21.11.2014 Views

Establishment of Rhodiola kirilowii hairy roots ... - Herbapolonica.pl

Establishment of Rhodiola kirilowii hairy roots ... - Herbapolonica.pl

Establishment of Rhodiola kirilowii hairy roots ... - Herbapolonica.pl

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Establishment</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> using Agrobacterium rhizogenes LBA 9402<br />

<br />

<strong>Establishment</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> using Agrobacterium rhizogenes<br />

LBA 9402<br />

Monika Zych 1∗ Agnieszka Pietrosiuk 1** , Monika KARASIEWICZ 2 ,<br />

Anna Bogacz 2 , Radosław Kujawski 2 , Przemysław M. Mrozikiewicz 2 ,<br />

ANNA KRAJEWSKA-PATAN 2 , Mirosława Furmanowa 1<br />

1<br />

Department <strong>of</strong> Biology and Pharmaceutical Botany<br />

Medical University <strong>of</strong> Warsaw<br />

Banacha 1<br />

02-097 Warsaw, Poland<br />

2<br />

Research Institute <strong>of</strong> Medicinal Plants<br />

Libelta 27<br />

61-707 Poznań, Poland<br />

* , **corresponding authors:<br />

e-mail: zych_monika@yahoo.de, agnieszka.pietrosiuk@wum.edu.<strong>pl</strong><br />

S u m m a r y<br />

For the first time <strong>hairy</strong> <strong>roots</strong> <strong>of</strong> the <strong>Rhodiola</strong> genus were obtained by infection <strong>of</strong> the <strong>of</strong><br />

<strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>pl</strong>antlets with Agrobacterium rhizogenes LBA 9402. First transgenic <strong>roots</strong><br />

appeared 11 days after infection. The transformation process was confirmed by the polymerase<br />

chain reaction (PCR). DNA analysis showed that rol B gene and aux 1 gene from Ri<br />

<strong>pl</strong>asmid <strong>of</strong> Agrobacterium rhizogenes were incorporated into the <strong>pl</strong>ant genome <strong>of</strong> <strong>Rhodiola</strong><br />

<strong>kirilowii</strong>.<br />

Key words: <strong>Rhodiola</strong> <strong>kirilowii</strong>, Agrobacterium rhizogenes, <strong>hairy</strong> <strong>roots</strong>, rol B gene<br />

Abbreviations<br />

MS: Murashige and Skoog (1962) medium; B5: Gamborg (1978) medium; YMB:<br />

yeast mannitol broth; IAA: β-indolylacetic acid; CTAB: cetyltrimethylammonium<br />

bromide, TBE: Tris-Borate-EDTA buffer<br />

Vol. 54 No 4 2008


M. Zych, A. Pietrosiuk, M. Karasiewicz, A. Bogacz, R. Kujawski, PM. Mrozikiewicz, A. Krajewska-Patan, M. Furmanowa<br />

<br />

Introduction<br />

<strong>Rhodiola</strong> <strong>kirilowii</strong> (Regel) Regel and Maximowicz (xia je hong jing tian), <strong>of</strong> the<br />

Crassulaceae family is found in North Asia and China. According to Ohba [1], <strong>Rhodiola</strong><br />

<strong>kirilowii</strong> is a typical mountain <strong>pl</strong>ant that grows at 2000–5000 m a. s. l. Salidroside,<br />

tyrosol, daucosterol, lotaustralin [2] and β-sitosterol [3] have been isolated<br />

from the extracts <strong>of</strong> the <strong>roots</strong>. The differences between the compounds found in<br />

natural <strong>roots</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> growing in Poland and in Asiatic countries were<br />

described by Wiedenfeld et al. [4]. These authors have found epigallocatechin<br />

gallate, rhodiocyanoside A, arbutin and fructopyrano-(1-4)-glucopyranose in the<br />

rhizomes.<br />

Oral administration <strong>of</strong> R. <strong>kirilowii</strong> was shown to protect mountain regions inhabitants<br />

from cardiopulmonary disorders caused by high altitude [5]. R. <strong>kirilowii</strong><br />

was also found to reduce damage to rat viscera caused by a hypoxic high altitude<br />

environment [6]. In Poland this species is cultivated only in the Botanical Garden<br />

<strong>of</strong> the Institute <strong>of</strong> Medicinal Plants in Poznan. The process <strong>of</strong> the micropropagation<br />

<strong>of</strong> R. <strong>kirilowii</strong> with the use <strong>of</strong> somatic seeds was elaborated by Zych et al. [7].<br />

