22.11.2014 Views

Chapter 13 Solutions - Mosinee School District

Chapter 13 Solutions - Mosinee School District

Chapter 13 Solutions - Mosinee School District

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>13</strong><br />

<strong>13</strong><br />

Vibrations and Waves<br />

PROBLEM SOLUTIONS<br />

<strong>13</strong>.1 (a) Taking to the right as positive, the spring force acting on the block at the instant of release is<br />

F kx<br />

s<br />

i<br />

<strong>13</strong>0 N m 0.<strong>13</strong> m 17 N or 17 N to the left<br />

(b)<br />

At this instant, the acceleration is<br />

a<br />

F s<br />

m<br />

17 N<br />

0.60 kg<br />

28 m s<br />

2<br />

or a 28 m s<br />

2<br />

to the left<br />

<strong>13</strong>.2 When the object comes to equilibrium (at distance y 0 below the unstretched position of the end of the spring),<br />

F k y mg and the force constant is<br />

y<br />

0 0<br />

k<br />

mg<br />

y<br />

0<br />

4.25 kg 9.80 m s<br />

2.62 10<br />

2<br />

m<br />

2<br />

1.59 103<br />

N 1.59 kN<br />

<strong>13</strong>.3 (a) Since the collision is perfectly elastic, the ball will rebound to the height of 4.00 m before coming to rest<br />

momentarily. It will then repeat this motion over and over again with a regular period.<br />

1<br />

(b) From y v t a t<br />

2<br />

, with v 0 0 , the time required for the ball to reach the ground is<br />

0y<br />

2<br />

y<br />

y<br />

t<br />

2 y 2 4.00 m<br />

a<br />

y<br />

9.80 m s<br />

2<br />

0.904 s<br />

This is one-half of the time for a complete cycle of the motion. Thus, the period is<br />

T 1.81 s .<br />

(c)<br />

No . The net force acting on the object is a constant given by F = mg (except when it is contact with the<br />

ground). This is not in the form of Hooke’s law.<br />

<strong>13</strong>.4 (a) The spring constant is<br />

Page <strong>13</strong>.1


<strong>Chapter</strong> <strong>13</strong><br />

k<br />

Fs<br />

x<br />

mg<br />

x<br />

50 N<br />

5.0 10<br />

-2<br />

m<br />

1.0 103<br />

N m<br />

F Fs<br />

kx<br />

1.0 103 N m 0.11 m 1.1 102<br />

N<br />

(b) The graph will be a straight line passing through the origin with a slope equal to k 1.0 103<br />

N m .<br />

<strong>13</strong>.5 When the system is in equilibrium, the tension in the spring F k x must equal the weight of the object. Thus,<br />

k x<br />

mg giving<br />

m<br />

k x<br />

g<br />

47.5 N 5.00 10<br />

2<br />

m<br />

9.80 m s<br />

2<br />

0.242 kg<br />

<strong>13</strong>.6 (a) The free-body diagram of the point in the center of the string is<br />

given at the right. From this, we see that<br />

F 0 F 2T<br />

sin 35.0 0<br />

x<br />

or<br />

T<br />

F 375 N<br />

2 sin 35.0 2 sin 35.0<br />

327 N<br />

(b)<br />

Since the bow requires an applied horizontal force of 375 N to hold the string at 35.0° from the vertical, the<br />

tension in the spring must be 375 N when the spring is stretched 30.0 cm. Thus, the spring constant is<br />

k<br />

F<br />

x<br />

375 N<br />

0.300 m<br />

1.25 103<br />

N m<br />

<strong>13</strong>.7 (a) When the block comes to equilibrium, Fy<br />

ky0 mg 0 giving<br />

y<br />

0<br />

mg<br />

k<br />

10.0 kg 9.80 m s<br />

475 N m<br />

2<br />

0.206 m<br />

or the equilibrium position is 0.206 m below the unstretched position of the lower end of the spring.<br />

(b) When the elevator (and everything in it) has an upward acceleration of a 2.00 m s2<br />

second law to the block gives<br />

, applying Newton’s<br />

Fy<br />

k y0<br />

y mg ma y or y 0<br />

F ky mg ky ma<br />

y<br />

Page <strong>13</strong>.2


<strong>Chapter</strong> <strong>13</strong><br />

where y = 0 at the equilibrium position of the block. Since ky0 mg 0 [see part (a)], this becomes<br />

ky<br />

ma and the new position of the block is<br />

y<br />

ma y<br />

k<br />

10.0 kg 2.00 m s<br />

475 N m<br />

2<br />

4.21 10<br />

2<br />

m 4.21 cm<br />

or 4.21 cm below the equilibrium position.<br />

(c)<br />

When the cable breaks, the elevator and its contents will be in free-fall with a y = g. The new “equilibrium”<br />

position of the block is found from Fy<br />

ky0<br />

mg m g , which yields y 0 0<br />

snapped, the block was at rest relative to the elevator at distance<br />

. When the cable<br />

y0 y 0.206 m 0.042 1 m 0.248 mbelow the new “equilibrium” position. Thus, while the elevator is<br />

in free-fall, the block will oscillate with amplitude<br />

0.248 m about the new “equilibrium” position, which<br />

is the unstretched position of the spring’s lower end.<br />

<strong>13</strong>.8 (a) When the gun is fired, the elastic potential energy initially stored in the spring is transformed into kinetic<br />

energy of the projectile. Thus, it is necessary to have<br />

1<br />

2<br />

1<br />

kx<br />

2<br />

0 mv 0 or<br />

2 2<br />

k<br />

mv<br />

x<br />

2<br />

0<br />

2<br />

0<br />

3.00 10<br />

3<br />

kg 45.0 m s<br />

2<br />

8.00 10<br />

2<br />

m<br />

2<br />

949 N m<br />

(b)<br />

The magnitude of the force required to compress the spring 8.00 cm and load the gun is<br />

Fs<br />

k x<br />

949 N m 8.00 10<br />

2<br />

m 75.9 N<br />

<strong>13</strong>.9 (a) Assume the rubber bands obey Hooke’s law. Then, the force constant of each band is<br />

k<br />

F s<br />

x<br />

15 N<br />

1.0 10<br />

-2<br />

m<br />

1.5 103<br />

N m<br />

Thus, when both bands are stretched 0.20 m, the total elastic potential energy is<br />

1<br />

PEs<br />

kx<br />

2<br />

2 3<br />

2<br />

2 1.5 10 N m 0.20 m 60 J<br />

(b) Conservation of mechanical energy gives KE PE s KE PE s , or<br />

f<br />

i<br />

Page <strong>13</strong>.3


<strong>Chapter</strong> <strong>13</strong><br />

1<br />

2<br />

0 0 60 J<br />

2 mv , so 2 60 J<br />

v<br />

50 10<br />

-3<br />

kg<br />

49 m s<br />

<strong>13</strong>.10 (a)<br />

k<br />

F<br />

x<br />

max<br />

max<br />

230 N<br />

0.400 m<br />

575 N m<br />

(b)<br />

work done PEs<br />

kx<br />

2 2<br />

1<br />

2<br />

1 2<br />

575 N m 0.400 46.0 J<br />

<strong>13</strong>.11 From conservation of mechanical energy,<br />

KE PE g PE s KE PE f<br />

g PE s or 1<br />

0 mghf<br />

0 0 0 kx i<br />

2<br />

i<br />

2<br />

giving<br />

k<br />

2 mgh<br />

x<br />

2<br />

i<br />

f<br />

2 0.100 kg 9.80 m s2<br />

0.600 m<br />

2<br />

2.00 10<br />

2<br />

m<br />

2.94 103<br />

N m<br />

<strong>13</strong>.12 Conservation of mechanical energy, ( KE PEg PEs ) f ( KE PEg PE s)<br />

