20.11.2014 Views

EMC Design and Suppression for DC Motors in - Jastech EMC ...

EMC Design and Suppression for DC Motors in - Jastech EMC ...

EMC Design and Suppression for DC Motors in - Jastech EMC ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Southeastern Michigan IEEE <strong>EMC</strong> Society<br />

“<strong>EMC</strong> DESIGN AND SUPPRESSION FOR<br />

<strong>DC</strong> MOTORS IN MILITARY AND<br />

AUTOMOTIVE VEHICLES”<br />

Presented by: James Muccioli<br />

<strong>Jastech</strong> <strong>EMC</strong> Consult<strong>in</strong>g, LLC<br />

Authors:<br />

James Muccioli & Dale S<strong>and</strong>ers<br />

<strong>Jastech</strong> <strong>EMC</strong> Consult<strong>in</strong>g, LLC<br />

1


Abstract<br />

As the next generation of vehicle technology emerges, the amount of electronic<br />

technology <strong>and</strong> electronic features <strong>in</strong>crease the complexity of vehicle system<br />

<strong>in</strong>tegration. Vehicle power supplies are no longer simple battery supplied 12V or<br />

24V systems with isolated electronic modules.<br />

Next generation vehicles have more <strong>DC</strong> motors used <strong>in</strong> new applications. The<br />

ability to suppress EMI cost effectively requires more than just throw<strong>in</strong>g a filter on<br />

the motor. To effectively meet requirements <strong>and</strong> cost criteria a system eng<strong>in</strong>eer<strong>in</strong>g<br />

approach is required from concept to production.<br />

2


1. Develop<strong>in</strong>g an <strong>EMC</strong> Test Plan<br />

a. Requirements<br />

b. Variables <strong>in</strong> <strong>EMC</strong> Test set-up<br />

c. Goals <strong>for</strong> each stage of test<strong>in</strong>g<br />

2. Motor design <strong>for</strong> <strong>EMC</strong><br />

a. Hous<strong>in</strong>g<br />

b. End cap<br />

c. Lead <strong>and</strong> term<strong>in</strong>al location<br />

d. Bear<strong>in</strong>gs <strong>and</strong> bush<strong>in</strong>gs<br />

e. Brush design<br />

3


Systems Eng<strong>in</strong>eer<strong>in</strong>g Approach to <strong>EMC</strong><br />

Description<br />

Be<strong>for</strong>e discuss<strong>in</strong>g the process <strong>for</strong> develop<strong>in</strong>g good requirements, some important def<strong>in</strong>itions must be<br />

established:<br />

System: a set of components act<strong>in</strong>g together to achieve a set of common objectives via the<br />

accomplishment of a set of tasks.<br />

System Behavior: a sequence of functions or tasks, with <strong>in</strong>puts <strong>and</strong> outputs, that must be per<strong>for</strong>med<br />

to achieve a specific objective.<br />

Requirement: m<strong>and</strong>ates that someth<strong>in</strong>g must be accomplished, trans<strong>for</strong>med, produced, or provided.<br />

The attributes of a good requirement are that it is unambiguous, underst<strong>and</strong>able, traceable, correct,<br />

concise, unique <strong>and</strong> verifiable.<br />

Traceable: <strong>in</strong> reference to requirements; a requirement is said to be traceable if one can identify its<br />

source. The source may be a higher level requirement or a source document def<strong>in</strong><strong>in</strong>g its existence. An<br />

example would be if a component level requirement (weight, reliability) is traceable back to a vehicle<br />

level requirement.<br />

Operational Concept: an operational concept is a shared vision from the perspective of the users <strong>and</strong><br />

development participants of how the system will be developed, produced, deployed, tra<strong>in</strong>ed, operated,<br />

ma<strong>in</strong>ta<strong>in</strong>ed, ref<strong>in</strong>ed <strong>and</strong> retired to meet the operational needs <strong>and</strong> objectives.<br />

4


Systems Eng<strong>in</strong>eer<strong>in</strong>g Approach to <strong>EMC</strong><br />

Coord<strong>in</strong>ate <strong>and</strong> Iterate as Required<br />

2. Identify<br />

Source of<br />

Requirements<br />

1. Bound<br />

System <strong>for</strong><br />

<strong>EMC</strong><br />

3. Discover &<br />

Underst<strong>and</strong><br />

Requirements<br />

5. Select<br />

Best<br />

Solution<br />

6. Validate<br />

Best<br />

Solution<br />

4. Create<br />

Alternatives<br />

5


Systems Eng<strong>in</strong>eer<strong>in</strong>g Approach to <strong>EMC</strong><br />

