22.11.2014 Views

Activity Report 2010 - CNRS

Activity Report 2010 - CNRS

Activity Report 2010 - CNRS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Date of publication: May 2011<br />

We would like to thank everyone who contributed to this report.<br />

Director of publication:<br />

Design & layout:<br />

Alain FONTAINE, Director of the Nanosciences Foundation<br />

Stéphanie MONFRONT, Nanosciences Foundation


The Laureates of Chairs of Excellence of the Nanosciences Foundation and their<br />

hosting laboratories<br />

DG: David GRAVES<br />

MC: Mairbek CHSHIEV<br />

AZ: Alexander ZASLAVSKY<br />

PW: Philip WONG<br />

VB: Vincent BAYOT<br />

JFR: Joaquin FERNANDEZ-ROSSIER<br />

MFS: Marcelo FRANCA SANTOS<br />

JK: John KIRTLEY<br />

DM: Donald MARTIN<br />

YZ: Yong ZHANG<br />

JMZ: Jian Min ZUO<br />

MR: Michael ROUKES<br />

NM: Normand MOUSSEAU<br />

YN: Yoshio NISHI<br />

VH: Vaclav HOLY<br />

MH: Max HOFHEINZ<br />

HB: Harold BARANGER<br />

TA: Tetiana AKSENOVA<br />

LF: Leonardo FONSECA<br />

LG: Leonid GLAZMAN<br />

These 3 concentric disks are to illustrate that most of the Chairs of Excellence have been<br />

linking three labs in the project achievement. FMNT: the ensemble, LTM, SPINTEC, LMGP and IMEP.


Nanosciences Foundation<br />

<strong>Activity</strong> <strong>Report</strong> <strong>2010</strong>


Part I: OVERVIEW<br />

Part II: SCIENTIFIC REPORT<br />

Part III: SCIENTIFIC PRODUCTION<br />

Part IV: SUPPLEMENTS<br />

HIGHLIGHTS


Part I: ACHIEVEMENTS &<br />

PROSPECTS<br />

The Nanosciences foundation at the end of <strong>2010</strong> 3<br />

The Nanosciences Foundation has been officially created on February 19, 2007 3<br />

March <strong>2010</strong>, the Foundation welcomed with much enthusiasm the Centre of Research ‘INRIA Grenoble – Rhône-<br />

Alpes’ 3<br />

Twelve more months after the 2nd meeting of the Scientific Committee. 4<br />

Outstanding benefits catalyzed by the Nanosciences Foundation actions 5<br />

Three laureates of Chairs of Excellence on their way to establish themselves in Grenoble. 5<br />

Mairbek CHSHIEV 5<br />

Donald MARTIN - Another profile, another route to join the University. 5<br />

Tetiana AKSENOVA - A leading expert involved in the unique world class program CLINATEC ® . 6<br />

The laureates of the <strong>2010</strong> Chairs of Excellence program 7<br />

<strong>2010</strong> Full-time Chair of Excellence 8<br />

<strong>2010</strong> Part-time Chairs of Excellence 8<br />

‘Mobilité d’Excellence’: a new program 9<br />

What have achieved our supported scientists? 9<br />

The Foundation’s PhDs 9<br />

The initial students’ defense and future 9<br />

The <strong>2010</strong> PhD program 10<br />

The 2011 PhD program 10<br />

Integration on site between basic research and R&D labs 11<br />

CEA-Léti 11<br />

NanoINNOV 11<br />

Investissements d’Avenir 12<br />

LANEF and the Nanosciences Foundation 13<br />

The Nanosciences Foundation’s Impact 14<br />

Financial and human supports viewed in two tables 14<br />

The Nanosciences Foundation budget 15<br />

Resources 15<br />

Expenditures and Commitments 15<br />

Overview for the coming years 16<br />

The evolution of the funding programs 17<br />

Enhancing collaborations across the Foundation’s network 17<br />

Relevant bibliometric data 18<br />

The ‘nano-bio’ working group strengthens rapidly 18<br />

A rising visibility online 18


The future of the Fondation 20<br />

What beyond 2012? 20<br />

What opportunity is given by the “Investissements d’Avenir”? 20<br />

Acknowledgements 21<br />

Post face 22


THE NANOSCIENCES FOUNDATION AT THE END<br />

OF <strong>2010</strong><br />

Three full years of operation allow us to appreciate the performance of a novel<br />

instrument such as “The Nanosciences Foundation” networking a large ensemble of 32<br />

laboratories in Grenoble and running programmes in “Nanosciences” with a large<br />

diversity of approaches due to the cross-disciplinary character of the field.<br />

The Nanosciences Foundation has been officially created<br />

on February 19, 2007<br />

The network brings together about 900 permanent researchers working in one of the<br />

32 research units (see Appendix 1) linked to one or more of the 4 founding members<br />

of the RTRA: the CEA, the <strong>CNRS</strong>, Grenoble Institut National Polytechnique (G-INP) and<br />