i<br />

, gives<br />

1 2 1<br />

mv 0 0 0 0<br />

2<br />

2 i<br />

2 f<br />

kx , or<br />

v<br />

i<br />

k<br />

m<br />

x<br />

i<br />

5.00 106<br />

N m 3.16 10<br />

2 m 2.23 m s<br />

1000 kg<br />

<strong>13</strong>.<strong>13</strong> An unknown quantity of mechanical energy is converted into internal energy during the collision. Thus, we apply<br />

conservation of momentum from just before to just after the collision and obtain mv i + M(0) = (M + m)V, or the<br />

speed of the block and embedded bullet just after collision is<br />

V<br />

m<br />

M m<br />

v<br />

i<br />

10.0 10<br />

3<br />

kg<br />

2.01 kg<br />

300 m s 1.49 m s<br />

Now, we use conservation of mechanical energy from just after collision until the block comes to rest. This gives<br />

1 2 1<br />

0<br />

2<br />

2 f 2<br />

kx M m V , or<br />

x<br />

f<br />

V<br />

M m<br />

k<br />

2.01 kg<br />

1.49 m s 0.477 m<br />

19.6 N m<br />

Page <strong>13</strong>.4


<strong>Chapter</strong> <strong>13</strong><br />

<strong>13</strong>.14 (a) At either of the turning points, x = A, the constant total energy of the system is momentarily stored as elastic<br />

potential energy in the spring. Thus, E kA 2 2 .<br />

(b) When the object is distance x from the equilibrium position, the elastic potential energy is PEs<br />

kx 2 2 and<br />

the kinetic energy is KE mv 2 2 . At the position where KE = 2PE s , is it necessary that<br />

1 1<br />

2 2<br />

1<br />

mv kx<br />

2<br />

mv2 2 kx<br />

2<br />

or<br />

2 2<br />

(c) When KE = 2PE, conservation of energy gives E KE PEs 2 PEs PEs 3PE s<br />

, or<br />

1 1<br />

2 2<br />

kA2 3 kx2<br />

x<br />

k A 2 2<br />

3 k 2<br />

or<br />

x<br />

A<br />

3<br />

<strong>13</strong>.15 (a) At maximum displacement from equilibrium, all of the energy is in the form of elastic potential energy, giving<br />

E kx , and<br />

3<br />

2<br />

max 2<br />

k<br />

2E<br />

x<br />

2<br />

max<br />

2 47.0 J<br />

0.240 m<br />

2<br />

1.63 10 N m<br />

(b)<br />

At the equilibrium position (x = 0), the spring is momentarily in its relaxed state and PE s = 0, so all of the<br />

energy is in the form of kinetic energy. This gives<br />

1<br />

KE mv2<br />

x 0<br />

max E<br />

2<br />

47.0 J<br />

(c)<br />

If, at the equilibrium position, v = v max = 3.45 m/s, the mass of the block is<br />

m<br />

2E<br />

v<br />

2<br />

max<br />

2 47.0 J<br />

3.45 m s<br />

2<br />

7.90 kg<br />

(d) At any position, the constant total energy is, E KE PE mv2 2 kx<br />

2<br />

2, so at x = 0.160 m<br />

s<br />

v<br />

2E<br />

2 2 47.0 J 1.63 103<br />

N m 0.160 m<br />

kx<br />

m<br />

7.90 kg<br />

2<br />

2.57 m s<br />

(e)<br />

At x = 0.160 m, where v = 2.57 m/s, the kinetic energy is<br />

Page <strong>13</strong>.5


<strong>Chapter</strong> <strong>13</strong><br />

1<br />

2<br />

1 2<br />

7.90 kg 2.57 m s 26.1 J<br />

KE mv<br />

2 2<br />

(f)<br />

At x = 0.160 m, where KE = 26.1 J, the elastic potential energy is<br />

PEs<br />

E KE<br />

47.0 J 26.1 J 20.9 J<br />

or alternately,<br />

1<br />

2<br />

1<br />

3<br />

2<br />

1.63 10 N m 0.160 m 20.9 J<br />

PEs<br />

kx<br />

2 2<br />

(g)<br />

At the first turning point (for which x < 0 since the block started from rest at x = +0.240 m and has passed<br />

through the equilibrium at x = 0) all of the remaining energy is in the form of elastic potential energy, so<br />

1<br />

2<br />

kx2<br />

E E loss<br />

47.0 J 14.0 J 33.0 J<br />

and<br />

x<br />

2 33.0 J 2 33.0 J<br />

k<br />

1.63 103<br />

N m<br />

0.201 m<br />

<strong>13</strong>.16 (a) F k x 83.8 N m 5.46 10<br />

2<br />

m 4.58 N<br />

(b)<br />

E PEs<br />

kx<br />

2 2<br />

1 2<br />

2<br />

1 83.8 N m 5.46 10<br />

2 m 0.125 J<br />

(c) While the block was held stationary at x = 5.46 cm, F F F 0 , or the spring force was equal in<br />

magnitude and oppositely directed to the applied force. When the applied force is suddenly removed, there is a<br />

net force F s = 4.58 N directed toward the equilibrium position acting on the block. This gives the block an<br />

acceleration having magnitude<br />

x<br />

s<br />

a<br />

F s<br />

m<br />

4.58 N<br />

0.250 kg<br />

18.3 m s<br />

2<br />

(d)<br />

At the equilibrium position, PE s = 0, so the block has kinetic energy KE = E = 0.125 J and speed<br />

v<br />

2E<br />

m<br />

2 0.125 J<br />

0.250 kg<br />

1.00 m s<br />

Page <strong>13</strong>.6


<strong>Chapter</strong> <strong>13</strong><br />

(e)<br />

If the surface was rough, the block would spend energy overcoming a retarding friction force as it moved<br />

toward the equilibrium position, causing it to arrive at that position with a lower speed than that computed<br />

above. Computing a number value for this lower speed requires knowledge of the coefficient of friction<br />

between the block and surface.<br />

<strong>13</strong>.17 From conservation of mechanical energy,<br />

KE PE PE KE PE PE<br />

g s<br />

f<br />

g s<br />

i<br />

we have 1 mv 2 0 1 kx 2 0 0<br />

1 kA 2 , or<br />

2 2 2<br />

k<br />

v A x<br />

m<br />

2 2<br />

(a) The speed is a maximum at the equilibrium position, x = 0.<br />

v<br />

max<br />

k<br />

A<br />

m<br />

2<br />

19.6 N m 2<br />

0.040 m 0.28 m s<br />

0.40 kg<br />

(b) When x = 0.015 m,<br />

v<br />

19.6 N m 2 2<br />

0.040 m 0.015 m 0.26 m s<br />

0.40 kg<br />

(c) When x = +0.015 m,<br />

v<br />

19.6 N m 2 2<br />

0.040 m 0.015 m 0.26 m s<br />

0.40 kg<br />

1<br />

k<br />

(d) If v v<br />

2 max<br />

, then<br />

2 2<br />

1 k<br />

A x A2<br />

m<br />

2 m<br />

This gives A 2 x 2 = A 2 /4, or x A 3 / 2 4.0 cm 3 / 2 3.5 cm .<br />

1<br />

<strong>13</strong>.18 (a) KE = 0 at x = A, so E KE PE 0 kA<br />

2<br />

, or the total energy is<br />

s<br />

2<br />

E<br />

1 2<br />

1 250 N m 0.035 m 2<br />

kA<br />

0.15 J<br />

2 2<br />

Page <strong>13</strong>.7


<strong>Chapter</strong> <strong>13</strong><br />

1<br />

(b) The maximum speed occurs at the equilibrium position where PE s = 0. Thus, E mv<br />