The same method was used for the encapsulation <strong>of</strong> Rubus chamaemorus L. shoot<br />

buds [8]. This process has not resulted in the genetic variability <strong>of</strong> <strong>pl</strong>ants developed<br />

from the beads.<br />

There are many species from the <strong>Rhodiola</strong> genus, which are used in traditional<br />

Chinese medicine. The best known and best elabrated is <strong>Rhodiola</strong> rosea, widely<br />

used as an adaptogen (Rosenroot, Lentaya, Antystres Forma, Meteo, Rhodiolin,<br />

CelluVita). It also possesses anticancer [9, 10], antimutagenic [11, 12], cardioprotective<br />

and anti-arrhytmic activities [13-15].<br />

The aim <strong>of</strong> our work was to obtain the <strong>hairy</strong> <strong>roots</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong>. These<br />

organs were not obtained in genus <strong>Rhodiola</strong> till now. To obtain the transformed<br />

<strong>roots</strong>, T-DNA <strong>of</strong> Agrobacterium rhizogenes was transferred to the wounded <strong>pl</strong>ant<br />

cell and incorporated into the <strong>pl</strong>ant genome. The following expression <strong>of</strong> bacterial<br />

genes is responsible for the development <strong>of</strong> <strong>hairy</strong> <strong>roots</strong> [16]. Transformed<br />

root cultures grow rapidly, are genetically stable and can produce secondary metabolites<br />

[17, 18]. Many interesting natural compounds used in the therapy are<br />

synthetized in <strong>hairy</strong> <strong>roots</strong> and their level could be higher than that found in natural<br />

<strong>roots</strong> [19, 20].<br />

Materials and Methods<br />

Plant material<br />

The <strong>pl</strong>antlets <strong>of</strong> R. <strong>kirilowii</strong> were grown on Murashige and Skoog (MS) solid<br />

medium [21] without growth regulators at 24°C and under 40 μmol m -2 s -1 light for


<strong>Establishment</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> using Agrobacterium rhizogenes LBA 9402<br />

12 h a day for 2-3 weeks. Their leaves and shoots were used for the <strong>hairy</strong> <strong>roots</strong><br />

initiations.<br />

Transformation <strong>of</strong> <strong>pl</strong>ants ex<strong>pl</strong>ants<br />

Agrobacterium rhizogenes LBA 9402 strain grown in liquid YMB medium [22] for<br />

72 h was used to infect R. <strong>kirilowii</strong> ex<strong>pl</strong>ants. In one experiment 10 young leaves<br />

and 19 internodal shoot segments were directly infected with a sterile needle<br />

containing bacteria. The leaves were wounded in mid-vein. Inoculated ex<strong>pl</strong>ants<br />

were incubated for 7 days in the darkness on MS solid medium sup<strong>pl</strong>emented<br />

with 2 mg l -1 acetosyringone and next were transferred to fresh MS solid medium<br />

containing 0.5 g l -1 cefotaxim to eliminate bacteria and subsequently cultured at<br />

24°C in darkness. Eleven days after transformation the first <strong>hairy</strong> <strong>roots</strong> appeared<br />

at the infection sites. After 2 passages on media with antibiotics, bacteria-free<br />

<strong>hairy</strong> <strong>roots</strong> were transferred to MS solid medium without antibiotics and then,<br />

after next 10 weeks, to MS liquid medium. Hairy <strong>roots</strong> were maintained in 30 ml<br />

liquid MS for 4 months in 300 ml Erlenmeyer flasks on a rotary shaker (32 rpm)<br />

at 24ºC. The <strong>hairy</strong> root cultures were initiated from single root developed at the<br />

wounded site at <strong>pl</strong>ant ex<strong>pl</strong>ants. The growth <strong>of</strong> <strong>roots</strong> in MS medium was poor.<br />

Therefore, the MS medium was changed on B5 medium [23] sup<strong>pl</strong>emented with<br />

0.1 mg l -1 IAA (fig. 1), and then on hormone free DCR medium (fig. 2) [24].<br />

<br />

Figure1. Hairy <strong>roots</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> growing in B5 liquid medium with 0.1 mg/l IAA, third<br />

passage (scale 4:1)<br />

Vol. 54 No 4 2008


M. Zych, A. Pietrosiuk, M. Karasiewicz, A. Bogacz, R. Kujawski, PM. Mrozikiewicz, A. Krajewska-Patan, M. Furmanowa<br />

10<br />

Figure 2. Hairy <strong>roots</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> growing in DCR liquid medium, third passage (scale 2:1)<br />

