21.11.2014 Views

Alpine Mass Movements: Implications for hazard assessment and ...

Alpine Mass Movements: Implications for hazard assessment and ...

Alpine Mass Movements: Implications for hazard assessment and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Alpine</strong> <strong>Mass</strong> <strong>Movements</strong>:<br />

<strong>Implications</strong> <strong>for</strong> <strong>hazard</strong><br />

<strong>assessment</strong> <strong>and</strong> mapping<br />

Seite 1


Seite 2<br />

Inhalt<br />

Seite 3<br />

Florian Rudolf-Miklau, Richard Bäk, Franz Schmid, Christoph Skolaut:<br />

Hazard Mapping <strong>for</strong> <strong>Mass</strong> <strong>Movements</strong>: Strategic Importance <strong>and</strong><br />

Transnational Development of St<strong>and</strong>ards in the ASP-Project ADAPTALP<br />

Seite 12 6<br />

Imprint / Disclosure<br />

Federal Ministry of Agriculture, Forestry, Environment <strong>and</strong> Water Management,<br />

Marxergasse 2, 1030 Vienna, Austria.<br />

Verein der Diplomingenieure der Wildbach- und Lawinenverbauung,<br />

Bergheimerstrasse 57, 5021 Salzburg, Austria<br />

Editorial Team:<br />

Florian Rudolf-Miklau, Richard Bäk, Christoph Skolaut <strong>and</strong> Franz Schmid<br />

Florian Rudolf-Miklau:<br />

Principles of Hazard Assessment <strong>and</strong> Mapping<br />

Richard Bäk, Hugo Raetzo, Karl Mayer,<br />

Andreas von Poschinger, Gerlinde Posch-Trözmüller:<br />

Mapping of Geological Hazards: Methods, St<strong>and</strong>ards <strong>and</strong><br />

Procedures (State of Development) - Overview<br />

Mateja Jemec & Marko Komac:<br />

An Overview of Approaches <strong>for</strong> Hazard Assessment<br />

of Slope <strong>Mass</strong> <strong>Movements</strong><br />

Seite 14<br />

Seite 24<br />

Seite 48<br />

Coordination:<br />

Barbara Kogelnig-Mayer<br />

Layout:<br />

Studio Kopfsache, Mondsee<br />

Cite as:<br />

BMLFUW (2011): <strong>Alpine</strong> <strong>Mass</strong> <strong>Movements</strong>: <strong>Implications</strong> <strong>for</strong> <strong>hazard</strong> <strong>assessment</strong><br />

<strong>and</strong> mapping, Special Edition of Journal of Torrent, Avalanche, L<strong>and</strong>slide <strong>and</strong><br />

Rock Fall Engineering No. 166.<br />

This publication was implemented within the framework of EU-project<br />

AdaptAlp, Workpackage 5, <strong>and</strong> is co-financed by the European Regional<br />

Development Fund (ERDF)<br />

BLOCK 1: Key-note papers<br />

Rol<strong>and</strong> Norer:<br />

Legal Framework <strong>for</strong> Assessment <strong>and</strong> Mapping of Geological Hazards<br />

on the International, European <strong>and</strong> National Levels<br />

Karl Mayer, Bernhard Lochner:<br />

Wolfram Bitterlich:<br />

Internationally Harmonized Terminology <strong>for</strong><br />

Wildbachverbauung und Ökologie Widerspruch oder sinnvolle Ergänzung?<br />

Geological Risk: Glossary (Overview)<br />

Michael Mölk, Thomas Sausgruber, Richard Bäk, Arben Kociu:<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment <strong>for</strong><br />

Rapid <strong>Mass</strong> <strong>Movements</strong> (Rock Fall <strong>and</strong> L<strong>and</strong>slide) in Austria<br />

Seite 82 Seite 70 Seite 64<br />

Hugo Raetzo, Bernard Loup:<br />

Geological Hazard Assessment in Switzerl<strong>and</strong><br />

Seite 94<br />

Cover picture: Großhangbewegung Rindberg, Gde. Sibratsgfäll, Vorarlberg<br />

Source: die.wildbach<br />

BLOCK 2<br />

Stefano Campus:<br />

L<strong>and</strong>slide Mapping in Piemonte (Italy):<br />

Danger, Hazard & Risk<br />

Seite 102


Seite 4<br />

Inhalt<br />

Seite 5<br />

Marko Komac, Mateja Jemec:<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment<br />

<strong>for</strong> Rapid <strong>Mass</strong> <strong>Movements</strong> in Slovenia<br />

Seite 108<br />

BLOCK 2: Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Karl Mayer, Andreas von Poschinger:<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment <strong>for</strong><br />

Geological Dangers (<strong>Mass</strong> <strong>Movements</strong>) in Bavaria<br />

Didier Richard:<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment<br />

<strong>for</strong> Rapid <strong>Mass</strong> <strong>Movements</strong> in France<br />

Pere Oller, Marta González, Jordi Pinyol, Jordi Marturià, Pere Martínez:<br />

Goeo<strong>hazard</strong>s Mapping in Catalonia<br />

Claire Foster, Matthew Harrison & Helen J. Reeves:<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment <strong>for</strong><br />

<strong>Mass</strong> <strong>Movements</strong> in Great Britain<br />

Karl Mayer, Bernhard Lochner:<br />

International Comparison: Summary of the Expert<br />

Hearing in Bolzano on 17 March 2010<br />

Seite 158 Seite 150 Seite 142 Seite 130 Seite 118


Seite 6<br />

Seite 7<br />

Zusammenfassung:<br />

<strong>Mass</strong>enbewegungen (Steinschlag, Rutschungen, Felsgleitungen) bedrohen den alpinen<br />

Lebensraum und verursachen zahlreiche Risiken. Durch die intensive Raumnutzung in den<br />

Bergtälern besteht ein zunehmender Bedarf an genauen Gefahrenkarten für diese Gefahrenarten.<br />

Aufgrund fehlender Daten und zuverlässiger Methoden für die Gefahrenbeurteilung<br />

wurden bisher keine generellen St<strong>and</strong>ards für die Gefahrdarstellung von Rutschungen und<br />

Steinschlägen entwickelt. Die Unsicherheit in der Beurteilung der Gefahren wird durch den<br />

Einfluss des Klimaw<strong>and</strong>els noch erhöht. Das Projekt ADAPTALP zielt darauf ab, diese Lücke<br />

durch die Entwicklung transnationaler St<strong>and</strong>ards für die Gefahrenzonenplanung für <strong>Mass</strong>enbewegungen<br />

zu schließen.<br />

FLORIAN RUDOLF-MIKLAU, RICHARD BÄK, FRANZ SCHMID, CHRISTOPH SKOLAUT<br />

Hazard Mapping <strong>for</strong> <strong>Mass</strong> <strong>Movements</strong>:<br />

Strategic Importance <strong>and</strong> Transnational Development<br />

of St<strong>and</strong>ards in the ASP-Project ADAPTALP<br />

Gefahrendarstellung von <strong>Mass</strong>enbewegungen:<br />

Strategische Bedeutung und länderübergreifende<br />

Entwicklung von St<strong>and</strong>ards im Projekt ADALPTALP<br />

Summary:<br />

<strong>Mass</strong> movements (rock falls, l<strong>and</strong>slides, rock slides) are major threats <strong>for</strong> the <strong>Alpine</strong> living<br />

space <strong>and</strong> cause various risks. Due to the intensive l<strong>and</strong> use in the mountain valleys, there is<br />

an urgent need <strong>for</strong> reliable <strong>hazard</strong> maps <strong>for</strong> these types of <strong>hazard</strong>s. Missing data <strong>and</strong> the lack<br />

of reliable methods <strong>for</strong> the <strong>assessment</strong> of <strong>hazard</strong>s has obstructed the development of general<br />

st<strong>and</strong>ards in <strong>hazard</strong> mapping <strong>for</strong> l<strong>and</strong>slides <strong>and</strong> rock fall. The uncertainties <strong>and</strong> inaccuracies<br />

of models are increased by the impact of climate change. The project ADAPTALP (within the<br />

<strong>Alpine</strong> Space Program) aims to close this gap by creating transnational st<strong>and</strong>ards <strong>for</strong> <strong>hazard</strong><br />

mapping concerning geological risks (mass movements).<br />

<strong>Alpine</strong> Space at risk: Importance of <strong>hazard</strong> maps<br />

In the <strong>Alpine</strong> countries, natural <strong>hazard</strong>s constitute<br />

a security risk in many regions. Floods, debris<br />

flows, avalanches, l<strong>and</strong>slides <strong>and</strong> rock falls<br />

threaten people, their living environments, their<br />

settlements <strong>and</strong> economic areas, transport routes,<br />

supply lines, <strong>and</strong> other infrastructure. They<br />

constitute a major threat to the bases of existence<br />

of the population. The increasing settlement<br />

pressure <strong>and</strong> area consumption, the opening up<br />

of transport routes in the Alps as well as strong<br />

growth rates in tourism have brought about a<br />

considerable spatial extension of endangered<br />

areas. With the rising dem<strong>and</strong>s on welfare <strong>and</strong><br />

quality of life, the need <strong>for</strong> safety <strong>and</strong> protection<br />

of the population increased as well.<br />

Hazard maps that show areas at risk by natural<br />

<strong>hazard</strong>s are of paramount importance <strong>for</strong> the<br />

development of <strong>Alpine</strong> regions. The maps count<br />

among the active planning measures in natural<br />

<strong>hazard</strong> management <strong>and</strong> serve to the safety of<br />

existing settlements <strong>and</strong> their inhabitants as<br />

well as to the steering of l<strong>and</strong>-use only outside<br />

of endangered areas. Since the beginning of<br />

1970’s, these maps have been established in<br />

several countries (Switzerl<strong>and</strong>, Austria, France)<br />

<strong>for</strong> the <strong>hazard</strong>s “flood”, “debris flow” <strong>and</strong><br />

“snow avalanches”. However there are no legal<br />

(technical) st<strong>and</strong>ards available <strong>for</strong> the outline<br />

of areas endangered by mass movements (e.g.<br />

l<strong>and</strong>slides, rock fall). The <strong>assessment</strong> of these<br />

processes concerning the frequency <strong>and</strong> intensity<br />

of events (disasters) is difficult <strong>and</strong> dem<strong>and</strong>ing<br />

due to the lack of measurements <strong>and</strong> basic data.<br />

In addition, the knowledge of geotechnical<br />

parameters, physical properties <strong>and</strong> triggering<br />

mechanisms of the displacement processes still<br />

are fragmentary, although wide progress were<br />

achieved by improved monitoring methods <strong>and</strong><br />

the detailed analysis of past events.<br />

Recently the expansion of settlement areas<br />

in <strong>Alpine</strong> valleys <strong>and</strong> the growing vulnerability of<br />

human facilities have significantly increased the risk<br />

<strong>for</strong> natural disasters caused by mass movements.<br />

The growing dem<strong>and</strong> <strong>for</strong> <strong>hazard</strong> maps that cover<br />

these risky processes has initiated strong ef<strong>for</strong>ts in all<br />

mountainous countries in Europe to develop exact<br />

methods <strong>and</strong> appropriate st<strong>and</strong>ards that enable the<br />

production of <strong>hazard</strong> maps <strong>for</strong> mass movements<br />

with sufficient accuracy. By bundling these initiatives<br />

the ASP (<strong>Alpine</strong> Space Program/Funding Initiative of<br />

the European Commission) project ADAPTALP – in<br />

cooperation with other projects like SAFELAND,<br />

PERMANET or MASSMOVE – aims at the<br />

development of technical st<strong>and</strong>ards <strong>and</strong> provision<br />

of harmonized quality criteria <strong>for</strong> all member states.


Seite 8<br />

Seite 9<br />

<strong>Mass</strong> movements: Hazard processes on slopes<br />

A variety of processes exist by which materials<br />

can be moved through the slope system. These<br />

processes are generically known as mass<br />

movement or mass wasting. <strong>Mass</strong> movements<br />

per definition are movements of bodies of soil,<br />

sediments such as residual soil <strong>and</strong> bed rock<br />

which usually occur along steep-sided slopes <strong>and</strong><br />

mountains. <strong>Mass</strong> movements can be classified<br />

due to the rate of movement (rapid or slow), the<br />

type of movement (falling, sliding or flowing) <strong>and</strong><br />

to the type of material involved (soil, sediments or<br />

rock debris).<br />

Fig. 1: L<strong>and</strong> slide in cohesive soil resulting from slope<br />

instabilities <strong>and</strong> saturation of material by water.<br />

Abb. 1: Rutschung in bindigem Boden resultierend aus<br />

Hanginstabilitäten und Wassersättigung des Bodens.<br />

<strong>Mass</strong> movements have direct <strong>and</strong><br />

indirect impact on a number of human activities.<br />

The steepness <strong>and</strong> structural stability of slopes<br />

determines their suitability <strong>for</strong> agriculture, <strong>for</strong>estry,<br />

<strong>and</strong> human settlement. Instable slopes can also<br />

become a <strong>hazard</strong> to humans if their materials<br />

move rapidly through the process of mass wasting.<br />

L<strong>and</strong>slides can suddenly rush down a steep slope<br />

causing great destruction across a wide area<br />

of habitable l<strong>and</strong> <strong>and</strong> sometimes also floods by<br />

damming up bodies of water. Expenses related to<br />

l<strong>and</strong>slides include actual damages to structures<br />

or property, as well as loss of tax revenues on<br />

devalued properties, reduced real estate values<br />

in l<strong>and</strong>slide prone areas, loss of productivity of<br />

agricultural l<strong>and</strong>s affected by l<strong>and</strong>slides, <strong>and</strong> loss<br />

of industrial productivity because of interruption<br />

of transportation systems by l<strong>and</strong>slides. Not only<br />

rapid types of mass movements are harmful.<br />

Slow movement of creep does more long term<br />

economic damage to roads, railroads, building<br />

structure <strong>and</strong> underground pipes.<br />

The operation of mass movement<br />

processes relies upon the development of<br />

instability in the slope system. The predominant<br />

source of stress is the gravitational <strong>for</strong>ce. Other<br />

factors that affect mass movements are the<br />

steepness of slopes, the lithological property of<br />

the slope materials, <strong>and</strong> the amount of water in<br />

the material. The two most important parameters<br />

in mass movement is the angle of friction <strong>and</strong> the<br />

cohesion.<br />

The magnitude of the gravitational<br />

<strong>for</strong>ce is related to the angle of the slope <strong>and</strong> the<br />

weight of slope sediments <strong>and</strong> rock. The following<br />

equation models this relationship:<br />

F = W sin Ø<br />

where<br />

F is gravitational <strong>for</strong>ce,<br />

W is the weight of the material occurring at<br />

some point on the slope, <strong>and</strong><br />

Ø is the angle of the slope.<br />

The stability of a slope depends on the<br />

relationship between the stresses applied to the<br />

materials that make up the slope <strong>and</strong> their internal<br />

strength. <strong>Mass</strong> movement occurs when the stresses<br />

exceed the internal strength. Slopes composed of<br />

loose materials, such as s<strong>and</strong> <strong>and</strong> gravel, derive<br />

their internal strength from frictional resistance,<br />

which depends on the size, shape, <strong>and</strong> arrangement<br />

of the particles. Slopes consisting of silt <strong>and</strong> clay<br />

particles obtain it from particle cohesion, which is<br />

controlled by the availability of moisture in the soil.<br />

Rock slopes generally have the greatest internal<br />

strength due to the crystalline structures.<br />

Instability is not always caused by an<br />

increase in stress. In some cases, the internal<br />

strength of the materials can be reduced resulting<br />

in the triggering of a mass movement. Failure of<br />

the slope material can occur over a range of time<br />

scales. Some types of mass movement involve<br />

rather rapid, spontaneous events. Sudden failures<br />

tend to occur when the stresses exerted on the<br />

slope materials greatly exceed their strength <strong>for</strong><br />

short periods of time. <strong>Mass</strong> movement can also<br />

be a less continuous process that occurs over long<br />

periods of time. Slow failures often occur when<br />

the applied stresses only just exceed the internal<br />

strength of the slope system.<br />

Many factors can act as triggers <strong>for</strong> slope<br />

failure. One of the most common is prolonged<br />

or heavy rainfall. Rainfall can lead to mass<br />

movement through three different mechanisms.<br />

Often these mechanisms do not act alone. The<br />

saturation of soil materials with water increases<br />

the weight of slope materials which then leads<br />

to greater gravitational <strong>for</strong>ce. Saturation of soil<br />

materials can also reduce the cohesive bonds<br />

between individual soil particles resulting in the<br />

reduction of the internal strength of the slope.<br />

Lastly, the presence of bedding planes in the slope<br />

material can cause material above a particular<br />

plane below ground level to slide along a surface<br />

lubricated by percolating moisture.<br />

Additionally, a large variety of other<br />

trigger mechanism <strong>for</strong> mass movement other than<br />

the gravitational are known, such as:<br />

• Earthquake shocks cause sections of<br />

mountains <strong>and</strong> hills to break off <strong>and</strong> slide<br />

down.<br />

• Human modification of the l<strong>and</strong> or<br />

weathering <strong>and</strong> erosion help loosen large<br />

chunks of earth <strong>and</strong> start them sliding<br />

downhill.<br />

• Vibrations from machinery, traffic, weight<br />

loading from accumulation of snow,<br />

stockpiling of rock, from waste piles <strong>and</strong><br />

from buildings <strong>and</strong> other structures.<br />

In the Alps, mass movements occur in a wide<br />

range of processes consisting of bedrock <strong>and</strong> soil<br />

or a mixture of both.<br />

<strong>Mass</strong> movement on hard rock slopes<br />

is often dramatic <strong>and</strong> quick. They involve the<br />

downward movement of small rock fragments<br />

pried loose by gravitational stress, the enlargement<br />

of joints during weathering <strong>and</strong>/or freeze-thaw<br />

processes (rock fall). Larger scale, down slope<br />

movement of rock can also occur along welldefined<br />

joints or bedding planes. This type of<br />

movement is called rock slide. Rock slides often<br />

occur when a fracture plane develops causing<br />

overlying materials to slide down slope.<br />

Slopes <strong>for</strong>med from clays <strong>and</strong> silt<br />

sediments display somewhat unique mass<br />

movement processes. Two common types of<br />

mass movements in these cohesive materials are<br />

rotational slips (slumps) <strong>and</strong> mudflows. Both of<br />

these processes occur over very short time periods.<br />

Rotational slips or slumps occur along clearly<br />

defined planes of weakness which generally have<br />

a concave <strong>for</strong>m beneath the earth's surface. These<br />

processes can be caused by a variety of factors.<br />

The most common mechanical reason <strong>for</strong> them<br />

to occur is erosion at the base of the slope which<br />

reduces the support <strong>for</strong> overlying sediments.<br />

Mudflows occur when slope materials become<br />

so saturated that the cohesive bonds between<br />

particles is lost. In a mudflow there is enough<br />

water to allow the mixture to flow easily, as a<br />

viscous stream. Mudflows can occur on very low<br />

slope angles because internal particle frictional<br />

resistance <strong>and</strong> cohesion is negligible.


Seite 10<br />

Seite 11<br />

Type<br />

Fall<br />

Topple<br />

An earth flow is slower moving than a mudflow<br />

<strong>and</strong> involves a mass of material that retains rather<br />

distinct boundaries as it moves. “Debris flow” is<br />

a term used generally <strong>for</strong> rapid mass movements<br />

consisting of water <strong>and</strong> residual soil. The term<br />

implies a heterogeneous mixture of materials<br />

including a considerable fraction of particles<br />

that are coarser than the particles in mud. Debris<br />

flows occur on slopes as well as in laterally<br />

confined channels.<br />

Bedrock<br />

Rock fall<br />

Rock<br />

avalanche<br />

Rock<br />

topple<br />

Engineering soil<br />

predominantly …<br />

… coarse<br />

(Debris fall)<br />

(Debris<br />

topple)<br />

… fine<br />

(Earth fall)<br />

(Earth topple)<br />

Slide Rock slide Debris slide Earth slide<br />

Spread<br />

Flow<br />

Rock<br />

spread<br />

(Rock<br />

flow)<br />

(Debris<br />

spread)<br />

Debris flow<br />

(in channels)<br />

(Earth spread)<br />

Earth flow<br />

Tab. 1: Types of mass movements (classification) after<br />

Raetzo.<br />

Tab. 1: Typen von <strong>Mass</strong>enbewegungen (Klassifikation)<br />

ASP-project ADAPTALP: Adaptation of<br />

natural <strong>hazard</strong> management to climate change<br />

Climate change is, to a large extent, constituted by<br />

increasing temperatures <strong>and</strong> changed precipitation<br />

patterns. Any change of these critical factors<br />

has implications on the frequency <strong>and</strong> extent of<br />

natural <strong>hazard</strong>s including mass movements. A<br />

major impact on the intensity of mass movements<br />

at high altitudes (above 2300 m in the Alps) has<br />

thaw of permafrost <strong>and</strong> the retreat of glaciers due<br />

to the increasing temperatures. The uncertainties<br />

<strong>and</strong> the increase of natural <strong>hazard</strong>s due to the<br />

impacts of climate change require concerted<br />

management in the <strong>Alpine</strong> Space. It must be<br />

managed on a transnational, national, regional<br />

<strong>and</strong> local scale to effectively save human life,<br />

settlements <strong>and</strong> infrastructure. Nevertheless, there<br />

is still a lack of precise data taking climate change<br />

into account. The result is an insufficient accuracy<br />

of available models <strong>and</strong> inaccurate prediction of<br />

natural <strong>hazard</strong> <strong>and</strong> menacing catastrophic events.<br />

The impact of climate change increases these<br />

uncertainties.<br />

Harmonized cross-sectoral <strong>hazard</strong><br />

<strong>assessment</strong> <strong>and</strong> <strong>hazard</strong> mapping must be balanced<br />

on a transnational level. The ADAPTALP project<br />

(www.adaptalp.org) focuses on the harmonization<br />

of the various national approaches <strong>and</strong> methods<br />

<strong>for</strong> the <strong>assessment</strong> of <strong>hazard</strong>s related to mass<br />

movements. Along with the harmonization<br />

of terminology, an important issue tackled by<br />

ADAPTALP is the provision of reliable data <strong>and</strong><br />

models <strong>for</strong> this kind of processes. The more<br />

reliable the in<strong>for</strong>mation basis, the more efficiently<br />

adaptation strategies on local <strong>and</strong> regional level<br />

can be implemented. The project is based on an<br />

integrated transnational approach. That means<br />

that a comprehensive comparison of all available<br />

st<strong>and</strong>ards <strong>and</strong> methods is carried out covering all<br />

countries in the <strong>Alpine</strong> region (Austria, Germany,<br />

Italy, France, Switzerl<strong>and</strong>, Slovenia) <strong>and</strong> other<br />

European states with a considerable share of<br />

mountain regions (Great Britain, Spain, Norway).<br />

The transnational exchange of knowledge <strong>and</strong><br />

the international harmonization in method <strong>and</strong><br />

procedure will raise the quality of <strong>hazard</strong> <strong>assessment</strong><br />

considerably. A general “state-of-the-art” <strong>for</strong> <strong>hazard</strong><br />

mapping concerning mass movements seems to be<br />

within reach.<br />

Fig. 2: Transnational st<strong>and</strong>ards in <strong>hazard</strong> mapping are of major importance <strong>for</strong> the prevention of<br />

catastrophic events according to l<strong>and</strong> use in endangered areas.<br />

Abb. 2: Die Entwicklung von länderübergreifenden St<strong>and</strong>ards in der Gefahrendarstellung ist bei<br />

der Prävention von Katastrophenereignissen von großer Bedeutung, da gefährdete Gebiete immer<br />

stärker genutzt werden.<br />

Hazard maps <strong>for</strong> mass movements<br />

Hazard zones are designated areas threatened<br />

by natural risks such as avalanches, l<strong>and</strong>slides or<br />

flooding. The <strong>for</strong>mulation of these <strong>hazard</strong> zones is<br />

an important aspect of spatial planning. The basis<br />

<strong>for</strong> <strong>hazard</strong> maps is a comprehensive <strong>assessment</strong><br />

of geological <strong>and</strong> hydro(geo)logical framework<br />

conditions, slope instabilities, relevant triggering<br />

mechanisms, properties of displacement<br />

processes, potential risks <strong>and</strong> the vulnerability<br />

of endangered areas (objects). Consequently it is<br />

essential to distinguish the three aspects of mass<br />

movement <strong>assessment</strong> <strong>and</strong> mapping:<br />

• Dangers (susceptibilities): Assessment<br />

<strong>and</strong> characterization of threat (typology,<br />

morphology, inventory of mass movements).<br />

• Hazards: Spatial <strong>and</strong> temporal probability,<br />

intensity <strong>and</strong> <strong>for</strong>ecasting of evolution<br />

(scenarios) are needed.<br />

• Risks: Interaction between a threat having<br />

particular <strong>hazard</strong> <strong>and</strong> human activities.<br />

In principle, these theoretical concepts are well<br />

known by experts but<br />

may cause problems in<br />

practice when applied<br />

in a legal framework.<br />

It is not unusual <strong>for</strong><br />

unsuitable types of<br />

<strong>hazard</strong> maps to be<br />

applied <strong>for</strong> the wrong<br />

purposes. For example<br />

it is often to find<br />

l<strong>and</strong>slide inventory<br />

maps used as <strong>hazard</strong><br />

or risk maps.<br />

When mapping<br />

geological <strong>hazard</strong>s<br />

(mass movements) in<br />

principle we have to<br />

distinguish between two situations:<br />

1. Scientific studies on mass movements with no<br />

legal implications (e.g. on l<strong>and</strong> use planning):<br />

Typical cases are studies carried out by<br />

universities (research institutes). The aim of<br />

these studies is to underst<strong>and</strong> the mechanical<br />

features of instability or to study different ways of<br />

evolution of the phenomenon (scenarios) in order<br />

to assess the susceptibility of investigated areas.<br />

L<strong>and</strong>slide inventories can be made by means of<br />

a historical or morphological approach.<br />

2. Susceptibility/Hazard index/Hazard maps that<br />

have direct (obligatory) consequences <strong>for</strong> l<strong>and</strong><br />

use planning <strong>and</strong> building trade at different<br />

scale: The scale used to present the results of<br />

the <strong>hazard</strong> <strong>assessment</strong> depends on the desired<br />

product (susceptibility map, <strong>hazard</strong> index map,<br />

<strong>hazard</strong> zone map) <strong>and</strong> must be balanced with<br />

the precision requirements according to the<br />

spatial level of application (supra-regional,<br />

regional, local). The legal significance of these<br />

maps requires technical st<strong>and</strong>ards <strong>and</strong> a “stateof-the-art”<br />

concerning <strong>for</strong>mal requirements<br />

(e.g. investigation methods, documentation),


Seite 12<br />

Seite 13<br />

<strong>hazard</strong> <strong>assessment</strong> <strong>and</strong> procedures of the check<br />

<strong>and</strong> approval of the maps.<br />

ADAPTALP (in Work Package 5) will<br />

evaluate, harmonize <strong>and</strong> improve different<br />

methods of <strong>hazard</strong> mapping applied in the <strong>Alpine</strong><br />

area. A main emphasis will be on a comparison<br />

of methods <strong>for</strong> mapping geological <strong>hazard</strong>s in<br />

the individual countries. A glossary will facilitate<br />

interdisciplinary <strong>and</strong> multilingual cooperation as<br />

well as support the harmonization of the various<br />

methods. In selected model regions methods<br />

to adapt risk analysis to the impact of climate<br />

change will be tested. This should support the<br />

development of <strong>hazard</strong> zone planning towards<br />

Fig. 3: Example <strong>for</strong> a susceptibility map of the Arlberg region<br />

(Vorarlberg/Austria) after Ruff<br />

Abb. 3: Beispiel einer Suszeptibilitätskarte der Arlbergregion<br />

(Vorarlberg/Österreich) nach Ruff<br />

a climate change adaptation strategy. The results<br />

will be summarized in a synthesis report.<br />

These fields of research within the<br />

project contain the topics to work out the<br />

“minimum st<strong>and</strong>ards” (minimal requirements) <strong>for</strong><br />

the creation of danger (susceptibility) <strong>and</strong> <strong>hazard</strong><br />

maps <strong>for</strong> l<strong>and</strong>slides. The first step is the evaluation<br />

of the “state of the art” in <strong>hazard</strong> mapping in each<br />

involved country. Two main questions will be<br />

answered by the project:<br />

• What kinds of danger (susceptibility),<br />

<strong>hazard</strong> <strong>and</strong> risk maps are officially applied<br />

in each country?<br />

• Which st<strong>and</strong>ards are these maps based on?<br />

The second step will be the “harmonization” of<br />

the different methods, which are used in several<br />

countries. There<strong>for</strong>e similarities should be worked<br />

out <strong>and</strong> the “least common denominator” in the<br />

methods of <strong>hazard</strong> mapping should be found.<br />

The final step will be the creation of guidelines<br />

<strong>and</strong> recommendation, which include the results<br />

of this “harmonization”. They will include<br />

“minimum requirements <strong>for</strong> the creation of danger<br />

(susceptibility), <strong>hazard</strong> <strong>and</strong> risk maps”.<br />

Other important results – developed in cooperation<br />

with other projects as MASSMOVE – will be:<br />

• Definition of minimal requirements <strong>for</strong> the<br />

collection of the relevant data of endangered<br />

areas <strong>and</strong> cartographic representation of<br />

slides <strong>and</strong> rock falls.<br />

• Specification of minimal requirements <strong>for</strong><br />

the spatial description of the dangers.<br />

• Development of minimal requirements <strong>for</strong><br />

the determination of the <strong>hazard</strong> potential of<br />

slides <strong>and</strong> rock falls.<br />

• Development of tools <strong>for</strong> the reduction of<br />

the risk potential by consideration of the<br />

<strong>hazard</strong>s during l<strong>and</strong> use planning by the<br />

local administrations <strong>and</strong> during the l<strong>and</strong><br />

use as well as <strong>for</strong> the planning of preventive<br />

measures.<br />

Anschrift der Verfasser / Authors’ addresses:<br />

DI Dr. Florian Rudolf-Miklau<br />

Bundesministerium für L<strong>and</strong>- und Forstwirtschaft,<br />

Umwelt und Wasserwirtschaft,<br />

Abteilung IV/5, Wildbach- und Lawinenverbauung<br />

Federal Ministry <strong>for</strong> Agriculture, Forestry,<br />

Enviroment <strong>and</strong> Water Management,<br />

Department IV/5, Torrent <strong>and</strong> Avalanche Control<br />

1030 Wien, Marxergasse 2<br />

Tel.: (+43 1) 71 100 - 7333<br />

FAX: (+43 1) 71 100- 7399<br />

Mail: florian.rudolf-miklau@lebensministerium.at<br />

Homepage: http://www.lebensministerium.at/<strong>for</strong>st<br />

Dr. Richard Bäk<br />

Amt der Kärntner L<strong>and</strong>esregierung, Abt. 15 Umwelt<br />

Unterabteilung Geologie und Bodenschutz,<br />

A – 9020 Klagenfurt, Flatschacher Straße 70<br />

Tel: +43 - (0) 50536 - 31510<br />

Fax: +43 - (0) 50536 - 41500<br />

Mob. +43 - (0) 664 - 8053631510<br />

Mail: richard.baek@ktn.gv.at<br />

DI Franz Schmid<br />

Bundesministerium für L<strong>and</strong>- und Forstwirtschaft,<br />

Umwelt und Wasserwirtschaft,<br />

Abteilung IV/5, Wildbach- und Lawinenverbauung<br />

Federal Ministry <strong>for</strong> Agriculture, Forestry,<br />

Enviroment <strong>and</strong> Water Management, Department<br />

IV/5, Torrent <strong>and</strong> Avalanche Control<br />

1030 Wien, Marxergasse 2<br />

Tel.: (+43 1) 71 100 - 7338<br />

FAX: (+43 1) 71 100- 7399<br />

Mail: franz.schmid@lebensministerium.at<br />

Homepage: http://www.lebensministerium.at/<strong>for</strong>st<br />

DI Christoph Skolaut<br />

Wildbach- und Lawinenverbauung,<br />

Sektion Salzburg<br />

Torrent <strong>and</strong> Avalanche Control, District Salzburg<br />

5020 Salzburg, Bergheimerstraße 57<br />

Tel.: (+43 662) 871853 – 303<br />

FAX: (+43 662) 870215<br />

Mail: christoph.skolaut@die-wildbach.at<br />

Homepage: http://www.lebensministerium.at/<strong>for</strong>st<br />

Literatur / References:<br />

BATES A. L., JACKSON J. A.:<br />

Glossary of Geology. American Geological Institute, 3rd Edition, 1987.<br />

CAMPUS S., BABERO S., BOVO S., FORLATI F. (EDS.):<br />

Evaluation <strong>and</strong> prevention of natural risks. Taylor <strong>and</strong> Francis/Balkema,<br />

2007.<br />

GLADE T., ANDERSON M., CROZIER M. J. (HRG.):<br />

L<strong>and</strong>slide Hazards <strong>and</strong> Risk. John Wiley & Sons, Chichester, 2005.<br />

GRUNER U., WYSS R.:<br />

Anleitung zur Analyse von Rutschungen. Swiss Bull. angew. Geol., Vol.<br />

14/1+2, 2009.<br />

RAETZO, H. , RICKLI, C.:<br />

Rutschungen. In: Bezzola G.R, & Hegg, C. (Hrsg.) 2007: Ereignisanalyse<br />

Hochwasser 2005, Teil 1 – Prozesse, Schäden und erste Einordnung.<br />

Bundesamt für Umwelt BAFU, Eidgenössische Forschungsanstalt WSL.<br />

Umwelt-Wissen Nr. 0707, 2007.<br />

RUFF, M.:<br />

GIS-gestützte Risikonanalyse für Rutschungen und Felsstürze in den<br />

Ostalpen (Vorarlberg, Österreich). Georisikokarte Vorarlberg. Diss. Univ.<br />

Karlsruhe, 2005.<br />

SIDLE R. C., OCHIAI H.:<br />

L<strong>and</strong>slides processes, prediction <strong>and</strong> l<strong>and</strong> use. American Geographical<br />

Union, water resources monograph 18, Springer Verlag, 2006.


Key-note papers<br />

Seite 14<br />

Seite 15<br />

FLORIAN RUDOLF-MIKLAU<br />

Principles of Hazard Assessment <strong>and</strong> Mapping<br />

Grundlagen der Analyse und<br />

Bewertung von Naturgefahren<br />

Summary:<br />

The article summarizes the general principles <strong>for</strong> the <strong>assessment</strong> of natural <strong>hazard</strong>s. The<br />

main emphasis lies on the basic approaches <strong>and</strong> methods of <strong>hazard</strong> <strong>assessment</strong> with special<br />

attention to the “frequency-intensity-concept” (including the deficits of this approach). The<br />

strategic importance of “preventive” planning with regards to the use <strong>and</strong> development of<br />

endangered areas in mountain areas is discussed. In addition, a summary of the most important<br />

st<strong>and</strong>ards <strong>and</strong> categories of <strong>hazard</strong> (risk) mapping is provided.<br />

Zusammenfassung:<br />

Der Beitrag fasst die generellen Grundlagen der Analyse und Bewertung von Naturgefahren<br />

zusammen. Der Schwerpunkt liegt im Bereich der grundlegenden Ansätze und Methoden für<br />

die Gefahrenbewertung, wobei das „Häufigkeits-Intensitäts-Konzept“ besondere Beachtung<br />

findet (einschließlich der Defizite dieses Ansatzes). Weiters wird auf die strategische Bedeutung<br />

der „präventiven Planung“ hinsichtlich der Nutzung und Entwicklung von gefährdeten<br />

Gebieten im Gebirge eingegangen. Abschließend erfolgt eine zusammenfassende Darstellung<br />

der wichtigsten St<strong>and</strong>ards und Kategorien der kartographischen Darstellung von Naturgefahren.<br />

Basic concept of <strong>hazard</strong> <strong>assessment</strong><br />

Effective prevention against natural <strong>hazard</strong>s<br />

requires a better underst<strong>and</strong>ing of the processes<br />

occurring in nature. The primary aim of <strong>hazard</strong><br />

<strong>assessment</strong> is to gain a deep <strong>and</strong> comprehensive<br />

knowledge of these processes in order to provide<br />

accurate prognosis of the expected magnitude<br />

of <strong>hazard</strong>ous events <strong>and</strong> the corresponding<br />

damaging effects. (RUDOLF-MIKLAU in SUDA<br />

ET. AL., 2011 [18.]) Another important dem<strong>and</strong><br />

is the prediction of the time of occurrence <strong>and</strong><br />

duration of a catastrophic event (predictability<br />

<strong>and</strong> advanced warning time; Fig. 1) (RUDOLF-<br />

MIKLAU, 2009 [14.]). The initial purpose of<br />

<strong>hazard</strong> <strong>assessment</strong> is the provision of basic<br />

knowledge <strong>for</strong> the planning of protection<br />

measures (e.g. flood control, avalanche control),<br />

which requires quantitative in<strong>for</strong>mation about<br />

the order <strong>and</strong> magnitude of catastrophic events<br />

<strong>and</strong> their probable damaging consequences on<br />

human health, economic activities, environment,<br />

<strong>and</strong> cultural heritage.<br />

Predictability<br />

Earthquake<br />

Rockfall<br />

seconds<br />

According to the well-established basic concept of<br />

<strong>hazard</strong> <strong>assessment</strong>, the procedure can be divided<br />

in three distinct steps (HÜBL ET AL., 2007 [9.]:<br />

• The survey of basic in<strong>for</strong>mation (data)<br />

• The analysis of <strong>hazard</strong>s (<strong>and</strong> risks)<br />

• The valuation of <strong>hazard</strong>s (<strong>and</strong> risks)<br />

As a rule, the survey of in<strong>for</strong>mation related to<br />

natural <strong>hazard</strong>s focuses on the acquisition of<br />

basic data on relevant factors in nature. The survey<br />

includes “geo-data” (topography, geology, <strong>and</strong><br />

soil), “meteo-data” (climate, weather), “hydrodata”<br />

(precipitation, run-off, <strong>and</strong> groundwater)<br />

<strong>and</strong> “eco-data” (environmental parameters). In<br />

addition, data on past (historic) events represent a<br />

major source of in<strong>for</strong>mation. (RUDOLF-MIKLAU,<br />

2009 [14.]) For the purpose of risk <strong>assessment</strong>,<br />

data <strong>for</strong> natural processes must be combined with<br />

data related to human activities. These sources of<br />

in<strong>for</strong>mation include demographic <strong>and</strong> economic<br />

statistics, data on l<strong>and</strong> use <strong>and</strong> agriculture,<br />

<strong>and</strong> records of damages caused by past events<br />

(BRÜNDL ET AL., 2009 [5.]).<br />

Drought<br />

Debris flow<br />

Floods<br />

Storm<br />

Wildfire<br />

Volcanism<br />

Deceases<br />

Avalanches<br />

L<strong>and</strong>slides<br />

minutes hours days weeks<br />

Fig. 1: Predictability of natural <strong>hazard</strong>s (RUDOLF-MIKLAU, 2009 [14.]).<br />

Abb. 1: Vorhersagbarkeit von Naturgefahren (RUDOLF-MIKLAU, 2009 [14.]).<br />

Advanced warning time(T)


Key-note papers<br />

Seite 16<br />

Seite 17<br />

Management Presentation Validation Survey<br />

HAZARDS<br />

Hazard analysis<br />

Localization <strong>and</strong> topography<br />

Triggering mechanism<br />

Displacement processes/scenarios<br />

Frequency/intensitiy<br />

Hazard <strong>assessment</strong><br />

Levels of <strong>hazard</strong> (risk)<br />

Classification of intensity<br />

Intensity criteria: e.g. pressure<br />

Process-/Suszeptibility maps<br />

Hazard (in<strong>for</strong>mation) maps<br />

Hazard zone maps<br />

The analysis of <strong>hazard</strong>s is subdivided into several<br />

tasks: the survey <strong>and</strong> localization of <strong>hazard</strong><br />

sources, the identification of triggering factors,<br />

the description of the triggering <strong>and</strong> displacement<br />

process <strong>and</strong> the potential effects (impact) on<br />

objects. The results of the <strong>hazard</strong> analysis are<br />

usually mapped in specific types of <strong>hazard</strong> maps<br />

(e.g. susceptibility maps, intensity maps).<br />

The analysis of natural <strong>hazard</strong>s provides a<br />

comprehensive image of the processes, their causes<br />

<strong>and</strong> effects, but requires additional in<strong>for</strong>mation<br />

concerning the order of magnitude of the relevant<br />

event. (RUDOLF-MIKLAU in BOLLSCHWEILER<br />

ET AL., 2011 [3.]) Consequently, the valuation of<br />

<strong>hazard</strong>s aims at the description of magnitude in a<br />

graded manner. Hazards scales, physical intensity<br />

criteria or intensity classifications count among<br />

the established methods to present the magnitude<br />

of events. Usually the intensity of a <strong>hazard</strong>ous<br />

process is functionally related to the frequency<br />

of its occurrence. In practice this “frequencyintensity-concept”<br />

is the preferentially applied<br />

RISKS<br />

Risk analysis<br />

Analysis of damages: direct/indirect damage<br />

Damage potential<br />

Damage scenarios<br />

Risk <strong>assessment</strong><br />

Validation of risks<br />

Risk acceptance (aversion)<br />

Risk map<br />

Cartographical presentation of risks<br />

Risk management<br />

Definition of protection goals<br />

Creation of protection concepts<br />

Management plans<br />

Protection measures<br />

Effectiveness / Efficiancy<br />

Fig. 2: System of<br />

<strong>hazard</strong> <strong>and</strong> risk<br />

management<br />

(RUDOLF-<br />

MIKLAU/SAU-<br />

ERMOSER, 2011<br />

[16.]).<br />

Abb. 2: System<br />

des Gefahrenund<br />

Risikomanagements<br />

(RU-<br />

DOLF-MIKLAU/<br />

SAUERMOSER,<br />

2011 [16.]).<br />

method <strong>for</strong> most natural <strong>hazard</strong>s in order to value<br />

their effects (see below). (HÜBL, 2010 [8.])<br />

Natural <strong>hazard</strong>s in the <strong>Alpine</strong><br />

environment are a complex system consisting<br />

of process chains with multiple interactions<br />

<strong>and</strong> dependencies. Thus the <strong>assessment</strong> of a<br />

<strong>hazard</strong> is not a mono-causal procedure but<br />

must take into account a large variety of more<br />

or less probable courses. (RUDOLF-MIKLAU<br />

in BOLLSCHWEILER ET AL., 2011 [3.]) The<br />

“scenario analysis” was established in risk<br />

management as an appropriate method to<br />

solve the complexity of comprehensive <strong>hazard</strong><br />

<strong>assessment</strong>. Scenarios implicate that not only a<br />

single process but all relevant developments of<br />

an event within a defined period of recurrence<br />

are taken into account. (MAZZORANA ET AL.,<br />

2009 [12.]) In practice this means:<br />

• Several <strong>assessment</strong> methods (e.g.<br />

morphologic, historic, stochastic) are<br />

applied.<br />

• Models have to be calibrated with<br />

regionally measurements <strong>and</strong> data from<br />

documented events ahead of application.<br />

• The application of physical models is not<br />

only per<strong>for</strong>med <strong>for</strong> one single data set but<br />

<strong>for</strong> a frequency range of the input values.<br />

• Scenarios are checked concerning their<br />

plausibility.<br />

Approaches to <strong>hazard</strong> <strong>assessment</strong>: The “frequencymagnitude-concept”<br />

<strong>for</strong> design events (DE)<br />

According to ONR 24800:2008 [13.] an event<br />

represents the entirety of all processes occurring<br />

in a temporal, areal <strong>and</strong> causal relationship <strong>and</strong><br />

corresponds to a specific probability of recurrence<br />

<strong>and</strong> intensity. The extreme event represents the<br />

maximum magnitude observed in the concerning<br />

catchment or risk area. The design event (DE)<br />

is applied as reference value (criteria) <strong>for</strong> the<br />

planning of protection measures <strong>and</strong> <strong>hazard</strong><br />

maps <strong>and</strong> represents the striven level of safety<br />

(acceptable risk). (RUDOLF-MIKLAU, 2009 [14.])<br />

The underlying concept of intensity <strong>and</strong><br />

frequency was originally established by WOLMAN<br />

& MILLER (1960) [19.]. Intensity in colloquial use<br />

refers to strength or magnitude of a process or<br />

event. Intensity of natural events (<strong>hazard</strong>s) can be<br />

expressed by physical criteria like discharge, flow<br />

depth, pressure (process energy) or area (mass)<br />

of deposited debris. (GEBÄUDEVERSICHERUNG<br />

GRAUBÜNDEN, 2004 [7.]) In general the<br />

frequency represents the period of recurrence<br />

between two events with comparable magnitude.<br />

Frequency is often expressed as return period,<br />

which is equal to the reciprocal of the exceedance<br />

probability of extreme precipitation or discharge<br />

values. As a rule the DE is determined according<br />

to a defined return period (e.g. flood with return<br />

period of 100 years). Frequency <strong>and</strong> intensity are<br />

functionally correlated. (RUDOLF-MIKLAU in<br />

BOLLSCHWEILER ET AL., 2011 [3.])<br />

The frequency-intensity-concept is based<br />

on extreme value statistics <strong>and</strong> is appropriate <strong>for</strong><br />

answering two basic questions:<br />

• How often does an extreme event of<br />

defined intensity occur statistically?<br />

• What is the expected extreme value <strong>for</strong> a<br />

defined time period?<br />

The two established methods to analyse extreme<br />

events are the “block-maxima-method” <strong>and</strong><br />

the “peak-over-threshold-method” (KLEEMAYR<br />

in RUDOLF-MIKLAU & SAUERMOSER, 2011<br />

[16.]). For the statistic analysis, r<strong>and</strong>om <strong>and</strong><br />

representative samples (data sets) are needed<br />

(e.g. time series of extreme precipitation). By<br />

means of statistical methods, it is attempted to<br />

conclude from properties of the sample to the<br />

rules of the “total population”. In technical terms,<br />

an unknown stochastic distribution function (e.g.<br />

Gumbel, Fréchet, Weibull) is derived from an<br />

empirical distribution of measured values. The<br />

most common field of application of the extreme<br />

value statistics is the prediction of weather<br />

extremes, extreme discharge in rivers <strong>and</strong> torrents<br />

of the extreme run-out distance of falls, slides or<br />

falls (mass movements or avalanches). The key<br />

problem of the method is the limited availability of<br />

measurements (data sets) that cover a sufficiently<br />

long period of time. In most cases the available<br />

data represents<br />

• either a too short observation (measuring)<br />

period,<br />

• or is fragmentary<br />

or both. Besides this major disadvantage, the<br />

method of extreme value statistics shows other<br />

considerable short comings.<br />

Especially <strong>for</strong> torrential processes, the frequencyintensity-function<br />

shows an “emergent” behavior<br />

implying a limited predictability of discharge<br />

from extrapolations of measurement data when<br />

a certain threshold value is exceeded. The event<br />

disposition of a catchment or risk area, defined


Key-note papers<br />

Seite 18<br />

Seite 19<br />

as the entirety of all conditions essential <strong>for</strong> the<br />

emergence of <strong>hazard</strong>ous processes, consists of the<br />

basic disposition (susceptibility) comprising all<br />

factors immutable over a long range of time (e.g.<br />

geology, soils) <strong>and</strong> the variable disposition, which<br />

is the sum of all factors subject to a short-term or<br />

seasonal change (e.g. precipitation, saturation of<br />

soil with water, l<strong>and</strong> use). If the variable disposition<br />

of a catchment or risk area is altered in the course<br />

of an event (e.g. exceedance of the water storage<br />

capacity of soil), the debris potential increases<br />

erratically, resulting in a possible transition of the<br />

predominant displacement process <strong>and</strong> a nonlinear<br />

increase of discharge. (HÜBL, 2010 [8.])<br />

The practical procedure of specification<br />

of a design event can be lucidly explained by the<br />

example of a “design flood” (RUDOLF-MIKLAU &<br />

SEREINIG, 2010 [15.]): Generally, a design flood<br />

[discharge in m³/s] with a return period of 100<br />

years represents the striven level of safety <strong>for</strong> flood<br />

(torrent) control measures in European countries.<br />

Expected values <strong>for</strong> a rainfall <strong>and</strong> flood events of a<br />

defined return period (including a corresponding<br />

confidence interval) can be derived from the<br />

hydraulic extreme value statistics. Flood statistics<br />

are based on the assumption that the observation<br />

period is representative <strong>for</strong> the long-term runoff<br />

behavior of the watershed. However, extreme<br />

flood events are qualified as “statistical outliers”<br />

that are not represented by the measured data<br />

collection (due to limited observation periods),<br />

but nevertheless contribute valuable in<strong>for</strong>mation<br />

on hydrological extremes. Consequently, the<br />

statistically deduced design criterion should be<br />

supported by additional in<strong>for</strong>mation of temporal,<br />

spatial or causal reference. Especially the dating<br />

of historic flood events from chronicles or traces<br />

in nature (flood marks, “silent witnesses”) can<br />

provide precious additional in<strong>for</strong>mation on<br />

return periods, levels of flooding, or peak flood<br />

discharge. By dating historic events, extreme<br />

floods can approximately be related to a certain<br />

return period. A causal supplement of in<strong>for</strong>mation<br />

is gained if observed floods are analyzed with<br />

respect to their emergence regarding the weather<br />

conditions, the behavior of precipitation, <strong>and</strong> the<br />

disposition of the catchment area.<br />

In a first step, the determination procedure<br />

of the design flood requires the specification of<br />

the expected value of discharge by means of flood<br />

statistics <strong>and</strong> additional hydrological methods.<br />

From this basic design discharge, the design<br />

flood can be derived by taking into account solid<br />

transport, transient flow conditions <strong>and</strong> influences<br />

of stream morphology.<br />

The applicability of the frequencyintensity-concept<br />

is strongly limited <strong>for</strong> all types of<br />

<strong>hazard</strong>s <strong>for</strong> which measurements or observation<br />

data of extreme events are insufficiently or<br />

generally not available. In addition, it has to be<br />

taken into account that the period of recurrence of<br />

a triggering event can significantly differ from the<br />

frequency of the impact (damage) event. Recently,<br />

alternative concepts <strong>for</strong> the <strong>assessment</strong> of<br />

magnitude of events are sought that could replace<br />

the “frequency-intensity-concept”. This holds<br />

especially true <strong>for</strong> the <strong>assessment</strong> of extreme mass<br />

movements <strong>and</strong> avalanches where frequency<br />

hardly can be determined with sufficient accuracy.<br />

Methods of <strong>hazard</strong> <strong>assessment</strong><br />

The aim of <strong>hazard</strong> <strong>assessment</strong> is the determination<br />

of relevant scenarios <strong>and</strong> the related return period<br />

<strong>for</strong> the purpose of providing a prognosis of the<br />

substantial process, the extension <strong>and</strong> intensity of<br />

an event as well as <strong>for</strong> the magnitude of <strong>hazard</strong><br />

(BRÜNDL ET AL., 2009 [5.]).<br />

Normally neither the physical properties<br />

of <strong>hazard</strong> processes are completely clarified, nor<br />

is sufficient data on extreme events available.<br />

Consequently, the most important principle of<br />

<strong>hazard</strong> <strong>assessment</strong> is the compliance of a high<br />

redundancy in the procedures <strong>and</strong> methods applied<br />

(KIENHOLZ, 2005 [10.]). Two principle approaches<br />

are eligible <strong>for</strong> <strong>hazard</strong> <strong>assessment</strong> (Fig. 3):<br />

• The analysis of past events (retrospective<br />

indication).<br />

• The prognosis of future events (<strong>for</strong>esighted<br />

indication).<br />

Morphological Method: This method<br />

is based on the identification of triggering/<br />

displacement processes <strong>and</strong> the spatial distribution<br />

by means of “silent witnesses” (AULITZKY, 1992<br />

[1.]) in the morphology (deposition area) <strong>and</strong> at<br />

the vegetation (e.g. trees). Dendromorphology<br />

counts among these methods, which (besides<br />

other dating methods (BOLLSCHWEILER ET. AL.,<br />

2011 [3.])) provides<br />

Historical Method<br />

Retrospective Indication comprehensive time<br />

chronicles, witnesses<br />

series of past events.<br />

Statistical Method:<br />

is based on the assumption, that an occured event<br />

will reoccur with comparable course <strong>and</strong> effects.<br />

Morphological Method<br />

This method includes<br />

„silent witnesses“, dendromophology<br />

the analysis of<br />

measurements<br />

Statistical Method<br />

<strong>and</strong> observation<br />

extreme value statistics, triggering Foresightes Indication<br />

(monitoring) data by<br />

mechanism<br />

means of stochastic<br />

is based on the identification <strong>and</strong> analysis of factors<br />

Physical/Mathematical<br />

methods (e.g. extreme<br />

<strong>and</strong> processes, which represent evidence <strong>for</strong><br />

Method<br />

existing <strong>hazard</strong>s according to gained experiences. value statistics).<br />

Numerical/empirical models<br />

The method presupposes knowledge about the Nevertheless, the<br />

triggering mechanism, the displacement process derivation of reliable<br />

<strong>and</strong> the effect (impact) <strong>and</strong> includes the<br />

Pragmatic Method<br />

investigation of probability of recurrence<br />

(significant) trends<br />

Expert opinion (estimation)<br />

(return period).<br />

<strong>and</strong> prognoses<br />

requires a sufficient<br />

Fig. 3: Principle approaches to <strong>hazard</strong> <strong>assessment</strong> (after KIENHOLZ, 2005 [10.]; modified).<br />

quantity of data <strong>for</strong><br />

Abb. 3: Grundlegende Vorgehensweisen bei der Gefährdungsanalyse<br />

a representative<br />

(nach KIENHOLZ, 2005 [10.]; geändert).<br />

time (observation)<br />

According to these principles, the following<br />

procedures can be chosen <strong>and</strong> should be<br />

applied corresponding to the rule of redundancy<br />

(HÜBL et al., 2007 [9.]):<br />

Historical Method: The method is based<br />

on the (qualitative <strong>and</strong> quantitative) analysis of<br />

reports, testimonies <strong>and</strong> chronicles of past events<br />

(catastrophes). This data provides evidences<br />

<strong>for</strong> the frequency of events, the triggering<br />

mechanism <strong>and</strong> the extension of the process as<br />

well as the damages occurred. As a rule, historic<br />

sources tend to be fragmentary <strong>and</strong> distorted due<br />

to subjective perception.<br />

period. (KLEEMAYR in RUDOLF-MIKLAU &<br />

SAUERMOSER, 2011 [16.])<br />

Physical/Mathematical Method: These<br />

methods are mainly based on numerical or<br />

empirical models, which provide in<strong>for</strong>mation<br />

(physical criteria) <strong>for</strong> the intensity of an event<br />

<strong>for</strong> a defined return period. In practice models<br />

are the preferred tool <strong>for</strong> the determination of<br />

design events in natural <strong>hazard</strong> engineering. Due<br />

to the limited accuracy of numerical models, the<br />

application always presupposes a calibration of<br />

regional measurements (data) <strong>and</strong> the validation<br />

of the results with expert opinions. In addition,


Key-note papers<br />

Seite 20<br />

Seite 21<br />

models should not only be applied <strong>for</strong> a single<br />

data set but <strong>for</strong> a range of scenarios as well as <strong>for</strong> a<br />

distribution of input parameters. A comprehensive<br />

summary of available models <strong>for</strong> torrential<br />

processes is given in BERGMEISTER ET AL. (2009)<br />

[2.], <strong>for</strong> avalanches in RUDOLF-MIKLAU &<br />

SAUERMOSER (2011) [16.].<br />

Pragmatic Method: This method is<br />

based on the “expert opinion” of experiences<br />

practitioners <strong>and</strong> local experts. The pragmatic<br />

method is applied if other methods are not<br />

applicable or do not meet the goal of satisfying<br />

<strong>hazard</strong> (risk) <strong>assessment</strong>. In addition, this<br />

method serves as a redundancy <strong>and</strong> is used <strong>for</strong><br />

the validation of results of “exact” <strong>assessment</strong><br />

methods (mentioned above).<br />

Hazard <strong>assessment</strong> methods always<br />

suffer from major restrictions concerning their<br />

meaningfulness <strong>and</strong> accuracy. For the interpretation<br />

<strong>and</strong> validation of results, it is essential to know<br />

the sources of uncertainties <strong>and</strong> methodical<br />

short-comings. Some of these deficiencies are<br />

summarized below (KIENHOLZ, 2005 [10.]):<br />

• Limited availability of data<br />

• Limited observation (measuring) period<br />

• Lack of “direct” measurements (e.g.<br />

velocity of mass propagation during events;<br />

impact pressure)<br />

• Incomplete or false documentation of past<br />

events<br />

• Inconsistent quality of in<strong>for</strong>mation <strong>and</strong> data<br />

due to variable measuring (observation,<br />

monitoring, documentation) st<strong>and</strong>ards<br />

• Uncertainties in the selection of relevant<br />

scenarios<br />

• Misjudgement of the effeminacy <strong>and</strong><br />

condition (usability) of existing protection<br />

measures<br />

• Misjudgement concerning the “residual risk”<br />

Preventive planning: principles <strong>and</strong> function<br />

“Prevention by planning” today is qualified as<br />

the most effective measure in natural <strong>hazard</strong><br />

management. Planning in relation to natural<br />

<strong>hazard</strong>s <strong>and</strong> risks can also unfold active as<br />

passive protection effects. Planning procedures<br />

concerning natural <strong>hazard</strong>s are not limited to the<br />

cartographic outline of endangered areas (areas<br />

at risk), but also provide the passivity to reduce<br />

<strong>hazard</strong>s/risk by keeping endangered areas free<br />

from buildings or limiting the use of these zones<br />

(e.g. inundation areas). Thus preventive planning<br />

is the basis <strong>for</strong> the protection strategy “prevention<br />

by area”. (RUDOLF-MIKLAU, 2009 [14.])<br />

In addition, the cartographic depiction of<br />

<strong>hazard</strong> zones provides the essential in<strong>for</strong>mation<br />

(process intensity, magnitude of impact <strong>for</strong>ces)<br />

<strong>for</strong> the technical protection of existing buildings.<br />

Also the suitability of planned building sites<br />

concerning the risk by natural <strong>hazard</strong>s can be<br />

efficiently judged on the basis of <strong>hazard</strong> maps.<br />

In development planning, the localization of new<br />

settlements can be steered away from impending<br />

<strong>hazard</strong>s. (BUWAL/BRP/BWW, 1997 [6.])<br />

In principle, in the <strong>Alpine</strong> environment<br />

the usability of l<strong>and</strong> <strong>for</strong> building purposes is<br />

limited according to the expansion of <strong>hazard</strong>s.<br />

In mountainous regions, the total avoidance<br />

of <strong>hazard</strong> zones <strong>for</strong> spatial development is not<br />

possible. Consequently, preventive planning<br />

defines limits (border lines) <strong>for</strong> areas that are<br />

appropriate <strong>for</strong> building. Within these limits,<br />

<strong>hazard</strong> maps provide bases <strong>for</strong> st<strong>and</strong>ards <strong>and</strong><br />

regulations <strong>for</strong> a <strong>hazard</strong>-adapted construction<br />

practice.<br />

Logically, the main emphasis of preventive<br />

planning lies in the sector of <strong>hazard</strong>s spatially<br />

“delimited” in action, such as floods, avalanches,<br />

mass movements. For natural <strong>hazard</strong>s that do not<br />

allow an “exact” delimitation (e.g. earthquake,<br />

storm, <strong>for</strong>est fire, snow load), preventive planning<br />

is limited to rough-scale maps showing a general<br />

gradation of risks. (RUDOLF-MIKLAU, 2009 [14.])<br />

The environmental planning is of major<br />

importance <strong>for</strong> the application of <strong>hazard</strong> maps.<br />

Consequently, preventive planning can be<br />

understood as a part of development planning.<br />

In order to regulate the use <strong>and</strong> development of<br />

endangered areas, the intervention of the state<br />

is essential. The primary goal of development<br />

planning concerning natural <strong>hazard</strong>s is to keep<br />

the endangered areas free from buildings (passive<br />

protection function). The active protection function<br />

of preventive planning lies in the reservation<br />

(provision) of areas <strong>for</strong> the spreading of <strong>hazard</strong>ous<br />

processes (e.g. inundation areas) or in the provision<br />

of st<strong>and</strong>ards (limits) <strong>for</strong> the use of endangered areas<br />

in order to reduce the risk potential.<br />

Mapping <strong>hazard</strong>s in <strong>Alpine</strong> environment<br />

The cartographic outline of endangered areas<br />

according to KIENHOLZ (2005) [10.] includes the<br />

elaboration of scientific <strong>and</strong> technical bases <strong>and</strong><br />

the depiction in <strong>hazard</strong> (indication) maps. In a<br />

second step, the geographic in<strong>for</strong>mation provided<br />

on triggering disposition <strong>and</strong> impact intensity of<br />

<strong>hazard</strong>ous processes is used <strong>for</strong> the provision<br />

of <strong>hazard</strong> zone maps <strong>and</strong> their implementation<br />

in the process of development planning. As a<br />

rule, <strong>hazard</strong> maps have no legal liability but are<br />

defined as “spatial expert opinions with prognosis<br />

character”, while the <strong>hazard</strong> zones become<br />

legally binding only by incorporating them into<br />

development planning documents (l<strong>and</strong> use<br />

maps). Thus legal liability of <strong>hazard</strong> zones may<br />

arise on the local level depending on the national<br />

legal framework.<br />

Consequently, it is essential to adapt the<br />

st<strong>and</strong>ards of <strong>hazard</strong> mapping to the requirements<br />

<strong>and</strong> goal of development planning on the regional<br />

<strong>and</strong> local level. In the <strong>Alpine</strong> countries in general<br />

the following categories of maps <strong>for</strong> the outline of<br />

<strong>hazard</strong>s <strong>and</strong> risks can be distinguished:<br />

• Process maps (susceptibility, intensity)<br />

• Hazard (indication) maps<br />

• Hazard zone maps<br />

• Risk maps<br />

The following definitions are valid only with<br />

restrictions since terminology of <strong>hazard</strong> mapping<br />

substantially differs between countries <strong>and</strong><br />

scientific branches.<br />

A <strong>hazard</strong> (indication) map roughly<br />

indicates in which areas natural <strong>hazard</strong> have to be<br />

taken into account in l<strong>and</strong> use <strong>and</strong> development<br />

activities. The character of the map is only<br />

demonstrative, while no concrete in<strong>for</strong>mation<br />

about the magnitude of the danger is provided.<br />

In many countries <strong>hazard</strong> zone maps are not<br />

available, leaving <strong>hazard</strong> indication maps as the<br />

only source of spatial in<strong>for</strong>mation.<br />

Process maps show <strong>hazard</strong>s by the<br />

spatial distribution of physical parameters<br />

(criteria) describing the triggering, displacement<br />

<strong>and</strong> impact processes. These maps are most often<br />

the result of numerical or empirical modeling. In<br />

some countries, process maps are trans<strong>for</strong>med<br />

into intensity maps showing the process criteria<br />

graded according to the levels of impact intensity<br />

(e.g. Switzerl<strong>and</strong>: frequency-intensity-matrix;<br />

LOAT, 2005 [11.]). Susceptibility is defined as the<br />

extent to which an area suffers from the risk of<br />

emergence of a <strong>hazard</strong>ous process if exposed to a<br />

triggering factor, without regard to the likelihood<br />

of exposure. Analogously, susceptibility maps<br />

show the disposition of an area <strong>for</strong> these events,<br />

but does not provide in<strong>for</strong>mation about the<br />

frequency <strong>and</strong> expected intensity.<br />

Hazard zone maps show the impact of<br />

processes according to its magnitude (intensity,<br />

frequency) on the scale of the local cadastre<br />

(1.2000 – 1.5000). Consequently, these


Key-note papers<br />

Seite 22<br />

Seite 23<br />

Fig. 4: Hazard indication map <strong>for</strong> mass movements (Bavaria,<br />

Germany).<br />

Abb. 4: Gefahrenhinweiskarte für <strong>Mass</strong>enbewegungen<br />

(Bayern, Deutschl<strong>and</strong>).<br />

maps provide specific in<strong>for</strong>mation about the<br />

usability of certain plots <strong>for</strong> building or other<br />

development purposes. Hazard zone maps are<br />

regularly produced <strong>for</strong> the <strong>hazard</strong> types floods,<br />

avalanches <strong>and</strong> debris flow, <strong>and</strong> only in few<br />

countries (Switzerl<strong>and</strong>, France, <strong>and</strong> Italy) <strong>for</strong><br />

mass movements as well. In most countries,<br />

<strong>hazard</strong> zone maps are regulated by legal <strong>and</strong><br />

technical st<strong>and</strong>ards concerning their content,<br />

<strong>for</strong>mal requirements, approval procedure <strong>and</strong><br />

implementation in the development planning.<br />

Some countries have also defined a specific design<br />

Fig. 5: Hazard map <strong>for</strong> falls (rock fall) (Switzerl<strong>and</strong>).<br />

Abb. 5: Gefahrenzonenplan Felssturz (Steinschlag) (Schweiz).<br />

Fig. 6: Hazard zone map <strong>for</strong> torrents (including indication of<br />

l<strong>and</strong>slide areas) (Austria).<br />

Abb. 5: Gefahrenzonenplan Wildbäche (einschließlich des<br />

Hinweises von Rutschgebieten) (Österreich).<br />

event (period of recurrence) <strong>for</strong> the <strong>assessment</strong> of<br />

the relevant <strong>hazard</strong>s. (HÜBL ET AL., 2007 [9.])<br />

The elaboration of risk maps is based on the<br />

depiction of objects at risk (risk potentials) within<br />

endangered areas. In principle there are two types<br />

of risk maps available (BORTER ET AL., 1999 [4.]):<br />

• Risk maps only showing risk potential<br />

without assessing (value) them.<br />

• Risk maps based on a graded, qualitative<br />

or quantitative <strong>assessment</strong> of risks (levels<br />

of risk; e.g. low – medium - high). These<br />

maps are elaborated by combining the<br />

impact intensity with the damage potential<br />

(value), the vulnerability <strong>and</strong> the exposition<br />

of objects/persons in the endangered area.<br />

Closing remarks<br />

Hazard (risk) <strong>assessment</strong> <strong>and</strong> mapping count<br />

among the most important tasks (measures) in<br />

natural <strong>hazard</strong> management. The maps provide<br />

the key in<strong>for</strong>mation <strong>for</strong> most of the other mitigation<br />

measures in order to reduce risk to an acceptable<br />

level. GIS technology provides a powerful tool to<br />

combine spatial in<strong>for</strong>mation on natural <strong>hazard</strong>s<br />

with other cartographic in<strong>for</strong>mation concerning<br />

human activities <strong>and</strong> development actions.<br />

Overlaying this in<strong>for</strong>mation makes feasible a<br />

comprehensive <strong>assessment</strong> of risks <strong>for</strong> human<br />

health, economic acidities, environment <strong>and</strong><br />

cultural heritage.<br />

As shown in this article, the methods<br />

<strong>for</strong> the <strong>assessment</strong> of natural <strong>hazard</strong>s still suffer<br />

from major short-comings <strong>and</strong> significant sources<br />

of inaccuracy. In addition, a comprehensive<br />

underst<strong>and</strong>ing of the triggering <strong>and</strong> displacement<br />

processes of <strong>Alpine</strong> natural <strong>hazard</strong>s is still<br />

missing due to the limited availability of “direct”<br />

measurements <strong>and</strong> observation.<br />

Although <strong>hazard</strong> maps have gained a<br />

key role in the process of preventive planning,<br />

the in<strong>for</strong>mation provided by these maps should<br />

still be treated with care <strong>and</strong> only be interpreted<br />

by experts. This reservation especially holds true<br />

<strong>for</strong> <strong>hazard</strong> maps devoted to mass movements.<br />

As the st<strong>and</strong>ards of <strong>hazard</strong> mapping in this field<br />

are still under development, preventive planning<br />

concerning rock fall <strong>and</strong> l<strong>and</strong>slides (unlike flood<br />

<strong>and</strong> avalanche <strong>hazard</strong>s) is still “in situ nascendi”.<br />

This delay justifies the strong ef<strong>for</strong>ts within the<br />

<strong>Alpine</strong> space to establish <strong>and</strong> harmonize general<br />

st<strong>and</strong>ards <strong>for</strong> the <strong>assessment</strong> <strong>and</strong> mapping of<br />

<strong>hazard</strong>s caused by mass movements.<br />

Anschrift des Verfassers / Author’s address:<br />

DI Dr. Florian Rudolf-Miklau<br />

Bundesministerium für L<strong>and</strong>- und Forstwirtschaft,<br />

Umwelt und Wasserwirtschaft, Abteilung IV/5,<br />

Wildbach- und Lawinenverbauung<br />

Federal Ministry <strong>for</strong> Agriculture, Forestry,<br />

Enviroment <strong>and</strong> Water Management, Department<br />

IV/5, Torrent <strong>and</strong> Avalanche Control<br />

1030 Wien, Marxergasse 2<br />

Tel.: (+43 1) 71 100 - 7333<br />

FAX: (+43 1) 71 100- 7399<br />

Mail: florian.rudolf-miklau@lebensministerium.at<br />

Homepage: http://www.lebensministerium.at/<strong>for</strong>st<br />

Literatur / References:<br />

[1.] AULITZKY H. (1992):<br />

Die Sprache der "Stummen Zeugen". Tagungsb<strong>and</strong> der Internationalen<br />

Konferenz Interpraevent 1992, S. 139-174.<br />

[2.] BERGMEISTER K., SUDA J., HÜBL J., RUDOLF-MIKLAU F. (2009):<br />

Schutzbauwerke der Wildbachverbauung. Verlag Ernst und Sohn Berlin<br />

(Wiley VCH).<br />

[3.] BOLLSCHWEILER M., STOFFEL M., RUDOLF-MIKLAU F. (2011):<br />

Tracking torrential processes on fans <strong>and</strong> cones. Springer Dortrecht (in<br />

preparation).<br />

[4.] BORTER P. (1999):<br />

Risikoanalyse bei gravitativen Naturgefahren. Bern: Bundesamt für<br />

Umwelt, Wald und L<strong>and</strong>schaft BUWAL. Umwelt-Materialien 107/I+II.<br />

[5.] BRÜNDL M., ROMANG H., HOLTHAUSEN N., MERZ H., BISCHOF<br />

N. (2009):<br />

Risikokonzept für Naturgefahren – Leitfaden; Teil A: Allgemeine<br />

Darstellung des Risikokonzepts. Bern: Nationale Platt<strong>for</strong>m Naturgefahren<br />

PLANAT (vorläufige Fassung).<br />

[6.] BUNDESAMT FÜR UMWELT, WALD UND LANDSCHAFT<br />

BUWAL, BUNDESAMT FÜR RAUMPLANUNG BRP, BUNDESAMT FÜR<br />

WASSERWIRTSCHAFT BWW (1997):<br />

Berücksichtigung von Hochwassergefahren bei der raumwirksamen<br />

Tätigkeit, Biel.<br />

[7.] GEBÄUDEVERSICHERUNG GRAUBÜNDEN (2004):<br />

Vorschriften für bauliche Maßnahmen an Bauten in der blauen Lawinenzone.<br />

[8.] HÜBL J. (2010):<br />

Hochwässer in Wildbacheinzugsgebieten. Wiener Mitteilungen (in press).<br />

[9.] HÜBL J., FUCHS S., AGNER P. (2007):<br />

Optimierung der Gefahrenzonenplanung. Weiterentwicklung der<br />

Methoden der Gefahrenzonenplanung. IAN-Report 90. Wien: Universität<br />

für Bodenkultur (unveröffentlicht).<br />

[10.] KIENHOLZ H. (2005):<br />

Gefahrenzonenplanung im Alpenraum – Ansprüche und Grenzen, Imst:<br />

Imst: Wildbach- und Lawinenverbau (Zeitschrift für Wildbach-, Erosionsund<br />

Steinschlagschutz), Nr. 152, 135-151.<br />

[11.] LOAT R. (2005):<br />

Die Gefahrenzonenplanung in der Schweiz. Imst: Wildbach- und<br />

Lawinenverbau (Zeitschrift für Wildbach-, Erosions- und Steinschlagschutz),<br />

Nr. 152, 77-92.<br />

[12.] MAZZORANA B., FUCHS S., HÜBL J. (2009):<br />

Improving risk <strong>assessment</strong> by defining consistent <strong>and</strong> reliable system<br />

scenarios, Nat. Hazards Earth Syst. Sci., 9: 145–159.<br />

[13.] ONR 24800:<br />

2008, Schutzbauwerke der Wildbachverbauung – Begriffe und ihre<br />

Definition sowie Klassifizierung. Austrian St<strong>and</strong>ards Institute, Vienna.<br />

[14.] RUDOLF-MIKLAU F. (2009):<br />

Naturgefahren-Management in Österreich. Verlag Lexis-Nexis Orac .<br />

[15.] RUDOLF-MIKLAU F., SEREINIG N. (2009):<br />

Festlegung des Bemessungshochwassers: Prozessorientierte<br />

Harmonisierung für Flüsse und Wildbäche, ÖWAW 7-8: 29 – 32.<br />

[16.] RUDOLF-MIKLAU F., SAUERMOSER S. (Hrsg.) (2011):<br />

Technischer Lawinenschutz. Verlag Ernst und Sohn/Wiley Berlin (in<br />

preparation).<br />

[17.] SCHROTT L., GLADE T. (2008):<br />

Frequenz und Magnitude natürlicher Prozesse; in Flegentreff, Glade (Eds.):<br />

Naturrisiken und Sozialkatastrophen. Spektrum Akademischer Verlag<br />

Springer: 134 – 150.<br />

[18.] SUDA J., RUDOLF-MIKLAU F., HÜBL J., KANONIER A. (Hrsg.) (2011):<br />

Gebäudeschutz vor Naturgefahren. Verlag Spring Wien (in preparation).<br />

[19.] WOLMAN M. G., MILLER J. P. (1960):<br />

Magnitude <strong>and</strong> frequency of <strong>for</strong>ces on geomorphic processes. Journal of<br />

Geology 68 (1): 54 – 74.