2<br />

2 max<br />

, or<br />

v<br />

max<br />

2 E k<br />

250 N m<br />

A 0.035 m 0.78 m s<br />

m m<br />

0.50 kg<br />

(c) The acceleration is a F/ m kx/<br />

m . Thus, a = a max at x = x max = A.<br />

a<br />

max<br />

k A k<br />

m m<br />

A<br />

250 N m 0.035 m 18 m s<br />

0.50 kg<br />

2<br />

<strong>13</strong>.19 The maximum speed occurs at the equilibrium position and is<br />

v<br />

max<br />

k<br />

m<br />

A<br />

Thus,<br />

m<br />

kA<br />

v<br />

2<br />

2<br />

max<br />

16.0 N m 0.200 m<br />

0.400 m s<br />

2<br />

2<br />

4.00 kg ,<br />

and<br />

Fg<br />

mg<br />

4.00 kg 9.80 m s2<br />

39.2 N<br />

<strong>13</strong>.20<br />

k<br />

v A x<br />

m<br />

2 2<br />

10.0 N m<br />

50.0 10<br />

-3<br />

kg<br />

2 2<br />

0.250 m 0.125 m 3.06 m s<br />

<strong>13</strong>.21 (a) The motion is simple harmonic because the tire is rotating with constant velocity and you are looking at the<br />

uniform circular motion of the “bump” projected on a plane perpendicular to the tire.<br />

(b)<br />

Note that the tangential speed of a point on the rim of a rolling tire is the same as the translational speed of the<br />

axle. Thus, v v 3.00 m s and the angular velocity of the tire is<br />

t<br />

car<br />

v t<br />

r<br />

3.00 m s<br />

0.300 m<br />

10.0 rad s<br />

Therefore, the period of the motion is<br />

T<br />

2 2<br />

10.0 rad s<br />

0.628 s<br />

Page <strong>13</strong>.8


<strong>Chapter</strong> <strong>13</strong><br />

<strong>13</strong>.22 (a)<br />

v<br />

t<br />

2 r<br />

T<br />

2 0.200 m<br />

2.00 s<br />

0.628 m s<br />

(b)<br />

f<br />

1 1<br />

T 2.00 s<br />

0.500 Hz<br />

(c)<br />

2 2<br />

T 2.00 s<br />

3.14 rad s<br />

<strong>13</strong>.23 The angle of the crank pin is t . Its x-coordinate is<br />

x Acos<br />

Acos<br />

t where A is the distance from the<br />

center of the wheel to the crank pin. This is of the correct<br />

form to describe simple harmonic motion. Hence, one must<br />

conclude that the motion is indeed simple harmonic.<br />

<strong>13</strong>.24 The period of vibration for an object-spring system is T 2<br />

m k . Thus, if T = 0.223 s and<br />

m = 35.4 g = 35.4<br />

10 3 kg, the force constant of the spring is<br />

k<br />

4<br />

2m<br />

T<br />

2<br />

4<br />

2<br />

35.4 10<br />

3<br />

kg<br />

0.223 s<br />

2<br />

28.1 N m<br />

<strong>13</strong>.25 The spring constant is found from<br />

k<br />

Fs<br />

x<br />

mg<br />

x<br />

0.010 kg 9.80 m s<br />

3.9 10<br />

-2<br />

m<br />

2<br />

2 .5 N m<br />

When the object attached to the spring has mass m = 25 g, the period of oscillation is<br />

T<br />

m 0.025 kg<br />

2 2 0.63 s<br />

k 2 .5 N m<br />

<strong>13</strong>.26 The springs compress 0.80 cm when supporting an additional load of m = 320 kg. Thus, the spring constant is<br />

k<br />

mg<br />

x<br />

320 kg 9.80 m s<br />

0.80 10<br />

-2<br />

m<br />

2<br />

3.9 105<br />

N m<br />

When the empty car, M = 2.0<br />

10 3 kg, oscillates on the springs, the frequency will be<br />

Page <strong>13</strong>.9


<strong>Chapter</strong> <strong>13</strong><br />

f<br />

1 1 k 1 3.9 105<br />

N m<br />

T 2 M 2 2.0 103<br />

kg<br />

2.2 Hz<br />

<strong>13</strong>.27 (a) The period of oscillation is T 2<br />

m k where k is the spring constant and m is the mass of the object<br />

attached to the end of the spring. Hence,<br />

T<br />

0.250 kg<br />

2 1.0 s<br />

9.5 N m<br />

(b)<br />

If the cart is released from rest when it is 4.5 cm from the equilibrium position, the amplitude of oscillation will<br />

be A = 4.5 cm = 4.5<br />

10 2 m. The maximum speed is then given by<br />

k<br />

vmax<br />

A A m<br />

9.5 N m<br />

0.250 kg<br />

4.5 10<br />

2<br />

m 0.28 m s<br />

(c) When the cart is 14 cm from the left end of the track, it has a displacement of x = 14 cm 12 cm = 2.0 cm from<br />

the equilibrium position. The speed of the cart at this distance from equilibrium is<br />

k<br />

2 2<br />

9.5 N m 2 2<br />

v A x<br />

0.045 m 0.020 m 0.25 m s<br />

m<br />

0.250 kg<br />

<strong>13</strong>.28 The general expression for the position as a function of time for an object undergoing simple harmonic motion with x<br />

= 0 at t = 0 is x Asin<br />

t . Thus, if x 5.2 cm sin 8.0<br />

t , we have that the amplitude is<br />

A = 5.2 cm and the angular frequency is 8.0 rad s .<br />

(a)<br />

The period is<br />

T<br />

2 2<br />

8.0 s<br />

-1<br />

0.25 s<br />

(b)<br />

The frequency of motion is<br />

f<br />

1 1<br />

T 0.25 s<br />

4.0 s-1<br />

4.0 Hz<br />

(c) As discussed above, the amplitude of the motion is A 5.2 cm<br />

(d)<br />

Note: For this part, your calculator should be set to operate in radians mode.<br />

Page <strong>13</strong>.10


<strong>Chapter</strong> <strong>13</strong><br />

If x = 2.6 cm, then<br />

t<br />

x<br />

A<br />

2.6 cm<br />

5.2 cm<br />

sin<br />

1<br />

sin<br />

1<br />

sin<br />

1<br />

0.50 0.52 radians<br />

and<br />

t<br />

0.52 rad 0.52 rad<br />

8.0 rad s<br />

2.1 10<br />

2<br />

s 21 10<br />

3<br />

s 21 ms<br />

<strong>13</strong>.29 (a) At the equilibrium position, the total energy of the system is in the form of kinetic energy and mv2 max 2 E ,<br />

so the maximum speed is<br />

v<br />

max<br />

2E<br />

m<br />

2 5.83 J<br />

0.326 kg<br />

5.98 m s<br />

(b) The period of an object-spring system is T 2<br />

m k , so the force constant of the spring is<br />

k<br />

4<br />

2m<br />

T<br />

2<br />

4<br />

2<br />

0.326 kg<br />

0.250 s<br />

2<br />

206 N m<br />

(c)<br />

At the turning points, x = A, the total energy of the system is in the form of elastic potential energy, or<br />