Isolation and am<strong>pl</strong>ification<br />

DNA isolation was performed according to the modified method described by<br />

Doohan et al. [25]. DNA was isolated from 0.20 g <strong>of</strong> <strong>hairy</strong> <strong>roots</strong> and from the<br />

untransformed <strong>roots</strong> frozen at -80ºC. Roots were rubbed in liquid nitrogen and<br />

with 1 ml <strong>of</strong> CTAB buffer. The proteinase K (10 mg ml -1 , Sigma) in the amount <strong>of</strong><br />

20 μl was added to the mixture. Afterwards, the mixture was incubated at 55ºC<br />

for 1 h. After incubation 500 μl <strong>of</strong> phenol/chlor<strong>of</strong>orm/isoamyl alcohol (25:24:1)<br />

were added to the mixture and then centrifuged for 15 min. (12000 rpm) at room<br />

temperature. Supernatants were <strong>pl</strong>aced in the Eppendorf tube. The extraction<br />

process was repeated three times. Supernatants were purified with 500 μl <strong>of</strong><br />

chlor<strong>of</strong>orm/isoamyl alcohol (24:1) mixture and centrifuged for 15 min. (12000<br />

rpm) at room temperature. Supernatants were <strong>pl</strong>aced in new Eppendorf ’s tubes<br />

with 0.1 volume <strong>of</strong> 3 M sodium acetate (pH=5.2). Two volumes <strong>of</strong> frozen (–20ºC)<br />

95% ethanol were added and the mixture was allowed to precipitate during the<br />

night. After incubation sam<strong>pl</strong>es were centrifuged for 20 min. at 4°C (12000 rpm).<br />

Sediments were washed twice with frozen (–20°C) 70% ethanol (each time centrifuged<br />

20 min. at 4°C, 12 000 rpm). Sediments were allowed to evaporate for 40 min.<br />

at 37°C. The DNA was dissolved in deionized water at room temperature.<br />

Each PCR reaction was performed according to the Am<strong>pl</strong>iMix protocol (Novazym<br />

Polska) by using primers designed to am<strong>pl</strong>ify specific regions <strong>of</strong> rol B, aux 1, vir D<br />

genes, homologous to the nucleotide’s at definited positions. Primers sequences,<br />

their GenBank accession number and nucleotide’s position were shown in table 1.


<strong>Establishment</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> using Agrobacterium rhizogenes LBA 9402<br />

Ta b l e 1 .<br />

Primers sequences, GenBank Accession Number and nucleotide’s position used in the study<br />

11<br />

region primer sequence GenBankAccession No. nucleotide’s positions<br />

rol B<br />

vir D<br />

aux 1<br />

<strong>Rhodiola</strong> <strong>kirilowii</strong><br />

5’-ATGGATCCCAAATTGCTATTCCTTCCACGA-3’ X03433 1861-1891<br />

5’-TTAGGCTTCTTTCTTCAGGTTTACTGCAGC-3’ X03433 2611-2641<br />

5’-ATGTCGCAAGGCAGTAAGCCCA-3’ X12867 1827-1851<br />

5’-GGAGTCTTTCAGCATGGAGCAA-3’ X12867 2243-2265<br />

5’-CGTTTCCAGTTGAGGGTTGT-3’ M61151 1136-1152<br />

5’-GGCCTAAGTCTTCCCGTTTC-3’ M61151 1566-1585<br />

5’-CGAAACGAATGAACCCCG-3’ AB088601 148-165<br />

5’-ACGCTCAAAGGCACAAGG-3’ AB088601 543-560<br />

Each PCR reaction reagents concentration were shown in table 2. The reaction<br />

conditions, carried out in thermal cycler (PTC-200 MJ Research), were shown in table 3.<br />

Concentration <strong>of</strong> the PCR reaction reagents used in the study<br />