Key-note papers<br />

Seite 24<br />

Seite 25<br />

RICHARD BÄK, HUGO RAETZO, KARL MAYER,<br />

ANDREAS VON POSCHINGER, GERLINDE POSCH-TRÖZMÜLLER<br />

Mapping of Geological Hazards: Methods, St<strong>and</strong>ards<br />

<strong>and</strong> Procedures (State of Development) - Overview<br />

Geologische Gefahrenkartierung: Methoden, St<strong>and</strong>ards<br />

und Verfahren (derzeitiger Status) – ein Überblick<br />

Zusammenfassung:<br />

Die geologische Gefahrenkartierung ist in Europa trotz unterschiedlicher Methoden eine<br />

anerkannte Notwendigkeit für die Prävention. Die wissenschaftliche Charakterisierung der<br />

<strong>Mass</strong>enbewegungen basiert oft auf ähnlichen Methoden und ist deshalb eher vergleichbar.<br />

Hingegen ist die Umsetzung in die Raumplanung und in das Risikomanagement auf europäischer<br />

Ebene sehr unterschiedlich. Der Grund liegt primär in unterschiedlichen Gesetzen,<br />

Verordnungen und Verantwortlichkeiten, bzw. in sozio-ökonomischen Eigenheiten<br />

der Länder. Während in Italien und in der Schweiz technische Richtlinien bzw. gesetzliche<br />

Regelungen zur Erstellung von Gefahrenkarten bestehen, gibt es in Österreich nur für<br />

Hochwasser bzw. Lawinen Regelungen zur Ausweisung von Gefahrenzonen. In Deutschl<strong>and</strong><br />

wurde eine Empfehlung für die Erstellung von Gefahrenhinweiskarten publiziert. Aufgrund<br />

fehlender Regelungen in den alpinen Staaten Europas werden Ereigniskarten, Indexkarten,<br />

Gefahrenhinweiskarten und Gefahrenkarten als Grundlagen für die Gefahrenbeurteilung in<br />

verschiedenen Maßstäben mit unterschiedlichem Inhalt erarbeitet. Dies und unterschiedliche<br />

Definitionen erschweren den Vergleich. Ein multilinguales Glossar, die Einrichtung<br />

von Ereigniskatastern bei der Verwaltung und die Festlegung von Mindestan<strong>for</strong>derungen zur<br />

Erstellung von Grundlagen und Gefahrenkarten (An<strong>for</strong>derungen hinsichtlich Eingangsdaten<br />

und Zweck) sollten daher ein primäres Ziel sein. Im Projekt AdaptAlp (Interreg IV B, <strong>Alpine</strong><br />

Space) arbeiten die Alpenländer an gemeinsamen Grundsätzen.<br />

Summary:<br />

In spite of different methods used, geological <strong>hazard</strong> mapping is accepted as a tool <strong>for</strong><br />

<strong>hazard</strong> prevention in Europe. Scientific characterization of mass movements is based on<br />

similar methods with mostly comparable results. However, the implementation in spatial<br />

planning <strong>and</strong> risk management differs considerably due to different regional legal acts,<br />

ordinances, responsibilities <strong>and</strong> pecularities. Whereas in Italy <strong>and</strong> Switzerl<strong>and</strong> there are<br />

technical guidelines <strong>and</strong> legal acts regarding l<strong>and</strong>slides <strong>and</strong> rock fall, in Austria only <strong>hazard</strong><br />

mapping concerning floods <strong>and</strong> avalanches is regulated. In Germany a recommendation<br />

on how to create a susceptibility map was published. Because of a lack of regulations in<br />

European <strong>Alpine</strong> states’ inventory maps, susceptibility <strong>and</strong> <strong>hazard</strong> maps are created in<br />

different scales with different contents <strong>and</strong> quality. This, as well as different defintions of<br />

terms such as susceptibility, danger <strong>and</strong> <strong>hazard</strong>, makes comparison of <strong>hazard</strong> <strong>assessment</strong><br />

products difficult. Consequently a multilingual glossary, l<strong>and</strong>slide inventories at regional<br />

authorities <strong>and</strong> minimal requirements as to how to create <strong>hazard</strong> maps (requirements<br />

concerning input data <strong>and</strong> purpose of <strong>assessment</strong>) are necessary. In the AdaptAlp project<br />

(Interreg IV B, <strong>Alpine</strong> Space) the <strong>Alpine</strong> regions elaborate the common principles.<br />

Introduction<br />

In <strong>Alpine</strong> regions, slopes of different<br />

morphological <strong>and</strong> geological conditions are<br />

prone to l<strong>and</strong>slides. Taking into consideration<br />

one of the geological principles <strong>for</strong> l<strong>and</strong>slide<br />

<strong>hazard</strong> <strong>assessment</strong> – the past is the key to the<br />

future – future slope failures will probably occur<br />

in areas with similar geological, morphological<br />

<strong>and</strong> hydrological situations that have led to past<br />

failures. Some triggering mechanisms happen<br />

sporadically <strong>and</strong> are not readily obvious. Because<br />

of the lack of memories of past l<strong>and</strong>slide events,<br />

the susceptibility to mass movements is not<br />

considered accurate in l<strong>and</strong> use. But the effects<br />

of mass movements (damages) necessitate new<br />

strategies on how to manage the future potential<br />

of natural (geological) <strong>hazard</strong>s in alpine regions.<br />

In<strong>for</strong>mation about l<strong>and</strong>slides in alpine<br />

countries varies in its quality <strong>and</strong> quantity: In<br />

some regions, detailed l<strong>and</strong>slide inventories exist<br />

<strong>and</strong> are the basis <strong>for</strong> susceptibility <strong>and</strong> <strong>hazard</strong><br />

<strong>assessment</strong>. Different approaches to <strong>hazard</strong><br />

mapping are in practice. This fact <strong>and</strong> dissimilar<br />

meanings <strong>for</strong> terms like susceptibility, danger<br />

<strong>and</strong> <strong>hazard</strong> make a comparison of the regional<br />

approaches difficult. Using various input data also<br />

h<strong>and</strong>icaps the comparison of <strong>hazard</strong> <strong>assessment</strong>.<br />

Within the INTERREG IV B project<br />

“Adaptation to Climate Change in the <strong>Alpine</strong><br />

Space “ (acronym AdaptAlp), work package<br />

5.1 Hazard Mapping - Geological Hazards is<br />

focusing on the transnational harmonization of<br />

st<strong>and</strong>ards (minimal requirements in the field of<br />

<strong>hazard</strong> <strong>assessment</strong> <strong>and</strong> mapping) by exchanging<br />

experiences in the partner regions. This issue<br />

provides an overview of methods, st<strong>and</strong>ards <strong>and</strong><br />

procedures without a pretense of completeness.<br />

The definitions of terms used regarding


Key-note papers<br />

Seite 26<br />

Seite 27<br />

l<strong>and</strong>slides sometimes differ contradictorily in<br />

literature <strong>and</strong> in practice. For this reason the<br />

second goal of the work package 5.1 named<br />

above is the elaboration of a multilingual glossary.<br />

L<strong>and</strong>slide inventories<br />

L<strong>and</strong>slide inventories are the basis <strong>for</strong> all scientific<br />

<strong>and</strong> planning activities. They contain the basic<br />

data of natural <strong>hazard</strong> processes <strong>and</strong> should<br />

mainly include the facts. There<strong>for</strong>e all partner<br />

countries in the AdaptAlp Interreg project are<br />

working on l<strong>and</strong>slide inventories.<br />

[11] Guzzetti 2005 wrote about l<strong>and</strong>slide<br />

inventories: “Despite the ease with which they<br />

are prepared <strong>and</strong> their immediateness, l<strong>and</strong>slide<br />

inventories are not yet very common. Inventory<br />

maps are available <strong>for</strong> only a few countries<br />

<strong>and</strong> mostly <strong>for</strong> limited areas. This is surprising<br />

because inventory maps provide fundamental<br />

in<strong>for</strong>mation on the location <strong>and</strong> size of l<strong>and</strong>slides<br />

that is necessary in the <strong>assessment</strong> of slope<br />

stability at any scale, <strong>and</strong> in any physiographical<br />

environment.” Nevertheless, all of the countries<br />

considered <strong>for</strong> the literature survey have l<strong>and</strong>slide<br />

inventories <strong>and</strong> maps, even if contents, scales <strong>and</strong><br />

the state of completeness vary.<br />

In order to predict l<strong>and</strong>slide <strong>hazard</strong><br />

in an area, the morphological, geological, <strong>and</strong><br />

hydrological conditions <strong>and</strong> processes have to be<br />

identified. Their influence on the stability of the<br />

slopes has to be estimated.<br />

Different methods of data acquirement<br />

are used to establish databases to assess <strong>hazard</strong>s:<br />

L<strong>and</strong>slide inventories as an important tool <strong>for</strong> the<br />

<strong>assessment</strong> of the susceptibility of slopes to mass<br />

movements are created nowadays more <strong>and</strong> more<br />

using digital technology. A general indication of<br />

l<strong>and</strong>slide susceptibility can be obtained based on<br />

l<strong>and</strong>slide inventories, geological, soil <strong>and</strong> geomor-<br />

phological maps. Using digital DTM data in a GIS<br />

allows the production of hillshades with several<br />

geometries to detect typical l<strong>and</strong>slide <strong>for</strong>ms.<br />

Modern methods <strong>for</strong> modelling processes are designed<br />

<strong>for</strong> the GIS environment. Slope stability <strong>and</strong><br />

rock fall trajectories can be computed over large<br />

areas to get indications of the <strong>hazard</strong>s. Analysis<br />

of aerial photographs is also a classical <strong>and</strong><br />

valuable technique to identify l<strong>and</strong>slide features.<br />

More subtle signs of slope movement cannot be<br />

identified on the maps mentioned above. Field<br />

observation by experts is necessary <strong>for</strong> accurate<br />

<strong>assessment</strong>. The requirements <strong>for</strong> acquired data<br />

are raised by the main goal: The accurateness <strong>and</strong><br />

detail of input data <strong>and</strong> scale depends on the aim<br />

of the product – susceptibility map, <strong>hazard</strong> <strong>assessment</strong><br />

or risk analyses.<br />

For <strong>hazard</strong> <strong>assessment</strong>, in<strong>for</strong>mation<br />

about possible scenarios is needed. For this<br />

reason it is important that l<strong>and</strong>slide inventories<br />

are induced to sustain l<strong>and</strong>slide knowledge over<br />

time. In most regions of the Alps, inventories have<br />

been established by authorities <strong>and</strong> are to some<br />

extent available to the public.<br />

Tab.1 gives in<strong>for</strong>mation about what<br />

kind of data is stored in different l<strong>and</strong>slide event<br />

inventories, <strong>and</strong> what questions are asked on the<br />

l<strong>and</strong>slide reporting <strong>for</strong>m. For the comparison,<br />

in<strong>for</strong>mation from the countries Austria (Geological<br />

survey of Austria, of Lower Austria, of Carinthia,<br />

project MASSMOVE, project DIS-ALP), Germany,<br />

Switzerl<strong>and</strong>, Slovenia, Italy, France, Slovakia, Australia<br />

<strong>and</strong> the USA (Oregon, Washington, Utah)<br />

was taken into account.<br />

The first section of table 1 shows<br />

if inventories exist. The second section<br />

deals with the basic data, mainly with the<br />

5W-questions: What happened where, when <strong>and</strong><br />

why, <strong>and</strong> who reported it (or made the database<br />

entry). The l<strong>and</strong>slide conditions in the third section<br />

give evidence, if e.g. in<strong>for</strong>mation on the activity,<br />

geometry <strong>and</strong> slope position of a l<strong>and</strong>slide is<br />

recorded. Recorded geological in<strong>for</strong>mation<br />

(fourth section) is sometimes specified in detail,<br />

sometimes only the in<strong>for</strong>mation is given that<br />

geological in<strong>for</strong>mation is being stored.<br />

In many cases additional in<strong>for</strong>mation<br />

such as data on vegetation (l<strong>and</strong> cover),<br />

hydrogeological or hydrological conditions, as<br />

well as specific data such as the shadow angle are<br />

stored in the databases.<br />

Most inventories provide in<strong>for</strong>mation on<br />

the causes or triggers of l<strong>and</strong>slides. In some cases<br />

the damages due to l<strong>and</strong>slides are listed in the<br />

inventory, sometimes even the monetary value of<br />

the damage <strong>and</strong> the costs of remediation measures.<br />

Most inventory <strong>for</strong>ms also provide in<strong>for</strong>mation<br />

about how the listed data was gathered (e.g. field<br />

survey), some provide a rating about the reliability<br />

of the degree of precision of the in<strong>for</strong>mation. In<br />

most databases additional reports, documentation<br />

<strong>and</strong> bibliography are included or mentioned.<br />

In Austria the Geological survey of<br />

Austria, in cooperation with the Geological Survey<br />

of Carinthia, has created not just one “inventory<br />

map” but a “level of in<strong>for</strong>mation” (Fig. 1):<br />

Process index maps (map of phenomena<br />

“Prozesshinweiskarte”, “Karte der Phänomene”)<br />

can have different scales (1:50,000 <strong>and</strong> bigger)<br />

<strong>and</strong> can be of varying quality; it contains<br />

in<strong>for</strong>mation about process areas <strong>and</strong> phenomena<br />

of mass movements that have already happened.<br />

The event inventory (“Ereigniskataster”) records<br />

only those processes <strong>for</strong> which an event date is<br />

known (5W-questions); it is independent of a<br />

scale. In Carinthia, a digital l<strong>and</strong>slide inventory<br />

was created with historical events of the last<br />

50 years ([7] Bäk et al. 2005). The inventory<br />

map/event map (“Ereigniskarte”) contains only<br />

in<strong>for</strong>mation about processes <strong>for</strong> which an event<br />

date is known. The thematic inventory map<br />

contains only in<strong>for</strong>mation related to a type of<br />

process, categorized according to the quality of<br />

the data.<br />

In Switzerl<strong>and</strong>, the generation of a “map<br />

of phenomena” is m<strong>and</strong>atory ([30] Raetzo 2002).<br />

As with the Austrian “map of phenomena”, it<br />

shows the geologic-geomorphologic features. An<br />

extensive manual with a digital GIS-legend was<br />

published on a DVD by BWG ([8]BWG 2002,<br />

[14] Kienholz & Krummenacher 1995).<br />

The scale used depends on the purpose<br />

the map is used <strong>for</strong>, ranging from 1:2,000 (or<br />

even more) <strong>for</strong> a detailed study to 1:50,000 as<br />

an indicative map ([32] Raetzo & Loup 2009).<br />

On the other h<strong>and</strong>, the Federal Office <strong>for</strong> the<br />

Environment (FOEN) manages a database with<br />

all the events where damages were recorded. This<br />

national database is called “StorMe” <strong>and</strong> contains<br />

data on every natural <strong>hazard</strong> process: l<strong>and</strong>slides,<br />

debris flows, snow avalanches <strong>and</strong> floods.<br />

In Italy, a country with a particularly high<br />

l<strong>and</strong>slide risk owing to its l<strong>and</strong><strong>for</strong>m configuration<br />

<strong>and</strong> its lithological <strong>and</strong> structural characteristics,<br />

the need <strong>for</strong> a complete <strong>and</strong> homogeneous<br />

overview of the distribution of l<strong>and</strong>slides was<br />

recognized after the disastrous event at Sarno. The<br />

aim of the IFFI Project (Inventario dei Fenomeni<br />

Franosi in Italia – “Italian L<strong>and</strong>slide Inventory”)<br />

implemented by ISPRA (<strong>for</strong>merly: APAT, the<br />

Italian Environment Protection <strong>and</strong> Technical<br />

Services Agency) <strong>and</strong> by the regions <strong>and</strong> selfgoverning<br />

provinces was to identify <strong>and</strong> map<br />

the l<strong>and</strong>slides in accordance with st<strong>and</strong>ardized<br />

<strong>and</strong> shared methods. The work method included<br />

the collection of historical <strong>and</strong> archive data,<br />

aerial photo interpretation, field surveys, <strong>and</strong><br />

detailed mapping. A “L<strong>and</strong>slide Data Sheet” was<br />

prepared <strong>for</strong> collecting the l<strong>and</strong>slide in<strong>for</strong>mation,<br />

subdivided into three levels of progressively


Key-note papers<br />

Seite 28<br />

Seite 29<br />

increasing detail (from: [13] ISPRA, 2008):<br />

• First level: contains the basic in<strong>for</strong>mation<br />

(location, type of movement, state of<br />

activity) <strong>and</strong> is m<strong>and</strong>atory <strong>for</strong> every<br />

l<strong>and</strong>slide.<br />

• Second level: contains the geometrical,<br />

geological, <strong>and</strong> lithological parameters,<br />

l<strong>and</strong> use, causes <strong>and</strong> activation date.<br />

• Third level: provides detailed in<strong>for</strong>mation<br />

on the damage, investigations <strong>and</strong> remedial<br />

measures.<br />

A scale of 1:10,000 is used <strong>for</strong> surveying <strong>and</strong><br />

mapping the l<strong>and</strong>slides throughout most of Italy,<br />

only in high mountainous areas or in lower<br />

populated areas is a scale of 1:25,000 used. As<br />

with many regions, the region of South Tyrol<br />

(Autonome Provinz Bozen Südtirol, [27] Nössing<br />

2009) also has a l<strong>and</strong>slide database that resulted<br />

from the IFFI Project. The type of movement, the<br />

litho-logical unit, the volume of the moving masses,<br />

the internal cause <strong>and</strong> the external trigger, as well<br />

as the induced damage are noted <strong>for</strong> each event.<br />

The extensive l<strong>and</strong>slide database,<br />

GEORISK of Bavaria, is an essential step to<br />

creating susceptibility maps. Until now 2,800<br />

l<strong>and</strong>slides have been documented in the<br />

database, with in<strong>for</strong>mation about the type of<br />

movement, the extension, age <strong>and</strong> status of the<br />

l<strong>and</strong>slides. The following l<strong>and</strong>slide processes are<br />

recorded: flow ("Hangkriechen", "Schuttströme"),<br />

slide ("Rutschungen", "Hanganbrüche"), fall/rock<br />

fall ("Steinschläge", "Felsstürze", "Bergstürze"),<br />

Karst, subsidence ("Erdfälle", "Dolinen", "Senken",<br />

"Schwinden",..). Based on the inventory, maps<br />

were created, showing existing l<strong>and</strong>slides <strong>and</strong><br />

their activity (“Karten der Aktivitätsbereiche”).<br />

The Slovenian l<strong>and</strong>slide inventory map<br />

is shown as a small inlet on the susceptibility<br />

map of Slovenia at a scale of 1:250,000. Personal<br />

in<strong>for</strong>mation from M. Komac (Geo ZS) revealed<br />

that, since the sources <strong>for</strong> the inventory map of<br />

Slovenia are quite different from each other, the<br />

scales vary but l<strong>and</strong>slides were always mapped at<br />

a quite detailed scale.<br />

In France a database <strong>for</strong> mass movements<br />

is accessible on the internet. The processes taken<br />

into account are l<strong>and</strong>slides, rock fall, debris flows,<br />

subsidence <strong>and</strong> bank erosion. For each mass<br />

movement, the following detailed in<strong>for</strong>mation<br />

can be retrieved: type of movement, detailed<br />

geographical data, in<strong>for</strong>mation about the quality,<br />

the precision <strong>and</strong> the origin of the data, detailed<br />

in<strong>for</strong>mation about the mass movement (size,<br />

activity), the damage caused, the causes <strong>for</strong> the<br />

movement <strong>and</strong> geological in<strong>for</strong>mation as well as<br />

in<strong>for</strong>mation about the survey of the phenomenon.<br />

A prototype l<strong>and</strong>slide database has<br />

been established by Geoscience Australia in<br />

collaboration with the University of Wollongong<br />

<strong>and</strong> Mineral Resources Tasmania, displaying the<br />

location of the l<strong>and</strong>slides on a map <strong>and</strong> providing<br />

in<strong>for</strong>mation regarding the type of l<strong>and</strong>slide, date<br />

of occurrence (if known), a brief summary of the<br />

event, its cause <strong>and</strong> damage.<br />

In Engl<strong>and</strong> after the Aberfan disaster the<br />

UK government funded a number of research<br />

projects to look at the UK’s geo<strong>hazard</strong>s ([33]<br />

Reeves 2010). Now in the UK the BGS investigates<br />

geo<strong>hazard</strong>s by looking at primary geo<strong>hazard</strong>s such<br />

as earthquakes, volcanic eruptions <strong>and</strong> secondary<br />

geo<strong>hazard</strong>s such as l<strong>and</strong>slides, swelling/shrinking<br />

etc. Topics of consideration are the cause of<br />

events, return periods determined by analysis of<br />

past events, affected regions, influence of regional<br />

geology. An inventory is the first step in building an<br />

underst<strong>and</strong>ing of the occurrence of geo<strong>hazard</strong>s.<br />

Currently BGS maintains two main shallow<br />

geo<strong>hazard</strong> databases: the National L<strong>and</strong>slide <strong>and</strong><br />

the Karst Database. These inventories provide<br />

the basis <strong>for</strong> analysing the spatial distribution<br />

of the geo<strong>hazard</strong>s <strong>and</strong> their causal factors. This<br />

underst<strong>and</strong>ing can be used to assess susceptibility.<br />

In the USA the L<strong>and</strong>slide Inventory<br />

Steering Committee, composed of members of<br />

USGS <strong>and</strong> State Geological Surveys <strong>and</strong> other<br />

state agencies, are working on the L<strong>and</strong>slide<br />

Inventory Pilot Project. The purpose of this project<br />

is to provide a framework <strong>and</strong> tools <strong>for</strong> displaying<br />

<strong>and</strong> analyzing l<strong>and</strong>slide inventory data collected<br />

in a spatially aware digital <strong>for</strong>mat from individual<br />

states. To get in<strong>for</strong>mation about further l<strong>and</strong>slides,<br />

the Oregon Department of Geology <strong>and</strong> Mineral<br />

Industries, among others, has prepared an<br />

inventory <strong>for</strong>m. Besides in<strong>for</strong>mation about the<br />

exact location (coordinates) of a l<strong>and</strong>slide, the<br />

following specifications should be listed: date of<br />

slide, activity, estimated dimension (length, width,<br />

depth, volume, estimated dimensions from: aerial<br />

photos, field evaluation), predominant type of<br />

material (rock, debris, earth, fill), predominant<br />

type of movement (fall/topple, flow, translational<br />

slide, rotational slide, spread), approximate<br />

original slope (e.g.: 30° +/- 5°, estimated from<br />

e.g. 1:24K USGS topo map), l<strong>and</strong> use where<br />

slide occurred (<strong>for</strong>ested area, harvested area,<br />

rural area, urban area, agriculture), cause of slide<br />

(road construction, road cut, road fill, earthquake,<br />

preexisting slide, steep natural slope, natural<br />

drainage, human built drainage, other), damage<br />

caused by slide <strong>and</strong> additional comments.<br />

In Cali<strong>for</strong>nia the l<strong>and</strong>slide inventory<br />

maps are available at a scale of 1:24,000.<br />

The inventory was prepared primarily by<br />

geomorphological analysis, interpretation of aerial<br />

photographs <strong>and</strong> also by field reconnaissance,<br />

interpretation of topographic map contours, <strong>and</strong><br />

review of geological <strong>and</strong> l<strong>and</strong>slide mapping.<br />

Also, each l<strong>and</strong>slide was classified according to<br />

its activity: active or historic, dormant-young,<br />

dormant-mature, dormant-old. The l<strong>and</strong>slide<br />

material (rock, soil, earth, debris) <strong>and</strong> type of<br />

movement (slide, flow, fall, topple, spread) are<br />

also classified. Furthermore, each l<strong>and</strong>slide is<br />

classified according to a “confidence” (definite,<br />

probable, questionable) assigned by the geological<br />

interpreter. It can be regarded as a measure of<br />

likelihood that the l<strong>and</strong>slide actually exists.<br />

Susceptibility/<strong>hazard</strong> <strong>assessment</strong> in <strong>Alpine</strong> regions<br />

A literature study regarding susceptibility/<strong>hazard</strong><br />

mapping ([29] Posch-Trözmüller 2010) shows<br />

the different approaches to <strong>hazard</strong> <strong>assessment</strong> in<br />

alpine regions.<br />

For the <strong>assessment</strong> of natural <strong>hazard</strong>s<br />

(<strong>hazard</strong> maps) mainly heuristic methods are in<br />

practice. In this case scientific reports, geological<br />

<strong>and</strong> morphological mapping are the basis <strong>for</strong><br />

weighting methods. Statistical analysis (bivariante<br />

or multivariate) are used <strong>for</strong> the weighting. The<br />

weight of evidence method is based on a statistical<br />

Bayesian bivariate approach. Originally developed<br />

<strong>for</strong> ore exploration, this probabilistic method is<br />

now commonly used <strong>for</strong> the statistical <strong>assessment</strong><br />

of l<strong>and</strong>slides. It is based on the assumption that<br />

future l<strong>and</strong>slides would be triggered or influenced<br />

by the same or similar controlling factors as<br />

previously registered l<strong>and</strong>slides ([15] Klingseisen<br />

& Leopold 2006, [16] Klingseisen et al. 2006).<br />

In Germany a recommendation on how<br />

to create a susceptibility map is given by the<br />

“Geo<strong>hazard</strong>s” team of engineering geologists<br />

of German federal governmental departments<br />

of geology ([37] SGD 2007). Basic minimal<br />

requirements <strong>for</strong> inventory records are defined,<br />

such as spatial positioning <strong>and</strong> technical data of<br />

mass movements. Digital modelling (rock fall,<br />

shallow l<strong>and</strong>slides) can be used to identify the<br />

susceptibility of areas to mass movements, verified<br />

by l<strong>and</strong>slide inventories or evaluation through


Key-note papers<br />

Seite 30<br />

Seite 31<br />

field work. Indications of active/inactive l<strong>and</strong>slides<br />

can be found by using registers, mapping <strong>and</strong>/or<br />

remote sensing (DTM) methods. Potential l<strong>and</strong>slide<br />

areas (where l<strong>and</strong>slides have not yet taken place)<br />

are determined by empirical methods in account<br />

of geological <strong>and</strong> morphological situation <strong>and</strong><br />

l<strong>and</strong> use. Alternatively areas prone to l<strong>and</strong>sliding<br />

can be derived semi-automatically by a cross-over<br />

between DTM <strong>and</strong> a geological entity. Regarding<br />

rock fall processes, source areas of rock fall are<br />

derived in a first step from l<strong>and</strong>slide inventories<br />

<strong>and</strong>/or remote sensing (DTM). Usually <strong>Alpine</strong><br />

areas with an inclination > 45° are potential rock<br />

fall escarpments. In the second step, the runout<br />

zone is depicted by empiric angle methods<br />

(shadow angle, geometric slope angle) or physical<br />

deterministic methods. The guidelines also include<br />

flow processes, subrosion, subsidence <strong>and</strong> uplift.<br />

For the whole Bavarian Alps (about<br />

4.300 km²) ([23] Mayer 2007), an “extended<br />

danger map” at a scale of 1:25,000 has already<br />

been presented or is being completed. That<br />

means that, in contrast to the susceptibility map<br />

(without in<strong>for</strong>mation on intensity <strong>and</strong> probability),<br />

it includes a qualitative statement about the<br />

probability through a predefined “design event”.<br />

The legend <strong>for</strong> the rock fall danger map discerns<br />

between “indication of danger”, yes or no, the<br />

legend <strong>for</strong> the danger map of superficial l<strong>and</strong>slides<br />

discerns 3 entries (source area, accumulation<br />

zone, none), the deep-seated l<strong>and</strong>slides danger<br />

map also discerns 3 entries (indication, indication<br />

in extreme case, none).<br />

The Swiss indicative map (“Gefahrenhinweiskarte”)<br />

is generated at a scale of<br />

1:10,000 to 1:50,000. The legend gives only the<br />

in<strong>for</strong>mation “indication of <strong>hazard</strong>” - yes or no,<br />

without specification of classes. It indicates the<br />

potential process areas of rock falls, l<strong>and</strong>slides<br />

<strong>and</strong> debris flows. It doesn’t include in<strong>for</strong>mation<br />

about intensity or probability. The creation of an<br />

indicative map is not obligatory in Switzerl<strong>and</strong>,<br />

since the law refers to the st<strong>and</strong>ardized <strong>hazard</strong><br />

map ([32] Raetzo & Loup 2009). Detailed<br />

in<strong>for</strong>mation on <strong>hazard</strong> maps in Switzerl<strong>and</strong> is<br />

given by Raetzo & Loup in this issue [31].<br />

Because of the lack of a regulatory<br />

framework or technical norm concerning<br />

l<strong>and</strong>slides <strong>and</strong> rock fall in Austria - only the<br />

course of actions concerning floods, avalanches<br />

<strong>and</strong> debris flows are regulated by law (ordinance<br />

of <strong>hazard</strong> zone mapping, [34] Rudolf-Miklau &<br />

Schmidt 2004) - the federal states all follow a<br />

different course of action.<br />

At the Geological Survey of Austria,<br />

a database-system <strong>for</strong> documenting mass<br />

movements in Austria (GEORIOS) containing<br />

in<strong>for</strong>mation about the different types of<br />

processes, geological, hydrological, geometric<br />

<strong>and</strong> geographical data, in<strong>for</strong>mation on studies or<br />

tests carried out as well as mitigation measures<br />

<strong>and</strong> the source of in<strong>for</strong>mation (archives, field<br />

work) is in use. Susceptibility maps in different<br />

scales <strong>and</strong> with different methods (heuristic<br />

approach, neural network analysis) have already<br />

been generated. Using the digital geological<br />

map (1:50,000), the inventory map, map of<br />

phenomena <strong>and</strong> a lithological map, susceptibility<br />

maps <strong>for</strong> Carinthia were generated in collaboration<br />

with the Geological Survey of Austria<br />

(GBA) <strong>and</strong> the Geological Survey of Carinthia at a<br />

scale of 1:200,000 ([17] Kociu et al., 2006). These<br />

are, of course, still lacking in<strong>for</strong>mation about<br />

intensity <strong>and</strong> recurrence period or probability<br />

of occurrence. For a small study area in Styria,<br />

the Geological Survey of Austria generated a<br />

susceptibility map at a scale of 1:50,000 using<br />

neural network analysis ([38] Tilch 2009).<br />

In Vorarlberg risk maps (susceptibility<br />

map, vulnerability map, risk map) were produced<br />

in the course of a university dissertation ([35]<br />

Ruff 2005). For modelling, he used bivariate<br />

statistics (l<strong>and</strong>slides) <strong>and</strong> cost analysis (rock falls),<br />

working with a 25x25m grid. The inventory map is<br />

included in the susceptibility map. Also, the local<br />

department of the Austrian Service <strong>for</strong> Torrent<br />

<strong>and</strong> Avalanche Control (WLV) creates “<strong>hazard</strong><br />

maps” within the “<strong>hazard</strong> zonation plan”. In<br />

Upper Austria, Lower Austria <strong>and</strong> Burgenl<strong>and</strong>,<br />

different approaches have been chosen to develop<br />

susceptibility maps (different scales, processes)<br />

derived from existing data sets <strong>and</strong> maps ([29]<br />

Posch-Trözmüller 2010): The main focus in<br />

Burgenl<strong>and</strong> is concentrated on shallow l<strong>and</strong>slides<br />

with an annual movement rate of 1-2cm. For<br />

the prediction of l<strong>and</strong>slide susceptibility based<br />

on morphological <strong>and</strong> geological factors, the<br />

method called Weights of Evidence was chosen<br />

([16] Klingseisen et al. 2006). In Lower Austria<br />

susceptibility maps have been created until now<br />

using a heuristic approach based on geological<br />

expertise, historical data <strong>and</strong> interpretation of DTM<br />

<strong>and</strong> aerial photos ([36] Schweigl & Hervas 2009).<br />

To provide the municipalities with assistance in<br />

spatial planning, l<strong>and</strong>slide susceptibility maps<br />

were generated <strong>for</strong> the main settled areas in Upper<br />

Austria (OÖ). The priority, which is a susceptibility<br />

class, was evaluated on the basis of the in-tensity<br />

<strong>and</strong> the probability of an event <strong>for</strong> each type of<br />

mass movement ([19] Kolmer 2009). As these<br />

maps include the intensity <strong>and</strong> the frequency of<br />

mass movements, they can be called “<strong>hazard</strong><br />

maps” by definition. Nevertheless it has to be<br />

taken into account that the method of generating<br />

these maps did not include either field work or<br />

remote sensing techniques. The method of <strong>assessment</strong><br />

is based solely on geological expertise.<br />

The national project of Italy, IFFI, also<br />

represents an important tool <strong>for</strong> l<strong>and</strong>slide risk<br />

<strong>assessment</strong>, l<strong>and</strong> use planning <strong>and</strong> mitigation<br />

measures. By using the in<strong>for</strong>mation contained in<br />

the database of the IFFI Project <strong>and</strong> the Corine<br />

L<strong>and</strong> Cover Project 2000, it was possible to carry<br />

out an initial evaluation of the “level of attention”<br />

on a municipal basis. The level of attention was<br />

<strong>for</strong> example rated “very high”, when the l<strong>and</strong>slide<br />

points, polygons <strong>and</strong> lines intersected with urban,<br />

industrial or commercial areas ([13] ISPRA 2008).<br />

The regions in Italy also have programs<br />

in cooperation with the IFFI Project (IFFI started<br />

as a national project <strong>and</strong> is continued by the<br />

separate regions), as well as with the PAI Project.<br />

For example, the region of Friuli Venezia Giulia<br />

has a l<strong>and</strong>slide inventory that originated within<br />

these two studies, collecting data from several<br />

different regional offices (in particular: Protezione<br />

Civile della Regione <strong>and</strong> the Direzione Centrale<br />

Risorse Agricole, Naturali, Forestali e Montagna)<br />

as well as from other public subjects that work<br />

on the territory. It homogenizes the in<strong>for</strong>mation<br />

according to national st<strong>and</strong>ards <strong>and</strong> surveys new<br />

data. The program is used <strong>for</strong> the evaluation of the<br />

hydrogeological <strong>hazard</strong> <strong>and</strong> risk <strong>and</strong> also to give a<br />

clear <strong>and</strong> updated view of the interventions made<br />

in the region to preserve vulnerable areas. The<br />

data is recorded in an official GIS structure called<br />

Sitgeo (Geological Service In<strong>for</strong>mation System).<br />

The main focus lies on <strong>hazard</strong> <strong>assessment</strong> at the<br />

scale of a slope.<br />

Slovenia generated a susceptibility map<br />

of the whole country at a scale of 1:250,000 using<br />

statistical analyses ([20] Komac & Ribicic 2008).<br />

In 2002, BGS (Engl<strong>and</strong>) developed a nationwide<br />

susceptibility <strong>assessment</strong> of deterministic<br />

geo<strong>hazard</strong>s such as l<strong>and</strong>slides, skrink-swell,<br />

etc. called GeoSure ([33] Reeves 2010). It<br />

was developed from the 50K digital geology<br />

polygons (DiGMap50), published in<strong>for</strong>mation,<br />

expert judgement knowledge, national l<strong>and</strong>slide<br />

database, national geotechnical in<strong>for</strong>mation<br />

database <strong>and</strong> modified DTM. Probabilistic<br />

methods are used <strong>for</strong> <strong>hazard</strong> management by<br />

primary geo<strong>hazard</strong>s, deterministic methods by<br />

secondary geo<strong>hazard</strong>s.


Key-note papers<br />

Seite 32<br />

Seite 33<br />

A number of guidelines have been published in<br />

Australia by the Australian Geomechanics Society<br />

concerning mass movements <strong>and</strong> l<strong>and</strong>slide risk<br />

management, as well as slope management <strong>and</strong><br />

maintenance. These guidelines are tools that<br />

were made to be introduced into the legislative<br />

framework of Australian governments at national,<br />

state <strong>and</strong> local levels, <strong>and</strong> they are also useful <strong>for</strong><br />

l<strong>and</strong> use planning.<br />

Regional susceptibility mapping of<br />

areas prone to l<strong>and</strong>sliding is not yet commonly<br />

undertaken in Australia: Because of a lack of<br />

good inventory maps <strong>and</strong> validated inventory<br />

databases, l<strong>and</strong>slide <strong>hazard</strong> mapping is very<br />

limited. Determining temporal probability is often<br />

not possible because of the lack of historical<br />

in<strong>for</strong>mation ([25] Middleman 2007). L<strong>and</strong>slide<br />

mapping is generally done on a site-specific scale<br />

<strong>and</strong> is per<strong>for</strong>med by geotechnical consultants <strong>for</strong><br />

the purpose of zoning, building infrastructure<br />

<strong>and</strong> applying <strong>for</strong> development approvals ([25]<br />

Middleman 2007). Mineral Resources Tasmania<br />

(MRT, Department of Infrastructure, Energy <strong>and</strong><br />

Resources, State Government of Tasmania) is<br />

the only state government agency in Australia<br />

to undertake several activities with respect<br />

to l<strong>and</strong>slides, including regional mapping,<br />

administration of declared l<strong>and</strong>slide areas <strong>and</strong><br />

monitoring of a small number of problematic<br />

l<strong>and</strong>slides. Mazengarb ([24], 2005) describes in<br />

detail the methodology of creating the “Tasmanian<br />

l<strong>and</strong>slide <strong>hazard</strong> map series” that started with a<br />

pilot area coinciding with the Hobart municipality.<br />

The following basic in<strong>for</strong>mation was used to<br />

create the individual l<strong>and</strong>slide <strong>hazard</strong> maps<br />

(note: In the report the maps are called “<strong>hazard</strong><br />

maps”, but on the homepage, where the maps are<br />

accessible via the internet, the individual maps<br />

are called “susceptibility maps”, but, nonetheless,<br />

giving “<strong>hazard</strong> zones” in the legends.): geological<br />

mapping (1:25,000), geomorphological mapping<br />

<strong>and</strong> analysis (1:5,000), l<strong>and</strong>slide <strong>and</strong> engineering<br />

data compilation, construction of digital elevation<br />

models (10x10m).<br />

For example, a threshold slope value of<br />

42° was chosen <strong>for</strong> modelling rock fall source<br />

areas. It does not imply that rock fall will not<br />

occur on lower slopes, but it becomes steadily<br />

less likely with reduced slope angles. A simple<br />

modelling approach was developed <strong>for</strong> modelling<br />

the rock fall runout area using the direction of<br />

maximum downhill slope defined by an aspect<br />

raster <strong>and</strong> calculating with a travel angle of 30°.<br />

In southwestern Cali<strong>for</strong>nia, soil-slip<br />

susceptibility maps have been produced. These<br />

show the relative susceptibility of hill slopes to<br />

the initiation of rainfall triggered soil slip-debris<br />

flows. They do not attempt to show the extent<br />

of runout of the resultant debris flows. The<br />

susceptibility maps were created in an iterative<br />

process from two kinds of in<strong>for</strong>mation: locations<br />

of sites of past soil slips <strong>and</strong> aerial photographs<br />

taken during six rainy seasons that produced<br />

abundant soil slips. These were used as the basis<br />

<strong>for</strong> a soil slip-debris flow inventory. Also, digital<br />

elevation models (DTM) of the areas were used<br />

to analyze the spatial characteristics of soil slip<br />

locations. Slope <strong>and</strong> aspect values used in the<br />

susceptibility analysis were 10 metre DTM cells at<br />

a scale of 1:24,000. For convenience, the soil-slip<br />

susceptibility values are assembled on 1:100,000<br />

scale bases ([26] Morton et al. 2003).<br />

Comparison of <strong>hazard</strong> <strong>assessment</strong> methods<br />

Methods of <strong>hazard</strong> <strong>assessment</strong> used in Switzerl<strong>and</strong>,<br />

Italy (Friuli Venezia Giulia), Australia, France <strong>and</strong><br />

USA are considered in this section. First the Swiss<br />

<strong>and</strong> the Italian methods are compared, as these<br />

define intensity <strong>and</strong> probability parameters. The<br />

Australian method of <strong>hazard</strong> <strong>assessment</strong>, which<br />

is quite different from the first ones, as well as<br />

the method applied in the state of Washington<br />

(USA), is also looked into (Tab. 2). Tab. 3 gives<br />

an overview about <strong>hazard</strong> maps generated in the<br />

considered countries.<br />

Comparison of <strong>hazard</strong> <strong>assessment</strong> methods in Switzerl<strong>and</strong><br />

<strong>and</strong> Friuli Venezia Giulia (Italy)<br />

The <strong>hazard</strong> maps in Switzerl<strong>and</strong> are compared<br />

especially to Friuli Venezia Giulia. More detailed<br />

in<strong>for</strong>mation on the Swiss method is given by<br />

Raetzo & Loup in this issue [31]. The Swiss<br />

method ([30] Raetzo 2002) <strong>and</strong> the method used<br />

in Italy ([21] Kranitz & Bensi 2009) are based on<br />

an intensity-probability matrix. They differ from<br />

each other in determining the intensity <strong>and</strong> the<br />

probability of a l<strong>and</strong>slide event.<br />

In Switzerl<strong>and</strong>, 5 degrees of <strong>hazard</strong> are<br />

used. In Italy the <strong>hazard</strong> is rated in 4 classes (from<br />

very high [P4] to moderate [P1]).<br />

Concepts of <strong>hazard</strong> <strong>assessment</strong> in Switzerl<strong>and</strong><br />

In Switzerl<strong>and</strong> the method to establish the <strong>hazard</strong><br />

map was simplified as much as possible due to<br />

the objective of facilitating its integration into<br />

l<strong>and</strong> use (planning). In order to have simple construction<br />

regulations, only 5 degrees of <strong>hazard</strong><br />

were defined: high, medium, low, residual <strong>and</strong><br />

neglectable <strong>hazard</strong>. The degree of <strong>hazard</strong> is<br />

defined in a <strong>hazard</strong> matrix based on intensity <strong>and</strong><br />

probability criteria ([32] Raetzo & Loup 2009).<br />

For the planning of protection measures, more<br />

detailed investigations <strong>and</strong> calculations are done<br />

(e.g. all energy classes). In general the methods<br />

used are related to the product, scales <strong>and</strong> the risk<br />

in order to respect economic criteria. Applying<br />

this concept, low ef<strong>for</strong>ts were used <strong>for</strong> the swiss<br />

indicative map (level 1). Important ef<strong>for</strong>ts are taken<br />

when a <strong>hazard</strong> map is established or reviewed<br />

(level 2). Hazard maps are an accurate delineation<br />

of zones on scales from 1:2,000 to 1:10,000.<br />

Detailed analyses <strong>and</strong> engineering calculations<br />

are <strong>for</strong>eseen <strong>for</strong> the planning of countermeasures<br />

or <strong>for</strong> expertises (level 3). It is planned to apply<br />

this concept of increased ef<strong>for</strong>ts <strong>for</strong> geological<br />

investigations when the <strong>assessment</strong> takes place<br />

on the second or third level. These investigations<br />

include geologic mapping, geomorphologic<br />

analyses, monitoring, geophysics, numerical<br />

modelling <strong>and</strong> other methods.<br />

Assessment of the intensity<br />

(Switzerl<strong>and</strong>/ Friuli Venezia Giulia)<br />

Intensities are assessed through a classification<br />

that is represented in table 2.<br />

The <strong>assessment</strong> of intensities in Switzerl<strong>and</strong><br />

is different <strong>for</strong> each process, also <strong>for</strong> floods<br />

<strong>and</strong> snow avalanches ([30] Raetzo 2002). For<br />

continuous l<strong>and</strong>slide processes, the only criterion<br />

is the intensity. For spontaneous processes the<br />

intensity <strong>and</strong> the probability both ranging from<br />

high to low in three classes (high – medium – low)<br />

are needed:<br />

• For rock falls, the intensity is defined by<br />

the energy. High intensity is defined as<br />

e≥300kJ, which is approximately the limit<br />

of resistance of massive armored walls.<br />

• For slides, the mean long-term velocity,<br />

the variation of the velocity (dv, or<br />

acceleration), the differential movement<br />

(D), <strong>and</strong> the depth of the slide (T) are used<br />

to determine the intensity ([32] Raetzo &<br />

Loup 2009).<br />

• For flowing processes like earth flows, the<br />

potential thickness <strong>and</strong> the possible depth<br />

of the depo-sition determine the intensity.


Key-note papers<br />

Seite 34<br />

Seite 35<br />

For l<strong>and</strong>slides <strong>and</strong> rock falls the Swiss evaluation<br />

is normally based on intensity maps where 3 or<br />

more classes can be chosen. (e.g. 10-20,000 kJ<br />

<strong>for</strong> rock falls).<br />

In Italy, different methods of <strong>assessment</strong><br />

are used. For example, the regional method<br />

of Friuli Venezia Giulia ([21] Kranitz & Bensi<br />

2009) <strong>for</strong> rock fall: The intensities are classified<br />

by different methods using several tables. For fall<br />

processes, a table with definition of classes of the<br />

geometry is determined (after [12] Heinimann et<br />

al. 1998). The classification takes into account the<br />

block size of the rocks ([21] Kranitz & Bensi 2009).<br />

Another table determines the velocity factor (v),<br />

also ranging from 1- 3, using the definitions from<br />

Cruden & Varnes ([9], 1996). The intensity class,<br />

ranging from 1- 9, is then determined with the<br />

geometry-velocity matrix.<br />

Comparison between the Swiss <strong>and</strong> the Italian<br />

intensity classification:<br />

The differences in determining the intensity<br />

between the Swiss ([32] Raetzo & Loup 2009)<br />

<strong>and</strong> the Friuli method ([21] Kranitz & Bensi<br />

2009) are:<br />

• For fall processes in the Italian method,<br />

the energy does not need to be calculated,<br />

only the block sizes <strong>and</strong> the velocity need<br />

to be determined, while in Switzerl<strong>and</strong> the<br />

energy is calculated.<br />

• The Italian method does not differentiate<br />

<strong>for</strong> continuous processes. Switzerl<strong>and</strong><br />

uses the mean long-term velocity <strong>for</strong> these<br />

continuous l<strong>and</strong>slides.<br />

• The Swiss method determines 3 intensity<br />

classes to apply within the <strong>hazard</strong> matrix<br />

<strong>for</strong> the l<strong>and</strong> use planning. If protection<br />

measures are planned in Switzerl<strong>and</strong>, all<br />

the energy values are taken into account.<br />

The Italian method determines 9 intensity<br />

classes.<br />

Assessment of the probability<br />

(Switzerl<strong>and</strong>/ Friuli Venezia Giulia)<br />

Swiss method ([32] Raetzo & Loup 2009):<br />

The probability <strong>assessment</strong> of the Swiss method<br />

defines the probability in analogy to the recurrence<br />

periods used in flood <strong>and</strong> avalanche<br />

protection (30, 100, 300 years return period),<br />

which corresponds to yearly probabilities of 0.03,<br />

0.01 <strong>and</strong> 0.003. An event with a return period<br />

higher than 300 years is normally also considered<br />

<strong>for</strong> the <strong>assessment</strong> (risk analysis, residual risk,…).<br />

It corresponds mainly to the flood prevention<br />

strategy.<br />

The probability of an event has to be calculated<br />

or estimated:<br />

• Big events (“Bergsturz”, >1mio m3) do not<br />

recur. For smaller events the probability is<br />

defined by the elements at risk.<br />

• For continuous slides the probability is 1 (or<br />

100%), meaning that the event is happening<br />

already. Scenarios are defined when sudden<br />

l<strong>and</strong>slide failure or acceleration can take<br />

place. When fast moving l<strong>and</strong>slides (debris<br />

or earth slides according to Varnes) have<br />

long run-out distances, the process is<br />

moving into a flow. In this case the Swiss<br />

method takes into account the change from<br />

the first to the second move <strong>and</strong> criteria of<br />

the flow processes are applied (see below).<br />

• The probability <strong>for</strong> debris <strong>and</strong> earth flows is<br />

determined through field work <strong>and</strong> based<br />

on inventory data. Numerical modelling<br />

of flow processes is also used <strong>and</strong> the<br />

importance of these results is rising.<br />

Method of Friuli Venezia Giulia ([21] Kranitz &<br />

Bensi 2009):<br />

The possible frequency or occurrence probability<br />

is determined through the records of historical<br />

events. If there is a lack of sufficient historical data<br />

<strong>for</strong> the statistical evaluation of the return period,<br />

the values will be assigned by a typological<br />

approach based on bibliographical data inherent<br />

to the characteristics of temporal return of the<br />

various typologies of l<strong>and</strong>slides. This will be<br />

calibrated on geomorphologic observations,<br />

analyses of historical photos, <strong>and</strong> aerial pictures<br />

(which is also the case in the Swiss method) from<br />

the year 1954 up to now, <strong>and</strong> historical data from<br />

local sources. The probability is then classified in<br />

4 classes:<br />

• high: 1-30 years (active l<strong>and</strong>slides,<br />

continuous <strong>and</strong>/or intermittent l<strong>and</strong>slides,<br />

quiescent – episodic with high frequency)<br />

• medium: 30-100 years (quiescent – episodic<br />

l<strong>and</strong>slides with medium frequency)<br />

• low: 100-300 years (quiescent – episodic<br />

l<strong>and</strong>slides with low frequency)<br />

• >300 years (ancient l<strong>and</strong>slides or<br />

palaeol<strong>and</strong>slides).<br />

Other approaches to <strong>hazard</strong> <strong>assessment</strong><br />

France<br />

Malet et al. ([22] 2007) describes the French<br />

methodology <strong>for</strong> l<strong>and</strong>slide risk zoning (Plan<br />

de Prévention des Risques), where 3 classes of<br />

risk (R1, R2, R3) with specific rules <strong>for</strong> l<strong>and</strong> use<br />

regulations <strong>and</strong> urbanism can be represented<br />

in a matrix depicting <strong>hazard</strong>s <strong>and</strong> potential<br />

consequences. This qualitative method is based<br />

on the expert opinion of the scientist. No<br />

specific investigation is necessary, available data<br />

<strong>and</strong> reports are sufficient. The scale of work is<br />

specified as 1:10,000. The <strong>hazard</strong> map is an<br />

interpretation of the type of processes, activity,<br />

age <strong>and</strong> magnitude of the processes; the <strong>hazard</strong><br />

map is an interpretation of the type of processes,<br />

activity, magnitude <strong>and</strong> frequency. The risk map is<br />

the crossing of the <strong>hazard</strong> map <strong>and</strong> the inventory<br />

map of major stakes ([22] Malet et al. 2007).<br />

Australia<br />

In the Australian guidelines <strong>for</strong> l<strong>and</strong>slide<br />

susceptibility, <strong>hazard</strong> <strong>and</strong> risk zoning <strong>for</strong> l<strong>and</strong><br />

use planning, the number of events per length<br />

of source area per year (rock fall) or per square<br />

kilometer of source area per year (slides) is used<br />

<strong>for</strong> describing the <strong>hazard</strong> of small l<strong>and</strong>slides. For<br />

large l<strong>and</strong>slides, the annual probability of active<br />

sliding or the annual probability that movement<br />

will exceed a defined distance or the annual<br />

probability that cracking within a slide exceeds<br />

a defined length is used to describe the <strong>hazard</strong>.<br />

The description of the <strong>hazard</strong> should include the<br />

classification <strong>and</strong> the volume or the area of the<br />

l<strong>and</strong>slides.<br />

Whether l<strong>and</strong>slide intensity is required<br />

<strong>for</strong> <strong>hazard</strong> zoning is to be determined on a caseby-case<br />

basis. For rock fall <strong>hazard</strong> zoning, it is<br />

likely to be required. There<strong>for</strong>e the frequency<br />

<strong>assessment</strong> is much more important <strong>for</strong> <strong>hazard</strong><br />

zonation than the intensity according to AGS.<br />

Intensity <strong>assessment</strong> in Australia:<br />

The l<strong>and</strong>slide intensity is assessed as a spatial<br />

distribution of:<br />

• the velocity of sliding coupled with slide<br />

volume or<br />

• the kinetic energy (e.g. rock falls, rock<br />

avalanches), or<br />

• the total displacement or<br />

• the differential displacement or<br />

• the peak discharge per unit width (m3/m/<br />

sec., e.g. debris flows)<br />

For basic <strong>and</strong> intermediate level <strong>assessment</strong>s of<br />

intensity, only the velocity <strong>and</strong> volume might be<br />

assessed. But <strong>for</strong> the advanced <strong>assessment</strong>s of<br />

rock fall or debris flow <strong>hazard</strong>, the energy should<br />

be determined. In AGS ([3] 2007b) it is noted that<br />

“there is no unique definition <strong>for</strong> intensity. Those<br />

carrying out the zoning will have to decide which<br />

definition is most appropriate <strong>for</strong> the study”.


Key-note papers<br />

Seite 36<br />

Seite 37<br />

Frequency <strong>assessment</strong> in Australia:<br />

In AGS ([3], 2007b), the <strong>assessment</strong> of the<br />

frequency of a l<strong>and</strong>slide event <strong>for</strong> the generation<br />

of <strong>hazard</strong> maps is usually determined from the<br />

<strong>assessment</strong> of the recurrence intervals (the average<br />

time between events of the same magnitude) of<br />

the l<strong>and</strong>slides. If the variation of recurrence interval<br />

is plotted against magnitude of the event, a<br />

magnitude-frequency curve is obtained.<br />

The methods listed <strong>for</strong> determining the<br />

frequency include: historical records; sequences<br />

of aerial photographs <strong>and</strong>/or satellite images;<br />

silent witnesses; correlation with l<strong>and</strong>slide<br />

triggering events (rain storms, earthquakes); proxy<br />

data (e.g. pollen deposition, lichen colonization,<br />

fauna assemblages in ponds generated by a<br />

l<strong>and</strong>slide,…); geomorphologic features (ground<br />

cracks, fresh scarps,…); subjective <strong>assessment</strong>.<br />

It is further noted that “l<strong>and</strong>slides of<br />

different types <strong>and</strong> sizes do not normally have<br />

the same frequency (annual probability) of<br />

occurrence. Small l<strong>and</strong>slide events often occur<br />

more frequently than large ones. Different<br />

l<strong>and</strong>slide types <strong>and</strong> mechanics of sliding have<br />

different triggers (e.g. rainfalls of different<br />

intensity, duration <strong>and</strong> antecedent conditions;<br />

earthquakes of different magnitude <strong>and</strong> peak<br />

ground acceleration) with different recurrence<br />

periods. Because of this, to quantify <strong>hazard</strong>, an<br />

appropriate magnitude-frequency relationship<br />

should in principle be established <strong>for</strong> every<br />

l<strong>and</strong>slide type in the study area. In practice, the<br />

data available is often limited <strong>and</strong> this can only be<br />

done approximately.” A row of useful references<br />

on frequency <strong>assessment</strong> are listed in AGS ([3],<br />

2007b).<br />

In AGS ([1], 2000) it is noted that “even<br />

if extensive investigation is carried out, assessing<br />

the probability of l<strong>and</strong>sliding (particularly <strong>for</strong> an<br />

unfailed natural slope) is difficult <strong>and</strong> involves<br />

much uncertainty <strong>and</strong> judgement. In recognition<br />

of this uncertainty, it has been common practice<br />

to report the likelihood of l<strong>and</strong>sliding using<br />

qualitative terms such as “likely”, “possible” or<br />

“unlikely”.”<br />

Procedures of <strong>hazard</strong> mapping<br />

in the considered regions<br />

Tab. 3 gives an overview of <strong>hazard</strong> maps generated<br />

in the considered countries.<br />

In Germany a recommendation on how to create<br />

a susceptibility map is given by the “Geo<strong>hazard</strong>s”<br />

team of engineering geologists of German federal<br />

governmental departments of geology ([37] SGD<br />

2007). In 2007, the LfU completed the L<strong>and</strong>slide<br />

susceptibility map of Oberallgäu (Bavaria). For<br />

this map, the processes of rock falls, superficial<br />

l<strong>and</strong>slides <strong>and</strong> deep seated l<strong>and</strong>slides were<br />

treated separately. The susceptibility maps <strong>for</strong> rock<br />

falls <strong>and</strong> superficial l<strong>and</strong>slides were created using<br />

modelling, whereas the susceptibility map <strong>for</strong><br />

deep seated l<strong>and</strong>slides was created empirically,<br />

assuming that deep seated l<strong>and</strong>slides tend to occur<br />

in areas already affected by l<strong>and</strong>slides in the past,<br />

but taking into consideration that process areas<br />

can exp<strong>and</strong> during reactivation of a l<strong>and</strong>slide. The<br />

basic data used <strong>for</strong> the investigations contained<br />

the following: topographic map 1:25,000, raster<br />

<strong>for</strong>mat; geological map 1:25,000 or 1:50,000 <strong>and</strong><br />

also maps in smaller scales where the detailed<br />

maps were not available, vector <strong>for</strong>mat; DTM,<br />

10m raster data; aerial photographs 1:18,000 <strong>and</strong><br />

orthophotos; data on <strong>for</strong>ests; GEORISK data (BIS-<br />

BY); data on catchment areas; historical data.<br />

In Austria only the Austrian Service <strong>for</strong><br />

Torrent <strong>and</strong> Avalanche Control (WLV) generates<br />

<strong>hazard</strong> maps, called “Gefahrenzonenkarte” or<br />

“<strong>hazard</strong> zone maps” <strong>for</strong> floods, avalanches <strong>and</strong><br />

debris flows within the “Hazard zonation plan”<br />

(“Gefahrenzonenplan”). This is regulated by law<br />

(Forest Act BGBL. 440/1975). The implementation<br />

is regulated by a decree (“Verordnung des<br />

Bundesministeriums für L<strong>and</strong>- und Forstwirtschaft,<br />

1976“, BGBl. Nr. 436/1976). The scale usually<br />

ranges between 1:2,000 <strong>and</strong> 1:5,000, it must not be<br />

smaller than 1:50,000. The map gives in<strong>for</strong>mation<br />

about the determined effects in the relevant area<br />

of catchment areas (torrent buffer areas) in red<br />

<strong>and</strong> yellow <strong>hazard</strong> zones. The design event is<br />

determined by a return period of 150 years.<br />

In the red <strong>hazard</strong> zone, infrastructures<br />

cannot be maintained or can only be maintained<br />

with a very high ef<strong>for</strong>t due to the high intensity<br />

or a high recurrence of avalanches or torrential<br />

events.<br />

The yellow <strong>hazard</strong> zone includes all<br />

other areas affected by avalanches <strong>and</strong> torrents.<br />

The constant use of these areas by infrastructures<br />

is affected due to these <strong>hazard</strong>s. The <strong>hazard</strong><br />

zone map also delineates blue areas (<strong>for</strong> the<br />

implementation of technical or <strong>for</strong>estal measures<br />

as well as protective measures), as well as brown<br />

<strong>and</strong> violet reference areas.<br />

The brown reference areas are areas<br />

presumably affected by other <strong>hazard</strong>s than<br />

torrents or avalanches, like rock fall or l<strong>and</strong>slides.<br />

The violet reference areas are areas, where soil<br />

<strong>and</strong> terrain have to be protected in order to keep<br />

up their protective function.<br />

In Switzerl<strong>and</strong>, the Federal Office <strong>for</strong><br />

the Environment FOEN (Bundesamt für Umwelt,<br />

BAFU) is responsible <strong>for</strong> creating guidelines<br />

concerning protection against natural <strong>hazard</strong>s<br />

(floods, mass movements, snow avalanches). The<br />

concepts are similar <strong>for</strong> these processes to reach<br />

a certain level of protection. Protection against<br />

natural <strong>hazard</strong>s takes place on the principle of<br />

integral risk management, taking into account:<br />

• Prevention of an event<br />

• Conflict management during an event<br />

• Regeneration <strong>and</strong> reconstruction after<br />

an event.<br />

The Swiss regulations are described in more detail<br />

by Raetzo in this issue [31].<br />

In some regions of Italy the <strong>hazard</strong> is<br />

assessed using the Swiss method ([30] Raetzo<br />

2002). This method is similar to the method planned<br />

by the Italian legislative body <strong>for</strong> hydrogeological<br />

risk <strong>assessment</strong>. Appropriate changes have been<br />

introduced in order to st<strong>and</strong>ardize these aspects<br />

<strong>and</strong> contextualize the method <strong>for</strong> territorial<br />

jurisdiction ([21] Kranitz & Bensi 2009). Four<br />

classes of <strong>hazard</strong>s are distinguished, ranging<br />

from very high (P4 “molto elevata”), high (P3<br />

“elevata”), medium (P2 “media”), to moderate (P1<br />

“moderata”).<br />

The French <strong>hazard</strong> map, PPR, Plan<br />

de prevention des risques, is made by the local<br />

authorities (mayors), but with support by national<br />

agencies like CEMAGREF or agencies of the<br />

departments. It was introduced in 1995. Made<br />

by the municipalities at a scale of 1:10,000<br />

-1:25,000, the plans need to be authorized<br />

by the prefects in collaboration with the local<br />

authorities <strong>and</strong> the civil society, such as insurance<br />

companies. The PPR gives in<strong>for</strong>mation about the<br />

identification of danger zones; 3 classes of risk<br />

with specific rules <strong>for</strong> l<strong>and</strong> use regulations <strong>and</strong><br />

urbanism can be represented. The method is a<br />

qualitative method based on the expert judgment<br />

of the scientist. There are PPRs <strong>for</strong> floods, mass<br />

movements, avalanches <strong>and</strong> wood fires. Nonobservance<br />

of the PPR has legal consequences.<br />

In Spain the Geological Institute of<br />

Catalonia (IGC) is responsible to “study <strong>and</strong><br />

assess geological <strong>hazard</strong>s, including avalanches,<br />

to propose measures to develop <strong>hazard</strong> <strong>for</strong>ecast,<br />

prevention <strong>and</strong> mitigation <strong>and</strong> to give support<br />

to other agencies competent in l<strong>and</strong> <strong>and</strong> urban<br />

planning, <strong>and</strong> in emergency management” ([28]<br />

Oller et al. 2010). There<strong>for</strong>e, the IGC is charged<br />

with making official <strong>hazard</strong> maps with such<br />

finality. These maps comply with the Catalan


Key-note papers<br />

Seite 38<br />

Seite 39<br />

Urban Law (1/2005), which indicates that in those<br />

places where a risk exists, building is not allowed.<br />

For <strong>hazard</strong> mapping, the work is done on two<br />

scales: l<strong>and</strong> planning scale (1:25,000), <strong>and</strong> urban<br />

scale (1:5,000 or more detailed). These scales<br />

imply different approaches <strong>and</strong> methods to obtain<br />

<strong>hazard</strong> parameters. The maps are generated in<br />

the framework of a mapping plan or as the final<br />

product of a specific <strong>hazard</strong> report.<br />

The Australian AGS guidelines ([1] AGS,<br />

2000, [2]- [6] AGS 2007a-e) provide <strong>for</strong> a <strong>hazard</strong><br />

zonation at a local (1:5,000 -1:25,000) <strong>and</strong> a site<br />

specific (>1:5,000, typically 1:5,000 -1:1,000)<br />

scale with 5 <strong>hazard</strong> descriptors: very high – high<br />

– moderate – low – very low.<br />

The state of Washington (USA) generated<br />

In<strong>for</strong>mationsebene<br />

Interpretationsebene / Bewertungsebene<br />

quantitativ qualitativ / semiquantitativ<br />

Ereigniskataster<br />

Gefahrenhinweiskarte<br />

Fig. 1: Workflow of <strong>hazard</strong> mapping. ([18] Kociu et al. 2010)<br />

Ereigniskarte<br />

Grunddispositionskarte<br />

Abb. 1: Flussdiagramm zum Prozess Gefahrenkartierung. ([18] Kociu et al. 2010)<br />

<strong>hazard</strong> zonation maps at a scale of 1:12,000.<br />

The <strong>hazard</strong> <strong>assessment</strong> included evaluating a<br />

“l<strong>and</strong>slide frequency rate (LFR)“ <strong>and</strong> a “l<strong>and</strong>slide<br />

area rate <strong>for</strong> delivery (LAR)”. The LFR is obtained<br />

by taking the number of delivering l<strong>and</strong>slides<br />

per l<strong>and</strong><strong>for</strong>m, divided by the total area of that<br />

l<strong>and</strong><strong>for</strong>m, <strong>and</strong> normalized to the period of study.<br />

The LAR is the area of delivering l<strong>and</strong>slides<br />

normalized to the period of study <strong>and</strong> the area of<br />

each l<strong>and</strong><strong>for</strong>m. The resulting values are multiplied<br />

by one million <strong>for</strong> easier interpretation.<br />

In Cali<strong>for</strong>nia soil-slip susceptibility maps<br />

were produced at a scale of 1:24,000 delineating<br />

the susceptibility in 3 classes: low, moderate <strong>and</strong><br />

high. They give in<strong>for</strong>mation about the relative susceptibility<br />

of hill slopes to the initiation sites of<br />

Prozesshinweiskarte<br />

(Karte der Phänomene)<br />

Dispostionskarte<br />

Gefahrenpotentialkarte<br />

(Karte der potentiellen Wirkungsbereiche)<br />

Gefahrenkarte<br />

Risikokarte<br />

Thematische<br />

Inventarkarte<br />

Erweiterte<br />

Dispositionskarte<br />

St<strong>and</strong>ortparameter<br />

und -verhältnisse<br />

rainfall-triggered soil-slip debris flows ([26] Morton<br />

et al., 2003).<br />

The state of Utah prepared a l<strong>and</strong>slide<br />

susceptibility map <strong>for</strong> the whole state at a scale<br />

of 1:500,000 <strong>for</strong> deep seated l<strong>and</strong>slides, based<br />

on existing l<strong>and</strong>slides <strong>and</strong> slope angle thresholds<br />

<strong>for</strong> different geologic units. The susceptibility is<br />

delineated in 4 classes: high – moderate – low –<br />

very low ([10] Giraud & Shaw, 2007).<br />

Conclusion <strong>and</strong> recommendations<br />

Guzzetti ([11], 2005) discusses <strong>hazard</strong> <strong>assessment</strong><br />

in his thesis: “Despite the time [since the definition<br />

of “l<strong>and</strong>slide <strong>hazard</strong>” given by Varnes <strong>and</strong> the<br />

IAEG Commission on L<strong>and</strong>slides <strong>and</strong> other <strong>Mass</strong><br />

<strong>Movements</strong> ([39], 1984)] <strong>and</strong> the extensive list<br />

of published papers – most of which, in spite of<br />

the title or the intention of the authors, deal with<br />

l<strong>and</strong>slide susceptibility <strong>and</strong> not with l<strong>and</strong>slide<br />

<strong>hazard</strong>”, l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong> at the basin<br />

scale is sparse. And further: “This is largely due<br />

to difficulties associated with the quantitative<br />

determination of l<strong>and</strong>slide <strong>hazard</strong>.” In carrying out<br />

the literature survey, this un<strong>for</strong>tunately proved to<br />

be true <strong>and</strong> contributed to the confusion existing<br />

with definitions ([29] Posch-Trözmüller 2010).<br />

The differences call first <strong>for</strong> a national<br />

harmonization <strong>and</strong> second <strong>for</strong> international<br />

comparable methods (minimal requirements).<br />

To assess l<strong>and</strong>slide <strong>hazard</strong>s, the<br />

geological, morphological, hydrogeological <strong>and</strong><br />

hydrological conditions must be known <strong>and</strong><br />

analysed: The differences regarding acquisition of<br />

in<strong>for</strong>mation <strong>and</strong> <strong>assessment</strong> of the susceptibility/<br />

<strong>hazard</strong> of slopes to l<strong>and</strong>slides <strong>and</strong> rock fall shown<br />

in the chapter above call <strong>for</strong> a “harmonization”<br />

of the different methods (e.g. parameters,<br />

minimal requirements). Hazard <strong>assessment</strong><br />

needs in<strong>for</strong>mation about possible scenarios.<br />

L<strong>and</strong>slide inventories sustain l<strong>and</strong>slide knowledge<br />

through time <strong>and</strong> represent the main resource <strong>for</strong><br />

susceptibility/<strong>hazard</strong> <strong>assessment</strong>. The evidence<br />

identified in the field are the facts dealing with<br />

natural <strong>hazard</strong>s. Inventories are the essential base<br />

<strong>for</strong> accurate <strong>hazard</strong>/risk <strong>assessment</strong> <strong>and</strong> have<br />

there<strong>for</strong>e to be established by authorities.<br />

The variability of phenomena of mass<br />

movements makes regulations concerning<br />

methods of <strong>hazard</strong> <strong>assessment</strong> difficult. Guidelines<br />

regarding <strong>hazard</strong> <strong>assessment</strong> should declare the<br />

minimal requirements taking into account the<br />

final objective <strong>and</strong> the scale of product.


Key-note papers<br />

Countries Austria D CH SLO IT F AUS USA<br />

GBA NÖ K MM S By CH SLO IT F AUS O W U<br />

Inventory x x x x x x x x x x x x x x<br />

Basic in<strong>for</strong>mation where x x x x x x x x x x x x x x<br />

when x x x x x x x x x x x x x x<br />

what x x x x x x x x x x x x x x<br />

why x x x x x x x x x x<br />

who x x x x x x x x x x x x<br />

reported when x x x x x x x x<br />

L<strong>and</strong>slide conditions activity x x x x x x x x x<br />

geometry x x x x x x x x x x x x x<br />

slope position x x x x x x<br />

approx. original slope x x x<br />

site description x x x x<br />

depth to bedrock x x<br />

depth to failure<br />

plane<br />

slope aspect x x x x x x<br />

slope x x x<br />

Geology in general x x x x x x x x x<br />

Geology, specified<br />

geologic/ tectonic<br />

unit<br />

x x x x x x x<br />

lithology/ stratigraphy x x x x x x x<br />

bedding attitude x x x x<br />

weathering x x x<br />

geotechnical<br />

properties<br />

x x x x x x x x<br />

x<br />

geotechnical<br />

parameters<br />

x x x<br />

rock mass structure x x x<br />

joints/ joint spacing x x x x<br />

discontinuities x x x<br />

structural<br />

contributions<br />

x x x<br />

L<strong>and</strong> cover/ use x x x x x<br />

Hydrogeology x x x x<br />

Relationship to rainfall x x x<br />

Classification of mass<br />

movements<br />

x x x<br />

Classification type x x x x x x x x x x x x<br />

rate of movement x x x<br />

material x x x x<br />

water content x x x<br />

Causes, Trigger x x x x x x x x x x<br />

Precursory signs x<br />

Silent witnesses x<br />

Damage x x x x x x x x x x x<br />

"Hazard" to infrastructure x x x x<br />

Remedial measures x x x x x<br />

Costs of measures <strong>and</strong><br />

investigation<br />

x x x<br />

Methods used x x x x x x x x x<br />

Degree of precision<br />

info/ reliability<br />

x x x x<br />

Reports etc. x x x x x x x x<br />

Tab. 1: Comparison of in<strong>for</strong>mation collected <strong>for</strong> different inventories<br />

Tab. 1: Vergleich der In<strong>for</strong>mationen in Ereigniskatastern<br />

Seite 40<br />

Seite 41


Key-note papers<br />

Switzerl<strong>and</strong> low intensity moderate intensity high intensity<br />

rock fall E


Key-note papers<br />

Seite 44<br />

Seite 45<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Literatur / References:<br />

Countries/ projects<br />

Comparison of<br />

<strong>hazard</strong> maps<br />

USA:<br />

Washington<br />

Australia:<br />

AGS<br />

France:<br />

PPR<br />

Italy:<br />

Guzzetti<br />

Italy:<br />

Friuli, Veneto<br />

Switzerl<strong>and</strong>:<br />

FOEN/BAFU<br />

Austria:<br />

WLV<br />

1:12,000<br />

1:5,000-<br />

1:25,000<br />

1:10,000<br />

(urban),<br />

-1:25,000<br />

(rural)<br />

national is<br />

possible,<br />

regional<br />

1:2,000- 1:10,000 detail<br />

1:2,000-<br />

1:5,000<br />

Scale<br />

eventually x x<br />

Basic data:<br />

susceptibility map<br />

Basic data: inventory x x x x x x x<br />

30 years<br />

100 years<br />

300 years<br />

>300 years<br />

30 years<br />

100 years<br />

300 years<br />

(Residual risk zones<br />

<strong>for</strong> RP>300y)<br />

Return periods<br />

considered <strong>for</strong> l<strong>and</strong><br />

use (probability) 150 years<br />

statistical<br />

statistic <strong>and</strong><br />

empirical<br />

qualitative<br />

empirical,<br />

probabilistic<br />

quantitative,<br />

statistical<br />

(incl. field<br />

investigation)<br />

quantitative,<br />

statistic, qualitative<br />

(incl. field<br />

investigation)<br />

quantitative,<br />

statistic,<br />

empirical<br />

Method<br />

(<strong>assessment</strong>,<br />

modelling)<br />

5 4 5 2 (3) 5 3<br />

2 (<strong>for</strong> torrent<br />

<strong>and</strong> debris<br />

flow),<br />

indication <strong>for</strong><br />

l<strong>and</strong>slides <strong>and</strong><br />

rock fall<br />

Legend:<br />

Levels of <strong>hazard</strong><br />

Tab. 3: Comparison of different <strong>hazard</strong> maps, their scales <strong>and</strong> legends (levels of <strong>hazard</strong>)<br />

Tab. 3: Vergleich von verschiedenen Gefahrenkarten, Maßstäben und Legenden (Grad der Gefahren)<br />

Richard Bäk<br />

Amt der Kärntner L<strong>and</strong>esregierung<br />

Abt. 15 Umwelt<br />

Unterabteilung Geologie und Bodenschutz<br />

Flatschacher Straße 70, A – 9020 Klagenfurt<br />

Karl Mayer<br />

Bayerisches L<strong>and</strong>esamt für Umwelt<br />

Abt. 6 Wasserbau, Hochwasserschutz,<br />

Gewässerschutz<br />

Ref. 61 Hochwasserschutz und alpine<br />

Naturgefahren<br />

Lazarettstraße 67<br />

D – 80636 München<br />

Gerlinde Posch-Trözmüller<br />

Geologische Bundesanstalt<br />

Fachabteilung Rohstoffgeologie<br />

Neulinggasse 38, A-1030 Wien<br />

Andreas von Poschinger<br />

Bayerisches L<strong>and</strong>esamt für Umwelt<br />

Abt. 10 Geologischer Dienst<br />

Ref.106 Ingenieurgeologie, Georisiken,<br />

Lazarettstraße 67, D – 80636 München<br />

Hugo Raetzo<br />

Federal Office <strong>for</strong> the Environment FOEN<br />

Bundesamt für Umwelt BAFU<br />

CH - 3003 Bern, Schweiz<br />

[1] AGS - AUSTRALIAN GEOMECHANICS SOCIETY, SUB-COMMITTEE<br />

ON LANDSLIDE RISK MANAGEMENT (2000):<br />

L<strong>and</strong>slide Risk Management Concepts <strong>and</strong> Guidelines. Australian<br />

Geomechanics, Vol 35, No 1, March 2000.<br />

[2] AGS (2007a).<br />

Guideline <strong>for</strong> L<strong>and</strong>slide Susceptibility, Hazard <strong>and</strong> Risk Zoning <strong>for</strong> L<strong>and</strong><br />

Use Planning. Australian Geomechanics Society. Australian Geomechanics,<br />

Vol 42, No 1, March 2007.<br />

[3] AGS (2007b).<br />

Commentary on Guideline <strong>for</strong> L<strong>and</strong>slide Susceptibility, Hazard <strong>and</strong><br />

Risk Zoning <strong>for</strong> L<strong>and</strong> Use Planning. Australian Geomechanics Society.<br />

Australian Geomechanics, Vol 42, No 1, March 2007.<br />

[4] AGS (2007c).<br />

Practice Note Guidelines <strong>for</strong> L<strong>and</strong>slide Risk Management. Australian<br />

Geomechanics Society. Australian Geomechanics, Vol 42, No 1, March<br />

2007.<br />

[5] AGS (2007d).<br />

Commentary on Practice Note Guidelines <strong>for</strong> L<strong>and</strong>slide Risk Management<br />

2007. Australian Geomechanics Society. Australian Geomechanics, Vol 42,<br />

No 1, March 2007.<br />

[6] AGS (2007e).<br />

The Australian GeoGuides <strong>for</strong> slope management <strong>and</strong> maintenance.<br />

Australian Geomechanics Society. Australian Geomechanics, Vol 42, No<br />

1, March 2007.<br />

[7] BÄK, EBERHART, GOLDSCHMIDT, KOCIU, LETOUZE-ZEZULA &<br />

LIPIARSKI:<br />

Ereigniskataster und Karte der Phänomene als Werkzeug zur Darstellung<br />

geogener Naturgefahren (<strong>Mass</strong>enbewegungen), Arb. Tagg. Geol. B.-A.,<br />

Gmünd 2005.<br />

[8] BWG - BUNDESAMT FÜR WASSER UND GEOLOGIE:<br />

Naturgefahren, Symbolbaukasten zur Kartierung der Phänomene, 2002<br />

[9] CRUDEN D.M. UND VARNES D.J.:<br />

L<strong>and</strong>slide types <strong>and</strong> processes. In: A. Keith Turner & Robert L. Schuster<br />

(eds): L<strong>and</strong>slide investigation <strong>and</strong> mitigation: 36-75. Transportation<br />

Research Board, special report 247. Washington: National Academy Press,<br />

1996.<br />

[10] GIRAUD, R.E., SHAW, L.M.:<br />

L<strong>and</strong>slide Susceptibility Map of Utah. MAP 228DM, Utah Geological<br />

Survey, Utah Department of Natural Resources, Salt Lake City 2007.<br />

[11] GUZZETTI, F.:<br />

L<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk <strong>assessment</strong>. Diss. Math.-Naturwiss. Fak. Univ.<br />

Bonn, Bonn 2005.<br />

[12] HEINIMANN, H.R., VISSER, R.J.M., STAMPFER, K.:<br />

Harvester-cable yarder system evaluation on slopes: A Central European<br />

study in thinning operations. In: Schiess, P. <strong>and</strong> Krogstad, F. (Eds.): COFE<br />

Proceedings “Harvesting logistic: from woods to markets”, 41-46. Portl<strong>and</strong>,<br />

OR, 20-23 July, 1998.<br />

[13] ISPRA INSTITUTE FOR ENVIRONMENTAL PROTECTION AND<br />

RESEARCH: L<strong>and</strong>slides in Italy. Special report 2008. 83/2008, Rome 2008.<br />

[14] KIENHOLZ, H., KRUMMENACHER, B.:<br />

Empfehlungen Symbolbaukasten zur Kartierung der Phänomene Ausgabe<br />

1995, Mitteilungen des Bundesamtes für Wasser und Geologie Nr. 6, 41 S.,<br />

Reihe Vollzug Umwelt VU-7502-D, Bern 1995.


