19.11.2014 Views

Download presentation. - University of California, Santa Barbara

Download presentation. - University of California, Santa Barbara

Download presentation. - University of California, Santa Barbara

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Transport <strong>of</strong> colloids in unsaturated<br />

porous media:<br />

Explaining large scale behavior based on<br />

pore scale mechanisms<br />

Arturo A. Keller, Sanya Sirivithayapakorn<br />

and Maria Auset<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

1


Colloids in Groundwater<br />

A B C<br />

50 nm<br />

Photo credit:<br />

A. F.P. Williams, U.S. EPA, http://www.epa.gov/nerlcwww/index.html<br />

B. Nannobacteria Research, http://www.msstate.edu/dept/geosciences/4site/nannobacteria.htm<br />

C. H.D.A Lindquist, U.S. EPA, http://www.epa.gov/nerlcwww/index.html<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

2


Contaminated Supply?<br />

Leaking Sewer line<br />

Or Septic tank<br />

Vadose<br />

Zone<br />

Contaminants<br />

-Viruses<br />

- Bacteria<br />

Saturated<br />

Zone<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

3


Courtesy <strong>of</strong> Bruce Robinson, LANL<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

4


Fate and Transport <strong>of</strong><br />

Colloids<br />

Air<br />

Water<br />

Attached<br />

Inactivated<br />

V<br />

Suspended<br />

Inactivated<br />

Solid<br />

Attached<br />

Inactivated<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

5


Issues<br />

Mobilization <strong>of</strong> colloids during<br />

flushing<br />

Air-Water Interface<br />

Thin-water films<br />

Mobile/Immobile water<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

6


Experimental Setup<br />

Inlet<br />

VCR/monitor<br />

Pressurized<br />

reservoir<br />

Inlet valve<br />

to micromodel<br />

Video<br />

Camer<br />

a<br />

Video image<br />

Pump<br />

PEG*<br />

Micromodel<br />

Microscope<br />

*Polyethylene Glycol Solution<br />

Outlet<br />

PC with video<br />

capture board<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

7


1<br />

2<br />

5<br />

3<br />

4<br />

8<br />

6<br />

7<br />

9<br />

15<br />

16<br />

12<br />

14<br />

10<br />

13<br />

11<br />

1<br />

2<br />

100 µm 100 µm 100 µm 100 µm 100 µm<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

8


1 µm latex spheres at the air-water interface (AWI), X500


MS-2 at the air-water interface (AWI), X1000


Interaction Energy (J)<br />

1.4E-17<br />

1.2E-17<br />

1.0E-17<br />

8.0E-18<br />

6.0E-18<br />

4.0E-18<br />

2.0E-18<br />

0.0E+00<br />

1 um<br />

2um<br />

3 um<br />

0 5 10 15 20<br />

Distance (nm)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Interaction Energy (kT)<br />

Colloid-colloid interaction in water<br />

(DLVO theory)<br />

Colloid<br />

Distance<br />

Colloid<br />

2.5E-19<br />

60<br />

Interaction Energy (J)<br />

2.0E-19<br />

1.5E-19<br />

1.0E-19<br />

5.0E-20<br />

MS2<br />

0.05 um<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Interaction Energy (kT)<br />

W = V + A vdw<br />

W = Total interaction energy<br />

V = Electrostatic repulsion<br />

A vdw = van der Waals attraction<br />

0.0E+00<br />

0 5 10 15 20<br />

0<br />

Distance (nm)


MS2<br />

0.05µm<br />

Energy Barrier<br />

(DLVO theory)<br />

3 kT<br />

54 kT<br />

1µm 1000 kT<br />

2µm 2100 kT<br />

3µm 3200 kT<br />

Capillary<br />

10 2 kT<br />

10 3 kT<br />

10 5 kT<br />

10 6 kT<br />

10 6 kT<br />

Water Phase<br />

Energy Barrier<br />

Colloid<br />

Colloid<br />

Air-Water<br />

Interface<br />

Air Phase<br />

Capillary<br />

Capillary


Direction <strong>of</strong> flow Water Content: 41%<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

