20.11.2014 Views

J_src_jrg_box_coeff_..

J_src_jrg_box_coeff_..

J_src_jrg_box_coeff_..

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Box Coefficients<br />

Sediment Records Computation<br />

USGS National Training Center<br />

May 2010<br />

John R. Gray<br />

USGS Office of Surface Water<br />

<strong>jrg</strong>ray@usgs.gov


What is a “Box Coefficient?”<br />

It‟s USGS Jargon…<br />

• A mean flow-weighted x-sectional<br />

constituent concentration divided by a<br />

mean concentration at a point or vertical.<br />

Mean Concentration x-section mg/L<br />

-----------------------------------------<br />

Mean Concentration partial mg/L


Coefficient Derivation Example<br />

• Pumped sample conc:<br />

74, 67, 77, 79 mg/L<br />

– Mean value is 74.25 mg/L<br />

• X-section conc:<br />

90 and 98 mg/L<br />

– Mean value is 94.0 mg/L<br />

• Box Coefficient = 94.0/74.3 = 1.27<br />

• If this <strong>coeff</strong>icient proved to be constant over time and<br />

range of discharges – don’t count on it – one would<br />

multiply all concentrations from pumped samples by<br />

1.27 to obtain mean x-section sed conc.


Importance of the Box Coefficient<br />

• After data density -- missing record -- the<br />

derivation and application of the <strong>box</strong><br />

<strong>coeff</strong>icient is the most important variable<br />

in computation of daily sediment records.<br />

• The <strong>box</strong> <strong>coeff</strong>icient serves as a guide for<br />

locating, or relocating, the sampling<br />

vertical or sampler intake.


Some Factors in the Spatial<br />

Distribution of Sediment<br />

• Stokes Law (~size distribution of sediment)<br />

• Proximity to upstream tributaries<br />

• Bedforms, or lack thereof<br />

• Channel alignment and secondary motion<br />

• Bank stability<br />

• Local features (natural and human-made)<br />

• Source and type of sediment<br />

• Discharge<br />

• Season (indirect variable)<br />

• Location of sampling location/intake with respect<br />

to on-stream features and range-of-stage


Box Coefficient (BC) = C mean /C point<br />

C mean = ~930 mg/l<br />

BC=~1.1<br />

BC=~1.1<br />

BC=1.03<br />

BC=~1


Box Coefficient (BC) = C mean /C point<br />

C mean = ~1,360 mg/l<br />

BC=~4<br />

BC=~5<br />

BC=~1.7<br />

BC=~1.5


Incomplete mixing,<br />

downgradient from<br />

Bering Glacier,<br />

SE Alaska


Colorado<br />

River<br />

.<br />

Cisco<br />

Drains 1/8<br />

Of the<br />

Lower 48<br />

USA<br />

Land Area


Double-Mass<br />

Curve for<br />

Green River at<br />

Flaming Gorge<br />

Dam Completed<br />

November 1962<br />

Green River, Utah<br />

1930-82<br />

X-axis: cumulative annual<br />

water discharges<br />

Y-axis: cumulative annual<br />

suspended-sediment<br />

load<br />

~1945<br />

(from Thompson, 1984)


Double-Mass<br />

Curve for<br />

Blue Mesa Reservoir Dam<br />

Closed November 1965<br />

Colorado River<br />

at Cisco, Utah<br />

1930-82<br />

X-axis: cumulative<br />

annual water<br />

discharges<br />

Y-axis: cumulative<br />

annual suspendedsediment<br />

load<br />

(from Thompson, 1985)<br />

~1945


Double-Mass<br />

Curve for<br />

San Juan River<br />

Record Daily Sediment<br />

Load, October 20, 1972<br />

near Bluff,<br />

Utah<br />

1930-80<br />

X-axis: cumulative<br />

annual water<br />

discharges<br />

Y-axis: cumulative<br />

annual suspendedsediment<br />

load<br />

~1944<br />

(from Thompson, 1982)


Hypothesized Causative<br />

http://water.<br />

Factors: Changes in…<br />

• Land-Use?<br />

• Vegetation?<br />

• Climate?<br />

• Intrinsic Tributary Geomorphic<br />

Processes?<br />

• Or… (Topping et al, 1996)


The Colorado<br />

River Sampler<br />

Used until the<br />

mid-1940’s


The US-D43 Isokinetic Suspended-Sediment Sampler.<br />

Isokinetic samplers used by Fed. Gov’t since mid-1940’s


Site Selection, Not At Existing Gage<br />

(subtitled, “Before the damage is done?”)<br />

• Section or reach that has high<br />

potential for being “typical” for<br />

constituent to be measured over a<br />

broad range of flows (bedload vs<br />

suspended load).<br />

• MUST be in sync with project<br />

objectives and target data base.