Seite 46<br />

Seite 47<br />

[15] KLINGSEISEN, B., LEOPOLD, PH.:<br />

L<strong>and</strong>slide Hazard Mapping in Austria.-GIM International 20 (12): 41-43,<br />

2006.<br />

[16] KLINGSEISEN, B., LEOPOLD, PH., TSCHACH, M.:<br />

Mapping L<strong>and</strong>slide Hazards in Austria: GIS Aids Regional Planning in Non-<br />

<strong>Alpine</strong> Regions. ArcNews 28 (3): 16, 2006.<br />

[17] KOCIU, A., LETOUZE-ZEZULA, G., TILCH, N., GRÖSEL, K.:<br />

Georisiko-Potenzial Kärnten; Entwicklung einer GIS-basierten<br />

Gefahrenhinweiskarte betreffend <strong>Mass</strong>enbewegungen auf Grundlage<br />

einer digitalen geologischen Karte (1:50,000) und eines georeferenzierten<br />

Ereigniskatasters. Endbericht, Gefährdungskarte, Ausweisung von<br />

Bereichen unterschiedlicher Suszeptibilität für verschiedene Typengruppen<br />

der <strong>Mass</strong>enbewegung. Bund/Bundesländerkooperation KC-29, Bibl. Geol.<br />

B.-A., Wiss. Archiv, Wien, 2006<br />

[18] KOCIU, A., TILCH N., SCHWARZ L,. HABERLER A., MELZNER S.:<br />

GEORIOS - Jahresbericht 2009; Geol.B.-A. Wien 2010.<br />

[19] KOLMER, CH.:<br />

Geogenes Baugrundrisiko Öberösterreich. Vortrag im Rahmen des<br />

L<strong>and</strong>esgeologentages 2009, 26.2.2009, St. Pölten, 2009.<br />

[20] KOMAC, M.; RIBICIC, M.:<br />

L<strong>and</strong>slide Susceptibility Map of Slovenia 1:250,000. Geological Survey of<br />

Slovenia, Ljubljana 2008.<br />

[21] KRANITZ, F., BENSI, S.:<br />

The BUWAL method. In: Posch-Trözmüller, G. (Ed.): Second Scientific<br />

Report to the INTERREG IV A project MASSMOVE - Minimal st<strong>and</strong>ards<br />

<strong>for</strong> compilation of danger maps like l<strong>and</strong>slides <strong>and</strong> rock fall as a tool <strong>for</strong><br />

disaster prevention. Attachment 4 to the second progress report, Geological<br />

Survey of Austria, Wien, 2009.<br />

[22] Malet, J.-P.; Thiery, Y.; Maquaire, O.; Sterlacchini, S.; van Beek,<br />

L.P.H.; van Asch, Th.W.J.; Puissant, A.; Remaitre, A.: L<strong>and</strong>slide risk zoning:<br />

What can be expected from model simulations? JRC Expert Meetings<br />

on Guidelines <strong>for</strong> Mapping Areas at Risk of L<strong>and</strong>slides in Europe 23-24<br />

October 2007, JRC, Ispra EU, 2007.<br />

[23] MAYER, K.:<br />

Maßnahme 3.2a „Schaffung geologischer und hydrologischer<br />

In<strong>for</strong>mationsgrundlagen“. Vorhaben „Gefahrenhinweiskarte Oberallgäu“.<br />

Bayerisches L<strong>and</strong>esamt für Umwelt, München 2007.<br />

[24] MAZENGARB, C.:<br />

The Tasmanian L<strong>and</strong>slide Hazard Map Series: Methodology. Tasmanian<br />

Geological Survey Record 2005/04, Mineral Resources Tasmania, 2005.<br />

[25] MIDDELMANN, M. H. (ED.):<br />

Natural Hazards in Australia: Identifying Risk Analysis Requirements.<br />

Geoscience Australia, Canberra 2007.<br />

[26] MORTON, D.M., ALVAREZ, R.M., CAMPBELL, R.H.:<br />

Preliminary soil-slip susceptibility maps, southwestern Cali<strong>for</strong>nia. USGS<br />

Open-File Report OF 03-17, Riverside, 2003.<br />

[27] NÖSSING, L.:<br />

Gefahrenzonenplanung in Südtirol. Vortrag im Rahmen des<br />

L<strong>and</strong>esgeologentages 2009, 26.2.2009, St. Pölten 2009.<br />

[28] OLLER, P., GONZALEZ, M., PINYOL, J., MARTINEZ, P.:<br />

Hazard mapping in Catalonia. Vortrag Workshop AdaptAlp, 17.3.2010,<br />

Bozen 2010.<br />

[29] POSCH-TRÖZMÜLLER, G.:<br />

AdaptAlp WP 5.1 Hazard Mapping - Geological Hazards. Literature<br />

Survey regarding methods of <strong>hazard</strong> mapping <strong>and</strong> evaluation of danger by<br />

l<strong>and</strong>slides <strong>and</strong> rock fall. Final Report, Geologische Bundesanstalt, Wien,<br />

2010<br />

[30] RAETZO, H.:<br />

Hazard <strong>assessment</strong> in Switzerl<strong>and</strong> – codes of practice <strong>for</strong> mass movements,<br />

International Association of Engineering Geology IAEG Bulletin, 2002.<br />

[31] REATZO, H. & LOUP, B.:<br />

Geological <strong>hazard</strong> <strong>assessment</strong> in Switzerl<strong>and</strong> (this issue)<br />

[32] RAETZO, H. & LOUP, B. ET AL.; BAFU:<br />

Schutz vor <strong>Mass</strong>enbewegungen. Technische Richtlinie als Vollzugshilfe.<br />

Entwurf 9. Sept. 2009.<br />

[33] REEVES, H.:<br />

Geo<strong>hazard</strong>s: The UK perspective. Vortrag Workshop AdaptAlp, 17.3.2010,<br />

Bozen 2010.<br />

[34] RUDOLF-MIKLAU F. & SCHMIDT F.:<br />

Implementation, application <strong>and</strong> en<strong>for</strong>cement of <strong>hazard</strong> zone maps<br />

<strong>for</strong> torrent <strong>and</strong> avalanches control in Austria, Forstliche Schriftenreihe,<br />

Universität für Bodenkultur Wien, Bd. 18, p. 83-107, 2004.<br />

[35] RUFF, M.:<br />

GIS-gestützte Risikonanalyse für Rutschungen und Felsstürze in den<br />

Ostalpen (Vorarlberg, Österreich). Georisikokarte Vorarlberg. Diss. Univ.<br />

Karlsruhe, 2005.<br />

[36] SCHWEIGL, J.; HERVAS, J.:<br />

L<strong>and</strong>slide Mapping in Austria. JRC Scientific <strong>and</strong> Technical Report EUR<br />

23785 EN, Office <strong>for</strong> Official Publications of the European Communities,<br />

61 pp. ISBN 978-92-79-11776-3, Luxembourg, 2009.<br />

[37] SGD, PERSONENKREIS GEOGEFAHREN: Geogene Naturgefahren in<br />

Deutschl<strong>and</strong>- Empfehlungen der Staatlichen Geologischen Dienste (SGD)<br />

zur Erstellung von Gefahrenhinweiskarten., 2007.<br />

[38] TILCH, N.:<br />

Datenmanagementsystem GEORIOS (Geogene Risiken Österreich). Vortrag<br />

im Rahmen des L<strong>and</strong>esgeologentages 2009, 26.2.2009, St. Pölten 2009.<br />

[39] VARNES, D.J. AND IAEG COMMISSION ON LANDSLIDES AND<br />

OTHER MASS-MOVEMENTS:<br />

L<strong>and</strong>slide <strong>hazard</strong> zonation: a review of principles <strong>and</strong> practice. The<br />

UNESCO Press, Paris, 1984.


Key-note papers<br />

Seite 48<br />

Seite 49<br />

Zusammenfassung:<br />

In den Bergregionen treten an Steilhängen verschiedene Arten von <strong>Mass</strong>enbewegungen<br />

auf, die Wasser und Sedimente mit sich führen: Muren, Bergsturz und Steinschlag. Das<br />

Ziel dieser Abh<strong>and</strong>lung ist es, einen kurzen Überblick über die vergangenen Analysen der<br />

Gefahren von Hangmassenbewegungen zu geben. Obwohl der Schwerpunkt auf Bergstürzen<br />

liegt, können die präsentierten Ansätze auch zur Gefahrenbeurteilung von Muren<br />

und Steinschlag verwendet werden. Insbesondere Bergstürze und Muren sind sehr häufig<br />

mitein<strong>and</strong>er verflochten. Im Folgenden wird „Bergsturz“ im weiteren Sinn als ein Begriff<br />

verwendet, der nicht nur auf einen Erdrutsch zu beziehen ist, sondern auch auf <strong>and</strong>ere<br />

Hangmassenbewegungen.<br />

Schlüsselwörter: Bergstürze, Muren, Felssturz, numerische Ansätze, Bergsturzgefahrenanalyse<br />

MATEJA JEMEC, MARKO KOMAC<br />

An Overview of Approaches <strong>for</strong><br />

Hazard Assessment of Slope <strong>Mass</strong> <strong>Movements</strong><br />

Ein Überblick über die Ansätze zur<br />

Gefahrenbeurteilung von <strong>Mass</strong>enbewegung<br />

Summary:<br />

In mountainous areas, various types of mass movements occur on steep slopes involving<br />

water <strong>and</strong> sediment: debris flows, l<strong>and</strong>slides <strong>and</strong> rockfalls. The aim of this paper is to gather<br />

a short overview of the past analyses that dealt with the <strong>hazard</strong> <strong>assessment</strong> of slope mass<br />

movements. Although the main focus is on l<strong>and</strong>slides, the approaches presented can be used<br />

to assess debris flows <strong>and</strong> rockfall <strong>hazard</strong>s. In particular, l<strong>and</strong>slides <strong>and</strong> debris flow are very<br />

often interlaced between each other. In the following text, the term “l<strong>and</strong>slide” will be used<br />

as a term that might not always be strictly connected to only l<strong>and</strong>slides but also to other<br />

slope mass movements. In a way it has a broader meaning.<br />

Keywords: l<strong>and</strong>slides, debris-flows, rockfall, numerical approaches, l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong><br />

1. The “Early Ages”<br />

The first extensive papers on the use of spatial<br />

in<strong>for</strong>mation in a digital context <strong>for</strong> l<strong>and</strong>slide<br />

susceptibility mapping date back to the late<br />

seventies <strong>and</strong> early eighties of the last century.<br />

Among the pioneers in this field were Carrara<br />

et al. (1977) in Italy <strong>and</strong> Brabb et al. (1978) in<br />

Cali<strong>for</strong>nia. Nowadays, practically all research<br />

on l<strong>and</strong>slide susceptibility <strong>and</strong> <strong>hazard</strong> mapping<br />

makes use of digital tools <strong>for</strong> h<strong>and</strong>ling spatial data<br />

such as GIS, GPS <strong>and</strong> Remote Sensing. These tools<br />

also have defined, to a large extent, the type of<br />

analysis that can be carried out. It can be stated<br />

that to a certain degree the capability of GIS<br />

tools <strong>and</strong> the accuracy of the in-situ <strong>and</strong> remote<br />

sensing data have determined the current state of<br />

the art in l<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk <strong>assessment</strong>.<br />

Many publications about l<strong>and</strong>slides <strong>and</strong> some<br />

worldwide l<strong>and</strong>slide research problems can be<br />

found in the literature of Einstein (1988), Fell<br />

(1994), Dai et al. (2002) <strong>and</strong> Glade et al. (2005).<br />

2. Terminology<br />

The term l<strong>and</strong>slide was defined by Varnes <strong>and</strong><br />

IAEG (1984) as “almost all varieties of mass<br />

movements on slopes, including rock-fall, topples<br />

<strong>and</strong> debris flow, that involve little or no true<br />

sliding”. Cruden (1991) moderated the accepted<br />

definition as “the movement of a mass of rock,<br />

earth or debris down a slope”. Later different<br />

working groups were established to support a<br />

specific level of st<strong>and</strong>ardisation in fields related<br />

to l<strong>and</strong>slides (UNESCO, IUGS, ISSMGE, ISRM<br />

<strong>and</strong> IAEG) <strong>and</strong> created the JTC (Joint Technical<br />

Committee on L<strong>and</strong>slides <strong>and</strong> Engineered Slopes),<br />

which continues to work <strong>for</strong> the st<strong>and</strong>ardisation<br />

<strong>and</strong> promotion of research on l<strong>and</strong>slides among<br />

the different disciplines. A large set of definitions<br />

was later presented by ISSMGE TC32 (Technical<br />

Committee on Risk Assessment <strong>and</strong> Management,<br />

2004) where international terms recognized <strong>for</strong><br />

<strong>hazard</strong>, vulnerability, risk <strong>and</strong> disaster can also<br />

be found. Since these definitions were published,<br />

many approaches have been implemented<br />

(Einstein, 1988; Fell, 1994; Soeters <strong>and</strong> van Westen,<br />

1996; Wu et al., 1996; Cruden <strong>and</strong> Fell, 1997; van<br />

Westen et al., 2003; Lee <strong>and</strong> Jones, 2004; Glade et<br />

al., 2005) allowing one to conclude that nowadays<br />

definitions regarding l<strong>and</strong>slides risk <strong>assessment</strong><br />

are generally accepted. The latest in<strong>for</strong>mation of<br />

guidelines <strong>for</strong> l<strong>and</strong>slide susceptibility, <strong>hazard</strong> <strong>and</strong><br />

risk zoning are published by JTC-1 (2008) <strong>and</strong> van<br />

Westen et al. (2008).


Key-note papers<br />

Seite 50<br />

Seite 51<br />

Data layer <strong>and</strong> types Accompanying data in tables Used methods <strong>for</strong> data collecting<br />

1. L<strong>and</strong>slide occurrence<br />

L<strong>and</strong>slides Type, activity, depth, dimensions, etc Fieldwork, orthophoto, satellite images<br />

2. Environmental (preparatory) factors<br />

Terrain mapping units Units description In-situ survey (fieldwork), satellite images<br />

Geomorphological units Geomorphological description Ortophoto, fieldwork, high resolution DEM<br />

Digital elevation model (DEM) Altitude classes SRTM DEM data, topographic map<br />

Slope map Slope angle classes With GIS <strong>for</strong>m DEM<br />

Aspect map Slope direction classes With GIS <strong>for</strong>m DEM<br />

Slope length Slope length classes With GIS <strong>for</strong>m DEM<br />

Slope shape Concavity/convexity With GIS <strong>for</strong>m DEM<br />

Internal relief Altitude/area classes With GIS <strong>for</strong>m DEM<br />

Drainage density Longitude/area classes With GIS <strong>for</strong>m DEM<br />

Lithologies<br />

Soils <strong>and</strong> material sequences<br />

Structural geological map<br />

Lithology, rock strength, weathering<br />

process<br />

Soils types, materials, depth, grain<br />

size, distribution, bulk density<br />

Fault type, length, dip, dip direction,<br />

fold axis<br />

Fieldwork <strong>and</strong> laboratory tests, archives,<br />

orthophoto<br />

Modelling <strong>for</strong>m lithological map,<br />

geomorphological map <strong>and</strong> slope map,<br />

fieldwork <strong>and</strong> laboratory analysis<br />

Fieldwork, satellite images, orthofoto<br />

Vertical movements Vertical movements, velocities Geodetic data, satellite data<br />

L<strong>and</strong> use map L<strong>and</strong> use type, tree density root depth Satellite images, orthofoto, fieldwork<br />

Drainage Type, order <strong>and</strong> length Orthophoto, topographic map<br />

Catchment areas Order, size Orthophoto, topographic map<br />

Water table Depth of water table in time Hydraulic stations<br />

3. Triggering factors<br />

Rainfall <strong>and</strong> maximum probabilities Precipitation in time Meteorological stations <strong>and</strong> modelling<br />

Earthquakes <strong>and</strong> seismic<br />

acceleration<br />

4. Elements at risk<br />

Earthquakes database <strong>and</strong><br />

maximum sesismic acceleration<br />

Seismic data, engineering geological data<br />

<strong>and</strong> modelling<br />

Population Number, sex, age, etc. Statistics in<strong>for</strong>mation<br />

Transportation system <strong>and</strong> facilities<br />

Lifeline utility system<br />

Roads <strong>and</strong> railroad types, facilities<br />

types<br />

Types of lifeline network <strong>and</strong><br />

capacity of fascilities<br />

Atlas, topographic map, local<br />

in<strong>for</strong>mation<br />

Atlas, topographic map, local<br />

in<strong>for</strong>mation<br />

Building Type of structure <strong>and</strong> occupation Topographic map, Housing in<strong>for</strong>mation<br />

Industry Industry production <strong>and</strong> type Atlas, topographic map, local in<strong>for</strong>mation<br />

Services facilities<br />

Number <strong>and</strong> type of health,<br />

educational, cultural <strong>and</strong> sport<br />

facilities<br />

Atlas, topographic map, local in<strong>for</strong>mation<br />

Tourism facilities Type of touristy facilities Atlas, topographic map, local in<strong>for</strong>mation<br />

Natural resources<br />

Area without natural resources<br />

combined<br />

Atlas, topographic map, local in<strong>for</strong>mation<br />

Tab. 1: Summary of data needed <strong>for</strong> l<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk <strong>assessment</strong>. Adapted from Soeters <strong>and</strong> van Westen (1996).<br />

Tab. 1: Zusammenfassung der Daten für Erdrutsch-Gefährdungs- und Risikoanalyse. Adaptiert von Soeters und van Westen (1996).<br />

L<strong>and</strong>slide related data can be grouped into four<br />

main sets, Table 1 (Soeters <strong>and</strong> van Westen, 1996).<br />

Debris flows are processes that<br />

have several sub-categories <strong>and</strong> different<br />

characteristics. Debris flows are gravity-induced<br />

mass movements, intermediate between l<strong>and</strong><br />

sliding <strong>and</strong> water flooding, with mechanical<br />

characteristics different from either of these<br />

processes (Johnson, 1970). According to Varnes<br />

(1978), debris flow is a <strong>for</strong>m of rapid mass<br />

movement of rocks <strong>and</strong> soils in a body of granular<br />

solid, water, <strong>and</strong> air, analogous to the movement<br />

of liquids. In the l<strong>and</strong>slide classification of Cruden<br />

<strong>and</strong> Varnes (1996), debris flows are flow-like<br />

l<strong>and</strong>slides with less than 80% of s<strong>and</strong> <strong>and</strong> finer<br />

particles. Velocities vary between very rapid <strong>and</strong><br />

extremely rapid with typical velocities of 3 m/min<br />

<strong>and</strong> 5 m/sec, respectively. L<strong>and</strong>slides <strong>and</strong> debris<br />

Fig. 1: Classification of slope mass movements as a ratio of solid fraction <strong>and</strong> material type.<br />

Modified after Coussot <strong>and</strong> Meunier (1996).<br />

Abb. 1: Klassifikation von <strong>Mass</strong>enbewegungen als Verhältnis von Geschiebefraktion und Materialart.<br />

Modifiziert nach Coussot und Meunier (1996).<br />

flow are very often interlaced between each<br />

other (Fig.1). In many cases, heavy precipitation<br />

is recognised as the main cause, <strong>and</strong> thresholds<br />

under different climatic conditions have been<br />

empirically evaluated (Caine, 1980; Canuti et<br />

al., 1985; Fleming et al., 1989; Mainali <strong>and</strong><br />

Rajaratnam, 1994; Anderson, 1995; Cruden <strong>and</strong><br />

Varnes, 1996; Finlay et al., 1997; Crosta, 1998;<br />

Crozier, 1999; Dai et al., 1999; Glade, 2000;<br />

Alcantara-Ayala, 2004; Fiorillo <strong>and</strong> Wilson, 2004;<br />

Lan et al., 2004; Malet et al., 2005; Wen <strong>and</strong><br />

Aydin, 2005). L<strong>and</strong>slides may mobilise to <strong>for</strong>m<br />

debris flows by three processes: (a) widespread<br />

Coulomb failure within a sloping soil, rock, or<br />

sediment mass, (b) partial or complete liquefaction<br />

of the mass by high pore-fluid pressure, <strong>and</strong> (c)<br />

conversion of l<strong>and</strong>slide translational energy to<br />

internal vibrational energy (Iverson et al., 1997).


Key-note papers<br />

Seite 52<br />

Seite 53<br />

Rockfall is one of the most common mass<br />

movement processes in mountain regions <strong>and</strong> is<br />

defined as the free falling, bouncing or rolling<br />

of individual or a few rocks <strong>and</strong> boulders, with<br />

volumes involved generally being < 5 m 3 (Berger<br />

et al., 2002). Numerous studies exist concerning<br />

various aspects of rockfall, such as the dynamic<br />

behaviour (Ritchie, 1963; Erismann, 1986; Azzoni<br />

et al., 1995), boulder reaction during ground<br />

contact (Bozzolo et al., 1986; Hungr <strong>and</strong> Evans,<br />

1988; Evans <strong>and</strong> Hungr, 1993), or runout distances<br />

of falling rocks (Kirkby <strong>and</strong> Statham, 1975; Statham<br />

<strong>and</strong> Francis, 1986; Okura et al., 2000). Much<br />

research was also done on the possible triggers<br />

of rockfall, such as freeze-thaw cycles (Gardner,<br />

1983; Matsuoka <strong>and</strong> Sakai, 1999; Matsuoka,<br />

2006), changes in the rock-moisture level (Sass,<br />

2005), the thawing of permafrost (Gruber et al.,<br />

2004), the increase of mean annual temperatures<br />

(Davies et al., 2001), tectonic folding (Coe <strong>and</strong><br />

Harp, 2007) or the occurrence of earthquakes<br />

(Harp <strong>and</strong> Wilson, 1995; Marzorati et al., 2002).<br />

In addition, several studies exist on the long-term<br />

accretion rates of rockfall (Luckman <strong>and</strong> Fiske,<br />

1995; McCarroll et al., 1998). Furthermore, since<br />

the late 1980s, the field of numeric modelling<br />

has become a major topic in the field of rockfall<br />

research (Zinggerle, 1989; Guzzetti et al., 2002;<br />

Dorren et al., 2006; Stoffel et al., 2006).<br />

3. Numerical approaches to l<strong>and</strong>slide <strong>hazard</strong><br />

<strong>assessment</strong><br />

According to Van Westen (1993), the l<strong>and</strong>slide<br />

<strong>hazard</strong> <strong>assessment</strong> methods have been divided<br />

into four groups of analysis. We’ve added an<br />

additional group – Artificial Neural Networks. The<br />

selection of one method over another depends on<br />

several factors (the data costs <strong>and</strong> availability, the<br />

scale, the output requirements, the geological <strong>and</strong><br />

geomorphological conditions, the tectonogenetic<br />

<strong>and</strong> morphogenetic behaviour of the l<strong>and</strong>slides,<br />

<strong>and</strong> computing capabilities of software <strong>and</strong><br />

hardware tools).<br />

Firstly, inventory analysis, which are<br />

based on the analysis of the spatial <strong>and</strong> temporal<br />

distribution of l<strong>and</strong>slide attributes <strong>and</strong> such<br />

inventories are the basis of most susceptibility<br />

mapping techniques. On detailed l<strong>and</strong>slide<br />

inventory maps, the basic in<strong>for</strong>mation <strong>for</strong><br />

evaluating <strong>and</strong> reducing l<strong>and</strong>slide <strong>hazard</strong>s on<br />

a regional or local level may be provided. Such<br />

maps include the state of activity, certainty of<br />

identification, dominant type of slope movement,<br />

primary direction, <strong>and</strong> estimated thickness of<br />

material involved in l<strong>and</strong>slides, <strong>and</strong> the dates of<br />

known activity <strong>for</strong> each l<strong>and</strong>slide (Wieczorek,<br />

1984).<br />

Secondly, the popular heuristic analysis<br />

(Castellanos <strong>and</strong> van Westen, 2003; R2 Resource<br />

Consultants, 2005; Ruff <strong>and</strong> Czurda, 2007;<br />

Firdaini, 2008) based on expert criteria with<br />

different <strong>assessment</strong> methods. The l<strong>and</strong>slide<br />

inventory map is accompanied with preparatory<br />

factors to be the main input <strong>for</strong> determining<br />

l<strong>and</strong>slide <strong>hazard</strong> zoning. Experts then define the<br />

weighting value <strong>for</strong> each factor.<br />

Many researchers utilize statistical<br />

analysis (Neul<strong>and</strong>, 1976; Carrara, 1983; Pike,<br />

1988; Carrarra et al., 1991; van Westen, 1993;<br />

Chung & Fabbri, 1999; Gorsevski et al., 2000;<br />

Dhakal et al., 2000; Zhou et al., 2003; Saha et al.,<br />

2005; Guinau et al., 2007; Komac <strong>and</strong> Ribičič,<br />

2008; Magliulo et al., 2008; Miller <strong>and</strong> Burnett,<br />

2008; Pozzoni et al., 2009; Komac et al., 2010),<br />

where several parameter maps are surveyed to<br />

apply bivariate <strong>and</strong> multivariate analysis. The<br />

key of this method is the l<strong>and</strong>slide inventory map<br />

when the past l<strong>and</strong>slide occurrences are needed<br />

to <strong>for</strong>ecast future l<strong>and</strong>slide areas.<br />

The next approach is deterministic<br />

analysis (van Westen, 1994; Terlien et al., 1995;<br />

van Westen <strong>and</strong> Terlien, 1996; Soeters <strong>and</strong> Westen,<br />

1996; van Asch et al., 1999; Zaitchik et al., 2003;<br />

Mazengarb, 2004; Schmidt <strong>and</strong> Dikau, 2004;<br />

Mayer et al., 2010), which is based on hydrological<br />

<strong>and</strong> slope instability models to evaluate the safety<br />

factor. Montgomery et al. (1994, 1998 <strong>and</strong> 2000)<br />

have attributed a great importance to precipitation<br />

<strong>and</strong> many other investigations have also been<br />

carried out about the relationship between rainfall<br />

<strong>and</strong> l<strong>and</strong>slides (Crozier, 1999; Lida, 1999; Dai<br />

<strong>and</strong> Lee, 2001; Guzzetti et al., 2007). For rainfall<br />

induced failures, these models couple shallow<br />

subsurface flow caused by rainfalls of various<br />

return periods, predicted soil thickness <strong>and</strong> soil<br />

mantle l<strong>and</strong>slides. Numerous studies have used<br />

rainfall characteristics, such as duration, intensity,<br />

maximum <strong>and</strong> antecedent rainfall during a<br />

particular period, to identify the threshold value <strong>for</strong><br />

l<strong>and</strong>slide initiation. Many authors (Caine, 1980;<br />

Caine <strong>and</strong> Mool, 1982; Brabb, 1984; Cannon<br />

<strong>and</strong> Ellen, 1985; Jakob <strong>and</strong> Weatherly, 2003)<br />

applied the rainfall intensity duration equation<br />

to estimate the threshold. With regard to specific<br />

rainfall characteristics, Wieczorek <strong>and</strong> Sarmiento<br />

(1983) used total rainfall duration be<strong>for</strong>e specific<br />

rainfall intensity occurs; Govi et al. (1985) applied<br />

total rainfall during a specific period after rainfall<br />

starts; <strong>and</strong> Crozier (1986) utilized the ratio of<br />

total rainfall to antecedent rainfall. Guzzetti et<br />

al. (2004) identified the local rainfall threshold<br />

on the basis of local rainfall <strong>and</strong> l<strong>and</strong>slide record<br />

<strong>and</strong> concluded that l<strong>and</strong>slide activity in Northern<br />

Italy initiates 8-10 hours after the beginning of a<br />

storm. However, many other investigations have<br />

been published about the relationship between<br />

rainfall <strong>and</strong> l<strong>and</strong>slides <strong>and</strong> attribute a large<br />

impact to precipitation <strong>for</strong> the time duration of<br />

l<strong>and</strong>slides (Carrara, 1991; Mongomery et al.,<br />

1994, 1998; Terlien et al., 1995; Crozier, 1999;<br />

Laprade et al., 2000; Alcantara-Ayala, 2004; Coe<br />

et al., 2004; Fiorillo <strong>and</strong> Wilson, 2004; Lan et al.,<br />

2004; Wen <strong>and</strong> Aydin, 2005; Zezere et al., 2005;<br />

Giannecchini, 2006; Jakob et at., 2006). While<br />

some of them deal with specific cases, others are<br />

more concerned with the statistical relationship<br />

<strong>for</strong> creating correlations models <strong>and</strong> even produce<br />

<strong>for</strong>ecasting models based on rainfall threshold<br />

values.<br />

One of the relatively new methods<br />

applied to l<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> susceptibility<br />

<strong>assessment</strong> are artificial neural network (ANN)<br />

tools. ANN is a useful approach <strong>for</strong> problems<br />

such as regression <strong>and</strong> classification, since it<br />

has the capability of analyzing complex data<br />

at varied scales such as continuous, categorical<br />

<strong>and</strong> binary data. The concept of ANN is based on<br />

learning <strong>for</strong>m data with known characteristics to<br />

derive a set of weighting parameters which are<br />

used subsequently to recognize the unseen data<br />

(Horton, 1945).<br />

Lee et al. (2003b) developed l<strong>and</strong>slide<br />

susceptibility analysis techniques using a multilayered<br />

perception (MLP) network. The results<br />

were verified by ranking the susceptibility index<br />

in classes of equal area <strong>and</strong> showed satisfactory<br />

agreement between the susceptibility map <strong>and</strong><br />

the l<strong>and</strong>slide location data. Lee et al. (2003a)<br />

obtained l<strong>and</strong>slide susceptibility by using neural<br />

network models <strong>and</strong> compared neural models with<br />

probabilistic <strong>and</strong> statistical ones. They also show a<br />

combination of ANN <strong>for</strong> determination of weights<br />

used spatial probabilities to create a l<strong>and</strong>slide<br />

susceptibility index map (Lee et al., 2004). Rainfall<br />

<strong>and</strong> earthquake scenarios as triggering factors <strong>for</strong><br />

l<strong>and</strong>slides have been used in <strong>hazard</strong> <strong>assessment</strong><br />

with ANNs (Lee <strong>and</strong> Evangelista, 2006; Wang <strong>and</strong><br />

Sassa, 2006). Several studies recognize ANN as a<br />

promising tool <strong>for</strong> these applications <strong>and</strong> most of<br />

them use a Multi layer Perceptron (MLP) network<br />

<strong>and</strong> a back propagation algorithm <strong>for</strong> training<br />

the network (Rumelhart et al., 1986; Arora et<br />

al., 2004; Ercanoglu, 2005; Ermini et al., 2005;


Key-note papers<br />

Seite 54<br />

Seite 55<br />

Numerical approach Basic description of approach References<br />

Inventory analysis<br />

Heuristic analysis<br />

Statistical analysis<br />

Deterministic analysis<br />

rainfall<br />

Artificial neural<br />

network (ANN)<br />

Analysis of the spatial <strong>and</strong><br />

temporal distribution of<br />

l<strong>and</strong>slide attributes<br />

Based on expert criteria with<br />

different <strong>assessment</strong> methods<br />

Several parameter maps are<br />

surveyed to apply bivariate<br />

<strong>and</strong> multivariate analysis<br />

Apply hydrological <strong>and</strong> slope<br />

instability models to evaluate<br />

the safety factor<br />

Use rainfall characteristic to<br />

identify the threshold value <strong>for</strong><br />

l<strong>and</strong>slide initiation<br />

Learning from data with<br />

known characteristics to derive<br />

a set of weighting parameters,<br />

which are used subsequently<br />

to recognize the unseen data<br />

Wieczorek (1984)<br />

Castellanos <strong>and</strong> van Westen (2003);<br />

R2 Resource Consultants (2005); Ruff <strong>and</strong><br />

Czurda (2007); Firdaini (2008)<br />

Neul<strong>and</strong> (1976); Carrara (1983); Pike<br />

(1988); Carrarra et al. (1991); van Westen<br />

(1993); Chung <strong>and</strong> Fabbri (1999); Gorsevski<br />

et al. (2000); Dhakal et al. (2000); Zhou et<br />

al. (2003); Saha et al. (2005); Guinau et al.<br />

(2007); Komac <strong>and</strong> Ribičič (2008); Magliulo<br />

et al. (2008); Miller <strong>and</strong> Burnett (2008);<br />

Pozzoni et al. (2009); Komac et al. (2010)<br />

van Westen (1994); Terlien et al. (1995);<br />

van Westen <strong>and</strong> Terlien (1996); Soeters<br />

<strong>and</strong> Westen (1996); van Asch et al. (1999);<br />

Zaitchik et al. (2003); Mazengarb (2004);<br />

Schmidt <strong>and</strong> Dikau (2004); Mayer et al. (2010)<br />

Caine (1980); Caine <strong>and</strong> Mool (1982);<br />

Wieczorek <strong>and</strong> Sarmiento (1983); Brabb<br />

(1984); Cannon <strong>and</strong> Ellen (1985); Govi et<br />

al. (1985); Crozier (1986); Carrara (1991);<br />

Terlien et al. (1995); Montgomery et al.<br />

(1994, 1998 <strong>and</strong> 2000); Crozier (1999);<br />

Lida (1999); Laprade et al. (2000); Dai<br />

<strong>and</strong> Lee (2001); Jakob <strong>and</strong> Weatherly<br />

(2003); Alcantara-Ayala (2004); Coe et<br />

al. (2004); Fiorillo <strong>and</strong> Wilson (2004);<br />

Guzzetti et al. (2004); Lan et al. (2004);<br />

Zezere et al. (2005); Wen <strong>and</strong> Aydin (2005);<br />

Giannecchini (2006); Jakob et al. (2006);<br />

Guzzetti et al. (2007)<br />

Horton (1945); Rumelhart et al. (1986);<br />

Ercanoglu <strong>and</strong> Gokceoglu (2002); Lee et al.<br />

(2003a); Lee et al. (2003b); Lu (2003); Arora<br />

et al. (2004); Lee et al. (2004); Neaupane <strong>and</strong><br />

Achet (2004); Catani et al. (2005); Ercanoglu<br />

(2005); Ermini et al. (2005); Gomez <strong>and</strong><br />

Kavzoglu (2005); Miska <strong>and</strong> Jan (2005); Wang<br />

et al. (2005); Yesilnacar <strong>and</strong> Topal (2005);<br />

Kanungo et al. (2006); Lee <strong>and</strong> Evangelista<br />

(2006); Lui et al. (2006); Melchiorre et al.<br />

(2006, 2008); Wang <strong>and</strong> Sassa (2006); Lee<br />

(2007); Pradhan <strong>and</strong> Lee (2007,2009a, 2009b,<br />

2009c); Nefeslioglu et al. (2008); Pradhan et<br />

al. (2009); Youssef et al. (2009)<br />

Tab. 2: Review of numerical approaches to l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong> with short description of approach <strong>and</strong> references.<br />

Tab. 2: Überprüfung von numerischen Ansätzen zur Gefahrenabschätzung von Rutschungen mit einer kurzen Darstellung des Ansatzes<br />

und Referenzen.<br />

Gomez <strong>and</strong> Kavzoglu, 2005; Wang et al., 2005;<br />

Pradhan <strong>and</strong> Lee, 2007, 2009a, 2009b, 2009c;<br />

Pradhan et al., 2009; Youssef et al., 2009). Ermini<br />

et al. (2005) <strong>and</strong> Catani et al. (2005) used unique<br />

conditions units <strong>for</strong> the terrain unit definition in<br />

ANNs analysis. More critical analyses compare<br />

ANN techniques with other methods such as<br />

logistic regression, fuzzy weighing <strong>and</strong> other<br />

statistical methods (Ercanoglu <strong>and</strong> Gokceoglu,<br />

2002; Lu, 2003; Neaupane <strong>and</strong> Achet, 2004;<br />

Miska <strong>and</strong> Jan, 2005; Yesilnacar <strong>and</strong> Topal, 2005;<br />

Kanungo et al., 2006; Lee, 2007). In the neural<br />

network method, Nefeslioglu et al. (2008) showed<br />

that ANNs give a more optimistic evaluation of<br />

l<strong>and</strong>slide susceptibility than logistic regression<br />

analysis. Melchiorre et al. (2006) did further<br />

research on the behaviour of a network with<br />

respect to errors in the conditioning factors by<br />

per<strong>for</strong>ming a robustness analysis <strong>and</strong> Melchiorre<br />

et al. (2008) improved the predictive capability<br />

<strong>and</strong> robustness of ANNs by introducing a cluster<br />

analysis. Neaupane <strong>and</strong> Achet (2004) used<br />

ANN <strong>for</strong> monitoring the movement. Moreover,<br />

Kanungo et al. (2006) showed that a l<strong>and</strong>slide<br />

susceptibility map derived from combined<br />

neural <strong>and</strong> fuzzy weighting procedure is the best<br />

amongst the other weighting techniques. Lui et<br />

al. (2006) assessed the l<strong>and</strong>slide <strong>hazard</strong> using<br />

ANNs <strong>for</strong> a specific l<strong>and</strong>slide typology (debris<br />

flow), considering among the triggering factors<br />

frequency of flooding, covariance of monthly<br />

precipitation, <strong>and</strong> days with rainfall higher than a<br />

critical threshold.<br />

4. Approaches to l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong><br />

The l<strong>and</strong>slide susceptibility <strong>assessment</strong> is a<br />

particular step in the l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong><br />

<strong>and</strong> is usually based on the comparison of<br />

the previously surveyed l<strong>and</strong>slides <strong>and</strong> the<br />

conditional or preparatory causal factors. With<br />

this combination a GIS is obtained in a l<strong>and</strong>slide<br />

susceptibility map. In susceptibility analyses,<br />

triggering causal factors are often not considered.<br />

Some research has been done specifically related<br />

to the l<strong>and</strong>slide susceptibility <strong>assessment</strong> (Lee et<br />

al., 2003; Sirangelo <strong>and</strong> Braca, 2004; Guzzetti<br />

et al., 2006). Several countries have published<br />

national l<strong>and</strong>slide susceptibility maps that are<br />

based on their national l<strong>and</strong>slide inventory<br />

(Brabb et al., 1999; Guzzetti, 2000; Komac <strong>and</strong><br />

Ribičič, 2008). One of the proven techniques <strong>for</strong><br />

l<strong>and</strong>slide susceptibility <strong>assessment</strong> is the weights<br />

of evidence (WofE) modelling. Many l<strong>and</strong>slide<br />

susceptibility have been carried out using this<br />

method (van Westen, 1993; Fern<strong>and</strong>ez, 2003; van<br />

Westen et al., 2003; Lee <strong>and</strong> Choi, 2004; Suzen<br />

<strong>and</strong> Doyuran, 2004; Neuhauser <strong>and</strong> Terhorst,<br />

2007; Magliulo et al., 2008). Essentially, the<br />

WofE method is a bivariate statistical technique<br />

that calculates the spatial probability <strong>and</strong> odds of<br />

l<strong>and</strong>slides given a certain variable.<br />

Many investigations have included<br />

l<strong>and</strong>slide runout in the analyses <strong>for</strong> l<strong>and</strong>slide<br />

<strong>hazard</strong> <strong>assessment</strong>. With research on l<strong>and</strong>slide<br />

runout or travel distance started in mid Nineties<br />

of the last century (Hungr, 1995; Finlay et al.,<br />

1999; Chen <strong>and</strong> Lee, 2000; Okura et al., 2000;<br />

Fannin <strong>and</strong> Wise, 2001; Wang et al., 2002; Crosta<br />

et al., 2003; Hunter <strong>and</strong> Fell, 2003; Bertolo <strong>and</strong><br />

Wieczorek, 2005; Hungr et al., 2005; Malet et<br />

al., 2005; Crosta et al., 2006; van Asch et al.,<br />

2006; Pirulli et al., 2007; van Asch et al., 2007a;<br />

van Asch, et al., 2007b) where authors use three<br />

types of approaches <strong>for</strong> runout analysis. These are<br />

the empirical approach from previous l<strong>and</strong>slides<br />

<strong>and</strong> geomorphological analysis, the deterministic<br />

approach from the geotechnical parameters <strong>and</strong><br />

the dynamic approach from numerical modelling<br />

of runout.


Key-note papers<br />

Seite 56<br />

Seite 57<br />

L<strong>and</strong>slide vulnerability <strong>assessment</strong> is a<br />

fundamental component in the evaluation<br />

of l<strong>and</strong>slide risk (Leone et al., 1996). Most<br />

publications about vulnerability are related to<br />

<strong>hazard</strong> <strong>and</strong> risk <strong>assessment</strong> (Mejia-Navarro et al.,<br />

1994; Leone et al., 1996; Ragozin <strong>and</strong> Tikhvinsky,<br />

2000; van Westen, 2002; Hollenstein, 2005). The<br />

main object of these investigations determined<br />

the elements of risk which have impact on<br />

structures on its surface <strong>and</strong> estimate the cost.<br />

The vulnerability maps are expressed with values<br />

between 0 <strong>and</strong> 1, where 0 means no damage <strong>and</strong><br />

1 means total loss. Generally, the vulnerability<br />

to l<strong>and</strong>slides may depend on runout distance;<br />

volume <strong>and</strong> velocity of sliding; elements at risk<br />

(buildings <strong>and</strong> other structures), their nature <strong>and</strong><br />

their proximity to the slide; <strong>and</strong> the elements<br />

at risk (person), their proximity to the slide, the<br />

nature of the building/road that they are in, <strong>and</strong><br />

where they are in the building, on the road, etc<br />

(Finlay, 1996).<br />

The aim of l<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk<br />

<strong>assessment</strong> studies is to protect the population,<br />

the economy <strong>and</strong> environment against potential<br />

damage caused by l<strong>and</strong>slides (Crozier <strong>and</strong> Glade,<br />

2005). Risk in this context, is seen as a disaster<br />

that could happen in the future. The total risk<br />

map could be obtained by combining <strong>hazard</strong> <strong>and</strong><br />

vulnerability <strong>and</strong> made directly or specific risk or<br />

consequence maps can be created <strong>and</strong> analyzed<br />

in order to achieve some preliminary conclusions.<br />

The classification of the l<strong>and</strong>slide risk <strong>assessment</strong><br />

is still in progress. At the moment the classification<br />

is based on the level of quantification dividing the<br />

l<strong>and</strong>slide risk <strong>assessment</strong> methods in qualitative,<br />

semi-qualitative <strong>and</strong> quantitative (AGS, 2000;<br />

Powell, 2000; Walker 2000; Chowdhury <strong>and</strong><br />

Flentje, 2003).<br />

The qualitative l<strong>and</strong>slide risk <strong>assessment</strong><br />

approach is based on the experience of the experts<br />

<strong>and</strong> the risk areas are categorized generally in<br />

three or five classes as very high, high, moderate,<br />

low <strong>and</strong> very low. This method is applicable <strong>for</strong><br />

spatial analysis using GIS <strong>and</strong> usually applied at<br />

national or regional levels. This approach were<br />

found in literature from Lateltin (1997), AGS<br />

(2000), Budetta (2004), Cascini (2004), Ko Ko et<br />

al. (2004), IADB (2005), Nadim et al. (2006).<br />

With the semi-qualitative l<strong>and</strong>slide<br />

risk <strong>assessment</strong> approach, weights are assigned<br />

under certain criteria, which provide numbers<br />

as outcome, instead of qualitative classes<br />

(0-1, 0-10 or 0-100). It could be applicable to<br />

any scale, but more reasonably used at medium<br />

scale. Semi-quantitative approach efficiently uses<br />

spatial multi-criteria techniques implemented in<br />

GIS that facilitate st<strong>and</strong>ardization, weighting <strong>and</strong><br />

data integration in a single set of tools. More<br />

details about the weighting system are published<br />

by Br<strong>and</strong> (1988), Koirala <strong>and</strong> Watkins (1988),<br />

Chowdhury <strong>and</strong> Flentje (2003), Blochl <strong>and</strong><br />

Braun (2005), Castellanos Abella <strong>and</strong> van Westen<br />

(2005) <strong>and</strong> Saldivar-Sail <strong>and</strong> Einstein (2007).<br />

When implementing the semi-quantitative<br />

model, usually the multi-criteria evaluation is<br />

used (see references below). The input is a set<br />

of maps that are the spatial representation on<br />

the criteria, which are grouped, st<strong>and</strong>ardised<br />

<strong>and</strong> weighted in a criteria tree. Meanwhile the<br />

output is one or more composite index maps<br />

indicating the completion of the model used.<br />

The theoretical background <strong>for</strong> the multicriteria<br />

evaluation is based on the Analytical<br />

Hierarchical Process (AHP) developed by Saaty<br />

(1977). The AHP has been extensively applied<br />

on decision making problems (Saaty <strong>and</strong> Vargas,<br />

2001). Recently some research has been carried<br />

out to apply AHP to l<strong>and</strong>slide susceptibility<br />

<strong>assessment</strong> (Barredo et al., 2000; Mwasi,<br />

2001; Nie et al., 2001, Wu <strong>and</strong> Chen, 2009).<br />

Komac (2006) designed multivariate statistical<br />

processing techniques in order to obtain several<br />

l<strong>and</strong>slide susceptibility models with data at scale<br />

1:50,000 <strong>and</strong> 1:100,000. Based on the statistical<br />

results, several l<strong>and</strong>slides susceptibility maps<br />

were created.<br />

Quantitative l<strong>and</strong>slide risk <strong>assessment</strong><br />

has been used <strong>for</strong> specific slopes or very small<br />

areas using probabilistic methods or percentage<br />

of losses expected (Whitman, 1984; Chowdhury,<br />

1988). Probabilistic values (0-1) are obtained<br />

at the expense of a certain amount of monetary<br />

or human loss. Quantitative risk analysis <strong>and</strong><br />

consequent <strong>assessment</strong> uses in<strong>for</strong>mation about<br />

<strong>hazard</strong> probability, values of elements at risk<br />

<strong>and</strong> their vulnerability. Among the quantitative<br />

approaches found in literature there are some<br />

basic similarities but also some differences<br />

between the approaches. They include either<br />

estimation of <strong>hazard</strong> or estimation of vulnerability<br />

<strong>and</strong> consequences (Morgan, 1992; Einstein, 1988,<br />

1997; Fell, 1994; Fell et al., 2005; Anderson et al.,<br />

1996; Ragozin, 1996; Ragozin <strong>and</strong> Tikhvinsky,<br />

2000; Lee <strong>and</strong> Jones, 2004; AGS, 2000).<br />

5. L<strong>and</strong>slide risk management<br />

At the end of the <strong>assessment</strong> process when<br />

l<strong>and</strong>slide susceptibility <strong>and</strong> risk <strong>assessment</strong><br />

have been identified, results <strong>and</strong> measures<br />

obtained should or may be included into the<br />

l<strong>and</strong>slide risk management process governed<br />

by decision makers to mitigate l<strong>and</strong>slide risk of<br />

the community or, at this level, several further<br />

approaches are possible. The strategies may<br />

be grouped into planning control, engineering<br />

solution, acceptance, <strong>and</strong> monitoring or warning<br />

systems. The risk assessed can be compared<br />

with the acceptance criteria to decide upon the<br />

l<strong>and</strong>slide mitigation measures required.<br />

L<strong>and</strong>slide (or any natural <strong>hazard</strong> <strong>for</strong> that matter)<br />

<strong>assessment</strong> process is just one of several steps in<br />

the (L<strong>and</strong>slide) Risk Management Cycle (RMC),<br />

which doesn’t end at the stage where results of<br />

<strong>assessment</strong> process are included in the RMC. RMC<br />

is a live system where each measure/provision<br />

results in a consequence(s) that influence(s)<br />

further development in <strong>and</strong> steps of this cycle. In<br />

a way we could define it as a spiral rather than as<br />

a circular process since the same position is never<br />

reached again.<br />

6. Conclusion<br />

In this paper, different approaches <strong>for</strong> the evaluation<br />

of slope mass processes are reviewed. In general,<br />

all analyses are based on the assumption that<br />

historical l<strong>and</strong>slides <strong>and</strong> their causal relationships<br />

can be used to predict future ones (“past is a key<br />

to the future”). However, we can see that many<br />

researchers use different approaches to evaluate<br />

l<strong>and</strong>slides, debris flow or rockfall <strong>hazard</strong> risk<br />

<strong>assessment</strong>, which mainly depend on data<br />

availability. In developing countries, usually the<br />

lack of financial support to produce risk <strong>assessment</strong><br />

maps <strong>for</strong> dangerous areas results in emphasis<br />

on remediation measures. Whereas in countries<br />

with high st<strong>and</strong>ards, the approach to the topic is<br />

focused into prevention <strong>and</strong> into remediation if<br />

disasters occur. In any event the obstacles related<br />

to the availability of data are smaller each day<br />

due to low-cost satellite in<strong>for</strong>mation, the use of<br />

SRTM, ASTER <strong>and</strong> Google Earth, which ease the<br />

creation of l<strong>and</strong>slide inventory databases, a basis<br />

<strong>for</strong> any further <strong>hazard</strong> <strong>assessment</strong>s. The l<strong>and</strong>slide<br />

inventory map is probably the most important data<br />

set to work on <strong>for</strong> producing a reliable prediction<br />

map of spatial <strong>and</strong> temporal probability <strong>for</strong><br />

l<strong>and</strong>slides or other slope mass movements <strong>and</strong> a<br />

necessity <strong>for</strong> any type of analyses.


Key-note papers<br />

Seite 58<br />

Seite 59<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Mateja Jemec<br />

Dimičeva ulica 14<br />

SI – 1000 Ljubljana, Slovenia<br />

mateja.jemec@geo-zs.si<br />

Marko Komac<br />

Dimičeva ulica 14<br />

SI – 1000 Ljubljana, Slovenia<br />

marko.komac@geo-zs.si<br />

Literatur / References:<br />

AGS, 2000.<br />

L<strong>and</strong>slide risk management concept <strong>and</strong> guidelines. Australian<br />

Geomechanics Society sub- committee on l<strong>and</strong>slide risk management,<br />

Australian Geomechanics 35 (1), 44–92.<br />

ALCANTARA-AYALA, I., 2004.<br />

Hazard <strong>assessment</strong> of rainfall-induced l<strong>and</strong>sliding in Mexico.<br />

Geomorphology 61, 19– 40.<br />

ANDERSON, L.R., BOWLES, D.S., PACK, R.T. AND KEATON, J.R., 1996.<br />

A risk based method <strong>for</strong> l<strong>and</strong>slide mitigation. In: K. Senneset (Editor), VII<br />

International Symposium on L<strong>and</strong>slide. A.A.Balkema, Trondheim, Norway,<br />

135-140.<br />

ARORA, M.K., GUPTA, A.S.D. AND GUPTA, R.P., 2004.<br />

An artificial neural network approach <strong>for</strong> l<strong>and</strong>slide <strong>hazard</strong> zonation in<br />

the Bhagirathi (Ganga) Valley, Himalayas, International Journal of Remote<br />

Sensing 25 (3), 559–572.<br />

AZZONI, A., BARBERA, G.L., ZANINETTI, A., 1995.<br />

Analysis <strong>and</strong> prediction of rockfalls using a mathematical model.<br />

International J. Rock Mechanics <strong>and</strong> Mining Sci. 32, 709–724.<br />

BARREDO, J.I., BENAVIDES, A., HERVAS, J., VAN WESTEN, C.J., 2000.<br />

Comparing heuristic l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong> techniques using GIS<br />

in the Tirajana basin, Gran Canaria Isl<strong>and</strong>, Spain. International Journal of<br />

Applied Earth Observation <strong>and</strong> Geoin<strong>for</strong>mation 2, 9 – 23.<br />

BERGER, F., COROMINAS, J., LOPEZ-CARRERAS, C., BRAUNER, M.,<br />

KIENHOLZ, H., GRASSL, H., 2002.<br />

ROCKFOR, Rockfall–Forest Interrelation, Efficiency of the Protective<br />

Function of Mountain Forest against Rockfall. Second Annual Report (CD);<br />

financed 84 M. Brauner et al. / Forest Ecology <strong>and</strong> Management 207 (2005)<br />

75–85 by the European Commission (Quality of Life <strong>and</strong> Management of<br />

Living Resources, FP5).<br />

BERTOLO, P. AND WIECZOREK, G.F., 2005.<br />

Calibration of numerical models <strong>for</strong> small debris flows in Yosemite Valley,<br />

Cali<strong>for</strong>nia, USA. Natural Hazards <strong>and</strong> Earth System Sciences 5, 993–1001.<br />

BOZZOLO, D., PAMINI, R. AND HUTTER, K.,1986.<br />

Rockfall analysis —a mathematical model <strong>and</strong> its test with field data.<br />

Proceedings of the 5th International Symposium on L<strong>and</strong>slides in Lausanne.<br />

Balkema, Rotterdam, The Netherl<strong>and</strong>s, pp. 555–560.<br />

BRABB, E.E., PAMPEYAN, E.H., BONILLA, M.G., 1978.<br />

L<strong>and</strong>slide susceptibility in San Mateo County, Cali<strong>for</strong>nia. US Geological<br />

Survey Miscellaneous Field Studies Map, MF-360, Map at 1: 62,500 scale.<br />

BRABB, E.E., 1984.<br />

Inovative approaches to l<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk mapping. Canadian<br />

Geotechnical Society I, 403-324.<br />

BRABB, E., COLGAN, J.P. AND BEST, T.C., 1999.<br />

Map showing inventory <strong>and</strong> regional susceptibility <strong>for</strong> Holocene Debris<br />

Flows <strong>and</strong> related fast-moving l<strong>and</strong>slides in the conterminous United<br />

States. MAP MF-2329. USGS.<br />

BRAND, E. W., 1988.<br />

L<strong>and</strong>slide risk <strong>assessment</strong> in Hong Kong. In: Proceedings of the 5th<br />

International Symposium on L<strong>and</strong>slides (Lausanne, Switzerl<strong>and</strong>), vol. 2,<br />

1059-1074.<br />

BUDETTA P., 2004.<br />

Assessment of rockfall risk along roads. Department of Geotechnical<br />

Engineering, Section of Applied Geology, University of Naples “Federico<br />

II” piazzale Tecchio, 80, Italy.<br />

CAINE, N., 1980.<br />

The rainfall intensity duration control of shallow l<strong>and</strong>slides <strong>and</strong> debris flow.<br />

Geografiska Annaler Series A Physical Geography, 62: 23-27.<br />

CAINE, N.AND MOOL, P.K. 1982.<br />

L<strong>and</strong>slide in the Kolpu Khola drainage, middle mountains, Nepal.<br />

Mountain Research <strong>and</strong> Development 2 (2), 157-173.<br />

CANNON, S. H. AND ELLEN, S. 1985:<br />

Rainfall conditions <strong>for</strong> abundant debris avalanches, San Francisco Bay<br />

Region, Cali<strong>for</strong>nia,- Cali<strong>for</strong>nia Geology, Vol. December 1985, Depatrment<br />

of Conservation, Division of Mines <strong>and</strong> Geology, p. 267–272, Sacramento.<br />

CANUTI, P., FOCARDI, P., GARZONIO, C.A., 1985.<br />

Correlation between rainfall <strong>and</strong> l<strong>and</strong>slides. Bull. Int. Assoc. Eng. Geol.<br />

32, 49– 54.<br />

CARRARA, A., CARRATELLI, E.P., MERENDA, L., 1977.<br />

Computer-based data bank <strong>and</strong> statistical analysis of slope instability<br />

phenomena. Zeitschrift für Geomorphologie 21, 187–222.<br />

CARRARA, A. 1983:<br />

Multivariate models <strong>for</strong> l<strong>and</strong>slide <strong>hazard</strong> evaluation. - Mathematical<br />

Geology, Vol. 15, Kluwer Academic Publishers, p. 403–426, Dordrecht.<br />

CARRARA, A., CARDINALI, M., GUZZETTI, F., PASQUUI, V. AND<br />

REICHENBACH, P., 1991.<br />

GIS techniques <strong>and</strong> statistical models in evaluating l<strong>and</strong>slide <strong>hazard</strong>.<br />

Journal Earth Surface Processes <strong>and</strong> L<strong>and</strong><strong>for</strong>m 16 (5), 427-445.<br />

CARRARA, A., 1991.<br />

GIS techniques <strong>and</strong> statistical models in evaluating l<strong>and</strong>slide <strong>hazard</strong>, Earth<br />

Surface Processes <strong>and</strong> L<strong>and</strong><strong>for</strong>ms, v. 16, p. 427-445.<br />

CASTELLANOS, E. AND VAN WESTEN, C.J., 2003.<br />

L<strong>and</strong>slide Hazard Assessment Using The Heuristic Models. ITC, Enschede,<br />

The Netherl<strong>and</strong>.<br />

CASTELLANOS ABELLA, E.A. AND VAN WESTEN, C.J., 2005.<br />

Development of a system <strong>for</strong> l<strong>and</strong>slide risk <strong>assessment</strong> <strong>for</strong> Cuba. In:<br />

Proceedings of the international conference on l<strong>and</strong>slide risk management,<br />

31 May - 3 June, 2005 Vancouver. / ed. by O. Hungr, R. Fell, R. Couture <strong>and</strong><br />

E. Eberhardt. London, 1-10.<br />

CHEN, H. AND LEE, C. F., 2000.<br />

Numerical simulation of debris flows, Canadian Geotechnical Journal 37,<br />

146–160.<br />

CHOWDHURY, R.N., 1988.<br />

Special lecture: Analysis methods of assessing l<strong>and</strong>slide risk - recent<br />

developments. In: C. Bonnard (Editor), Proceedings of the 5th International<br />

Symposium on L<strong>and</strong>slides, Rotterdam, 515-524.<br />

CHOWDHURY, R. AND FLENTJE, P., 2003.<br />

Role of slope reliability analysis in l<strong>and</strong>slide risk management, Bull. Eng.<br />

Geol. Env. 62, 41–46.<br />

CHUNG, C–J. F. AND FABBRI, A. G., 1999.<br />

Probabilistic Prediction Models <strong>for</strong> L<strong>and</strong>slide Hazard Mapping.-<br />

Photogrammetric engineering <strong>and</strong> remote sensing, Vol. 65(12), American<br />

Society of Photogrammetry <strong>and</strong> Remote Sensing, p. 1389–1399, Falls<br />

Church.<br />

COE, J.A., HARP, E.L., 2007.<br />

Influence of tectonic folding on rockfall susceptibility. American Fork<br />

Canyon, Utah, USA. Natural Hazards <strong>and</strong> Earth System Sci. 7, 1–14.<br />

COE, J.A., MICHAEL, J.A., CROVELLI, R.A., SAVAGE, W.Z., LAPRADE,<br />

W.T. AND NASHEM, W.D., 2004.<br />

Probabilistic <strong>assessment</strong> of precipitation triggered l<strong>and</strong>slide using historical<br />

records of l<strong>and</strong>slide occurence, Seattle, Whashington. Environmental &<br />

Engineering Geoscience X (2), 103-122.<br />

COUSSOT, P., MEUNIER, M., 1996.<br />

Recognition, classification <strong>and</strong> mechanical description of debris flows.<br />

Earth-Sci. Rev. 40. 209-227.<br />

CROSTA, G., 1998.<br />

Regionalization of rainfall thresholds: an aid to l<strong>and</strong>slide <strong>hazard</strong> evaluation.<br />

Environmental Geology, 35, 131-145.<br />

CROSTA, G.B., CUCCHIARO, S. AND FRATTINI, P., 2003.<br />

Validation of semi-empirical relationships <strong>for</strong> the definition of debris-flow<br />

behaviour in granular materials. In: D. Rickenmann <strong>and</strong> C. Chen, Editors,<br />

Proc. 3rd International Conference on Debris Flows Hazards Mitigation:<br />

Mechanics, Prediction <strong>and</strong> Assessment, Davos, Switzerl<strong>and</strong>, Millpress,<br />

Rotterda. 821–831.<br />

CROSTA, G., Imposimato, S. <strong>and</strong> Roddeman, D., 2006.<br />

In: S.G. Evans, G. Scarascia Mugnozza, A. Strom <strong>and</strong> R.L. Hermanns,<br />

Editors, Proceedings of the NATO Advanced Research Workshop on<br />

<strong>Mass</strong>ive Rock Slope Failure: New Models <strong>for</strong> Hazard Assessment,<br />

Celano, Italy, 16–21 June 2002, NATO Science Series. Series IV, Earth <strong>and</strong><br />

Environmental Sciences vol. 49.<br />

CROZIER, M., 1986.<br />

L<strong>and</strong>slides: causes, consequences <strong>and</strong> environment, Croom Helm,<br />

London, 252.<br />

CROZIER, M.J., 1999.<br />

Prediction of rainfall triggered l<strong>and</strong>slides: a test of the antecedent water<br />

status model. Earth Surf. Proces. L<strong>and</strong>f. 24 (9), 825– 833.<br />

CROZIER, M.J. <strong>and</strong> GLADE, T., 2005.<br />

L<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk: Issues, Concepts <strong>and</strong> Approach. In: Glade T,<br />

Anderson M, Crozier M (Eds) L<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk. Wiley, Chichester,<br />

1-40.<br />

CRUDEN, D.M., 1991. A simple definition of a l<strong>and</strong>slide. Bulletin of the<br />

International Association of Engineering Geology, 43: 27-29.<br />

CRUDEN D.M. AND VARNES, D.J., 1996.<br />

L<strong>and</strong>slide types <strong>and</strong> processes. In: Turner A.K.; Shuster R.L. (Editors),<br />

L<strong>and</strong>slides: Investigation <strong>and</strong> Mitigation. Transportation Research Board,<br />

Special Report No. 247, pp. 36-75.<br />

DAI, F.C. AND LEE, C.F., 2001.<br />

Frequency-volume relation <strong>and</strong> prediction of rainfall induced l<strong>and</strong>slides.<br />

Engineering Geology 59 (3-4), 253-266.<br />

DAVIES, M.C.R., HAMZA, O., HARRIS, C., 2001.<br />

The effect of rise in mean annual temperature on the stability of rock slopes<br />

containing ice-filled discontinuities. Permafrost <strong>and</strong> Periglacial Processes<br />

12 (1), 137–144.<br />

DHAKAL, A. S., AMADA, T. AND ANIYA, M., 2000.<br />

L<strong>and</strong>slide <strong>hazard</strong> mapping <strong>and</strong> its evaluation using GIS: An investigation<br />

of sampling schemes <strong>for</strong> a grid-cell based quantitative method.-<br />

Photogrammetric engineering <strong>and</strong> remote sensing, Vol. 66(8), American<br />

Society of Photogrammetry <strong>and</strong> Remote Sensing, p. 981–989, Falls Church.<br />

DORREN, L.K.A., BERGER, F., PUTTERS, U.S., 2006.<br />

Real size experiments <strong>and</strong> 3D simulation of rockfall on <strong>for</strong>ested <strong>and</strong> non<strong>for</strong>ested<br />

slopes. Natural Hazards <strong>and</strong> Earth System Sci. 6, 145–153.<br />

EINSTEIN, H.H., 1988.<br />

Special lecture: L<strong>and</strong>slide risk <strong>assessment</strong> procedure. In: C. Bonnard<br />

(Editor), Proc 5th International Symposium on L<strong>and</strong>slides. Publ Rotterdam:<br />

A A Balkema, Lausanne, pp. 1075-1090.<br />

EINSTEIN, H.H., 1997.<br />

L<strong>and</strong>slide Risk – Systematic approaches to <strong>assessment</strong> <strong>and</strong> management<br />

in L<strong>and</strong>slide Risk Assessment. In: Cruden, D., Fell, R. (eds). L<strong>and</strong>slide Risk<br />

Assessment, 25-50.<br />

ERCANOGLU, M., 2005.<br />

L<strong>and</strong>slide susceptibility <strong>assessment</strong> of SE Bartin (West Black Sea region,<br />

Turkey) by artificial neural networks, Natural Hazards <strong>and</strong> Earth System<br />

Sciences 5, 979–992.<br />

ERCANOGLU, M. AND GOKCEOGLU, C., 2002.<br />

Assessment of l<strong>and</strong>slide susceptibility <strong>for</strong> a l<strong>and</strong>slide-prone area (north<br />

of Yenice, NW Turkye) by fuzzy approach. Environmental Geology 41,<br />

720–730.<br />

ERISMANN, T.H., 1986.<br />

Flowing, rolling, bouncing, sliding, synopsis of basic mechanisms. Acta<br />

Mechanica 64, 101–110.<br />

Ermini, L., Catani, F. <strong>and</strong> Casagli, N., 2005. Artificial neural networks<br />

applied to l<strong>and</strong>slide susceptibility <strong>assessment</strong>, Geomorphology 66 (1–4),<br />

327–343.<br />

EVANS, S.G. AND HUNGR, O.,1993.<br />

The <strong>assessment</strong> of rockfall <strong>hazard</strong> at the base of talus slopes. Canadian<br />

Geotechnical Journal 30, 620–636.<br />

FANNIN, R.J. AND WISE, M.P., 2001.<br />

An empirical–statistical model <strong>for</strong> debris flow travel distance, Canadian<br />

Geotechnical Journal 38, 982–994.<br />

FELL, R., 1994.<br />

L<strong>and</strong>slide risk <strong>assessment</strong> <strong>and</strong> acceptable risk. Canadian Geotechnical<br />

Journal, 31(2): 261-272.<br />

FELL, R., HO, K. K. S., LACASSE, S., AND LEROI, E., 2005.<br />

A framework <strong>for</strong> l<strong>and</strong>slide risk <strong>assessment</strong> <strong>and</strong> management, in: L<strong>and</strong>slides<br />

Risk Management, edited by: Hungr, O., Fell, R., Couture, R., <strong>and</strong><br />

Eberhardt, E., Taylor <strong>and</strong> Francis, London, 3–26.<br />

FERNANDEZ, T., 2003.<br />

Methodology <strong>for</strong> L<strong>and</strong>slide Susceptibility Mapping by Means of a GIS.<br />

Application to the Contraviesa Area (Granada, Spain). Natural Hazards,<br />

30 (3), 297 – 308.<br />

FIORILLO, F., WILSON, R.C., 2004.<br />

Rainfall induced debris flows in pyroclastic deposits, Campania (Southern<br />

Italy). Engineering Geology, 75, 263- 289.<br />

BLÖCHL, A. AND BRAUN, B. 2005.<br />

Economic <strong>assessment</strong> of l<strong>and</strong>slide risks in the Swabian Alb, Germany—<br />

research framework <strong>and</strong> first results of homeowners’ <strong>and</strong> experts’ surveys.<br />

Nat Hazards Earth Syst Sci 5, 389–396.<br />

BOMMER, J.J. AND RODRIGUEZ, C.E., 2002.<br />

Earthquake-induced l<strong>and</strong>slides in Central America. Engineering Geology<br />

63, 189– 220.<br />

CASCINI, L., 2004.<br />

Risk <strong>assessment</strong> of fast l<strong>and</strong>slide- from theory to practice. Department of<br />

Civil Engineering, University of Salerno, Italy.<br />

CATANI, F., CASAGLI, N., ERMINI, L., RIGHINI, G. AND MENDUNI, G.,<br />

2005.<br />

L<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk mapping at catchment scale in the Arno River<br />

Basin, L<strong>and</strong>slides 2 (4), 329–343.<br />

CRUDEN, D. AND FELL, R., 1997.<br />

L<strong>and</strong>slide risk <strong>assessment</strong>. A.A.Balkema, Rotterdam, 371 pp.<br />

DAI, F.C., LEE, C.F. AND NGAI, Y.Y., 2002.<br />

L<strong>and</strong>slide risk <strong>assessment</strong> <strong>and</strong> management an overview. Engineering<br />

Geology, 64(1): 65-87.<br />

FIRDAINI, 2008.<br />

L<strong>and</strong> capability <strong>and</strong> l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong> <strong>for</strong> l<strong>and</strong>use priority in<br />

Gintung watershed. Purworejo Regency, Central Java, Indonesia. Jogjakarta<br />

– Enschede, Gadjah Mada- ITC. Master.<br />

FINLAY, P.J.,1996.<br />

The risk <strong>assessment</strong> of slopes. School of Civil Engineering, University of<br />

New South Wales, Australia, PhD thesis.