E kA 2 2 , giving the amplitude as<br />

A<br />

2E<br />

k<br />

2 5.83 J<br />

206 N m<br />

0.238 m<br />

<strong>13</strong>.30 For a system executing simple harmonic motion, the total energy may be written as<br />

s<br />

1 2 1 2<br />

2 max 2<br />

E KE PE mv kA , where A is the amplitude and v max is the speed at the equilibrium position.<br />

Observe from this expression, that we may write v2 2<br />

max kA m .<br />

1<br />

(a) If v 2<br />

v , then 1 2 1 2 1 2<br />

max E mv kx mv<br />

2 2 2 max<br />

becomes<br />

1 v2<br />

max 1<br />

m<br />

2<br />

1<br />

kx mv<br />

2 4 2 2<br />

2<br />

max<br />

and gives<br />

Page <strong>13</strong>.11


<strong>Chapter</strong> <strong>13</strong><br />

2<br />

3 m<br />

2<br />

3 m k<br />

2<br />

3A<br />

x vmax<br />

A<br />

4 k 4 k m 4<br />

2<br />

or<br />

x<br />

A 3<br />

2<br />

(b)<br />

If the elastic potential energy is PE s = E/2, we have<br />

1 1 1<br />

2 2 2<br />

kx2 kA<br />

2<br />

or<br />

A<br />

2<br />

2<br />

x<br />

2<br />

and<br />

x<br />

A<br />

2<br />

<strong>13</strong>.31 (a) At t = 3.50 s,<br />

F kx N<br />

rad<br />

5.00 (3.00 m) cos 1.58 (3.50 s) 11.0 N<br />

m<br />

s<br />

,<br />

or<br />

F<br />

11.0 N directed to the left<br />

(b)<br />

The angular frequency is<br />

k<br />

m<br />

5.00 N m<br />

2.00 kg<br />

1.58 rad s<br />

and the period of oscillation is<br />

2 2<br />

T 3.97 s .<br />

1.58 rad s<br />

Hence the number of oscillations made in 3.50 s is<br />

N<br />

t<br />

T<br />

3.50 s<br />

3.97 s<br />

0.881<br />

<strong>13</strong>.32 (a)<br />

k<br />

F<br />

x<br />

7.50 N<br />

3.00 10<br />

-2<br />

m<br />

250 N m<br />

(b)<br />

k<br />

m<br />

250 N m<br />

0.500 kg<br />

22.4 rad s<br />

Page <strong>13</strong>.12


<strong>Chapter</strong> <strong>13</strong><br />

f<br />

22.4 rad s<br />

2 2<br />

3.56 Hz<br />

T<br />

1 1<br />

f 3.56 Hz<br />

0.281 s<br />

(c) At t = 0, v = 0 and x = 5.00 10 2 m, so the total energy of the oscillator is<br />

1 1<br />

E KE PEs<br />

mv kx<br />

2 2<br />

1<br />

2<br />

2 2<br />

2<br />

0 250 N m 5.00 10<br />

2<br />

m 0.3<strong>13</strong> J<br />

1<br />

(d) When x = A, v 0 so E KE PE 0<br />

2<br />

s kA .<br />

2<br />

Thus,<br />

A<br />

2 E<br />

k<br />

2 0.3<strong>13</strong> J<br />

250 N/m<br />

5.00 10<br />

2<br />

m 5.00 cm<br />

1<br />

(e) At x = 0, KE mv2 2 max E , or<br />

v<br />

max<br />

2 E<br />

m<br />

2 0.3<strong>13</strong> J<br />

0.500 kg<br />

1.12 m s<br />

a<br />

max<br />

F<br />

max<br />

m<br />

kA<br />

m<br />

250 N m 5.00 10<br />

2<br />

m<br />

0.500 kg<br />

25.0 m s<br />

2<br />

Note: To solve parts (f) and (g), your calculator should be set in radians mode.<br />

(f)<br />

At t = 0.500 s, Equation <strong>13</strong>.14a gives the displacement as<br />

250 N m<br />

x A cos t A cos t k m 5.00 cm cos 0.500 s 0.919 cm<br />

0.500 kg<br />

(g)<br />

From Equation <strong>13</strong>.14b, the velocity at t = 0.500 s is<br />

v A sin t A k m sin t k m<br />

250 N m 250 N m<br />

0.500 kg 0.500 kg<br />

5.00 10<br />

-2<br />

m sin 0.500 s 1.10 m<br />

Page <strong>13</strong>.<strong>13</strong>


<strong>Chapter</strong> <strong>13</strong><br />

and from Equation <strong>13</strong>.14c, the acceleration at this time is<br />

a A<br />

2<br />

cos t A k m cos t k m<br />

250 N m 250 N m<br />

5.00 10 m cos 0.500 s 4.59 m s<br />

0.500 kg 0.500 kg<br />

-2 2<br />

<strong>13</strong>.33 From Equation <strong>13</strong>.6,<br />

k<br />

v A x A x<br />

m<br />

2 2 2 2 2<br />

Hence,<br />

v A2 A2 cos2 t A 1 cos2<br />

t A sin t<br />

From Equation <strong>13</strong>.2,<br />

k<br />

m<br />

a x<br />

2<br />

A cos t<br />

2A cos t<br />

<strong>13</strong>.34 (a) The height of the tower is almost the same as the length of the pendulum. From T 2<br />

L g , we obtain<br />

L<br />

9.80 m s2<br />

15.5 s<br />

gT2<br />

4 4<br />

2 2<br />

2<br />

59.6 m<br />

(b)<br />

On the Moon, where g = 1.67 m/s 2 , the period will be<br />

T<br />

L 59.6 m<br />

2 2 37.5 s<br />

g 1.67 m s2<br />

<strong>13</strong>.35 The period of a pendulum is the time for one complete oscillation and is given by T 2<br />

g , where l is the<br />

length of the pendulum.<br />

(a)<br />

T<br />

3.00 min 60 s<br />

120 oscillations 1 min<br />

1.50 s<br />

(b)<br />

The length of the pendulum is<br />

g<br />

T<br />

2<br />

1.50 s<br />

9.80 m s2<br />

0.559 m<br />

4<br />

2<br />

4<br />

2<br />

2<br />

Page <strong>13</strong>.14


<strong>Chapter</strong> <strong>13</strong><br />

<strong>13</strong>.36 The period in Tokyo is TT 2 LT / g T<br />

and the period in Cambridge is TC 2 LC / g C<br />

. We know that<br />

T T = T C = 2.000 s, from which, we see that<br />

L<br />

L<br />

g<br />

T C<br />

gT<br />

g , or C C 0.994 2<br />

C gT<br />

LT<br />

0.992 7<br />

L<br />

1.001 5<br />

<strong>13</strong>.37 (a) The period of the pendulum is T 2<br />

L g . Thus, on the Moon where the free-fall acceleration is smaller,<br />

the period will be longer and the clock will run slow .<br />

(b)<br />

The ratio of the pendulum’s period on the Moon to that on Earth is<br />

T<br />

T<br />

Moon<br />

Earth<br />

2 LgMoon<br />

gEarth<br />

9.80<br />

2 Lg g 1.63<br />

Earth<br />

Moon<br />

2 .45<br />

Hence, the pendulum of the clock on Earth makes 2.45 “ticks” while the clock on the Moon is making 1.00<br />