Ta b l e 2 .<br />

reagent volume [µl] concentration<br />

Am<strong>pl</strong>iMix 10 2x<br />

primer forward 0.1 0.25 µM<br />

primer reverse 0.1 0.25 µM<br />

genomic DNA 1 100 ng<br />

H2O 8.8<br />

PCR reaction conditions used in the study<br />

Ta b l e 3 .<br />

region rol B aux 1 vir D <strong>Rhodiola</strong><br />

PCR step temperature [˚C] time number <strong>of</strong> cycles<br />

initial denaturation 94 94 94 94 4 min. 1<br />

denaturation 94 94 04 94 40 s<br />

annealing 62 64 62 56 40 s<br />

35<br />

elongation 72 72 72 72 1 min.<br />

final elongation 72 72 72 72 4 min. 1<br />

The am<strong>pl</strong>ified sequences were separated by electrophoresis in 2% agarose gel<br />

in TBE buffer. The gel was stained with ethidium bromide and observed under<br />

UV light.<br />

Vol. 54 No 4 2008


M. Zych, A. Pietrosiuk, M. Karasiewicz, A. Bogacz, R. Kujawski, PM. Mrozikiewicz, A. Krajewska-Patan, M. Furmanowa<br />

12<br />

Results and Discussion<br />

Transformed <strong>roots</strong> culture<br />

The present study was concerned with the establishment <strong>of</strong> transformed <strong>hairy</strong><br />

root cultures <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong>. The infection <strong>of</strong> R. <strong>kirilowii</strong> <strong>pl</strong>ant ex<strong>pl</strong>ants<br />

with Agrobacterium rhizogenes LBA 9402, with the presence <strong>of</strong> acetosyringone<br />

resulted in <strong>hairy</strong> <strong>roots</strong> formation. After two passages on MS medium with<br />

cefotaxim, R. <strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> were transferred to MS solid medium and<br />

then to MS liquid medium, both antibiotic-free. Four months after transformation<br />

process the inhibition <strong>of</strong> <strong>hairy</strong> <strong>roots</strong> growth was observed. Therefore,<br />

in further investigation B5 medium sup<strong>pl</strong>emented with 0.1 mg l -1 IAA (fig. 1),<br />

and then hormone free DCR medium (fig. 2) were tested. Biomass increase was<br />

evaluated on the basis <strong>of</strong> fresh weight after 4 weeks <strong>of</strong> culture as a ratio <strong>of</strong> harvested<br />

weight to initial inoculum weight. Hairy <strong>roots</strong> grew better in hormone<br />

free DCR medium than in B5 medium sup<strong>pl</strong>emented with 0.1 mg l-1. Approximately,<br />

the ratio <strong>of</strong> harvested weight to initial inoculum’s weight was 5 for<br />

DCR medium and 1,35 for B5 medium. Similarly, Furmanowa and Syklowska<br />

(19) noticed a satisfying growth <strong>of</strong> Taxus x media var. Hicksii Rehd. <strong>hairy</strong> <strong>roots</strong><br />

in DCR medium. The doubling time <strong>of</strong> fresh weight was observed in 11 day<br />

<strong>of</strong> culture.<br />

The DNA analysis confirmed incorporation <strong>of</strong> rol B and aux 1 genes into the<br />

<strong>pl</strong>ant genome. Gen rol B, as in the case <strong>of</strong> Nicotiana [26], causes formation <strong>of</strong> <strong>hairy</strong><br />

<strong>roots</strong>, but according to Di Cola et al. [27] the presence and expression <strong>of</strong> the<br />

rol B are necessary but not sufficient to trigger rhizogenesis in transformed <strong>pl</strong>ant.<br />

According to the experiment carried out by Damiano and Monticelli [28] the<br />

am<strong>pl</strong>ification <strong>of</strong> the vir D region was done in order to avoid false positives. No<br />

band was detected, which means that DNA <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> was bacteria-free.<br />

The transformation process strongly depended on the bacteria strain used. In<br />

this experiment we also searched for the best strain <strong>of</strong> Agrobacterium rhizogenes.<br />

We infected the ex<strong>pl</strong>ants with A. rhizogenes ATCC 15834, LBA 9402 and NCIB 8196.<br />

Hairy <strong>roots</strong> were obtained only in the presence <strong>of</strong> acetosyringone and by transforming<br />

<strong>of</strong> <strong>pl</strong>ant with the strain LBA 9402 (94.7% <strong>of</strong> infected ex<strong>pl</strong>ants produce <strong>hairy</strong><br />

<strong>roots</strong>). These results were similar to those obtained by Giri et al. [29], where the<br />

frequency <strong>of</strong> transformation for LBA 9402 strain amounted 100%. Similarly, in the<br />

experiment with Taxus x media var. Hicksii Rehd. [19] only strain LBA 9402 induces<br />

the formation <strong>of</strong> <strong>hairy</strong> <strong>roots</strong>.<br />

In our research, the addition <strong>of</strong> acetosyringone to the incubation medium was<br />

a critical condition for <strong>hairy</strong> <strong>roots</strong> formation. Acetosyringone or other phenolic<br />

compounds have been reported to increase transformation frequencies [29, 30]<br />

by inducing <strong>of</strong> transcription <strong>of</strong> vir region. Similarly, the successful transformation<br />

<strong>of</strong> Ammi majus occurred only in case Agrobacterium were inoculated on medium<br />

sup<strong>pl</strong>emented with 0.2 mM acetosyringone [31].