Key-note papers<br />

Seite 60<br />

Seite 61<br />

FINLAY, P.J., FELL, R., MAGUIRE, P.K., 1997.<br />

The relationship between the probability of l<strong>and</strong>slide occurrence <strong>and</strong><br />

rainfall. Can. Geotech. J. 34, 811– 824.<br />

FINLAY, P.J., MOSTYN, G.R. AND FELL, R., 1999.<br />

L<strong>and</strong>slide Risk Assessment: prediction of travel distance. Canadian<br />

Geotechnical Journal, 36: 556-562.<br />

GARDNER, J.S., 1983.<br />

Rockfall frequency <strong>and</strong> distribution in the Highwood Pass area, Canadian<br />

Rocky Mountains. Zeitschrift für Geomorphologie N.F. 27, 311–324.<br />

GIANNECCHINI, R., 2006.<br />

Relationship between rainfall <strong>and</strong> shallow l<strong>and</strong>slides in the southern<br />

Apuan Alps (Italy). Natural Hazards Earth System Science 6, 357–364.<br />

GLADE, T., 2000.<br />

Modelling l<strong>and</strong>slides: triggering rainfall thresholds at a range of<br />

complexities. Proceedings of the 8th int. symp. On l<strong>and</strong>slides held in<br />

Cardiff on 26–30 June, L<strong>and</strong>slides in Research, Theory <strong>and</strong> Practice, vol.<br />

2, pp. 633– 640.<br />

GLADE, T., ANDERSON, M. AND CROZIER, M.J., 2005.<br />

L<strong>and</strong>slide Hazard <strong>and</strong> Risk. JohnWiley & Sons, Ltd., Chichester, Eangl<strong>and</strong>,<br />

802 pp.<br />

GOMEZ, H.T. AND KAVZOGLU, T., 2005.<br />

Assessment of shallow l<strong>and</strong>slide susceptibility using artificial neural<br />

networks in Jabonosa River Basin, Venezuela, Engineering Geology 78 (1-<br />

2), 11–27.<br />

GOVI, M., MORTARA, G., AND SORZANA, P. F., 1985.<br />

Eventi idrologici e frane, Geol. Appl. e Idrog., 20(2), 359–375.<br />

GORSEVSKI, P. V., GESSLER, P. AND FOLTZ, R. B., 2000.<br />

Spatial prediction of L<strong>and</strong>slide <strong>hazard</strong> using logistic regression <strong>and</strong><br />

GIS.- 4th International Conference on Integrating GIS <strong>and</strong> Environmental<br />

Modeling (GIS/EM4): Problems, Prospect <strong>and</strong> Research Needs, Banff,<br />

Alberta.<br />

GRUBER, S., HOELZLE, M., HAEBERLI, W., 2004.<br />

Permafrost thaw <strong>and</strong> destabilization of <strong>Alpine</strong> rock walls in the hot summer<br />

of 2003. Geophyiscal Res. Lett. 31, L13504.<br />

GUINAU, M., VILAJOSANA, I., VILAPLANA, J. M., 2007.<br />

Gis-based debris flow source <strong>and</strong> runout susceptibility <strong>assessment</strong> from<br />

DEM data – a case study in NW Nicaragua, Natural Hazards <strong>and</strong> Earth<br />

System Sciences, 7: 703-716.<br />

GUZZETTI, F., 2000.<br />

L<strong>and</strong>slide fatalities <strong>and</strong> the evaluation of l<strong>and</strong>slide risk in Italy. Engineering<br />

Geology 58(2), 89–107.<br />

GUZZETTI, F., PERUCCACI, S., ROSSI, M. AND STARK, C.P., 2007.<br />

Rainfall thresholds <strong>for</strong> the initiation of l<strong>and</strong>slides in central <strong>and</strong> southern<br />

Europe. Meteorol. Atmos. Phys. 98, 239-267.<br />

GUZZETTI, F., CROSTA, G., DETTI, R., AGLIARDI, F., 2002.<br />

STONE: a computer program <strong>for</strong> the three-dimensional simulation of rockfalls.<br />

Computers & Geosciences 28 (9), 1079–1093.<br />

GUZZETTI F., CARDINALI M., REICHENBACH P., CIPOLLA F., SEBASTIANI<br />

C., GALLI M., SALVATI P., 2004.<br />

L<strong>and</strong>slides triggered by the 23 November 2000 rainfall event in the Imperia<br />

Province, Western Liguria, Italy, Engineering Geology 73, 229–245.<br />

GUZZETTI F., GALLI M., REICHENBACH P., ARDIZZONE F. AND<br />

CARDINALI M., 2006.<br />

L<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong> in the Collazzone area, Umbria, Central Italy.<br />

Natural Hazards <strong>and</strong> Earth System Sciences, 6, 115–131.<br />

HARP, E.L., WILSON, R.C., 1995.<br />

Shaking intensity thresholds <strong>for</strong> rock falls <strong>and</strong> slides: Evidence from 1987<br />

Whittier Narrows <strong>and</strong> Superstition Hills earthquake strongmotion records.<br />

Bulletin of the Seismological Soci. of America 85 (6), 1739–1757.<br />

HOLLENSTEIN, K., 2005.<br />

Reconsidering the risk <strong>assessment</strong> concept: St<strong>and</strong>ardizing the impact<br />

description as a building block <strong>for</strong> vulnerability <strong>assessment</strong>, Nat. Hazards<br />

Earth Syst. Sci., 5, 301–307. http://www.nat-<strong>hazard</strong>s-earth-syst-sci.<br />

net/5/301/2005/.<br />

HORTON, R.E., 1945.<br />

Erosional development of streams <strong>and</strong> their drainage basins: hydro physical<br />

approach to quantitative morphology, Bull. Geol. Soc. Am. 56 (1945), pp.<br />

275–370.<br />

HUNGR, O. AND EVANS, S.G., 1988.<br />

Engineering evaluation of fragmental rockfall <strong>hazard</strong>s. Proceedings of the<br />

5th International Symposium on L<strong>and</strong>slides in Lausanne. The Netherl<strong>and</strong>s,<br />

Balkema, Rotterdam, pp. 685–690.<br />

HUNGR, O., 1995.<br />

A model <strong>for</strong> the runout analysis of rapid flow slides, debris flows <strong>and</strong><br />

mavalanches, Canadian Geotechnical Journal 32, 610–623.<br />

HUNGR, O., COROMINAS, J., EBERHARDT, E., 2005.<br />

Estimating l<strong>and</strong>slide motion mechanism, travel distance <strong>and</strong> velocity.<br />

In: Hungr, O., Fell, R., Couture, R., Eberhardt, E. (Eds.), L<strong>and</strong>slide Risk<br />

Management. Taylor & Francis Group, Vancouver, pp. 99–128.<br />

HUNTER, G. AND FELL, R., 2003.<br />

Travel distance angle <strong>for</strong> "rapid" l<strong>and</strong>slides in constructed <strong>and</strong> natural soil<br />

slopes, Canadian Geotechnical Journal 40, 1123–1141.<br />

IADB, 2005.<br />

Indicators of disaster risk <strong>and</strong> risk management. Summary report <strong>for</strong><br />

WCDR, Inter-American Development Bank (IADB), Manizales, Colombia.<br />

ISSMGE TC32- TECGNICAL COMMITTEE ON RISK ASSESSMENT AND<br />

MANAGEMENT, 2004.<br />

Glossary of Risk Assessment Terms- Version 1, July 2004, pp.7.<br />

IVERSON, R.M., REID, M.E., LAHUSEN, R.G., 1997.<br />

Debris-flow mobilization from l<strong>and</strong>slides. Annu. Rev. Planet Sci. 25, 85–<br />

138.<br />

JAKOB, M. AND WEATHERLY, H. 2003.<br />

A hydroclimatic threshold <strong>for</strong> l<strong>and</strong>slide initiation on the North Shore<br />

Mountains of Vancouver, British Columbia. Geomorphology, 54, 137-156.<br />

JAKOB, M., HOLM, K., LANGE,O. AND SCHWAB, J.W., 2006.<br />

Hydrometeorological thresholds <strong>for</strong> l<strong>and</strong>slide initiation <strong>and</strong> <strong>for</strong>est operation<br />

shutdowns on the north coast of British Columbia. L<strong>and</strong>slides 3, 228-238.<br />

JOHNSON, A.M., 1970.<br />

Physical Processes in Geology. W.H. Freeman, 557 p.<br />

JTC-1 JOINT TECHNICAL COMMITTEE ON LANDSLIDES AND<br />

ENGINEERED SLOPES, 2008.<br />

Guidelines <strong>for</strong> l<strong>and</strong>slide susceptibility, <strong>hazard</strong> <strong>and</strong> risk zoning, <strong>for</strong> l<strong>and</strong> use<br />

planning. Engineering Geology 103, 85–98.<br />

KANUNGO, D.P., ARORA, M.K., SARKAR, S. AND GUPTA, R.P., 2006.<br />

A comparative study of conventional, ANN black box, fuzzy <strong>and</strong> combined<br />

neural <strong>and</strong> fuzzy weighting procedures <strong>for</strong> l<strong>and</strong>slide susceptibility zonation<br />

in Darjeeling Himalayas. Engineering Geology 85, 347– 366.<br />

KEEFER, DK, 2000.<br />

Statistical analysis of an earthquake-induced l<strong>and</strong>slide distribution — the<br />

1989 Loma Prieta, Cali<strong>for</strong>nia event. Engineering Geology 58:231-249.<br />

KHAZAI, B., SITAR, N., 2004.<br />

Evaluation of factors controlling earthquake-induced l<strong>and</strong>slides caused by<br />

Chi-Chi earthquake <strong>and</strong> comparison with the Northridge <strong>and</strong> Loma Prieta<br />

events. Engineering Geology 71, 79–95.<br />

KIRKBY, M.J. AND STATHAM, I., 1975.<br />

Surface stone movement <strong>and</strong> scree <strong>for</strong>mation. Journal of Geology 83, 349–<br />

362.<br />

KOIRALA, N.P. AND WATKINS, A.T., 1988.<br />

Bulk appraisal of slopes in Hong Kong. In L<strong>and</strong>slides, Proc. Of the Fifth<br />

Int. Symp. on L<strong>and</strong>slide, (Ed. C. Bonnard), Lausanne, Switzerl<strong>and</strong>. A.A.<br />

Balkema, Rotterdam, The Netherl<strong>and</strong>s, 2, 1181-1186.<br />

KOMAC, M., 2006.<br />

A l<strong>and</strong>slide susceptibility model using the analytical hierarchy process<br />

method <strong>and</strong> multivariate statistics in perialpine Slovenia. Geomorphology<br />

74, 17-28.<br />

KOMAC, M., AND RIBIČIČ, M., 2008.<br />

L<strong>and</strong>slide susceptibility map of Slovenia 1:250.000. Geological Survey of<br />

Slovenia, Ljubljana.<br />

KOMAC, M., KUMELJ, Š. AND RIBIČIČ, M., 2010.<br />

Debris-flow susceptibility map of Slovenia 1:250,000. Ljubljana:<br />

Geological survey of Slovenia.<br />

KO KO, C., FLENTJE, P. AND CHOWDHURY, R., 2004.<br />

L<strong>and</strong>slides qualitative <strong>hazard</strong> <strong>and</strong> risk <strong>assessment</strong>: method <strong>and</strong> its<br />

reliability, Bull. Eng. Geol. Env. 63 (2), 149–165.<br />

LAN, H. X., ZHOU, C. H., WANG, L. J., ZHANG, H. Y., LI, R. H., 2004.<br />

L<strong>and</strong>slide <strong>hazard</strong> spatial analysis <strong>and</strong> prediction using GIS in the Xiaojiang<br />

watershed, Yunnan, China, Engineering Geology, 76: 109–128.<br />

LAPRADE, W.T., KIRKLAND, T.E., NASHEM, W.D., ROBERTSON, C.A.,<br />

2000.<br />

Seattle l<strong>and</strong>slide study. Shannon & Wilson, Inc. Internal Report W-7992–<br />

01.<br />

LATELTIN, O., 1997.<br />

Berücksichtigung der <strong>Mass</strong>enbewegungsgefahren bei raumwirksamen<br />

Tätigkeiten. Empfehlungen 1997. Swiss Federal Office <strong>for</strong> Water <strong>and</strong><br />

Geology (FOWG).<br />

http://www.bwg.admin.ch/themen/natur/e/index.htm<br />

LEE, E.M. AND JONES, D.K.C., 2004.<br />

L<strong>and</strong>slide risk <strong>assessment</strong>. Thomas Tel<strong>for</strong>d, London, 454 pp.<br />

LEE, S. AND J. CHOI, 2004.<br />

Slide susceptibility mapping using GIS <strong>and</strong> Weight of evidence model.<br />

Geogr. In<strong>for</strong>m. Sci., 188: 789-814.<br />

LEE, S., 2007.<br />

Application <strong>and</strong> verification of fuzzy algebraic operators to l<strong>and</strong>slide<br />

susceptibility mapping, Environmental Geology 52, 615–623.<br />

LEE, S. AND EVANGELISTA, D.G., 2006.<br />

Earthquake-induced l<strong>and</strong>slide-susceptibility mapping using an artificial<br />

neural network, Natural Hazards <strong>and</strong> Earth System Sciences 6, 687–695.<br />

LEE, S., RYU, J.H., LEE, M.J. AND WON, J.S., 2003a.<br />

Use of artificial neural network <strong>for</strong> analysis of the susceptibility to<br />

l<strong>and</strong>slides at Boun, Korea. Environmental Geology 44, 820-833.<br />

LEE, S., RYU, J.H., MIN, K. AND WON, J.S., 2003b.<br />

L<strong>and</strong>slide susceptibility analysis using GIS <strong>and</strong> artificial neural network.<br />

Earth surface processes <strong>and</strong> l<strong>and</strong><strong>for</strong>ms 28, 1361-1376.<br />

LEE, S., RYU, J.H., WON, J.S. AND PARK, H.J., 2004.<br />

Determination <strong>and</strong> application of the weights <strong>for</strong> l<strong>and</strong>slide susceptibility<br />

mapping using artificial network. Engineering Geology, 71(3-4), 289-302.<br />

LEONE, F., AST´E, J. P., AND LEROI, E., 1996.<br />

Vulnerability <strong>assessment</strong> of elements exposed to mass movements: working<br />

toward a better risk perception, in: L<strong>and</strong>slides, Glissements de terrain,<br />

Proceed. VII Int. Sym. L<strong>and</strong>slides, Trondheim, edited by: Senneset, K.,<br />

Rotterdam, 263–270.<br />

LIDA, T., 1999.<br />

A stochastic hydro-geomorphological model <strong>for</strong> shallow l<strong>and</strong>sliding due to<br />

rainstorm. Catena 34 (3-4), 293-313.<br />

LU, P. R., 2003.<br />

Artificial neural networks <strong>and</strong> grey systems <strong>for</strong> the prediction of slope<br />

instability. Natural Hazards 30(3),383–398.<br />

LUCKMAN, B.H., FISKE, C.J., 1995.<br />

Estimating long-term rockfall accretion rates by lichenometry. In: Slaymaker,<br />

O. (Ed.), Steepl<strong>and</strong> Geomorphology. Wiley, Chichester, UK, pp. 233–255.<br />

LUI, Y., GUO, H.C., ZOU, R. AND WANG, L.J., 2006.<br />

Neural network modelling <strong>for</strong> regional <strong>hazard</strong> <strong>assessment</strong> of debris flow in<br />

Lake Qionghai Watershed, China, Environmental Geology 49, 968–976.<br />

MCCARROLL, D., SHAKESBY, R.A., MATTHEWS, J.S., 1998.<br />

Spatial <strong>and</strong> temporal patterns of Late Holocene rockfall activity on a<br />

Norwegian talus slope: lichenometry <strong>and</strong> simulation-modelling approach.<br />

Arctic <strong>and</strong> <strong>Alpine</strong> Res. 30, 51–60.<br />

MALET, J.-P., LAIGLE, D., REMAITRE, A., MAQUAIRE, O., 2005.<br />

Triggering conditions <strong>and</strong> mobility of debris flows associated to complex<br />

earth flows. Geomorphology 66, 215–235.<br />

MAGLIULO, P., DI LISIO, A., RUSSO, F. AND ZELANO, A., 2008.<br />

Geomorphology <strong>and</strong> l<strong>and</strong>slide susceptibility <strong>assessment</strong> using GIS <strong>and</strong><br />

bivariate statistics: a case study in southern Italy. Springer Science. Natural<br />

Hazard 47, 411-435.<br />

MARZORATI, S., LUZI, L., DE AMICIS, M., 2002.<br />

Rock falls induced by earthquakes: a statistical approach. Soil Dynamics<br />

<strong>and</strong> Earthquake Engineering 22 (7), 565–577.<br />

MATSUOKA, N., SAKAI, H., 1999.<br />

Rockfall activity from an alpine cliff during thawing periods.<br />

Geomorphology 28, 309–328.<br />

MATSUOKA, N., 2006.<br />

Frost wedging <strong>and</strong> rockfalls on high mountain rock slopes: 11 years of<br />

observations in the Swiss Alps. Geophysical Res. Abstracts 8, 05344.<br />

MAZENGARB, C., 2004.<br />

Map 3, Hobart - Potential Debris- Flow Hazard. Tasmanian L<strong>and</strong>slide<br />

Hazard Series. Mineral Resources Tasmania, Department of Infrastructure<br />

Energy <strong>and</strong> Resources, Hobart.<br />

MEJÍA-NAVARRO, M., WOHL, E.E. AND OAKS, S.D., 1994.<br />

Geological <strong>hazard</strong>, vulnerability, <strong>and</strong> risk <strong>assessment</strong> using GIS: model <strong>for</strong><br />

Glenwood Springs, Colorado, Geomorphology 10, 331–354.<br />

MELCHIORRE, C., MATTEUCCI, M. AND REMONDO, J., 2006.<br />

Artificial neural network <strong>and</strong> robustness analysis in l<strong>and</strong>slide susceptibility<br />

zonation. International Joint Conference on Neural Networks, July 16-21,<br />

Vancouver, BC, Canada, 8808-8814.<br />

MELCHIORRE, C., MATTEUCCI, M., AZZONI, A. AND ZANCHI, A.,<br />

2008.<br />

Artificial neural networks <strong>and</strong> cluster analysis in l<strong>and</strong>slide susceptibility<br />

zonation, Geomorphology 94, 379–400.<br />

MILLER, D. J. AND BURNETT, K. M., 2008.<br />

A probabilistic model of debris-flow delivery to stream channels,<br />

demonstrated <strong>for</strong> the Coast Range of Oregon, USA, Geomorphology,<br />

94:184-205.<br />

MISKA, L. AND JAN, H., 2005.<br />

Evaluation of current statistical approaches <strong>for</strong> predictive geomorphological<br />

mapping. Geomorphology 67 (3-4), 299-315.<br />

MONTGOMERY, D. R. AND DIETRICH, W. E., 1994.<br />

A physically based model <strong>for</strong> the topografic control on shallow l<strong>and</strong>sliding.-<br />

Water resources research, Vol. 30/4, American Geophysical Union, p.<br />

1153–1171, Washington.<br />

MONTGOMERY, D. R., SCHMIDT, K. M., GREENBERG, H. M. AND<br />

DIETRICH, W. E., 2000.<br />

Forest clearing <strong>and</strong> regional sliding. Geology, Vol. 28/4, The Geologic<br />

Society of America, p. 311–314, Boulder.<br />

MONTGOMERY, D. R., SULLIVAN, K. AND GREENBERG, H. M., 1998.<br />

Reginal test of a model <strong>for</strong> shallow l<strong>and</strong>sliding. Hydrological Processes, Vol<br />

12, John Wiley & Sons, Ltd., p. 943–955, New York.<br />

MORGAN, G.C., 1992.<br />

Quantification of risks from slope <strong>hazard</strong>s. Open file report No 1992-15,<br />

Geological Survey of Canada, Canada.<br />

MWASI, B., 2001.<br />

L<strong>and</strong> use conflicts resolution in a fragile ecosystem using Multi-Criteria<br />

Evaluation (MCE) <strong>and</strong> a GIS-based Decision Support System (DSS). Int.<br />

Conf. on Spatial In<strong>for</strong>mation <strong>for</strong> Sustainable Development, Nairobi, Kenya,<br />

FIG — International Federation of Surveyors. 11 pp.<br />

NaDIM, F., KJEKSTAD, O., DOMAAS, U., RAFAT, R. AND PEDUZZI, P.<br />

2006.<br />

Global l<strong>and</strong>slide risk case study. In: Arnold M, Chen R.S., Deichemann U,<br />

Dilley M (eds) Natural disaster hotspots. Case studies. The World Bank,<br />

Washington, DC, p 204<br />

NEAUPANE, K.M. AND ACHET, S.H., 2004.<br />

Use of backpropagation neural network <strong>for</strong> l<strong>and</strong>slide monitoring: a case<br />

study in the higher Himalaya, Engineering Geology 74 (3–4), 213–226.


Key-note papers<br />

Seite 62<br />

Seite 63<br />

NEFESLIOGLU, H.A., GOKCEOGLU, C. AND SONMEZ, H., 2008.<br />

An <strong>assessment</strong> on the use of logistic regression <strong>and</strong> artificial neural<br />

networks with different sampling strategies <strong>for</strong> the preparation of l<strong>and</strong>slide<br />

susceptibility maps. Engineering Geology 97, 171–191.<br />

NEUHÄUSER, B. AND TERHORST, G., 2007.<br />

L<strong>and</strong>slide susceptibility <strong>assessment</strong> using “weights-ofevidence” applied to<br />

a study area at the Jurassic escarpment (SW-Germany). Geomorphology<br />

86, 12–24.<br />

NEULAND, H. A., 1976.<br />

A prediction model of l<strong>and</strong>slips. Catena, Vol. 3, Elsevier Science B.V., p.<br />

215–230, Amsterdam.<br />

NIE, H.F., DIAO, S.J., LIU, J.X., HUANG, H., 2001.<br />

The application of remote sensing technique <strong>and</strong> AHP-fuzzy method in<br />

comprehensive analysis <strong>and</strong> <strong>assessment</strong> <strong>for</strong> regional stability of Chongqing<br />

City, China. Proc. of the 22nd Asian Conf. on Remote Sensing, Vol. 1,<br />

Centre <strong>for</strong> Remote Imaging, Sensing <strong>and</strong> Processing (CRISP), National<br />

University of Singapore, Singapore Institute of Sorveyors <strong>and</strong> Valuers (SISV)<br />

<strong>and</strong> Asian Association on Remote Sensing (AARS), Singapore, pp. 660–665.<br />

OKURA, Y., KITAHARA, H., SAMMORI, T., KAWANAMI, A., 2000.<br />

The effects of rockfall volume on runout distance. Engineering Geology<br />

58, 109– 124.<br />

PIKE, R. J., 1988.<br />

The geometric signature: Quantifying l<strong>and</strong>slide-terrain types from digital<br />

elevation models. - Mathematical Geology, Vol. 20, Kluwer Academic<br />

Publishers, p. 491–511, Dordrecht.<br />

PIRULLI, M., BRISTEAU, M. O., MANGENEY, A., AND SCAVIA, C., 2007.<br />

The effect of earth pressure coefficient on the runout of granular material,<br />

Environ. Modell. Softw., 22(10), 1437–1454.<br />

POWELL, G., 2000.<br />

Discussion “L<strong>and</strong>slide Risk Management Concepts And Guidelines”.<br />

Australian Geomechanics, Volume 35, No 1, 49-52.<br />

POZZONI, M., AMBROSI, C., SALVETTI, A., THÜRING, M., GERMANN-<br />

CHIARI, C., 2009.<br />

Conceptual debris flow modeling <strong>for</strong> risk <strong>assessment</strong> at the municipal<br />

scale, SUPSI, Manno. (www.ist.supsi.ch/Content/main/uploaded/img/<br />

progetti/dfwalk_big.pdf, 12. 1. 2009)<br />

PRADHAN, B. AND LEE, S., 2007.<br />

Utilization of optical remote sensing data <strong>and</strong> GIS tools <strong>for</strong> regional<br />

l<strong>and</strong>slide <strong>hazard</strong> analysis by using an artificial neural network model, Earth<br />

Science Frontier 14 (6), 143–152.<br />

PRADHAN, B. AND LEE, S., 2009a.<br />

Delineation of l<strong>and</strong>slide <strong>hazard</strong> areas on Penang Isl<strong>and</strong>, Malaysia, by using<br />

frequency ratio, logistic regression, <strong>and</strong> artificial neural network model,<br />

Environmental Earth Sciences.<br />

PRADHAN, B. AND LEE, S., 2009c.<br />

Regional l<strong>and</strong>slide susceptibility analysis using back-propagation neural<br />

network model at Cameron Highl<strong>and</strong>, Malaysia, L<strong>and</strong>slides.<br />

PRADHAN, B. AND LEE, S., 2009b.<br />

L<strong>and</strong>slide risk analysis using artificial neural network model focusing on<br />

different training sites, International Journal of Physical Sciences 4 (1),<br />

1–15.<br />

PRADHAN, B., LEE, S. AND BUCHROITHNER, M.F., 2009.<br />

Use of geospatial data <strong>for</strong> the development of fuzzy algebraic operators to<br />

l<strong>and</strong>slide <strong>hazard</strong> mapping: a case study in Malaysia, Applied Geomatics<br />

1, 3–15.<br />

R2 RESOURCE CONSULTANTS, 2005.<br />

Upper Nehalem Watershed Analysis. Oregon Department of Forestry<br />

(Salem) 1–231.<br />

RAGOZIN, A.L., 1996.<br />

Modern problems <strong>and</strong> quantitative methods of l<strong>and</strong>slide risk <strong>assessment</strong>.<br />

Senneset K (Ed.) L<strong>and</strong>slides - Gliessements de Terrain. Rotterdam, A.A.<br />

Balkema. 1:339-44.<br />

RAGOZIN, A.L. AND TIKHVINSKY, I.O., 2000.<br />

L<strong>and</strong>slide <strong>hazard</strong>, vulnerability <strong>and</strong> risk <strong>assessment</strong>, 8th International<br />

symposium on l<strong>and</strong>slides. Thomas Tel<strong>for</strong>d, Cardiff, Wales.<br />

RITCHIE, A.M., 1963.<br />

Evaluation of rockfall <strong>and</strong> its control. Washington, DC: Highway Research<br />

Board, National Research Council, Highway Research Record 17, pp.13–<br />

28.<br />

RUFF, M. AND CZURDA, K., 2007.<br />

L<strong>and</strong>slide susceptibility analysis with a heuristic approach in the Eastern<br />

Alps, Vorarlberg, Austria. Geomorphology 94, 314-324.<br />

RUMELHART, D.E., HINTON, G.E. AND WILLIAMS, R.J., 1986.<br />

Learning representations by back-propagating errors, Nature 323, 533–<br />

536.<br />

SAATY, T.L., 1977.<br />

A scaling method <strong>for</strong> priorities in hierarchical structures. Journal of<br />

Mathematical Psychology 15, 234– 281.<br />

SAATY, T.L. AND VARGAS, L.G., 2001.<br />

Models, methods, concepts <strong>and</strong> applications of the analytic hierarchy<br />

process. Kluwer Academic Publishers, 333 pp.<br />

SAHA, A.K., GUPTA, R.P., SARKAR, I., ARORA, M.K. AND CSAPLOVICS,<br />

E., 2005.<br />

An approach <strong>for</strong> GIS based statistical l<strong>and</strong>slide susceptibility zonation-with<br />

a case study in the Himalayas. Springer-Verlag.<br />

SALDIVAR-SALI, A. AND EINSTEIN, H.H., 2007.<br />

A l<strong>and</strong>slide risk rating system <strong>for</strong> Baguio. Philippines. Engineering Geology<br />

91 (2-4), 85-99.<br />

SASS, O., 2005.<br />

Temporal variability of rockfall in the Bavarian Alps, Germany. Arctic,<br />

Antarctic, <strong>and</strong> <strong>Alpine</strong> Res. 37 (4), 564–573.<br />

SCHMIDT, J. AND DIKAU, R., 2004.<br />

Modelling historical climate variability <strong>and</strong> slope stability. Geomorphology<br />

60 (3-4), 433-447.<br />

SIRANGELO, B. AND BRACA, G., 2004.<br />

Identification of <strong>hazard</strong> conditions <strong>for</strong> mudflow occurrence by hydrological<br />

model. Application of FLaIR model to Sarno warning system, Engineering<br />

Geology 73, 267–276.<br />

SOETERS, R. AND VAN WESTEN, C.J., 1996.<br />

Slope Instability. Recognition, analysis <strong>and</strong> zonation. In: A.K. Turner <strong>and</strong><br />

R.L. Schuster (Editors), L<strong>and</strong>slide: Investigations <strong>and</strong> Mitigation. Special<br />

Report 247. Transportation Research Board. National Research Council.<br />

National Academy Press., Washington, D.C, pp. 129-177.<br />

STATHAM, I. AND FRANCIS, S.C., 1986.<br />

Influence of scree accumulation <strong>and</strong> weathering on the development of<br />

steep mountain slopes. In: Abrahams, A.D. (Ed.), Hillslope Processes. Allen<br />

<strong>and</strong> Unwin, Winchester, pp. 245– 267.<br />

STOFFEL, M., WEHRLI, A., KÜHNE, R., DORREN, L.K.A., PERRET, S.,<br />

KIENHOLZ, H., 2006.<br />

Assessing the protective effect of mountain <strong>for</strong>ests against rockfall using a<br />

3D simulation model. Forest Ecol. Management 225, 113–122.<br />

SUZEN, M.L. AND DOYURAN, V., 2004.<br />

A comparison of the GIS based l<strong>and</strong>slide susceptibility <strong>assessment</strong> methods:<br />

multivariate versus bivariate, Environmental Geology, 45, 665-679.<br />

TERLIEN, M.T.J., VAN WESTEN, C.J. AND ASCH, T.W.J., 1995.<br />

Deterministic modelling in GIS based l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong>. In:<br />

A. Carrara <strong>and</strong> F. Guzzetti (Editors), Geographical In<strong>for</strong>mation Systems in<br />

Assessing Natural Hazards. Kluwer Academic Publishers, Netherl<strong>and</strong>s, pp.<br />

57-77.<br />

VAN ASCH, T.W.J., BUMA, J. AND VAN BEEK, L.P.H., 1999.<br />

A view on some hydrological triggering system in l<strong>and</strong>slides.<br />

Geomorphology, 30(1-2), 25-32.<br />

VAN ASCH, T. W. J., MALET, J.-P., AND VAN BEEK, L. P. H., 2006.<br />

Influence of l<strong>and</strong>slide geometry <strong>and</strong> kinematic de<strong>for</strong>mation to describe the<br />

liquefaction of l<strong>and</strong>slides: some theoretical considerations, Engineering<br />

Geology 88 (1–2), 59–69.<br />

VAN ASCH, T. W. J., MALET, J.P., VAN BEEK, L.P.H. AND AMITRANO, D.,<br />

2007a.<br />

Techniques, issues <strong>and</strong> advances in numerical modelling of l<strong>and</strong>slide<br />

<strong>hazard</strong>. Bulletin de la Societe Geologique de France, 178 (2), 65-88.<br />

VAN ASCH, T. W. J., VAN BEEK, L.P.H. AND BOGAARD, T.A., 2007b.<br />

problems in predicting the mobility of slow mowing l<strong>and</strong>slides. Engineering<br />

Geology, 91 (1), 55-46.<br />

VAN WESTEN, C.J., 1993.<br />

Remote Sensing <strong>and</strong> Geographic In<strong>for</strong>mation System <strong>for</strong> Geological<br />

Hazard Mitigation. ITC-Journal, 4: 393-399.<br />

VAN WESTEN, C.J. AND TERLIEN, M.T.J., 1996.<br />

An approach towards deterministic l<strong>and</strong>slide <strong>hazard</strong> analaysis in GIS.<br />

A case study <strong>for</strong>m manizales (Colombia). Earth surface processes <strong>and</strong><br />

l<strong>and</strong><strong>for</strong>ms 21, 853-868.<br />

VAN WESTEN, C.J., 2002.<br />

Hazard, vulnerability <strong>and</strong> risk analysis. ITC.<br />

VAN WESTEN, C.J., RENGERS, N. AND SOETERS, R., 2003.<br />

Use of geomorphological in<strong>for</strong>mation in indirect l<strong>and</strong>slide susceptibility<br />

<strong>assessment</strong>. Natural Hazards, 30(3): 399-419.<br />

VAN WESTEN, C.J., 2004.<br />

Geo-infromation tools <strong>for</strong> l<strong>and</strong>slide risk <strong>assessment</strong>: an overwiev of<br />

development. In: W.A. Lacerda, M. Ehrlich, S. Fontoura <strong>and</strong> A. Sayao<br />

(Editors), Proc 9th International Symposium on L<strong>and</strong>slides. L<strong>and</strong>slides:<br />

Evaluation <strong>and</strong> Stabilization. ISL 04. Balkema, Taylor & Francis Group, Rio<br />

de Janeiro, pp. 39-56.<br />

VAN WESTEN, C.J., CASTELLANOS ABELLA, E.A. AND SEKHAR, L.K.,<br />

2008.<br />

Spatial data <strong>for</strong> l<strong>and</strong>slide susceptibility, <strong>hazard</strong>s <strong>and</strong> vulnerability<br />

<strong>assessment</strong> : an overview. In: Engineering geology, 102 (3-4), 112-131.<br />

VARNES, D.J., 1978.<br />

Slope movement types <strong>and</strong> processes. In: Schuster R.L., Krizek R. J.<br />

(Editors), L<strong>and</strong>slides, analysis <strong>and</strong> control. Transportation Research Board,<br />

Special Report No. 176, National Academy of Sciences, pp. 11-33.<br />

VARNES, D.J. AND IAEG, 1984.<br />

L<strong>and</strong>slide Hazard Zonation: a rewiev of principles <strong>and</strong> practise. UNESCO,<br />

Darantiere, Paris, 61 pp.<br />

WALKER, B.F., 2002.<br />

Response to discussin by G. Powell. Australian Geomechanics 35 (3), 111-<br />

113.<br />

WANG, F.W., SASSA, K. AND WANG, G., 2002.<br />

Mechanism of a long runout l<strong>and</strong>slide triggered by the August 1998 heavy<br />

rainfall in Fukushima Prefecture, Japan. Engineering Geology, 63 (1-2),<br />

169- 185.<br />

WANG, H.B. AND SASSA, K., 2006.<br />

Rainfall-induced l<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong> using artificial neural<br />

networks. Earth Surface Processes <strong>and</strong> L<strong>and</strong><strong>for</strong>ms, 31(2):235-247.<br />

WANG, H.B., XU, W.Y. AND XU, R.C., 2005, Slope stability evaluation<br />

using Back Propagation Neural Networks. Engineering Geology, 80 (3-4),<br />

302-315.<br />

WEN, B. P. AND AYDIN, A., 2005.<br />

Mechanism of a rainfall-induced slide-debris flow: constraints from<br />

microstructure of its slip zone, Engineering Geology, 78: 69–88.<br />

WHITMAN, R.V., 1984,<br />

Evaluating calculated risk in geotechnical engineering. ASCE Journal of<br />

Geotechnical Engineering, 110(2), 145-188.<br />

WIECZOREK, G.F., 1984.<br />

Preparing a detailed l<strong>and</strong>slide inventory map <strong>for</strong> <strong>hazard</strong> evaluation <strong>and</strong><br />

reduction. Bulletin of the Association of Engineering Geologists, XXI (3):<br />

337-342.<br />

WIECZOREK, G. F. AND SARMIENTO, J., 1983.<br />

Significance of storm intensity-duration <strong>for</strong> triggering of debris flows near<br />

La Honda, Cali<strong>for</strong>nia.- Geological Society of America, Abstracts with<br />

Programs, Vol. 15, No. 5, Geological Society of America, p. 289, Boulder.<br />

WU, T.H., TANG, W.H. AND EINSTEIN, H.H., 1996.<br />

L<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk <strong>assessment</strong>. In: A.K. Turner <strong>and</strong> R.L. Schuster<br />

(Editors), L<strong>and</strong>slide Investigation <strong>and</strong> Mitigation, Transportation Research<br />

Board, National Research Council, pp. 106-128.<br />

WU, C.H. AND CHEN, S.C.,2009.<br />

Determining l<strong>and</strong>slide susceptibility in Central Taiwan from rainfall <strong>and</strong> six<br />

site factors using the analytical hierarchy process method. Geomorphology<br />

112, 190-204.<br />

YESILNACAR, E. AND TOPAL, T., 2005.<br />

L<strong>and</strong>slide susceptibility mapping: a comparison of logistic regression <strong>and</strong><br />

neural networks method in a medium scale study, Hendek region (Turkey).<br />

Engineering Geology 79, 251–266.<br />

YOUSSEF, A.M., PRADHAN, B., GABER, A.F.D. AND BUCHROITHNER,<br />

M.F., 2009.<br />

Geomorphological <strong>hazard</strong> analysis along the Egyptian red sea coast<br />

between Safaga <strong>and</strong> Quseir, Natural Hazards <strong>and</strong> Earth System Sciences<br />

9, 751–766.<br />

ZAITCHIK, B.F., ES, H.M. AND SULLIVAN, P.J., 2003.<br />

Modelling Slope Stability in Honduras: Parameter sensitivity <strong>and</strong> Scale of<br />

Aggregation. Soil Science Society of American Journal 67, 268 -278.<br />

ZEZERE, J. L., TRIGO, R. M., AND TRIGO, I. F., 2005.<br />

Shallow <strong>and</strong> deep l<strong>and</strong>slides induced by rainfall in the Lisbon region<br />

(Portugal): <strong>assessment</strong> of relationships with the North Atlantic Oscillation,<br />

Natural Hazards Earth Syst. Sci., 5, 331–344.<br />

ZHOU, G., ESAKI, T., MITANI, Y., XIE, M., MORI, J., 2003.<br />

Spatial probabilistic modeling of slope failure using an integrated GIS<br />

Monte Carlo simulation approach, Engineering Geology, 68: 373–386.<br />

ZINGGERLE, A., 1989.<br />

Steinschlagsimulation in Gebirgswa¨ldern: Modellierung der relevanten<br />

Teilprozesse. Diploma Thesis, Department of Geography, University of<br />

Berne.


Key-note papers<br />

Seite 64<br />

Seite 65<br />

ROLAND NORER<br />

Legal Framework <strong>for</strong> Assessment <strong>and</strong> Mapping<br />

of Geological Hazards on the International,<br />

European <strong>and</strong> National Levels<br />

Rechtlicher Rahmen für Analyse und Kartierung<br />

geologischer Gefahren auf internationaler,<br />

europäischer und nationaler Ebene<br />

Summary:<br />

Legal st<strong>and</strong>ards <strong>for</strong> the <strong>assessment</strong> <strong>and</strong> mapping of geological <strong>hazard</strong>s are rather scarce at<br />

the international <strong>and</strong> European level. Certain protocols to the <strong>Alpine</strong> Convention provide <strong>for</strong><br />

the obligation to map geological <strong>hazard</strong>s, but they fail to adopt substantive st<strong>and</strong>ards <strong>for</strong> it.<br />

At a European level, st<strong>and</strong>ards such as those <strong>for</strong> priority areas are only provided <strong>for</strong> in drafts<br />

such as the proposal <strong>for</strong> a Directive establishing a framework <strong>for</strong> the protection of soil or are<br />

mentioned in the Communication on the Community approach to prevent natural disasters.<br />

At a national level, there are legal provisions in connection with preventive planning on<br />

natural disasters, although the general problem on the coexistence of multiple area-related<br />

definitions persists. The extensive exposition of <strong>hazard</strong>s in <strong>for</strong>estry law remains a central issue.<br />

The sources <strong>and</strong> materials encountered to this end are, however, not enough to derivate<br />

consistent st<strong>and</strong>ards <strong>and</strong> provisions <strong>for</strong> the <strong>assessment</strong> <strong>and</strong> mapping.<br />

Zusammenfassung:<br />

Rechtliche Vorgaben betreffend Analyse und Kartierung geologischer Gefahren sind sowohl<br />

auf internationaler als auch europäischer Ebene selten. Bestimmte Protokolle zur Alpenkonvention<br />

sehen Kartierungspflichten für geologische Risiken vor, ohne allerdings materielle<br />

Vorgaben zu treffen. Im Europarecht finden sich solche Regeln lediglich in Entwürfen wie bei<br />

den prioritären Gebieten im Vorschlag einer EU-Bodenrahmenrichtlinie oder sie werden wie<br />

im Gemeinschaftskonzept zur Verhütung von Naturkatastrophen erst in Aussicht gestellt.<br />

Auf nationaler Ebene bestehen in der Regel Rechtsvorschriften im Zusammenhang mit<br />

präventiven Planungen bei Naturgefahren, wenngleich das allgemeine Problem des Nebenein<strong>and</strong>ers<br />

von mehreren gebietsbezogenen Festlegungen besteht. Als zentrale Vorschriften<br />

gelten die flächenhaften Gefahrendarstellungen im Forstrecht. Das vorgefundene Material<br />

reicht jedenfalls nicht aus, um einheitliche St<strong>and</strong>ards und Vorgaben für Analyse und Kartierung<br />

ableiten zu können.<br />

1. Introduction<br />

A glance at the legal framework on <strong>assessment</strong><br />

<strong>and</strong> mapping of geological <strong>hazard</strong>s 1 is difficult.<br />

No coherent legal system on the<br />

management of natural disasters can be found at<br />

either the international or European level. Also, a<br />

legal fragmentation can be detected at a national<br />

level. There<strong>for</strong>e, the art is to filter something like<br />

a legal essence out of diverse dispersed norms,<br />

which are often only partly related to this topic<br />

<strong>and</strong> follow different legal approaches. 2 This will<br />

be the attempt in the following sections. Naturally,<br />

the essay will not exceed a more or less abundant<br />

outline of the issue.<br />

2. International law<br />

2.1. <strong>Alpine</strong> Convention<br />

The <strong>Alpine</strong> Convention 3 <strong>and</strong> its protocols<br />

are the only source of international law. The<br />

“Soil Conservation Protocol” 4 provides <strong>for</strong> the<br />

obligation to draw up maps of <strong>Alpine</strong> areas “which<br />

are endangered by geological, hydrogeological<br />

<strong>and</strong> hydrological risks, in particular by l<strong>and</strong><br />

movement (mass slides, mudslides, l<strong>and</strong>slides),<br />

avalanches <strong>and</strong> floods”, <strong>and</strong> to register those areas<br />

<strong>and</strong> to designate danger zones when necessary<br />

(art. 10.1).<br />

Likewise, areas damaged by erosion <strong>and</strong><br />

l<strong>and</strong> movement shall be rehabilitated in as far<br />

as this is necessary <strong>for</strong> the protection of human<br />

beings <strong>and</strong> material goods (art. 11.2).<br />

1<br />

For the “Natural <strong>hazard</strong>s profile“ of l<strong>and</strong>slips, rock fall, avalanches<br />

<strong>and</strong> l<strong>and</strong>slides, see RUDOLF-MIKLAU, Naturgefahren-<br />

Management in Österreich (2009), p. 21 et seq.<br />

2<br />

For an overview regarding norms of prevention, see RUDOLF-<br />

MIKLAU (fn. 1), p. 97 et seq.<br />

3<br />

BGBl. 1995/477.<br />

4<br />

BGBl. III 2002/235.<br />

Both provisions were classified as binding <strong>and</strong><br />

directly applicable. 5<br />

In addition, the “Mountain Forests<br />

Protocol” 6 aims to preserve <strong>and</strong>, whenever<br />

necessary, to develop or increase mountain <strong>for</strong>ests<br />

as a near-natural habitat (art. 1.1) <strong>and</strong> imposes the<br />

duty of the Contracting Parties to give priority to the<br />

protective function of mountain <strong>for</strong>ests (art. 6.1).<br />

The “Spatial Planning <strong>and</strong> Sustainable<br />

Development Protocol“ 7 establishes the obligation<br />

to determine the areas subject to natural <strong>hazard</strong>s,<br />

where building of structures <strong>and</strong> installations<br />

should be avoided as much as possible (art.<br />

9.2.e). The spatial planning policies also take<br />

into account the protection of the environment,<br />

in particular with regard to the protection against<br />

natural <strong>hazard</strong>s (art. 3.f).<br />

2.2. Findings<br />

In international law, only certain provisions<br />

established in the protocols to the <strong>Alpine</strong><br />

Convention refer to the obligation to map<br />

geological <strong>hazard</strong>s. But farther-reaching,<br />

additional substantive elaborations arising out of<br />

these duties are not revealed be<strong>for</strong>e the respective<br />

national implementation measures.<br />

3. European law<br />

3.1. Soil protection law<br />

The communication from the European<br />

Commission in 2002 about a Strategy <strong>for</strong> Soil<br />

Protection 8 aims at the further development of<br />

5<br />

BMLFUW (ed.), Die Alpenkonvention: H<strong>and</strong>buch für ihre<br />

Umsetzung (2007), p. 112. Implementation analysis by<br />

SCHMID, Das Natur- und Bodenschutzrecht der Alpenkonvention.<br />

Anwendungsmöglichkeiten und Beispiele, in: CIPRA<br />

Österreich (ed.), Die Alpenkonvention und ihre rechtliche<br />

Umsetzung in Österreich – St<strong>and</strong> 2009, Tagungsb<strong>and</strong> der<br />

Jahrestagung von CIPRA Österreich, 21.-22.Oktober 2009,<br />

Salzburg (2010), p. 33 et seq.<br />

6<br />

BGBl. III 2002/233.<br />

7<br />

BGBl. III 2002/232..


Key-note papers<br />

Seite 66<br />

Seite 67<br />

political commitment to soil protection in order<br />

to achieve a more comprehensive <strong>and</strong> systematic<br />

protection. As soil <strong>for</strong>mation is an extremely slow<br />

process, soil can essentially be considered as a<br />

non-renewable resource. 9 It proceeds to mention<br />

eight main threats to soil in the EU 10 , including<br />

“erosion” <strong>and</strong> “floods <strong>and</strong> l<strong>and</strong>slides”. These are<br />

intimately related to soil <strong>and</strong> l<strong>and</strong> management.<br />

“Floods <strong>and</strong> mass movements of soil cause<br />

erosion, pollution with sediments <strong>and</strong> loss of soil<br />

resources with major impacts <strong>for</strong> human activities<br />

<strong>and</strong> human lives, damage to buildings <strong>and</strong><br />

infrastructures, <strong>and</strong> loss of agricultural l<strong>and</strong>”. 11<br />

In 2006, the European Commission followed<br />

suit with a Thematic Strategy <strong>for</strong> Soil Protection 12<br />

<strong>and</strong> with a Proposal <strong>for</strong> a Directive establishing<br />

a framework <strong>for</strong> the protection of soil 13 , the latter<br />

of which provides in its art. 6 <strong>for</strong> priority areas<br />

(first draft: risk areas) with regard to l<strong>and</strong>slides.<br />

The addendum l<strong>and</strong>slides “brought about by the<br />

down-slope, moderately rapid to rapid movement<br />

of masses of soil <strong>and</strong> rock material” fell victim to<br />

the changes made by the European Parliament. 14<br />

Also, a programme of measures shall be adopted<br />

within five years of the implementation of the<br />

Directive (art. 8). A list of common elements <strong>for</strong><br />

the identification of areas at risk of l<strong>and</strong>slides can<br />

be found in the appendix. 15<br />

8<br />

Communication from the Commission to the Council, the<br />

European Parliament, the Economic <strong>and</strong> Social Committee <strong>and</strong><br />

the Committee of the Regions – Towards a Thematic Strategy<br />

<strong>for</strong> Soil Protection, COM(2002) 179 final.<br />

9<br />

Communication from the Commission to the Council, the<br />

European Parliament, the Economic <strong>and</strong> Social Committee<br />

<strong>and</strong> the Committee of the Regions – Thematic Strategy <strong>for</strong> Soil<br />

Protection, COM(2006) 231 final, Section 1.<br />

10<br />

Towards a Thematic Strategy <strong>for</strong> Soil Protection (fn. 8),<br />

Section 3.<br />

11<br />

Towards a Thematic Strategy <strong>for</strong> Soil Protection (fn. 8),<br />

Section 3.8.<br />

12<br />

Thematic Strategy <strong>for</strong> Soil Protection (fn. 9).<br />

13<br />

Proposal <strong>for</strong> a Directive of the European Parliament <strong>and</strong> of<br />

the Council establishing a Framework <strong>for</strong> the Protection of Soil<br />

<strong>and</strong> amending Directive 2004/35/EC, COM(2006) 232 final.2..<br />

14<br />

European Parliament legislative resolution of 14 November<br />

2007 on the proposal <strong>for</strong> a directive of the European<br />

Parliament <strong>and</strong> of the Council establishing a framework <strong>for</strong><br />

the protection of soil <strong>and</strong> amending Directive 2004/35/EC,<br />

P6_TA(2007)0509.<br />

15<br />

Annex I Section 5: soil typological unit (soil type), properties,<br />

occurrence <strong>and</strong> density of l<strong>and</strong>slides, bedrock, topography,<br />

l<strong>and</strong> cover, l<strong>and</strong> use (including l<strong>and</strong> management, farming<br />

systems <strong>and</strong> <strong>for</strong>estry), climate <strong>and</strong> seismic risk.<br />

In particular, the EU Directive establishing a<br />

Framework <strong>for</strong> the Protection of Soil turned out<br />

to be fiercely disputed. 16 Since 2007, after an<br />

attenuated version failed to obtain the majority<br />

in the EU Environment Council, the future of this<br />

proposal remains uncertain.<br />

3.2. Environmental law<br />

In the remaining European environmental laws,<br />

certain provisions about erosion can be found. 17<br />

However, there are no further provisions dealing<br />

with the topic of this essay.<br />

3.3. Agricultural law<br />

The situation is rather similar in the area of<br />

European agricultural law. Different st<strong>and</strong>ards<br />

are included in the general provisions on direct<br />

payments (cross compliance) 18 , in which there is<br />

an obligation to maintain all agricultural l<strong>and</strong> in<br />

good agricultural <strong>and</strong> environmental condition,<br />

such as those regarding soil erosion. 19 In contrast,<br />

the regulation on support <strong>for</strong> rural development 20<br />

includes in its Axis 2 some links with supporting<br />

measures, such as af<strong>for</strong>estation (cf. art. 50.6). 21<br />

16<br />

Cf. in detail NORER, Bodenschutzrecht im Kontext der europäischen<br />

Bodenschutzstrategie (2009), p. 17 et seq.<br />

17<br />

Like the Directive 2000/60/EC establishing a framework <strong>for</strong><br />

Community action in the field of water policy (“Wasserrahmenrichtlinie“),<br />

OJ 2000 L 327/1.<br />

18<br />

Art. 4 et seq. Council Regulation (EC) No. 73/2009 establishing<br />

common rules <strong>for</strong> direct support schemes <strong>for</strong> farmers<br />

under the common agricultural policy <strong>and</strong> establishing certain<br />

support schemes <strong>for</strong> farmers, OJ 2009 L 30/16.<br />

19<br />

Art. 6 in conjunction with Annex III Regulation (EC) 73/2009;<br />

§ 5.1 in conjunction with Annex INVEKOS-CC-V 2010, BGBl. II<br />

2009/492.<br />

20<br />

Council Regulation (EC) No. 1698/2005 on support <strong>for</strong> rural<br />

development by the European Agricultural Fund <strong>for</strong> Rural Development<br />

(EAFRD), OJ 2005 L 277/1.<br />

21<br />

Cf. Recital 32, 38, 41 <strong>and</strong> 44 Regulation (EC) 1698/2005. For<br />

Austrian implementation see Sonderrichtlinie zur Umsetzung<br />

der <strong>for</strong>stlichen und wasserbaulichen Maßnahmen im Rahmen<br />

des Österreichischen Programms für die Entwicklung des<br />

ländlichen Raums 2007 – 2013 „Wald & Wasser“, BMLFUW-<br />

LE.3.2.8/0054-IV/3/2007 idF BMLFUW-LE.3.2.8/0028-<br />

IV/3/2009.<br />

3.4. Spatial planning law<br />

Regarding the quantitative aspects of soil<br />

protection, a separate communication on the<br />

topic of “Planning <strong>and</strong> Environment – the<br />

Territorial Dimension” has been announced <strong>for</strong> a<br />

some time now. This communication should deal<br />

with rational l<strong>and</strong>-use planning, as addressed by<br />

the Sixth Environment Action Programme. 22 The<br />

announced content, however, does not refer to a<br />

special relevance <strong>for</strong> the prevention of l<strong>and</strong>slides.<br />

Hence, at present the only object of an integrated<br />

<strong>and</strong> sustainable management at the EU level is<br />

the flood prevention programme in transnational<br />

river areas included in the European Spatial<br />

Development Perspective (ESDP). 23<br />

3.5. Disaster law<br />

The Communication of the European Commission<br />

of February 2009 24 was another attempt to<br />

establish measures, based on the already existing<br />

instruments, <strong>for</strong> a Community approach on the<br />

prevention of natural <strong>and</strong> man-made disasters.<br />

Three key elements were mentioned <strong>for</strong><br />

the Community approach: creating the conditions<br />

<strong>for</strong> the development of knowledge based disaster<br />

prevention policies at all levels of government,<br />

linking the actors <strong>and</strong> policies throughout the<br />

disaster management cycle <strong>and</strong> making existing<br />

instruments per<strong>for</strong>m better <strong>for</strong> disaster prevention.<br />

In particular, the subsection “Developing<br />

guidelines on <strong>hazard</strong>/risk mapping” (3.1.3) is<br />

of great interest. Here, the Commission tries<br />

22<br />

Towards a Thematic Strategy <strong>for</strong> Soil Protection (fn. 8), Section<br />

2.1, 6.1.; REISCHAUER, Bodenschutzrecht, in: Norer (ed.),<br />

H<strong>and</strong>buch des Agrarrechts (2005), p. 491.<br />

23<br />

European Commission (ed.), ESDP European Spatial<br />

Development Perspective. Towards Balanced <strong>and</strong> Sustainable<br />

Development of the Territory of the European Union (1999),<br />

Section 146.<br />

24<br />

Communication from the Commission to the European<br />

Parliament, the Council, the European Economic ad Social<br />

Committee <strong>and</strong> the Committee of the Regions. A Community<br />

approach on the prevention of natural <strong>and</strong> man-made disasters,<br />

COM(2009) 82 final, 23.02.2009.<br />

to collect <strong>and</strong> unify in<strong>for</strong>mation about <strong>hazard</strong>/<br />

risks by developing Community guidelines <strong>for</strong><br />

<strong>hazard</strong> <strong>and</strong> risk mapping, building upon existing<br />

Community initiatives. However, these should<br />

focus on disasters with potential cross-border<br />

impact, exceptional events, large-scale disasters,<br />

<strong>and</strong> disasters <strong>for</strong> which the cost of recovery<br />

measures appears to be disproportionate when<br />

compared to that of preventive measures. Also, a<br />

more efficient targeting of Community funding 25<br />

is dealt with (3.3.1) by establishing an inventory<br />

of existing Community instruments capable<br />

of supporting disaster prevention activities, as<br />

well as by developing a catalogue of prevention<br />

measures (e.g. measures integrating preventive<br />

action in re<strong>for</strong>estation/af<strong>for</strong>estation projects).<br />

Furthermore, a Council Decision<br />

establishing a Community Civil Protection<br />

Mechanism 25 deals with assistance intervention<br />

in the event of major emergencies, or the<br />

imminent threat thereof. However, a regulation<br />

on geological mass movements similar to the EU<br />

Directive on the <strong>assessment</strong> <strong>and</strong> management of<br />

flood risks 27 , with its flood <strong>hazard</strong> maps <strong>and</strong> flood<br />

risk maps, does not currently exist.<br />

3.6. Findings<br />

Some relevant regulations can be found at the<br />

European level. However, only one of them, Cross<br />

Compliance, is in <strong>for</strong>ce <strong>and</strong> affects the topic dealt<br />

with in this essay in a rather marginal way. By<br />

contrast, the Proposal <strong>for</strong> a Directive establishing<br />

a Framework <strong>for</strong> the Protection of Soil, which has<br />

been put on hold, contemplates the designation<br />

of l<strong>and</strong>slide risk areas <strong>and</strong> the establishment of<br />

25<br />

Especially the European Agricultural Fund <strong>for</strong> Rural Development,<br />

the Civil Protection Financial Instrument, LIFE+,<br />

the ICT Policy Support Programme, the Research Framework<br />

Programme.<br />

26<br />

Council Decision 2007/779/EC of 8 November 2007, OJ<br />

2007 L 314/9.<br />

27<br />

Directive 2007/60/EC on the <strong>assessment</strong> <strong>and</strong> management of<br />

flood risks, OJ 2007 L 288/27.


Key-note papers<br />

Seite 68<br />

Seite 69<br />

action programmes. Furthermore, a Community<br />

approach on the prevention of natural disasters<br />

sets out guidelines <strong>for</strong> the unification of <strong>hazard</strong><br />

mapping in large-scale disasters.<br />

4. National law<br />

4.1. Forestry law<br />

Many times, the catchment area of mountain<br />

torrents <strong>and</strong> avalanches, as well as references to<br />

rock fall <strong>and</strong> l<strong>and</strong>slip areas, are established within<br />

the national <strong>for</strong>estal spatial planning. 28 It can even<br />

include the layout of <strong>for</strong>ests with a protective<br />

function 29 or the extensive <strong>hazard</strong> description<br />

structured in risk levels. 30 The protective effect of<br />

the <strong>for</strong>est especially implies “the protection against<br />

natural peril <strong>and</strong> contaminating environmental<br />

influences as well as the conservation of the soil<br />

against torrents <strong>and</strong> drift, boulders accumulation<br />

<strong>and</strong> l<strong>and</strong>slides”. 31 Thus, <strong>for</strong>ests with a direct<br />

protective function against the above-mentioned<br />

<strong>hazard</strong>s could be signalised by means of an<br />

administrative act (Bannwälder). 32<br />

4.2. Water law<br />

Such regulations are limited to measures <strong>for</strong> flood<br />

prevention 33 , although geological risks are at<br />

times also included 34 .<br />

28<br />

In Austria e.g. the mapping of risk areas is based on § 11 Austrian<br />

Forestry Act 1975, BGBl. 1975/440, in conjunction with §<br />

7.a Regulation on the mapping of risk areas, BGBl. 1976/436,<br />

including brown areas of reference, which posed other <strong>hazard</strong>s<br />

than mountain torrents <strong>and</strong> avalanches, such as rock fall<br />

<strong>and</strong> l<strong>and</strong>slips. Cf. JÄGER, Raumwirkungen des Forstrechts,<br />

in: Hauer/Nußbaumer (ed.), Österreichisches Raum- und<br />

Fachplanungsrecht (2006), p. 181 et seq.; STÖTTER/FUCHS,<br />

Umgang mit Naturgefahren – Status quo und und zukünftige<br />

An<strong>for</strong>derungen, in: Fuchs/Khakzadeh/Weber (ed.), Recht im<br />

Naturgefahrenmanagement (2006), p. 21 et seq.<br />

29<br />

In Austria e.g. Forestry Development Plan (Waldentwicklungsplan)<br />

based on § 9 Austrian Forestry Act 1975.<br />

30<br />

In Austria e.g. <strong>hazard</strong> <strong>and</strong> risks mapping (Gefahren- und<br />

Risikokarten), here geological <strong>hazard</strong> mapping (no legal basis).<br />

31<br />

Such as in § 6.2b Austrian Forestry Act 1975.<br />

32<br />

Such as in § 27.2.a Austrian Forestry Act 1975.<br />

33<br />

In Austria e.g. Section 4 of the Water Law Act 1959, BGBl.<br />

1959/215 (Wv).<br />

4.3. Soil protection law<br />

The rules on soil protection can be divided in two<br />

categories with different aims: on the one h<strong>and</strong>,<br />

qualitative soil damage such as contaminating<br />

activities <strong>and</strong> structural damages <strong>and</strong> on the<br />

other h<strong>and</strong>, quantitative soil loss, such as soil<br />

degradation <strong>and</strong> erosion. 35 The second category<br />

could also be of interest <strong>for</strong> mass movements. 36<br />

4.4. Spatial planning law<br />

As a general rule, rules on areas with a higher<br />

risk of mass movements in connection with the<br />

designation of building sites 37 or special use in<br />

grassl<strong>and</strong> can be mainly found in spatial planning<br />

law. Further contents in this regard remain<br />

missing. 38<br />

4.5. Building law<br />

A similar situation applies to building law. The<br />

suitability as a building site <strong>for</strong> areas with a higher<br />

risk of mass movements is not given. 39<br />

34<br />

In Austria e.g. Water Construction Development Act (Wasserbautenförderungsgesetz),<br />

BGBl. 1985/148 (Wv), expressly<br />

mentions the necessary protection against “rock fall, mudflow<br />

<strong>and</strong> l<strong>and</strong>slides” in the requirements <strong>for</strong> granting <strong>and</strong> allocation<br />

of federal funds to pursuit the objectives in the Act (§ 1.1.1.b).<br />

35<br />

Cf. HOLZER/REISCHAUER, Agrarumweltrecht. Kritische<br />

Analyse des „Grünen Rechts“ in Österreich (1991), p. 47;<br />

REISCHAUER (fn. 22), p. 477.<br />

36<br />

In Austria e.g. the pertinent national provisions only provide<br />

<strong>for</strong> l<strong>and</strong>-use measures <strong>for</strong> soil in erosion areas; see § 5 Burgenl<strong>and</strong><br />

Soil Protection Act (Burgenländisches Bodenschutzgesetz),<br />

LGBl. 1990/87; § 27 Upper Austria Soil Protection<br />

Act 1991 (Oberösterreichisches Bodenschutzgesetz), LGBl.<br />

1997/63; § 7 Salzburg Soil Protection Act (Salzburger Bodenschutzgesetz),<br />

LGBl. 2001/80; § 6 Styria Agricultural Soil<br />

Protection Act (Steiermärkisches l<strong>and</strong>wirtschaftliches Bodenschutzgesetz),<br />

LGBl. 1987/66.<br />

37<br />

In Austria e.g. § 37.1.a Tyrol Spatial Planning Act (Tiroler<br />

Raumordnungsgesetz), LGBl. 2006/27, according to which<br />

certain areas are excluded as building sites when f.i. there is a<br />

risk of „rockfall, l<strong>and</strong>slide or other gravitated natural <strong>hazard</strong>s”.<br />

From the perspective of avalanche protection see in detail<br />

KHAKZADEH, Rechtsfragen des Lawinenschutzes (2004), p.<br />

37 et seq.<br />

38<br />

F.i. the Recommendation Nr. 52 of the Austrian Spatial Planning<br />

Conference (ÖROK) about preventive h<strong>and</strong>ling with natural<br />

<strong>hazard</strong>s in Spatial Planning (2005) also puts an emphasis<br />

in floods. Cf. <strong>for</strong> Austria altogether KANONIER, Raumplanungsrechtliche<br />

Regelungen als Teil des Naturgefahrenmanagements,<br />

in: Fuchs/Khakzadeh/Weber (ed.), Recht im Naturgefahrenmanagement<br />

(2006), p. 123 et seq.<br />

4.6. Findings<br />

In the light of the arid gain at the international <strong>and</strong><br />

European legal level, at a first glance the respective<br />

national systems seem to constitute the determining<br />

factor, by implementing higher-ranking guidelines<br />

or autonomously. However, norms related to the<br />

<strong>assessment</strong> <strong>and</strong> mapping of geological <strong>hazard</strong>s,<br />

such as the law of natural disaster management<br />

at all 40 , remain fragmentated between the various<br />

regulations (“Querschnittsmaterien”). Relevant<br />

provisions exist, primarily in <strong>for</strong>estry law with its<br />

extensive <strong>hazard</strong> descriptions, but also marginally<br />

in spatial planning law. This fact, however, would<br />

not allow the development of uni<strong>for</strong>m st<strong>and</strong>ards<br />

<strong>and</strong> provisions <strong>for</strong> <strong>assessment</strong> <strong>and</strong> mapping of<br />

geological <strong>hazard</strong>s. 41<br />

5. Conclusion<br />

Legal provisions regarding the <strong>assessment</strong> <strong>and</strong><br />

mapping of geological <strong>hazard</strong>s are tenuously<br />

sown at the international <strong>and</strong> European level.<br />

Unlikely enough, at the national level more legal<br />

provisions exist in connection with preventive<br />

planning 42 <strong>for</strong> natural <strong>hazard</strong>s. Here, the existing<br />

instruments partially conduct the <strong>assessment</strong> of<br />

mass movements, although the general problem<br />

of the coexistence of different area-related<br />

definitions still remains. 43<br />

39<br />

In Austria e.g. § 5.1.5 Styria Building Act (Steiermärkisches<br />

Baugesetz), LGBl. 1995/59, according to which a plot area is<br />

only suitable <strong>for</strong> building if the risks posed by „flood debris<br />

accumulation, rockfall, l<strong>and</strong>slides” are not to be expected. From<br />

the perspective of avalanche protection see in detail KHAKZ-<br />

ADEH (fn. 37), p. 58 et seq.<br />

40<br />

For Austria see e.g. HATTENBERGER, Naturgefahren und<br />

öffentliches Recht, in: Fuchs/Khakzadeh/Weber (ed.), Recht im<br />

Naturgefahrenmanagement (2006), p. 67 ; RUDOLF-MIKLAU<br />

(fn. 1), p. 57 <strong>and</strong> list 61 et seq., speaking of „Kompetenzlawine“.<br />

41<br />

WEBER/OBERMEIER, Verwaltungs- und zivilrechtliche Aspekte<br />

von Steinschlaggefährdung und –schutz, Studie im Auftrag<br />

des Bundesministeriums für L<strong>and</strong>- und Forstwirtschaft, Umwelt<br />

und Wasserwirtschaft (2008, unveröffentlicht), p. 29, suggest<br />

<strong>for</strong> Austria f.i. an extension of the competence „Wildbach- und<br />

Lawinenverbauung“ towards other natural <strong>hazard</strong>s. The political<br />

feasibility seems little realistic.<br />

42<br />

For Austria see in detail RUDOLF-MIKLAU (fn. 1), p. 129 et<br />

seq.; HATTENBERGER (fn. 40), p. 73 et seq.<br />

43<br />

For Austria see HATTENBERGER (fn. 40), p. 84 et seq.<br />

A convincing <strong>and</strong> coherent overall view cannot<br />

be offered. Whereas the available legal set of tools<br />

remains within the same course of action, no<br />

relevant changes coming from the international<br />

<strong>and</strong> European level are to be expected in the<br />

near future. Admittedly, the creation of uni<strong>for</strong>m<br />

technical st<strong>and</strong>ards by all those involved as a<br />

further step towards self-regulation should be<br />

brought to mind.<br />

Anschrift des Verfassers / Author’s address:<br />

Univ.-Prof. Dr. Rol<strong>and</strong> Norer<br />

University of Lucerne<br />

School of Law<br />

Hofstraße 9<br />

P.O. Box 7464<br />

CH-6000 Luzern 7<br />

Switzerl<strong>and</strong>


Key-note papers<br />

Seite 70<br />

Seite 71<br />

KARL MAYER, BERNHARD LOCHNER<br />

Internationally Harmonized Terminology<br />

<strong>for</strong> Geological Risk: Glossary (Overview)<br />

Zusammenfassung:<br />

Ausgangslage und Motivation für dieses Projekt ist die schon „traditionelle“ Problematik der<br />

unterschiedlichen Verwendung und Definition der Begrifflichkeiten in der Fachliteratur zum<br />

Themenbereich <strong>Mass</strong>enbewegungsprozesse. Dies hat zur Folge, dass die Arbeitsweisen der<br />

Experten in den verschiedenen geologischen Ämtern in den Projektpartnerländern nicht einheitlich<br />

sind und es daher immer wieder zu Missverständnissen und Schwierigkeiten bei der<br />

Abstimmung gemeinsamer Projekte kommt. Aufgrund dieser Komplexität und der Unklarheit,<br />

die speziell im deutschsprachigen Raum, aber auch europaweit, besonders im Hinblick auf<br />

die Klassifikation der <strong>Mass</strong>enbewegungen existiert, soll ein mehrsprachiges Glossar erstellt<br />

werden, in welchem im Sinne der internationalen Harmonisierung in Absprache mit den<br />

einzelnen Projektpartnerländern die von den jeweiligen geologischen Ämtern verwendeten<br />

administrativen Begriffe eingestellt und in Beziehung gesetzt werden. Das gesamte Projekt<br />

gliedert sich grundsätzlich in einen technischen und einen inhaltlichen Teil, wobei die erste<br />

Projektphase vom technischen Bereich bestimmt wird. Da die harmonisierten Begrifflichkeiten<br />

und Definitionen für alle beteiligten Länder und auch für eine breitere Öffentlichkeit zugänglich<br />

gemacht werden soll, wird eine relationale Datenbank erstellt, in welcher die Inhalte<br />

logisch verknüpft werden und welche zu Projektende in die LfU-Homepage integriert wird.<br />

Internationale Harmonisierung der Fachterminologie<br />

für geologische Risiken: Glossar (Überblick)<br />

Summary:<br />

Purpose <strong>and</strong> motivation <strong>for</strong> this project are the difficulties traditionally encountered when<br />

using or defining mass movements terms in scientific papers. This results in different methods<br />

<strong>and</strong> concepts being used by geological agencies <strong>and</strong> finally leads to misunderst<strong>and</strong>ings<br />

<strong>and</strong> problems in cooperative international projects. In order to tackle that complexity <strong>and</strong><br />

ambiguity, found not only in the German-speaking geology, but generally throughout Europe,<br />

a multilingual glossary shall be created. This glossary aims at an international harmonization<br />

by providing the user with a selection of official terms used by the geological agencies in a<br />

specific country <strong>and</strong> by setting relations to similar terms employed in other countries. The<br />

resulting harmonized terms <strong>and</strong> definitions should be made available to all partners <strong>and</strong> to the<br />

general public on the internet through the Bavarian Environment Agency homepage. The first<br />

step is to design <strong>and</strong> implement the technical infrastructure required to store <strong>and</strong> query the<br />

terms. For this purpose, a relational database management system will be used as a back-end.<br />

1. Requirements <strong>for</strong> the relational database<br />

Be<strong>for</strong>e the actual database is deigned, it is essential<br />

to assess the exact requirements <strong>for</strong> the glossary.<br />

This eases the following conceptional work a lot<br />

<strong>and</strong> minimizes time-consuming adjustments <strong>and</strong><br />

changes to the model later on.<br />

First a list of attributes needed <strong>for</strong> a single<br />

glossary term as well as a type <strong>for</strong> those attributes<br />

(e.g. numbers, text, keys etc.) is to be defined.<br />

The type of attribute determines which relations<br />

can be saved in the database <strong>and</strong> what kind of<br />

in<strong>for</strong>mation can be queried using them. Every<br />

attribute corresponds at least to one column in the<br />

main glossary table.<br />

The unique language to which a<br />

term is assigned is a fundamental attribute in<br />

a multilingual glossary. Because of the pan-<br />

European character of the glossary, it is necessary<br />

to specify the languages more precisely by linking<br />

them to a specific country, resulting in a unique<br />

combination <strong>for</strong> one language <strong>and</strong> one country.<br />

It is particularly relevant <strong>for</strong> this project, as the<br />

usage of a term varies greatly within a language<br />

depending on the region where it is used, as<br />

it is the case <strong>for</strong> German (Germany, Austria,<br />

Switzerl<strong>and</strong>).<br />

Easy <strong>and</strong> intuitive queries are essential<br />

<strong>for</strong> the usability of the glossary. Although the<br />

user friendliness mostly depends on the graphical<br />

user interface <strong>and</strong> is hard to control through the<br />

database design, there are still aspects that need<br />

to be considered in conception. It is important to<br />

determine what possible queries will be offered<br />

to the user (e.g. a search by synonyms, case <strong>and</strong><br />

special character insensitive searches, etc.) <strong>and</strong> to<br />

adapt the database design accordingly.<br />

Editing <strong>and</strong> adding glossary terms after<br />

the initial import should also be possible <strong>and</strong><br />

requires saving metadata <strong>for</strong> each entry, e.g. time<br />

<strong>and</strong> date of the creation or the last edit of a term.<br />

Using that in<strong>for</strong>mation, it is easy to reconstruct the<br />

history of an entry at a later point in time.


Key-note papers<br />

Seite 72<br />

Seite 73<br />

PK<br />

Finally, the database should, to some<br />

extent, be exp<strong>and</strong>able if future needs <strong>for</strong><br />

extensions or additional functions arise.<br />

1.1 Relations<br />

tdtaTerm<br />

idterm<br />

idworkflowstatus<br />

metacreator<br />

metaowner<br />

idreadaccess<br />

idwriteaccess<br />

deleted<br />

metamasterlang<br />

metalastedit<br />

The classical approach followed by most<br />

glossaries is a single translation layer; a direct<br />

translation of each term into exactly one term<br />

of another language. This corresponds to a 1: n<br />

relation between the entities (i.e. glossary terms)<br />

in an entity-relationship model (ERM). Such a<br />

direct translation supposes an equivalence of<br />

the terms’ definition <strong>and</strong> meaning. In this new<br />

glossary, the relations between the different<br />

terms should be defined solely by their technical<br />

meaning, resulting in two possible relations: same<br />

meaning or similar meaning. A direct translation is<br />

still required in order to provide the user with the<br />

exact translation of a definition in his language.<br />

Following example should help clarifying<br />

the concept of “meaning” vs. “definition”:<br />

The English term “rock fall” is usually<br />

translated into “Felssturz” or “Bergsturz” in<br />

German, but that translation usually doesn't<br />

consider the effective volume transported.<br />

However, if the technical meaning is taken into<br />

account, “Bergsturz”, which corresponds to a<br />

minimum volume of 106 cubic meters, would<br />

have the same meaning as “rock avalanche”, also<br />

characterized by volume values above 106 cubic<br />

tdtaTermLng<br />

PK, FK1<br />

PK<br />

meters. The relation to “rock fall” (i.e. similar<br />

meaning) would be a looser one. The relations<br />

between “cliff falls“, “block falls“, “boulder falls“<br />

<strong>and</strong> “Felssturz“, “Steinschlag“, “Blockschlag“<br />

could be defined in a similar manner.<br />

(Note: the values used above are examples <strong>and</strong> do<br />

not necessarily match any official values)<br />

1.2 Database model<br />

This chapter describes in detail the different<br />

“sections” of the database. For the purpose<br />

of clarity, the database was divided into four<br />

“sections” or “areas” which correspond to a set of<br />

interrelated tables. The following diagram shows<br />

the relations between those “sections”.<br />

Glossary<br />

• Terms<br />

• Relations<br />

• Translation tables<br />

Metadata<br />

• Workflow<br />

• History<br />

idterm lang<br />

term description<br />

Fig. 1: Example of a multilingual glossary where each term has exactly one translation in<br />

each other language. The primary key of the language table ('tdtaTermLng') is defined by<br />

its ID <strong>and</strong> language<br />

Abb. 1: Beispiel eines mehrsprachigen Glossars, in dem jeder Begriff genau eine<br />

Übersetzung für jede weitere Sprache hat. Der Primärschlüssel der Tabelle mit dem<br />

Textinhalt ('tdtaTermLng') ist somit über ID und Sprache definiert.<br />

Auxiliary<br />

• Key tables<br />

• Relation tables<br />

User Management<br />

• Users & groups<br />

• Permissions<br />

Fig. 2: Overview of the database model components<br />

Abb. 2: Übersicht über die Komponenten des Datenbankmodells<br />

The nomenclature used throughout the database<br />

follows a simple naming convention. Depending<br />

on the function or content of a particular table,<br />

its name is prefixed differently. The prefix “tdta-”<br />

st<strong>and</strong>s <strong>for</strong> tables in which actual data is being stored,<br />

“tkey-” is used <strong>for</strong> key tables (key attributes can<br />

only take a value from a predefined set of keys) <strong>and</strong><br />

“trel-” <strong>for</strong> relation tables. Unique IDs are prefixed<br />

with “id-” <strong>and</strong> meta-attributes with “meta-”.<br />

For most of the tables the multilingual concept<br />

required by the direct translation provides a<br />

second table with an identical name <strong>and</strong> the suffix<br />

“-Lng”. Those language tables hold the text values<br />

of the different glossary terms. The first “section”<br />

is the core of the database, with its element tables<br />

tdtaElement <strong>and</strong> tdtaEleGlossarTerm. The glossary<br />

terms are stored in the latter, whereas the main<br />

element table holds additional in<strong>for</strong>mation related<br />

to the system <strong>and</strong> not to the glossary itself (mostly<br />

through the usage of <strong>for</strong>eign keys).<br />

tdtaEleGlossarTerm<br />

PK,FK1 idelement<br />

FK3<br />

FK4<br />

FK2<br />

term<br />

reference<br />

idtopic<br />

idlang<br />

idcountry<br />

searchterm<br />

searchsynonyms<br />

Fig. 4: Auxiliary tables<br />

Abb. 4: Behelfstabellen<br />

tkeyCountry<br />

PK idcountry<br />

countrysort<br />

PK<br />

tkeyLang<br />

idlang<br />

langsort<br />

tkeyTopic<br />

PK idtopic<br />

topicsort<br />

PK<br />

FK4<br />

FK2<br />

FK1<br />

FK5<br />

FK3<br />

PK,FK1,<br />

PK,FK2<br />

tdtaElement<br />

idelement<br />

elementtype<br />

idworkflowstatus<br />

metaowner<br />

metacreator<br />

idreadaccess<br />

idwriteaccess<br />

deleted<br />

metamasterlang<br />

tdtaElementLng<br />

idelement<br />

lang<br />

tdtaEleGlossarTermLng<br />

PK,FK1<br />

PK,FK2<br />

PK,FK1<br />

PK,FK2<br />

PK,FK1<br />

PK,FK2<br />

idcountry<br />

lang<br />

title<br />

summary<br />

metacreated<br />

metalastedit<br />

metatranslator<br />

countryterm<br />

tkeyLangLng<br />

idcountry<br />

lang<br />

langterm<br />

idlanguage<br />

tkeyTopicLng<br />

idtopic<br />

lang<br />

topicterm<br />

PK<br />

PK,FK1<br />

FK3<br />

FK4<br />

FK2<br />

tdtaEleGlossarTerm<br />

idelement<br />

term<br />

reference<br />

idtopic<br />

idlang<br />

idcountry<br />

searchterm<br />

searchsynonyms<br />

tdtaEleGlossarTermLng<br />

PK,FK1, FK2<br />

PK,FK1<br />

Fig. 3: Main tables<br />

Abb. 3: Haupttabellen<br />

PK,FK1<br />

PK<br />

tkeyLanguage<br />

idlanguage<br />

lang<br />

languagesort<br />

tkeyLanguageLng<br />

idlanguage<br />

lang<br />

languagesort<br />

idelement<br />

lang<br />

title<br />

description


Key-note papers<br />

Seite 74<br />

Seite 75<br />

For each term, following fields are available:<br />

• 'term': the actual text value (direct<br />

translation using the -Lng table)<br />

• ‘reference’: source of in<strong>for</strong>mation <strong>and</strong> date<br />

• 'idlang' <strong>and</strong> 'idcountry': <strong>for</strong>eign keys<br />

pointing to a unique combination of<br />

language/country<br />

• 'idtopic': <strong>for</strong>eign key specifying the topic of<br />

this term<br />

• 'searchterm' <strong>and</strong> 'searchsynonyms': used<br />

<strong>for</strong> insensitive searches<br />

• 'picture': paths to pictures depicting a term<br />

PK<br />

PK<br />

FK4<br />

FK2<br />

FK1<br />

FK5<br />

FK3<br />

PK<br />

FK1<br />

tkeyWorkflowStatus<br />

idworkflowstatus<br />

workflowstatussort<br />

tdtaElement<br />

idelement<br />

elementtype<br />

idworkflowstatus<br />

metaowner<br />

metacreator<br />

idreadaccess<br />

idwriteaccess<br />

deleted<br />

metamasterlang<br />

tdtaUser<br />

iduser<br />

username<br />

password<br />

email<br />

organisation<br />

fullname<br />

inactive<br />

superadmin<br />

lastlogin<br />

loginip<br />

maingroup<br />

Fig. 5: Metadata tables<br />

Fig. 5: Metadata tables<br />

The auxiliary tables are mainly key tables defining<br />

the different languages, countries <strong>and</strong> topics used<br />

in the main table. They also contain the relation<br />

table used to specify relations between terms<br />

based on a relation code (“similar” or “same”).<br />

Metadata is partly stored in the tdtaElement table<br />

using <strong>for</strong>eign keys. Those keys point to external<br />

metadata tables such as tkeyWorkflowstatus<br />

or tdtaUser, where, <strong>for</strong> example, in<strong>for</strong>mation<br />

about the status, author or owner of an element<br />

are defined. tdtaHistory works similarly to a log<br />

by saving all actions per<strong>for</strong>med on a specific<br />

tkeyWorkflowStatusLng<br />

PK,FK1<br />

PK,FK2<br />

PK,FK1<br />

FK3<br />

FK4<br />

FK2<br />

PK<br />

FK2<br />

FK1<br />

idworkflowstatus<br />

lang<br />

workflowstatusterm<br />

tdtaEleGlossarTerm<br />

idelement<br />

term<br />

reference<br />

idtopic<br />

idlang<br />

idcountry<br />

searchterm<br />

seyrchsynonyms<br />

tdtaHistory<br />

idhistory<br />

idelement<br />

lang<br />

iduser<br />

logdatetime<br />

info<br />

idelementaction<br />

PK,FK1<br />

PK<br />

FK2<br />

PK<br />

tkeyLanguage<br />

idlanguage<br />

lang<br />

languagesort<br />

tkeyLanguageLng<br />

PK,FK1<br />

PK<br />

idlanguage<br />

lang<br />

languagesort<br />

tkeyelementActionLng<br />

PK<br />

FK1<br />

idelementaction<br />

lang<br />

elementactionterm<br />

idlanguage<br />

tkeyElementAction<br />

idelementaction<br />

elementactionsort<br />

idhistory<br />

PK<br />

FK4<br />

FK2<br />

FK1<br />

FK5<br />

FK3<br />

PK<br />

FK1<br />

tdtaElement<br />

idelement<br />

elementtype<br />

idworkflowstatus<br />

metaowner<br />

metacreator<br />

idreadaccess<br />

idwriteaccess<br />

deleted<br />

metamasterlang<br />

tdtaUser<br />

iduser<br />

username<br />

password<br />

email<br />

organisation<br />

fullname<br />

inactive<br />

superadmin<br />

lastlogin<br />

loginip<br />

maingroup<br />

element, which can be displayed as a list to an<br />

authorized user.<br />

Finally, user <strong>and</strong> group management<br />

defines the group(s) a user belongs to <strong>and</strong> which<br />

read/write rights a group or a specific user owns<br />

(through the tdtaElement table)<br />

1.3 Data capture <strong>and</strong> import<br />

PK<br />

PK,FK2<br />

PK,FK1<br />

Fig. 6: User <strong>and</strong> group management<br />

Abb. 6: Benutzer- und Gruppenverwaltung<br />

The primary data capture is done via an Excel<br />

table with a predefined <strong>for</strong>mat. This table is used<br />

as an interface to import data records in the<br />

database. The person responsible <strong>for</strong> filling out<br />

this table must ensure that the relations between<br />

the terms are set correctly. Other errors, such as<br />

tdtaGroup<br />

idgroup<br />

groupname<br />

description<br />

trelUserGroup<br />

iduser<br />

idgroup<br />

PK<br />

duplicate IDs, can be h<strong>and</strong>led to some extent by<br />

the database itself. The integration of the database<br />

into the homepage from the Bavarian Environment<br />

Agency (LfU) <strong>and</strong> a graphical user interface to<br />

manually add or edit single terms is planned in<br />

the final stage of the project.<br />

2. Contents of the glossary<br />

tkeyPermissionLevelLng<br />

PK,FK1<br />

PK<br />

tkeyPermissionLevel<br />

idpermissionlevel<br />

permissionlevelsort<br />

idpermissionlevel<br />

lang<br />

permissionlevelterm<br />

In view of a different use of l<strong>and</strong>slide-terms in the<br />

European countries, a multilingual glossary can help<br />

to improve the collaboration between the experts.<br />

Also, progress concerning the comparability of the<br />

methods dealing with geological <strong>hazard</strong>s in the<br />

several countries is to be achieved.