“tick”. After the Earth clock has ticked off 24.0 h and again reads 12:00 midnight, the Moon clock will have<br />

ticked off 24.0 h/2.45 = 9.80 h and will read 9 : 48 AM .<br />

<strong>13</strong>.38 (a) The lower temperature will cause the pendulum to contract. The shorter length will produce a smaller period,<br />

so the clock will run faster or gain time .<br />

(b) The period of the pendulum is T0 2 L / g at 20°C, and at –5.0°C it is T 2 L / g . The ratio of these<br />

periods is T0 / T L0<br />

/ L .<br />

From <strong>Chapter</strong> 10, the length at –5.0°C is L L0 AlL0<br />

T , so<br />

L<br />

0<br />

L<br />

1 1 1<br />

1 6 1<br />

Al( T) 0.999 4<br />

1 24 10 C 5.0 C 20 C<br />

1.000 6<br />

This gives<br />

T<br />

L<br />

0 0<br />

T L<br />

1.000 6 1.000 3<br />

Thus in one hour (3 600 s), the chilled pendulum will gain 1.000 3 1 3 600 s 1.1 s .<br />

<strong>13</strong>.39 (a) From T 2 L g , the length of a pendulum with period T is L = gT 2 /4 2 .<br />

Page <strong>13</strong>.15


<strong>Chapter</strong> <strong>13</strong><br />

On Earth, with T = 1.0 s,<br />

L<br />

9.80 m s2<br />

1.0 s<br />

4<br />

2<br />

2<br />

0.25 m 25 cm<br />

If T = 1.0 s on Mars,<br />

L<br />

2 2<br />

3.7 m s 1.0 s<br />

4<br />

2<br />

0.094 m 9.4 cm<br />

(b) The period of an object on a spring is T 2<br />

m k , which is independent of the local free-fall acceleration.<br />

Thus, the same mass will work on Earth and on Mars. This mass is<br />

m<br />

kT2<br />

10 N m 1.0 s<br />

4<br />

2<br />

4<br />

2<br />

2<br />

0.25 kg<br />

<strong>13</strong>.40 The apparent free-fall acceleration is the vector sum of the actual free-fall acceleration and the negative of the<br />

elevator’s acceleration. To see this, consider an object that is hanging from a vertical string in the elevator and<br />

appears to be at rest to the elevator passengers. These passengers believe the tension in the string is the negative<br />

of the object’s weight, or<br />

T m g app<br />

where<br />

app<br />

g is the apparent free-fall acceleration in the elevator.<br />

An observer located outside the elevator applies Newton’s second law to this object by writing<br />

F T mg ma e<br />

where<br />

e<br />

T m ae<br />

g mg app<br />

, which gives<br />

app e<br />

a is the acceleration of the elevator and all its contents. Thus,<br />

g g a .<br />

(a) If we choose downward as the positive direction, then a 5.00 m s2<br />

in this case and<br />

g 9.80 5.00 m s2 14.8 m s2<br />

app<br />

(downward). The period of the pendulum is<br />

e<br />

T<br />

L<br />

5.00 m<br />

2 2 3.65 s<br />

g 14.8 m s2<br />

app<br />

(b) Again choosing downward as positive, a 5.00 m s2<br />

and g 9.80 5.00 m s2 4.80 m s2<br />

(downward) in this case. The period is now given by<br />

e<br />

app<br />

T<br />

L<br />

5.00 m<br />

2 2 6.41 s<br />

g 4.80 m s2<br />

app<br />

Page <strong>13</strong>.16


<strong>Chapter</strong> <strong>13</strong><br />

(c) If a 5.00 m s2<br />

horizontally, the vector sum gapp g a e is<br />

e<br />

as shown in the sketch at the right. The magnitude is<br />

g app<br />

2 2<br />

2 2 2<br />

5.00 m s 9.80 m s 11.0 m s<br />

and the period of the pendulum is<br />

T<br />

L<br />

5.00 m<br />

2 2 4.24 s<br />

g 11.0 m s2<br />

app<br />

<strong>13</strong>.41 (a) The distance from the bottom of a trough to the top of a crest<br />

is twice the amplitude of the wave. Thus, 2A = 8.26 cm and<br />

A<br />

4.<strong>13</strong> cm<br />

(b)<br />

The horizontal distance from a crest to a trough is a half<br />

wavelength. Hence,<br />

2<br />

5.20 cm<br />

and<br />

10.4 cm<br />

Figure P<strong>13</strong>.41<br />

(c)<br />

The period is<br />

T<br />

1 1<br />

f 18.0 s<br />

1<br />

5.56 10<br />

2<br />

s<br />

(d) The wave speed is v f 10.4 cm 18.0 s<br />

1<br />

187 cm s 1.87 m s<br />

<strong>13</strong>.42 (a) The amplitude is the magnitude of the maximum<br />

displacement from equilibrium (at x = 0). Thus,<br />

A<br />

2.00 cm<br />

(b)<br />

The period is the time for one full cycle of the motion.<br />

Therefore,<br />

T<br />

4.00 s<br />

(c) The period may be written as T 2<br />

frequency is<br />

, so the angular<br />

Figure P<strong>13</strong>.42<br />

2 2<br />

T 4.00 s 2<br />

rad s<br />

Page <strong>13</strong>.17


<strong>Chapter</strong> <strong>13</strong><br />

1 1<br />

(d) The total energy may be expressed as E mv2 kA<br />

2. Thus, vmax A k / m , and since km,<br />

this becomes vmax<br />

A and yields<br />

2 max 2<br />

vmax A rad s 2.00 cm cm s<br />

2<br />

(e) The spring exerts maximum force, F k x , when the object is at maximum distance from equilibrium, i.e.,<br />

at<br />

x A 2.00 cm . Thus, the maximum acceleration of the object is<br />

2<br />

max kA<br />

2 2<br />

F<br />

amax A rad s 2.00 cm 4.93 cm s<br />

m m<br />

2<br />

(f)<br />

The general equation for position as a function of time for an object undergoing simple harmonic motion with t<br />

= 0 when x = 0 is x = A sin ( t). For this oscillator, this becomes<br />

x 2.00 cm sin t 2<br />

<strong>13</strong>.43 (a) The period and the frequency are reciprocals of each other. Therefore,<br />

T<br />

1 1 1<br />

f 101.9 MHz 101.9 10 s<br />

6 1<br />

9.81 10<br />

9<br />

s 9.81 ns<br />

(b)<br />

v<br />

f<br />

3.00 108<br />

m s<br />

101.9 10 s<br />

6 1<br />

2.94 m<br />

<strong>13</strong>.44 (a) The frequency of a transverse wave is the number of crests that pass a given point each second. Thus, if 5.00<br />

crests pass in 14.0 seconds, the frequency is<br />

f<br />

5.00<br />

14.0 s<br />

0.357 s<br />

1<br />

0.357 Hz<br />

(b)<br />

The wavelength of the wave is the distance between successive maxima or successive minima. Thus,<br />