• Step 1 - Bound System For <strong>EMC</strong><br />

– Identify All External Items<br />

– Establish Interactions<br />

– Create System Context Diagram<br />

• Step 2 - Identify Source of Reqts<br />

– Collect Requirements<br />

– Sort Requirements by Classification<br />

• Step 3 - Discover & Underst<strong>and</strong> Reqts<br />

– Discover System, Subsystem, <strong>and</strong><br />

Component Level Requirements<br />

– Bra<strong>in</strong>storm Scenarios<br />

– Benchmark Competition<br />

– Use Behavior Models to:<br />

• Discover “Hidden” Interface Requirements<br />

• Resolve Conflicts between Models <strong>and</strong><br />

Scenarios<br />

• Step 4 - Create Alternatives<br />

– List Per<strong>for</strong>mance <strong>and</strong><br />

Operational Objectives<br />

– Prioritize Requirements with<br />

Weight<strong>in</strong>g Factors<br />

– Synthesize Physical Architecture<br />

to Support Each Alternative<br />

• Step 5 - Select Best Solution<br />

– Compare Proposed Systems<br />

Implementation<br />

– Select Best Solution<br />

• Step 6 - Validate Best Solution<br />

– Def<strong>in</strong>e Validation Plan<br />

– L<strong>in</strong>kage to <strong>Design</strong> Requirements<br />

at each Level (vehicle, system,<br />

component)<br />

6


EMI Specifications <strong>for</strong> Military <strong>and</strong> Commercial Vehicles<br />

Military<br />

• MIL–STD–461E - EMI REQUIREMENTS, DESIGN <strong>and</strong> TEST<br />

• MIL–STD–464 - VEHICLE <strong>EMC</strong> & LIGHTNING REQUIREMENTS<br />

Commercial (Automotive, Consumer)<br />

• SAE J551 <strong>and</strong> J1113 (series of dash-specs)<br />

• FCC Rules <strong>and</strong> Regulations, Title 47, Part 15, Subpart B<br />

• European Union (Various)<br />

• OEM <strong>EMC</strong> requirements<br />

Today’s presentation will focus on the radiated emissions<br />

test setups on <strong>DC</strong> motors.<br />

7


Mil-STD-461E RF Requirement<br />

Overview of MIL-STD-461E<br />

MIL-STD-461E<br />

• Conducted emissions requirements are designated by "CE---."<br />

• Radiated emissions requirements are designated by "RE---."<br />

• Conducted susceptibility requirements are designated by "CS---."<br />

• Radiated susceptibility requirements are designated by "RS---."<br />

CONDUCTED<br />

(Cxxx Tests)<br />

RADIATED<br />

(Rxxx Tests)<br />

EMISSIONS<br />

SUSCEPTIBILITY<br />

EMISSIONS<br />

SUSCEPTIBILITY<br />

CE101 POWER LEADS, 30 Hz<br />

to 10 kHz<br />

CE102 POWER LEADS, 10<br />

kHz to 10 MHz<br />

CE106 ANTENNA TERMINAL,<br />

10 kHz to 40 GHz<br />

CS101 POWER LEADS, 30 Hz to 50 kHz<br />

CS103 ANTENNA PORT,<br />

INTERMODULATION, 15 kHz to 10 GHz<br />

CS104 ANTENNA PORT, REJECTION OF<br />

UNDESIRED SIGNALS, 30 kHz to 20 GHz<br />

CS105 ANTENNA PORT, CROSS<br />

MODULATION, 30 kHz to 20 GHz<br />

CS109 CONDUCTED SUSCEPTIBILITY,<br />

STRUCTURE CURRENT, 60 Hz to 100 kHz<br />

CS114 BULK CABLE INJECTION, 10 kHz to<br />

400 MHz<br />

CS115 BULK CABLE INJECTION, IMPULSE<br />

EXCITATION<br />

CS116 DAMPED SINUSOIDAL TRANSIENTS,<br />

CABLES AND POWER LEADS, 10 kHz to 100<br />

MHz<br />

RE101 MAGNETIC FIELD,<br />

30 Hz to 100 kHz<br />

RE102 ELECTRIC FIELD,<br />

10 kHz to 18 GHz<br />

RE103 ANTENNA,<br />

SPURIOUS <strong>and</strong><br />

HARMONIC OUTPUTS,<br />

10 kHz to 40 GHz<br />

RS101 MAGNETIC FIELD,<br />

30 Hz to 100 kHz<br />

RS103 ELECTRIC FIELD,<br />

10 kHz to 40 GHz<br />

RS105 TRANSIENT<br />

ELECTROMAGNETIC<br />

FIELD<br />

8


Mil-STD-461E RF Absorber Load<strong>in</strong>g Diagrams<br />

9


Mil-STD-461E RF Test Setups<br />

Conductive surface mounted EUT<br />

Non-Conductive surface mounted EUT<br />

10


Mil-STD-461E Antenna Position<strong>in</strong>g<br />

11


Mil-STD-461E L<strong>in</strong>e Impedance Stabilization Network Schematic<br />