Key-note papers<br />

Seite 76<br />

Seite 77<br />

In general, the glossary implies terms <strong>and</strong><br />

definitions to l<strong>and</strong>slides <strong>and</strong> corresponding maps,<br />

considering “danger, <strong>hazard</strong> <strong>and</strong> risk” caused by<br />

several kinds of geological <strong>hazard</strong>s. Due to the<br />

“alpine – character” of the project, the glossary<br />

contains all the languages spoken in the <strong>Alpine</strong><br />

region plus English <strong>and</strong> Spanish <strong>for</strong> two additional<br />

European countries dealing with geological<br />

<strong>hazard</strong>s. There<strong>for</strong>e, the glossary consists of the<br />

following six languages:<br />

• German – Germany, Switzerl<strong>and</strong>, Austria<br />

(three different lists)<br />

• Italian – Italy<br />

• French – France<br />

• Slovenian – Slovenia<br />

• Spanish – Spain (Castilian <strong>and</strong> Catalan)<br />

• English – United Kingdom<br />

2.1 Basic list <strong>for</strong> Germany<br />

For the development of such a glossary, it is<br />

necessary to create a “basic list” in which all<br />

the desired terms <strong>and</strong> definitions are included.<br />

There<strong>for</strong>e a table with 92 terms <strong>and</strong> definitions<br />

<strong>for</strong> geological <strong>hazard</strong>s (in German) was drafted.<br />

Based on this, the other language lists were<br />

developed. More in<strong>for</strong>mation on the approach of<br />

this “Harmonization” is available in chapter 3.2.<br />

In order to facilitate this process, all<br />

the terms are structured in different topics.<br />

This classification is very useful <strong>for</strong> simplifying<br />

the comparability between the languages. For<br />

example, it’s much easier to get the English term<br />

<strong>for</strong> “Stauchwulst” if the English expert knows that<br />

you are searching <strong>for</strong> an accumulation term. This<br />

topical limitation helps the translator to get the<br />

several experts on the right track.<br />

The “basic list” is structured into the<br />

following topics:<br />

• Accumulation (Ablagerungen - z.B.<br />

Schuttkegel)<br />

• General geomorphology (Allgemeine<br />

Geomorphologie - z.B. Grat)<br />

• General (Allgemeines - z.B.<br />

Primärereignis)<br />

• Fracture <strong>for</strong>ms (Anbruch<strong>for</strong>men - z.B.<br />

Bergzerreissung)<br />

• Path of movement (Bewegungsbahnen -<br />

z.B. Sturzbahn)<br />

• Flow process slow (Fließprozess – langsam<br />

- z.B. Solifluktion)<br />

• Flow process rapid (Fließprozess – schnell<br />

- z.B. Blockstrom)<br />

• Flow process very rapid (Fließprozess –<br />

sehr schnell - z.B. Murgang)<br />

• Risk (Gefahr-Gefährdung-Risiko - z.B.<br />

Restrisiko)<br />

• Maps (Karten - z.B. Gefahrenkarte)<br />

• Classification – processes (Klassifikation –<br />

Prozesse - z.B. Sturzprozess)<br />

• Measures (Maßnahmen - z.B. aktive<br />

Maßnahmen)<br />

• Slides combined (Rutschprozess –<br />

Kombinierte Rutschung - z.B. Rutschung<br />

mit kombinierter Gleitfläche)<br />

• Slides rotational (Rutschprozess<br />

– Rotationsrutschung - z.B.<br />

Rotationsrutschung)<br />

• Slides translational (Rutschprozess<br />

– Translationsrutschung - z.B.<br />

Translationsrutschung)<br />

• L<strong>and</strong>slide dynamics (Rutschungsdynamik -<br />

z.B. aktuelle Hangbewegung)<br />

• L<strong>and</strong>slide features (Rutschungsmerkmale -<br />

z.B. Rutschungkopf)<br />

• Falls (Sturzprozess – Bergsturz - z.B.<br />

Bergsturz)<br />

• Falls (Sturzprozess – Blockschlag - z.B.<br />

Blockschlag)<br />

• Falls (Sturzprozess – Felssturz - z.B.<br />

Felssturz)<br />

• Falls (Sturzprozess – Steinschlag - z.B.<br />

Steinschlag)<br />

• Subrosion (Subrosionsprozess - z.B.<br />

Doline)<br />

As mentioned above, the different terms lists<br />

will be integrated in the official homepage of<br />

the Bavarian Environment Agency in a final step.<br />

There<strong>for</strong>e, the terms are collected in a predefined<br />

id term lang country definition reference topic<br />

2016 Abflusslose<br />

Senke<br />

2066 aktive<br />

Maßnahmen<br />

2070 Aktuelle<br />

Hangbewegung<br />

de<br />

de<br />

de<br />

DE<br />

DE<br />

DE<br />

2029 Anbruch de DE<br />

2027 Auslöser de DE<br />

2092 Bachschwinde<br />

(Ponor)<br />

de<br />

DE<br />

2079 Bergsturz de DE<br />

Fig. 7: Extract of the “Basic-Terms-Table” in German<br />

Abb. 7: Auszug aus der Deutschen Begriffstabelle<br />

Senke ohne natürlich möglichen<br />

oberirdischen Wasserabfluss. In<br />

einem fluviatil geprägten Relief<br />

stellt sie eine Anomalie dar, die<br />

u.U ein Hinweis auf Hangbewegungen<br />

sein kann<br />

Schutzmaßnahme, die dem Naturereignis<br />

aktiv entgegenwirkt,<br />

um die Gefahr zu verringern<br />

oder um den Ablauf eines Ereignisses<br />

oder dessen Eintretenswahrscheinlichkeit<br />

wesentlich zu<br />

verändern. Neben den klassischen,<br />

punktuellen technischen<br />

Schutzmaßnahmen wie zum<br />

Beispiel Stützmauer oder Felsanker<br />

sind auch flächendeckende<br />

Maßnahmen im Einzugsgebiet,<br />

beispielsweise Auf<strong>for</strong>stungen<br />

oder Entwässerungen, dieser<br />

Kategorie zuzuordnen.<br />

Hangbewegung die zum Zeitpunkt<br />

der Aufnahme aktiv oder<br />

bezüglich ihres Alters für die<br />

Untersuchungen relevant war.<br />

Hangbereich aus dem eine<br />

Hangbewegung ihren Ausgang<br />

nimmt.<br />

Der Auslöser/Anlass für das<br />

Versagen eines Hanges liegt in<br />

externen Faktoren. Dieser löst<br />

eine quasi so<strong>for</strong>tige Reaktion<br />

aus, die ihrerseits wieder Auslöser<br />

für die nächste Reaktion<br />

sein kann (Kausalitätskette).<br />

Die Auslöser reduzieren zum<br />

Beispiel die Festigkeit der im<br />

Hang anstehenden Gesteine.<br />

Mögliche Auslöser können sein:<br />

Niederschläge, Schneeschmelze,<br />

Frost- Tauwechsel, Erdbeben,<br />

Menschlicher Eingriff.<br />

Öffnungen an der Erdoberfläche<br />

über die Oberflächenwasser in<br />

den Untergrund eindringt.<br />

Hangbewegung mit großem<br />

Volumen und hoher Dynamik,<br />

die oftmals dafür sorgt, dass<br />

die <strong>Mass</strong>en am Gegenhang<br />

weit aufbr<strong>and</strong>en. Volumen ><br />

1.000.000m³.<br />

LfU Bayern<br />

LfU Bayern<br />

LfU Bayern<br />

LfU Bayern<br />

LfU Bayern<br />

LfU Bayern<br />

Allgemeine<br />

Geomorphologie<br />

Maßnahmen<br />

Rutschungsdynamik<br />

Anbruch<strong>for</strong>men<br />

Allgemeines<br />

Subrosionsprozess/Allgemein<br />

LfU Bayern Sturzprozess -<br />

Bergsturz<br />

same_<br />

rel<br />

similar_<br />

rel


Key-note papers<br />

Seite 78<br />

Seite 79<br />

Excel table with a unique ID <strong>for</strong> each term. This<br />

ID is used to establish the relations between the<br />

different languages <strong>and</strong> also to integrate these in<br />

the relational database. Fig. 6 shows an extract<br />

of this Excel table with the basic terms from<br />

Germany.<br />

2.2 “Harmonisation” of terms <strong>and</strong> methods<br />

“…A glossary will facilitate transdisciplinary<br />

<strong>and</strong> translingual cooperation as well as support<br />

the harmonization of the various methods…”<br />

(www.adaptalp.org).<br />

Striving <strong>for</strong> “Harmonization” of regional<br />

terms <strong>and</strong> methods seems to be a guiding principle<br />

not only in WP 5 of the AdaptAlp project but in<br />

multiple European cooperation projects.<br />

In the literature, a lot of definitions are<br />

used <strong>for</strong> the term harmonization. According to<br />

the business dictionary, harmonization is an<br />

“adjustment of differences <strong>and</strong> inconsistencies<br />

among different measurements, methods,<br />

procedures, schedules, specifications, or systems<br />

to make them uni<strong>for</strong>m or mutually compatible”<br />

(www.businessdictionary.com).<br />

This definition implies some important<br />

points which are mentioned as main goals in many<br />

projects supported by the EU. The adjustment of<br />

differences <strong>and</strong> the achievement of compatibility<br />

also play a major role in work package 5:<br />

“AdaptAlp will evaluate, harmonise <strong>and</strong> improve<br />

different methods of <strong>hazard</strong> zone planning<br />

applied in the <strong>Alpine</strong> area. The comparison of<br />

methods <strong>for</strong> mapping geological <strong>and</strong> water risks<br />

in the individual countries” (www.adaptalp.org)<br />

will be brought into focus.<br />

Concerning the development of the<br />

multilingual glossary <strong>for</strong> geological <strong>hazard</strong>s, the<br />

“Harmonization” is implemented by the following<br />

approach.<br />

German<br />

English<br />

id term definition reference topic topic term definition<br />

2001 Stauchwulst<br />

2002 Murwall<br />

2003<br />

2004<br />

2005<br />

Blockl<strong>and</strong>schaft<br />

Murkegel,<br />

-fächer<br />

Schwemmkegel,<br />

-fächer<br />

2006 Schuttkegel<br />

2007 Buckelfläche<br />

2008 Sturzmasse<br />

2009 Rutschmasse<br />

2010<br />

Rutschscholle<br />

2011 Sturzblock<br />

Wulst aus Gesteinsmaterial.<br />

Sie tritt vor allem an der<br />

Stirn einer Rutsch- oder<br />

Kriechmasse auf<br />

Murablagerung am<br />

seitlichen R<strong>and</strong> des<br />

Murkanales<br />

Gelände, in dem weiträumig<br />

Blöcke und Gesteinsschollen<br />

verteilt sind.<br />

Herkunft der Blöcke in der<br />

Regel von großen Fels- od.<br />

Bergstürzen, aber auch von<br />

Talzuschüben.<br />

Unter Murkegel sind kegelförmige<br />

Ablagerungen v.a.<br />

an Gerinnen zu verstehen,<br />

deren Böschungswinkel<br />

meist mehr als 8-10° beträgt<br />

Sie sind oft noch durch die<br />

typischen dammartigen<br />

Wülste entlang des R<strong>and</strong>es<br />

eines ehemaligen Murstromes<br />

gekennzeichnet.<br />

Schwemmkegel weisen im<br />

Gegensatz zu Murkegeln<br />

meist Böschungswinkel von<br />

weniger als 10° auf, größere<br />

Geschiebeblöcke fehlen.<br />

Schuttkegel entstehen<br />

v. a. durch Steinschlag.<br />

Sie lagern sich an<br />

Steilwände und dort<br />

bevorzugt im Bereich von<br />

Steinschlagrinnen an<br />

Gelände, das durch<br />

unruhige Morphologie<br />

(weiche Formen)<br />

gekennzeichnet ist.<br />

Ablagerung infolge eines<br />

Sturzprozesses.<br />

Ablagerung infolge eines<br />

Rutschprozesses<br />

Teilweise im<br />

Verb<strong>and</strong> befindlicher<br />

Gesteinskomplex, der als<br />

ganze Scholle abrutscht.<br />

Einzelblock >1m³, infolge<br />

eines Sturzprozesses.<br />

Fig. 8: Extract of the “suggested-terms list” <strong>for</strong> Engl<strong>and</strong><br />

Abb. 8: Auszug aus der vorgeschlagenen Begriffsliste für Engl<strong>and</strong><br />

LfU Bayern Ablagerungen accumulation toe????<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

LfU Bayern Ablagerungen accumulation<br />

Bloc<br />

L<strong>and</strong>scape????<br />

coned debris/<br />

detritus????<br />

undulating<br />

area????<br />

sliding bloc/clod/<br />

massif????<br />

LfU Bayern Ablagerungen accumulation (fall) bloc????<br />

accumulation at the toe/foot<br />

of the main body.<br />

accumulation at flank of the<br />

main body.<br />

Area in which blocs are<br />

shared spacious. Bloc are<br />

comming from rock collapses,<br />

block falls or sags.<br />

Coned accumulation espacially<br />

at channels with a<br />

naturel slope of 8-10°.<br />

Coned accumulation espacially<br />

at channels with a<br />

naturel slope less than 10°<br />

<strong>and</strong> with no big blocs.<br />

"coned debris/detritus" are<br />

caused by rock falls. They<br />

accumulate at the rock face.<br />

Area which is characterized<br />

by undulating morphologie.<br />

Accumulation caused by a<br />

fall process.<br />

Accumulation caused by a<br />

slide process.<br />

A coplex of rocks which is<br />

sliding as one bloc/clod/<br />

massif.<br />

One bloc (


Key-note papers<br />

Seite 80<br />

Seite 81<br />

2.2.1 Basic rules<br />

In order to tackle the complexity <strong>and</strong> ambiguity,<br />

found not only in German-speaking geology,<br />

but generally throughout Europe, a multilingual<br />

glossary shall be created. This glossary aims at<br />

international harmonization by providing the<br />

user with a selection of official terms used by<br />

the geological agency in a specific country <strong>and</strong><br />

by setting relations to similar terms employed in<br />

other countries. Unlike many other glossaries,<br />

which are more like dictionaries working with<br />

direct translations; this glossary consists of terms<br />

<strong>and</strong> definitions which are used by the official<br />

agencies from the involved countries. So the big<br />

difference from many other word lists is the way<br />

of getting the topics.<br />

2.2.2 Data acquisition<br />

Basically the data acquisition is made during<br />

short visits in the involved countries. Building<br />

on the German “basic list”, in these talks “term<br />

after term” is discussed with the respective person<br />

responsible. With regard to linguistic problems,<br />

each “Harmonization” is carried out with the<br />

help of native speakers who also be well versed in<br />

the thematic of geological <strong>hazard</strong>s. The terms are<br />

related in the following three <strong>for</strong>ms:<br />

• Same meaning (the term has the same<br />

meaning in both languages)<br />

• Similar meaning (the term has a similar<br />

meaning in both languages)<br />

• Not existing (no term with the same or<br />

similar meaning exists)<br />

To facilitate the harmonization process, in the<br />

run-up to the visits, several national literature<br />

lists with suggested terms are worked out with<br />

the native speakers. These lists also contain short<br />

descriptions of the desired expressions <strong>and</strong> they<br />

are sent to the responsible persons <strong>for</strong> orientation<br />

<strong>and</strong> preparation. Furthermore, Fig. 7 shows an<br />

extract of the “suggested terms list” <strong>for</strong> Engl<strong>and</strong>.<br />

A picture paints a thous<strong>and</strong> words, there<strong>for</strong>e also<br />

pictures <strong>and</strong> illustrations are used within the talks.<br />

2.2.3 Data preparation <strong>and</strong> presentation<br />

Concerning the data preparation, the main issues<br />

are already described in the technical description<br />

above. The central point to fully exploit the<br />

possibilities of the database structure is the correct<br />

setting of the relations between the different terms<br />

(over the ID).<br />

Regarding to the data presentation, at<br />

this stage of the project no final results can be<br />

shown. As mentioned in the introduction of this<br />

article, the main output of the project will be an<br />

online glossary which is linked to the homepage<br />

of the Bavarian Environment Agnecy (LfU). The<br />

layout of this web page should be clear <strong>and</strong><br />

simple <strong>for</strong> everyone to use. There<strong>for</strong>e existing<br />

online glossaries are compared <strong>and</strong> “bestpractice”<br />

examples are pulled out as inspiration.<br />

Fig. 8 shows the “Inter Active Terminology <strong>for</strong><br />

Europe” glossary from the European Union which<br />

approximately fulfils the desired criteria <strong>for</strong> the<br />

geological <strong>hazard</strong> glossary.<br />

technical meaning. Although the structure of the<br />

model may seem complex, the multiple functions<br />

offered by external tables <strong>and</strong> the stronger data<br />

integrity fully compensate <strong>for</strong> a higher level of<br />

complexity. To achieve this complexity, not only<br />

the structure of the relational database but also<br />

the contents should satisfy the guidelines. The<br />

term “Harmonisation” is playing a central role<br />

in the work <strong>for</strong> the glossary where the contents<br />

are concerned. Only terms, which are officially<br />

used by the regional responsible agencies,<br />

are registered in the glossary <strong>and</strong> the relations<br />

between the different expressions are also defined<br />

by several experts. The topics in this glossary<br />

are not defined by a translation agency, which<br />

undoubtedly would have the linguistic ability<br />

but not the specialist background. Due to this<br />

approach, every involved country or region gets<br />

the chance to determine the terms <strong>and</strong> definitions<br />

they use <strong>and</strong> that procedure improves the overall<br />

result. The connection to the LfU – Homepage<br />

ensures accessibility <strong>for</strong> all interested persons.<br />

This is an important contribution to one of the<br />

main goals of the whole project, namely the<br />

improvement of the cooperation by the European<br />

countries in dealing with geological <strong>hazard</strong>s.<br />

3. Conclusion<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Fig. 9: Screenshot of the online “Inter Active Terminology <strong>for</strong> Europe” from the EU (Source: http://iate.europa.eu)<br />

Abb. 9: Screenshot de online „Inter Active Terminology <strong>for</strong> Europe” der EU (Quelle: http://iate.europa.eu)<br />

As mentioned in the introduction, this article<br />

presents no final results because the project runs<br />

until February 2011. Nevertheless, provisional<br />

results, theoretical <strong>and</strong> practical approaches<br />

could be shown. The database model presented<br />

in this article fulfils all requirements stated<br />

by a multilingual glossary focusing on mass<br />

movements <strong>and</strong> other geological <strong>hazard</strong>s. The<br />

multilingual concept provides the user with a<br />

direct translation of a term in a <strong>for</strong>eign language<br />

<strong>and</strong> sets relations to other terms based on its<br />

Karl Mayer<br />

Bavarian Environment Agency (LfU)<br />

(Office Munich)<br />

Lazarettstraße 67<br />

80636 Munich – GERMANY<br />

Bernhard Lochner<br />

alpS – Centre <strong>for</strong> Natural Hazard<br />

<strong>and</strong> Risk Management<br />

Grabenweg 3<br />

6020 Innsbruck - AUSTRIA


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 82<br />

Seite 83<br />

MICHAEL MÖLK, THOMAS SAUSGRUBER, RICHARD BÄK, ARBEN KOCIU<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment<br />

<strong>for</strong> Rapid <strong>Mass</strong> <strong>Movements</strong><br />

(Rock Fall <strong>and</strong> L<strong>and</strong>slide) in Austria<br />

St<strong>and</strong>ards und Methoden der Gefährdungsanalyse<br />

für schnelle <strong>Mass</strong>enbewegungen<br />

(Steinschläge und Rutschungen) in Österreich<br />

Summary:<br />

This presents the Austrian approach <strong>for</strong> the documentation <strong>and</strong> prediction of l<strong>and</strong>slides <strong>and</strong><br />

rock falls from various inventories (GEORIOS - Geological Survey, Torrent <strong>and</strong> Avalanche<br />

Control, inventories of the federal states) via the <strong>hazard</strong> zone planning leading to the<br />

development of process related susceptibility maps. The different legal obligations of the<br />

respective organizations leads to different results regarding the type, the extent <strong>and</strong> the quality<br />

of the expertise.<br />

Introduction<br />

In Austria there are several public organizations<br />

([12] HÜBL et al. 2009) involved in the <strong>assessment</strong><br />

of rapid gravitational mass movements such<br />

as rock falls <strong>and</strong> l<strong>and</strong>slides. Inventories of such<br />

events are maintained by the Austrian Torrent <strong>and</strong><br />

Avalanche Control (WLV) <strong>and</strong> the Geological<br />

Survey of Austria (GBA) apart from independent<br />

<strong>assessment</strong>s done by the national railway <strong>and</strong><br />

road administrations.<br />

On the level of the federal administrations,<br />

different approaches to documenting <strong>and</strong>/or<br />

<strong>for</strong>ecasting such mass movements are being followed.<br />

These organizations deal with those <strong>hazard</strong>s using<br />

different approaches (method <strong>and</strong> target).<br />

As there are no legal instructions in Austria<br />

as to how to deal with the evaluation of mass<br />

movements, the federal states all follow a different<br />

course of action. Also, the status of available<br />

historical data is very different in the individual<br />

states. In some of the federal states, almost no data<br />

is available, others have collected a lot of data<br />

but it is not digitally available. And then there are<br />

states that can rely on a lot of digitally available<br />

data <strong>and</strong> are working on generating l<strong>and</strong>slide<br />

susceptibility maps. The following provides a short<br />

summary about the ef<strong>for</strong>ts in the federal states.<br />

<strong>Mass</strong>-movement inventories in Austria<br />

Since 1978 the Geological Survey of Austria<br />

has been gathering <strong>and</strong> displaying in<strong>for</strong>mation<br />

(e.g. documents, photos, inventory maps)<br />

about gravitational mass movements <strong>and</strong> other<br />

<strong>hazard</strong>ous processes. Due to the increasing<br />

amount of data, the Department of Engineering<br />

Geology of the Geological Survey of Austria<br />

developed a complex data management system<br />

called GEORIOS. It consists of a Geographical<br />

In<strong>for</strong>mation System (GIS), which is the basis <strong>for</strong><br />

the digital storage <strong>and</strong> display of data <strong>and</strong> overlay<br />

of different data types. Additionally the data<br />

management system consists of a relational data<br />

base, which manages additional thous<strong>and</strong>s of<br />

meta-in<strong>for</strong>mation (documents, photos etc.).<br />

Zusammenfassung:<br />

Der „österreichische“ Weg zur Erfassung von historischen bzw. zur Vorhersage von zukünftigen<br />

Steinschlagprozessen und Rutschungen von den verschiedenen Ereigniskatastern (GEORIOS<br />

– Geologische Bundesanstalt, Wildbach- und Lawinenkataster, Ereigniskataster der Länder)<br />

über die Gefahrenzonenplanung bis zur Erstellung von Prozessdispositionskarten wird dargestellt.<br />

Dabei sind unterschiedliche gesetzliche Verpflichtungen und Zielsetzungen für die damit<br />

befassten Organisationen maßgeblich für die Art, den Umfang und die Qualität der erreichten<br />

Aussagen.<br />

Fig. 1: Inventory of mass movements in Austria (source Geol. B.-A.: www.geologie.ac.at)<br />

Abb. 1: Karte der <strong>Mass</strong>enbewegungen in Österreich (Quelle: Geol. B.-A.: www.geologie.ac.at)


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 84<br />

Seite 85<br />

The database includes detailed<br />

in<strong>for</strong>mation about the mass movements (geology,<br />

hydrology, geometric <strong>and</strong> geographical data,<br />

studies or tests carried out, mitigation measures)<br />

<strong>and</strong> the source of in<strong>for</strong>mation (archives, etc.), <strong>and</strong><br />

also in<strong>for</strong>mation about who carried out the field<br />

work <strong>and</strong> added the data into the database.<br />

There are already 22,000 mass<br />

movements stored in the database. The<br />

compilation of a part of the mass movements<br />

in Austria is publicly accessible via the internet<br />

(www.geologie.ac.at) in German <strong>and</strong> English.<br />

However, the web application includes only<br />

events such as slides, rock falls, or more complex<br />

mass movements which have been published<br />

already in the media or the internet <strong>and</strong> are freely<br />

available <strong>for</strong> everyone ([16]KOCIU et al 2007).<br />

An engineering geological database, as<br />

well as a bibliographical database is also included<br />

in the GEORIOS system.<br />

In cooperation with the Geological<br />

Survey of Carinthia, the Geological Survey of<br />

Austria has created not just one “inventory map”,<br />

but a “level of in<strong>for</strong>mation”, as is explained in the<br />

following ([17] KOCIU et al 2010):<br />

Level of in<strong>for</strong>mation:<br />

• Process index map, map of phenomena<br />

(“Prozesshinweiskarte”, “Karte der<br />

Phänomene”): These kinds of maps can have<br />

different scales (1:50,000 <strong>and</strong> bigger) <strong>and</strong><br />

can be of varying quality with in<strong>for</strong>mation<br />

about process areas as phenomena of mass<br />

movements that have already happened.<br />

• The event inventory (“Ereigniskataster”)<br />

records only those processes <strong>for</strong> which an<br />

event date is known (5W–questions), it is<br />

independent of a scale <strong>and</strong> can contain<br />

processes without in<strong>for</strong>mation on location.<br />

In Carinthia, a digital l<strong>and</strong>slide inventory<br />

was created with historical events of the<br />

last 50 years ([1] BÄK et al 2005).<br />

Fig. 2: Event inventory of Carinthia with 5W-questions <strong>and</strong><br />

quality remarks MAXO (M-sure; A-estimate; X-uncertain;<br />

O-unknown)<br />

Abb. 2: Ereignisdatenbank von Kärnten mit 5W-Fragen und<br />

Qualitätskriterien „MAXO“<br />

• The inventory map/event map<br />

(“Ereigniskarte”) contains only in<strong>for</strong>mation<br />

about processes <strong>for</strong> which an event date is<br />

known (5W–questions: What, When, Where,<br />

Who, Why). The symbols are correlated to<br />

process type <strong>and</strong> magnitude (triangle – small<br />

events, pentagon – great events).<br />

Fig. 3: Event map of Carinthia (brown – l<strong>and</strong>slides; blue – earth<br />

flow; red – rock fall; green – earth fall)<br />

Abb. 3: Ereigniskarte von Kärnten<br />

• The thematic inventory map contains<br />

only in<strong>for</strong>mation related to a type of<br />

process, categorized according to the<br />

quality of the data.<br />

Fig. 4: WLV-Inventory of mass movements in Austria (source: www.die-wildbach.at)<br />

Abb. 4: Ereignisdatenbank der WLV (Quelle: www.die-wildbach.at)<br />

The Austrian Torrent <strong>and</strong> Avalanche Control (WLV)<br />

also maintains an inventory covering torrential<br />

floods, avalanches, l<strong>and</strong>slides <strong>and</strong> rock falls – the<br />

are chosen to develop susceptibility maps<br />

(different scales, processes) derived from existing<br />

data sets <strong>and</strong> maps ([30] POSCH-TRÖTZMÜLLER<br />

so called “Wildbach- und Lawinenkataster”. G., 2010): Main focus of Burgenl<strong>and</strong> is<br />

concentrated on shallow l<strong>and</strong>slides with an<br />

St<strong>and</strong>ards of susceptibility/<strong>hazard</strong><br />

<strong>assessment</strong> in Austria<br />

annual rate of movement of 1-2cm. For the<br />

prediction of l<strong>and</strong>slide susceptibility based on<br />

morphological <strong>and</strong> geological factors, the method<br />

Because of the lack of a regulatory framework<br />

or technical st<strong>and</strong>ard concerning l<strong>and</strong>slides <strong>and</strong><br />

rock falls in Austria - only the course of actions<br />

concerning floods, avalanches <strong>and</strong> debris flows<br />

are regulated by law (ordinance of <strong>hazard</strong> zone<br />

mapping,[33] RUDOLF-MIKLAU F. & SCHMIDT<br />

F., 2004) - the federal states all follow a different<br />

course of action.<br />

For example, in Vorarlberg risk maps<br />

(susceptibility map, vulnerability map, risk map)<br />

were produced in the course of a university<br />

dissertation ([34] RUFF, 2005). For modelling,<br />

bivariate statistics (<strong>for</strong> l<strong>and</strong>slides) <strong>and</strong> cost<br />

analysis (<strong>for</strong> rock fall) were used, working with a<br />

25x25m raster. The susceptibility, meaning spatial<br />

susceptibility, is presented in 5 classes (very low,<br />

low, medium, high, very high). The inventory map<br />

is included in the susceptibility map. On the other<br />

h<strong>and</strong>, the local department of the Austrian Service<br />

<strong>for</strong> Torrent <strong>and</strong> Avalanche Control (WLV) creates<br />

“<strong>hazard</strong> maps” within the “<strong>hazard</strong> zoning plan”.<br />

called “Weights of Evidence” was chosen ([15]<br />

KLINGSEISEN et al., 2006). Three (respectively<br />

4) <strong>hazard</strong> zones were classified ([“high Hazard”],<br />

“<strong>hazard</strong>”, “<strong>hazard</strong> cannot be excluded”, “no<br />

<strong>hazard</strong>”, [15] KLINGSEISEN et al., 2006). In<br />

Lower Austria up until now the susceptibility maps<br />

have been created using a heuristic approach<br />

based on geological expertise, historical data <strong>and</strong><br />

interpretation of DEM <strong>and</strong> aerial photos. Three<br />

to ten classes of susceptibility are delineated at<br />

a scale ranging from 1:50,000 to 1:25,000 ([36]<br />

SCHWEIGL & HERVAS 2009). To offer assistance<br />

<strong>for</strong> the municipalities in l<strong>and</strong>-use planning,<br />

l<strong>and</strong>slide susceptibility maps were generated <strong>for</strong><br />

the major settled areas in Upper Austria (OÖ).<br />

For each type of mass movement, the priority,<br />

which is a susceptibility class, was evaluated on<br />

the basis of the intensity <strong>and</strong> the probability of an<br />

event. The priority was classified in 3 stages (high<br />

– medium – low; [18] KOLMER, 2005). As these<br />

maps include the intensity <strong>and</strong> the frequency of<br />

In Upper Austria, Lower Austria, mass movements, they can be called “<strong>hazard</strong><br />

Burgenl<strong>and</strong> <strong>and</strong> Carinthia, different approaches maps” by definition. Nevertheless it has to be


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 86<br />

Seite 87<br />

taken into account that the method of generating<br />

these maps included neither field work nor remote<br />

sensing techniques. The method of <strong>assessment</strong> is<br />

based solely on geological expertise.<br />

Using the digital geological map of<br />

Carinthia (1:50,000), the inventory map of mass<br />

movements (l<strong>and</strong>slides <strong>and</strong> rock falls), DEM<br />

(10m x10m raster), l<strong>and</strong>-use <strong>and</strong> lithologicalgeotechnical<br />

characteristics of bedrock <strong>and</strong><br />

For a small study area in Styria, the Geological<br />

Survey of Austria generated a susceptibility map<br />

<strong>for</strong> spontaneous l<strong>and</strong>slide (soil slips <strong>and</strong> earth<br />

flows) at a scale of 1:50,000 using neural network<br />

analysis ([35] SCHWARZ et al., 2009). Any<br />

susceptibility class is not a ranking of the degree<br />

of slope stability, but a description of the relative<br />

propensity/probability of a l<strong>and</strong>slide of a given<br />

type <strong>and</strong> of a given source area to occur.).<br />

unconsolidated sediments, process-related<br />

At the Geological Survey of Austria<br />

susceptibility maps <strong>for</strong> Carinthia were generated in<br />

a collaboration of the Geological Survey of Austria<br />

(GBA) <strong>and</strong> the Geological Survey of Carinthia at<br />

a scale of 1:200,000 ([1] BÄK et al., 2005). Of<br />

course these maps still lack in<strong>for</strong>mation about<br />

intensity <strong>and</strong> recurrence period or probability of<br />

occurrence. Due to the imprecision of input data<br />

used, the accuracy of predictions regarding the<br />

susceptibility <strong>for</strong> rapid mass-movements based on<br />

maps like the ones mentioned above is limited.<br />

(GBA), susceptibility maps in different scales <strong>and</strong><br />

with different methods (heuristic approach, neural<br />

network analysis) have already been generated. ([17]<br />

KOCIU et al., 2010, [21] MELZNER et al., 2010,<br />

[38] TILCH et al., 2009, [39] TILCH et al., 2010, [40]<br />

TILCH et al., 2010, [41] TILCH et al 2009).<br />

Legal situation, requirements by the law,<br />

responsibility of different authorities<br />

The key feature <strong>for</strong> susceptibility/<strong>hazard</strong><br />

mapping is a good documentation of historic<br />

Fig. 5: Susceptibility map <strong>for</strong> spontaneous shallow l<strong>and</strong>slide at Gasen – Haslau ([35] Schwarz et al 2009).<br />

Abb. 5: Dispositionskarte für spontane, flachgründige Rutschungen im Bereich Gasen-Haslau ([35]Schwarz et al 2009).<br />

events, a thorough mapping of the phenomena<br />

involved <strong>and</strong> an accurate interpretation of the<br />

failure with the subsequent processes.<br />

The WLV is legally obliged to do an<br />

inventory of all events regarding natural <strong>hazard</strong>s,<br />

such as torrential processes, avalanches, rock-falls<br />

<strong>and</strong> l<strong>and</strong>slides in the so called “Wildbach- und<br />

Lawinenkataster – WLK” ([8] Forstgesetz 1975).<br />

The GBA defines its very own tasks, among others:<br />

“the <strong>assessment</strong> <strong>and</strong> evaluation of geogenically<br />

induced natural <strong>hazard</strong>s". These inventories<br />

(WLV, GBA, geological surveys of provinces like<br />

Carinthia) are established to guarantee a complete<br />

documentation of processes <strong>and</strong> events that can<br />

eventually endanger infrastructure <strong>and</strong>/or people.<br />

The data collected in the inventories allow <strong>for</strong><br />

better in<strong>for</strong>mation <strong>and</strong> further evaluation of where,<br />

when, how often <strong>and</strong> with which intensities those<br />

events took place. These inventories can <strong>for</strong>m<br />

an important basis <strong>for</strong> the elaboration of <strong>hazard</strong><br />

maps <strong>and</strong> related <strong>hazard</strong> zones, which give the<br />

authorities good evidence to optimize l<strong>and</strong>-use<br />

planning <strong>and</strong> avoid areas that tend to be exposed<br />

to natural <strong>hazard</strong>s. For already developed areas,<br />

the <strong>assessment</strong> of the type of process, magnitude,<br />

run-out, location, frequency etc. allows <strong>for</strong> a better<br />

priority-rating <strong>and</strong> design of mitigation measures.<br />

The elaboration of <strong>hazard</strong> zone maps<br />

([8] Forstgesetz 1975 <strong>and</strong> [2] BGBl. 436/1976)<br />

<strong>for</strong> potentially endangered zones caused by<br />

natural <strong>hazard</strong>s (except flooding by rivers <strong>and</strong><br />

earthquakes, which are done by other authorities)<br />

<strong>for</strong> all communities is the task of the Austrian<br />

Torrent <strong>and</strong> Avalanche Control (WLV).<br />

The delineation of potential emmissionzones<br />

of rapid mass movements, such as rock falls<br />

<strong>and</strong> l<strong>and</strong>slides, are not m<strong>and</strong>atory <strong>and</strong> there<strong>for</strong>e<br />

can be illustrated as “brown <strong>hazard</strong> indication<br />

areas” by the WLV.<br />

The legal implication of these indication<br />

areas lies in the obligation of the authorities<br />

issuing building permits to consult an expert to<br />

evaluate the <strong>hazard</strong> <strong>for</strong> the planned construction<br />

site explicitly, otherwise the community can be<br />

excluded from public funding <strong>for</strong> the financing of<br />

mitigation measures in the future.<br />

St<strong>and</strong>ards, guidelines, official <strong>and</strong> legal documents<br />

Several st<strong>and</strong>ards issued by the IAEG (Internat.<br />

Association of Engineering Geology –UNESCO<br />

Working Party of World L<strong>and</strong>slide Inventory<br />

[42] to [47]) exist <strong>for</strong> the documentation <strong>and</strong><br />

classification of l<strong>and</strong>slides. Furthermore, <strong>for</strong> the<br />

documentation of l<strong>and</strong>slide <strong>and</strong> rock fall events<br />

(avalanches <strong>and</strong> torrential processes are covered<br />

as well) there is a short course of the Universität<br />

für Bodenkultur Wien, Dpt. f. Bautechnik und<br />

Naturgefahren, Inst. f. <strong>Alpine</strong> Naturgefahren,<br />

which certifies documentalists <strong>for</strong> those processes.<br />

For the <strong>assessment</strong> <strong>and</strong> evaluation of rock<br />

fall processes <strong>and</strong> the design of protection<br />

measures an Austrian St<strong>and</strong>ard is currently under<br />

development ([28] ONR 24810: Technischer<br />

Steinschlagschutz).<br />

State of the art in the practice<br />

The code of practice is to be brought up to the<br />

state of the art due to the absence of binding<br />

st<strong>and</strong>ards. The state of the art according to the<br />

“Wasserrechtsgesetz WRG 1959 §12a(1)” is<br />

defined in Austria as the following: The use of<br />

modern technological methods, equipment <strong>and</strong><br />

modes of operation with proven functionality<br />

which represent the status of progress based on<br />

relevant scientific expertise.<br />

Rock fall <strong>hazard</strong> <strong>assessment</strong><br />

The state of the art regarding the <strong>assessment</strong> <strong>and</strong><br />

evaluation of <strong>hazard</strong> <strong>for</strong> rock fall processes can


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 88<br />

Seite 89<br />

be described by the following workflow. The<br />

methods to be applied are just roughly described,<br />

<strong>for</strong> a detailed description see the cited literature.<br />

Depending on the objective of the <strong>assessment</strong>, the<br />

tools to be applied may vary in respect to the scale<br />

of the result, being more coarse at regional scale<br />

<strong>and</strong> detailed at slope-scale.<br />

St<strong>and</strong>ard procedure <strong>for</strong> the <strong>assessment</strong> of rock fall<br />

<strong>hazard</strong>s (best practice):<br />

Preparation<br />

• Definition of the boundaries of the project<br />

area in compliance with the stakeholder<br />

• Acquisition of basic data (topografic maps,<br />

geology, l<strong>and</strong> use, literature, studies etc.)<br />

• Collection of historic event in<strong>for</strong>mation<br />

(written <strong>and</strong> oral)<br />

Field work:<br />

• Collection of properties of the <strong>for</strong>est (if<br />

relevant), identification (by field work <strong>and</strong>/<br />

or according to e. g. [12] JABOYEDOFF<br />

1999) <strong>and</strong><br />

• Evaluation of detachment areas<br />

description of discontinuities<br />

(type, dip/direction, opening, filling …),<br />

properties of rock mass,<br />

relevant failure mechanisms,<br />

probabilistic distribution of<br />

joint-bordered rock bodies<br />

• Scree slopes: block-size distribution<br />

(statistics)<br />

• Analysis of rock fall processes ([22]<br />

MELZNER et al 2010, [23] MELZNER et al<br />

2010, [24] MÖLK 2008):<br />

Rough estimation of run out e. g. by<br />

shadow angle (regional scale)<br />

2D or 3D modelling (probabilistic):<br />

provides run out length, energy <strong>and</strong><br />

bouncing-height distributions <strong>for</strong> slopescale<br />

problems<br />

Fig. 6: Delineation of potential conflict areas at regional extent<br />

using an empirical model ([21] Melzner et al 2010).<br />

Abb. 6: Abgrenzung potenzieller Wirkungsbereiche mittel einfachen<br />

empirischen Modellansätzen ([21] Melzner et al 2010).<br />

For the design of mitigation measures, a<br />

probabilistic approach is going to be defined<br />

as a st<strong>and</strong>ard procedure in Austria ([28] ONR<br />

24810) following the concept of partial factors of<br />

safety ([26] EUROCODES) <strong>for</strong> actions/resistances<br />

<strong>and</strong> varying accepted probabilities of failure<br />

depending on the casualty <strong>and</strong> reliability-classes<br />

of [27] Eurocode 0.<br />

L<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong><br />

General<br />

The combination of a rotational <strong>and</strong> a translational<br />

sliding mechanism is called a compound slide.<br />

These may develop in horizontally stratified soils<br />

<strong>and</strong> rocks, where the upper part of the slope shows<br />

L<strong>and</strong>slides present complex natural phenomena<br />

<strong>for</strong> both the variability of processes <strong>and</strong> the<br />

dimensions. A l<strong>and</strong>slide may exhibit a translational<br />

sheet slide of some square meters involving the<br />

ground surface or a deep seated mass movement<br />

of several cubic kilometres.<br />

Rapid l<strong>and</strong>slides with reference to [6]<br />

CRUDEN & VARNES (1996) feature velocities<br />

of some metres per minute to several meters per<br />

second. In Austria, the main processes exhibit<br />

different slides <strong>and</strong> debris slides. Very rapid to<br />

rapid flow slides, which one can find <strong>for</strong> example<br />

in Sc<strong>and</strong>inavia or in Canada, have no relevance<br />

in Austria.<br />

Slides include rotational, translational<br />

<strong>and</strong> compound slides. Rotational slides own a<br />

circular sliding surface, which results from shear<br />

failure in relatively homogenous rock or soil of low<br />

a rotational failure which is constrained by a plane<br />

of weakness at the base (e. g. a claystone layer).<br />

A process that frequently can be observed<br />

in Austria are debris slides (e. g. Gasen <strong>and</strong> Haslau<br />

2005, Vorarlberg). These failures occur in porous<br />

soils, especially after extraordinary water input<br />

resulting from precipitation <strong>and</strong>/or snow melt<br />

leading to an excess of pore water pressure. The<br />

mass movement often starts as a rotational slide,<br />

which turns into a debris flow down slope.<br />

When assessing l<strong>and</strong>slide <strong>hazard</strong>s, it<br />

is important to distinguish between preparatory<br />

factors <strong>and</strong> the triggers ([46] WL/WPLI 1994). The<br />

triggering of the occurrence of a mass movement is<br />

the last step of destabilization over a longer period<br />

of time. Concerning [37] THERZAGHI (1950) the<br />

stability of slopes is stated by the factor of safety,<br />

which is expressed by the ratio between driving<br />

strength. Translational<br />

slides take place in<br />

rock on <strong>for</strong>given more<br />

or less planar features<br />

like bedding planes,<br />

joints etc. The failure<br />

results when the shear<br />

resistance on the plane<br />

is exceeded. Relatively<br />

often one can find<br />

these slides in the soil<br />

cover of the ground,<br />

called sheet slides,<br />

where the sliding<br />

surface is <strong>for</strong>med by a<br />

weak clay layer, such<br />

as a gley horizon in the<br />

range of groundwater<br />

fluctuations.<br />

Fig. 7: An Example of changes of the factor of safety with time after [46] WL/WPLI (1994)<br />

Abb. 7: Beispiel für die Veränderung der Sicherheit eines Einhanges über die Zeit,<br />

nach [46] WL/WPLI (1994)


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 90<br />

Seite 91<br />

<strong>for</strong>ces <strong>and</strong> resisting <strong>for</strong>ces. Stable slopes feature a<br />

factor of safety over one, meaning that the resisting<br />

<strong>for</strong>ces exceed the driving <strong>for</strong>ces. If the driving<br />

<strong>for</strong>ces are greater than the resisting <strong>for</strong>ces the slope<br />

fails, i.e. the factor of safety drops under one.<br />

Fig. 5 ([46] WL/WPLI 1994) shows the<br />

development of a stable slope to one that fails.<br />

Since the slope is exposed to weathering, erosion<br />

processes etc. the factor of safety of the slope<br />

decreases to the point where it is close to failure<br />

(marginally stable). At this point the slope is<br />

susceptible to many triggers.<br />

When assessing l<strong>and</strong>slide <strong>hazard</strong> the<br />

following in<strong>for</strong>mation is needed regarding the<br />

ground conditions:<br />

• geology <strong>and</strong> structures<br />

• hydrogeology,<br />

• type of process<br />

• velocity of the process<br />

• geotechnical properties of materials<br />

involved<br />

• potential role of human activities (triggers?).<br />

State of the practice in l<strong>and</strong>slide <strong>assessment</strong><br />

Conventional methods are based on observations<br />

of potentially unstable slopes. Aerial photos,<br />

both stereographic <strong>and</strong> orthophotos, have been<br />

used since decades to detect these slopes by<br />

characteristic geomorphological phenomena in<br />

combination with available geological maps ([4]<br />

BUNZA 1996, [14] KIENHOLZ 1995). This first<br />

analysis is completed by mapping in the field. The<br />

data are commonly presented in l<strong>and</strong>slide <strong>hazard</strong><br />

maps, which show the spatial distribution of<br />

different <strong>hazard</strong> classes. Additionally chronicles,<br />

which occasionally exist at the town halls, turned<br />

out to be very useful.<br />

State of the art in l<strong>and</strong>slide <strong>assessment</strong><br />

For several years, high resolution Lidar data<br />

have been available <strong>for</strong> most regions in Austria<br />

bearing l<strong>and</strong>slide activity. They are a powerful<br />

tool to recognize geomorphological structures<br />

of l<strong>and</strong>slides ([49] ZANGERL et al., 2008). A<br />

main advantage of Lidar data in comparison<br />

to conventional photos is the in<strong>for</strong>mation on<br />

shaded areas <strong>and</strong> of areas covered with wood.<br />

Additionally, remote sensing systems (e.g.<br />

airborne <strong>and</strong> satellite-based multispectral <strong>and</strong><br />

radar images) provide in<strong>for</strong>mation on unstable,<br />

slowly creeping slopes, which may fail <strong>and</strong><br />

transfer into a rapid moving masses ([31] PRAGER<br />

et al., 2009).<br />

Until recently, susceptibility/<strong>hazard</strong><br />

maps in Austria were often made on dem<strong>and</strong>.<br />

For some years authorities (LReg Kärnten, WLV<br />

Oberösterreich und Vorarlberg) are going to make<br />

comprehensive <strong>hazard</strong> maps giving a basis on<br />

decision-making <strong>for</strong> l<strong>and</strong> use <strong>and</strong> development.<br />

L<strong>and</strong>slide inventories (databases of WLV, GBA,<br />

several federal states) in combination with GIS<br />

applications are used to get rapid in<strong>for</strong>mation to<br />

areas prone to l<strong>and</strong>slides.<br />

Collected surface data in combination<br />

with subsurface data gained from trenches<br />

<strong>and</strong> boreholes or seismic refraction, groundpenetrating<br />

radar <strong>and</strong> electrical resistivity profiles<br />

allow <strong>for</strong> the drawing of an underground-model<br />

<strong>and</strong> deduce the type of failure mechanism which<br />

is most likely to occur.<br />

Geotechnical data are also required<br />

to assess the factor of safety <strong>and</strong> the probability<br />

of failure by means of analytical calculations<br />

or numerical modelling (e.g. [29] Poisel et al.<br />

2006). Additional in<strong>for</strong>mation on the process<br />

can be provided by a monitoring system. This<br />

serves as a check <strong>for</strong> the taken assumptions<br />

<strong>and</strong> an evaluation of the mechanical model.<br />

Furthermore, a monitoring allows the prediction<br />

of failure time under certain circumstances (e.g.<br />

[9] FUKUZONO 1985, [19] KRÄHENBÜHL<br />

2006, [32] ROSE & HUNGR 2007)<br />

Future development<br />

The development of <strong>for</strong>ecast-models <strong>for</strong> the<br />

prognosis of the location <strong>and</strong>/or time of rapid<br />

gravitational mass movements to take place<br />

or even the meteorological settings which will<br />

trigger such events is at an early stage. Due to<br />

the fact that the authorities are strongly asking <strong>for</strong><br />

such tools, many practitioners <strong>and</strong> scientists are<br />

focusing on that topic.<br />

The multitude of parameters influencing<br />

the development of the erosion processes in<br />

question will keep the stakes high <strong>and</strong> will not<br />

allow <strong>for</strong> providing the authorities with the accurate<br />

models they ask <strong>for</strong> within a considerable time.<br />

Given the necessary detailed parameters, such as<br />

geology, hydrogeology, geotechnical parameters<br />

etc., triggering, influencing or allowing <strong>for</strong> the<br />

processes in question are at h<strong>and</strong>, <strong>and</strong> all the<br />

necessary models are developed, it is highly likely<br />

that they will work in certain regions with similar<br />

or corresponding geological, morphological <strong>and</strong><br />

meteorological conditions only.<br />

The accuracy of these models will<br />

necessarily depend highly on a thorough<br />

calibration with well-documented events.<br />

This emphasizes the necessity of a consistent<br />

documentation of events, to provide the modeldevelopers<br />

with calibration data.<br />

This means that the expertise of experts<br />

applied at defined locations with all the necessary<br />

field work <strong>and</strong> <strong>assessment</strong> of natural parameters,<br />

fed in apt models will not become obsolete in<br />

the near <strong>and</strong> very probably not even in the far<br />

future. Models showing the disposition of a given<br />

environment to tend to mass-movements <strong>and</strong><br />

also <strong>for</strong>ecasting the location, time <strong>and</strong> run-out<br />

of such processes will be a precious tool <strong>for</strong> the<br />

experts although a replacement of a thorough<br />

evaluation of the conditions on site is not to be<br />

expected anytime.<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Michael Mölk<br />

Forsttechnischer Dienst für<br />

Wildbach und Lawinenverbauung,<br />

Geologische Stelle<br />

Liebeneggstr. 11<br />

6020 Innsbruck<br />

michael.moelk@die-wildbach.at<br />

Thomas Sausgruber<br />

Forsttechnischer Dienst für<br />

Wildbach und Lawinenverbauung<br />

Geologische Stelle<br />

Liebeneggstr. 11<br />

6020 Innsbruck<br />

thomas.sausgruber@die-wildbach.at<br />

Richard Bäk<br />

Abt. 15 Umwelt<br />

Geologie+Bodenschutz<br />

Flatschacher Straße 70<br />

9020 Klagenfurt<br />

richard.baek@ktn.gv.at<br />

Arben Kociu<br />

Geologische Bundesanstalt<br />

Fachabteilung Ingenieurgeologie<br />

Neulinggasse 38<br />

1030 Wien<br />

arben.kociu@geologie.ac.at


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 92<br />

Seite 93<br />

Literatur / References:<br />

[1] BÄK, EBERHART, GOLDSCHMIDT, KOCIU, LETOUZE-ZEZULA &<br />

LIPIARSKI (2005):<br />

Ereigniskataster und Karte der Phänomene als Werkzeug zur Darstellung<br />

geogener Naturgefahren (<strong>Mass</strong>enbewegungen), Arb. Tagg. Geol. B.-A.,<br />

Gmünd 2005<br />

[2] BGBl. Nr. 436/1976: Verordnung des Bundesministers für L<strong>and</strong>- und<br />

Forstwirtschaft vom 30. Juli 1976 über die Gefahrenzonenpläne<br />

[3] BMLFUW (2010):<br />

Richtlinie für die Gefahrenzonenplanung-LE.3.3.3/0185-IV/5/2007 vom<br />

12. Jänner 2010<br />

[4] BUNZA, G. (1996): Assessment of l<strong>and</strong>slide <strong>hazard</strong>s by means of<br />

geological <strong>and</strong> hydrological risk mapping<br />

[5] BUWAL:<br />

Symbolbaukasten zur Kartierung der Phänomene. Mitt. Bundesamt f.<br />

Wasser u. Geologie 6, p. 41, 2004<br />

[6] CRUDEN, D.M.; VARNES D. J. (1996):<br />

L<strong>and</strong>slide Types <strong>and</strong> Processes. In: Turner A.K. <strong>and</strong> Schuster R.L. (eds.):<br />

L<strong>and</strong>slides: Investigation <strong>and</strong> mitigation. Special report 247. Washington<br />

D.C.: National Academic Press, 36-45,1996.<br />

[7] DORREN, L., JONNSON, M., KRAUTBLATTER, M., MOELK, M. AND<br />

STOFFEL, M. (2007):<br />

State of the Art in Rock-Fall <strong>and</strong> Forest Interactions, Schweizerische<br />

Zeitschrift für Forstwesen 158 (2007) 6: S 128-141<br />

[8] Forstgesetz 1975, § 11<br />

[9] FUKOZONO T. (1985):<br />

A new method <strong>for</strong> predicting the failure time of a slope. Proc. 4th Int. Conf.<br />

<strong>and</strong> field workshop on l<strong>and</strong>slides, Tokyo, 145-150, 1985.<br />

[10] HUNGR, O.; EVANS, S.G. (2004):<br />

The occurrence <strong>and</strong> classification of massive rock slope failure. Felsbau<br />

22, 16-23, 2004.<br />

[20] MELZNER, S., LOTTER, M. & A. KOCIU (2009):<br />

Development of an efficient methodology <strong>for</strong> mapping <strong>and</strong> assessing<br />

potential rock fall source areas <strong>and</strong> runout zones. European Geosciences<br />

Union (EGU), General Assembly, 19-24th April 2009, Vienna. (http://www.<br />

geologie.ac.at/pdf/Poster/poster_2009_egu_melzner.pdf)<br />

[21] MELZNER, S., DORREN, L. , KOCIU, A. & R. BÄK (2010B):<br />

Regionale Ausweisung potentieller Ablöse- und Wirkungsbereichen von<br />

Sturzprozessen im Oberen Mölltal/Kärnten. Poster Präsentation beim<br />

Geo<strong>for</strong>um Umhausen 2010, Niederthai, Tirol. (Poster download on GBA<br />

homepage www.geologie.ac.at)<br />

[22] MELZNER, S., TILCH, N., LOTTER, M., KOÇIU, A. & BÄK, R. (2010C):<br />

Rock fall susceptibility <strong>assessment</strong> using structural geological indicators<br />

<strong>for</strong> detaching processes such as sliding or toppling. European Geosciences<br />

Union (EGU), General Assembly, 02-07 Mai 2010, Wien. (http://www.<br />

geologie.ac.at/pdf/Poster/poster_2010_egu_melzner_etal.pdf)<br />

[23] MELZNER, S., MÖLK, M., DORREN, L. & R. BÄK (2010A):<br />

Comparing empirical models, 2D <strong>and</strong> 3D process based models <strong>for</strong><br />

delineating maximum rockfall runout distances. European Geosciences<br />

Union (EGU), General Assembly, 02-07 Mai 2010, Vienna. (http://www.<br />

geologie.ac.at/pdf/Poster/poster_2010_egu_melzner_2d_3d.pdf)<br />

[24] MÖLK, M. (2008):<br />

Regionalstudie Wipptal Südost: Erfassung und Darstellung von<br />

Naturgefahrenpotentialen im Regionalen Maßstab nach EtAlp St<strong>and</strong>ards.<br />

Poster Präsentation beim Geo<strong>for</strong>um Umhausen 2008, Niederthai, Tirol.<br />

[25] MÖLK M. und NEUNER G. (2004):<br />

Generelle Legende für Geomorphologische Kartierungen des<br />

Forsttechnischen Dienst für Wildbach und Lawinenverbauung, Geologische<br />

Stelle, Innsbruck, S.49, 2004<br />

[26] ÖNORM EN 1990:<br />

Eurocode: Grundlagen der Tragwerksplanung<br />

[27] ÖNORM EN 1997-1:<br />

Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik. Teil<br />

1: Allgemeine Regeln<br />

[36] SCHWEIGL, J.; HERVAS, J. (2009):<br />

L<strong>and</strong>slide Mapping in Austria. JRC Scientific <strong>and</strong> Technical Report EUR<br />

23785 EN, Office <strong>for</strong> Official Publications of the European Communities,<br />

61 pp. ISBN 978-92-79-11776-3, Luxembourg, 2009.<br />

[37] TERZAGHI, K. (1950):<br />

Mechanism of l<strong>and</strong>slides. Geological Society of America. Berkey Volume<br />

1950, 83-124<br />

[38] TILCH, N. (2009):<br />

Datenmanagementsystem GEORIOS (Geogene Risiken Österreich). Vortrag<br />

im Rahmen des L<strong>and</strong>esgeologentages 2009, St. Pölten 2009.<br />

[39] TILCH, N. (2010):<br />

Räumliche und skalenabhängige Variabilität der Datenqualität und deren<br />

Einfluss auf mittels heuristischer Methode erstellte Dispositionskarten<br />

für <strong>Mass</strong>enbewegungen im Lockergestein - eine Fallstudie im Bereich<br />

Niederösterreichs –, 12. Geo<strong>for</strong>um Umhausen 14.-15.10.10, Niederthai,<br />

(http://www.geologie.ac.at/pdf/Poster/poster_2010_geo<strong>for</strong>um_tilch.pdf).<br />

[40] TILCH, N. (2010):<br />

Erstellung von Dispositionskarten für <strong>Mass</strong>enbewegungen –<br />

Heraus<strong>for</strong>derungen, Methoden, Chancen, Limitierungen.- Vortrag<br />

Innsbrucker Hofgespräche 26.05.2010, Innsbruck; (http://bfw.ac.at/050/<br />

pdf/IHG_26_05_2010_Tilch_Schwarz.pdf)<br />

[41] TILCH, N., MELZNER, S., JANDA, C. & A. KOCIU (2009):<br />

Simple applicable methods <strong>for</strong> assessing natural <strong>hazard</strong>s caused by<br />

l<strong>and</strong>slides <strong>and</strong> erosion processs in torrent catchments. European<br />

Geosciences Union (EGU), General Assembly, 19-24th April 2009, Vienna.<br />

(http://www.geologie.ac.at/pdf/Poster/poster_2009_egu_tilch_etal.pdf)<br />

[42] WP/WLI - Working Party on L<strong>and</strong>slide Inventory (International<br />

Geotechnical Societies of UNESCO) (1990):<br />

Suggested Nomenclature <strong>for</strong> L<strong>and</strong>slides . – Bull. Intern. Ass. Eng. Geology,<br />

No. 41, Paris 1990<br />

[43] WP/WLI - Working Party on L<strong>and</strong>slide Inventory (International<br />

Geotechnical Societies of UNESCO) (1990):<br />

Suggested Method <strong>for</strong> Reporting a L<strong>and</strong>slide . – Bull. Intern. Ass. Eng.<br />

Geology, No. 41, Paris 1990<br />

[44] WP/WLI - Working Party on L<strong>and</strong>slide Inventory (International<br />

Geotechnical Societies of UNESCO) (1991):<br />

A Suggested Method <strong>for</strong> a L<strong>and</strong>slide Summary. – Bull. Intern. Ass. Eng.<br />

Geology, No. 43, Paris 1991<br />

[45] WP/WLI - Working Party on L<strong>and</strong>slide Inventory (International<br />

Geotechnical Societies of UNESCO) (1993):<br />

A Suggested Method <strong>for</strong> describing the Activity of a L<strong>and</strong>slide. – Bull.<br />

Intern. Ass. Eng. Geology, No. 47, Paris 1993<br />

[46] WP/WLI - Working Party on L<strong>and</strong>slide Inventory (International<br />

Geotechnical Societies of UNESCO) (1994):<br />

A Suggested Method <strong>for</strong> Reporting L<strong>and</strong>slide Causes. – Bull. Intern. Ass.<br />

Eng. Geology, No. 50, Paris 1994<br />

[47] WP/WLI - Working Party on L<strong>and</strong>slide Inventory (International<br />

Geotechnical Societies of UNESCO) (1995): A Suggested Method <strong>for</strong> the<br />

Rate of Movement of a L<strong>and</strong>slide. – Bull. Intern. Ass. Eng. Geology, No.<br />

52, Paris 1995<br />

[48] WYLLIE D. C. (2006): Risk management of rock fall <strong>hazard</strong>s. – Sea<br />

to Sky Geotechnique, Conference Proceedings, 25-32, Vancouver 2006.<br />

[49] ZANGERL C., PRAGER C., BRANDNER. R., BRÜCKL E., EDER<br />

S., FELLIN W., TENTSCHERT E., POSCHER G., & SCHÖNLAUB H.<br />

(2008): Methodischer Leitfaden zur prozessorientierten Bearbeitung von<br />

<strong>Mass</strong>enbewegungen. Geo.Alp, Vol. 5, S. 1-51, 2008.<br />

[50] ZANGERL C.; PRAGER, Ch. (2008):<br />

Influence of geologcial structures on failure initiation, internal der<strong>for</strong>mation<br />

<strong>and</strong> kinematics of rock slides. American Rock Mechanics Association, 08-<br />

63, (2008)<br />

[11] HUTCHSINSON, J.N. (1988):<br />

General Report: Morphological <strong>and</strong> geotechnical parameters of l<strong>and</strong>slides<br />

in the relation to geology <strong>and</strong> hydrogeology. In: Bonnard (ed.): Proceedings<br />

of the 5th International Symposium on L<strong>and</strong>slides, Vol 1. Rotterdam:<br />

Balkema, 3-35, 1988.<br />

[12] HÜBL, J., KOCIU, A., KRISSL, H., LANG, E., LÄNGER, E., RUDOLF-<br />

MIKLAU, F., MOSER, A., PICHLER, A., RACHOY, Ch., SCHNETZER,<br />

I., SKOLAUT, Ch., TILCH, N. & TOTSCHNIK, R. (2009): <strong>Alpine</strong><br />

Naturkatastrophen – Lawinen-Muren-Felsstürze-Hochwässer, 120 S..-<br />

Leopold Stocker – Verlag, Graz.<br />

[13] JABOYEDOFF Michel, BAILLIFARD Francois, MARRO Christian,<br />

PHILIPPOSSIAN Frank & ROUILLER Jean-Daniel (1999):<br />

Detection of Rock Instabilities: Matterock Methodology. Joint japa-Swiss<br />

[28] ONR 24810:<br />

Technischer Steinschlagschutz: Begriffe und Definitionen, geologischgeotechnische<br />

Grundlagen, Bemessung und konstruktive Ausgestaltung,<br />

Inst<strong>and</strong>haltung und Wartung. – In preparation, <strong>for</strong>eseen publication: 2011<br />

[29] POISEL, R., ANGERER, H., PÖLLINGER, M., KALCHER, T., KITTL,<br />

H. (2006): Assessment of the Risks Caused by the L<strong>and</strong>slide Lärchberg ?<br />

Galgenwald, Austria. Felsbau 24, No. 3, S. 42-49 (2006)<br />

[30] POSCH-TRÖZMÜLLER, G. (2010):<br />

Adapt Alp WP 5.1 Hazard Mapping - Geological Hazards. Literature<br />

Survey regarding methods of <strong>hazard</strong> mapping <strong>and</strong> evaluation of danger by<br />

l<strong>and</strong>slides <strong>and</strong> rock fall. Final Report, Geologische Bundesanstalt, Wien,<br />

2010 (www.ktn.gv.at/Verwaltung/Abteilungen/Abt.15 Umwelt, Thema<br />

Geologie und Bodenschutz)<br />

[14] KIENHOLZ, H, KRUMMENACHER, B, LIENER, S. (1995):<br />

Erfassung und Modellierung von Hangbewegungen als Beitrag zur<br />

Erstellung von Gefahren-Hinweiskarten. Report, Münchner Forum für<br />

<strong>Mass</strong>enbewegungen, München<br />

[15] KLINGSEISEN, B., LEOPOLD, Ph., TSCHACH, M. (2006):<br />

Mapping L<strong>and</strong>slide Hazards in Austria: GIS Aids Regional Planning in Non-<br />

<strong>Alpine</strong> Regions. ArcNews 28 (3): 16, 2006.<br />

[16] KOCIU A. et al. (2007):<br />

<strong>Mass</strong>enbewegungen in Österreich. – JB der Geol. B.-A. B<strong>and</strong> 147, Heft<br />

1+2, S 215-220. – Wien 2007<br />

[31] PRAGER, Ch.; ZANGERL, Ch.; NAGLER, Th. (2009):<br />

Geological controls on slope de<strong>for</strong>mations in the Köfels rockslide area<br />

(Tyrol, Austria). AJES 102/2 (2009), 4-19<br />

[32] ROSE, N.D. <strong>and</strong> HUNGR O. (2007): Forecasting potential rock slope<br />

failure in open pit mines using the inverse-velocity method. Int. Jour. of<br />

Rock Mech. <strong>and</strong> Min. Science, 44, 308-320, 2007.<br />

[33] RUDOLF-MIKLAU F. & SCHMIDT F. (2004):<br />

Implementation, application <strong>and</strong> en<strong>for</strong>cement of <strong>hazard</strong> zone maps<br />

<strong>for</strong> torrent <strong>and</strong> avalanches control in Austria, Forstliche Schriftenreihe,<br />

Universität für Bodenkultur Wien, Bd. 18, p. 83-107, 2004<br />

[17] KOCIU, A., TILCH N., SCHWARZ L,. HABERLER A., MELZNER S.<br />

(2010): GEORIOS - Jahresbericht 2009;<br />

Geol.B.-A. Wien 2010.<br />

[18] KOLMER, Ch. (2009):<br />

Geogenes Baugrundrisiko Öberösterreich. Vortrag im Rahmen des<br />

L<strong>and</strong>esgeologentages 2009, St. Pölten 2009.<br />

[19] KRÄHENBÜHL R. (2006):<br />

Der Felssturz, der sich auf die Stunde genau ankündigte. Bull. Angew.<br />

Geol., 11(1), 49-63, 2006.<br />

[34] RUFF, M. (2005):<br />

GIS-gestützte Risikonanalyse für Rutschungen und Felsstürze in den<br />

Ostalpen (Vorarlberg, Österreich). Georisikokarte Vorarlberg. Diss. Univ.<br />

Karlsruhe, 2005.<br />

[35] SCHWARZ, L., TILCH, N. & KOCIU. A. (2009):<br />

L<strong>and</strong>slide sucseptibility mapping by means of artificial Neuronal Networks<br />

per<strong>for</strong>med <strong>for</strong> the region Gasen-Haslau (eastern Styria, Austria) – 6th<br />

European Congress on regional Geoscientific Cartography <strong>and</strong> In<strong>for</strong>mation<br />

Systems. (http://www.geologie.ac.at/pdf/Poster/poster_2009_euregio.pdf)


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 94<br />

Seite 95<br />

HUGO RAETZO, BERNARD LOUP<br />

Geological Hazard Assessment in Switzerl<strong>and</strong><br />

Geologische Gefahrenbeurteilung in der Schweiz<br />

Summary:<br />

Geological <strong>hazard</strong> <strong>assessment</strong>s are based on Swiss laws dealing with natural <strong>hazard</strong>s.<br />

Guidelines are published by the Federal Office <strong>for</strong> the Environment (FOEN/BAFU). According<br />

to the integrated risk management, the methods are applied <strong>for</strong> all natural <strong>hazard</strong>s (l<strong>and</strong>slides,<br />

floods, snow avalanches). The <strong>hazard</strong> maps are dealing with five degrees: high (red), medium<br />

(blue), low (yellow), residual (yellow-white), no <strong>hazard</strong> (white).<br />

Zusammenfassung:<br />

Geologische Gefahren werden in der Schweiz gemäß den eidgenössischen Gesetzen über den<br />

Wald und den Wasserbau erhoben und beurteilt. Dazu hat das zuständige Bundesamt (heute<br />

das Bundesamt für Umwelt BAFU) entsprechende Empfehlungen und Richtlinien veröffentlicht.<br />

Im Sinne des integralen Risikomanagements werden für alle Gefahrenprozesse vergleichbare<br />

Methoden angewendet und anschließend in der Planung umgesetzt. Das gilt für geologische<br />

<strong>Mass</strong>enbewegungen, Hochwasser und Lawinen. Für diese Prozesse werden Gefahrenkarten<br />

erstellt, die immer fünf Gefahrenstufen ausscheiden: Hohe, mittlere und geringe Gefahr sowie<br />

Restgefährdung und keine Gefährdung. Daraus entstehen die roten, blauen, gelben, gelb-weiß<br />

gestreiften und weißen Zonen auf den Gefahrenkarten.<br />

Introduction<br />

Switzerl<strong>and</strong> is a country exposed to many natural<br />

<strong>hazard</strong>s. These <strong>hazard</strong>s include earthquakes, floods,<br />

<strong>for</strong>est fires, snow avalanches, rock falls <strong>and</strong> debris<br />

flows. More than 6% of Switzerl<strong>and</strong> is affected by<br />

<strong>hazard</strong>s due to slope instability. These areas occur<br />

mainly in the Prealps <strong>and</strong> in the Alps. The R<strong>and</strong>a<br />

rock avalanches of 1991 are a good example of the<br />

potential of such <strong>hazard</strong>s. Thirty million m 3 of fallen<br />

debris cut off the valley <strong>for</strong> two weeks. In another<br />

case, a l<strong>and</strong>slide was reactivated with historically<br />

unprecedented rates of displacement up to 6 m/<br />

day, causing the destruction of the village of Falli-<br />

Hölli in the year 1994.<br />

The legal <strong>and</strong> technical background<br />

conditions <strong>for</strong> the protection against l<strong>and</strong>slides<br />

have undergone considerable changes since the<br />

80’s. The flooding of 1987 promoted the federal<br />

authorities to review criteria governing natural<br />

<strong>hazard</strong> protection. The Federal Flood Protection<br />

Law <strong>and</strong> the Federal Forest Law came into <strong>for</strong>ce in<br />

1991. Their purpose is to protect the environment,<br />

human lives <strong>and</strong> property from the damage caused<br />

by water, mass movements, snow avalanches <strong>and</strong><br />

<strong>for</strong>est fires. Following the promulgation of these<br />

new regulations, greater emphasis has been<br />

placed on preventive measures. Consequently,<br />

<strong>hazard</strong> <strong>assessment</strong>, the identification of protection<br />

objectives, purposeful planning of preventive<br />

measures <strong>and</strong> the limitation of the residual<br />

risk are of central importance. The cantons are<br />

now required to establish inventories <strong>and</strong> maps<br />

denoting areas of <strong>hazard</strong>s, <strong>and</strong> to take them<br />

into account in the l<strong>and</strong> use planning. For the<br />

improvement of the inventories <strong>and</strong> the <strong>hazard</strong><br />

maps, the federal government provides subsides<br />

to the cantonal authorities (50%).<br />

In a first step the l<strong>and</strong>slides are identified<br />

<strong>and</strong> classified. During this phase inventories <strong>and</strong><br />

maps of phenomena are established. In a second<br />

step the <strong>hazard</strong> of l<strong>and</strong>slides is assessed according<br />

to the methods used in the Swiss strategy against<br />

all natural <strong>hazard</strong>s (e.g. floods, avalanches). The<br />

<strong>hazard</strong> <strong>assessment</strong> is then integrated into l<strong>and</strong> use<br />

planning <strong>and</strong> in the risk management (3. step).<br />

First step: Hazard identification<br />

L<strong>and</strong>slides can be classified according to the<br />

estimated depth of the sliding plane (< 2m: shallow;<br />

2-10 m: intermediate; >10 m: deep) <strong>and</strong> the long<br />

term mean velocity of the movements (< 2 cm/year:<br />

substabilised; 2-10 cm/year: slow; > 10 cm/year:<br />

active). These depth <strong>and</strong> velocity parameters are<br />

not always sufficient to estimate the potential<br />

danger of a l<strong>and</strong>slide. Differential movements must<br />

also be taken into account since they can generate<br />

buildings to topple or cracks to open.<br />

Rock falls are characterized by their speed<br />

(< 40 m/s), the size of their elements (Østone < 0.5 m,<br />

Øblock > 0.5 m) <strong>and</strong> the volumes involved. Rock<br />

avalanches with huge volumes (v > 1million m 3 )<br />

<strong>and</strong> high speed (> 40 m/s) can also happen<br />

although these are rare.<br />

Due to heavy rainfall, debris flows <strong>and</strong><br />

very shallow l<strong>and</strong>slides are frequent in Switzerl<strong>and</strong>.<br />

These are moderate volume (< 20,000 m 3 ) <strong>and</strong><br />

high speed features (1-10 m/s). These phenomena<br />

are very dangerous <strong>and</strong> annually cause important<br />

traffic disruptions <strong>and</strong> fatalities.<br />

A map of l<strong>and</strong>slide phenomena <strong>and</strong><br />

an associated technical report provide signs<br />

<strong>and</strong> indications of slope instability as observed<br />

in the field. The map represents phenomena<br />

related to dangerous processes <strong>and</strong> delineates the<br />

vulnerable areas.<br />

Field interpretation of these phenomena<br />

allows areas vulnerable to l<strong>and</strong>slides to be<br />

mapped. This is based on the observation <strong>and</strong><br />

interpretation of l<strong>and</strong><strong>for</strong>ms, on structural <strong>and</strong><br />

geomechanical properties of slope instabilities,


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 96<br />

Seite 97<br />

<strong>and</strong> on historical traces. Extensive knowledge of<br />

past <strong>and</strong> current events in a catchment area is<br />

essential if zones of future instability are to be<br />

identified.<br />

Some recommendations <strong>for</strong> the uni<strong>for</strong>m<br />

classification, representation <strong>and</strong> documentation<br />

of natural processes have been established by the<br />

Swiss federal administration. Consequently, the<br />

definition of features on a natural <strong>hazard</strong> map is<br />

based on a uni<strong>for</strong>m legend <strong>for</strong> l<strong>and</strong>slides, floods<br />

<strong>and</strong> snow avalanches. The different phenomena<br />

are represented by different colours <strong>and</strong> symbols.<br />

RED: high <strong>hazard</strong><br />

• People are at risk of injury both inside <strong>and</strong> outside buildings.<br />