2.76 m and the wave speed is<br />

v f<br />

2.76 m 0.357 s<br />

1<br />

0.985 m s<br />

<strong>13</strong>.45 The speed of the wave is<br />

Page <strong>13</strong>.18


<strong>Chapter</strong> <strong>13</strong><br />

v<br />

x<br />

t<br />

425 cm 42 .5 cm s<br />

10.0 s<br />

and the frequency is<br />

f<br />

40.0 vib<br />

30.0 s<br />

1.33 Hz<br />

Thus,<br />

v<br />

f<br />

42.5 cm s<br />

1.33 Hz<br />

31.9 cm<br />

<strong>13</strong>.46 From v = f, the wavelength (and size of smallest detectable insect) is<br />

v<br />

f<br />

340 m s<br />

60.0 103<br />

Hz<br />

5.67 10<br />

-3<br />

m 5.67 mm<br />

<strong>13</strong>.47 The frequency of the wave (that is, the number of crests passing the cork each second) is f 2.00 s-1<br />

and the<br />

wavelength (distance between successive crests) is<br />

8.50 cm . Thus, the wave speed is<br />

v f<br />

8.50 cm 2.00 s-1<br />

17.0 cm s 0.170 m s<br />

and the time required for the ripples to travel 10.0 m over the surface of the water is<br />

t<br />

x<br />

v<br />

10.0 m<br />

0.170 m s<br />

58.8 s<br />

<strong>13</strong>.48 (a) When the boat is at rest in the water, the speed of the wave relative to the boat is the same as the speed of the<br />

wave relative to the water,<br />

v<br />

4.0 m s . The frequency detected in this case is<br />

f<br />

v<br />

4.0 m s<br />

20 m<br />

0.20 Hz<br />

(b) Taking eastward as positive, vwave, boat vwave, water v boat,<br />

water<br />

(see the discussion of relative velocity in<br />

<strong>Chapter</strong> 3 of the textbook) gives<br />

v wave, boat 4.0 m s 1.0 m s 5.0 m s and vboat, wave v wave, boat 5.0 m s<br />

Thus,<br />

Page <strong>13</strong>.19


<strong>Chapter</strong> <strong>13</strong><br />

f<br />

v boat wave<br />

, 5.0 m s<br />

20 m<br />

0.25 Hz<br />

<strong>13</strong>.49 The down and back distance is 4.00 m + 4.00 m = 8.00 m.<br />

The speed is then<br />

v<br />

d total<br />

t<br />

4 8.00 m<br />

0.800 s<br />

40.0 m s<br />

F<br />

Now,<br />

m<br />

L<br />

0.200 kg<br />

4.00 m<br />

5.00 10<br />

2<br />

kg m<br />

so<br />

F v<br />

5.00 10 kg m 40.0 m s 80.0 N<br />

2 2<br />

2<br />

<strong>13</strong>.50 The speed of the wave is<br />

v<br />

x<br />

t<br />

20.0 m<br />

0.800 s<br />

25.0 m s<br />

and the mass per unit length of the rope is m/ L 0.350 kg m . Thus, from v F , we obtain<br />

2<br />

2<br />

25.0 m s 0.350 kg m 219 N<br />

F v<br />

<strong>13</strong>.51 (a) The speed of transverse waves in the cord is v F , where mL is the mass per unit length. With<br />

the tension in the cord being F = 12.0 N, the wave speed is<br />

v<br />

F F FL<br />

m L m<br />

12.0 N 6.30 m<br />

0.150 kg<br />

22.4 m s<br />

(b)<br />

The time to travel the length of the cord is<br />

t<br />

L<br />

v<br />

6.30 m<br />

22.4 m s<br />

0.281 s<br />

<strong>13</strong>.52 (a) In making 6 round trips, the pulse travels the length of the line 12 times for a total distance of 144 m. The<br />

speed of the pulse is then<br />

Page <strong>13</strong>.20


<strong>Chapter</strong> <strong>13</strong><br />

v<br />

x<br />

t<br />

12L<br />

t<br />

12 12.0 m<br />

2.96 s<br />

48.6 m s<br />

(b) The speed of transverse waves in the line is v F , so the tension in the line is<br />

2<br />

m<br />

2<br />

0.375 kg<br />

F v v<br />

L 12.0 m<br />

2<br />

48.6 m s 73.8 N<br />

<strong>13</strong>.53 (a) The mass per unit length is<br />

m<br />

L<br />

0.0600 kg<br />

5.00 m<br />

0.0120 kg m<br />

From v F , the required tension in the string is<br />

2 2<br />

F v 50.0 m s 0.0120 kg m 30.0 N ,<br />

(b)<br />

v<br />

F<br />

8.00 N<br />

0.0120 kg m<br />

25.8 m s<br />

<strong>13</strong>.54 The mass per unit length of the wire is<br />

m<br />

L<br />

4.00 10<br />

-3<br />

kg<br />

1.60 m<br />

2 .50 10<br />

-3<br />

kg m<br />

and the speed of the pulse is<br />

v<br />

L<br />

t<br />

1.60 m<br />

0.0361 s<br />

44.3 m s<br />

Thus, the tension in the wire is<br />

F v<br />

2 2<br />

-3<br />

44.3 m s 2.50 10 kg m 4.91 N<br />

But, the tension in the wire is the weight of a 3.00-kg object on the Moon. Hence, the local free-fall acceleration is<br />

g<br />

F<br />

m<br />

4.91 N<br />

3.00 kg<br />

1.64 m s<br />

2<br />

<strong>13</strong>.55 The period of the pendulum is T 2 L / g , so the length of the string is<br />

Page <strong>13</strong>.21


<strong>Chapter</strong> <strong>13</strong><br />

L<br />

9.80 m s2<br />

2.00 s<br />

gT<br />

2<br />

4 4<br />

2 2<br />

2<br />

0.993 m<br />

Then mass per unit length of the string is then<br />

m<br />

L<br />

0.060 0 kg kg<br />

0.060 4<br />

0.993 m m<br />

When the pendulum is vertical and stationary, the tension in the string is<br />

F Mball<br />

g<br />

5.00 kg 9.80 m s2<br />

49.0 N<br />

and the speed of transverse waves in it is<br />

v<br />

F<br />

49.0 N<br />

0.060 4 kg m<br />

28.5 m s<br />

<strong>13</strong>.56 If<br />

1 m1<br />

L is the mass per unit length for the first string, then<br />

2 m2 L m1 2L 1 2 is that of the<br />

second string. Thus, with F2 F1<br />

F , the speed of waves in the second string is<br />

F 2 F F<br />

v 2 2 v 2 5.00 m s 7.07 m s<br />

2 1<br />

2 1 1<br />

<strong>13</strong>.57 (a) The tension in the string is F mg 3.0 kg 9.80 m s2<br />

29 N . Then, from v F , the mass per<br />

unit length is<br />

F<br />

v2<br />

29 N<br />

24 m s<br />

2<br />

0.051 kg m<br />

(b)<br />

When m = 2.00 kg, the tension is<br />

F mg<br />

2.0 kg 9.80 m s2<br />

20 N<br />

and the speed of transverse waves in the string is<br />

v<br />

F<br />

20 N<br />

0.051 kg m<br />

20 m s<br />

<strong>13</strong>.58 If the tension in the wire is F, the tensile stress is Stress = F/A, so the speed of transverse waves in the wire may be<br />

written as<br />

Page <strong>13</strong>.22


<strong>Chapter</strong> <strong>13</strong><br />

v<br />

F A Stress Stress<br />

m/ L m /( A L)<br />

But,<br />

Stress<br />

A L V =volume , so m A L density . Thus, v<br />

.<br />

When the stress is at its maximum, the speed of waves in the wire is<br />

v<br />

( Stress) 9<br />

max 2.70 10 Pa<br />

max 3 3<br />

7.86 10 kg/m<br />

586 m s<br />

<strong>13</strong>.59 (a) The speed of transverse waves in the line is v F , with mL being the mass per unit length.<br />

Therefore,<br />

v<br />

F F FL<br />

m L m<br />

12.5 N 38.0 m<br />

2.65 kg<br />

<strong>13</strong>.4 m s<br />

(b)<br />

The worker could throw an object, such as a snowball, at one end of the line to set up a pulse, and use a<br />

stopwatch to measure the time it takes a pulse to travel the length of the line. From this measurement, the wo<br />

rker would have an estimate of the wave speed, which in turn can be used to estimate the tension.<br />