<strong>Establishment</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> using Agrobacterium rhizogenes LBA 9402<br />

Our studies were focused on establishing <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>hairy</strong> root cultures.<br />

Till now, the transformation process <strong>of</strong> this species using Agrobacterium rhizogenes<br />

failed. Nowadays, the the phytochemical analysis and biological activity <strong>of</strong> R.<br />

<strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> are in progress.<br />

Detection <strong>of</strong> rol B, aux 1 and vir D genes<br />

Integration <strong>of</strong> the bacterial DNA into the R. <strong>kirilowii</strong> genome was confirmed by<br />

PCR reaction.<br />

The results are presented in figures 3, 4 and 5. They proved that genes rol B,<br />

aux 1 from Ri <strong>pl</strong>asmid <strong>of</strong> A. rhizogenes were incorporated into <strong>pl</strong>ant genome.<br />

M1Kb 1 K 2 K 3 K 4 K<br />

13<br />

Figure 3. Electrophoretic separation <strong>of</strong> consecutive PCR product <strong>of</strong> <strong>Rhodiola</strong>, rol B, aux 1 and vir D<br />

fragments from untransformed <strong>Rhodiola</strong> <strong>kirilowii</strong> tem<strong>pl</strong>ate (2% agarose gel). M1Kb – 1Kb ladder; lane 1<br />

– <strong>Rhodiola</strong>; lane 2 – rol B; lane 3 – aux 1 ; lane 4 – vir D; K – control lane<br />

M1Kb 1 K 2 K 3 K 4 K<br />

Figure 4. Electrophoretic separation <strong>of</strong> consecutive PCR product <strong>of</strong> <strong>Rhodiola</strong>, rol B, aux 1 and vir D<br />

fragments from transformed <strong>Rhodiola</strong> <strong>kirilowii</strong> tem<strong>pl</strong>ate (2% agarose gel). M1Kb – 1Kb ladder; lane 1<br />

– <strong>Rhodiola</strong>; lane 2 – rol B; lane 3 – aux 1 ; lane 4 – vir D; K – control lane.<br />

Vol. 54 No 4 2008


M. Zych, A. Pietrosiuk, M. Karasiewicz, A. Bogacz, R. Kujawski, PM. Mrozikiewicz, A. Krajewska-Patan, M. Furmanowa<br />

14<br />

M1Kb 1 k 2 K 3 k<br />

Figure 5. Electrophoretic separation <strong>of</strong> PCR product <strong>of</strong> rol B, aux 1 and vir D fragments from<br />

Agrobacterium rhizogenes - positive control (2% agarose gel). M1Kb – 1Kb ladder; lane 1 – rol B primers;<br />

lane 2 – aux 1 primers; lane 3 – vir D primers; K – control lane<br />

Figure 3 introduces electrophoretic separation <strong>of</strong> consecutive PCR products<br />

<strong>of</strong> <strong>Rhodiola</strong>, rol B, aux 1 and vir D fragments from untransformed <strong>Rhodiola</strong> <strong>kirilowii</strong><br />

tem<strong>pl</strong>ate - 270bp PCR product size visible on lane 1 confirms detection <strong>of</strong> <strong>pl</strong>ant<br />

genomic DNA in analyzed sam<strong>pl</strong>e. No band <strong>of</strong> rol B, aux 1 and vir D was detected<br />

which confirms that the sam<strong>pl</strong>e used in this case was untransformed. Figure 4<br />

introduces electrophoretic separation <strong>of</strong> PCR products <strong>of</strong> <strong>Rhodiola</strong>, rol B, aux 1<br />

and vir D fragments from transformed <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>pl</strong>ant. These PCR reactions<br />

have confirmed the integration <strong>of</strong> bacterial DNA into the <strong>Rhodiola</strong> <strong>kirilowii</strong> genome.<br />