• A rapid destruction of buildings is possible.<br />

or:<br />

An additional distinction is made between<br />

potential, inferred or proved events. According to<br />

the scale of mapping (e.g. 1:50,000 <strong>for</strong> the Master<br />

Plan, 1:5,000 <strong>for</strong> the Local Plan), this legend may<br />

contain a large number of symbols.<br />

Inventories: Recommendations <strong>for</strong><br />

the definition of a uni<strong>for</strong>m Register <strong>for</strong> slope<br />

instability events has been developed, including<br />

special sheets <strong>for</strong> each phenomenon (l<strong>and</strong>slides,<br />

floods, snow avalanches). Each canton is currently<br />

compiling the data <strong>for</strong> its own register. These<br />

databases (StorMe) are transferred to the FOEN to<br />

• Events occurring with a lower intensity, but with a higher probability of occurrence. In this<br />

case, people are mainly at risk outside buildings, or buildings can no longer house people.<br />

The red zone mainly designates a prohibition domain (area where development is prohibited).<br />

BLUE: moderate <strong>hazard</strong><br />

• People are at risk of injury outside buildings. Risk is considerably lower inside buildings.<br />

• Damage to buildings should be expected, but not a rapid destruction, as long as the<br />

construction type has been adapted to the present conditions.<br />

The blue zone is mainly a regulation domain, in which severe damage can be reduced by<br />

means of appropriate protective measures (area with restrictive regulations).<br />

YELLOW: low <strong>hazard</strong><br />

• People are at slow risk of injury.<br />

• Slight damage to buildings is possible.<br />

The yellow zone is mainly an alerting domain (area where people are notified at possible<br />

<strong>hazard</strong>).<br />

YELLOW-WHITE HATCHING: residual danger<br />

Low probability of high intensity event occurrence can be designated by yellow-white hatching.<br />

The yellow-white hatched zone is mainly an alerting domain, highlighting a residual danger.<br />

WHITE: no danger or negligible danger, according to currently available in<strong>for</strong>mation.<br />

allow an overview of the different natural disasters<br />

<strong>and</strong> potential associated damage in Switzerl<strong>and</strong>.<br />

Second step: Hazard <strong>assessment</strong> of l<strong>and</strong>slides<br />

Hazard is defined as the occurrence of a potentially<br />

damaging natural phenomena within a specific<br />

period of time in a given area. Hazard <strong>assessment</strong><br />

implies the determination of the magnitude or<br />

intensity of an event over time. <strong>Mass</strong> movements<br />

often correspond to gradual (l<strong>and</strong>slides) or unique<br />

(falls, debris flows) events. It is sometimes difficult<br />

to make an <strong>assessment</strong> of the return period of<br />

a massive rock avalanche, or to predict when a<br />

dormant l<strong>and</strong>slide may reactivate.<br />

Some federal recommendations have<br />

been proposed in the 90’s <strong>for</strong> the management<br />

of l<strong>and</strong>slides <strong>and</strong> floods. Since 1984 similar<br />

recommendations have already existed <strong>for</strong> snow<br />

avalanches. Hazard maps, according to the federal<br />

“recommendations“ (guidelines), express three<br />

degrees of danger, represented by corresponding<br />

colours: red, blue <strong>and</strong> yellow (Fig. 1). The various<br />

<strong>hazard</strong> zones are delineated according to the<br />

l<strong>and</strong>slide phenomena maps, the register of slope<br />

instability events <strong>and</strong> additional documents.<br />

Numerical models (analysis of block trajectories,<br />

calculations of factors of safety) may be used to<br />

determine the extent of areas endangered by rock<br />

falls, or to present quantitative data on the stability<br />

of a potentially unstable area.<br />

A chart of the degrees of danger has been<br />

developed in order to guarantee a homogeneous<br />

<strong>and</strong> uni<strong>for</strong>m means of <strong>assessment</strong> of the different<br />

kinds of natural <strong>hazard</strong>s across Switzerl<strong>and</strong><br />

(floods, snow avalanches, l<strong>and</strong>slides…) – <strong>for</strong><br />

example, Fig.1 <strong>for</strong> fall processes. Two major<br />

parameters are used to classify the danger: the<br />

intensity, <strong>and</strong> the probability (frequency or return<br />

period). Three degrees of danger have been<br />

defined. These are represented by the colours red,<br />

blue <strong>and</strong> yellow. The estimated degrees of danger<br />

have implications <strong>for</strong> l<strong>and</strong> use. They indicate the<br />

level of danger to people <strong>and</strong> to animals, as well<br />

as to property. In the case of mass movement,<br />

people are considered safer inside the buildings<br />

than outside.<br />

A description of the magnitude of<br />

potential damage caused by an event is based on<br />

the identification of threshold values <strong>for</strong> degrees<br />

of danger, according to possible damage to<br />

property. The intensity parameter is divided into<br />

three degrees:<br />

High intensity: People <strong>and</strong> animals are at risk<br />

of injury inside buildings; heavy damage to<br />

buildings or even destruction of buildings is<br />

possible.<br />

Medium intensity: People <strong>and</strong> animals are<br />

at risk of injury outside buildings, but are at<br />

low risk inside buildings; lighter damage to<br />

buildings should be expected.<br />

Low intensity: People <strong>and</strong> animals are slightly<br />

threatened, even outside buildings (except<br />

in the case of stone <strong>and</strong> block avalanches,<br />

which can harm or kill people <strong>and</strong> animals);<br />

superficial damage to buildings should be<br />

expected.<br />

Criteria <strong>for</strong> the intensity <strong>assessment</strong>:<br />

There is generally no applicable measure to define<br />

the intensity of slope movements. However,<br />

indicative values can be used to define classes<br />

of high, mean <strong>and</strong> low intensity. Applied criteria<br />

usually refer to the zone affected by the process,<br />

or to the threatened zone.<br />

For rock falls, the significant criterion is the<br />

impact energy in the exposed zone (translation<br />

<strong>and</strong> rotation energy). The 300 kJ limit corresponds<br />

to the impact energy to which can be resisted<br />

by a rein<strong>for</strong>ced concrete wall, as long as the<br />

structure is properly constructed. The 30 kJ limit


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 98<br />

Seite 99<br />

Phenomena Low intensity Medium intensity High intensity<br />

Rock fall E < 30 kJ 30 < E < 300 kJ E > 300 kJ<br />

Rock avalanche - - E > 300 kJ<br />

L<strong>and</strong>slide v ≤ 2 cm/y v : 2-10 cm/y v>10 cm/year<br />

Earth flows <strong>and</strong><br />

debris flows<br />

dv, D, T dv, D, T dv, D, T<br />

potential e < 0.5 m 0.5 m < e < 2 m e > 2 m<br />

real - h < 1 m h > 1 m<br />

v > 0.1 m/day <strong>for</strong><br />

shallow l<strong>and</strong>slides;<br />

displacement > 1 m<br />

per event<br />

E: kinetic energy; e: thickness of the unstable layer; h: height of the earthflow deposit; v: long term mean<br />

velocity, dv: variation of velocity (accelerations), D: differential movements, T: thickness of the l<strong>and</strong>slide.<br />

correlated with recurrent meteorological conditions.<br />

The probability of mass movement occurrence<br />

should mainly be established <strong>for</strong> a given duration of<br />

l<strong>and</strong> use. Thus, the probability of potential damage<br />

during a certain period of time, or the degree<br />

of safety of a specific area should be taken into<br />

account, rather than the frequency of dangers.<br />

The probability of occurrence <strong>and</strong> the<br />

return period can be mathematically linked, if<br />

attributed to the same reference period:<br />

p = 1 – (1 – 1/ T) n<br />

Whereby p is the probability of occurrence, n<br />

represents the given time period (<strong>for</strong> example 30<br />

or 50 years), <strong>and</strong> T is the return period.<br />

For example, considering a time period of 30<br />

years, an event with a 30-year return period has<br />

a 64% probability of occurrence (or about 2 in<br />

3), of 26% (or about 1 in 4) <strong>for</strong> a 100-year return<br />

period, <strong>and</strong> of 10% (or about 1 in 10) <strong>for</strong> a 300-<br />

year return period.<br />

The calculation of the probability of<br />

occurrence clearly shows that even <strong>for</strong> a rather<br />

high return period (300 years), the residual danger<br />

remains not significant.<br />

In principle, the probability scale does<br />

not exclude very rare events, neither does it<br />

exclude the intensity scale <strong>for</strong> high magnitude<br />

events. Hazards with a very low probability of<br />

occurrence are usually classified as residual<br />

dangers under the st<strong>and</strong>ard classification. In the<br />

corresponds to the maximum energy that oak-<br />

converted to danger classes. Other criteria as<br />

wood stiff barriers can resist (e.g. rail sleeper).<br />

For rock avalanches, the high intensity class<br />

(E > 300 kJ) is always reached in the impact zone.<br />

The target zones affected by block avalanches<br />

of low to medium intensity can only be roughly<br />

delineated. There<strong>for</strong>e, it is recommended not to<br />

artificially delineate zones affected by low to<br />

medium intensities.<br />

Most l<strong>and</strong>slides: A low intensity movement has an<br />

annual mean speed of lower than 2 cm per year.<br />

A medium intensity has a speed ranging from<br />

one to 10 cm per year. The high intensity class<br />

is assigned to velocities higher than 10 cm per<br />

velocity changes or accelerations (dv), differential<br />

movements (D) <strong>and</strong> thickness of the l<strong>and</strong>slide (T)<br />

can lead to increase resp. to reduce the intensity<br />

class as derived from the long term velocity.<br />

For earth flows <strong>and</strong> debris flows,<br />

the intensity depends on the thickness of the<br />

potentially unstable layer. The boundaries defining<br />

the three intensity classes are set at 0.5 m <strong>and</strong> 2 m.<br />

Probability: Probability of l<strong>and</strong>slides is defined<br />

according to three classes. The class limits are set<br />

at 30 <strong>and</strong> 300 years <strong>and</strong> are equivalent to those<br />

established <strong>for</strong> snow avalanches <strong>and</strong> floods. The<br />

100-year limit corresponds to a value applied in<br />

INTENSITY<br />

low medium high<br />

RED<br />

BLUE<br />

YELLOW<br />

YELLOW / WHITE<br />

year <strong>and</strong> to shear zones or zones with clear<br />

the design of flood protection structures.<br />

differential movements (D). It may also be assigned<br />

The results of probability calculations to<br />

if reactivated phenomena have been observed or,<br />

if horizontal displacements greater than one meter<br />

per event may occur. Finally, the high intensity<br />

determine if mass movements occur remain very<br />

uncertain. Unlike floods <strong>and</strong> snow avalanches, mass<br />

movements are usually non-recurrent processes.<br />

high<br />

medium<br />

PROBABILITY<br />

low<br />

very low<br />

class can also be assigned to very rapid shallow<br />

l<strong>and</strong>slides (speed > 0.1 m/day). In the area affected<br />

by l<strong>and</strong>sliding field, intensity criteria can be directly<br />

The return period, there<strong>for</strong>e, only has a relative<br />

meaning, except <strong>for</strong> events involving stone <strong>and</strong><br />

block avalanches <strong>and</strong> earth flows, which can be<br />

Fig. 1: Matrix <strong>for</strong> the <strong>assessment</strong> of <strong>hazard</strong>s<br />

Abb. 1: Matrix für die Gefahrenbeurteilung


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 100<br />

Seite 101<br />

domain of dangers related to mass movements,<br />

the limit <strong>for</strong> a residual danger has been set <strong>for</strong> an<br />

event with a 300-year return period.<br />

The degree of <strong>hazard</strong> is defined in a<br />

<strong>hazard</strong> matrix based on intensity <strong>and</strong> probability<br />

criteria (Raetzo & Loup 2009). The resulting<br />

<strong>hazard</strong> map is mainly used <strong>for</strong> planning (l<strong>and</strong><br />

use), while the design of protection measures<br />

needs more detailed investigations. In general<br />

the methods used are related to the product,<br />

scales <strong>and</strong> the risk in order to respect economic<br />

criteria: low ef<strong>for</strong>ts are done <strong>for</strong> the Swiss<br />

indicative map (level 1), important ef<strong>for</strong>ts<br />

are done when a <strong>hazard</strong> map is established<br />

or reviewed (level 2). Detailed analyses <strong>and</strong><br />

engineering calculations are <strong>for</strong>eseen <strong>for</strong> the<br />

planning of countermeasures (level 3). Applying<br />

this concept rising ef<strong>for</strong>ts <strong>for</strong> geological<br />

investigations are planned when the <strong>assessment</strong><br />

on the second or third level takes place.<br />

Third step: L<strong>and</strong> use planning <strong>and</strong> risk management<br />

The <strong>hazard</strong> map is a basic document used in<br />

l<strong>and</strong> use planning. Natural <strong>hazard</strong>s should be<br />

taken into account particularly in the following<br />

situations:<br />

• Elaboration <strong>and</strong> improvement of cantonal<br />

Master Plan <strong>and</strong> Communal Local Plans <strong>for</strong><br />

l<strong>and</strong> use.<br />

• Planning, construction, trans<strong>for</strong>mation of<br />

buildings <strong>and</strong> infrastructures.<br />

• Granting of concessions <strong>and</strong> planning<br />

<strong>for</strong> construction <strong>and</strong> infrastructural<br />

installations.<br />

• Granting of subsidies <strong>for</strong> building <strong>and</strong><br />

development (road <strong>and</strong> rail networks,<br />

residences), as well as <strong>for</strong> slope stabilisation<br />

<strong>and</strong> protection measures.<br />

According to Art. 6 of the Federal Law <strong>for</strong> L<strong>and</strong><br />

use Planning, the cantons must identify all areas<br />

that are threatened by natural <strong>hazard</strong>s.<br />

The cantonal Master Plan is a basic<br />

document <strong>for</strong> l<strong>and</strong> use planning, infrastructural<br />

coordination <strong>and</strong> accident prevention. It consists<br />

of a map <strong>and</strong> a technical report, <strong>and</strong> is based on<br />

studies. The Master Plan allows <strong>for</strong> deciding the<br />

following:<br />

• It shows how to coordinate activities<br />

associated with different l<strong>and</strong> uses.<br />

• It identifies the goals of planning <strong>and</strong><br />

specifies the necessary stages.<br />

• It provides legal constraints to the<br />

authorities in charge of l<strong>and</strong> use planning.<br />

The objectives of the Master Plan with respect to<br />

natural <strong>hazard</strong>s are:<br />

• To early detect conflicts between l<strong>and</strong> use,<br />

development <strong>and</strong> natural <strong>hazard</strong>s.<br />

• To refine the survey of basic documents<br />

concerning natural <strong>hazard</strong>s.<br />

• To <strong>for</strong>mulate principles that can be applied<br />

by the cantons to the issue of protection<br />

against natural <strong>hazard</strong>.<br />

• To define necessary requirements <strong>and</strong><br />

m<strong>and</strong>ates to be used in subsequent<br />

planning stages.<br />

The constraints on Local Planning already allow<br />

<strong>and</strong> ensure appropriate management of natural<br />

<strong>hazard</strong>s with respect to l<strong>and</strong> use. The objective<br />

of these constraints is to delineate danger zones<br />

by highlighting restrictions, or to establish legal<br />

frameworks leading to the same ends.<br />

At the same time danger zones can be<br />

delineated on the local plan with areas suitable<br />

<strong>for</strong> construction as well as additional protection<br />

zones.<br />

The degrees of danger are initially assigned<br />

according to their consequences <strong>for</strong> construction<br />

activity. They must minimise risks to the safety<br />

of people <strong>and</strong> animals, as well as minimising<br />

as possible damage to property. In agricultural<br />

zones, buildings affected by different degrees of<br />

danger are constrained by the same conditions as<br />

those in built-up areas.<br />

Conclusions<br />

In Switzerl<strong>and</strong> legal <strong>and</strong> technical references are<br />

published to clarify which responsibilities the<br />

authorities have <strong>and</strong> how the <strong>assessment</strong> has to<br />

be done in order to apply the concept of integral<br />

risk management. The <strong>hazard</strong> map indicates<br />

which areas are unsuitable <strong>for</strong> use, according<br />

to existing natural <strong>hazard</strong>. The integration of<br />

<strong>hazard</strong> maps into l<strong>and</strong> use planning (including<br />

construction conditions, building licences)<br />

<strong>and</strong> the development of protective measures to<br />

minimise damage to property are main objectives.<br />

When the <strong>hazard</strong> map is compared with<br />

existing l<strong>and</strong> use conflicts may occur. Since it is<br />

difficult or impossible to change l<strong>and</strong> use, specific<br />

construction codes are required to reach the<br />

desired protection level. Hazard maps are also<br />

considered in planning protective measures as<br />

well as the installation of warning systems <strong>and</strong><br />

emergency plans. The federal recommendations<br />

are on attempt to mitigate natural disasters by<br />

restricting development on unstable areas.<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Hugo Raetzo<br />

Federal Office <strong>for</strong> the Environment FOEN<br />

Bundesamt für Umwelt BAFU<br />

3003 Bern<br />

Schweiz<br />

Bernard Loup<br />

Federal Office <strong>for</strong> the Environment FOEN<br />

Bundesamt für Umwelt BAFU<br />

3003 Bern<br />

Schweiz<br />

Literatur / References:<br />

BUNDESAMT FÜR RAUMPLANUNG, BUNDESAMT FÜR<br />

WASSERWIRTSCHAFT & BUNDESAMT FÜR UMWELT, WALD UND<br />

LANDSCHAFT, (1997).<br />

Empfehlungen, Berücksichtigung der <strong>Mass</strong>enbewegungsgefahren bei<br />

raumwirksamen Tätigkeiten, EDMZ, 3000 Bern.<br />

CRUDEN D.M. UND VARNES D.J.:<br />

L<strong>and</strong>slide types <strong>and</strong> processes. In: A. Keith Turner & Robert L. Schuster<br />

(eds): L<strong>and</strong>slide investigation <strong>and</strong> mitigation: 36-75. Transportation<br />

Research Board, special report 247. Washington: National Academy Press,<br />

1996.<br />

KIENHOLZ, H., KRUMMENACHER, B. et al.:<br />

Empfehlungen Symbolbaukasten zur Kartierung der Phänomene Ausgabe<br />

1995, Mitteilungen BUWAL Nr. 6, 41 S., Reihe Vollzug Umwelt VU-<br />

7502-D, Bern 1995.<br />

RAETZO et al.:<br />

Hazard <strong>assessment</strong> of mass movements – codes of practice in Switzerl<strong>and</strong>,<br />

International Association of Engineering Geology IAEG Bulletin, 2002.<br />

RAETZO, H. & LOUP, B.; BAFU:<br />

Schutz vor <strong>Mass</strong>enbewegungen. Technische Richtlinie als Vollzugshilfe.<br />

Entwurf 9. Sept. 2009.<br />

VARNES, D.J. <strong>and</strong> IAEG Commission on L<strong>and</strong>slides <strong>and</strong> other <strong>Mass</strong>-<br />

<strong>Movements</strong>:<br />

L<strong>and</strong>slide <strong>hazard</strong> zonation: a review of principles <strong>and</strong> practice. The<br />

UNESCO Press, Paris, 1984.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 102<br />

Seite 103<br />

STEFANO CAMPUS<br />

L<strong>and</strong>slide Mapping in Piemonte (Italy):<br />

Danger, Hazard & Risk<br />

Kartierung von Rutschungen im Piemont (Italien):<br />

Gefahren & Risiken<br />

Summary:<br />

This paper briefly describes the legal framework of l<strong>and</strong>slide danger, <strong>hazard</strong> <strong>and</strong> risk mapping<br />

in Italy <strong>and</strong> Piemonte. Laws or rules that indicate how a l<strong>and</strong>slide analysis (danger, <strong>hazard</strong>, risk)<br />

has to be done, do not exist. As a general remark, it has to be observed that public legislation<br />

defines general principles <strong>and</strong> lines of conduct, functions, activities <strong>and</strong> authorities involved,<br />

while the regional administrations apply restrictions on l<strong>and</strong> use through different regional laws.<br />

Keywords: L<strong>and</strong>slide, danger, <strong>hazard</strong>, risk, Piemonte, Italy<br />

Zusammenfassung:<br />

Diese Abh<strong>and</strong>lung beschreibt kurz den gesetzlichen Rahmen der Kartografie von Rutschungsgefahren<br />

und -risiken in Italien und im Piemont. Es gibt keine Gesetze oder Verordnungen darüber,<br />

wie eine Rutschungsanalyse (Gefahren und Risiken) auszuführen ist. Als eine allgemeine<br />

Bemerkung ist festzustellen, dass die öffentliche Gesetzgebung allgemeine Prinzipien und<br />

Richtlinien, Funktionen, Aktivitäten und betreffende Befugnisse festlegt, die Regionalverwaltungen<br />

hingegen erlegen auf der unterschiedlichen l<strong>and</strong>esgesetzlichen Basis Einschränkungen<br />

hinsichtlich der Bodennutzung auf.<br />

Schlüsselwörter: Rutschung, Gefahr, Gefährdung, Risiko, Piemont, Italien<br />

Introduction<br />

When facing a natural <strong>hazard</strong>, risk management<br />

can be divided in several stages:<br />

a) danger characterization, <strong>hazard</strong> <strong>assessment</strong><br />

<strong>and</strong> vulnerability analysis;<br />

b) risk evaluation <strong>and</strong> <strong>assessment</strong>;<br />

c) risk prevention (protective works, l<strong>and</strong> use<br />

regulation, monitoring, etc.);<br />

d) crisis <strong>and</strong> post-crisis management;<br />

e) feedback from experience.<br />

It is essential to properly distinguish the three<br />

aspects of l<strong>and</strong>slides studies:<br />

• DANGER. Threat characterization (typology,<br />

morphology even quantitative, inventory…);<br />

• HAZARD. Spatial <strong>and</strong> temporal probability,<br />

intensity <strong>and</strong> <strong>for</strong>ecasting of evolution<br />

(scenarios) are needed;<br />

• RISK. Interaction between a threat having<br />

particular <strong>hazard</strong> <strong>and</strong> human activities. We<br />

need vulnerability <strong>and</strong> damage analysis.<br />

These differences are theoretically well known by<br />

all technicians but often there are some problems<br />

when they have to be applied in a legal framework.<br />

So, it is not so unusual to find inventory maps used<br />

as <strong>hazard</strong> maps or damage maps called risk maps.<br />

There<strong>for</strong>e, we have to distinguish two situations:<br />

1) L<strong>and</strong>slides studies that have no influence from<br />

legal point of view. Typical cases are the studies<br />

carried out by universities about relevant<br />

l<strong>and</strong>slides. The aim is, <strong>for</strong> example, to underst<strong>and</strong><br />

the mechanical features of instability or to study<br />

different ways of evolution of the phenomenon<br />

(scenarios) in order to assess residual risk. Any<br />

method to assess l<strong>and</strong>slide <strong>hazard</strong> <strong>and</strong> risk can<br />

be used. They include statistical, deterministic,<br />

numerical, etc. methods <strong>for</strong> <strong>hazard</strong> <strong>and</strong><br />

qualitative or matrix calculus <strong>for</strong> risk. L<strong>and</strong>slide<br />

inventory can be made by means of historical,<br />

morphological, etc. approach.<br />

2) L<strong>and</strong>slide studies that have direct consequences<br />

to l<strong>and</strong> planning laws, at local scale or higher.<br />

GIS methods allow <strong>for</strong> per<strong>for</strong>ming analyses<br />

over wide areas that are useful to be included<br />

in basin plans or master plans. National or local<br />

laws can require st<strong>and</strong>ard ways to present the<br />

results (common graphical signs on the maps,<br />

<strong>for</strong> example).<br />

Legal framework in Italy <strong>and</strong> Piemonte<br />

High Level Legislation (national level)<br />

The national Law n. 445/1908 (Transfer <strong>and</strong><br />

consolidation of unstable towns) <strong>and</strong> Royal<br />

Decree R.D. n. 3267/1923 (Establishment of areas<br />

subject to hydro-geological constrains) were the<br />

first public regulations on l<strong>and</strong> use planning. At<br />

the beginning of ‘70s, l<strong>and</strong> use management was<br />

transferred to the regions.<br />

The national Law n. 183/1989<br />

introduced l<strong>and</strong> use planning at a basin scale: the<br />

government sets the st<strong>and</strong>ards <strong>and</strong> general aims<br />

without fixing a methodology to analyze <strong>and</strong><br />

evaluate the dangers, <strong>hazard</strong>s, <strong>and</strong> risks related<br />

to natural phenomena. The same law designated<br />

the Autorità di Bacino (Basin Authorities) whose<br />

main goal is to draw up the Basin Plan, a tool <strong>for</strong><br />

planning actions <strong>and</strong> rules <strong>for</strong> conservation <strong>and</strong><br />

protection of the territory.<br />

About Po basin, the last plan adopted<br />

in 2001 is called PAI (Piano per l’Assetto<br />

Idrogeologico or Hydrogeological System Plan<br />

of River Po Basin). It tries to verify the geological<br />

instability of the whole territory as regards the<br />

l<strong>and</strong> use planning through a process of upgrading<br />

<strong>and</strong> feedback with the local urban management<br />

plans. Moreover, all the municipalities are<br />

classified according different risk levels, mainly<br />

from a qualitative point of view. For l<strong>and</strong>slides it<br />

has two atlases (1:25,000 scale):


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 104<br />

Seite 105<br />

1) Atlas of Hydro-geological Risks (l<strong>and</strong>slides,<br />

floods, alluvial fans, avalanches) at the<br />

municipal level. Every municipality is valued<br />

on the basis of the <strong>hazard</strong>, vulnerability<br />

<strong>and</strong> expected damage. L<strong>and</strong>slide <strong>hazard</strong> is<br />

function of ratio between area of l<strong>and</strong>slides<br />

within municipal boundaries <strong>and</strong> whole area<br />

of municipality.<br />

It has 4 qualitative classes:<br />

• R1-moderate risk. Social damages <strong>and</strong> few<br />

economic losses are possible.<br />

• R2-medium risk. Few damages to buildings<br />

<strong>and</strong> infrastructures without loss of<br />

functionality.<br />

• R3-high risk. Problems to human safety.<br />

Many damages <strong>and</strong> economic losses.<br />

• R4-very high risk. Deaths <strong>and</strong> severe<br />

injuries are possible.<br />

2) Atlas of L<strong>and</strong>slides. It is an inventory, in<br />

which polygons <strong>and</strong> points are divided in 3<br />

classes (fig. 1):<br />

• Fa-Area with Active L<strong>and</strong>slides (“very<br />

high <strong>hazard</strong>”). No new buildings or<br />

infrastructures are allowed. Only measures<br />

of protection <strong>and</strong> reduction of vulnerability;<br />

• Fq-Area with Quiescent L<strong>and</strong>slides (“high<br />

<strong>hazard</strong>”). Some enlargements are allowed.<br />

New buildings are allowed according to<br />

city development plan.<br />

• Fs-Area with Stabilized L<strong>and</strong>slides<br />

(“medium-moderate <strong>hazard</strong>”). The<br />

development of these areas is indicated in<br />

the city development plan.<br />

The catastrophic event of May 1998, which caused<br />

heavy damages <strong>and</strong> victims in municipalities<br />

of Sarno <strong>and</strong> Quindici (Campania), urged the<br />

Fig. 1: Example of Atlas of L<strong>and</strong>slides published by Po River Basin Authority (elaboration by Arpa Piemonte).<br />

Abb. 1: Beispiel des „Atlas of L<strong>and</strong>slides“ (Bergsturz-Atlas), veröffentlicht von Po River Basin Authority (Ausarbeitung von ARPA<br />

Piemonte).<br />

government to give answers <strong>for</strong> development<br />

regulation (to reduce or eliminate l<strong>and</strong>slides<br />

losses). According to the national Law n.<br />

267/1998, the government en<strong>for</strong>ced legislative<br />

measures at the national level, including the<br />

procedure to define l<strong>and</strong>slide risk areas.<br />

Another important aspect of the<br />

Law n. 267/1998 regards the development of<br />

“extraordinary plans” to manage the situations of<br />

higher risk (R.M.E.-Aree a Rischio Molto Elevato),<br />

where safety problems or functional damages<br />

are possible. Local <strong>and</strong> regional authorities<br />

are obliged to define, design <strong>and</strong> apply proper<br />

measures to risk mitigation, with national funding.<br />

In Piedmont, these actions have been applied in<br />

some significant cases such as in Ceppo Morelli<br />

(Valle Anzasca in northern part of Piemonte),<br />

classified as a very high-risky area.<br />

Low Level Legislation (Local Urban Development Plan)<br />

The classification of areas made by the Po Basin<br />

Authority is a binding act. The municipality must<br />

adopt a new town development plan taking into<br />

account that classification. If the municipality<br />

wants to change PAI classification, a deep analysis<br />

of the areas has to be done to justify new l<strong>and</strong> use<br />

destination.<br />

Regione Piemonte Regional Law <strong>for</strong><br />

Urban Development L.R. n. 56/1977, which is the<br />

main legal instrument of l<strong>and</strong> use management at<br />

a local scale, as well as the Regional Law L.R. n.<br />

45/1989 which regulates l<strong>and</strong> use modification<br />

<strong>and</strong> trans<strong>for</strong>mation in areas subject to<br />

environmental protection, divides areas in more<br />

detailed classes having (almost) same meaning of<br />

PAI classification.<br />

In Piemonte, the local management plan<br />

(required by the Regional Law L.R. n. 56/1977)<br />

includes the danger/<strong>hazard</strong> zoning in order<br />

to identify l<strong>and</strong>slide prone areas on the basis<br />

of geological <strong>and</strong> morphological features <strong>and</strong><br />

historical analysis.<br />

In a state of emergency (as established by<br />

the Regional Law n. 38/1978, which regulate <strong>and</strong><br />

organise interventions related to severe instability<br />

phenomena), a specific article of the regional law<br />

56/1977 (art. 9/bis) allows inhibiting or suspending<br />

development in the involved areas. Consequently,<br />

new l<strong>and</strong>-use planning must be realised (upgrade/<br />

revision of the local management plan).<br />

The last integrations to this law<br />

(Circolare del Presidente della Giunta Regionale,<br />

n. 7/LAP/1996 <strong>and</strong> Nota Tecnica Esplicativa, n.<br />

12/1999) introduced the concept of <strong>hazard</strong> <strong>and</strong><br />

risk zoning, classifying the whole territory in<br />

different classes where l<strong>and</strong> uses are precisely<br />

regulated <strong>and</strong> defined, where building is<br />

<strong>for</strong>bidden, where preventive measures have to be<br />

taken, etc…<br />

It is important to clarify that Regione<br />

Piemonte does not have an official regional<br />

Geological Survey. Some geological functions<br />

are executed by Arpa Piemonte (Agency<br />

<strong>for</strong> Environmental Protection) having two<br />

“geological” departments: one dedicated to<br />

Geological In<strong>for</strong>mative System, research <strong>and</strong><br />

applied projects, the other one deals with<br />

geological aspects of municipality urban plans.<br />

There<strong>for</strong>e, we produce l<strong>and</strong>slide danger,<br />

<strong>hazard</strong> <strong>and</strong> risk analyses that have not any legal<br />

consequences.<br />

Within many regional, national <strong>and</strong><br />

European projects, Arpa Piemonte carried<br />

out many experiences in fields of assessing<br />

methodology <strong>for</strong> l<strong>and</strong>slides <strong>hazard</strong> <strong>assessment</strong>:<br />

<strong>for</strong> instance, the IMIRILAND Project within Fifth<br />

Framework Programme, Interreg PROVIALP<br />

Project Fall or national Project of Geological<br />

Cartography <strong>for</strong> shallow <strong>and</strong> planar l<strong>and</strong>slides<br />

<strong>hazard</strong> maps in the southern hilly part of Piemonte<br />

region called Langhe (fig. 2).


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 106<br />

Seite 107<br />

So complete coverage of basic in<strong>for</strong>mation is<br />

available (lithology, geotechnical geo-database,<br />

l<strong>and</strong>slides inventory, etc…), but only few rigorous<br />

applications of <strong>hazard</strong> & risk <strong>assessment</strong>.<br />

One of the available tools produced<br />

by Arpa Piemonte is the regional part of Italian<br />

L<strong>and</strong>slides Inventory (IFFI). It is a national program<br />

of l<strong>and</strong>slide inventory, sponsored by national<br />

Fig. 3: Arpa Piemonte Web-GIS In<strong>for</strong>mation Service of the IFFI Project.<br />

Abb. 3: ARPA Piemonte, Web-GIS In<strong>for</strong>mationsdienst des IFFI-Projekts.<br />

Fig. 2: Extract from the<br />

shallow l<strong>and</strong>slides <strong>hazard</strong><br />

map of 1:50,000 scale sheet<br />

Dego in Piemonte. The<br />

traffic light colors indicate<br />

increasing <strong>hazard</strong> (from<br />

green to red), referring to<br />

return periods of critical<br />

rainfall (Arpa Piemonte,<br />

2006).<br />

Abb. 2: Auszug aus dem<br />

Gefahrenzonenplan rutschgefährdeter,<br />

oberflächennaher<br />

Hänge im Maßstab<br />

von 1:50.000 Dego im<br />

Piemont. Die Ampelfarben<br />

veranschaulichen die<br />

zunehmende Gefahr (von<br />

grün zu rot) mit Bezug auf<br />

Wiederkehrdauern kritischen<br />

Niederschlags (ARPA<br />

Piemonte, 2006).<br />

authorities <strong>and</strong> made locally by the regions. It<br />

is the first try of an inventory based on common<br />

graphical legend <strong>and</strong> glossary.<br />

In Piemonte, over 35,000 l<strong>and</strong>slides<br />

were recognized by interpreting aerial photos<br />

<strong>and</strong> field surveys <strong>and</strong> the In<strong>for</strong>mative System of<br />

L<strong>and</strong>slides is constantly updated with inclusion of<br />

new l<strong>and</strong>slides or corrections <strong>and</strong> deepening of<br />

existing l<strong>and</strong>slides (fig. 3). Every region decided<br />

by itself if the results of IFFI Project (danger maps)<br />

do or do not have or a legal value. Currently, in<br />

Piemonte l<strong>and</strong>slides inventory coming from IFFI<br />

Project is not a legal basis but it is one of the tools<br />

available that can be consulted.<br />

In any event, IFFI represents a very<br />

important tool <strong>for</strong> the planners who finally have<br />

the first homogeneous, shared, detailed <strong>and</strong> most<br />

complete knowledge of the l<strong>and</strong>slide occurrence<br />

on the whole territory.<br />

As a general remark <strong>for</strong> Italy, it has<br />

to be observed that public legislation defines<br />

general principles <strong>and</strong> lines of conduct, functions,<br />

activities <strong>and</strong> authorities involved, while the<br />

regional administrations apply restrictions on l<strong>and</strong><br />

use through different regional laws.<br />

Final remarks<br />

• Laws or rules that indicate how a l<strong>and</strong>slide<br />

analysis (danger, <strong>hazard</strong>, risk) has to be<br />

done, do not exist;<br />

• There is often some confusion among<br />

danger, <strong>hazard</strong> <strong>and</strong> risk. An inventory<br />

map can be used as <strong>hazard</strong> map (i.e.<br />

susceptibility map), without any prevision<br />

of scenarios;<br />

• There is some lack of trust in quantitative<br />

methods. Qualitative approach seems to be<br />

preferred;<br />

The technicians who make the maps have to<br />

think firstly:<br />

• Who will be the end users?<br />

• What will be the use of maps?<br />

• Is the scale of work suitable <strong>for</strong> this?<br />

• Are the complexity of methods (time,<br />

resources, needed input data…) <strong>and</strong><br />

results appropriate <strong>and</strong> underst<strong>and</strong>able <strong>for</strong><br />

decision makers?<br />

Anschrift des Verfassers / Author’s address:<br />

Stefano Campus<br />

Arpa Piemonte<br />

Dipartimento Tematico Geologia e Dissesto<br />

via Pio VII 9, 10135 TORINO (ITALY)<br />

stefano.campus@regione.piemonte.it<br />

Literatur / References:<br />

ARPA PIEMONTE, (2006),<br />

Note illustrative della Carta della Pericolosità per Instabilità dei Versanti<br />

alla scala 1:50,000 Foglio n. 211 Dego. (S. Campus, F. Forlati & G. Nicolò<br />

editors), Apat, Roma. (in Italian);<br />

ARPA PIEMONTE, (2007),<br />

Evaluation <strong>and</strong> prevention of natural risks. (S. Campus, F. Forlati, S. Barbero<br />

& S. Bovo editors), Balkema Publisher;<br />

ARPA PIEMONTE, (2008),<br />

Interreg IIIa 2000-2006 Alpi Latine Alcotra. Progetto n. 165 PROVIALP-<br />

Protezione della Viabilità Alpina. Final Report (in Italian);<br />

ARPA PIEMONTE, (2010),<br />

Geographic In<strong>for</strong>mation System on-line - http://webgis.arpa.piemonte.it<br />

V.A. (2004),<br />

Identification <strong>and</strong> mitigation of large l<strong>and</strong>slides risks in Europe. The<br />

IMIRILAND project. (C. Bonnard, F. Forlati & C. Scavia editors), Balkema<br />

Publisher;


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 108<br />

Seite 109<br />

Zusammenfassung:<br />

Slowenien liegt in einem komplexen Raum Adria – Dinaren – Pannonisches Becken, und<br />

seine allgemeine geologische Struktur ist bestens bekannt. Aufgrund seiner außerordentlich<br />

heterogenen geologischen Lage ist Slowenien Hangmassenbewegungen (SMM = slope mass<br />

movement) sehr stark ausgesetzt. Die slowenische Gesetzgebung (und darauf beruhend auch<br />

die entsprechenden Maßnahmen) sind vorwiegend auf die Schadenbehebungsphase und die<br />

Begrenzung der Auswirkungen bereits aufgetretener SMM-Vorkommnisse ausgerichtet, es mangelt<br />

jedoch an vorbeugenden Maßnahmen. Der Zweck dieses Artikels ist die Präsentation von<br />

Gefahrenhinweiskarten über Hangmassenbewegungen auf nationaler und regionaler Ebene,<br />

die zum Schutz vor schnellen <strong>Mass</strong>enbewegungen in Slowenien erstellt wurden und die eine<br />

fachlich fundierte Grundlage für die entsprechenden Präventivmaßnahmen bilden. Der nächste<br />

logische Schritt wäre, dieses Know-how und diese Ansätze in die Gesetzgebung zu integrieren.<br />

Schlüsselwörter: <strong>Mass</strong>enbewegungen, Gesetzgebung, Gefahrenhinweiskarte, Slowenien<br />

MARKO KOMAC, MATEJA JEMEC<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment <strong>for</strong><br />

Rapid <strong>Mass</strong> <strong>Movements</strong> in Slovenia<br />

St<strong>and</strong>ards und Methoden der Gefährdungsanalyse für<br />

schnelle <strong>Mass</strong>enbewegungen in Slowenien<br />

Summary:<br />

Slovenia is situated on the complex Adria – Dinaridic – Pannonian structural junction <strong>and</strong><br />

its general geological structure is well known. As a consequence of an extraordinarily<br />

heterogeneous geological setting, Slovenia is highly exposed to slope mass-movement<br />

processes. While Slovenian legislation (<strong>and</strong> based on that also measures) mainly focuses on<br />

the remediation phase <strong>and</strong> mitigation of consequences of SMM events that have already<br />

occurred, its biggest deficiency lays in the area of prevention measures. The purpose of this<br />

paper is to represent slope mass movement susceptibility maps on a national <strong>and</strong> a local<br />

level that have been developed <strong>for</strong> protection from rapid mass movements in Slovenia <strong>and</strong><br />

which <strong>for</strong>m an expert foundation <strong>for</strong> the prevention measures. The next logical step would be<br />

to incorporate this knowledge <strong>and</strong> approach into legislation.<br />

Keywords: mass movement processes, legislation, susceptibility map, Slovenia<br />

but they can be mitigated or avoided, applying<br />

1. Introduction<br />

adequate legislation measures supported by<br />

corresponding expert argumentation. Although<br />

Slovenian territory occupies the Eastern flank of Slovenian legislation (<strong>and</strong> hence also measures)<br />

the <strong>Alpine</strong> chain. As in other areas of the <strong>Alpine</strong> mainly focuses on the remediation phase <strong>and</strong><br />

region, Slovenia is exposed to different slope mass mitigation of consequences of SMM events that<br />

movements (SMM) above the average of the rest of have already occurred, it’s biggest deficiency lays<br />

Europe. SMM that represent substantial problems in the area of prevention measures. While, in the<br />

can be generally divided into three groups, 1) case of rare SMM events, the current approach of<br />

l<strong>and</strong>slides, 2) debris-flows, <strong>and</strong> 3) rock falls. The exclusively post-event measures is conditionally<br />

majority of SMM events cannot be prevented, sustainable, in the case of frequent events it<br />

Fig 1: Relation between <strong>hazard</strong>s on one side <strong>and</strong> elements at risk on the other, <strong>and</strong> the risk in between (after Alex<strong>and</strong>er, 2002).<br />

Abb. 1: Beziehung zwischen Gefahren und gefährdeten Elementen, und das dazwischen liegende Risiko (nach Alex<strong>and</strong>er, 2002).


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 110<br />

Seite 111<br />

becomes unsustainable <strong>and</strong> brings a huge burden<br />

to the local, regional <strong>and</strong> state budget. The only<br />

reasonable approach would hence be minimising<br />

interaction between SMM events <strong>and</strong> elements<br />

at risk. Graphically this interaction would be<br />

presented as a cross-section between the natural<br />

<strong>hazard</strong> on one side <strong>and</strong> vulnerability of elements<br />

at risk on other side (Fig 1).<br />

2. Legislation in the field of slope mass movement<br />

domain<br />

In the area of systematic prevention measures<br />

regarding SMM, Slovenia lags behind other <strong>Alpine</strong><br />

countries or regions. One of the basic approaches<br />

to solve the problem is to establish potentially<br />

<strong>hazard</strong>ous areas due to natural phenomena <strong>and</strong><br />

the inclusion of this in<strong>for</strong>mation in spatial plans.<br />

In<strong>for</strong>mation on geology, upon which the slope<br />

mass movement occurrence heavily depends, it is<br />

not yet an integral part of spatial plans. Legislative<br />

acts deal mostly with remediation issues instead<br />

with the prevention measures.<br />

The protection strategy against l<strong>and</strong>slides<br />

(within legislation the term l<strong>and</strong>slide also other<br />

types of slope mass movements are included)<br />

varies substantially <strong>and</strong> is tailored according<br />

to different terrain conditions. They are mainly<br />

divided into prevention, emergency protective<br />

measures <strong>and</strong> permanent measures adopted in the<br />

process <strong>for</strong> remediation. In the frame of preventive<br />

actions, the emphasis is on creating a national<br />

database of active l<strong>and</strong>slides (<strong>and</strong> other SMM) <strong>and</strong><br />

intentions of government to include <strong>hazard</strong>s doe<br />

to l<strong>and</strong>slides into spatial planning. In the planning<br />

<strong>and</strong> implementation of emergency protective<br />

measures, the emphasis is on protecting human<br />

lives <strong>and</strong> property.<br />

Law on protection against natural <strong>and</strong> other disasters<br />

(Official Gazette of RS, no. 64/94)<br />

The Act governs the protection against natural<br />

<strong>and</strong> other disasters <strong>and</strong> includes the protection of<br />

people, animals, property, cultural heritage <strong>and</strong><br />

environment against any <strong>hazard</strong> or accidents (risk)<br />

that can threaten their safety. The main goal of<br />

the protection against natural <strong>and</strong> other disasters<br />

system is to reduce the number of disasters, <strong>and</strong><br />

to <strong>for</strong>estall or reduce the number of victims <strong>and</strong><br />

other consequences of disaster. The basic tasks<br />

of the system are: prevention, preparedness,<br />

<strong>and</strong> protection against threats, rescue <strong>and</strong> help,<br />

providing of basic conditions <strong>for</strong> life, <strong>and</strong> recovery.<br />

National program of protection against natural <strong>and</strong> other<br />

disasters (Official Gazette of RS, no. 44/02)<br />

On the basis of the Resolution, the National<br />

Programme of Protection against Natural <strong>and</strong><br />

Other Disasters <strong>for</strong> the period 2002 – 2007.<br />

The National Programme is oriented towards<br />

the prevention <strong>and</strong> its basic aim is to reduce the<br />

number of accidents <strong>and</strong> to prevent or minimise<br />

its consequences.<br />

Law on the Remediation of consequences of natural<br />

disasters (Official Gazette of RS, no. 114/05)<br />

The Act defines a l<strong>and</strong>slide as a natural disaster.<br />

According to the article 11, with some restriction<br />

<strong>and</strong> at some level of damage, state budget funds<br />

may be used to ease the effects of natural disasters.<br />

Damage <strong>assessment</strong> is made in accordance<br />

with the Regulation on the methodology <strong>for</strong><br />

damage <strong>assessment</strong> (Official Gazette of RS,<br />

no. 67/03, 79/04), after which the l<strong>and</strong>slide is<br />

considered a l<strong>and</strong>slide, which threats a property<br />

or infrastructure.<br />

Water Act (Official Gazette RS, no. 67/02, 4/09)<br />

Protection against the harmful effects of water<br />

that is among other the issues dealt with this<br />

act also refers to protection against l<strong>and</strong>slides.<br />

Threatened area is defined by Government, which<br />

is responsible <strong>for</strong> protecting the population,<br />

property <strong>and</strong> l<strong>and</strong> in dangerous exposed areas.<br />

In order to protect against the harmful effects of<br />

water, l<strong>and</strong> in the threatened area is categorized<br />

into classes based on the risk.<br />

Act on measures to eliminate the consequences of certain<br />

large-scale l<strong>and</strong>slides in 2000 <strong>and</strong> 2001 (Official Gazette<br />

RS, no. 21/02, 92/03, 98/05)<br />

Act defines the <strong>for</strong>mat <strong>and</strong> the method of<br />

financing <strong>and</strong> <strong>for</strong>m of allocating state aid <strong>for</strong><br />

the implementation of remedial measures, to<br />

prevent the spread of l<strong>and</strong>slide <strong>and</strong> stabilization<br />

of l<strong>and</strong>slides on the specific area of influence. It<br />

covers several major l<strong>and</strong>slides in Slovenia.<br />

Spatial Development Strategy of Slovenia (Official Gazette<br />

of RS, no. 76/04)<br />

The Spatial Development Strategy of Slovenia is a<br />

public document guiding development in the field<br />

of l<strong>and</strong>slide problematics. It provides a framework<br />

<strong>for</strong> spatial development throughout the country<br />

<strong>and</strong> sets guidelines <strong>for</strong> development in European<br />

space. It provides <strong>for</strong> the creation of spatial<br />

planning, its use <strong>and</strong> conservation. The spatial<br />

strategy takes into account social, economic <strong>and</strong><br />

environmental factors of spatial development.<br />

Slovenia's Development Strategy<br />

Slovenia's Development Strategy sets out the<br />

vision <strong>and</strong> objectives of Slovenia <strong>and</strong> five<br />

development priorities with action plans. The<br />

chapter on protection against natural disasters is<br />

included in the fifth development priority, which<br />

is designed to achieve sustainable development.<br />

Regulation of the spatial order of Slovenia (Official Gazette<br />

of RS, no. 122/04)<br />

Regulation of spatial order in Slovenia provides<br />

the rules <strong>for</strong> managing the field of l<strong>and</strong>slide<br />

problematic. One of the important articles is<br />

Article 67, in which is mentioned how to plan<br />

according to the limitations which are caused by<br />

natural disasters <strong>and</strong> water protection.<br />

Resolution of the National Environmental Act (Official<br />

Gazette of RS, no. 2/06)<br />

The National Environmental Action Programme<br />

(NEAP) is the basic strategic document in the<br />

field of environmental protection, aimed at<br />

improving the overall environment <strong>and</strong> quality<br />

of life <strong>and</strong> protection of natural resources. NEAP<br />

was prepared under the Environmental Protection<br />

Act <strong>and</strong> complies with the European Community<br />

Environment Programme, which addresses the<br />

key environmental objectives <strong>and</strong> priorities<br />

that require leadership from the community.<br />

The objectives <strong>and</strong> measures are defined in<br />

the four areas, namely: climate change, nature<br />

<strong>and</strong> biodiversity, quality of life, <strong>and</strong> waste <strong>and</strong><br />

industrial pollution.<br />

3. Methodology<br />

Due to specifics of different slope mass movement<br />

processes, a single approach would be hampered<br />

in its results / prognosis. The following chapter<br />

presents an overview of approaches to slope<br />

mass movements (1 – l<strong>and</strong>slides; 2 – debris-flows;<br />

3 – rock falls) <strong>hazard</strong> <strong>assessment</strong>. The presented<br />

approaches are similar to a certain level, they also<br />

differ according to the scale of the <strong>assessment</strong>. The


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 112<br />

Seite 113<br />

final results (but not the only ones) of approaches<br />

presented in the following text were presented<br />

in a <strong>for</strong>m of warning maps that are still the main<br />

product used by end users. All the analyses were<br />

conducted in GIS, which enables the end users to<br />

implement results also in a <strong>for</strong>m of databases or a<br />

digital <strong>for</strong>mat.<br />

According to Skaberne (2001) the<br />

terminology of slope mass movements in Slovenia<br />

are as follows: l<strong>and</strong>slides are processes of<br />

translational or rotational movement of rock or<br />

soil as a consequence of gravity at discontinuity<br />

plane(s). Rock falls are processes of falling or<br />

tumbling of a part of rock or soil along a steep<br />

slope. Debris-flows are processes of transportation<br />

of material composed of soil, water <strong>and</strong> air.<br />

The l<strong>and</strong>slide susceptibility model <strong>for</strong><br />

Slovenia at scale 1:250,000 was developed<br />

at the Geological Survey of Slovenia in 2006<br />

(Komac & Ribičič, 2006). The final result of this<br />

approach was presented in a <strong>for</strong>m of a warning<br />

map (Fig. 2). Based on the extensive l<strong>and</strong>slide<br />

database that was compiled <strong>and</strong> st<strong>and</strong>ardised<br />

at the national level, <strong>and</strong> analyses of l<strong>and</strong>slide<br />

spatial occurrence, a L<strong>and</strong>slide susceptibility map<br />

of Slovenia at scale 1 : 250,000 was completed.<br />

Altogether more than 6,600 l<strong>and</strong>slides were<br />

included in the national database, of which<br />

roughly half are on known locations. Of 3,257<br />

l<strong>and</strong>slides with known locations, r<strong>and</strong>om but<br />

representative 65% were selected <strong>and</strong> used <strong>for</strong><br />

the univariate statistical analyses (χ2) to analyse<br />

the l<strong>and</strong>slide occurrence in relation to the<br />

spatio-temporal precondition factors (lithology,<br />

slope inclination, slope curvature, slope aspect,<br />

distance to geological boundaries, distance to<br />

structural elements, distance to surface waters,<br />

flow length, <strong>and</strong> l<strong>and</strong> cover type) <strong>and</strong> in relation<br />

to the triggering factors (maximum 24-h rainfall,<br />

average annual rainfall intensity, <strong>and</strong> peak ground<br />

acceleration). The analyses were conducted using<br />

GIS in raster <strong>for</strong>mat with a 25 × 25 m pixel size.<br />

Five groups of lithological units were defined,<br />

ranging from small to high l<strong>and</strong>slide susceptibility.<br />

Furthermore, critical slopes <strong>for</strong> the l<strong>and</strong>slide<br />

occurrence, other terrain properties <strong>and</strong> l<strong>and</strong> cover<br />

types that are more susceptible to l<strong>and</strong>sliding were<br />

also defined. Among triggering factors, critical<br />

rainfall <strong>and</strong> peak ground acceleration quantities<br />

were defined. These results were later used as<br />

a basis <strong>for</strong> the development of the weighted<br />

linear susceptibility model where several models<br />

with various factor weights variations based on<br />

previous research were developed. The rest of<br />

the l<strong>and</strong>slide population (35 %) was used <strong>for</strong> the<br />

model validation. The results showed that relevant<br />

precondition spatio-temporal factors <strong>for</strong> l<strong>and</strong>slide<br />

occurrence are (with their weight in linear model):<br />

lithology (0.3), slope inclination (0.25), l<strong>and</strong> cover<br />

type (0.25), slope curvature (0.1), distance to<br />

structural elements (0.05), <strong>and</strong> slope aspect (0.05).<br />

Beside l<strong>and</strong>slide susceptibility<br />

<strong>assessment</strong>, a rainfall influence on l<strong>and</strong>slide<br />

occurrence was analysed since rainfall plays<br />

an important role in the l<strong>and</strong>slide triggering<br />

processes. Analyses of l<strong>and</strong>slide occurrences in<br />

the area of Slovenia have shown that areas where<br />

intensive rainstorms occur (maximal daily rainfall<br />

<strong>for</strong> a 100-year period), <strong>and</strong> where the geo-logical<br />

settings are favourable an abundance of l<strong>and</strong>slide<br />

can be expected. This clearly indicates the spatial<br />

<strong>and</strong> temporal dependence of l<strong>and</strong>slide occurrence<br />

upon the intensive rainfall. Regarding the l<strong>and</strong>slide<br />

occurrence, the intensity of maximal daily <strong>and</strong><br />

average annual rainfall <strong>for</strong> the 30 years period<br />

was analysed. Results have shown that daily<br />

rainfall intensity, which significantly influences the<br />

triggering of l<strong>and</strong>slides, ranges from 100 to 150<br />

mm, most probably above 130 mm. Despite the<br />

vague influence, if any at all, of the average annual<br />

rainfall, the threshold above which significant<br />

number of l<strong>and</strong>slides occurs is 1000 mm.<br />

Fig. 2: L<strong>and</strong>slide susceptibility warning map of Slovenia at scale 1:250,000 (Komac & Ribičič, 2006, 2008).<br />

Abb. 2: Gefahrenhinweiskarte für Rutschungen in Slowenien im Maßstab von 1:250.000 (Komac & Ribičič, 2006, 2008).<br />

The debris-flow susceptibility model <strong>for</strong> Slovenia weighted sum approach was selected on the<br />

at scale 1:250,000 was also developed at basis of easily acquired spatio-temporal factors to<br />

Geological Survey of Slovenia in 2009 (Komac et simplify the approach <strong>and</strong> to make the approach<br />

al., 2009). The final result of this approach was easily transferable to other regions. Based on the<br />

presented in a <strong>for</strong>m of a warning map (Fig. 3). calculations of 672 linear models with different<br />

For the area of Slovenia (20,000 km 2 ), a debrisflow<br />

susceptibility model at scale 1:250,000 was factors <strong>and</strong> based on results of their success to<br />

weight combinations <strong>for</strong> used spatio-temporal<br />

produced. To calculate the susceptibility to debrisflow,<br />

occurrences using GIS several in<strong>for</strong>mation factors’ weight combination was selected. To avoid<br />

predict debris-flow susceptible areas, the best<br />

layers were used such as geology (lithology <strong>and</strong> over-fitting of the prediction model, an average of<br />

distance from structural elements), intensive weights from the first hundred models was chosen<br />

rainfall (48-hour rainfall intensity), derivates of as an ideal combination of factor weights. For<br />

digital elevation model (slope, curvature, energy this model an error interval was also calculated.<br />

potential related to elevation), hydraulic network A debris-flow susceptibility model at scale<br />

(distance to surface waters, energy potential of 1:250,000 represent a basis <strong>for</strong> spatial prediction<br />

streams), <strong>and</strong> locations of sixteen known debris of the debris-flow triggering <strong>and</strong> transport areas. It<br />

flows, which were used <strong>for</strong> the debris-flow also gives a general overview of susceptible areas<br />

susceptibility models’ evaluation. A linear model-<br />

in Slovenia <strong>and</strong> gives guidance <strong>for</strong> more detailed


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 114<br />

Seite 115<br />

(4) Mapping of problematic areas at scale<br />

1:5000 or 1:10,000 <strong>for</strong> the purpose of the<br />

highest detail planning<br />

(3) Development of detailed<br />

geo<strong>hazard</strong> map at scale 1:25,000 as<br />

a combination of synthesis of<br />

phases (1) <strong>and</strong> (2)<br />

(1) Synthesis of archive geological data into the<br />

overview geo<strong>hazard</strong> map at scale 1:25,000<br />

(2) Development of statistical geo<strong>hazard</strong> at scale<br />

1:25,000<br />

Fig. 3: Debris-flow susceptibility warning map of Slovenia at scale 1:250,000 (Komac et al., 2009).<br />

Abb. 3: Muren-Gefahrenhinweiskarte Sloweniens im Maßstab von 1:250.000 (Komac et al., 2009).<br />

research areas <strong>and</strong> further spatial <strong>and</strong> numerical<br />

analyses. The results showed that approximately<br />

4% of Slovenia’s area is extremely high susceptible<br />

<strong>and</strong> approximately 11% of Slovenia’s area of<br />

processes, taking the Bovec municipality as<br />

the case study area. The geo<strong>hazard</strong> map at the<br />

scale 1:25,000 as the final product is aimed<br />

to be directly applicable in spatial planning<br />

susceptibility to debris-flows is high. As expected, of local communities (municipalities). The<br />

these areas are related to mountainous terrain in<br />

the NW <strong>and</strong> N of Slovenia.<br />

In the frame of a research project, slope<br />

mass movement geo<strong>hazard</strong> estimation – The<br />

Bovec municipality case study an approach to<br />

assess the l<strong>and</strong>slide <strong>and</strong> rock-fall susceptibility at<br />

the municipal scale (1:25,000) (Bavec et al, 2005;<br />

Komac, 2005). The production of a susceptibility<br />

map that should represent (officially not included<br />

among the documentation yet) one of basic layers<br />

in the spatial planning process shown in the Fig. 4.<br />

Methodology was developed <strong>for</strong> estimation<br />

of geo<strong>hazard</strong> induced by mass movement<br />

requirements that were followed to achieve this<br />

aim were: expert correctness, reasonable time of<br />

elaboration, <strong>and</strong> easy to read product. Elaboration<br />

of the final product comprises four consecutive<br />

phases, of which the first three are done in the<br />

office: 1) synthesis of archive data, 2) probabilistic<br />

model of geo<strong>hazard</strong> induced by mass movement<br />

processes, 3) compilation of phases 1 <strong>and</strong> 2 into<br />

the final map at scale 1:25,000. As the last phase,<br />

field reconnaissance of most <strong>hazard</strong>ous areas is<br />

<strong>for</strong>eseen. The susceptibility model development<br />

was based on the upgrading of the expert geo<strong>hazard</strong><br />

map at scale 1:25,000 with a probabilistic model<br />

Fig. 4: Schematic diagram of the process of production of l<strong>and</strong>slide <strong>and</strong> rock-fall susceptibility at the municipal scale (1:25.000)<br />

(Bavec et al., 2005).<br />

Abb. 4: Schematische Darstellung der Erstellung von Gefahrenhinweiskarten über Erdrutsch, Berg- und Felssturz im Maßstab einer<br />

W<strong>and</strong>erkarte (1:25.000) (Bavec et al., 2005).<br />

development that included relevant influence<br />

factors. For analytical purposes, 10,816 models<br />

were developed: 3,142 <strong>for</strong> l<strong>and</strong>slide susceptibility<br />

<strong>and</strong> 7,674 <strong>for</strong> rock-fall susceptibility. In both<br />

cases, geology/lithology <strong>and</strong> slope angle showed<br />

to be the most important influencing factors.<br />

Regarding l<strong>and</strong>slides, additional important factors<br />

were l<strong>and</strong> use <strong>and</strong> synchronism of strata bedding<br />

<strong>and</strong> slope aspect, <strong>and</strong> in the case of rock-falls an<br />

additional important factor was synchronism of<br />

strata bedding <strong>and</strong> slope aspect.<br />

The methodology is focused towards<br />

the direct use of the final product in the process<br />

of spatial planning at the municipal level <strong>and</strong> is<br />

divided into four phases as shown in Fig. 4:<br />

• (1) Synthesis of archive geological data<br />

in the overview geo<strong>hazard</strong> map at scale<br />

1:25,000 (Budkovič, 2002).<br />

• (2) Development of statistical geo<strong>hazard</strong> at<br />

scale 1:25,000 (Komac, 2005).<br />

• (3) Development of detailed geo<strong>hazard</strong><br />

map at scale 1:25,000 as a combination of<br />

synthesis geological map (1) <strong>and</strong> statistical<br />

geological model (2) <strong>and</strong> delineating the<br />

most problematic areas.<br />

• (4) Mapping of problematic areas at scale<br />

1:5,000 or 1:10,000 <strong>for</strong> the purpose of the<br />

highest detail planning.<br />

All presented approaches are based on a probability<br />

statistical model that is a part of a conceptual<br />

development model of general or detailed slope<br />

mass susceptibility maps represented in Fig 5.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 116<br />

Seite 117<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Literatur / References:<br />

Univariate analysis (x 2 )<br />

of SMM occurrence by<br />

classes within each of<br />

the influence factor<br />

Field testing<br />

Good results<br />

Development of<br />

phenomenon<br />

susceptibility map<br />

Influence factors classes<br />

ranging based upon<br />

their influence on the<br />

SMM occurrence<br />

Bad results<br />

Selection of optimal<br />

<strong>and</strong> most logical<br />

susceptibility model<br />

Values normalisation<br />

within each influence<br />

factor (0-1)<br />

Testing of different<br />

models developed on<br />

the weighted sum<br />

of influence factors<br />

Fig 5: Conceptual<br />

model of<br />

development<br />

of general or<br />

detailed slope<br />

mass susceptibility<br />

maps.<br />

Abb. 5:<br />

Konzeptionelles<br />

Modell für die<br />

Entwicklung von<br />

allgemeinen<br />

oder detaillierten<br />

Gefahrenhinweiskarten<br />

über<br />

Hangbewegungen.<br />

Marko Komac<br />

Dimiceva ulica 14<br />

1000 Ljubljana<br />

SI-Slovenia<br />

Marko.komac@geo-zs.si<br />

Mateja Jemec<br />

Dimiceva ulica 14<br />

1000 Ljubljana<br />

SI-Slovenia<br />

Mateja.jemec@geo-zs.si<br />

ALEXANDER, D.E., 2002.<br />

Principles of emergency planning <strong>and</strong> management. Ox<strong>for</strong>d University<br />

Press, New York, 340 pp.<br />

BAVEC, M., BUDKOVIČ, T. AND KOMAC, M., 2005. Estimation of<br />

geo<strong>hazard</strong> induced by mass movement processes. The Bovec municipality<br />

case study. Geologija, 48/2, 303-310.<br />

BUDKOVIČ, T., 2002. Geo-<strong>hazard</strong> map of the municipality of Bovec.<br />

Ujma, 16, 141-145.<br />

KOMAC, M. 2005. Probabilistic model of slope mass movement<br />

susceptibility - a case study of Bovec municipality, Slovenia. Geologija,<br />

48/2, 311-340.<br />

KOMAC, M., RIBIČIČ, M., 2006. L<strong>and</strong>slide susceptibility map of Slovenia<br />

at scale 1:250,000. Geologija, 49/2, 295-309.<br />

KOMAC, M., KUMELJ, Š. AND RIBIČIČ, M., 2009.<br />

Debris-flow susceptibility model of Slovenia at scale 1: 250,000. Geologija,<br />

52/1, 87-104.<br />

SKABERNE, D., 2001.<br />

Prispevek k slovenskemu izrazoslovju za pobočna premikanja. Ujma,<br />

14–15, 454–458.<br />

For all influence factors included in the weighted<br />

sum model calculation, original values were<br />

trans<strong>for</strong>med into the same scale, which ranged<br />

from 0 – 1 to assure the equality of the input data.<br />

In other words, within each factor original values<br />

were normalised with the eq. 1.<br />

(RV - Min)<br />

NVR = ,<br />

Max - Min<br />

eq. 1<br />

or discreet variable value. Final slope mass<br />

movements susceptibility values (the range<br />

is between 0 <strong>and</strong> 1) were classified into 6<br />

susceptibility classes: 0 – Negligible (or None); 1<br />

– Insignificant (or Very Low); 2 – Low; 3 – Medium<br />

(or Moderate); 4 – High; 5 – Very High.<br />

4. Conclusion<br />

Where NVR represents new <strong>and</strong> normalised<br />

value, <strong>and</strong> RV the old (nominal) value. Min <strong>and</strong><br />

Max represent the minimum <strong>and</strong> maximum<br />

original value within the factor, respectfully. For<br />

the purpose of the development of the best <strong>and</strong><br />

at the same time the most logical susceptibility<br />

model, a weighted sum approach (Voogd, 1983)<br />

was used (eq. 2).<br />

n<br />

H = ∑ w j<br />

x f ij<br />

j=l<br />

eq. 2.<br />

Where H represents st<strong>and</strong>ardised relative<br />

phenomenon susceptibility (0 – 1), w j<br />

represents<br />

the factor weight, <strong>and</strong> f ij<br />

represents a continuous<br />

Slope mass movement processes are specific in<br />

their nature, hence separate analyses had to be<br />

per<strong>for</strong>med <strong>and</strong> a different model development<br />

had to be developed. In Slovenia, slope mass<br />

movement susceptibility maps have been<br />

developed on national <strong>and</strong> on local level. In the<br />

case of the latter, which has an actual application,<br />

value maps were developed only <strong>for</strong> some test<br />

areas. Thus several questions remain open <strong>and</strong><br />

these are: when will the geo<strong>hazard</strong> layer be<br />

included as a compulsory part of the spatial<br />

planning document, to what extent quality<br />

geological data will be used <strong>for</strong> the <strong>assessment</strong>,<br />

<strong>and</strong> how the lack of detailed geological data<br />

would be tackled.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 118<br />

Seite 119<br />

KARL MAYER, ANDREAS VON POSCHINGER<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment <strong>for</strong><br />

Geological Dangers (<strong>Mass</strong> <strong>Movements</strong>) in Bavaria<br />

St<strong>and</strong>ards und Methoden zur Verminderung<br />

von geologischen Gefährdungen durch<br />

<strong>Mass</strong>enbewegungen in Bayern<br />

Summary:<br />

In<strong>for</strong>mation about geological <strong>hazard</strong>s in the Bavarian Alps (e.g. rock falls, l<strong>and</strong>slides) is<br />

available in the Internet or intranet section Georisk of the Bodenin<strong>for</strong>mationssystem Bayern<br />

(BIS-BY) (www.bis.bayern.de). This in<strong>for</strong>mation system is already used by a number of<br />

departments such as district administrations, water <strong>and</strong> traffic management offices, <strong>for</strong>est<br />

management as well as private users. By now the BIS-BY only shows the sites of origin of<br />

geological <strong>hazard</strong>s <strong>and</strong> not the whole endangered area, which would be relevant <strong>for</strong> l<strong>and</strong><br />

use planning. This area, the so called process area, can only be defined by empirical or<br />

numerical simulations <strong>and</strong> models.<br />

A <strong>hazard</strong> map gives an overview of the situation. It is based on model calculations <strong>and</strong><br />

empirical analysis <strong>and</strong> can be verified by the Georisk-cadastre (BIS-BY). Concerning the<br />

spatial extent of the process areas, possible inaccuracies may impair an exact expression<br />

of the danger. The <strong>hazard</strong> map shows large areas where a special type of danger can be<br />

assumed. There<strong>for</strong>e, will be easier to deduce possible conflicts between <strong>hazard</strong>s <strong>and</strong> l<strong>and</strong><br />

use. Hazard maps can be included in the l<strong>and</strong> development plan or can be used to assign<br />

priorities while taking measures.<br />

Zusammenfassung:<br />

In<strong>for</strong>mationen über geogene Gefährdungen (z.B. Steinschlag, Felsstürze, Rutschungen) sind<br />

als GEORISK-Daten über das Bodenin<strong>for</strong>mationssystem Bayern (BIS-BY) im Internet oder<br />

Intranet abrufbar (www.bis.bayern.de). Dieses In<strong>for</strong>mationssystem wird bereits von vielen<br />

Fachstellen genutzt. Neben den L<strong>and</strong>kreisen sowie vielen Kommunen sind die Behörden der<br />

Wasserwirtschaft, der Straßen- und Forstverwaltung sowie private Planer die Hauptnutzer. Im<br />

BIS-BY ist bisher allerdings nur das Herkunftsgebiet von Gefährdungen dargestellt, nicht der<br />

planungsrelevante Gefährdungsbereich. Dieser kann nur durch empirische oder numerische<br />

Simulationen und Modellierungen abgegrenzt werden.<br />

Die Gefahrenhinweiskarte gibt eine Übersicht über die Gefährdungssituation. Sie basiert<br />

sowohl auf Modellrechnungen als auch auf empirischen Untersuchungen und wird mit dem<br />

GEORISK-Ereigniskataster (BIS-BY) auf Plausibilität geprüft. Bezüglich der räumlichen Abgrenzung<br />

kann sie Ungenauigkeiten enthalten und die Gefährdung nicht in jedem Fall genau<br />

wiedergeben. Die Gefahrenhinweiskarte hält für große Gebiete flächendeckend fest, wo<br />

mit welchen Gefahren gerechnet werden muss. Daraus lassen sich mit geringem Aufw<strong>and</strong><br />

mögliche Konfliktstellen zwischen Gefahr und Nutzung ableiten. Die Gefahrenhinweiskarten<br />

können einerseits in Flächennutzungspläne mit einfließen und dienen <strong>and</strong>erseits zur Prioritätensetzung<br />

beim Erarbeiten weitergehender Maßnahmen.<br />

1. Introduction<br />

In Germany, geogenic natural <strong>hazard</strong>s, such<br />

as mass movements, karstification, large scale<br />

flooding as well as ground subsidence <strong>and</strong> uplift<br />

affecting building ground, shall be recorded,<br />

assessed <strong>and</strong> spatially represented using a common<br />

minimal st<strong>and</strong>ard in the future. For this purpose,<br />

the “Geo<strong>hazard</strong>s” team of engineering geologists<br />

of the different German federal governmental<br />

departments of geology (SGD) are giving<br />

recommendations on how to create a <strong>hazard</strong> map.<br />

These recommendations of minimum requirements<br />

are directed at the employees of the SGD. An<br />

important component <strong>for</strong> developing <strong>hazard</strong> maps<br />

is the construction <strong>and</strong> evaluation of l<strong>and</strong>slide<br />

inventories (e.g. l<strong>and</strong>slide or sinkhole inventories).<br />

The recorded data in the inventories<br />

should have a minimal nationwide st<strong>and</strong>ard <strong>and</strong><br />

are divided into:<br />

• Main data of the topic mass movements <strong>and</strong><br />

subrosion / karst with in<strong>for</strong>mation about the<br />

spatial positioning, about determination of<br />

coordinates, etc.<br />

• Commonly shared technical data of the<br />

subject mass movements <strong>and</strong> subrosion /<br />

karst with in<strong>for</strong>mation about the date<br />

of origin, about the l<strong>and</strong> use <strong>and</strong> about<br />

damage, etc.<br />

• Specific technical data of the subject mass<br />

movement <strong>and</strong> subrosion / karst<br />

• Data concerning subsidence <strong>and</strong> uplift<br />

Computerized modelling increasingly allows<br />

the identification of <strong>hazard</strong> areas that have been<br />

verified using the l<strong>and</strong>slide inventory or through<br />

evaluation of the results of field work. The<br />

current emphasis in Germany is on hydrological<br />

modelling of flood events that are used <strong>for</strong><br />

water management issues in flood prevention.<br />

Geotechnical modelling is used increasingly <strong>for</strong><br />

rock falls, avalanches <strong>and</strong> shallow l<strong>and</strong>slides.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 120<br />

Seite 121<br />

If necessary, in addition to the tools described<br />

above, field studies will be needed <strong>for</strong> exact<br />

clarification <strong>and</strong> <strong>assessment</strong> of given situations.<br />

In <strong>Alpine</strong> regions, natural <strong>hazard</strong>s are<br />

a common phenomenon. L<strong>and</strong>slides, rock falls<br />

<strong>and</strong> mudflows occur in the course of mountain<br />

degradation that reflects the natural slope<br />

instability of mountain areas. L<strong>and</strong>slides are mostly<br />

triggered by extreme rainfall that will, according<br />

to climate scientists, become more relevant in<br />

<strong>Alpine</strong> regions in particular (Umweltbundesamt<br />

2008). With an increase in heavy rainfall events<br />

an increase in l<strong>and</strong>slide events must be expected.<br />

With approximately 4450 km², the<br />

Bavarian Alps cover about 6.3 % of Bavaria. The<br />

Bavarian Alps are the most important tourist region<br />

of Bavaria <strong>and</strong>, there<strong>for</strong>e, of particular importance.<br />

Furthermore, they have a unique ecological value<br />

that has to be specially protected. Since it is more<br />

<strong>and</strong> more difficult to ensure this protection by<br />

structural activities, protective measures need<br />

to be involved in the planning process <strong>and</strong> also<br />

allow sustainable <strong>and</strong> cost effective strategies.<br />

The most effective <strong>and</strong> sustainable<br />

method to prevent losses arising from <strong>hazard</strong>ous<br />

events is to avoid l<strong>and</strong> use in the endangered<br />

areas. In areas where construction already has<br />

been established or where construction of new<br />

infrastructure or buildings is unavoidable, it<br />

is essential to determine areas endangered by<br />

geological <strong>hazard</strong>s.<br />

In May 2008, the Bavarian Environmental<br />

Agency launched the project <strong>hazard</strong> map <strong>for</strong> the<br />

Bavarian Alps. The aim of the project is to create<br />

a <strong>hazard</strong> map <strong>for</strong> deep seated l<strong>and</strong>slides, shallow<br />

l<strong>and</strong>slides <strong>and</strong> rock fall areas <strong>for</strong> the whole of<br />

the Bavarian Alps. It will be finished during<br />

December 2011.<br />

2. Definition of a <strong>hazard</strong> map<br />

The federal geological surveys of Germany<br />

agreed on definitions <strong>for</strong> the terminology used<br />

<strong>for</strong> mapping of geological <strong>hazard</strong>s (Personenkreis<br />

“Geogefahren” 2008) based on BUWAL (2005). A<br />

<strong>hazard</strong> map gives a first overview of areas affected<br />

by l<strong>and</strong>slides (potentially endangered area) <strong>and</strong><br />

can be a basis <strong>for</strong> the detection of conflicts of<br />

interests. By defining a most probable design<br />

event <strong>and</strong> integrating it in the l<strong>and</strong>slide modelling<br />

process, a <strong>hazard</strong> map also gives a qualitative<br />

statement about the probability of a l<strong>and</strong>slide<br />

event. The potential process areas of the expected<br />

l<strong>and</strong>slides vary depending on the design event,<br />

the geological, topographical <strong>and</strong> morphological<br />

situation <strong>and</strong> the existence of <strong>for</strong>est. Modelling<br />

parameters <strong>for</strong> rock fall <strong>and</strong> shallow l<strong>and</strong>slide<br />

simulations can be deduced <strong>and</strong> trivialised from<br />

comprehensive data.<br />

Generally the scale of a <strong>hazard</strong> map<br />

ranges from 1:10,000 to 1:50,000. Within this<br />

project, despite the possibilities of the zoom<br />

function of a GIS, the <strong>hazard</strong> map is produced <strong>for</strong><br />

a scale of 1:25,000.<br />

3. Material <strong>and</strong> methods<br />

3.1 Basis maps<br />

Essential data basis <strong>for</strong> modelling the <strong>hazard</strong> map<br />

is a high resolution digital elevation model (DEM)<br />

derived from airborne laser scanning. The datasets<br />

are used in different resolutions (1 m, 5 m, 10 m)<br />

depending on the modelling approach. The<br />

vertical resolution is better +/- 0.3 m, except <strong>for</strong><br />

very few areas where currently no laser scanning<br />

data is available.<br />

3.2 Basis data <strong>for</strong> l<strong>and</strong>slide modelling<br />

In<strong>for</strong>mation about geological <strong>hazard</strong>s such as<br />

l<strong>and</strong>slides, rock falls <strong>and</strong> earth falls, especially<br />

in the densely populated areas in the Bavarian<br />

Alps, is available in the section Georisk of<br />

the Bodenin<strong>for</strong>mationssystem Bayern (BIS-BY,<br />

www.bis.bayern.de), a GIS-based inventory of<br />

Bavaria including numerous geological data. By<br />

now (October 2010), about 4,500 l<strong>and</strong>slide events<br />

have been detected <strong>and</strong> evaluated within the<br />

project area. Every event is described concerning<br />

its process type <strong>and</strong> dimension, the age <strong>and</strong><br />

potential future trend of the l<strong>and</strong>slide as well as<br />

annotations about the source <strong>and</strong> the degree of<br />

in<strong>for</strong>mation. Origin <strong>and</strong> accumulation zones of<br />

l<strong>and</strong>slides have been digitised <strong>and</strong> stored as well<br />

as significant photos. With all of this the BIS-BY is<br />

the most important source of in<strong>for</strong>mation.<br />

Also integrated in the BIS-BY are maps<br />

of active areas that have been mapped by field<br />

work, aerial photo analysis <strong>and</strong> archive data <strong>for</strong><br />

the main settlement areas. Within these maps<br />

l<strong>and</strong>slides are classified into four levels of activity<br />

to give an indirect statement about the level of<br />

danger. These maps can be used to estimate the<br />

extension of deep-seated l<strong>and</strong>slides, <strong>for</strong> example.<br />

Above all, results of two other projects<br />

have been used: Within the project HANG<br />

(historical analysis of alpine <strong>hazard</strong>s), historical<br />

data of l<strong>and</strong>slides have been evaluated <strong>and</strong><br />

digitised. Within the project EGAR (catchment<br />

areas in alpine regions), the risk potential of<br />

alpine torrents has been estimated analysing the<br />

discharge <strong>and</strong> catchment potential.<br />

4. Fall processes<br />

4.1 Minimum requirements in Germany<br />

In many states of Germany, only medium to long<br />

term, large-scale numeric modelling of rock<br />

fall <strong>hazard</strong>s are possible using high resolution<br />

terrain models <strong>and</strong> specialised software. In the<br />

first stage, a “black <strong>and</strong> white map” is created<br />

showing verified / potential rock fall areas derived<br />

from the l<strong>and</strong>slide inventories <strong>and</strong> / or remote<br />

sensing (DEM). This map shows verified as well<br />

as potential rock fall escarpments i.e. slopes with<br />

an inclination > 45° (in <strong>Alpine</strong> areas). The entire<br />

process area is, however, not depicted.<br />

In the second stage, the run-out zone, i.e.<br />

the entire process area, is depicted. That means<br />

areas prone to rock falls due to the inclination, but<br />

which are not confirmed. To define these areas,<br />

estimated empiric angle methods or physical<br />

deterministic models can be used.<br />

To determine rock fall escarpments, the<br />

shadow angle <strong>and</strong> the geometric slope angle is<br />

applied. Both the shadow angle (e.g. 27°) as well<br />

as the geometric slope angle (e.g. 32°) can be<br />

used as the estimated angle (Mayer & Poschinger<br />

2005). An angle of deflection from the vertical<br />

slope can be used as a lateral boundary of the<br />

process area (e.g. 30°).<br />

In Bavaria this method is used <strong>for</strong><br />

huge rock masses. For single blocks, a physical<br />

trajectory model from Zinggeler + GEOTEST is<br />

used (MAYER 2010).<br />

4.2 Modelling rock fall of single blocks (methods use in<br />

Bavaria)<br />

For the detection of potential starting zones of<br />

rock falls, two empirical approaches can be<br />

applied. In a first step, potential starting zones


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 122<br />

Seite 123<br />

stored in the BIS-BY are extracted. These starting<br />

zones are detected by field work. In areas where<br />

no in<strong>for</strong>mation is available, an even more empiric<br />

approach must be applied: it has to be assumed<br />

that every slope steeper than 45° is a potential<br />

detachment zone (Wadge et al. 1993).<br />

Fig. 1: Basic processes during rock fall simulation (Krummenacher<br />

et al. 2005).<br />

Abb. 1: Schematische Darstellung der prinzipiellen Prozesse<br />

der Steinschlagmodellierung (Krummenacher et al. 2005).<br />

According to Meißl (1998) or Hegg &<br />

Kienholz (1995) the process model can be divided<br />

into two parts: the trajectory model calculating<br />

the paths of the blocks as vectors <strong>and</strong> the friction<br />

model calculating the energy along these paths<br />

as well as the run-out length. In this project, the<br />

vector based simulation model of Zinggeler &<br />

GEOTEST (Krummenacher et al. 2005) is used.<br />

Beside the topographical in<strong>for</strong>mation derived from<br />

the DEM, damping <strong>and</strong> friction characteristics of<br />

the slope surface <strong>and</strong> the vegetation have to be<br />

known. Furthermore it is very important to define<br />

a design event <strong>for</strong> rock fall. That means that,<br />

according to the geology, <strong>for</strong>m <strong>and</strong> dimension of<br />

typical blocks have to be determined.<br />

As the block dimension is the only<br />

variable parameter within the simulation, it plays<br />

an essential role in the calculation of the run- out<br />

zone. To assess the design events, the starting zones<br />

already determined within the disposition model<br />

have been intersected with the geological map.<br />

The affected geological units have been checked<br />

by field work. As a result, a mean block size <strong>and</strong><br />

geometry that represents the most probable event<br />

has been determined <strong>for</strong> every geological unit.<br />

This design event has been assigned to one of<br />

four volume classes. For each of these classes the<br />

mean block mass has been calculated. The block<br />

mass of a geological unit is an input parameter <strong>for</strong><br />

the simulation.<br />

The simulation of the block movement<br />

is carried out according to physical principles of<br />

mechanics <strong>and</strong> is separated into falling, bouncing<br />

<strong>and</strong> rolling (Fig. 1). The calculation is a succession<br />

of these processes with intermediate contacts to<br />

underground <strong>and</strong> tree trunks.<br />

The loss of energy during tread mat<br />

is controlled by de<strong>for</strong>mability <strong>and</strong> surface<br />

roughness. These parameters have to be deduced<br />

<strong>and</strong> trivialised from the basis data of the area to be<br />

investigated.<br />

Fig. 2: 3D Trajectories with (red) <strong>and</strong> without (orange) the<br />

protecting function of <strong>for</strong>est.<br />

Abb. 2: 3D Sturztrajektorien mit (rot) und ohne (orange)<br />

Berücksichtigung der Schutzfunktion des Waldbest<strong>and</strong>es.<br />

The simulation has been run <strong>for</strong> two<br />

different scenarios. Within the first scenario, the<br />

<strong>for</strong>est with the protecting function of the trees<br />

has been considered. To simulate a worst-case<br />

scenario, the <strong>for</strong>est has not been included in the<br />

second scenario.<br />

4.3 Modelling rock fall masses (Bavarian approach)<br />

The application of the different global<br />

angles depends on slope morphology. A proper<br />

The trajectory model <strong>for</strong> rock fall (chapter 4.2) decision <strong>for</strong> one global angle model can be<br />

calculates the reach of single blocks. For the runout<br />

zone of larger rock fall volumes, an empirical <strong>and</strong> geometrical slope tangent. If the quotient is<br />

reached by the quotient of shadow angle tangent<br />

process model with a worst case approach is used. below 0.88, the shadow angle has to be used.<br />

Numerous papers (Lied 1977, Onofri & Canadian Otherwise the geometrical slope angle is better<br />

1979, Evans & Hungr 1993, Wieczorek et al. 1999, suited to describe the maximum run-out zone<br />

Meißl 1998) show that a global angle method is an (Mayer & von Poschinger 2005).<br />

appropriate approach to determine the maximum<br />

Global angles can easily be modelled<br />

run-out zone of rock fall. Two different global with implemented functionalities of st<strong>and</strong>ard<br />

angles have been applied. The first <strong>and</strong> more GIS programs. Within the project, the viewshed<br />

important one is the shadow angle (β in Fig. 3). It is function of Spatial Analyst in ArcGIS has been<br />

defined as angle between the horizontal line <strong>and</strong> employed. This function identifies all cells on<br />

the connecting line from the block with maximum a surface (DEM) that can be seen from selected<br />

run out <strong>and</strong> the top of the talus. According to observation points (Fig. 4). There are a number<br />

Evans & Hungr (1993) a shadow angle of 27° of important attributes of every starting point<br />

has been assumed. The other global angle is the necessary <strong>for</strong> the modelling process: the vertical<br />

geometrical slope angle that spans between the view angle, which is the predefined global angle<br />

horizontal line <strong>and</strong> top of detachment zone (α in (Fig. 3), the horizontal view angle that is defined<br />

Fig. 3). A minimum geometrical slope angle of 30° with 30°, as well as the aspect that can be<br />

is presumed (Meißl 1998).<br />

calculated out of the DEM.<br />

Fig. 3: Global angle models: shadow angle (β) <strong>and</strong> geometrical slope angle (α) (Meißl 1998, modified).<br />

Abb. 3: Pauschalgefällemodelle: Schattenwinkel (β) und Geometrisches Gefälle (α), verändert nach Meißl (1998).