13


First Flush<br />

Water Content: 76%<br />

26 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

14


Water Content: 78%<br />

38 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

15


Water Content:78%<br />

51 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

16


Water Content: 79%<br />

1 min 04 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

17


Water Content: 80%<br />

1min 12 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

18


Water Content: 82%<br />

1min 28 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

19


Water Content: 83%<br />

1min 39 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

20


Water Content: 83%<br />

1min 55 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

21


Water Content: 84%<br />

10 min 09 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

22


Water Content: 68%<br />

2 h 59 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

23


Water Content: 62%<br />

3 h 34 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

24


Water Content: 58%<br />

3 h 49 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

25


Water Content: 55%<br />

4 h 08 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

26


Water Content: 47%<br />

4 h 51 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

27


Water Content: 43%<br />

5 h 04 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

28


Second Flush<br />

11 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

29


13 sec after<br />

second flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

30


Water Content: 77%<br />

23 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

31


Water Content: 79%<br />

1 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

32


Water Content: 80%<br />

1 min 18 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

33


Water Content: 82%<br />

1 min 35 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

34


Water Content: 83%<br />

2 min after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

35


Water Content: 85%<br />

2 min 28 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

36


Water Content: 87%<br />

5 min 49 sec after flush<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

37


Key Findings<br />

Sorption onto AWI is “irreversible”<br />

Colloids sorbed onto AWI can form clusters<br />

Colloids trapped in thin water films<br />

Colloids sorbed onto AWI can be transported<br />

Along with the moving air bubble<br />

As colloidal clusters<br />

As water is remobilized<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

38


Pressure<br />

Transducers<br />

Data Acquisition<br />

System<br />

Injection<br />

Port<br />

Flow<br />

Meter<br />

Pump<br />

Water<br />

Reservoir<br />

Unsaturated<br />

Column<br />

Setup<br />

Sample<br />

Collection<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

39


C/Co, KCl<br />

C/Co, KCl<br />

C/Co, KCl<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

KCl<br />

MS2<br />

0.05 um 3 um<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.0<br />

0.00<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

0.8<br />

0.18<br />

KCl<br />

MS2<br />

0.7<br />

0.05 um 3 um 0.16<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.0<br />

0.00<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

0.8<br />

0.18<br />

KCl<br />

MS2<br />

0.7<br />

0.05 um 3 um 0.16<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5<br />

Pore volume<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

C/Co, Colloids<br />

C/Co, Colloids<br />

C/Co, Colloids<br />

S w = 44%<br />

S w = 37%<br />

S w = 27%<br />

Breakthrough<br />

curves<br />

for<br />

steady water<br />

contents


θ<br />

0.1 0<br />

0.45<br />

0.40<br />

0.4 5<br />

0.4 0<br />

0.3 5<br />

0.3 0<br />

0.2 5<br />

0.2 0<br />

0.1 5<br />

-4<br />

60<br />

0<br />

Time (min)<br />

Z = 5 cm<br />

Z = 15 cm<br />

Z = 25 cm<br />

Z = 35 cm<br />

Z = 45 cm<br />

Z = 55 cm<br />

MS2<br />

0.05um<br />

3um<br />

Water content, θ, (cm -3 -cm -3 )<br />

Water content, θ, (cm -3 -cm -3 )<br />

0.40<br />

0.35<br />

0.35<br />

0.30<br />

0.25<br />

0.30<br />

0.20<br />

0.25<br />

0.15<br />

0.20<br />

0.10<br />

0.15<br />

0.05<br />

0.10<br />

0.00<br />

0<br />

0.45<br />

10 20 30 40 50 60<br />

0.40<br />

0.40<br />

0.35<br />

0.35<br />

0.30<br />

0.25<br />

0.30<br />

0.20<br />

0.25<br />

0.15<br />

0.20<br />

0.10<br />

0.15<br />

0.05<br />

0.10<br />

0.00<br />

0.45<br />

0 10 20 30 40 50 60<br />

0.40<br />

C/Co<br />

C/Co<br />

S w,i<br />

= 44%<br />

S w,i<br />

= 37%<br />

BT curves<br />

during<br />

flushing<br />

Peak <strong>of</strong> BT-curves appear<br />

immediately after column is<br />

saturated<br />

0.40<br />

0.35<br />

Water content, θ, (cm -3 -cm -3 )<br />

0.35<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

C/Co<br />

S w,i<br />

27%<br />

0.10<br />

0 10 20 30 40 50 60<br />

Time (min)<br />

0.00


Mass recovered (%)<br />

40<br />

30<br />

20<br />

10<br />

MS2<br />

Steady Flushing Total<br />

<br />

Steady water content<br />

<br />

Colloid recovery<br />

Recovery <strong>of</strong><br />

0<br />

0.11 0.15 0.18<br />

MS2>0.05mm>3mm<br />

Mass recovered (%)<br />

40<br />

30<br />

20<br />

10<br />

0.05 µm<br />

Steady Flushing Total<br />

<br />

<br />

Recovery increases with<br />

water content<br />

Flushing<br />

<br />

Much higher recovery<br />

Mass recovered (%)<br />

0<br />

40<br />

30<br />

20<br />

10<br />

0<br />

3 µm<br />

0.11 0.15 0.18<br />

Steady Flushing Total<br />

0.11 0.15 0.18<br />

<br />

<br />

Peak <strong>of</strong> BT-curves appear<br />

immediately after column is<br />

saturated<br />

Recovery decreases<br />

significantly with increase<br />

initial water content<br />

Initial water content (cm -3 -cm -3 )


Connection to larger scale<br />

Under unsaturated conditions, steady-state state water<br />

content, slow flow<br />

Colloid breakthrough is low due to sorption at AWI<br />

Sorption to solid interface can be significant due to low<br />

flowrates<br />

Colloids trapped in immobile water<br />

Flushing releases colloids:<br />

Sorbed<br />

Remobilized with water<br />

In clusters<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

43


Conclusions<br />

Significant storage <strong>of</strong> colloids under<br />

unsaturated conditions<br />

Modelling <strong>of</strong> vadose zone transport is<br />

important to understand the risk <strong>of</strong><br />

mobilization<br />

Understanding pore-scale mechanisms can<br />

help guide larger-scale experiments<br />

produce better models<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

44


Acknowledgements<br />

Funding from UCSB Academic Senate<br />

Committee on Research<br />

Bren School <strong>of</strong> Environmental Science & Management<br />

<strong>University</strong> <strong>of</strong> <strong>California</strong>, <strong>Santa</strong> <strong>Barbara</strong><br />

45

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!