12


Automotive EMI / <strong>EMC</strong> Requirements<br />

13


CISPR 25 Radiated Disturbance <strong>for</strong> ALSE<br />

14


IEC International St<strong>and</strong>ard CISPR 25<br />

15


CISPR 25<br />

Artificial Network Schematic<br />

16


CISPR 25<br />

Artificial Network<br />

17


<strong>EMC</strong> Test Plan<br />

<strong>EMC</strong> test plan goal should have repeatability <strong>and</strong> m<strong>in</strong>imize<br />

test variability<br />

• Underst<strong>and</strong> the <strong>EMC</strong> tests the lab will per<strong>for</strong>m on your module.<br />

• Block diagram test fixture <strong>and</strong> DUT setup.<br />

• Take pictures of test setup.<br />

• Document the LISN be<strong>in</strong>g used.<br />

• Detail LISN ground straps <strong>and</strong> type of metal tape used by test lab.<br />

• Detail the type of 50 ohm loads to be used .<br />

• Document the test software used by the Lab.<br />

• Document pre-amps used by lab <strong>for</strong> your test <strong>and</strong> calibration.<br />

• Document antennas setup with pre-amps <strong>and</strong> cable rout<strong>in</strong>g <strong>in</strong> test<br />

room.<br />

• Document the <strong>EMC</strong> test room <strong>and</strong> note if absorbers are placed<br />

under test table.<br />

• Document how the test table is grounded to test room <strong>and</strong> size of<br />

ground plane.<br />

18


1. Develop<strong>in</strong>g an <strong>EMC</strong> Test Plan<br />

a. Requirements<br />

b. Variables <strong>in</strong> <strong>EMC</strong> Test set-up<br />

c. Goals <strong>for</strong> each stage of test<strong>in</strong>g<br />

2. Motor design <strong>for</strong> <strong>EMC</strong><br />

a. Hous<strong>in</strong>g<br />

b. End cap<br />

c. Lead <strong>and</strong> term<strong>in</strong>al location<br />

d. Bear<strong>in</strong>gs <strong>and</strong> bush<strong>in</strong>gs<br />

e. Brush design<br />

19


<strong>DC</strong> MOTORS IN MILITARY AND AUTOMOTIVE<br />

• Military must meet shield<strong>in</strong>g <strong>and</strong> filter<strong>in</strong>g<br />

requirements <strong>for</strong> the frequency range from<br />

10 KHz to 18 GHz.<br />

• Automotive needs some type of shield<strong>in</strong>g<br />

<strong>and</strong> filter<strong>in</strong>g to meet <strong>EMC</strong> requirements<br />

from 100 KHz to 3 GHz.<br />

20


NOISE PROPAGATION INSIDE MOTOR<br />

Electro-magnetic Interference (EMI) is<br />

caused when the brushes break contact with<br />

the commutator <strong>and</strong> the energy stored <strong>in</strong> the<br />

motor w<strong>in</strong>d<strong>in</strong>gs (magnetic field) creates an<br />

arc.<br />

High RF field<br />

Low RF field<br />

Metal motor case can act as a<br />

shield to block the radiation from<br />

motor w<strong>in</strong>d<strong>in</strong>gs.<br />

21


Hous<strong>in</strong>g Vent Holes<br />

22


Motor Hous<strong>in</strong>g Enclosure Jo<strong>in</strong>ts<br />

Rolled Steel<br />

Drawn Steel<br />

23


Motor End Cap<br />

24


Motor End Cap<br />

Noise can couple outside the motor case<br />

when us<strong>in</strong>g a plastic end cap.<br />

A metal end cap works as a shield to conta<strong>in</strong><br />

the noise with<strong>in</strong> the motor case.<br />

Improved<br />

To meet Mil <strong>EMC</strong> requirements the motor must have a metal or metalized end cap.<br />

This will help with conta<strong>in</strong>ment of fields that can radiate around the plastic end cap<br />

<strong>and</strong> couple back onto the leads.<br />

25


Motor Bear<strong>in</strong>gs <strong>and</strong> Bush<strong>in</strong>gs<br />

26


Brush Seated To Commutator<br />

Brush contacts the commutator<br />

over very small surface area<br />

which results <strong>in</strong> large amount of<br />

arc<strong>in</strong>g.<br />

Brush contacts the commutator<br />

over very large surface area<br />

which results <strong>in</strong> small amount of<br />

arc<strong>in</strong>g.<br />

27


Questions?<br />

For more <strong>in</strong><strong>for</strong>mation <strong>and</strong> technical papers go to:<br />

http://www.<strong>Jastech</strong>-emc.com<br />

28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!