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 124<br />

Seite 125<br />

To identify of <strong>hazard</strong> areas, only important rock<br />

fall areas with evidence of activity have been<br />

processed. Due to long-lasting field work, there<br />

is an excellent overview of the situation within<br />

the densely populated areas in the Bavarian Alps.<br />

Beyond those areas it is assumed that all important<br />

rock fall areas are known. To start the modelling<br />

process, first the global angle approach has to be<br />

chosen (shadow angle or geometrical angle). After<br />

digitizing the starting points <strong>and</strong> determination of<br />

necessary attributes, the viewshed modelling with<br />

ArcGIS can be executed.<br />

5. Slide processes<br />

5.1 Minimum requirements in Germany<br />

In the first stage, l<strong>and</strong>slide inventories, e.g. all<br />

registered objects <strong>and</strong> the associated near-surface<br />

processes, should be visually displayed. That<br />

means affected by definite indications of active<br />

<strong>and</strong> inactive l<strong>and</strong>slides <strong>and</strong> l<strong>and</strong>slides that have<br />

already occurred (reactivation or enlargement of<br />

the l<strong>and</strong>slide area is possible). The areas can be<br />

found using mapping (registers) or remote sensing<br />

(DEM) methods.<br />

Fig. 4: The viewshed function identifies all raster locations to<br />

be seen from appointed starting points with defined global<br />

angle.<br />

Abb. 4: Die Viewshed-Funktion ermittelt alle Bereiche, die<br />

von festgelegten Startpunkten mit einem definierten Vertikalund<br />

Horizontalwinkel gesehen werden.<br />

In the second stage, potential<br />

l<strong>and</strong>slide areas are determined in addition to<br />

the verified l<strong>and</strong>slide areas. That means areas<br />

prone to l<strong>and</strong>slides due to the geological <strong>and</strong><br />

morphological situation <strong>and</strong> the l<strong>and</strong> use (were<br />

l<strong>and</strong>slides have not yet taken place). These areas<br />

can be found by using empirical methods due to<br />

the geological <strong>and</strong> morphological circumstances<br />

<strong>and</strong> the l<strong>and</strong> usage; alternatively / additionally:<br />

Visualisation of semi-automatically derived areas<br />

(cross-over between DEM / geological entity); e.g.<br />

using an additional signature<br />

The distinction between shallow <strong>and</strong><br />

deep-seated slides is optional when visualising<br />

the <strong>hazard</strong> map. Near-surface l<strong>and</strong>slides of<br />

a small volume (shallow slides) are either<br />

separately determined using above procedure or<br />

are displayed simultaneously alongside the deepseated<br />

slides.<br />

5.2 Modelling deep seated l<strong>and</strong>slides<br />

(methods used in Bavaria)<br />

Deep-seated l<strong>and</strong>slides are mostly result of the<br />

activation of predefined failure zones, i.e. by<br />

long lasting rainfall. Experience shows that they<br />

can range from about 5 m up to more than 100<br />

m in depth. To identify areas endangered by deep<br />

seated l<strong>and</strong>slides, two different approaches have<br />

been applied. On the one h<strong>and</strong>, areas showing<br />

evidence of previous deep-seated l<strong>and</strong>slides, with<br />

either ongoing activity or a clear probability of<br />

reactivation, have been evaluated. On the other<br />

h<strong>and</strong>, the terrain has been evaluated concerning<br />

an increased susceptibility <strong>for</strong> deep-seated<br />

l<strong>and</strong>slides.<br />

The locality of the origin of danger (areas<br />

showing a higher probability <strong>for</strong> the development<br />

of a deep seated l<strong>and</strong>slide) has been identified<br />

within the previously cited disposition model.<br />

Previous experiences <strong>and</strong> analysis have<br />

demonstrated that deep-seated l<strong>and</strong>slides mostly<br />

occur in areas already affected by l<strong>and</strong>slides<br />

in the past. For this reason they can be used as<br />

design events. To detect these areas, in<strong>for</strong>mation<br />

about known l<strong>and</strong>slides, extracted from the<br />

databases listed in chapter 3.2 has to be evaluated.<br />

Permanent activity or more or less recurrent<br />

reactivation likely produces enlargement of the<br />

l<strong>and</strong>slide area identified in the disposition model,<br />

both the detachment <strong>and</strong> run-out zone upward<br />

<strong>and</strong> downward.<br />

Since a numeric modelling of deep seated<br />

l<strong>and</strong>slides is not available <strong>for</strong> a regional scale, the<br />

determination of the potential process area has<br />

to be worked out with empirical methods, taking<br />

into account the local geology <strong>and</strong> morphology.<br />

Under extreme conditions, the process<br />

area can reach the next ridge, terrace or depression<br />

in the greater surroundings of the l<strong>and</strong>slide. In the<br />

case of small-scaled scars in smooth slopes, a margin<br />

of 20 – 30 m has been added to the detachment<br />

areas to assess the potential process area.<br />

To determine the potential run out of an<br />

active or reactivable l<strong>and</strong>slide, the present runout<br />

length has been determined by databases,<br />

hillshades <strong>and</strong> field work in a first step. If there are<br />

indications <strong>for</strong> active movements in the l<strong>and</strong>slide<br />

toe, it is assumed that the run-out length will<br />

proceed even further in case of a reactivation. The<br />

danger area has to be dimensioned according to<br />

geomorphologic conditions.<br />

6. Flow processes<br />

6.1. General approach<br />

The procedure <strong>and</strong> depiction of flow processes<br />

like deep-seated l<strong>and</strong>slides (Talzuschub) is similar<br />

to the method used <strong>for</strong> slide processes. Flow<br />

processes rarely occur in low mountain ranges.<br />

In the German <strong>Alpine</strong> area, debris flows are<br />

more related to water-related <strong>hazard</strong>s <strong>and</strong> <strong>for</strong> this<br />

reason not explained here in detail.<br />

The deep-seated l<strong>and</strong>slides are h<strong>and</strong>led<br />

in the same way as the slide processes. The<br />

process occurring in the run-out zone of shallow<br />

l<strong>and</strong>slides is also mostly a flow process. To estimate<br />

this process as disposition model in Bavaria, the<br />

physical computer model SLIDISP is used. To find<br />

the run-out zones <strong>and</strong> to simulate the process, the<br />

model SLIDEPOT (GEOTEST) is applied.<br />

6.2 Modelling shallow l<strong>and</strong>slides (methods used in Bavaria)<br />

Shallow l<strong>and</strong>slides are usually triggered by heavy<br />

rainfall, depending on the predisposition of the<br />

slope. Like the rock fall simulation, the modelling<br />

of shallow l<strong>and</strong>slides is carried out in two steps.<br />

The starting zones are calculated in the disposition<br />

model <strong>and</strong> the run-out zones are calculated in the<br />

process model.<br />

For the disposition model, the<br />

deterministic numerical model SLIDISP (Liener<br />

2000 <strong>and</strong> GEOTEST AG) is used. This assumes an<br />

above average precipitation <strong>for</strong> a certain area. The<br />

Infinite-Slope-Analysis is applied to calculate the<br />

slope stability <strong>for</strong> every raster cell. Fundamental<br />

basic data are the slope angle, derived from the DEM<br />

from which the thickness of soil will be deduced<br />

<strong>and</strong> the geology which allows to determine friction<br />

angle <strong>and</strong> cohesion as geotechnical parameters.<br />

The factor of safety F will be calculated <strong>for</strong> every<br />

raster cell to describe the ratio of retentive <strong>and</strong><br />

impulsive <strong>for</strong>ces (Fig. 5, Selby 1993).<br />

The natural range in the variation of<br />

different input parameters will be considered<br />

using a Monte-Carlo-Simulation. For every<br />

raster cell, the number of instable cases will be<br />

determined. The higher the number of instabilities<br />

the higher is the probability of slope failure.<br />

Since the occurrence of <strong>for</strong>est affects the stability<br />

in an enormous way, the root strength will be


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 126<br />

Seite 127<br />

influences on karstification, can be noted in an<br />

additional category. Optionally, a differentiation<br />

between carbonate, sulphate <strong>and</strong> chloride<br />

karstification can be implemented in the first or<br />

second stage of the <strong>hazard</strong> map. If the in<strong>for</strong>mation<br />

is available in individual states, the spread of the<br />

inner <strong>and</strong> outer salt slopes as well as intact salt<br />

domes should be entered into the <strong>hazard</strong> map.<br />

8. Discussion<br />

Fig. 5: Principle <strong>for</strong> the calculation of the factor of safety F <strong>for</strong> every raster cell (Selby 1993).<br />

Abb. 5: Grundlagen zur Berechnung des Sicherheitsgrades F einer Rasterzelle (Selby 1993).<br />

integrated in the calculation of the factor of safety angle. The expansion stops if a defined number<br />

as an additional parameter. Considering the root of expansion steps is achieved or if the calculated<br />

strength <strong>and</strong> its effect on soil stability it is possible value falls below a defined threshold.<br />

to simulate two scenarios with different intensities<br />

The run-out zones will be calculated <strong>for</strong><br />

of the “root effect” (high <strong>and</strong> low).<br />

both scenarios. In both cases, a maximum of 8<br />

To calculate the run-out zones. the expansion steps have been calculated while the<br />

raster-based model SLIDEPOT is used (GEOTEST degradation factor has been reduced in the <strong>for</strong>est.<br />

AG). For every raster cell in the starting zone, Because of uncertainties concerning complex<br />

the accumulation will be modelled in the flow edge conditions, the degradation factors have<br />

direction. The model is based on neighbourhood been defined quite pessimistically. With this the<br />

statistics. Above a potential accumulation cell, the run-out zones are large enough <strong>and</strong> rather too<br />

raster cells inside a 20° sector will be analysed large in the case of doubt.<br />

(Fig. 6). Accumulation will be calculated if there<br />

is a starting zone <strong>and</strong> if the topography in the 7. Subrosion / karstification<br />

sector named above is not convex. Every step of<br />

expansion will analyse the neighbourhood up to a Superficial or near-surface subrosion features<br />

defined distance (4 cells; red circle in Fig. 6). With (sinkholes) <strong>and</strong> the knowledge of subrodable<br />

every step, the hypothetical starting volume <strong>and</strong> sediments serve as criteria <strong>for</strong> the analysis of<br />

the rest volume will be reduced by a degradation a process area. In the first stage, the following<br />

factor, which depends <strong>for</strong>emost on the slope <strong>hazard</strong> areas are distinguished:<br />

Fig. 6: Calculation of accumulation: <strong>for</strong> the central cell with<br />

exposition of 210° –230°, the 20° sector identifies 3 cells<br />

that are either starting zones or already show accumulation<br />

(orange cells).<br />

Abb. 6: Berechnung der Auslaufbereiche: Für die Rasterzelle<br />

in der Mitte mit der Zellexposition 210°–230° wurden<br />

drei Rasterzellen im Sektor von 20° ermittelt, die sowohl<br />

Anbruchzone als auch Auslaufbereich sind (orange Rasterzellen).<br />

Verified karstification features from the<br />

Geological map, event register or remote sensing<br />

(e.g. DEM) methods. In the first stage, superficial<br />

or near-surface subrosion features (e.g. sinkholes,<br />

depressions, clefts) are visualised. There is<br />

no differentiation between fossil <strong>and</strong> current<br />

subrosion features. The second stage includes<br />

the visualisation of the dispersion of karstifiable<br />

sediments. Hazard fields can be derived using<br />

a point or area statistical evaluation (e.g. using<br />

the feature density or a raster based density<br />

calculation), as well as using influencing factors,<br />

such as geology, tectonics <strong>and</strong> hydrogeology.<br />

The result of the second stage determines<br />

the differentiation of <strong>hazard</strong> areas. Where<br />

applicable, the <strong>hazard</strong> areas can be coupled<br />

with general geotechnical recommendations as<br />

to construction work in karst l<strong>and</strong>scapes. Special<br />

conditions in individual states, e.g. mining<br />

The <strong>hazard</strong> map has been worked out <strong>for</strong> a regional<br />

scale (1:25,000). There<strong>for</strong>e the boundaries of the<br />

<strong>hazard</strong> areas are not sharply bounded lines <strong>and</strong><br />

a detailed view on particular areas or objects is<br />

not allowed. In addition, the modelling of the<br />

different processes can make no claim to be<br />

complete. The maps show potentially endangered<br />

areas that have been determined on the basis of<br />

available in<strong>for</strong>mation <strong>and</strong> that has been computed<br />

with modern numerical models. Anthropogenic<br />

preventive measures have not been introduced<br />

into the models.<br />

Improbable <strong>and</strong> extreme events have not<br />

been considered. Instead, frequently occurring<br />

events have been modelled since they are more<br />

representative <strong>and</strong> felt more as a risk. From a<br />

geological view, rare <strong>and</strong> extreme events have<br />

to be accounted as an unavoidable residual <strong>and</strong><br />

remaining risk.<br />

The <strong>hazard</strong> maps <strong>for</strong> rock fall of single<br />

blocks <strong>and</strong> rock fall masses <strong>and</strong> deep-seated<br />

l<strong>and</strong>slides are based on field work <strong>for</strong> the most<br />

part. On the contrary, the <strong>hazard</strong> areas of shallow<br />

l<strong>and</strong>slides are solely based on computer models<br />

<strong>and</strong> represent a typical susceptibility map.<br />

There<strong>for</strong>e, they are presented as hatched areas.<br />

In the field, witnesses of <strong>for</strong>mer traces of shallow<br />

l<strong>and</strong>slides are hard to find due to weathering.<br />

However, if the predicted consequences of


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 128<br />

Seite 129<br />

climate change with an increase in extreme<br />

rainfalls will come true, an increasing number of<br />

shallow l<strong>and</strong>slides must be taken into account.<br />

Climate change predictions could be<br />

implemented in the model if maps with predicted<br />

precipitation on a local scale were available.<br />

This would allow the identification of hot spots<br />

with heavy rainfall <strong>and</strong>, there<strong>for</strong>e, a higher<br />

susceptibility <strong>for</strong> l<strong>and</strong>slides. The identification of<br />

such hot spots is one target in the <strong>Alpine</strong> Space<br />

Programme project AdaptAlp that also focuses<br />

on evaluation, harmonizing <strong>and</strong> improvement of<br />

different methods <strong>for</strong> <strong>hazard</strong> mapping.<br />

9. Conclusions<br />

A <strong>hazard</strong> map is a very helpful tool <strong>for</strong> planning<br />

authorities to get an overview about l<strong>and</strong> use<br />

conflicts <strong>and</strong> potentially endangered areas. It is<br />

a general map created under objective scientific<br />

criteria <strong>and</strong> indicating geological <strong>hazard</strong>s that<br />

have been identified <strong>and</strong> localized but not<br />

analysed <strong>and</strong> evaluated in detail. A <strong>hazard</strong> map<br />

does not contain specifications about the degree<br />

of <strong>hazard</strong> or the intensity or probability of an<br />

event.<br />

The map will be provided to local <strong>and</strong><br />

regional planning authorities <strong>for</strong> water, traffic,<br />

<strong>and</strong> <strong>for</strong>est management. It helps the planner<br />

identify hot spots <strong>and</strong> make decisions concerning<br />

measures of protection. On the other h<strong>and</strong>, it also<br />

shows areas not endangered <strong>and</strong> free <strong>for</strong> planning.<br />

In critical cases, the <strong>hazard</strong> map has<br />

to disclose the requirement <strong>for</strong> further analysis.<br />

In this cases a detailed expertise analysis has<br />

to decide if measures are technically feasible,<br />

economically reasonable <strong>and</strong> under sustainable<br />

aspects really necessary.<br />

To help potential users interpret the<br />

<strong>hazard</strong> map, the results are presented to all<br />

authorities. Furthermore, an intensive cooperation<br />

with the Bavarian Environment Agency is offered.<br />

In addition, a limited version of the <strong>hazard</strong> map is<br />

published on the Internet (www.bis.bayern.de).<br />

But the <strong>Alpine</strong> part of Bavaria is not the<br />

only region affected by geological <strong>hazard</strong>s. The<br />

<strong>Alpine</strong> foothills <strong>and</strong> the Swabian-Franconian<br />

Jurassic-mountains are affected as well. For the<br />

mid-term, the goal is to develop <strong>hazard</strong> maps <strong>for</strong><br />

the whole of Bavaria.<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Karl Mayer<br />

Bavarian Environment Agency (LfU)<br />

(Office Munich)<br />

Lazarettstraße 67<br />

80636 Munich – GERMANY<br />

Andreas von Poschinger<br />

Bavarian Environment Agency (LfU)<br />

(Office Munich)<br />

Lazarettstraße 67<br />

80636 Munich – GERMANY<br />

Literatur / References:<br />

BUNDESAMT FÜR RAUMENTWICKLUNG, BUNDESAMT FÜR<br />

WASSER UND GEOLOGIE, BUNDESAMT FÜR UMWELT, WALD UND<br />

LANDSCHAFT (BUWAL) [eds.] (2005):<br />

Empfehlungen Raumplanung und Naturgefahren. – 50 p., Bern.<br />

EVANS, S. G. & HUNGR, O. (1993):<br />

The <strong>assessment</strong> of rock fall <strong>hazard</strong>s at the base of talus slopes. – Canadian<br />

Geotechnical Journal, 30 (4): 620-636, Ottawa (Nat. Res. Council of<br />

Canada).<br />

HEGG, C. & KIENHOLZ, H. (1995):<br />

Deterministic paths of gravity-driven slope processes: The „Vector Tree<br />

Model“. In: Carrara, A. & Guzzetti, F. (eds.): Geographical In<strong>for</strong>mation<br />

Systems in Assessing Natural Hazards, 79 – 92, Dordrecht.<br />

KIENHOLZ, H., ERISMANN, TH., FIEBIGER, G. & MANI, P. (1993):<br />

Naturgefahren: Prozesse, Kartographische Darstellung und Maßnahmen.<br />

– In: Tagungsbericht zum 48. Deutschen Geographentag in Basel, 293 –<br />

312, Stuttgart.<br />

KRUMMENACHER, B., PFEIFER, R., TOBLER, D., KEUSEN, H. R., LINIGER,<br />

M. & ZINGGELER, A. (2005):<br />

Modellierung von Stein- und Blockschlag; Berechnung der Trajektorien auf<br />

Profilen und im 3-D Raum unter Berücksichtigung von Waldbest<strong>and</strong> und<br />

Hindernissen. – anlässlich Fan-Forum ETH Zürich am 18.02.2005, 9 p.,<br />

Zollikofen.<br />

LIED, K. (1977):<br />

Rockfall problems in Norway. – In: Istituto Sperimentale Modelli e Strutture<br />

(ISMES), 90: 51-53, Bergamo.<br />

LIENER, S., (2000):<br />

Zur Feststofflieferung in Wildbächen. Geographisches Institut Universität<br />

Bern. Geographica Bernensia G64, Bern.<br />

MAYER, K. & VON POSCHINGER, A. VON (2005):<br />

Final Report <strong>and</strong> Guidelines: Mitigation of Hydro-Geological Risk in <strong>Alpine</strong><br />

Catchments, “CatchRisk”. Work Package 2: L<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong><br />

(Rockfall modelling). Program Interreg IIIb – <strong>Alpine</strong> Space.<br />

MAYER, K., PATULA, S., KRAPP, M., LEPPIG, B., THOM, P., POSCHINGER,<br />

A. VON (2010):<br />

Danger Map <strong>for</strong> the Bavarian Alps. Z. dt. Ges. Geowiss., 161/2, p. 119-128,<br />

10 figs. Stuttgart, June 2010<br />

MEISSL, G. (1998):<br />

Modellierung der Reichweite von Felsstürzen. – In: Innsbrucker<br />

Geographische Studien, 28: 249 p., Innsbruck (Selbstverl. des Instituts für<br />

Geographie der Universität Innsbruck).<br />

ONOFRI, R. & CANDIAN, C. (1979):<br />

Indagine sui limiti di massima invasione dei blocchi franati durante il sisma<br />

del Friuli del 1976. – Regione Autonoma Friuli-Venezia Giulia e Università<br />

degli Studi di Trieste, 41 p., Trieste (Cluet Publisher).<br />

PERSONENKREIS “GEOGEFAHREN“ (2008):<br />

Geogene Naturgefahren in Deutschl<strong>and</strong> – Empfehlungen der Staatlichen<br />

Geologischen Dienste (SGD) zur Erstellung von Gefahrenhinweiskarten;<br />

not published.<br />

SELBY, M.J. (1993):<br />

Hillslope Materials <strong>and</strong> Processes, Ox<strong>for</strong>d University Press, Ox<strong>for</strong>d.<br />

UMWELTBUNDESAMT [eds.] (2008):<br />

Klimaauswirkungen und Anpassung in Deutschl<strong>and</strong> – Phase 1: Erstellung<br />

regionaler Klimaszenarien für Deutschl<strong>and</strong>. – http://www.umweltdaten.de/<br />

publikationen/fpdf-l/3513.pdf<br />

WADGE, G., WISLOCKI, A.P. & PEARSON, E.J. (1993):<br />

Spatial analysis in GIS <strong>for</strong> natural <strong>hazard</strong> <strong>assessment</strong>. In: Goodchild, M.F.,<br />

Parks B.O. & Steyaert, L.T. (Hrsg.) – Environmental modelling with GIS:<br />

332-338, New York, Ox<strong>for</strong>d.<br />

WIECZOREK, F. G., MORRISSEY, M. M., IOVINE, G. & GODT, J. (1999):<br />

Rockfall Potential in the Yosemite Valley, Cali<strong>for</strong>nia. – In: U.S. Geological<br />

Survey Open-File Report 99-0578, http://pubs.usgs.gov/of/1999/ofr-99-<br />

0578/.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 130<br />

Seite 131<br />

DIDIER RICHARD<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment<br />

<strong>for</strong> Rapid <strong>Mass</strong> <strong>Movements</strong> in France<br />

St<strong>and</strong>ards und Methoden der Gefährdungsanalyse<br />

für schnelle <strong>Mass</strong>enbewegungen in Frankreich<br />

Summary:<br />

Hazard <strong>assessment</strong> is required <strong>for</strong> different purposes <strong>and</strong> is carried out through expertise<br />

<strong>assessment</strong>s at different levels, using various approaches. Hazard <strong>assessment</strong> <strong>and</strong> mapping<br />

methods are st<strong>and</strong>ardized at least <strong>for</strong> their use in the frame of l<strong>and</strong>-use planning in what is<br />

called the plan <strong>for</strong> the prevention of natural <strong>hazard</strong>s (plan de prévention des risques naturels<br />

prévisibles, PPR). This is one of the main instruments used by the French national authorities<br />

<strong>for</strong> preventing natural <strong>hazard</strong>s while taking them into account in l<strong>and</strong> use development.<br />

Within this procedure, a general methodological guidelines document <strong>and</strong> other<br />

documents specific to the different types of <strong>hazard</strong>s specify the conditions <strong>and</strong> clarify the<br />

method <strong>and</strong> approach proposed to draw up the PPR. One of these documents is dedicated<br />

to mass movement <strong>hazard</strong>s. In this procedure, the <strong>hazard</strong> map is an intermediate step in<br />

elaborating the risk map, i.e. the regulations stemming from the PPR (together with the<br />

associated regulations).<br />

Various types of in<strong>for</strong>mation available <strong>and</strong> databases can be used <strong>for</strong> <strong>hazard</strong><br />

<strong>assessment</strong> <strong>and</strong> <strong>hazard</strong> mapping, based on an inventory of phenomena <strong>and</strong> a back-analysis<br />

of current <strong>and</strong> past events.<br />

Hazard <strong>assessment</strong> must characterize a given <strong>hazard</strong> in terms of intensity <strong>and</strong><br />

frequency of occurrence. For mass movements, specific approaches are proposed, given the<br />

specific characteristics of these phenomena.<br />

Zusammenfassung:<br />

Gefahrenbeurteilungen sind für verschiedene Zwecke er<strong>for</strong>derlich und werden in Form von<br />

fachlichen Gutachten auf unterschiedlichen Ebenen anh<strong>and</strong> verschiedener Ansätze vorgenommen.<br />

Gefährdungsbeurteilung und Kartierungsmethoden sind zumindest für die Verwen-<br />

dung im Rahmen der Flächennutzungsplanung st<strong>and</strong>ardisiert: Der Plan für die Verhinderung<br />

von Naturgefahren (plan de prévention des risques naturels prévisibles, PPR) ist eines der<br />

wichtigsten Mittel der französischen nationalen Behörden für die Vermeidung natürlicher<br />

Gefahren und findet in der Flächennutzungsplanung Berücksichtigung.<br />

Im Rahmen dieses Verfahrens beschreiben allgemeine methodologische Richtlinien<br />

und <strong>and</strong>ere, für die verschiedenen Arten von Gefahren spezifische Dokumente die Bedingungen<br />

und geben Aufschluss über die empfohlenen Methoden und Ansätze zum Erstellen<br />

des PPR. Eines dieser Dokumente befasst sich mit den durch <strong>Mass</strong>enbewegungen verursachten<br />

Gefahren. In diesem Verfahren ist der Gefahrenzonenplan ein Zwischenschritt in<br />

der Erstellung des Risikoplans, d.h., die Vorgaben stammen vom PPR (gemeinsam mit den<br />

zugehörigen Bestimmungen).<br />

Für die Erstellung von Gefährdungsanalysen und die Gefahrenzonenplanung (Gefahrenkartierung)<br />

stehen – beruhend auf einem Best<strong>and</strong> von Phänomenen und einer Analyse<br />

aktueller und vergangener Ereignisse – verschiedene Arten von In<strong>for</strong>mationen und Datenbanken<br />

zur Verfügung.<br />

Gefährdungsanalysen müssen eine gegebene Gefahr in Bezug auf die Intensität und<br />

Häufigkeit des Auftretens beschreiben. Für <strong>Mass</strong>enbewegungen sind spezifische Ansätze<br />

empfohlen, welche die spezifischen Merkmale dieser Erscheinungen berücksichtigen.<br />

Introduction<br />

Hazard <strong>assessment</strong> of rapid mass movements<br />

is required <strong>for</strong> different purposes than <strong>for</strong> other<br />

natural phenomena. Depending on the objectives,<br />

this must be carried out at different scales. Hazard<br />

<strong>assessment</strong> can also take different <strong>for</strong>ms, but<br />

most often its final outcome is a <strong>hazard</strong> map.<br />

Different types of expertise from various experts<br />

<strong>and</strong> approaches contribute to <strong>hazard</strong> <strong>assessment</strong>.<br />

There<strong>for</strong>e, establishing st<strong>and</strong>ardized approaches,<br />

methods <strong>and</strong> tools is dem<strong>and</strong>ing. The field of l<strong>and</strong>use<br />

planning, however, integrates st<strong>and</strong>ardized<br />

<strong>hazard</strong> <strong>assessment</strong> <strong>and</strong> mapping methods.<br />

Hazards mapping <strong>and</strong> l<strong>and</strong>-use planning<br />

Natural <strong>hazard</strong>s must be taken into account in l<strong>and</strong>use<br />

planning documents. These are mainly schemes<br />

of territorial coherence at an inter-urban scale <strong>and</strong><br />

local urban planning at the community scale.<br />

Typically, urban planning procedures<br />

<strong>and</strong> decisions, under the jurisdiction of national or<br />

local authorities, must integrate natural <strong>hazard</strong>s.<br />

The plan <strong>for</strong> prevention of natural <strong>hazard</strong>s (plan de<br />

prévention des risques naturels prévisibles - PPR)<br />

established by the law of February 2, 1995, is now<br />

one of the national authority’s main instruments<br />

<strong>for</strong> preventing natural <strong>hazard</strong>s. The PPR is a<br />

specific procedure designed to take into account<br />

natural <strong>hazard</strong>s in l<strong>and</strong>-use development.<br />

The PPR is elaborated under the authority<br />

of the department’s prefect, which approves it<br />

after <strong>for</strong>mal consultation with municipalities <strong>and</strong><br />

a public inquiry. The PPR involves the local <strong>and</strong><br />

regional authorities concerned from the very first<br />

steps of its preparation (Fig. 1). It can cover one<br />

or several types of <strong>hazard</strong>s <strong>and</strong> one or several<br />

municipalities.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 132<br />

Seite 133<br />

For areas exposed to greater <strong>hazard</strong>s, the PPR is<br />

a document which in<strong>for</strong>ms the public on zones<br />

that expose populations <strong>and</strong> property to <strong>hazard</strong>s.<br />

It regulates l<strong>and</strong> use, taking into account natural<br />

<strong>hazard</strong>s identified in this zone <strong>and</strong> goals of<br />

nonaggravation of risks. This regulation extends<br />

from authorising construction under certain<br />

conditions to prohibiting construction in cases<br />

where the <strong>for</strong>eseeable intensity of <strong>hazard</strong> or the<br />

nonaggravation of existing risks warrants such<br />

action. This guides development choices on less<br />

exposed l<strong>and</strong> in order to reduce harm <strong>and</strong> damage<br />

to persons <strong>and</strong> property.<br />

The PPR is designed <strong>for</strong> urban planning<br />

<strong>and</strong> is incumbent on everybody: individuals,<br />

companies, communities <strong>and</strong> government<br />

authorities, especially when delivering building<br />

permits. It must there<strong>for</strong>e be annexed to<br />

the local urban planning plan when such a<br />

document exists.<br />

The basis <strong>for</strong> the regulation of projects<br />

in the perimeter of a PPR is to discontinue<br />

development in areas with the greatest <strong>hazard</strong><br />

<strong>and</strong>, there<strong>for</strong>e, to prohibit l<strong>and</strong> development<br />

<strong>and</strong> construction. This principle must be strictly<br />

Fig. 1: PPR<br />

elaboration<br />

scheme (Source: V.<br />

Boudières; 2008)<br />

Abb. 1: Programm<br />

zur Ausarbeitung<br />

eines PPR (Quelle:<br />

V. Boudières; 2008)<br />

applied when the safety of persons is involved.<br />

In other cases, this principle remains particularly<br />

warranted by the cost of preventive measures to<br />

reduce the vulnerability of future constructions<br />

<strong>and</strong> the cost of compensation in cases of<br />

disaster, financed by society. However, since<br />

the prevention objectives are then based on<br />

economic considerations, it is possible to discuss<br />

the limits of prohibitions <strong>and</strong> requirements with<br />

local actors, elected officials <strong>and</strong> economic <strong>and</strong><br />

consumer representatives without departing from<br />

this principle. Adjustments can be accepted when<br />

the situation does not allow alternatives. For<br />

example in urban centres, where requirements<br />

to reduce the vulnerability of projects <strong>and</strong><br />

preventive, protection <strong>and</strong> safety measures<br />

allowing the organization of emergency services<br />

will be set up.<br />

The PPR may operate in zones that are<br />

directly at risk, but also in other zones that are<br />

not in order to avoid aggravating existing risks<br />

or causing new ones. It regulates projects <strong>for</strong><br />

new installations. It may prohibit or impose<br />

requirements on any type of construction,<br />

structure, development or any farming, <strong>for</strong>estry,<br />

craft, commercial or industrial activity, <strong>for</strong> their<br />

completion, use or exploitation <strong>and</strong> requirements<br />

of any kind can be used, up to total prohibition.<br />

The PPR may also define general preventive,<br />

protection <strong>and</strong> safety measures that must be<br />

taken into account by communities as well as<br />

individuals. This option particularly concerns<br />

measures relating to the safety of persons <strong>and</strong> the<br />

organization of rescue operations as well as all<br />

general measures that are not specifically related<br />

to a particular project.<br />

Finally, the PPR may take an interest<br />

in existing structures as well as new projects.<br />

However, <strong>for</strong> property construction that has been<br />

allowed in the past, only limited improvements<br />

whose cost is less than 10% of the market or<br />

estimated value of the property can be required.<br />

As a complement to the PPR – the central<br />

tool of the French national authorities’ natural<br />

<strong>hazard</strong>s prevention action – other procedures<br />

<strong>and</strong> tools are designed to provide preventive<br />

in<strong>for</strong>mation that must be provided to inhabitants<br />

possibly exposed to <strong>hazard</strong>s (in<strong>for</strong>mation tools:<br />

DDRM, DCS, DICRIM, IAL, etc.) as well as<br />

measures relating to the safety of persons <strong>and</strong> the<br />

organization of rescue operations that must be<br />

taken into account by communities <strong>and</strong> private<br />

individuals (safety measures plan: PCS). These<br />

procedures are m<strong>and</strong>atory <strong>for</strong> the municipalities<br />

with an existing PPR. Danger studies are also<br />

m<strong>and</strong>atory <strong>for</strong> certain classes of hydraulic works<br />

(new regulations <strong>for</strong> dams <strong>and</strong> dikes). Adequate<br />

<strong>hazard</strong> <strong>assessment</strong> (<strong>and</strong> mapping) is of course also<br />

necessary <strong>for</strong> all these prevention tools.<br />

Rapid mass movements<br />

Approximately 7,000 French municipalities are<br />

threatened by mass movements, one-third of<br />

which can be highly dangerous <strong>for</strong> the population.<br />

Most of these towns, located in mountain regions,<br />

are exposed to various phenomena stemming<br />

from the instability of slopes <strong>and</strong> cliffs (collapses,<br />

rock falls, l<strong>and</strong>slides).<br />

<strong>Mass</strong> movements are demonstrations<br />

of the gravitational movement of ground masses<br />

destabilized under the influence of natural<br />

solicitations (snow melting, abnormally heavy<br />

rainfall, an earthquake, etc.) or human activities<br />

(excavation, vibration, de<strong>for</strong>estation, exploitation<br />

of materials or groundwater, etc.).<br />

They vary greatly in <strong>for</strong>m, resulting from<br />

the multiplicity of triggering mechanisms (erosion,<br />

dissolution, de<strong>for</strong>mation <strong>and</strong> collapse under<br />

static or dynamic load), themselves related to the<br />

complexity of the geotechnical behaviour of the<br />

materials (geologic structure, geometry of the<br />

fracture networks, groundwater characteristics, etc.)<br />

According to the velocity of movement, two<br />

groups can be distinguished:<br />

• Slow movements, <strong>for</strong> which the de<strong>for</strong>mation<br />

is progressive <strong>and</strong> can be accompanied by<br />

collapse but in principle without sudden<br />

acceleration:<br />

Ground subsidence consecutive<br />

to changes in natural or artificial<br />

subterranean cavities (quarries or mines);<br />

Compaction by shrinkage of clayey<br />

grounds <strong>and</strong> by consolidation of certain<br />

compressible grounds (muck, peat);<br />

Creep of plastic materials on low slopes;<br />

L<strong>and</strong>slides, i.e. a mass movement along<br />

a flat, curved or complex discontinuity<br />

surface of cohesive grounds (marls <strong>and</strong><br />

clays);<br />

Shrinkage or swelling of certain clayey<br />

materials depending on their moisture<br />

content.<br />

• Rapid movements which can be split into<br />

two groups, according to the propagation<br />

mode of materials:


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 134<br />

Seite 135<br />

The first group includes:<br />

Subsidence resulting from the sudden<br />

collapse of the top of natural or artificial<br />

subterranean cavities, without damping<br />

by the surface layers;<br />

Rock falls resulting from the mechanical<br />

alteration of fractured cliffs or rocky<br />

scarps (volumes ranging from 1 dm 3 to<br />

10 4 or 10 5 m 3 );<br />

Some rock slides.<br />

The second group includes:<br />

Debris flows, which result from the<br />

transport of materials or viscous or fluid<br />

mixtures in the bed of mountain streams;<br />

Mud flows, which generally result from<br />

the evolution of l<strong>and</strong>slide fronts. Their<br />

propagation mode is intermediate between<br />

mass movement <strong>and</strong> fluid or viscous<br />

transport.<br />

St<strong>and</strong>ards <strong>and</strong> methods<br />

In France’s administrative <strong>and</strong> institutional<br />

organization, certain activities <strong>and</strong> policies remain<br />

the jurisdiction of centralised authorities, such as<br />

the policy <strong>for</strong> natural risk prevention, overseen by<br />

the Ministry of the Environment. This is probably<br />

one of the most significant differences compared<br />

with other <strong>Alpine</strong> countries. One consequence<br />

is the willingness to maintain a minimum<br />

homogeneity <strong>and</strong> coherence at the national level<br />

<strong>and</strong> in the way different types of natural <strong>hazard</strong>s<br />

are treated.<br />

Within the framework of this common<br />

procedure, a general methodological guidelines<br />

document has been published, followed by others<br />

specific to the different types of <strong>hazard</strong>s: floods,<br />

<strong>for</strong>est fires, earthquakes, snow avalanches (to be<br />

approved), torrential floods (to be approved)…<br />

One of these guideline documents is dedicated<br />

to geological <strong>hazard</strong>s, including subsidence,<br />

sinking, collapse, rock falls, l<strong>and</strong>slides, <strong>and</strong><br />

associated mud flows, but it excludes debris flows<br />

in general.<br />

The general guide, published in August<br />

1997, presents the PPR, specifies how it should<br />

be drawn up <strong>and</strong> tries to answer the numerous<br />

questions that may arise <strong>for</strong> their implementation.<br />

The other guidelines, such as the one dedicated<br />

to mass movements, clarify the method <strong>and</strong><br />

approach proposed <strong>for</strong> the various types of risks.<br />

The general methodology establishes that the PPR<br />

is composed of:<br />

• a presentation report explaining the<br />

analysis of the phenomena considered<br />

<strong>and</strong> the study of their impacts on people<br />

<strong>and</strong> existing or future property. This report<br />

explains the choices made <strong>for</strong> prevention,<br />

stating the principles the PPR is based on<br />

<strong>and</strong> commenting the regulations adopted.<br />

• a regulatory map at a scale generally<br />

between 1:10,000 <strong>and</strong> 1:5,000, which<br />

delineates areas controlled by the PPR.<br />

These are risk-prone areas but also areas<br />

where development could aggravate the<br />

risks or produce new sources of risk.<br />

• regulations applied to each of these areas.<br />

The regulations define the conditions<br />

required <strong>for</strong> carrying out projects,<br />

prevention, protection <strong>and</strong> safety measures<br />

that must be taken by individuals or<br />

communities, but also measures applicable<br />

to existing property <strong>and</strong> activities.<br />

The regulatory zoning of the PPR is based on<br />

risk <strong>assessment</strong>, which depends on the analysis<br />

of the natural phenomena that may occur <strong>and</strong><br />

of their possible consequences in terms of l<strong>and</strong><br />

use <strong>and</strong> public safety. This analysis includes four<br />

preliminary stages:<br />

• Determination of the risk basin <strong>and</strong> the<br />

study perimeter;<br />

• Knowledge of the historic <strong>and</strong> active natural<br />

phenomena: inventory <strong>and</strong> description;<br />

• Hazard qualification: characterization of<br />

natural phenomena which can arise within<br />

the study perimeter;<br />

• Evaluation of the socioeconomic <strong>and</strong><br />

human stakes subjected to these <strong>hazard</strong>s.<br />

The elaboration of the PPR generally begins<br />

with the historical analysis of the main natural<br />

phenomena that have affected the studied<br />

territory. This analysis, possibly supplemented<br />

by expert advice on potential <strong>hazard</strong>s, results<br />

Fig. 2: The PPR<br />

methodological<br />

guidelines collection<br />

Abb. 2: Die<br />

Sammlung methodologischer<br />

Richtlinien für<br />

einen PPR<br />

Fig. 3: Positioning of the<br />

<strong>hazard</strong> map within the<br />

general procedure of PPR<br />

elaboration<br />

Abb. 3: Positionierung des<br />

Gefahrenzonenplans in der<br />

allgemeinen Ausarbeitungsphase<br />

eines PPR


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 136<br />

Seite 137<br />

in a <strong>hazard</strong> map that evaluates the scope of<br />

predictable phenomena. This map, including an<br />

analysis of the territory outcomes carried out in<br />

consultation with the various local partners, is<br />

the basis <strong>for</strong> reflection during the elaboration<br />

of the PPR. Combining the levels of <strong>hazard</strong> <strong>and</strong><br />

outcomes allows defining risk zones.<br />

There<strong>for</strong>e, in this procedure the <strong>hazard</strong><br />

map is an intermediate step necessary to elaborate<br />

the risk map, i.e. the real regulatory outcome of<br />

the PPR (together with the associated regulations).<br />

The study of phenomena by risk basin produces<br />

the <strong>hazard</strong> map, which is combined with the<br />

identification of elements at risk in drawing up the<br />

risk map.<br />

Data <strong>and</strong> in<strong>for</strong>mation<br />

The first step in elaborating <strong>hazard</strong> maps consists<br />

of collecting all available data <strong>and</strong> in<strong>for</strong>mation<br />

that can be exploited <strong>for</strong> <strong>hazard</strong> <strong>assessment</strong>.<br />

Priority is given to the qualitative general studies<br />

<strong>and</strong> to the back-analysis of past events. The<br />

general studies are conducted based on existing<br />

data, the back-analysis of past or current events<br />

<strong>and</strong> field surveys. Priority must be given to these<br />

elements, as stipulated by article 3 of the decree<br />

of October 5th, 1995, which specifies that the<br />

elaboration of PPR takes into account the current<br />

state of knowledge.<br />

The main in<strong>for</strong>mation sources are:<br />

• Municipal archives (technical documents,<br />

deliberations, miscellaneous documents,<br />

petitions, general reports or accident<br />

reports, etc.);<br />

• Parochial archives;<br />

• Departmental sources (archive <strong>and</strong> quarry<br />

services, miscellaneous diagnoses, etc.);<br />

• Engineering consulting firm documents<br />

(geotechnical <strong>and</strong> geological reports, civil<br />

engineering studies <strong>and</strong> reports, field visit<br />

reports, etc.);<br />

• General <strong>and</strong> research documents (scientific<br />

papers, geological guides, monographs,<br />

PhD theses, etc.);<br />

• Field surveys <strong>and</strong> eye witness accounts;<br />

• Existing databases <strong>and</strong> maps, aerial<br />

photographs.<br />

Historical <strong>and</strong> existing studies as well as field<br />

investigations are collected <strong>for</strong> the study of the<br />

Fig. 5:<br />

Geological<br />

maps <strong>and</strong><br />

databases<br />

(www.<br />

brgm.fr)<br />

Abb. 5:<br />

Geologische<br />

Karten und<br />

Datenbanken<br />

(www.<br />

brgm.fr)<br />

Study of phenomena<br />

by risk basin<br />

Identification of<br />

elements at risk<br />

Regulatory<br />

documents<br />

Historical <strong>and</strong> existing<br />

studies, field investigation<br />

In<strong>for</strong>mative map of<br />

natural phenomena<br />

Hazard map<br />

Necessary in<strong>for</strong>mation <strong>and</strong> consultation<br />

Available maps <strong>and</strong> data bases<br />

Elements at risk<br />

appreciation<br />

Risk Prevention<br />

Plan (PPR)<br />

Risk management<br />

Annexation as<br />

servitude in the PLU<br />

Fig. 4:<br />

The first<br />

step of<br />

<strong>hazard</strong><br />

mapping<br />

Abb. 4:<br />

Der erste<br />

Schritt<br />

der<br />

Gefahrenzonenplanung<br />

Fig. 6:<br />

Example of<br />

a ZERMOS<br />

map<br />

Abb. 6:<br />

Beispiel<br />

eines<br />

ZERMOS-<br />

Plans


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 138<br />

Seite 139<br />

Intensity level<br />

Low<br />

Coutermeasures importance level<br />

Can be financed by an individual owner<br />

phenomena step. Maps <strong>and</strong> databases are available<br />

<strong>for</strong> this work: geological maps at a 1:50,000 scale,<br />

covering France (Fig. 5 - www.brgm.fr); a few<br />

Zermos maps (Fig. 6) of zones exposed to soil<br />

movement <strong>hazard</strong>s, a combination of susceptibility<br />

levels <strong>and</strong> geomorphologic features, which are<br />

quite old <strong>and</strong> not exhaustive; a French database<br />

of mass movements (Fig. 7 - www.bdmvt.net);<br />

<strong>and</strong> an events database of the RTM services that<br />

will soon be on line.<br />

Hazard <strong>assessment</strong><br />

Hazard evaluation includes three components:<br />

the intensity of mass movements, the time of<br />

occurrence <strong>and</strong> the spatial extension. Once<br />

translated into regulatory zoning, the in<strong>for</strong>mation<br />

contained in this map will be used to manage <strong>and</strong><br />

plan l<strong>and</strong> development <strong>and</strong> construction works.<br />

Hazards are thus qualified in terms of intensity.<br />

Considering the variety of mass movements,<br />

Fig. 7: The<br />

BDMVT,<br />

French<br />

database<br />

of mass<br />

movements<br />

(www.<br />

bdmvt.net)<br />

Abb. 7:<br />

BDMVT<br />

– französische<br />

Datenbank<br />

für<br />

<strong>Mass</strong>enbewegungen<br />

(www.<br />

bdmvt.net)<br />

it is difficult to directly translate their physical<br />

characteristics in terms of intensity, except by<br />

defining as many <strong>hazard</strong>s as movement types,<br />

which would make the <strong>hazard</strong> zoning document<br />

difficult to read. It is there<strong>for</strong>e necessary to refer to<br />

more global criteria so they can be compared <strong>and</strong><br />

their use <strong>for</strong> regulatory zoning facilitated.<br />

Different methods are possible to assess a<br />

representative intensity level <strong>for</strong> all phenomena:<br />

• As <strong>for</strong> earthquakes, intensity can be<br />

translated in terms of potential <strong>for</strong> damage,<br />

using parameters such as the volume of<br />

soil or rock involved, the depth of the<br />

failure surface, the final displacement,<br />

the kinetic energy, etc. However, damage<br />

potential depends not only on the physical<br />

phenomenon, but also on the vulnerability<br />

of buildings, which introduces a bias.<br />

• Intensity can be assessed according to<br />

the importance <strong>and</strong> the cost of protection<br />

measures that would be necessary to<br />

Medium<br />

High<br />

Major<br />

Can be financed by a limited group of owners<br />

Fig. 8: Example of relationships proposed between the importance of countermeasures <strong>and</strong> intensity level<br />

Abb. 8: Beispiel der empfohlenen Beziehungen zwischen der Bedeutung der Gegenmaßnahmen und der Intensitätsstufe<br />

implement. Different classes of intensity can<br />

be identified if these measures remain within<br />

the domain of an individual owner or a group<br />

of owners or if they require community<br />

intervention <strong>and</strong> investment (Fig. 8).<br />

Geological <strong>hazard</strong> qualification is based on<br />

qualitative criteria, such as the observed or expected<br />

damage or impacts or the cost range of possible<br />

countermeasures <strong>for</strong> the intensity evaluation.<br />

The frequency of events is estimated on<br />

the basis of the historical events identified on<br />

the site. The reference <strong>hazard</strong> is the most severe<br />

potential events considered by the expert as likely<br />

to occur in a 100-year period (or more frequently<br />

if human lives are concerned), or the most severe<br />

historical event identified on an equivalent site.<br />

The probabilistic approach based on<br />

a frequency analysis is possible only <strong>for</strong> some<br />

phenomena such as rock falls. This assumes that<br />

sufficient data are available, which is actually<br />

rare. As most mass movements are not repetitive<br />

processes, contrary to earthquakes or floods, it is<br />

necessary to consider a probability of occurrence<br />

of an event qualitatively over a given period (e.g.<br />

50 or 100 years), without reference to numerical<br />

values. For instance, three levels or probabilities<br />

may be used: low, medium <strong>and</strong> high.<br />

Concerns a spatial area larger than the individual<br />

ownership scale <strong>and</strong>/or very higth cost <strong>and</strong>/or technically<br />

difficult<br />

No possible technical countermeasure<br />

Only a few cases in France (Séchilienne, la Clapière...)<br />

In most cases, the occurrence probability is not<br />

a true probability, but is simply a scale of relative<br />

susceptibility, relying on elements such as slope<br />

angle, lithology, fracturing of the rock mass,<br />

presence of water, etc.<br />

The <strong>hazard</strong> is graded by combining the<br />

time occurrence <strong>and</strong> the intensity, typically in a<br />

2D table (Fig. 10). There is no general specification<br />

<strong>for</strong> this stage of the <strong>hazard</strong> evaluation, but<br />

presenting the key of the <strong>hazard</strong> evaluation is<br />

strongly recommended.<br />

In the presence of substantial human<br />

<strong>and</strong> socioeconomic danger, methods <strong>and</strong><br />

tools specifying the spatial extension of the<br />

phenomena, thus reducing uncertainty, can be<br />

used: run-out modelling <strong>for</strong> rock falls, geophysics<br />

surveys delineating underground mines, etc. In<br />

case of rock falls <strong>and</strong> related phenomena, <strong>hazard</strong><br />

evaluation includes both the stability analysis<br />

of rock masses <strong>and</strong> run-out distance evaluation.<br />

Numerical tools are increasingly used to estimate<br />

the maximal run-out distance, but the reliability of<br />

the results is highly dependent on the experience<br />

of the engineering geologist.<br />

Generally, the topographic basis used is<br />

the IGN (National Geographic Institute) 1:25,000<br />

map, enlarged to 1:10,000. In presence of


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 140<br />

Seite 141<br />

Conclusion<br />

Acknowledgements<br />

Fig. 9: Decision process <strong>for</strong> assessing the reference <strong>hazard</strong><br />

Abb. 9: Entscheidungsprozess zur Bewertung der Bezugsgefährdung<br />

substantial damage potential or if the precision<br />

of the study <strong>and</strong> the amount of available data<br />

allow it, it is possible to map the <strong>hazard</strong>s on a<br />

or Séchilienne (Isère), involving more than 10<br />

million cubic metres of material, ad hoc methods<br />

of <strong>hazard</strong> <strong>assessment</strong> have been set up, including<br />

1:5,000-scale map.<br />

the monitoring of movement <strong>and</strong> various<br />

As far as very large mass movements are computer simulations.<br />

concerned, such as La Clapière (Alpes-Maritimes)<br />

Probability of occurrence<br />

Methods assessing <strong>hazard</strong>s <strong>for</strong> rapid mass<br />

movements are still mostly empirical <strong>and</strong> rely<br />

on the experience of the engineering geologist.<br />

The PPR guidelines give a general framework<br />

<strong>and</strong> general principles <strong>for</strong> <strong>hazard</strong> <strong>assessment</strong> <strong>and</strong><br />

mapping. Precise rules are not yet available at the<br />

national level. The geological analysis remains the<br />

basis of <strong>hazard</strong> evaluation, but numerical tools as<br />

GIS <strong>and</strong> computer simulation are also used. The<br />

main requirement is that the method used should<br />

be explained.<br />

Anschrift des Verfassers / Author’s address:<br />

Didier Richard<br />

Cemagref – Unité de Recherche<br />

“érosion torrentielle, neige et avalanches”<br />

BP 76 – F 38402 Saint-Martin-d’Hères Cedex<br />

Tel. : +33 4 76 76 27 73<br />

mail : didier.richard@cemagref.fr<br />

Jean-Louis Durville, Conseil général de<br />

l'environnement et du développement durable.<br />

Alison Evans, Service de Restauration des Terrains<br />

en Montagne de Haute-Savoie.<br />

The person to contact <strong>for</strong> more in<strong>for</strong>mation on this<br />

policy within the French Ministry of Sustainabledevelopment,<br />

is François Hédou (Francois.<br />

HEDOU@developpement-durable.gouv.fr).<br />

Literatur / References:<br />

RISK PREVENTION FRENCH WEBPORTAL: www.prim.net<br />

RISK MAPPING:<br />

http://cartorisque.prim.net/<br />

WEBSITE OF THE FRENCH MINISTRY IN CHARGE OF RISK PREVENTION<br />

POLICY: http://www.developpement-durable.gouv.fr/<br />

FRENCH MASS MOVEMENTS DATABASE: http://www.bdmvt.net/<br />

BRGM (bureau de recherches géologiques et minières) Website: http://<br />

www.brgm.fr/<br />

LCPC (1999)<br />

L'utilisation de la photo-interprétation dans l'établissement des plans<br />

de prévention des risques liés aux mouvements de terrain. Collection<br />

Environnement, 128 p.<br />

LCPC (2000)<br />

Caractérisation et cartographie de l'aléa dû aux mouvements de terrain.<br />

Collection Environnement, 91 p.<br />

MINISTÈRE DE L'AMÉNAGEMENT DU TERRITOIRE (1999).<br />

Plans de prévention des risques naturels (PPR). Risques de mouvements de<br />

terrain. La Documentation française, 71 p.<br />

Intensity level<br />

Low<br />

Determining factors<br />

identified on the site are<br />

diffuse, poorly determined.<br />

Medium<br />

Many determining factors are<br />

identified on the site. Some<br />

factors unlisted can appear<br />

with time.<br />

High<br />

Some nonidentified determining<br />

factors on the<br />

site. The intensity of the<br />

factors is high.<br />

Low<br />

Rock Falls < 1 dm 3<br />

Very low to low<br />

<strong>hazard</strong><br />

Very low to low <strong>hazard</strong> /<br />

Medium<br />

Rock Falls < 100 m 3<br />

Very low to low<br />

<strong>hazard</strong><br />

Medium <strong>hazard</strong><br />

High <strong>hazard</strong><br />

High<br />

Collapses > 100 m 3 / High <strong>hazard</strong> High <strong>hazard</strong><br />

Abb. 10: Beispiel für die Erstellung einer Übersichtstabelle über Steinschlaggefahr (von CETE du sud-ouest)<br />

Fig 10: Example of <strong>hazard</strong> table determination <strong>for</strong> rock fall <strong>hazard</strong> (from CETE du sud-ouest)


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 142<br />

Seite 143<br />

PERE OLLER, MARTA GONZÁLEZ, JORDI PINYOL, JORDI MARTURIÀ, PERE MARTÍNEZ<br />

Geo<strong>hazard</strong>s Mapping in Catalonia<br />

Kartierung von geologischen Gefahren in Katalonien<br />

Summary:<br />

This paper presents the different lines of work being undertaken by the Geological Institute<br />

of Catalonia (IGC) on geological <strong>hazard</strong> mapping. It describes the different map series, scales<br />

of representation, methodologies <strong>and</strong> its expected use.<br />

Keywords: <strong>hazard</strong> mapping, geo<strong>hazard</strong>s, Catalonia.<br />

Zusammenfassung:<br />

Diese Abh<strong>and</strong>lung bietet einen Überblick über die verschiedenen Aktivitäten des Geologischen<br />

Instituts Katalonien (IGC) für die Kartierung geologischer Gefahren. Sie beschreibt die<br />

unterschiedlichen Kartenserien, den Umfang der Darstellungen, die angew<strong>and</strong>te Methodik<br />

und den erwarteten Gebrauch der Karten.<br />

Schlüsselwörter: Gefahrenkartierung, Geogefahren, Katalonien.<br />

Introduction<br />

With Law 19/2005, the Parliament of Catalonia<br />

approved the creation of the Geological Institute<br />

of Catalonia (IGC) assigned to the Ministry of<br />

L<strong>and</strong> Planning <strong>and</strong> Public Infrastructures (DPTOP)<br />

of the Catalonian Government.<br />

One of the functions of the IGC is to<br />

“study <strong>and</strong> assess geological <strong>hazard</strong>s, including<br />

avalanches, to propose measures to develop<br />

<strong>hazard</strong> <strong>for</strong>ecast, prevention <strong>and</strong> mitigation <strong>and</strong><br />

to give support to other agencies competent in<br />

l<strong>and</strong> <strong>and</strong> urban planning, <strong>and</strong> in emergency<br />

management”. There<strong>for</strong>e, the IGC is in charge of<br />

making official <strong>hazard</strong> maps <strong>for</strong> such a finality.<br />

These maps comply with the Catalan Urban Law<br />

(1/2005) which indicates that building is not<br />

allowed in those places where a risk exists.<br />

The high density of urban development<br />

<strong>and</strong> infrastructures in Catalonia requires<br />

geo-thematic in<strong>for</strong>mation <strong>for</strong> planning. As<br />

a component of the Geoworks of the IGC,<br />

the strategic programme aimed at acquiring,<br />

elaborating, integrating <strong>and</strong> disseminating the<br />

basic geological, pedological <strong>and</strong> geothematic<br />

in<strong>for</strong>mation concerning the whole of the territory<br />

in scales suitable <strong>for</strong> l<strong>and</strong> <strong>and</strong> urban planning.<br />

Geo-<strong>hazard</strong> mapping is an essential part of this<br />

in<strong>for</strong>mation. Despite some tests carried out with<br />

wide l<strong>and</strong> recovery (Mountain Regions Hazard<br />

Map 1:50,000 [DGPAT, 1985], Risk Prevention<br />

Map of Catalonia 1:50,000 [ICC, 2003]), at<br />

present the work is done mainly on two scales:<br />

l<strong>and</strong> planning scale (1:25,000), <strong>and</strong> urban<br />

planning scale (1:5,000 or more detailed). These<br />

scales imply different approaches <strong>and</strong> methods to<br />

obtain <strong>hazard</strong> parameters used <strong>for</strong> such a purpose.<br />

The maps are generated in the framework of a<br />

mapping plan or as the final product of a specific<br />

<strong>hazard</strong> report. These different types of <strong>hazard</strong><br />

mapping products are explained below.<br />

Geological Hazard Prevention Map of Catalonia<br />

1:25,000 (MPRGC25M)<br />

The most important mapping plan is the Geological<br />

Hazard Prevention Map of Catalonia 1:25,000<br />

(MPRGC25M). This project started in 2007. The<br />

MPRGC includes the representation of evidence,<br />

phenomena, susceptibility <strong>and</strong> natural <strong>hazard</strong>s<br />

of geological processes. These are the processes<br />

generated by external geodynamics (such as slope,<br />

torrent, snow, coastal <strong>and</strong> flood dynamics) <strong>and</strong><br />

internal (seismic) geodynamics. The in<strong>for</strong>mation<br />

is displayed by different maps on each published<br />

sheet. The main map is presented on a scale of<br />

1:25,000, <strong>and</strong> includes l<strong>and</strong>slide, avalanche <strong>and</strong><br />

flood <strong>hazard</strong>. The <strong>hazard</strong> level is qualitatively<br />

classified as high (red), medium (orange) <strong>and</strong> low<br />

(yellow). The methods used to analyze <strong>hazard</strong>s<br />

basically consist of geomorphological, spatial <strong>and</strong><br />

statistical analysis.<br />

Several complementary maps on a<br />

1:100,000 scale show <strong>hazard</strong>s caused individually<br />

by different phenomena in order to facilitate the<br />

Fig. 1: First published sheet, Vilamitjana (65-23), in 2010.<br />

Abb. 1: Das erste veröffentlichte Blatt,<br />

Vilamitjana (65-23), 2010.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 144<br />

Seite 145<br />

reading of the sheet <strong>and</strong> underst<strong>and</strong>ing of the<br />

mapped phenomena. Two additional maps <strong>for</strong><br />

flooding <strong>and</strong> seismic <strong>hazard</strong>s, represented on<br />

a 1:50,000 scale, are added to the sheet. The<br />

map is to provides government <strong>and</strong> individuals<br />

with an overview of the territory with respect to<br />

geological <strong>hazard</strong>s, identifying areas where it is<br />

advisable to carry out detailed studies in case of<br />

action planning. At the same time, a database<br />

is being implemented. It will incorporate all the<br />

in<strong>for</strong>mation obtained from these maps. In the<br />

future it will become the Geological Hazard<br />

In<strong>for</strong>mation System of Catalonia (SIRGC).<br />

The procedure followed in the main map consists<br />

of three steps:<br />

1.Catalogue of phenomena <strong>and</strong> evidences<br />

2.Susceptibility determination<br />

3.Hazard determination<br />

The catalogue of phenomena <strong>and</strong> evidence is<br />

the base of the further susceptibility <strong>and</strong> <strong>hazard</strong><br />

analysis. It consists of a geomorphologic approach<br />

<strong>and</strong> it comprises the following phases:<br />

1. Bibliographic <strong>and</strong> cartographic search: the<br />

in<strong>for</strong>mation available in archives <strong>and</strong> databases<br />

is collected.<br />

2. Photointerpretation: carried out on vertical<br />

aerial photos of flights from different years<br />

(1957, 1977, 1985, 2003, etc.). The observation<br />

of the topography <strong>and</strong> the vegetation allows<br />

the identification of areas with signs of<br />

instability coming from the identification <strong>and</strong><br />

characterization of events that occurred recently<br />

or in the past, <strong>and</strong> from activity indicators.<br />

3. Field survey: checking <strong>and</strong> contrasting on the<br />

field, the elements identified in the previous<br />

phases. Field analysis allows a better approach<br />

<strong>and</strong> underst<strong>and</strong>ing, <strong>and</strong> there<strong>for</strong>e identifying<br />

signs <strong>and</strong> phenomena are not observable<br />

through the photointerpretation.<br />

4. Population inquiries: the goal of this stage is to<br />

complement the in<strong>for</strong>mation obtained in the<br />

earlier stages, especially in aspects such as the<br />

intensity <strong>and</strong> frequency. It is done through a<br />

survey to witnesses who live <strong>and</strong>/or work in the<br />

study areas.<br />

In a second step, areas susceptible to be<br />

affected by the phenomena are identified from the<br />

starting zone to the maximum extent determinable<br />

at the scale of work. Their limits are drawn taking<br />

into account the catalogue of phenomena,<br />

geomorphological indicators of activity, <strong>and</strong> from<br />

the identification of favourable lithologies <strong>and</strong><br />

morphologies of the terrain. This phase includes<br />

the completion of GIS <strong>and</strong> statistical analysis<br />

to support the determination of the starting <strong>and</strong><br />

run-out zone. It can be extensively applied with<br />

satisfactory results with regard to the scale <strong>and</strong><br />

purpose of the work.<br />

Finally, <strong>hazard</strong> is estimated on the basis<br />

of the analysis of the magnitude <strong>and</strong> frequency (or<br />

activity) of the observed or potential phenomena.<br />

Susceptibility areas are classified according to<br />

the <strong>hazard</strong> matrix represented in Fig. 2. Hazard<br />

zones are represented as follows: areas where<br />

no <strong>hazard</strong> was detected (white), zones with low<br />

<strong>hazard</strong> (yellow), medium <strong>hazard</strong> zones (orange),<br />

<strong>and</strong> areas with high <strong>hazard</strong> (red).<br />

In order to obtain an equivalent <strong>hazard</strong><br />

<strong>for</strong> each phenomena, an ef<strong>for</strong>t was made to<br />

Fig. 2: Hazard matrix (based on Altimir et al, 2001).<br />

Abb. 2: Gefahrenmatrix (auf der Grundlage von Altimir et al, 2001).<br />

equate the parameters that define them. The<br />

same frequency/activity values were used <strong>for</strong> all<br />

phenomena, but magnitude values were adapted<br />

to each of them.<br />

Each <strong>hazard</strong> level contains some<br />

considerations <strong>for</strong> prevention (Fig. 3). These<br />

considerations in<strong>for</strong>m about the need <strong>for</strong> further<br />

detailed studies <strong>and</strong> advise about the use of<br />

corrective measures.<br />

Fig. 3: Prevention recommendations.<br />

Abb. 3: Empfohlene Präventivmaßnahmen.<br />

Hazard from each phenomena is<br />

analyzed individually. The main challenge of the<br />

map is to easily present the overlapping <strong>hazard</strong> of<br />

different phenomena. A methodology identifying<br />

that this overlap exists has been established<br />

with this objective in mind. It indicates what the<br />

maximum overlapped <strong>hazard</strong> is (Fig. 4), but in any<br />

case, without obtaining new <strong>hazard</strong> values.<br />

Fig. 4: Multi-<strong>hazard</strong> representation.<br />

Abb. 4: Darstellung von Mehrfachrisiken.<br />

An epigraph is assigned, to identify the <strong>hazard</strong><br />

level <strong>and</strong> the phenomena that causes it, especially<br />

in overlapping areas (Fig. 5). This epigraph<br />

consists of two characters, the first in capital<br />

letters, indicates the value of <strong>hazard</strong> (A <strong>for</strong> high<br />

<strong>hazard</strong>, M <strong>for</strong> medium <strong>hazard</strong> <strong>and</strong> B <strong>for</strong> low<br />

<strong>hazard</strong>), <strong>and</strong> the second, in lower-case, indicates<br />

the type of phenomena (e <strong>for</strong> large l<strong>and</strong>slides, s<br />

<strong>for</strong> l<strong>and</strong>slides, d <strong>for</strong> rockfalls, x <strong>for</strong> flows, a <strong>for</strong><br />

avalanches <strong>and</strong> f <strong>for</strong> subsidence <strong>and</strong> collapses).<br />

The higher the overlapping is, the longer the<br />

epigraph will be.<br />

Fig. 5: Example of multi-<strong>hazard</strong> representation.<br />

Abb. 5: Beispiel von Mehrfachrisiken.<br />

Fig. 6: Main map 1:25000, which includes l<strong>and</strong>slides, avalanches,<br />

sinking <strong>and</strong> flooding according to geomorphologic<br />

criteria.<br />

Abb. 6: Hauptkarte 1:25000; sie veranschaulicht die Gefahren<br />

hinsichtlich Bergstürze, Lawinen, Absenkung und Hochwasser<br />

nach geomorphologischen Kriterien.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 146<br />

Seite 147<br />

Complementary maps<br />

Complementary maps represent the <strong>hazard</strong><br />

established <strong>for</strong> each individual phenomena at<br />

1:100,000 scale. The purpose of these maps is<br />

to facilitate the interpretation of the main map.<br />

Depending on the type of phenomena identified<br />

in the main map, the number of complementary<br />

maps can vary from 1 to 6.<br />

The final map (Fig. 8) also represents the values of<br />

the basic seismic acceleration of the compulsory<br />

"Norma de Construcción Sismorresistente<br />

Española" (NCSE-02) <strong>for</strong> a placement in rock,<br />

<strong>and</strong> the intensity of the seismic emergency plan<br />

(SISMICAT).<br />

Fig. 10: Flooding <strong>hazard</strong> map 1:100,000 based on hydraulic<br />

modeling.<br />

Abb. 10: Hochwasser-Gefahrenzonenkarte 1:100.000 auf der<br />

Grundlage hydraulischer Modellierung.<br />

Fig. 12: First published Avalanche Paths Map, “Val d’Aran<br />

Nord”, in 1996.<br />

Abb. 12: Erste veröffentlichte Lawinenzugkarte „Val d’Aran<br />

Nord“, 1996.<br />

The termination of the MZA allows a first global<br />

Fig. 7: Complementary map of surface l<strong>and</strong>slide <strong>hazard</strong>.<br />