Ap<strong>pl</strong>ication <strong>of</strong> <strong>Rhodiola</strong> primers has demonstrated the presence <strong>of</strong> 270bp<br />

long PCR product covering <strong>of</strong> R. <strong>kirilowii</strong> genomic DNA in expected transgenic<br />

R. <strong>kirilowii</strong> sam<strong>pl</strong>e (lane 1). Primers homologous to the sequence <strong>of</strong> rol B gene <strong>of</strong><br />

Agrobacterium rhizogenes am<strong>pl</strong>ified the expected fragment <strong>of</strong> 780bp (lane 2). To<br />

be sure that <strong>pl</strong>ant DNA is free from bacterial impurities, vir D primers were added<br />

to the R. <strong>kirilowii</strong>. Vir D is not transferred to <strong>pl</strong>ant genome (lane 4). Ap<strong>pl</strong>ication<br />

<strong>of</strong> primers homologous to aux 1 gene should confirm whether the T R<br />

fragment <strong>of</strong><br />

Ri <strong>pl</strong>asmid was also transferred to the <strong>pl</strong>ant genome. Lane 3 shows detection <strong>of</strong><br />

<strong>pl</strong>asmid aux 1 fragment incorporated into the <strong>pl</strong>ant genome.<br />

The size <strong>of</strong> obtained PCR products sizes <strong>of</strong> rol B and aux 1 genes from the<br />

transformed <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>pl</strong>ant were the same as the PCR products sizes from<br />

Agrobacterium rhizogenes. Ap<strong>pl</strong>ication <strong>of</strong> primers homologous to the region vir D<br />

has enabled detection <strong>of</strong> vir D (417 bp) am<strong>pl</strong>ification product (fig. 5).<br />

Acknowledgments<br />

This work was supported by the Grant No. PBZ-KBN-092/P05/2003.


<strong>Establishment</strong> <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> <strong>hairy</strong> <strong>roots</strong> using Agrobacterium rhizogenes LBA 9402<br />

15<br />

References<br />

1. Ohba H. <strong>Rhodiola</strong>. In: Eggli U. [ed.]. Crassulaceae. Illustrated handbook <strong>of</strong> succulent <strong>pl</strong>ants. Springer<br />

2003: 210-26.<br />

2. Peng JN, Ma CY and Ge YC. Chemical constituents <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> (Regel) Regel. Zhongguo Zhong<br />

Yao Za Zhi 1994; 19:676-7, 702.<br />

3. Kang S, Zhang J, Lu Y, Lu D. Chemical constituents <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> (Reg.) Reg. Zhongguo Zhong Yao<br />

Za Zhi. 1992; 17:100-1, 127.<br />

4. Wiedenfeld H, Zych M, Buchwald W, Furmanowa M. New compounds from <strong>Rhodiola</strong> <strong>kirilowii</strong>. Sci Pharm<br />

2007; 75:29-34.<br />

5. Zhang ZH, Feng SH, Hu GD, Cao Z, Wang LY. Effect <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> (Regel) Maxim on preventing<br />

high altitude reactions. A comparison <strong>of</strong> cardiopulmonary function in villagers at various altitudes.<br />

Zhongguo Zhong Yao Za Zhi 1989; 14:687-90, 704.<br />

6. Zhang Z, Wang L, Chen Q, Feng S, Cao Z, Zhou X, Hu G, Jiang P, Cao Y. Electron microscopic observation<br />

<strong>of</strong> the effects <strong>of</strong> <strong>Rhodiola</strong> <strong>kirilowii</strong> (Regel) Maxim. in preventing <strong>of</strong> the rat viscera by hypoxic high altitude<br />

environment. Zhongguo Zhong Yao Za Zhi 1990; 15:177-81, 192.<br />

7. Zych M, Furmanowa M, Krajewska-Patan A, Łowicka A, Dreger M, Mendlewska S. Micropropagation <strong>of</strong> <strong>Rhodiola</strong><br />

<strong>kirilowii</strong> <strong>pl</strong>ants using encapsulated axillary buds and callus. Acta Biol Cracov Series Bot 2005; 47:83-7.<br />

8. Thiem B. In vitro culture techniques in concervation <strong>of</strong> Rubus chamaemorus L. Acta Biol Cracov Series Bot<br />

2002; 44:181-8.<br />

9. Udintsev SN, Krylova SG, Fomina TI. The enhancement <strong>of</strong> the efficacy <strong>of</strong> adriamycin by using<br />

hepatoprotectors <strong>of</strong> <strong>pl</strong>ant origin in metastases <strong>of</strong> Ehrlich’s adenocarcinoma to the liver in mice (Russ.).<br />