<strong>13</strong>.60 (a) In making n round trips along the length of the line, the total distance traveled by the pulse is<br />

x n 2L 2nL . The wave speed is then<br />

v<br />

x<br />

t<br />

2nL<br />

t<br />

(b) From v F as the speed of transverse waves in the line, the tension is<br />

F<br />

v<br />

2<br />

2 2 2 2 2<br />

M 2nL M 4n L 4n ML<br />

L t L t2 t2<br />

<strong>13</strong>.61 (a) Constructive interference produces the maximum amplitude<br />

Amax A1 A 2 0.50 m<br />

(b)<br />

Destructive interference produces the minimum amplitude<br />

Page <strong>13</strong>.23


<strong>Chapter</strong> <strong>13</strong><br />

Amin A1 A 2 0.10 m<br />

<strong>13</strong>.62 We are given that x Acos( t) (0.25 m)cos(0.4 t ) .<br />

(a) By inspection, the amplitude is seen to be A 0.25 m<br />

(b) The angular frequency is 0.4 rad s . But km, so the spring constant is<br />

k m<br />

2<br />

(0.30 kg)(0.4 rad s)<br />

2<br />

0.47 N m<br />

(c)<br />

Note: Your calculator must be in radians mode for part (c).<br />

At t = 0.30 s, x 0.25 m cos 0.4 rad s 0.30 s 0.23 m<br />

(d) From conservation of mechanical energy, the speed at displacement x is given by v A2 x<br />

2<br />

. Thus, at t<br />

= 0.30 s, when x = 0.23 m, the speed is<br />

v<br />

0.4 rad s (0.25 m)<br />

2<br />

(0.23 m)<br />

2<br />

0.12 m s<br />

<strong>13</strong>.63 (a) The period of a vibrating object-spring system is T 2 2<br />

m k , so the spring constant is<br />

k<br />

4<br />

2m<br />

T<br />

2<br />

4<br />

2<br />

2.00 kg<br />

0.600 s<br />

2<br />

219 N m<br />

(b)<br />

If T = 1.05 s for mass m 2 , this mass is<br />

m<br />

kT (219 N/m)(1.05 s)<br />

4 4<br />

2 2<br />

2 2 2<br />

6.12 kg<br />

<strong>13</strong>.64 (a) The period is the reciprocal of the frequency, or<br />

T<br />

1 1<br />

f 196 s<br />

1<br />

5.10 10<br />

3<br />

s 5.10 ms<br />

(b)<br />

v sound<br />

f<br />

343 m s<br />

196 s<br />

1<br />

1.75 m<br />

<strong>13</strong>.65 (a) The period of a simple pendulum is T 2<br />

g , so the period of the first system is<br />

Page <strong>13</strong>.24


<strong>Chapter</strong> <strong>13</strong><br />

T<br />

0.700 m<br />

2 2 1.68 s<br />

g 9.80 m s<br />

1 2<br />

(b) The period of mass-spring system is T 2<br />

m k , so if the period of the second system is T 2 = T 1 , then<br />

2 m k 2<br />

l g and the spring constant is<br />

k<br />

mg<br />

1.20 kg 9.80 m s 2<br />

0.700 m<br />

16.8 N m<br />

<strong>13</strong>.66 Since the spring is “light”, we neglect any small amount of energy lost in the collision with the spring, and apply<br />

conservation of mechanical energy from when the block first starts until it comes to rest again. This gives<br />

KE PE g PE s KE PE f<br />

g PE s , or 1<br />

0 0 kx<br />

2 0 0<br />

i<br />

2 max<br />

mgh<br />

i<br />

Thus,<br />

x<br />

max<br />

2mgh i<br />

k<br />

2 0.500 kg 9.80 m s2<br />

2.00 m<br />

20.0 N m<br />

0.990 m<br />

<strong>13</strong>.67 Choosing PE g = 0 at the initial height of the block, conservation of mechanical energy gives<br />

KE PE PE KE PE PE , or<br />

g s<br />

f<br />

g s<br />

i<br />

1 1<br />

2 2<br />

mv2 mg x kx<br />

2<br />

0 ,<br />

where v is the speed of the block after falling distance x.<br />

(a)<br />

When v = 0, the non-zero solution to the energy equation from above gives<br />

2 3.00 kg 9.80 m s<br />

2<br />

1<br />

max<br />

2<br />

max<br />

2 kx mgx or 2 mg<br />

k<br />

xmax<br />

0.100 m<br />

588 N m<br />

(b)<br />

When x = 5.00 cm = 0.050 0 m, the energy equation gives<br />

v<br />

2gx<br />

kx2<br />

m ,<br />

or<br />

Page <strong>13</strong>.25


<strong>Chapter</strong> <strong>13</strong><br />

v<br />

2<br />

588 N m 0.050 0 m<br />

2 9.80 m s2<br />

0.050 0 m 0.700 m s<br />

3.00 kg<br />

<strong>13</strong>.68 (a) We apply conservation of mechanical energy from just after the collision until the block comes to rest.<br />

KE PE s KE PE f<br />

s<br />

gives 1 2 1<br />

0 k x 2 0<br />

i<br />

f MV<br />

2 2<br />

or the speed of the block just after the collision is<br />

V<br />

kx2<br />

f<br />

M<br />

900 N m 0.050 0 m<br />

1.00 kg<br />

2<br />

1.50 m s<br />

Now, we apply conservation of momentum from just before impact to immediately after the collision. This<br />

gives<br />

m v 0 m v MV<br />

bullet<br />

i<br />

bullet<br />

f<br />

or<br />

M<br />

vbullet<br />

v<br />

f bullet V<br />

i<br />

m<br />

1.00 kg<br />

400 m s 1.5 m s 100 m s<br />

5.00 10<br />

-3<br />

kg<br />

(b)<br />

The mechanical energy converted into internal energy during the collision is<br />

1 2 1 2 1<br />

i f bullet i<br />

bullet f<br />

E KE KE 2 m v 2 m v 2<br />

MV<br />

2<br />

or<br />

E<br />

1 1<br />

2 2<br />

3<br />

2 2 2<br />

5.00 10 kg 400 m s 100 m s 1.00 kg 1.50 m s<br />

E<br />

374 J<br />

<strong>13</strong>.69 Choose PE g = 0 when the blocks start from rest. Then, using conservation of mechanical energy from when the<br />

blocks are released until the spring returns to its unstretched length gives<br />