Abb. 7: Komplementärkarte über Erdrutschrisiken.<br />

Seismic <strong>hazard</strong> map<br />

This map was obtained from the map of seismic<br />

areas <strong>for</strong> a return period of 500 years, <strong>for</strong> a<br />

middle ground, <strong>and</strong> considering the effects of soil<br />

amplification.<br />

To take into account the amplification<br />

of the seismic motion due to soft ground, a<br />

geotechnical classification of lithologies from<br />

the Geological Map of Catalonia 1:25,000 into<br />

4 types was carried out: R (hard rock), A (compact<br />

rocks), B (semi-compacted material) <strong>and</strong> C (non<br />

cohesive material). This classification is based on<br />

the speed of the S-wave through them (Fleta et al.,<br />

1998). The proposed amplifications were assigned<br />

to each group of lithologies. For types R <strong>and</strong> A no<br />

additions of any degree of intensity were made,<br />

but <strong>for</strong> types B <strong>and</strong> C, there was an addition of<br />

0.5 degrees of intensity.<br />

Fig. 8: Seismic <strong>hazard</strong> map 1:100,000.<br />

Abb. 8: Seismische Gefahrenzonenkarte, 1:100.000.<br />

Fig. 9: Seismic <strong>hazard</strong> map symbology.<br />

Abb. 9: Symbologie seismische Gefahrenzonenkarte.<br />

Flooding <strong>hazard</strong> map<br />

The flooding <strong>hazard</strong> map at 1:50,000 scale shows<br />

the limits of the hydraulic modeling <strong>for</strong> periods of<br />

50, 100 <strong>and</strong> 500 years provided by the Catalan<br />

Water Agency (ACA). A flooding map according to<br />

geomorphologic criteria was done in those streams<br />

were hydraulic modeling was not per<strong>for</strong>med.<br />

Fig. 11: Flooding <strong>hazard</strong> map symbology.<br />

Abb. 11: Symbologie Hochwasser-Gefahrenzonenkarte.<br />

Avalanche Paths Map (MZA)<br />

A second mapping plan, already finished, is<br />

the Avalanche Paths Map (MZA). It was begun<br />

in 1996 <strong>and</strong> finished in 2006. An extent of<br />

5,092 km 2 was surveyed. During this process<br />

17,518 avalanche paths were mapped. This is<br />

a susceptibility map on a scale of 1:25,000,<br />

useful <strong>for</strong> l<strong>and</strong> planning in the Pyrenean areas.<br />

The methodology is based on the French “Carte<br />

de Localisation des Phénomènes d’Avalanches”<br />

(Pietri, 1993). On this map, the avalanche paths,<br />

mapped from terrain analysis (photointerpretation<br />

<strong>and</strong> field work), are represented in orange, <strong>and</strong> the<br />

inventory in<strong>for</strong>mation (witness surveys, historical<br />

documents, field surveys <strong>and</strong> dendrochronology)<br />

is represented in violet.<br />

vision of the avalanche <strong>hazard</strong> distribution in this<br />

region. The area potentially affected by avalanches<br />

covers 1,257 km 2 . That is at 3.91% of the Catalan<br />

country, <strong>and</strong> considering the Pyrenean territory, it<br />

affects 36%.<br />

At present, all the avalanche in<strong>for</strong>mation<br />

is stored in the avalanche database of Catalonia<br />

(BDAC). New events, coming from avalanche<br />

observation, are added to this database. The<br />

in<strong>for</strong>mation is available via the Internet at:<br />

http://www.icc.cat/msbdac/.<br />

Hazard maps <strong>for</strong> urban planning<br />

At present, <strong>for</strong> all the municipalities that want to<br />

increase their building limits, the procedure is<br />

first of all to make a preliminary <strong>hazard</strong> map on a<br />

1:5,000 scale. This element is, in fact, just a map<br />

of “yes or no”, which states if a <strong>hazard</strong> exists or<br />

not. If the municipality decides not to develop in<br />

<strong>hazard</strong>ous areas, the process finishes. In the case<br />

that the municipality wants to build in the <strong>hazard</strong>zone<br />

areas, more detailed studies have to be<br />

completed. These studies include complex data<br />

collection, usually via drilling specific boreholes,<br />

other geotechnical work, <strong>and</strong> advanced modelling.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 148<br />

Seite 149<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Pere Oller, Marta González, Jordi Pinyol,<br />

Jordi Marturià, Pere Martínez<br />

Institut Geològic de Catalunya<br />

C/ Balmes 209/211<br />

08006 Barcelona<br />

Fig. 13: Interface of the avalanche data server<br />

Abb. 13: Benutzeroberfläche des Lawinendatenservers<br />

The phenomena taken into account are l<strong>and</strong>slides,<br />

rock falls, sinking <strong>and</strong> snow avalanches. In these<br />

maps, the <strong>hazard</strong> mapping is obtained from<br />

frequency/intensity analysis. Advanced modelling<br />

analysis is per<strong>for</strong>med in order to obtain the most<br />

accurate results, <strong>and</strong> to support the observational<br />

data <strong>and</strong> expert criteria. Up to the present day,<br />

there is no st<strong>and</strong>ard methodology. The current<br />

challenge <strong>for</strong> the IGC is to prepare guidelines <strong>for</strong><br />

such a goal in order to guarantee the st<strong>and</strong>ards of<br />

quality <strong>and</strong> homogeneity.<br />

There are preliminary studies of a <strong>hazard</strong><br />

mapping plan 1:5,000 <strong>for</strong> snow avalanches. In<br />

this map terrain is classified into high <strong>hazard</strong> (red),<br />

medium <strong>hazard</strong> (blue) <strong>and</strong> low <strong>hazard</strong> (yellow).<br />

Urban planning implications regarding <strong>hazard</strong><br />

have not been defined yet. An analysis of the MZA,<br />

supported by the statistical α−β model, resulted in<br />

the identification of 24 urban areas to be mapped.<br />

The mapping methodology includes terrain<br />

analysis, avalanche inventory, nivometeorological<br />

analysis <strong>and</strong> numerical modelling to complete the<br />

in<strong>for</strong>mation.<br />

Literatur / References:<br />

PIETRI, C., 1993:<br />

Rénovation de la carte de localisation probable des avalanches. Revue de<br />

Géographie <strong>Alpine</strong> nº1. P. 85-97.<br />

AGÈNCIA CATALANA DE L’AIGUA (Departament de Medi Ambient i<br />

Habitatge). Directrius de planificació i gestió de l’espai fluvial. Guia<br />

tècnica. 45 pp.<br />

ALTIMIR, J.; COPONS, R.; AMIGÓ, J.; COROMINAS, J.; TORREBADELLA,<br />

J. AND VILAPLANA, J.M. (2001):<br />

Zonificació del territori segons el grau de perillositat d’esllavissades al<br />

Principat d’Andorra. Actes de les 1es Jornades del CRECIT. 13 I 14 de<br />

setembre de 2001. P. 119-132.<br />

FLETA, J., ESTRUCH, I. I GOULA, X. (1998).<br />

Geotechnical characterization <strong>for</strong> the regional assesment of seismic risk in<br />

Catalonia. Proceedings 4th Meeting of the Environmental <strong>and</strong> Engineering<br />

Geophysical Society, pàg. 699-702. Barcelona, setembre 1998.<br />

NCSE-02 (2002).<br />

Norma de Construcción Sismorresistente Española. Parte General y de<br />

Edificación, Comisión Permanente de Normas Sismorresistentes, Real<br />

Decreto 997/2002 del 27 de septiembre de 2002, Boletín Oficial del<br />

Estado nº 244, viernes 11 de octubre de 2002. Ministerio de Fomento. P.<br />

35898-35987.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 150<br />

Seite 151<br />

CLAIRE FOSTER, MATTHEW HARRISON, HELEN J. REEVES<br />

St<strong>and</strong>ards <strong>and</strong> Methods of Hazard Assessment <strong>for</strong><br />

<strong>Mass</strong> <strong>Movements</strong> in Great Britain<br />

St<strong>and</strong>ards und Methoden der Gefahrenbewertung<br />

von <strong>Mass</strong>enbewegungen in Großbritannien<br />

Summary:<br />

With less extreme topography <strong>and</strong> limited tectonic activity, Great Britain experiences a<br />

different l<strong>and</strong>slide regime than countries in many other parts of the world e.g. Italy <strong>and</strong><br />

France. Glacial modification of the l<strong>and</strong>scape during the Pleistocene, followed by severe<br />

periglacial conditions have led to the presence of high numbers of ancient or relict l<strong>and</strong>slides.<br />

Debris flows <strong>and</strong> rock falls common to higher relief areas of Europe occur but are less likely<br />

to interfere with development <strong>and</strong> population centres. Despite the often subdued nature of<br />

l<strong>and</strong>slides in Great Britain, numerous high profile events in recent years have highlighted the<br />

continued need to produce useable, applied l<strong>and</strong>slide in<strong>for</strong>mation. The British Geological<br />

Survey has developed a national l<strong>and</strong>slide susceptibility map which can be used to highlight<br />

potential areas of instability. It has been possible to create the national susceptibility map<br />

(GeoSure) because of the existence of vast data archives collected by the survey such as the<br />

National L<strong>and</strong>slide Database, National Geotechnical Database <strong>and</strong> digital geological maps.<br />

This susceptibility map has been extensively used by the insurance industry <strong>and</strong> has also<br />

been adopted <strong>for</strong> a number of externally funded projects targeting specific problems.<br />

Keywords<br />

British Geological Survey, L<strong>and</strong>slides, GeoSure, National L<strong>and</strong>slide Database<br />

Zusammenfassung:<br />

Aufgrund einer weniger extremen Topographie und der beschränkten tektonischen Aktivität des<br />

L<strong>and</strong>es unterscheiden sich Auftreten und Verlauf von Erdrutschen in Großbritannien von denen<br />

in vielen <strong>and</strong>eren Ländern der Welt, z.B. Italien und Frankreich. Glaziale Veränderungen<br />

der L<strong>and</strong>schaft während des Pleistozäns, denen schwierige periglaziale Bedingungen folgten,<br />

haben eine hohe Anzahl von vorzeitlichen oder relikten Bergstürzen verursacht. Die für<br />

höhere Entlastungszonen in Europa typischen Muren und Felsstürze treten zwar auf, doch ihre<br />

Wahrscheinlichkeit, Entwicklungs- und Bevölkerungszentren zu beschädigen, ist gering. Trotz<br />

des häufig geringen Ausmaßes von Erdrutschen in Großbritannien heben zahlreiche bekannte<br />

Ereignisse der letzten Jahre nach wie vor die Notwendigkeit hervor, anwendbare In<strong>for</strong>mationen<br />

über Rutschungen zu erstellen. Vom British Geological Survey (BGS) wurde eine nationale Gefahrenhinweiskarte<br />

für Rutschungen entwickelt, anh<strong>and</strong> derer potentielle Bereiche von Instabilität<br />

aufgezeigt werden können. Die Erstellung der nationalen Gefahrenhinweiskarte (GeoSure)<br />

war auf der Grundlage umfangreicher Datenarchive möglich, die vom BGS zum Beispiel auf<br />

der Grundlage der National L<strong>and</strong>slide Database, der National Geotechnical Database und von<br />

digitalen geologischen Karten angelegt wurden. Diese Gefahrenhinweiskarte findet beispielsweise<br />

in der Versicherungsbranche Anwendung und wurde für eine Reihe extern finanzierter<br />

Projekte übernommen, die auf bestimmte Probleme abzielen.<br />

Schlüsselwörter<br />

British Geological Survey, Rutschungen, GeoSure, National L<strong>and</strong>slide Database<br />

Background on l<strong>and</strong>slide research <strong>and</strong> planning in<br />

Great Britain<br />

Prior to the 1966 Aberfan disaster, which<br />

led to the deaths of 144 people, l<strong>and</strong>sliding<br />

was not widely considered to be particularly<br />

extensive or problematic in Great Britain (GB).<br />

In the years following the disaster, a limited<br />

amount of research into l<strong>and</strong>slide distribution<br />

<strong>and</strong> mechanisms was undertaken but failed to<br />

lead to a structured regulatory framework <strong>for</strong><br />

managing l<strong>and</strong>slide risk. The Aberfan l<strong>and</strong>slide<br />

<strong>and</strong> costly disruptions to infrastructure projects<br />

in the 1960/70’s (Skempton & Weeks 1976 <strong>and</strong><br />

Early & Skempton 1972) strengthened the view<br />

that the extent of ground instability was neither<br />

well understood nor managed by developers or<br />

planners. This view led to national <strong>assessment</strong>s<br />

of l<strong>and</strong>slides being carried out in the 1980’s <strong>and</strong><br />

1990’s on which the current national policy is<br />

largely based. These <strong>assessment</strong>s provided the<br />

basis <strong>for</strong> planning policies <strong>and</strong> guidance that, to<br />

some degree, continue to control development<br />

on or around unstable ground. However, limited<br />

resources since this initial push to underst<strong>and</strong> the<br />

problem meant that these initiatives have failed<br />

to develop into an effective, integrated, national<br />

response to deal with l<strong>and</strong>slides in GB. The<br />

current systems, which are neither centralized nor<br />

legally binding, comprise a system of planning<br />

regulations (Town <strong>and</strong> Country Panning Act<br />

1990), guidance notes, operational regulations<br />

<strong>and</strong> building codes (Building Regulations, 2006).<br />

With the exception of the Building Regulations,<br />

none of these legal statutes specifically mention


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 152<br />

Seite 153<br />

l<strong>and</strong>slides. The majority of the legislation can<br />

be interpreted as placing responsibility with the<br />

developer, utility operator or l<strong>and</strong>owner to ensure<br />

l<strong>and</strong>slides are not an issue.<br />

The main source of regulatory<br />

in<strong>for</strong>mation regarding slope instability issues<br />

is contained within Planning Policy Guidance<br />

Note 14 (PPG14) <strong>and</strong> its associated Annex (Anon<br />

1990, 1994). The Annex sets out the procedure <strong>for</strong><br />

l<strong>and</strong>slide recognition <strong>and</strong> <strong>hazard</strong> <strong>assessment</strong> <strong>and</strong><br />

emphasises the need to consider ground instability<br />

throughout the whole development process from<br />

l<strong>and</strong>-use planning, through design to construction.<br />

These documents provide recommendations<br />

that slope instability be considered in any<br />

planning decision. If l<strong>and</strong>sliding is a known<br />

issue, ‘a developer’ must provide evidence that<br />

any development activity will not exacerbate<br />

l<strong>and</strong>slide activity <strong>and</strong> that any building will be<br />

safe. However, PPG14 is not legally compulsory<br />

<strong>and</strong> only recommends that the local planning<br />

authorities should endeavour to make use of<br />

any relevant expertise when assessing whether a<br />

planning application may be affected by ground<br />

instability. The guidance notes do not specifically<br />

refer to geological or geotechnical expertise<br />

but details of some in<strong>for</strong>mation sources of are<br />

provided, including BGS data. Despite this, there<br />

is no legal compulsion <strong>for</strong> a planning authority<br />

to underst<strong>and</strong> the extent or nature of l<strong>and</strong>slide<br />

<strong>hazard</strong>s within their area of concern <strong>and</strong>, thus,<br />

include them in planning decisions. Building<br />

regulations put further emphasis on the role of<br />

the developer to control the impact of instability<br />

requiring that “The building shall be constructed<br />

so that ground movement caused by…. l<strong>and</strong>-slip<br />

or subsidence (other than subsidence arising from<br />

shrinkage), in so far as the risk can be reasonably<br />

<strong>for</strong>eseen, will not impair the stability of any part of<br />

the building.” (Anon. 2004).<br />

The current PPG14 predates the era of<br />

GIS <strong>and</strong> advises that citizens consult geological<br />

maps <strong>and</strong> the now defunct Department of the<br />

Environment L<strong>and</strong>slide Database. These sources<br />

of in<strong>for</strong>mation have been superseded by the BGS’s<br />

‘GeoSure’ <strong>and</strong> continually updated National<br />

L<strong>and</strong>slide Database. Despite the availability of<br />

these resources, national guidance has never<br />

been updated to take this into account. Despite<br />

the advances in l<strong>and</strong>slide mapping <strong>and</strong> <strong>hazard</strong><br />

mapping, there is still no legal compulsion to use<br />

or consider it within a planning application in GB.<br />

Development of l<strong>and</strong>slide susceptibility maps <strong>and</strong><br />

databases in GB<br />

BGS began to map geological <strong>hazard</strong>s digitally in<br />

the mid 1990’s. These early steps have paved the<br />

way <strong>for</strong> the development of much more detailed<br />

<strong>hazard</strong> maps that cover the whole of Great Britain<br />

<strong>and</strong> are complimented by detailed l<strong>and</strong>slide<br />

mapping <strong>and</strong> an extensive National L<strong>and</strong>slide<br />

Database (NLD).<br />

The first systematic <strong>assessment</strong> of<br />

<strong>hazard</strong>s was triggered by the insurance industry<br />

after it identified a need to better underst<strong>and</strong><br />

geological <strong>hazard</strong>s. Insurance losses caused<br />

by ground movements (including subsidence)<br />

between 1989 <strong>and</strong> 1991 reached around £1-<br />

2bn following a particularly dry period <strong>and</strong>, as<br />

a result, a digital geo<strong>hazard</strong> in<strong>for</strong>mation system<br />

(GHASP – GeoHAzard Susceptibility Package)<br />

was developed by the BGS. This first decision<br />

support system (DSS) gave a weighted averaged<br />

result <strong>for</strong> each of the 10000 postcode sectors<br />

in GB <strong>and</strong> came to be used by around 35% of<br />

the Industry (Culshaw & Kelk, 1994). Since<br />

the development of GHASP, improvements in<br />

GIS technology <strong>and</strong> the availability of digital<br />

topographical <strong>and</strong> geological mapping <strong>for</strong> 98%<br />

of GB have led to advances in the methods used<br />

to map geo<strong>hazard</strong> potential.<br />

The BGS has since developed a Geographical<br />

In<strong>for</strong>mation System (GIS)-based system (GeoSure)<br />

to assess the principal geological <strong>hazard</strong>s across the<br />

country (Foster et al. 2008, Walsby 2007, 2008).<br />

One output is a GIS layer that provides ratings of<br />

the susceptibility of the country to l<strong>and</strong>sliding on<br />

a rating scale of A (low or nil) to E (significant),<br />

which has been simplified <strong>for</strong> Fig. 1. Importantly, a<br />

high susceptibility score does not necessarily mean<br />

that a l<strong>and</strong>slide has happened in the past or will<br />

do so in the future, but where a l<strong>and</strong>slide <strong>hazard</strong><br />

is most likely to occur if the slope conditions are<br />

adversely altered by a change in one or more of<br />

the factors controlling slope instability (Fig. 1).<br />

GeoSure is produced at 1:50,000 scale <strong>and</strong> can<br />

be integrated to show the spatial distribution of<br />

l<strong>and</strong>slide susceptibility in relation to buildings <strong>and</strong><br />

infrastructure. According to the dataset, 350,000<br />

households in the UK, representing 1% of all<br />

housing stock, are in areas considered to have a<br />

'significant' l<strong>and</strong>slide susceptibility (Rated E).<br />

GeoSure works by modelling the causative<br />

factors of l<strong>and</strong>sliding: lithology, slope angle <strong>and</strong><br />

discontinuities being of prime importance. This has<br />

been made possible through the use of GIS due<br />

to its ability to spatially display <strong>and</strong> manipulate<br />

data (Soeters & Van Westen, 1996). The GeoSure<br />

methodology uses a heuristic approach to assess <strong>and</strong><br />

classify the propensity of a geological <strong>for</strong>mation to<br />

fail as well as to score the relevant causative factors.<br />

The BGS holds large amounts of in<strong>for</strong>mation about<br />

the lithological nature of the rocks <strong>and</strong> soils within<br />

Great Britain. The National Geotechnical Physical<br />

Properties database contains in<strong>for</strong>mation on the<br />

geographical distribution of physical properties<br />

(such as strength) of a wide range of rocks <strong>and</strong> soils<br />

present in GB. This in<strong>for</strong>mation is vitally important<br />

in determining the propensity of a material to<br />

fail. The scores assigned to each lithology are<br />

based on material strength, permeability <strong>and</strong><br />

known susceptibility to instability. Discontinuities<br />

were assessed as an important causative factor<br />

as they reflect the mass strength of a material, its<br />

susceptibility to failure <strong>and</strong> its ability to allow water<br />

to penetrate a rock mass. Scores were defined in<br />

line with those used in the British St<strong>and</strong>ard 5930:<br />

Field Description of Rocks <strong>and</strong> Soils (British<br />

St<strong>and</strong>ards Institute 1990) <strong>and</strong> by Bieniawski (1989).<br />

Analysis of known l<strong>and</strong>slides showed that slope<br />

angle is one of the major controlling factors <strong>and</strong><br />

this was derived from the NEXTMap digital terrain<br />

model of Britain at a 5m resolution. The scores<br />

<strong>for</strong> all the causative factors at each grid cell are<br />

combined in an algorithm to give an overall score<br />

based on the relative susceptibility to l<strong>and</strong>sliding.<br />

The method is flexible enough to allow alteration<br />

(nationally or locally) of the algorithm in the future<br />

<strong>and</strong> include other factors such as the presence <strong>and</strong><br />

nature of superficial deposits.<br />

Fig. 1: GeoSure layer showing the potential <strong>for</strong> l<strong>and</strong>slide<br />

<strong>hazard</strong><br />

Abb. 1: GeoSure-Schicht veranschaulicht das Potential von<br />

Rutschungsgefährdungen.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 154<br />

Seite 155<br />

Another important tool to both in<strong>for</strong>m <strong>and</strong> assess<br />

l<strong>and</strong>slide susceptibility in GB is the National<br />

L<strong>and</strong>slide Database (NLD). L<strong>and</strong>slide databases<br />

are commonplace in Europe but there is variability<br />

in their complexity <strong>and</strong> amount of further work<br />

carried out to further enhance or update the<br />

datasets. Assessing an area’s susceptibility to<br />

l<strong>and</strong>sliding requires knowledge of the distribution<br />

of existing failures <strong>and</strong> also an underst<strong>and</strong>ing of<br />

the causative factors <strong>and</strong> their spatial distribution.<br />

This type of in<strong>for</strong>mation is only available from a<br />

detailed database of past events from which one<br />

can draw out relevant in<strong>for</strong>mation which may<br />

in<strong>for</strong>m the user of where l<strong>and</strong>slides may occur<br />

in the future. The National L<strong>and</strong>slide Database<br />

is the most comprehensive source of in<strong>for</strong>mation<br />

on recorded l<strong>and</strong>slides in GB <strong>and</strong> currently holds<br />

records of over 15,000 l<strong>and</strong>slide events (Fig.<br />

2). Each of the 15,000+ l<strong>and</strong>slide records can<br />

hold in<strong>for</strong>mation on over 35 attributes including<br />

location, dimensions, l<strong>and</strong>slide type, trigger<br />

mechanism, damage caused, slope angle, slope<br />

aspect, material, movement date, vegetation,<br />

hydrogeology, age, development <strong>and</strong> a full<br />

bibliographic reference. A fully digital workflow<br />

has been developed at BGS to enable capture<br />

of l<strong>and</strong>slide in<strong>for</strong>mation. The first stage of the<br />

process involves using digital aerial photograph<br />

interpretation software (SocetSet) to capture<br />

digital l<strong>and</strong>slide polygons which can then be<br />

altered through field checking using BGS·SIGMA<br />

mobile technology (Jordan 2009; Jordan et al.<br />

2005). BGS·SIGMAmobile is the BGS digital field<br />

data capture system running on rugged tablet PCs<br />

with integrated GPS units, <strong>and</strong> is used extensively<br />

<strong>for</strong> all geological mapping activities within the<br />

British Geological Survey (Jordan et al., 2008).<br />

When collecting l<strong>and</strong>slide in<strong>for</strong>mation,<br />

either <strong>for</strong> the NLD or <strong>for</strong> digital maps,<br />

internationally recognised st<strong>and</strong>ards have been<br />

followed where appropriate. The database<br />

Fig. 2: Distribution of l<strong>and</strong>slide database points from the<br />

National L<strong>and</strong>slide GIS database. OS topography © Crown<br />

Copyright. All rights reserved.<br />

Abb. 2: Verteilung der Rutschungs-Datenbankpunkte von der<br />

National L<strong>and</strong>slide GIS Datenbank. OS Topographie © Crown<br />

Copyright. Alle Rechte vorbehalten.<br />

dictionaries have been produced using<br />

internationally recognised terminology. For<br />

l<strong>and</strong>slide type, the dictionary definitions follow<br />

the conventions set out by Varnes (1978), the<br />

EPOCH project (Flageollet, J.C., 1993) <strong>and</strong> the<br />

WP/WLI (1990). Age <strong>and</strong> activity of a l<strong>and</strong>slide<br />

are important factors to record within a l<strong>and</strong>slide<br />

inventory. Temporal l<strong>and</strong>slide data is as important<br />

to underst<strong>and</strong>ing the geomorphic evolution of an<br />

area as the spatial distribution of slides. However,<br />

it is extremely difficult to date ancient l<strong>and</strong>slide<br />

events with any degree of accuracy <strong>and</strong>, as such,<br />

the ages assigned to l<strong>and</strong>slides only provide an<br />

arbitrary indication of age. The WP/WLI (1990)<br />

regrouped the Varnes (1978) definitions on<br />

age <strong>and</strong> activity under the following headings:<br />

'state of activity,' 'distribution of activity' <strong>and</strong><br />

'style of activity.' Whilst the NLD follows the<br />

style of activity definitions, it has simplified the<br />

state of activity terms defined by Varnes (1978)<br />

into active, inactive <strong>and</strong> stabilised whilst also<br />

adding descriptions on the state of development<br />

(Advanced, degraded, incipient). Whilst activity<br />

state <strong>and</strong> style have been described in the WP/<br />

WLI definitions (WP/WLI, 1993), age has been<br />

somewhat neglected. Data <strong>for</strong> modern l<strong>and</strong>slides<br />

observed either at the time of the event or through<br />

comparison of aerial photographs <strong>and</strong> geological<br />

mapping, is included in the NLD. To record cause,<br />

the NLD has incorporated both triggering <strong>and</strong><br />

preparatory factors, limited to those most likely to<br />

be identifiable <strong>and</strong> relevant in GB. The definitions<br />

are based upon the WP/WLI (1990).<br />

Further adaptations of l<strong>and</strong>slide susceptibility maps<br />

in Great Britain<br />

Following the creation of the Geosure<br />

methodology, BGS has worked within a<br />

consortium including the Transport Research<br />

Laboratory (TRL) <strong>and</strong> the Scottish Executive to<br />

create a digital <strong>hazard</strong> layer specifically <strong>for</strong> debris<br />

flows. This work was triggered in August 2004<br />

following a period of intense rainfall which led<br />

to two debris flows trapping 57 motorists on the<br />

A85 trunk road in Scotl<strong>and</strong>. As a consequence<br />

of this event <strong>and</strong> others during the same period,<br />

the Scottish Executive commissioned a study to<br />

assess the potential impact of further debris flows<br />

on the transport network of Scotl<strong>and</strong> (Winter et<br />

al., 2005). BGS was involved in the provision of a<br />

GIS layer highlighting slopes susceptible to debris<br />

flows. Debris flows, one of the five main types<br />

of l<strong>and</strong>slides, have a specific set of preparatory<br />

criteria which differs from translational <strong>and</strong><br />

rotational slides. This modified <strong>assessment</strong><br />

sought to digitally capture this set of criteria <strong>and</strong><br />

create a layer showing areas where debris flows<br />

are most likely to occur in the future. An initial<br />

study determined five main components which<br />

should be considered when determining the<br />

<strong>hazard</strong> potential of debris flows affecting the road<br />

network:<br />

1. Availability of debris material<br />

2. Hydrogeological conditions<br />

3. L<strong>and</strong> use<br />

4. Proximity of stream channels<br />

5. Slope angle<br />

It was considered that in<strong>for</strong>mation regarding each<br />

of these could be extracted from existing digital<br />

datasets. The resulting interpreted data were<br />

combined to produce a working model of debris<br />

flow <strong>hazard</strong> that could be validated by comparing<br />

with known events (Fig. 2). The A85 debris flow<br />

event in 2004 is shown alongside the modelled<br />

susceptibility layer, existing drainage channels<br />

are shown as particularly susceptible to failure<br />

through debris flows. Whilst the <strong>assessment</strong> of<br />

debris flows highlights areas where they may<br />

occur in the future, it does not attempt to model<br />

the run-out of such failures.<br />

Future Developments<br />

Currently, work is ongoing to validate the current<br />

methodology against statistical methods such<br />

as bivariate statistical analysis <strong>and</strong> probabilistic<br />

methods. The GeoSure method is based upon<br />

expert knowledge <strong>and</strong> a heuristic approach<br />

which is being tested against more statistic-based<br />

approaches to assess its validity. Naranjo et al.,<br />

(1994) consider statistical methods to be the<br />

most appropriate method <strong>for</strong> mapping regional<br />

l<strong>and</strong>slide susceptibility because the technique is<br />

objective, reproducible <strong>and</strong> easily updateable.<br />

Bivariate analysis <strong>for</strong> instance relies upon the<br />

availability of l<strong>and</strong>slide occurrence <strong>and</strong> causal<br />

parameter maps, which are compared against


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 156<br />

Seite 157<br />

distributed data <strong>and</strong> causal factor in<strong>for</strong>mation<br />

contained in the National L<strong>and</strong>slide Database of<br />

Great Britain, assesses the l<strong>and</strong>slide susceptibility<br />

in Great Britain. It uses a heuristic approach to<br />

model the causative factors that cause these<br />

events. It assesses <strong>and</strong> classifies the propensity of<br />

a geological <strong>for</strong>mation to fail as well as to score<br />

the relevant causative factors (e.g. slope angle).<br />

By using these methodologies <strong>and</strong> datasets, a<br />

national <strong>assessment</strong> of the potential <strong>hazard</strong> to<br />

l<strong>and</strong>sliding mass movement events in Great<br />

Britain can there<strong>for</strong>e be undertaken.<br />

BIENIAWSKI Z T (1989).<br />

Engineering Rock <strong>Mass</strong> Classifications. Wiley Interscience, New York, 272 p<br />

BRITISH STANDARDS INSTITUTE. (1990).<br />

BS 5930. The Code of practice <strong>for</strong> site investigations. HMSO, London, 206 p<br />

EARLY, K.R. & SKEMPTON, A. 1972.<br />

Investigation of the l<strong>and</strong>slide at Walton's Wood, Staf<strong>for</strong>dshire. Quarterly<br />

Journal of Engineering Geology, 5, 19-41.<br />

FLAGEOLLET, J. C. (Ed) 1993.<br />

Temporal occurrence <strong>and</strong> <strong>for</strong>ecasting of l<strong>and</strong>slides in the. European<br />

Community. EPOCH (European Community Programme).<br />

FOSTER, C, GIBSON, AD & WILDMAN, G (2008).<br />

The new national l<strong>and</strong>slide database <strong>and</strong> l<strong>and</strong>slide <strong>hazard</strong>s <strong>assessment</strong><br />

of Great Britain. In: Sassa, K, Fukuoka, H & Nagai, H + 35 others (eds),<br />

Proceedings of the First World L<strong>and</strong>slide Forum, United Nations University,<br />

Tokyo. The International Promotion Committee of the International<br />

Programme on L<strong>and</strong>slides (IPL), Tokyo, Parallel Session Volume, 203-206.<br />

JORDAN, C. J., 2009. BGS∙SIGMAmobile; the BGS Digital Field Mapping<br />

System in Action. Digital Mapping Techniques 2009 Proceedings, May 10-<br />

13, Morgantown, West Virginia, USA, Vol. U.S. Geological Survey Openfile<br />

Report.<br />

Fig. 3a: Extract from the debris flow susceptibility layer along with<br />

b: the Glen Ogle debris flow of 2004.<br />

Abb. 3a: Ausschnitt der Gefahrenhinweiskarte für Muren, gemeinsam<br />

mit b: dem Murgang in Glen Ogle, 2004.<br />

each other to create a weighted value <strong>for</strong> each<br />

parameter determined by calculating the l<strong>and</strong>slide<br />

density (Aleotti <strong>and</strong> Chowdhury, 1999 <strong>and</strong> Süzen<br />

<strong>and</strong> Doyuran, 2004). Results from an initial pilot<br />

study suggest that, in small areas, where detailed<br />

l<strong>and</strong>slide mapping exists, bivariate (conditional<br />

probability) <strong>and</strong> probabilistic approaches are able<br />

to more accurately predict l<strong>and</strong>slide susceptibility<br />

than GeoSure. However, this approach only<br />

works where l<strong>and</strong>slides have been mapped. This<br />

technique cannot be used where no l<strong>and</strong>slide<br />

mapping has been undertaken. Another issue<br />

with the conditional probability technique is that<br />

it relies on the assumption that all the parameters<br />

are mutually exclusive. The value of the heuristic<br />

approach is its ability to highlight areas where<br />

there are no known l<strong>and</strong>slides but where there is<br />

existing knowledge on the underlying causative<br />

factors. The heuristic approach is able to produce<br />

national scale <strong>assessment</strong>s which could be refined<br />

in the future by numerical methods <strong>for</strong> smaller,<br />

regional studies.<br />

Further adaptations to the GeoSure<br />

methodology, similar to those used to assess<br />

debris flows, are planned <strong>for</strong> the future. Rock fall<br />

<strong>hazard</strong> could be another type of mass movement<br />

that is investigated using the heuristic GeoSure<br />

approach applying different causal factors <strong>and</strong><br />

scoring algorithms.<br />

Conclusion<br />

In Great Britain, l<strong>and</strong>sliding does not have a<br />

structured regulatory framework, but historical<br />

events, such as the Aberfan disaster <strong>and</strong> Scottish<br />

debris flow events (Winter et al, 2005), have<br />

highlighted the importance of underst<strong>and</strong>ing<br />

the distribution <strong>and</strong> mechanisms that cause<br />

l<strong>and</strong>slide mass movement events in Great Britain.<br />

The BGS GeoSure methodology, using spatially<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Dr. Helen J. Reeves<br />

Head of Science L<strong>and</strong> Use<br />

Planning & Development<br />

British Geological Survey,<br />

Kingsley Dunham Centre,<br />

Keyworth, Nottingham.<br />

United Kingdom, NG12 5GG.<br />

Direct Tel:- +44 (0)115 936 3381<br />

Mobile:- +44 (0)7989301144<br />

Fax:- +44 (0)115 936 3385<br />

E-mail:- hjre@bgs.ac.uk<br />

Literatur / References:<br />

ALEOTTI, P., AND CHOWDHURY, R. 1999.<br />

L<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong>: Summary review <strong>and</strong> new perspectives.<br />

Bulletin Engineering Geology <strong>and</strong> Environment, Vol. 58, pp. 21–44.<br />

ANON. (1990).<br />

Planning Policy Guidance 14: Development on Unstable L<strong>and</strong>. Department<br />

of the Environment, Welsh Office. Her Majesty's Stationery Office, London.<br />

ANON. (1994).<br />

Planning Policy Guidance 14 (Annex 1): Development on Unstable L<strong>and</strong>:<br />

L<strong>and</strong>slides <strong>and</strong> Planning. Department of the Environment, Welsh Office.<br />

Her Majesty's Stationery Office, London.<br />

Anon. (2004). The Building Regulations 2000 (Structure), Approved<br />

Document A, 2004 Edition. Office of the Deputy Prime Minister. Her<br />

Majesty's Stationery Office, London.<br />

CULSHAW, MG & KELK, B (1994).<br />

A national geo-<strong>hazard</strong> in<strong>for</strong>mation system <strong>for</strong> the UK insurance industry<br />

- the development of a commercial product in a geological survey<br />

environment. In: Proceedings of the 1st European Congress on Regional<br />

Geological Cartography <strong>and</strong> In<strong>for</strong>mation Systems, Bologna, Italy. 4, Paper<br />

111, 3p.<br />

JORDAN, C. J., BEE, E. J., SMITH, N. A., LAWLEY, R. S., FORD, J.,<br />

HOWARD, A. S., AND LAXTON, J. L., 2005.<br />

The development of digital field data collection systems to fulfil the British<br />

Geological Survey mapping requirements. GIS <strong>and</strong> Spatial Analysis:<br />

Annual Conference of the International Association <strong>for</strong> Mathematical<br />

Geology, Toronto, Canada, York University, 886-891.<br />

NARANJO, J.L., VAN WESTEN, C.J. AND SOETERS, R. 1994.<br />

Evaluating the use of training areas in bivariate statistical l<strong>and</strong>slide <strong>hazard</strong><br />

analysis: a case study in Colombia. International Institute <strong>for</strong> Aerial Survey<br />

<strong>and</strong> Earth Sciences. 3 : 292–300<br />

SKEMPTON, A. & WEEKS, A. 1976<br />

The Quaternary history of the Lower Greens<strong>and</strong> escarpment <strong>and</strong> Weald<br />

Clay vale near Sevenoaks, Kent. Philosophical Transactions of the Royal<br />

Society, A, 283, 493-526.<br />

SOETERS, R. & VAN WESTEN, C.J. 1996.<br />

Slope instability recognition, analysis <strong>and</strong> zonation. In: Transportation<br />

Research Board Special Report 247, National Research Council, National<br />

Academy Press, Washington, D. C., 129-177.<br />

SUZEN, M.L. AND DOYURAN, V. 2004.<br />

A comparison of the GIS based l<strong>and</strong>slide susceptibility <strong>assessment</strong> methods:<br />

multivariate versus bivariate. Environmental Geology, 45, 665- 679.<br />

THE BUILDING AND APPROVED INSPECTORS REGULATIONS<br />

(Amendment). 2006. HMSO.<br />

TOWN AND COUNTRY PLANNING ACT. 1990. HMSO.<br />

VARNES D. J.: Slope movement types <strong>and</strong> processes. In: Schuster R. L. &<br />

Krizek R. J. Ed., L<strong>and</strong>slides, analysis <strong>and</strong> control. Transportation Research<br />

Board Sp. Rep. No. 176, Nat. Acad. oi Sciences, pp. 11–33, 1978.<br />

WALSBY, JC (2007).<br />

Geo<strong>hazard</strong> in<strong>for</strong>mation to meet the needs of the British public <strong>and</strong><br />

government policy. Quaternary International, 171/172: 179-185.<br />

WALSBY, JC (2008).<br />

GeoSure; a bridge between geology <strong>and</strong> decision-makers. In: Liverman,<br />

D.G.E., Pereira, CPG & Marker, B (eds.) Communicating environmental<br />

geoscience. Geological Society, London, Special Publications, 305: 81-87.<br />

WINTER, M. G., MACGREGOR, F & SHACKMAN, L (Eds) 2005.<br />

Scottish Road Network L<strong>and</strong>slides Study. The Scottish Executive. Edinburgh.<br />

WP/ WLI. 1993.<br />

A suggested method <strong>for</strong> describing the activity of a l<strong>and</strong>slide. Bulletin of the<br />

International Association of Engineering Geology, No. 47, 53-57.<br />

WP/ WLI. (International Geotechnical Societies UNESCO Working Party on<br />

World L<strong>and</strong>slide Inventory) 1990.<br />

A suggested method <strong>for</strong> reporting a l<strong>and</strong>slide. Bulletin of the International<br />

Association of Engineering Geology, No. 41, 5-12.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 158<br />

Seite 159<br />

KARL MAYER, BERNHARD LOCHNER<br />

International Comparison: Summary of the Expert<br />

Hearing in Bolzano on 17 March 2010<br />

Internationaler Vergleich: Zusammenfassung<br />

des Expert Hearings in Bozen vom 17. März 2010<br />

Zusammenfassung:<br />

Das AdaptAlp Workpackage 5 „Expert Hearing“ am 17. März 2010 in Bozen wurde von 28 Experten<br />

aus acht Ländern besucht und widmete sich inhaltlich vollständig den Zielen von Action<br />

5.1: Der Aufbau eines mehrsprachigen Glossars zu Hangbewegungen und insbesondere die<br />

Erarbeitung von Mindestan<strong>for</strong>derungen zur Erstellung von Gefahrenkarten. Neben einer kurzen<br />

Vorstellung des Projekt<strong>for</strong>tschrittes und der weiteren Vorgehensweise hinsichtlich der Erarbeitung<br />

eines mehrsprachigen Glossars wurde von Vertretern aus allen beteiligten Ländern der jeweilige<br />

„State oft the Art“ bezüglich Gefahrenkartierung vorgestellt. Ausgehend von diesen Präsentationen,<br />

welche die Grundlage für das weitere Vorgehen bilden, wurden im Anschluss an das Treffen<br />

Kurzzusammenfassungen für jede Region verfasst, welche innerhalb eines Gesamtberichtes auf<br />

der AdaptAlp Homepage (www.adaptalp.org) einzusehen sind. In einem weiteren Schritt wurden<br />

auf Basis dieser Beiträge zwei Tabellen erstellt, welche einerseits alle verwendeten Karten<br />

strukturiert nach verschiedenen Typen und <strong>and</strong>ererseits unterschiedliche Charakteristiken von<br />

Karten zusammenfassen und auf Länderebene vergleichen. Mithilfe dieser Matrizen werden Gemeinsamkeiten<br />

und Unterschiede zwischen den beteiligten Regionen sichtbar und ein „kleinster<br />

gemeinsamer Nenner“ kann erarbeitet und in einem nächsten Meeting (Dezember 2010) fixiert<br />

werden. Ergebnis dieses Vorgehens und des Projektteiles wird eine Zusammenstellung von Mindestan<strong>for</strong>derungen<br />

zur Erstellung von Gefahrenhinweiskarten und Gefahrenkarten sein.<br />

Summary:<br />

The AdaptAlp work package 5 “Expert Hearing” on March 17th, 2010 in Bolzano was<br />

attended by 28 experts from eight countries. It was dedicated to the goals of action 5.1: The<br />

creation of a multilingual glossary on l<strong>and</strong>slides <strong>and</strong> especially the elaboration of minimum<br />

requirements <strong>for</strong> “<strong>hazard</strong> mapping”. Beside a short presentation on the progress <strong>and</strong> the<br />

further approach of the multilingual glossary, the “state of the art” in <strong>hazard</strong> mapping<br />

<strong>for</strong> each involved region was presented by several people responsible. Based on these<br />

presentations, which build the basis <strong>for</strong> the further approach, short abstracts were composed<br />

<strong>for</strong> each region. These short descriptions can be seen inside the official Hearings report<br />

published on the AdaptAlp Homepage (www.adaptalp.org). In a further step, based on these<br />

abstracts <strong>and</strong> the presentations, two tables were created. On the one h<strong>and</strong>, all used maps<br />

were grouped according to different types <strong>and</strong> on the other h<strong>and</strong> diverse characteristics of<br />

maps were summarized <strong>and</strong> compared at the country level. With these matrices, similarities<br />

<strong>and</strong> differences between the involved regions become visible <strong>and</strong> a “least common<br />

denominator” could be elaborated. These denominators should be discussed at the next<br />

meeting (December 2010) <strong>and</strong>, as a result, a compilation of minimum requirements to the<br />

creation of “Danger, Hazard <strong>and</strong> Risk maps” will be published.<br />

1. Introduction<br />

In dealing with geological <strong>hazard</strong>s today,<br />

geotechnical (active) <strong>and</strong> spatial (passive)<br />

measures come to implementation to minimize<br />

risk. Because of a time limitation of active<br />

measures (e.g. protective walls) <strong>and</strong> the decrease<br />

of space <strong>for</strong> permanent settlings, spatial planning<br />

gets more <strong>and</strong> more important. Due to avalanche<br />

catastrophes in the 1950’s which were affecting<br />

large parts of the Alps, in 1954 in the Swiss<br />

municipal Gadmen, the first “Avalanche-Zone-<br />

Plan” was passed. This was the first time a natural<br />

<strong>hazard</strong> was considered in spatial planning (cf.<br />

Glade a. Felgentreff 2008, p 160f).<br />

Nowadays, almost 60 years later, “<strong>hazard</strong><br />

mapping” is a central part in risk management.<br />

Countless types of “Danger, Hazard <strong>and</strong> Risk<br />

maps” are produced <strong>for</strong> all kinds of risks. With<br />

regard to natural <strong>hazard</strong>s, especially geological<br />

processes, a large variety of maps <strong>and</strong> methods<br />

are used in the different European countries to<br />

prevent natural disasters.<br />

Exactly this variety, which reaches<br />

from simple danger mappings to legally binding<br />

“Hazard Zone Plans” (Gefahrenzonenplan),<br />

should be shown inside this part of the AdaptAlp<br />

project. However main goal of work package 5<br />

(WP 5) is not only the description of this variety, but<br />

a development of a “least common denominator”<br />

which includes the minimum requirements <strong>for</strong> the<br />

creation of Danger, Hazard <strong>and</strong> Risk maps.<br />

This article focuses on the AdaptAlp<br />

“Expert Hearing” from 17 March 2010 take place<br />

in Bolzano <strong>and</strong> which dedicates the contents of<br />

work package 5. In the following sections, the<br />

main goals of this meeting <strong>and</strong> the contributions<br />

from the involved experts were shown. In the<br />

final chapter, first basic approaches concerning a<br />

possible synthesis out of the big variety of “<strong>hazard</strong><br />

planning methods” is pointed out.


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 160<br />

Seite 161<br />

2. Main goals of the “Expert Hearing”<br />

The topics of the expert hearing are all about the<br />

goals of the AdaptAlp Work package 5 – “Hazard<br />

Mapping”:<br />

“Hazard zones are designated areas<br />

threatened by natural risks such as avalanches,<br />

l<strong>and</strong>slides or flooding. The <strong>for</strong>mulation of these<br />

<strong>hazard</strong> zones is an important aspect of spatial<br />

planning. AdaptAlp will evaluate, harmonise <strong>and</strong><br />

improve different methods of <strong>hazard</strong> zone planning<br />

applied in the <strong>Alpine</strong> area. Focus will be on a<br />

comparison of methods <strong>for</strong> mapping geological<br />

<strong>and</strong> water risks in the individual countries. A<br />

glossary will facilitate transdisciplinary <strong>and</strong><br />

translingual cooperation as well as support the<br />

harmonisation of the various methods. In selected<br />

model regions, methods to adapt risk analysis to<br />

the impact of climate change will be tested. This<br />

should support the development of <strong>hazard</strong> zone<br />

planning towards a climate change adaptation<br />

strategy. The results will be summarized in a<br />

synthesis report (www.adaptalp.org).<br />

The official description of WP 5 shows<br />

two main parts (goals), which are worked out in<br />

Action 5.1 under the leadership of the Bavarian<br />

Environment Agency (LfU) in collaboration with<br />

the alpS – Centre <strong>for</strong> Natural Hazard <strong>and</strong> Risk<br />

Management in Innsbruck <strong>and</strong> with the inputs<br />

from the international experts of the project<br />

partners.<br />

The two main goals are the elaboration<br />

of a “multilingual glossary to l<strong>and</strong>slides” <strong>and</strong> the<br />

development of “minimum st<strong>and</strong>ards to create<br />

danger, <strong>hazard</strong> <strong>and</strong> risk maps”.<br />

As announced in the introduction,<br />

the main focus of the hearing in Bolzano lies<br />

on the elaboration of basics <strong>for</strong> the definition<br />

of minimum st<strong>and</strong>ards <strong>for</strong> <strong>hazard</strong> mapping.<br />

There<strong>for</strong>e the progress of the glossary was only<br />

addressed inside a short presentation at the<br />

beginning of this meeting. The rest of this one-day<br />

session was dedicated to the contents of <strong>hazard</strong><br />

mapping. Due to this <strong>and</strong> the fact that the glossary<br />

part is already described in detail within chapter<br />

2.6 of this publication, this article only refers to<br />

the <strong>hazard</strong> mapping part.<br />

3. Hazard mapping in the <strong>Alpine</strong> regions<br />

At the beginning of this chapter, it is important<br />

to clarify that, because of the scheduled timing<br />

of the project, at this time no final results can be<br />

presented. Nevertheless, the theoretical approach<br />

<strong>and</strong> the already achieved marks can be shown. In<br />

general the course of action in getting a “synthesis”<br />

to <strong>hazard</strong> mapping is structured in three steps.<br />

First step is the evaluation of the “state of the art”<br />

in <strong>hazard</strong> mapping in each country involved.<br />

Exactly this point was the intention <strong>and</strong> the<br />

main goal of the hearing in Bolzano. Two main<br />

questions remained to be answered:<br />

• What kinds of danger, <strong>hazard</strong> <strong>and</strong> risk maps<br />

are officially applied in each country?<br />

• Which st<strong>and</strong>ards are these maps based on?<br />

To answer these questions, each participant gave<br />

a short overview of the official used danger,<br />

<strong>hazard</strong> <strong>and</strong> risk maps <strong>and</strong> also in<strong>for</strong>mation on<br />

the creation of such maps were given in short<br />

presentations.<br />

The second step will be the<br />

“harmonisation” of the different methods used in<br />

several countries. There<strong>for</strong>e similarities should be<br />

worked out <strong>and</strong> the “least common denominator”<br />

in the methods of <strong>hazard</strong> mapping should be<br />

found. This second step is to be discussed in detail<br />

in the next workshop at the end of 2010.<br />

The final part will be the creation<br />

of a report, which includes the results of this<br />

“harmonisation”. Within the hearing in Bolzano,<br />

the plenum discussed the possible commitment<br />

of such a report <strong>for</strong> each country. However the<br />

title of the project contained the term “minimum<br />

st<strong>and</strong>ards”, which rather sounds like a legal<br />

term, the involved experts decided to switch to<br />

word st<strong>and</strong>ards with “requirements”. So this legal<br />

character is avoided <strong>and</strong> the final report will<br />

include a part with “minimum requirements to the<br />

creation of danger, <strong>hazard</strong> <strong>and</strong> risk maps”.<br />

4. Short summary from the “expert-contributions”<br />

in Bolzano<br />

In the following sections, the “state of the art -<br />

presentations” from several experts in Bolzano are<br />

shown in short summaries <strong>for</strong> each country.<br />

4.1 Germany<br />

In Germany, geogenic natural <strong>hazard</strong>s, such<br />

as mass movements, karstification, large scale<br />

flooding, as well as building ground that is<br />

affected by subsidence <strong>and</strong> uplift, shall in future<br />

be recorded, assessed <strong>and</strong> spatially represented<br />

using a common minimum st<strong>and</strong>ard. An<br />

important component <strong>for</strong> developing danger maps<br />

is the construction <strong>and</strong> evaluation of l<strong>and</strong>slide<br />

inventories (e.g. l<strong>and</strong>slide or sinkhole inventories).<br />

The recorded data in the inventories should have a<br />

minimal nationwide st<strong>and</strong>ards <strong>and</strong> are divided into:<br />

• Main data on the topic area mass<br />

movements <strong>and</strong> subrosion / karst with<br />

in<strong>for</strong>mation about the spatial positioning,<br />

about determination of coordinates, etc.<br />

• Commonly shared technical data of<br />

the subject area mass movements <strong>and</strong><br />

subrosion / karst with in<strong>for</strong>mation about<br />

the date of origin, about the l<strong>and</strong> use <strong>and</strong><br />

about damage, etc.<br />

• Specific technical data of the subject area<br />

mass movement <strong>and</strong> subrosion / karst<br />

• Surface data concerning subsidence <strong>and</strong><br />

uplift<br />

Regarding l<strong>and</strong>slides, slide, fall, flow <strong>and</strong><br />

subrosion processes are recorded in the<br />

inventories. Methods lasting from field studies to<br />

computerized modelling are used <strong>for</strong> the creation<br />

of these “danger maps”. In Germany, danger<br />

maps serve as a first estimation of possible natural<br />

<strong>hazard</strong>s caused by certain geological conditions<br />

<strong>and</strong> should serve as a planning reference <strong>for</strong><br />

possible investigations of individual objects where<br />

necessary. On the danger map, the areas in which<br />

natural <strong>hazard</strong>s are possible are not delineated<br />

precisely <strong>and</strong> local conditions (e.g. prevention<br />

schemes, topographic peculiarities) are not taken<br />

into consideration in every case. Because of these<br />

reasons, it is recommended adding the following<br />

annotations <strong>for</strong> each subject area:<br />

“The following map was created <strong>for</strong> a<br />

1:25,000 scale <strong>and</strong> is not precise. It serves as a<br />

first estimation of possible engineering geological<br />

<strong>hazard</strong>s <strong>and</strong> cannot replace a geotechnical<br />

survey. Areas within the immediate vicinity of<br />

danger fields can also be affected. The intensity<br />

<strong>and</strong> probability of a possible event cannot be<br />

extracted from the map.”<br />

4.2 Austria<br />

At this time there is no regulatory framework or<br />

technical norm concerning mass movements in<br />

Austria. Only the course of actions concerning<br />

floods, avalanches <strong>and</strong> debris flows are regulated<br />

by law. This includes the generation of “<strong>hazard</strong><br />

zoning maps” (“Gefahrenzonenplan”). These are<br />

generated by the Austrian Service <strong>for</strong> Torrent <strong>and</strong><br />

Avalanche Control (Forsttechnischer Dienst für<br />

Wildbach- und Lawinenverbauung, WLV).


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 162<br />

Seite 163<br />

As there are no legal instructions or st<strong>and</strong>ards<br />

in Austria about if or how to deal with the<br />

evaluation of mass movements, the federal states<br />

are all following a different course of action.<br />

The status of available data is very different in<br />

the individual states. In some of the federal<br />

states almost no data is available, others have a<br />

lot of data but not digitally available. And then<br />

there are states that can rely on a lot of digitally<br />

available data <strong>and</strong> are working on generating<br />

l<strong>and</strong>slide susceptibility maps.<br />

4.3 Italy (Piemonte, Emilia-Romagna, Province Bolzano)<br />

In Italy the national law (high level, n. 445/1908)<br />

<strong>and</strong> Royal Decree R.D. (n. 3267/1923) were the<br />

first public regulations on l<strong>and</strong> use planning. At<br />

the beginning of ‘70s the l<strong>and</strong> use management<br />

was transferred to regions.<br />

The national Law n. 183/1989<br />

introduced l<strong>and</strong> use planning at a basin scale.<br />

The government sets the st<strong>and</strong>ards <strong>and</strong> general<br />

aims without fixing a methodology to analyse <strong>and</strong><br />

evaluate the dangers, <strong>hazard</strong>s <strong>and</strong> risks related<br />

to natural phenomena. The same law designated<br />

the Autorità di Bacino (Basin Authority) whose<br />

main goal is to draw up the Basin Plan, a tool <strong>for</strong><br />

planning actions <strong>and</strong> rules <strong>for</strong> conservation <strong>and</strong><br />

protection of the territory.<br />

One of the available tools produced by<br />

ARPA Piemonte is the Italian L<strong>and</strong>slides Inventory<br />

(IFFI). It is a national program of l<strong>and</strong>slides<br />

inventory, sponsored by national authorities <strong>and</strong><br />

made locally by the regions. It is the first try of<br />

an inventory based on common graphical legend<br />

<strong>and</strong> glossary.<br />

The Emilia-Romagna L<strong>and</strong>slide Inventory<br />

Map (LIM) reports over 70,000 l<strong>and</strong>slides, while<br />

the historical data base contains about 6,600<br />

l<strong>and</strong>slide events. LIM may be considered as an<br />

elementary <strong>for</strong>m of a <strong>hazard</strong> map <strong>and</strong>, based<br />

on this, en<strong>for</strong>ce rules <strong>and</strong> obligations addressing<br />

l<strong>and</strong>slide <strong>hazard</strong> reduction: only existing hamlets<br />

<strong>and</strong> villages can extend on dormant l<strong>and</strong>slides;<br />

on active ones, all new construction is <strong>for</strong>bidden.<br />

Otherwise, the use of a purely descriptive<br />

terminology (active, dormant), restricts the<br />

usability of this map, being often obsolete, <strong>and</strong> is<br />

there<strong>for</strong>e a frequent bone of contention.<br />

In the federal state law from 11 August<br />

1997, the base <strong>for</strong> the approval of guidelines to the<br />

creation of <strong>hazard</strong> plans (Gefahrenzonenpläne) <strong>for</strong><br />

South Tyrol was laid. Also the role of municipalities<br />

was defined to carry out the planning within<br />

three years. Finally, the approval of plans <strong>and</strong> the<br />

role of coinvolved partners are also part of this<br />

law. The scale of this legal binding <strong>hazard</strong> plan<br />

(“Gefahrenzonenplan”) in South Tyrol tends to the<br />

working level of detail <strong>for</strong> the analyzed area. In<br />

settlements, a 1:5,000 scale <strong>and</strong> in other regions a<br />

1:10,000 scale is used <strong>and</strong> l<strong>and</strong>slides, hydrological<br />

<strong>hazard</strong>s <strong>and</strong> avalanches are analyzed.<br />

4.4 Switzerl<strong>and</strong><br />

Switzerl<strong>and</strong> is a <strong>hazard</strong>-prone country exposed<br />

to many mass movements, but also to floods <strong>and</strong><br />

snow avalanches. Active <strong>and</strong> dormant l<strong>and</strong>slides<br />

take some 6% of the national surface. Most of the<br />

l<strong>and</strong>slides are very slow or slow reaching some<br />

millimetres to centimetres of displacement per<br />

year. Sudden slope movements with velocities up<br />

to 40 m/s are also observed (e.g. rock avalanches).<br />

The federal laws came into <strong>for</strong>ce in 1991 <strong>and</strong> are<br />

based on an integrated approach to protect people<br />

<strong>and</strong> property from natural <strong>hazard</strong>s. The nontechnical,<br />

preventive measures are of particular<br />

importance: l<strong>and</strong>-use planning, zoning, building<br />

codes. The reference documents in Switzerl<strong>and</strong><br />

are the natural <strong>hazard</strong> maps. The techniques<br />

<strong>for</strong> developing these maps are outlined in the<br />

federal guideline where a three step procedure is<br />

proposed:<br />

1) Firstly, an indispensable prerequisite <strong>for</strong> the<br />

l<strong>and</strong>slide <strong>hazard</strong> identification is obtaining<br />

in<strong>for</strong>mation about past slope failure events:<br />

the maps of phenomena <strong>and</strong> the registration<br />

of events (database).<br />

2) Secondly, <strong>hazard</strong> <strong>assessment</strong> implies the<br />

determination of magnitude or intensity<br />

over time. Five classes of <strong>hazard</strong> are<br />

determined in Switzerl<strong>and</strong>: high danger<br />

(red zone), moderate danger (blue zone),<br />

low danger (yellow zone), residual danger<br />

(yellow-white zone) <strong>and</strong> no danger (white<br />

zone).<br />

3) Based on the <strong>hazard</strong> maps <strong>and</strong> risk analysis,<br />

three kinds of measures can be then taken<br />

(third step): planning measures, technical<br />

measures <strong>and</strong> organizational measures.<br />

4.5 France<br />

The plan <strong>for</strong> prevention of natural <strong>hazard</strong>s (plan<br />

de prévention des risques naturels prévisibles -<br />

PPR) established by the law of 2 February 1995<br />

is the “central” tool of the French State's action<br />

in preventing natural <strong>hazard</strong>s. The elaboration<br />

of the PPR is conducted under the authority of<br />

the prefect of the department, which approves it<br />

after <strong>for</strong>mal consultation of municipalities <strong>and</strong> a<br />

public inquiry. The PPR is achieved by involving<br />

local <strong>and</strong> regional concerned authorities from the<br />

beginning of its preparation. It can h<strong>and</strong>le only<br />

one type of <strong>hazard</strong> or more <strong>and</strong> cover one or<br />

several municipalities.<br />

In the frame of this common procedure,<br />

a general methodological guidelines document<br />

has been published. One of these guideline<br />

documents is dedicated to geological <strong>hazard</strong>s,<br />

which includes subsidence, sinking, collapse,<br />

rock falls, l<strong>and</strong>slides, <strong>and</strong> associated mud flows,<br />

but excludes debris flows.<br />

4.6 Engl<strong>and</strong><br />

Up until 1966, the UK Government were not<br />

interested in Geo<strong>hazard</strong>s, they were more<br />

interested in finding oil <strong>and</strong> gas to help the UK<br />

economy develop <strong>and</strong> exp<strong>and</strong>. After the Aberfan<br />

disaster (where 144 people, 116 of them children),<br />

the UK government were much more interested<br />

<strong>and</strong> funded a number of research projects to look<br />

at the UK’s geo<strong>hazard</strong>s.<br />

An inventory is the first step in<br />

building an underst<strong>and</strong>ing of the occurrence of<br />

geo<strong>hazard</strong>s. Currently BGS maintains two main<br />

shallow geo<strong>hazard</strong> databases: the National<br />

L<strong>and</strong>slide <strong>and</strong> Karst Database (www.bgs.ac.uk).<br />

These inventories provide the basis <strong>for</strong> analysing<br />

the spatial distribution of the geo<strong>hazard</strong> <strong>and</strong><br />

their causal factors. From this underst<strong>and</strong>ing<br />

susceptibility can be assessed. In 2002, BGS<br />

developed a nationwide susceptibility <strong>assessment</strong><br />

of deterministic geo<strong>hazard</strong>s such as l<strong>and</strong>slides,<br />

skrink-swell, etc. called GeoSure (http://www.bgs.<br />

ac.uk/products/geosure/).<br />

4.7 Spain (Catalonia)<br />

The Parliament of Catalonia approved, with Law<br />

19/2005, the creation of the Geological Institute<br />

of Catalonia (IGC), assigned to the Ministry<br />

of L<strong>and</strong> Planning <strong>and</strong> Public Infrastructures<br />

(DPTOP) of the Catalonian Government. The<br />

most important mapping plan is the Geological<br />

Hazard Prevention Map of Catalonia 1:25,000<br />

(MPRGC25M). As a component of the<br />

Geoworks of the IGC, the strategic program


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 164<br />

Seite 165<br />

Comparison of different maps <strong>and</strong> their scales<br />

Austria Germany Switzerl<strong>and</strong> Slovenia Italy France Spain UK<br />

Level Type of map GBA <strong>and</strong> Kärnten WLV Bayern CH Slovenia<br />

basic<br />

inventory<br />

Arpa<br />

Piemonte<br />

South Tyrol<br />

Emilia<br />

Romagna<br />

France Catalonia UK<br />

Geomorphologic map large scale variable scales 1:10,000 1:5,000 1:10,000 1:10,000 variable<br />

Geotechnical map 1:5,000-1:50,000 1:200,000<br />

Engineering geological map 1:5,000 (l<strong>and</strong>slides) 1:250,000<br />

Level of attention<br />

Inventory map 1:25,000 to 1:50,000<br />

Multi-temporal inventory map<br />

1:5,000 to 1:2,000<br />

<strong>and</strong> 1:25,000 to<br />

1:50,000<br />

1:10,000-<br />

1:25,000<br />

1:10,000-1:50,000<br />

(M1), 1:2,000-<br />

1:10,000 (M2),<br />

1:5,000-1:2,000 or<br />

bigger (M3)<br />

Municipal<br />

>1:50,000 1:10,000 1:10,000 1:25,000-<br />

1:100,000 1:10,000 1:25,000<br />

-<br />

1:10,000<br />

Map of phenomena<br />

1:50,000 <strong>and</strong> bigger<br />

1:10,000-1:50,000<br />

(M1), 1:2,000-<br />

1:10,000 (M2),<br />

1:5,000-1:2,000 or<br />

bigger (M3)<br />

1:10,000<br />

1:5,000 or<br />

1:10,000<br />

variable<br />

scales<br />

1:25,000<br />

<strong>and</strong> bigger<br />

1:10,000-<br />

1:50,000<br />

suscepti-bility<br />

Map of area of activity 1:25,000 1:10,000<br />

L<strong>and</strong>slide susceptibility<br />

map, danger map<br />

(Gefahrenhinweiskarte)<br />

1:200,000 (K, regional),<br />

1:50,000 (St., local)<br />

1:25,000 1:10,000-1:50,000 1:250,000 1:10,000 yes<br />

1:25,000<br />

(2000)<br />

1:5,000<br />

(2009)<br />

1:10,000-<br />

1:50,000<br />

1:25,000 1:50,000<br />

<strong>hazard</strong> index map K, Bleiberg: 1:10,000<br />

Hazard map 1:2,000-1:10,000 1:25,000<br />

1:10,000-<br />

1:25,000<br />

1:25,000<br />

<strong>hazard</strong><br />

Detailed Study (Detailstudie)<br />

Hazard zone map<br />

(Gefahrenzonenkarte)<br />

not smaller than<br />

1:50,000, usually<br />

1:2,000 to 1:5,000<br />

1:5,000-1:2,000 or<br />

more<br />

1:10,000<br />

1:5,000;<br />

1:10,000<br />

1:5,000 -<br />

1:1,000<br />

Hazard zone map of the<br />

development plan<br />

1:10,000<br />

1:5,000;<br />

1:10,000<br />

1:5,000<br />

Map of potential damage<br />

1:5,000;<br />

1:10,000<br />

risk<br />

Vulnerability map 1:250,000<br />

Risk zoning map, risk map<br />

1:5,000;<br />

1:10,000<br />

Fig. 1: Comparison of different maps <strong>and</strong> their scales<br />

Abb. 1: Vergleich unterschiedlicher Karten und deren Maßstab


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Comparison of in<strong>for</strong>mation collected <strong>for</strong> different inventories<br />

Characteristics Austria Ger CH SLO Italy F UK ES<br />

GBA K By CH SLO EmRo AP ST F UK Catalan<br />

Inventory x x x x x x x x x x<br />

national scale x x x x x x<br />

regional scale x x x x x<br />

study/ detailed scale x x x<br />

geometry (width, length...) x x x x x x x x x x x<br />

Basic in<strong>for</strong>mation where x x x x x x x x x x x<br />

when x x x x x x x x x x x<br />

what x x x x x x x x x x x<br />

why x x x x x x x x x<br />

who x x x x x x x x x<br />

reported when x x x x x x x<br />

L<strong>and</strong>slide conditions activity ( number of events...) x x x x x x x x x x x<br />

slope position x x x x x x x<br />

approx. original slope x x x<br />

positional accuracy x x x<br />

site description x x x x x x<br />

depth to bedrock x<br />

depth to basal failure plane x x<br />

slope aspect x x x x x x x x<br />

slope x x x x x x<br />

Geology in general x x x x x x x<br />

Geology, specified geologic unit x x x x x x x<br />

tectonic unit x x x x<br />

lithology x x x x x x x x<br />

stratigraphy x x x x<br />

bedding attitude x x x<br />

weathering x x x<br />

geotechnical properties (rock, debris) x x x x x x<br />

geotechnical parameters (shear,…) x x<br />

rock mass structure x x x x<br />

joints x x<br />

joint spacing x<br />

discontinuities x<br />

structural contributions x x<br />

L<strong>and</strong> cover x x x x<br />

L<strong>and</strong> use x x x x<br />

Hydrogeology x x x<br />

Relationship to rainfall x x<br />

Classification of mass movements (not specified) x x x x<br />

Classification type x x x x x x x x x x<br />

rate of movement x x x x x<br />

material x x x x x x<br />

water content x x x<br />

Causes x x x x x x x x x x<br />

Trigger x x x x x x<br />

Precursory signs (fissures,…) x x x<br />

Silent witnesses x x<br />

Rock fall: shadow angle x x x<br />

Rock fall: (geometric) slope gradient x x x<br />

Damage x x x x x x x x x x<br />

"Hazard" to infrastructure x x x x x<br />

Remedial measures x x x x x x x<br />

Costs of rem. Measures x x x<br />

Costs of investigation x<br />

Method used to gather info (field survey, aerial photo-interpretation,…) x x x x x x x x x<br />

Degree of precision of in<strong>for</strong>mation x x x x x x<br />

Certainty/ reliability of in<strong>for</strong>mation x<br />

Investigations, reports, documentation, references included x x x x x x x x<br />

Bibliography included x x x x x x<br />

Fig. 2: Comparison of characteristics <strong>and</strong> in<strong>for</strong>mation collected <strong>for</strong> different inventories <strong>and</strong> maps<br />

Abb. 2: Vergleich von Charakteristiken und eingehende In<strong>for</strong>mationen für unterschiedliche Inventare und Karte<br />

Seite 166<br />

Seite 167


Hazard <strong>assessment</strong> <strong>and</strong> mapping of mass-movements in the EU<br />

Seite 168<br />

Seite 169<br />

aimed to acquiring, elaborating, integrating <strong>and</strong><br />

disseminating the basic geological, pedological<br />

<strong>and</strong> geothematic in<strong>for</strong>mation concerning the<br />

whole of the territory in the suitable scales <strong>for</strong><br />

the l<strong>and</strong> <strong>and</strong> urban planning. This project started<br />

in 2007. In the MPRGC, evidence, phenomena,<br />

susceptibility <strong>and</strong> natural <strong>hazard</strong>s of geological<br />

processes are represented. These processes are<br />

generated by external geodynamics (such as slope,<br />

torrent, snow, coastal <strong>and</strong> flood dynamics) <strong>and</strong><br />

internal (seismic) geodynamics. The in<strong>for</strong>mation<br />

is displayed by different maps on each published<br />

sheet. The main map is presented on a scale of<br />

1:25,000, <strong>and</strong> includes l<strong>and</strong>slide, avalanche<br />

<strong>and</strong> flood <strong>hazard</strong>. Hazard level is qualitatively<br />

classified as high (red), medium (orange) <strong>and</strong> low<br />

(yellow). The methods used to analyze <strong>hazard</strong>s<br />

basically consist of geomorphologic, spatial <strong>and</strong><br />

statistical analysis.<br />

4.8 Slovenia<br />

Legislation, planning <strong>and</strong> prevention measures are<br />

not satisfying in the field of l<strong>and</strong>slides in Slovenia<br />

<strong>and</strong> the primary activities are still focused on<br />

remediation instead on the prevention measures.<br />

The updated Act on Spatial planning from<br />

2007, governing natural disasters also discusses<br />

problems with mass movements, but a common<br />

methodology <strong>and</strong> procedures to prevent geologyrelated<br />

natural disasters does not exist yet.<br />

At the moment <strong>for</strong> Slovenia, a<br />

“l<strong>and</strong>slide susceptibility map” (scale 1:250,000)<br />

<strong>and</strong> a “debris-flow susceptibility map” (scale<br />

1:250,000) is elaborated by the Geological Survey<br />

of Slovenia. In addition to this, a probabilistic<br />

model of slope mass movement susceptibility <strong>for</strong><br />

the Bovec municipality in north-western Slovenia<br />

was developed based on the expert geo<strong>hazard</strong><br />

map at scale 1:25,000 <strong>and</strong> several other relevant<br />

influence factors.<br />

5. Conclusion<br />

As mentioned in the introduction of this article,<br />

the “state of the art in <strong>hazard</strong> mapping“ in the<br />

involved countries isn’t in balance. This fact was<br />

also confirmed inside the “Expert Hearing” in<br />

Bolzano.<br />

To solve this problem, in a first step the<br />

big variety of maps applied in the several regions<br />

was summarized in one table (see Fig. 1). This chart<br />

builds the basis <strong>for</strong> further actions concerning<br />

the creation of minimum requirements. It is<br />

structured into different levels <strong>and</strong> the associated<br />

type of maps. The levels lasting from “basic” (e.g.<br />

geomorphologic maps) over “inventories” (e.g.<br />

inventory map), “susceptibility” (e.g. susceptibility<br />

map) <strong>and</strong> “<strong>hazard</strong>” (e.g. <strong>hazard</strong> map) to “risk”<br />

(e.g. risk map).<br />

Furthermore, a matrix (see Fig. 2)<br />

with specified characteristics <strong>and</strong> in<strong>for</strong>mation<br />

collected <strong>for</strong> different maps was created out<br />

of the great wealth of in<strong>for</strong>mation given at the<br />

hearing in Bolzano. In particular, this table should<br />

help to find accordance’s between the different<br />

approaches. All the characteristics used in any<br />

involved country (e.g. inventory) <strong>for</strong>m the basis<br />

<strong>for</strong> the definition of minimum requirements to<br />

“<strong>hazard</strong> mapping”.<br />

Finally, out of these two matrices a<br />

recommendation will be created <strong>and</strong>, based<br />

thereon, the final minimum requirements should<br />

be fixed in the next workshop on December 2010<br />

in Munich. The final report on the whole project<br />

will include a chapter with the decided minimum<br />

requirements to the creation of “Danger, Hazard<br />

<strong>and</strong> Risk maps”.<br />

Anschrift der Verfasser / Authors’ addresses:<br />

Karl Mayer<br />

Bavarian Environment Agency (LfU)<br />

(Office Munich)<br />

Lazarettstraße 67<br />

80636 Munich – GERMANY<br />

Bernhard Lochner<br />

alpS – Centre <strong>for</strong> Natural Hazard <strong>and</strong> Risk<br />

Management<br />

Grabenweg 3<br />

6020 Innsbruck - AUSTRIAText<br />

Literatur / References:<br />

CRUDEN, D.M. & VARNES, D.J. (1996): L<strong>and</strong>slide types <strong>and</strong> processes.<br />

In A. Keith Turner & Robert L. Schuster (eds), L<strong>and</strong>slide investigation <strong>and</strong><br />

mitigation: 36-75. Transportation Research Board, special report 247.<br />

Washington: National Academy Press.<br />

FELGENTREFF, C. & GLADE, T. (Hrsg.) (2008): Naturrisiken und<br />

Sozialkatastrophen. Spektrum Akademischer Verlag, Heidelberg, 454 S.<br />

KOMAC, M. (2005): Probabilistic model of slope mass movement<br />

susceptibility - a case study of Bovec municipality, Slovenia. Geologija,<br />

48/2, 311-340.<br />

KOMAC, M. & RIBIČIČ, M. (2006): L<strong>and</strong>slide susceptibility map of<br />

Slovenia at scale 1:250.000. Geologija, 49/2, 295-309.<br />

KOMAC, M., KUMELJ, Š. & RIBIČIČ, M. (2009): Debris-flow susceptibility<br />

model of Slovenia at scale 1: 250,000. Slovenia. Geologija, 52/1, 87-104.<br />

MAYER, K. & POSCHINGER, A. von (2005): Final Report <strong>and</strong> Guidelines:<br />

Mitigation of Hydro-Geological Risk in <strong>Alpine</strong> Catchments, “CatchRisk”.<br />

Work Package 2: L<strong>and</strong>slide <strong>hazard</strong> <strong>assessment</strong> (Rockfall modelling).<br />

Program Interreg IIIb – <strong>Alpine</strong> Space.<br />

MAYER, K., Patula, S., Krapp, M., Leppig, B., Thom, P., Poschinger, A. von<br />

(2010): Danger Map <strong>for</strong> the Bavarian Alps. Z. dt. Ges. Geowiss., 161/2, p.<br />

119-128, 10 figs. Stuttgart, June 2010<br />

RAETZO, H., LATELTIN, O., TRIPET, J.P., BOLLINGER, D. (2002): Hazard<br />

<strong>assessment</strong> in Switzerl<strong>and</strong> – codes of practice <strong>for</strong> mass movements. Bull. of<br />

Engineering Geology <strong>and</strong> the Environment 61(3): 263-268.<br />

RIBIČIČ, M., KOMAC, M., MIKOŠ, M., FAJFAR, D., RAVNIK, D.,<br />

GVOZDANOVIČ, T., KOMEL, P., MIKLAVČIČ, L. & KOSMATIN FRAS, M.<br />

(2006): Novelacija in nadgradnja in<strong>for</strong>macijskega sistema o zemeljskih<br />

plazovih in vključitev v bazo GIS_UJME : končno poročilo. Ljubljana:<br />

Fakulteta za gradbeništvo in geodezijo (in Slovene).


Seite 170<br />

AdaptAlp<br />

DI Maria Patek, MBA<br />

Bundesministerium für L<strong>and</strong>- und Forstwirtschaft,<br />

Umwelt und Wasserwirtschaft<br />

Abteilung IV/5<br />

Marxergasse 3<br />

1030 Wien<br />

Tel.: 01/711 00 - 7334<br />

Fax: 01/71100 - 7399<br />

E-Mail: die.wildbach@lebensministerium.at

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!