Voprosy Onkologii 1992; 38:1217-22.<br />

10. Bocharova OA, Matveev BP, Baryshnikov AI, Figurin KM, Serebriakova RV, Bodarova NB. The effect <strong>of</strong><br />

a <strong>Rhodiola</strong> rosea extract on the incidence <strong>of</strong> recurrences <strong>of</strong> a superficial bladder cancer (experimental<br />

clinical research). Urologija i Nefrologija. 1995; 2:46-7.<br />

11. Salikhova RA, Aleksandrova IV, Mazurik VK, Mikhailov VF, Ushenkova LN, Poroshenko GG. Effect <strong>of</strong><br />

<strong>Rhodiola</strong> rosea on the yield <strong>of</strong> mutation alterations and DNA repair in bone marrow cells. Patologicheskaia<br />

Fiziologia i èksperimentalnaia Terapia 1997; 4:22-4.<br />

12. Duhan OM, Baryliak IR, Nester TI, Dvornyk AS, Kunakh VA. The antimutagenic activity <strong>of</strong> biomass<br />

extracts from the cultured cells <strong>of</strong> medicinal <strong>pl</strong>ants in the Ames test. Tsitol Genet 1999; 33:19-25.<br />

13. Maimeskulova LA and Maslov LN. The anti-arrhythmia action <strong>of</strong> an extract <strong>of</strong> <strong>Rhodiola</strong> rosea and <strong>of</strong> n-tyrosol<br />

in models <strong>of</strong> experimental arrhythmias. Eksperimentalnaja Klinicheskaja Farmakologija 1998; 61:37-40.<br />

14. Maimeskulova LA, Maslov LN. Anti-arrhythmic effect <strong>of</strong> phytoadaptogens. Eksperimentaja Kliniczeskaja<br />

Farmakologia 2000; 63:29-31.<br />

15. Li J, Fan WH, Ao H. Effect <strong>of</strong> <strong>Rhodiola</strong> on expression <strong>of</strong> Flt-1, KDR and Tie-2 in rats with ischemic<br />

myocardium. Zhoggou Zhong Xi Yi Jie He Za Zhi 2005; 25:445-8.<br />

16. Giri A, Narasu L. Transgenic <strong>hairy</strong> <strong>roots</strong>: recent trends and ap<strong>pl</strong>ications. Biotechnol Adv 2000; 18:1-22.<br />

17. Wysokińska H. Wykorzystanie kultur korzeni transformowanych do produkcji metabolitów wtórnych. In:<br />

Wypijewski K [ed.]. Wybrane zagadnienia biotechnologii roślin. Academic Press UAM, Poznań 1996:11-23.<br />

18. Pietrosiuk A, Syklowska-Baranek K, Wiedenfeld H, Wolinowska R, Furmanowa M, Jaroszyk E. The<br />

shikonin derivatives and pyrolizidine alkaloids in <strong>hairy</strong> <strong>roots</strong> cultures <strong>of</strong> Lithospermum canescens (Michx.)<br />

Lohm. Plant Cell Reports 2006; 25:1052-8.<br />

19. Furmanowa M, Sykłowska-Baranek K. Hairy root cultures <strong>of</strong> Taxus x media var. Hicksii Rehd. as a new<br />

source <strong>of</strong> paclitaxel and 10-deacetylobaccatin III. Biotechnol Lett 2000; 22:683-6.<br />

20. Grzegorczyk J, Królicka A, Wysokińska H. <strong>Establishment</strong> <strong>of</strong> Salvia <strong>of</strong>ficinalis L. <strong>hairy</strong> root cultures for the<br />

production <strong>of</strong> rosmarinic acid. Zeitschrift für Naturforschung 2006; 61c:351-6.<br />

21. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture.<br />

Physiol Plant 1962; 15:473-97.<br />

22. Hooykaas PJ, Klapwjik PM, Nuti MP, Schilperoort RA, Rorsch A. Transfer <strong>of</strong> the A. tumefaciens Ti <strong>pl</strong>asmid<br />

to avirulent Agrobacteria and Rhizobium ex <strong>pl</strong>anta. J Gen Microbiol 1977; 98:477-84.<br />

23. Gamborg OL, Miller RA, Ojima K. Nutrient requirements <strong>of</strong> suspension cultures <strong>of</strong> soybean root cells.<br />