KE PE PE KE PE PE , or<br />

g s<br />

f<br />

g s<br />

i<br />

Page <strong>13</strong>.26


<strong>Chapter</strong> <strong>13</strong><br />

1 1<br />

m m v m g x sin 40 m g x 0 0 0 k x<br />

2 2<br />

2 2<br />

1 2 f 1 2<br />

1<br />

2<br />

25 30 kg v2 25 kg 9.80 m s2<br />

f<br />

0.200 m sin 40<br />

30 kg 9.80 m s2<br />

0.200 m 200 N m 0.200 m<br />

1<br />

2<br />

2<br />

yielding<br />

v f<br />

1.1 m s<br />

<strong>13</strong>.70 (a) When the gun is fired, the energy initially stored as elastic potential energy in the spring is transformed into<br />

kinetic energy of the bullet. Assuming no loss of energy, we have 1 mv<br />

2 1 kx 2 , or<br />

2 2 i<br />

v<br />

x<br />

i<br />

k<br />

m<br />

9.80 N m<br />

0.200 m 19.8 m s<br />

1.00 10<br />

3<br />

kg<br />

1<br />

(b) From y v t a t<br />

2<br />

, the time required for the pellet to drop 1.00 m to the floor, starting with v 0 0 ,<br />

is<br />

0y<br />

2<br />

y<br />

y<br />

t<br />

2 y 2 1.00 m<br />

a<br />

y<br />

9.80 m s<br />

2<br />

0.452 s<br />

The range (horizontal distance traveled during the flight) is then<br />

x v0xt<br />

19.8 m s 0.452 s 8.94 m<br />

Page <strong>13</strong>.27


<strong>Chapter</strong> <strong>13</strong><br />

<strong>13</strong>.71 The free-body diagram at the right shows the forces acting on the balloon<br />

when it is displaced distance s = L along the circular arc it follows. The<br />

net force tangential to this path is<br />

F F Bsin mg sin B mg sin<br />

net<br />

x<br />

For small angles, sin s/<br />

L<br />

Also,<br />

mg<br />

He<br />

V g<br />

and the buoyant force is<br />

acting on the balloon is<br />

B<br />

air<br />

V g . Thus, the net restoring force<br />

F<br />

net<br />

air<br />

L<br />

He<br />

Vg<br />

s<br />

Observe that this is in the form of Hooke’s law, F k s , with k air He<br />

Vg L<br />

Thus, the motion will be simple harmonic and the period is given by<br />

T<br />

1 2 m<br />

HeV<br />

He L<br />

2 2 2<br />

f k Vg L<br />

g<br />

air<br />

He<br />

air<br />

He<br />

This yields<br />

T<br />

0.180 3.00 m<br />

2 1.40 s<br />

1.29 0.180 9.80 m s2<br />

<strong>13</strong>.72 (a) When the block is given some small upward displacement, the net restoring force exerted on it by the rubber<br />

bands is<br />

F F 2 F sin , where tan<br />

net<br />

y<br />

y<br />

L<br />

For small displacements, the angle will be very small. Then sin tan<br />

is<br />

y<br />

, and the net restoring force<br />

L<br />

Page <strong>13</strong>.28


<strong>Chapter</strong> <strong>13</strong><br />

y 2 F<br />

Fnet<br />

2 F y<br />

L L<br />

(b)<br />

The net restoring force found in part (a) is in the form of Hooke’s law F = ky, with k = 2F/L. Thus, the motion<br />

will be simple harmonic, and the angular frequency is<br />

k<br />

m<br />

2 F<br />

m L<br />

<strong>13</strong>.73 Newton’s law of gravitation is<br />

GMm<br />

4<br />

F , where M r<br />

r2<br />

3<br />

3<br />

Thus,<br />

F=<br />

4<br />

3<br />

Gm r<br />

which is of Hooke’s law form, F<br />

k r , with<br />

4<br />

k = 3<br />

Gm<br />

<strong>13</strong>.74 The inner tip of the wing is attached to the end of the spring and always moves with the same speed as the end of the<br />

vibrating spring. Thus, its maximum speed is<br />

k<br />

4.7 10<br />

4<br />

N m<br />

inner, max spring, max 3<br />

v v A m<br />

0.20 cm 0.25 cm s<br />

0.30 10 kg<br />

Treating the wing as a rigid bar, all points in the wing have the same angular velocity at any instant in time. As the<br />

wing rocks on the fulcrum, the inner tip and outer tips follow circular paths of different radii. Since the angular<br />

velocities of the tips are always equal, we may write<br />

v<br />

r<br />

outer<br />

outer<br />

v<br />

r<br />

inner<br />

inner<br />

The maximum speed of the outer tip is then<br />

Page <strong>13</strong>.29


<strong>Chapter</strong> <strong>13</strong><br />

v<br />

r<br />

outer<br />

outer, max vinner, max<br />

rinner<br />

15.0 mm 0.25 cm s 1.3 cm s<br />

3.00 mm<br />

<strong>13</strong>.75 (a)<br />

k<br />

m<br />

500 N m<br />

2.00 kg<br />

15.8 rad s<br />

(b)<br />

Apply Newton’s second law to the block while the elevator is accelerating:<br />

Fy Fs mg ma y<br />

With F kx and a g 3 , this gives kx m g g 3 , or<br />

s<br />

y<br />

x<br />

4 mg 4 2.00 kg 9.80 m s<br />

3k<br />

3 500 N m<br />

2<br />

5.23 10<br />

2<br />

m 5.23 cm<br />

<strong>13</strong>.76 (a) Note that as the spring passes through the vertical position, the object is moving in a circular arc of radius<br />

L y f . Also, observe that the y-coordinate of the object at this point must be negative y f 0 so the spring is<br />

stretched and exerting an upward tension force of magnitude greater than the object’s weight. This is necessary<br />

so the object experiences a net force toward the pivot to supply the needed centripetal acceleration in this<br />

position. This is summarized by Newton’s second law applied to the object at this point, stating<br />

mv2<br />

Fy<br />

ky f mg<br />

L y<br />

f<br />

(b) Conservation of energy requires that E KEi PEg, i PEs, i KEf PEg, f PE s,<br />

f<br />

, or<br />

1<br />

2<br />

1<br />

E 0 mgL 0 mv mgy<br />

2<br />

f ky f , reducing to 2mg L y<br />

2 2<br />

f mv ky f<br />

2 2<br />

(c) From the result of part (a), observe that mv2 ( L y )( ky mg ) . Substituting this into the result from<br />

part (b) gives 2 mg( L y ) ( L y )( ky mg)<br />

ky<br />

2<br />

. After expanding and regrouping terms, this<br />

f f f f<br />

becomes (2 k) y2<br />

(3 mg kL) y ( 3 mgL ) 0 , which is a quadratic equation ay2 by c 0 , with<br />

f<br />

f<br />

f<br />

f<br />

f<br />

f<br />

a 2k<br />

2 1 250 N m 2.50 103<br />

N m<br />

b 3mg kL 3 5.00 kg 9.80 m s2 1 250 N m 1.50 m 1.73 103<br />

N<br />

and<br />

Page <strong>13</strong>.30


<strong>Chapter</strong> <strong>13</strong><br />

c 3mgL<br />

3 5.00 kg 9.80 m s2<br />

1.50 m 221 N m<br />

Applying the quadratic formula, keeping only the negative solution [see the discussion in part (a)] gives<br />

y<br />

f<br />

b b2<br />

4ac<br />

2<br />

3 3 3<br />

1.73 10 1.73 10 4 2.50 10 221<br />

2a<br />

2 2.50 10<br />

3<br />

or<br />

y f<br />

0.110 m<br />

(d)<br />

Because the length of this pendulum varies and is longer throughout its motion than a simple pendulum of<br />

length L, its period will be longer than that of a simple pendulum.<br />

<strong>13</strong>.77 The maximum acceleration of the oscillating system is<br />

a A f A<br />

2<br />

max<br />

2<br />

2<br />

The friction force exerted between the two blocks must be capable of accelerating block<br />

B at this rate. When block B is on the verge of slipping,<br />

f f n mg ma and we must have<br />

s s max s s<br />

max<br />

2<br />

amax 2 f A<br />

sg<br />

Thus,<br />

A<br />

s g<br />

0.600 9.80 m s<br />

2 2<br />

2 f 2 1.50 Hz<br />

2<br />

6.62 10<br />

2<br />

m 6.62 cm<br />

Page <strong>13</strong>.31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!