Université Joseph Fourier (UJF).<br />

The aim of the network is to enhance the excellence of the site of Grenoble in<br />

Nanosciences developing strengths thanks to:<br />

Human resources with a focus on creation of Chairs of Excellence and opening<br />

new sources of recruitment for outstanding PhD students and post-doctoral fellows<br />

Investments to upgrade experimental facilities to the current international<br />

level, and to make them fully shared by the Grenoble scientific community<br />

To challenge all the laboratories, those dedicated to basic research as well as<br />

those dedicated to R&D, to achieve a better integration between themselves.<br />

OVERVIEW<br />

According to the convention signed with the Ministry of Research and Higher<br />

Education, the focus of the Nanosciences Foundation has been established on 8<br />

priorities:<br />

1. Quantum Nanoelectronics<br />

2. Nanomagnetism and spin electronics<br />

3. Nanophotonics<br />

4. Molecular Electronics<br />

5. Nanomaterials, Nanobonding, nanostructuration<br />

6. Nanocharacterization and Metrology<br />

7. Application of Nanoelectronics in Life Sciences<br />

8. Nanomodelling: theory and simulation.<br />

To foster a world-class Nanosciences network, it was clear for everyone that the cross<br />

fertilization of the multi-disciplinary expertise, the connections between research and<br />

education, had to be actively stimulated.<br />

Therefore the Steering Committee (see Appendix 4), headed by the Director, in charge<br />

of the scientific life of the Nanosciences Foundation, was built with 10 appointed<br />

members (and 10 deputy members). Those 10 working groups are corresponding to<br />

the 8 main axes listed above and the 2 others groups stand for “Education and<br />

Scientific Animation”, and “Technological Facilities”.<br />

March <strong>2010</strong>, the Foundation welcomed with much<br />

enthusiasm the Centre of Research ‘INRIA Grenoble –<br />

Rhône-Alpes’<br />

INRIA (Institut National de Recherche en Informatique et Automatisme) asked to<br />

become a partner member of the Foundation. All the founders were used to<br />

collaborate with this national organism, on specific issues. The design of a more global<br />

strategy was therefore considered relevant for the Foundation. INRIA is clearly<br />

involved in top level research programs closely related to societal needs along three<br />

priorities: health, sustainable development and energy. François SILLION, Director of<br />

the Centre of Research ‘INRIA Grenoble Rhône-Alpes’ has joined the Foundation’s<br />

Board. (see Appendix 2)<br />

3


OVERVIEW<br />

Twelve more months after the 2nd meeting of the<br />

Scientific Committee.<br />

The Scientific Committee (see Appendix 3) held its last session in November 2009 in<br />

Grenoble. The SC duly created its report with strong recommendations for the projects<br />

to be funded via the Chairs of Excellence. The calls were accordingly modified and the<br />

present ones ought to the selection of new comers with recognized ERC-junior levels<br />

or to support ERC-considered junior candidates and to attract and select outstanding<br />

PhD applicants. Another statement made by the Scientific Committee was that the<br />

results obtained thanks to the Nanosciences Foundation’s support were not sufficiently<br />

highlighted, which was not “an optimized approach” to stimulate the interest of<br />

partners in the frame of fundraising.<br />

This third issue of the scientific activity report introduces significant changes in its<br />

presentation to fit the requirements expressed by the Scientific Committee. As a<br />

tentative response to the Scientific Committee report, it appears relevant<br />

to begin this report by underlining the benefits built up in Grenoble thanks to<br />

the Nanosciences Foundation’s programs,<br />

to highlight outstanding results as independent brief reports (which will be<br />

integrated in a booklet later on) in addition to the scientific reports of each working<br />