Experiment Cell Res 1968; 50:151-8.<br />

Vol. 54 No 4 2008


M. Zych, A. Pietrosiuk, M. Karasiewicz, A. Bogacz, R. Kujawski, PM. Mrozikiewicz, A. Krajewska-Patan, M. Furmanowa<br />

16<br />

24. Gupta PK, Durzan DJ. Shoot multi<strong>pl</strong>ication from mature trees <strong>of</strong> Douglas-fir (Pseudotsuga menziesii) and<br />

Sugar pine (Pinus lambertiana). Plant Cell Reports 1985; 4:177-9.<br />

25. Doohan FM, Parry DW, Jenkinson P, Nicholson P. The use <strong>of</strong> species-specific PCR-based assays to analyse<br />

Fusarium ear blight <strong>of</strong> wheat. Plant Pathol 1988; 47:197-205.<br />

26. Wasilewska A, Królicka A. Formation and characterization <strong>of</strong> <strong>hairy</strong> <strong>roots</strong>. Review. Biotechnologia 2005;<br />

4:173-88.<br />

27. Di Cola A, Constantino P, Spano L. Cell commitment and rolB gene expression in the induction <strong>of</strong> root<br />

differentiation. Plant Cell, Tiss Org Cult 1996; 46:203-9.<br />

28. Damiano C, Monticelli S. In vitro fruit trees rooting by Agrobacterium rhizogenes wild type infection.<br />

Electron J Biotechnol 1998; 1:189-95.<br />

29. Giri A, Ravindra ST, Dhingra V, Narasu ML. Influence <strong>of</strong> different strains <strong>of</strong> Agrobacterium rhizogenes on<br />

induction <strong>of</strong> <strong>hairy</strong> <strong>roots</strong> and artemisinin production in Artemisia annua. Curr Sci 2001; 81:378-82.<br />

30. Hu ZB, Alfermann AW. Diterpenoid production in <strong>hairy</strong> root cultures <strong>of</strong> Salvia miltiorrhiza. Phytochem<br />

1993; 32:699-703.<br />

31. Królicka A, Staniszewska I, Bielawski K, Maliński E, Szafranek J, Łojkowska E. <strong>Establishment</strong> <strong>of</strong> <strong>hairy</strong><br />

<strong>roots</strong> cultures <strong>of</strong> Ammi majus. Plant Sci 2001; 160:259-64.<br />

Otrzymywanie korzeni włośnikowatych <strong>Rhodiola</strong> <strong>kirilowii</strong> z użyciem<br />

Agrobacterium rhizogenes LBA 9402<br />

Monika Zych 1 , Agnieszka Pietrosiuk 1** , Monika KARASIEWICZ 2 ,<br />

Anna Bogacz 2 , Radosław Kujawski 2 , Przemysław M. Mrozikiewicz 2 ,<br />

ANNA KRAJEWSKA-PATAN 2 , Mirosława Furmanowa 1<br />

1<br />

Katedra i Zakład Biologii i Botaniki Farmaceutycznej<br />

Warszawski Uniwersytet Medyczny<br />

ul. Banacha 1<br />

02-097 Warszawa<br />

2<br />

Instytut Roślin i Przetworów Zielarskich<br />

ul. Libelta 27<br />

61-707 Poznań<br />

*,** autorzy, do których należy kierować korespondencję:<br />

e-mail: zych_monika@yahoo.de, agnieszka.pietrosiuk@wum.edu.<strong>pl</strong><br />

S t r e s z c z e n i e<br />

Po raz pierwszy korzenie włośnikowate w rodzaju <strong>Rhodiola</strong> otrzymano na drodze infekcji<br />

siewek <strong>Rhodiola</strong> <strong>kirilowii</strong> przy użyciu Agrobacterium rhizogenes LBA 9402. Pierwsze korzenie<br />

transgeniczne pojawiły się na eks<strong>pl</strong>antatach roślinnych 11 dni po infekcji. Proces transformacji<br />

potwierdzono przy użyciu techniki PCR z zastosowaniem specyficznych starterów<br />

dla am<strong>pl</strong>ifikacji genów rol B, aux 1 i vir D. Analiza DNA wykazała włączenie do genomu<br />

rośliny genów rol B i aux 1 z <strong>pl</strong>azmidu Ri Agrobacterium rhizogenes.<br />

Słowa kluczowe: <strong>Rhodiola</strong> <strong>kirilowii</strong>, Agrobacterium rhizogenes, korzenie włośnikowate, gen rol B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!