Site Selection, Not At Existing Gage<br />

(subtitled, “Before the damage is done?”)<br />

• Some Desirable Characteristics:<br />

- No untractable safety issues over range<br />

of manual measurements (a must)<br />

- Stable stage-discharge relation<br />

- Accessible and measurable at all flows<br />

- Ability to measure all flows at same<br />

section<br />

- No artifacts attributable to local<br />

in-stream features


Site Selection, Not at Existing Gage<br />

(continued)<br />

• Measure at range of flows – particularly<br />

medium and high flows – minimum<br />

~8-section EDI measurements before<br />

installing fixed sampling equipment.<br />

• Install fixed sampling equipment based on<br />

information derived from above efforts.<br />

Goal is to obtain <strong>box</strong> <strong>coeff</strong>icients nearest to<br />

1.0 over range of flows, but particularly at<br />

medium-to-high flows (important concept!)


Utilizing an Existing Gage<br />

(subtitled, “After the damage is done?”)<br />

• If unrushed (yes, I do have a sense of humor), use<br />

methods described in previous slides for “new site.”<br />

• More typically, must install equipment and start<br />

monitoring immediately; in that case:<br />

- Use best judgment for installing fixed<br />

sampling features.<br />

- Consider using “Gray‟s „1/3‟ rule-of-thumb”<br />

(select vertical 1/3 from either side of stream –<br />

why? Middle & edges are ~atypical sections)<br />

- Use EDI method. Try to have one section<br />

coincide with the fixed sampling point.


Some Tips for Minimizing Problems<br />

• SOP: Scrutinize samples upon collection.<br />

- Is there a visual correlation between<br />

estimated concentrations in samples<br />

(adjusting for water volume)?<br />

- Do x-section to <strong>box</strong> sample estimated<br />

concentrations compare favorably?<br />

- Is there a reason to anticipate problems in<br />

the record-computation step? If “yes”<br />

remain at site/take additional samples…


Some Tips for Minimizing Problems<br />

(continued)<br />

• Take good notes intended for anyone‟s use<br />

(think 2 decades hence – will your notes<br />

be understandable and relevant?)<br />

• Have EDI samples analyzed separately;<br />

display on a cross-sectional plot. At least<br />

one full particle-size analysis/sand-fine split.<br />

• Use particle-size distributions to identify<br />

trends and problems.<br />

• Data collector should be record worker.


Box Coefficient Analysis Steps<br />

Primary Data Review<br />

• Job #1: Separate the Data from the Doodoo.<br />

- Are data consistent with other evidence?<br />

Good indicator if not necessarily “good”<br />

- If inconsistent, not necessarily bad.<br />

- Can you discredit data based on lab info,<br />

field notes, sedimentological theory,<br />

other information? If so, clearly<br />

document rationale, outcome.


Box Coefficient Analysis Steps<br />

(Primary Data Review, cont.)<br />

• Try to discredit data that plot oddly; if you are<br />

unsuccessful, ask yourself:<br />

- Do you know more than what the sample<br />

is “telling you”?<br />

- How influential is the sample (flow rate, etc)?<br />

- How often are you dealing with such<br />

problems, and how to minimize them?<br />

Relation between lab work and field work key.


Box Coefficient Analysis Steps<br />

(Primary Data Review, cont.)<br />

• Adulterated samples almost always result<br />

in larger concentration values.<br />

• Be reluctant to discard data points.<br />

• Be ***extremely*** reluctant to discard<br />

hydrographer x-sections. If results aren’t<br />

used, why bother to collect these data?<br />

• Document, document, document.


