br />

NO -<br />

3<br />

Mortality<br />

Weight<br />

Excretion<br />

t, x, y, z<br />

P.O.M.<br />

Egestion<br />

This formalism insures rigorous<br />

mass-conservation<br />

&<br />

have predictive skills


Few words about <strong>APECOSM</strong><br />

Units<br />

• Biogeochemistry: Concentrations µmol.l-1<br />

Redfield ratio: C/N/P=106/16/1<br />

Fe, Si and Chl are prognostically predicted based on external<br />

concentrations of the limiting nutrients like in the quota approach<br />

(McCarthy, 1980; Droop, 1983)<br />

• Open Ocean Pelagic Communities: Energy J.m -3 .kg -1<br />

Conversion [N] or [C] --> E (J.N/C-mol -1 )<br />

Redfield + biomass free energy=474.6 kJ.C-mol-1<br />

N_E_convert: 3144225 – C_E_convert: 474600.


Mean Individual<br />

Bioenergetics<br />

Parameters<br />

ORGANISM<br />

ingestion<br />

assimilation<br />

PREYS<br />

Simplified from Kooijman, 2000<br />

Structure<br />

growth<br />

K<br />

κ<br />

1-κ<br />

somatic<br />

growth<br />

maintenance<br />

gonadic<br />

maintenance<br />

reproduction<br />

1-K<br />

reproduction<br />

Eggs<br />

Preda<strong>to</strong>r/Prey interactions<br />

Selectivity<br />

Prey length (m)<br />

Preda<strong>to</strong>r<br />

length (m)


~ 20 Parameters (Maury et al., PiO, 2007)


Outputs from the model<br />

Different carrying<br />

capacities<br />

Carrying capacity<br />

oscillation (one year)<br />

and propagation<br />

Maury, Prog. Oceanogr., 2007


Key references for each model<br />

• <strong>ROMS</strong>: Shchepetkin & McWilliams (OM, 2005)<br />

• <strong>PISCES</strong>: Aumont & Bopp (GBC, 2006)<br />

• <strong>APECOSM</strong>: Maury et al. (PiO, 2007)


Coupling Higher Trophic Levels <strong>to</strong><br />

physical/biogeochemical models<br />

Processes<br />

• Effect of temperature on metabolic rates: rate ( T) = rate ( )<br />

T ref<br />

e<br />

⎛<br />

⎜<br />

T<br />

⎝<br />

T<br />

A<br />

ref<br />

T<br />

−<br />

T<br />

A<br />

⎞<br />

⎟<br />

⎠<br />

• Effect of light on ecosystem dynamics through the habitat of epipelagic,<br />

migra<strong>to</strong>ry and mesopelagic communities<br />

• Hydrodynamic advection and diffusion added <strong>to</strong> active swimming<br />