Box Coefficient Analysis Steps<br />

(Primary Data Review, Example.)<br />

• EDI cross-section sample values:<br />

55, 50, 66, 58, 596; mean = 165 mg/L<br />

• Observer <strong>box</strong> values:<br />

57, 65, 66, 64, 63; mean = 63 mg/L<br />

• Dude, what do I do?!?!<br />

(a) panic -- suffer your 19 th nervous breakdown<br />

(b) punt<br />

(c) call John…


Box Coefficient Analysis Steps<br />

(Primary Data Review, Example.)<br />

Outlier included:<br />

Conc mean = 165 mg/L<br />

Box Coefficient = 2.62<br />

Outlier excluded:<br />

Conc mean = 63 mg/L<br />

Box Coefficient = 1.10<br />

700<br />

700<br />

600<br />

Concentration, mg/L<br />

600<br />

500<br />

EDI X-Section from Left Bank<br />

500<br />

400<br />

400<br />

300<br />

300<br />

200<br />

200<br />

100<br />

100<br />

0<br />

1 2 3 4 5<br />

0<br />

1 2 3 4 5


Box Coefficient Analysis Steps<br />

Trend Analysis<br />

• Discharge Trends: Most common, have<br />

physical basis, hydrographer’s 1st choice.<br />

• Time Trends: Laborious to apply<br />

correctly; objective rarely achieved.<br />

• Concentration Trends: Sometimes<br />

informative, but no slick method to apply.<br />

• Phase of the Moon…?


Box Coefficient Analysis Steps<br />

Magnitude of Box Coefficients<br />

• No hard-and-fast, nor statistically based<br />

rules -- yet; site and data dependent.<br />

• Rule of thumb: 0.67 to 1.5 “tractable.”<br />

• Unusually small (~2)<br />

<strong>coeff</strong>icients are often cause for concern;<br />

influence of computational process<br />

becomes inordinately large –<br />

“manhandling the data”


Box Coefficient Analysis Steps<br />

Magnitude, Box Coefficients (cont.)<br />

• Where no trends are evident, data are<br />

more or less evenly distributed around a<br />

constant (ideally 1.0), may use constant.<br />

• Where trends are evident, varying<br />

<strong>coeff</strong>icients should always be applied.


Box Coefficient Analysis Steps<br />

Magnitude, Box Coefficients (cont.)<br />

• Streams carrying smaller sediment<br />

concentrations, and/or streams with<br />

comparatively large amounts of sand, tend to<br />

have widely varying <strong>coeff</strong>icients.<br />

• Hellacious or widely varying <strong>coeff</strong>icients are a<br />

signal to change something: The location of<br />

the fixed sampling equipment, QC practices,<br />

etc. Before changes, ask, “will it help?”


Box Coefficient Analysis Steps<br />

Magnitude, Box Coefficients (cont.)<br />

• Insufficient data and <strong>coeff</strong>icients of 1.0:<br />

- Should 1.0 <strong>coeff</strong>icient be the default?<br />

- Is there a physical basis for this?<br />

- Are 1.0 <strong>coeff</strong>icients just convenient?<br />

- Is a <strong>coeff</strong>icient of 1.0 equivalent to:<br />

1.0000? 0.99-1.01? 0.9-1.1? 1.25-0.8?


Box Coefficient Analysis Steps<br />

Application<br />

• GCLAS – a brave new world…<br />

- Capability to apply discharge, time, and<br />

discharge+time-weighted <strong>coeff</strong>icients.<br />

- Good news – better, faster data<br />

computations, easier verification.<br />

- Bad news…You now have No Excuses<br />

in credible application of <strong>coeff</strong>icients!


Box Coefficient Analysis Steps<br />

Advice<br />

• Don’t sweat low-flow <strong>coeff</strong>icients.<br />

- Low-concentration (


Box Coefficient Analysis Steps<br />

Advice (cont.)<br />

• Try to identify <strong>coeff</strong>icient-discharge<br />

relations and apply by methods analogous<br />

to stage-shift variation for discharge.<br />

• Sample at-a-point sequentially to develop<br />

a time series that sheds light on variance<br />

on in-stream processes<br />

• Automatic samplers need extra attention.


Box Coefficient Analysis Steps<br />

Advice (cont.)<br />

• Beware of comparing results from data<br />

collected in different sections (Des Plaines<br />

River at Riverside example).<br />

• Avoid data collection in eddies.<br />

• NO cross-sectional data collected???!!!<br />

- Obvious first question…why not?<br />

- Ask: What is data quality? Answer?<br />

- May need to consider another approach –<br />

surrogate technology?