d<br />

⎧<br />

⎪u<br />

⎪<br />

⎨<br />

⎪<br />

⎪v<br />

⎪⎩<br />

i<br />

2<br />

3<br />

( 1 ⎛<br />

2 ∇f<br />

⎞<br />

i<br />

i<br />

, , , ,<br />

, , , , 1 2 , , , ,<br />

) ⎜<br />

t x y z w ⎛<br />

1<br />

⎟ w<br />

⎟ ⎞<br />

⎜<br />

t x y z w<br />

= d + d − ft<br />

x y z w<br />

−<br />

⎜<br />

i<br />

k + ∇f<br />

⎟<br />

, , , , ⎝ w<br />

food t x y z w max ⎠<br />

i<br />

t , x,<br />

y,<br />

z,<br />

w<br />

i<br />

t , x,<br />

y,<br />

z,<br />

w<br />

=<br />

=<br />

MSS<br />

MSS<br />

max<br />

max<br />

i<br />

( 1−<br />

f )<br />

t , x,<br />

y,<br />

z,<br />

w<br />

i<br />

( 1−<br />

f )<br />

t , x,<br />

y,<br />

z,<br />

w<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

k<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

k<br />

⎝<br />

food<br />

food<br />

∂<br />

∂<br />

x<br />

+<br />

y<br />

+<br />

f<br />

f<br />

i<br />

t , x,<br />

y,<br />

z,<br />

w<br />

∇f<br />

i<br />

t , x,<br />

y,<br />

z,<br />

w<br />

∇f<br />

i<br />

t , x,<br />

y,<br />

z,<br />

w<br />

i<br />

t , x,<br />

y,<br />

z,<br />

w<br />

⎞<br />

⎟⎛<br />

⎜<br />

⎟<br />

⎠⎝<br />

⎞<br />

⎟⎛<br />

⎜<br />

⎟<br />

⎠⎝<br />

w<br />

w<br />

max<br />

w<br />

w<br />

max<br />

⎞<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

3<br />

1<br />

3<br />

⎠<br />

+ cz<br />

+ cm<br />

t,<br />

x,<br />

y,<br />

z<br />

t , x,<br />

y,<br />

z<br />

f = Holling type 2<br />

functional response<br />

Dependence on<br />

size


Energy<br />

<strong>NEMO</strong>- <strong>PISCES</strong>-<strong>APECOSM</strong><br />

PAR<br />

Predation<br />

Nanophy<strong>to</strong>plank<strong>to</strong>n 1-10 mm<br />

Dia<strong>to</strong>ms 10-100 mm<br />

Micro-zooplank<strong>to</strong>n<br />

Mesozooplank<strong>to</strong>n<br />

Predation<br />

Fishes<br />

NH4 +<br />

NO -<br />

3<br />

Mortality<br />

Weight<br />

Excretion<br />

t, x, y, z<br />

P.O.M.<br />

Egestion<br />

• Feedback of predation of pelagic communities on au<strong>to</strong>trophs &<br />

microzooplank<strong>to</strong>n?<br />

• Role of mortality, excretion and egestion on particulate organic<br />

matter?


Size<br />

Fishing<br />

Focus<br />

species 2 Focus<br />

Focus<br />

species 1<br />

species 3<br />

Focus<br />

species 4<br />

x, y, z<br />

Primary<br />

production<br />

Biomass<br />

• Address bot<strong>to</strong>m-up vs <strong>to</strong>p-down control of pelagic exosystems<br />

• Final goal: understand end-<strong>to</strong>-end dynamics of marine<br />

ecosystems


Coupling Higher Trophic Levels <strong>to</strong><br />

physical/biogeochemical models<br />

Technical informations<br />

• The development of <strong>ROMS</strong>-<strong>PISCES</strong>-<strong>APECOSM</strong> takes<br />

advantage of <strong>NEMO</strong>-<strong>PISCES</strong>-<strong>APECOSM</strong> developments<br />

• <strong>APECOSM</strong> coded in C/C++ but for computing cost<br />

reasons, the model has been changed <strong>to</strong> fortran<br />

(although the C/C++ <strong>coupling</strong> option is not given up)


• Source-minus-sink terms for Open Ocean Pelagic<br />

Communities (OOPC) are solved in 3D<br />

• Physical advection and diffusion are solved in 2D<br />

(implicitely 3D since currents are weighted by energynormalized<br />

profile)<br />

• Time steps of the hydrodynamic model are split in<strong>to</strong> a<br />

day and a night fraction (dependent on latitude and<br />

season) mainly because preda<strong>to</strong>r/prey interactions<br />

depend on day and night


step.F<br />

step3d_t (advection followed by biogeochemical SMS terms)<br />

step2d_oopc (Apecosm SMS terms followed by advection<br />

t3dmix (tracer mixing)<br />

oopc2d_mix (oopc mixing)<br />

step2d_oopc :<br />

bridge_oopc<br />

calc_habitat (3D projection of 2D OOPC variables)<br />

do dn=0,1<br />

ff_updt (flux feeding)<br />

calc_pred (predation mortality, source & sink terms related <strong>to</strong><br />

growth: excretion, egestion, maintenance, reproduction)<br />

if dn=1 : growth (growth advection term, starvation, nonpreda<strong>to</strong>ry<br />

mortality)<br />

calc_adv (Compute u_active, v_active and biological diffusion)<br />

calc_meso (meso computed from oopc size spectra)<br />

updt_bgc (update bgc variables)<br />

enddo<br />

do dn=0,1<br />

calc_vmoy (Vertical average <strong>to</strong> advect and diffuse 2D OOPC variables)<br />

enddo<br />

Compute horizontal advection (U+U_active)<br />

Compute horizontal diffusion (Diff+biological Diff)<br />

oopc2dbc (treatment of the boundary conditions)


Main differences between RPA and NPA<br />

(appart from the hydrodynamic model itself)<br />

• Order of operations<br />

• Advection/Diffusion numerical schemes<br />

• RPA needs oceanic boundary conditions (advection of<br />

conservative quantities) which will be provided by NPA


Future<br />

• Set-up regional configurations (Benguela & Bay of<br />

Biscay) (rely on existing configurations)<br />

• Carry on sensitivity analyses<br />

• Validate the annual cycle of model outputs<br />

(mesozooplank<strong>to</strong>n, ecosystem energy slopes, …)<br />

• Derive process studies from scenarios definition (no<br />

interannual run planned)<br />

• Represent targeted species like anchovy and<br />

sardine (probably post-<strong>meece</strong> …)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!