Box Coefficient<br />

Yellow Creek near Middlesboro, KY,<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

WY 1992<br />

6/11 9/19 12/28 4/6 7/15 10/23<br />

Date


Box Coefficient<br />

Yellow Creek near Middlesboro, KY,<br />

WY1992<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

0 1000 2000 3000 4000 5000<br />

Discharge


Box Coefficient<br />

Yellow Creek near Middlesboro, KY,<br />

WY1992<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

0 1 2 3 4<br />

Log10 Discharge, cfs


Box Coefficient<br />

Cumberland River at Williamsburg, KY<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

11-Jun-<br />

91<br />

19-Sep-<br />

91<br />

28-Dec-<br />

91<br />

06-Apr-<br />

92<br />

15-Jul-<br />

92<br />

23-Oct-<br />

92<br />

Date


Box Coefficient<br />

Cumberland River at Williamsburg, KY<br />

2.00<br />

1.50<br />

1/10/92<br />

1.00<br />

0.50<br />

0.00<br />

0 1000 2000 3000 4000<br />

Discharge, cfs


Box Coefficient<br />

2.00<br />

1.75<br />

1.50<br />

1.25<br />

1.00<br />

0.75<br />

0.50<br />

0.25<br />

0.00<br />

Cumberland River at Williamsburg, KY<br />

(additional data from other years)<br />

1/10/92<br />

0 10000 20000 30000 40000<br />

Discharge, cfs


Box Coefficient<br />

Green River at Mumfordville, KY<br />

12<br />

10 11<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

0 1<br />

09/19/91 12/28/91 04/06/92 07/15/92 10/23/92<br />

Date


Box Coefficient<br />

Green River at Mumfordville, KY,<br />

WY1992<br />

10 11 9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

0 1 0 2000 4000 6000<br />

Discharge, cfs


Box Coefficient<br />

Green River at Mumfordville, KY<br />

Coefficient = 10.77 Removed<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

0 2000 4000 6000<br />

Discharge, cfs


Box Coefficient<br />

Rio Puerco near Bernardo, NM<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

7/24/98 11/1/98 2/9/99 5/20/99 8/28/99 12/6/99


Box Coefficient<br />

Rio Puerco near Bernardo, NM<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

0 50 100 150 200 250 300 350<br />

Discharge, cfs


Box Coefficient<br />

San Joaquin River near Vernalis, CA<br />

1.400<br />

1.200<br />

1.000<br />

0.800<br />

0.600<br />

0.400<br />

0.200<br />

0.000<br />

7/24/98 11/1/98 2/9/99 5/20/99 8/28/99 12/6/99


Box Coefficient<br />

San Joaquin River near Vernalis, CA<br />

1.400<br />

1.200<br />

1.000<br />

0.800<br />

0.600<br />

0.400<br />

0.200<br />

0.000<br />

0 2000 4000 6000 8000 10000 12000 14000<br />

Discharge, cfs


Hellbranch Creek, Ohio, WY 97


Box<br />

Coefficient<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Elwha River above Lake Mills,<br />

Port Angeles, WA (1 of 2)<br />

(approximate, from old graph sheets)<br />

9/8/95 12/17/95 3/26/96 7/4/96 10/12/96<br />

Date


Box Coefficient<br />

Elwha River above Lake Mills,<br />

Port Angeles, WA (2 of 2)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 2000 4000 6000 8000<br />

Discharge, cfs


ISCO <strong>coeff</strong>icient ratio<br />

iisco <strong>coeff</strong> ratio<br />

0.400<br />

Alameda Creek below Welch Creek near Sunol,<br />

CA<br />

0.350<br />

0.300<br />

0.250<br />

0.200<br />

0.150<br />

Series1<br />

Linear (Series1)<br />

0.100<br />

0.050<br />

0.000<br />

9/25/2007 11/14/2007 1/3/2008 2/22/2008 4/12/2008 6/1/2008<br />

time<br />

Alameda Creek below Welch Creek near Sunol<br />

1.000<br />

0.900<br />

0.800<br />

0.700<br />

0.600<br />

0.500<br />

0.400<br />

`<br />

0.300<br />

0.200<br />

0.100<br />

0.000<br />

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00<br />

Discharge, in cfs


Box Coefficient Ratio<br />

Box Coefficient Ratio<br />

2.00<br />

Sacramento River at Freeport, CA<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

<strong>box</strong>_vs_time<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

9/1/2002 1/14/2004 5/28/2005Time<br />

10/10/2006 2/22/2008 7/6/2009<br />

Sacramento River at Freeport, CA<br />

2.00<br />

1.80<br />

1.60<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

0.40<br />

0.20<br />

0.00<br />

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000<br />

Discharge, in cfs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!