group<br />

4


OUTSTANDING<br />

BENEFITS CATALYZED<br />

BY THE NANOSCIENCES<br />

FOUNDATION ACTIONS<br />

Three laureates of Chairs of<br />

Excellence on their way to<br />

establish themselves in<br />

Grenoble.<br />

Mairbek CHSHIEV and Don MARTIN are<br />

very likely to be hired as full professor by<br />

the University Joseph Fourier.<br />

Mairbek CHSHIEV<br />

Thanks to the 2007 Chair<br />

of Excellence program,<br />

Mairbek CHSHIEV, 40,<br />

came to Grenoble full<br />

time to support the<br />

important field of<br />

Spintronics, very active<br />

at INAC, NEEL and other<br />

labs. All were strong on the experimental<br />

side, but weak on the theory side – only<br />

stimulated by visiting professors on<br />

sabbatical. It has been obvious for these<br />

laboratories to share a strategy to<br />

reinforce this line of research and thanks<br />

to the Nanosciences Foundation’s frame<br />

this was made possible within an<br />

appropriate time-scale, quasi-impossible<br />

otherwise.<br />

Both the high quality of Mairbek’s work,<br />

clearly demonstrated over this three year<br />

period, and the reactivity of the UJF<br />

presidency will successfully settle a<br />

theoretical group with a large impact in<br />

this field.<br />

Familiar with Grenoble thanks to regular<br />

visits between 1998 and 2004, Mairbek<br />

had been in US for six years before he<br />

left his professorship in Alabama to join<br />

us. His recent papers address four issues<br />

both fundamental and of real impacts for<br />

devices fabricated by Crocus, a spin-off<br />

of SPINTEC and collaborators.<br />

Spin transfer: solving the back<br />

switching problem of the CROCUS MRAM<br />

How to take into account current<br />

non-homogeneities in MRAM and reading<br />

heads<br />

Improving the quality and the<br />

strength of the exchange coupling and<br />

perpendicular anisotropy by tuning<br />

oxidation<br />

Control of magnetic states of<br />

frustrated systems<br />

With his outstanding production of papers<br />

in high impact journals, his invited<br />

conferences, his involvement in three<br />

accepted ANR projects as Principal<br />

Investigator, plus 2 EU-strep … Mairbek<br />

CHSHIEV’s influence is deeply felt and<br />

appreciated in the Foundation’s<br />

laboratories.<br />

Albert FERT will welcome Mairbek for a<br />

short period to fill the gap between two<br />

salary supports in Grenoble.<br />

Donald MARTIN - Another profile, another<br />

route to join the University.<br />

Don MARTIN, 53, part<br />

time UJF professor is<br />

employed by the<br />

Foundation following the<br />

2007 Chair of Excellence<br />

program. Professor on<br />

leave from University of<br />

Sydney, Don is also cofounder<br />

and Head of R&D<br />

at Seagull Technology Pty Ltd and more<br />

recently, partner in Synthelis SAS – a<br />

start-up from University Joseph Fourier<br />

created in mid-<strong>2010</strong>.<br />

Combining chemistry and biology, along<br />

with Philippe CINQUIN’s host group, they<br />

revitalized the concept of bio-fuel cell.<br />

Even though the idea dates from 2004,<br />

the dream to obtain in-vivo bio-fuel cells<br />

only became reality in <strong>2010</strong> thanks to<br />

two <strong>CNRS</strong>-UJF labs (DCM & TIMC).<br />

Implemented in the animal model, the<br />

first bio-fuel cells, (GBFC for Glucose Bio<br />

Fuel Cell), has been successfully<br />

demonstrated and thanks to<br />

technological breakthroughs, this kind of<br />

cells will allow a gain by a factor 50 invivo.<br />

ST Microelectronics is currently<br />

optimizing miniaturisation and power<br />

efficiency of GBFC. Pacemakers, insulin<br />

pumps, defibrillators are all accessible<br />

targets for this invention. (Source: UJF<br />

Dépêche N°31)<br />

The second step comes from the<br />

contribution of Don Martin as Principal<br />

Investigator and teamed with J-L.<br />

Lenormand, F. Boucher, and P. Cinquin.<br />

They worked on a bio-fuel cell using<br />

biomimetic membranes and NaCl for fuel.<br />

It leads to voltage up to a few tens of<br />

mV, which can match the energy demand<br />

of a new set of energy-demanding<br />

sphincters.<br />

These works were able to incubate larger<br />

programs which are supported by funding<br />

agencies (4 new ANR projects and 2<br />

partnerships in the European Seventh<br />

Framework Program ‘FP7’), it generated<br />

4 new collaborations across Grenoble and<br />

led to 4 invitations to international<br />

conferences.<br />

OVERVIEW<br />

5


OVERVIEW<br />

Tetiana AKSENOVA - A leading expert<br />

involved in the unique world class<br />

program CLINATEC ® .<br />

Previously engineerresearcher<br />

at INSERM,<br />

U318 CHU Grenoble<br />

(from 2002 to 2007),<br />

Tetiana AKSENOVA, 53,<br />

came back to Grenoble<br />

thanks to a full time<br />

Chair of Excellence<br />

granted through the<br />

Nanosciences Foundation’s 2008 Call.<br />

On leave from Ukrainian Academy of<br />

Sciences, and presently at Léti, Tetiana is<br />

also the co-founder of PNN-Soft. Her<br />

group leader proposed CEA to hire<br />

Tetiana full time at the end of the<br />

Nanosciences Foundation’s support.<br />

The procedure of adaptive<br />

calibration is aimed to the fasten BCI<br />

system installation and recalibration. In<br />

<strong>2010</strong> the principle solution for the<br />

adaptive BCI calibration system was<br />

proposed, based on the innovative<br />

recursive algorithm.<br />

There is a constant effort on the<br />

optimization of algorithms. To move<br />

toward multiple degrees of freedom in<br />

humans and in order to improve the BCI<br />

performance the algorithm of fast signal<br />

decomposition were proposed (patent in<br />

preparation).<br />

Leading expert in the field of machine<br />

learning and real time signal processing,<br />

Tetiana AKSENOVA invented several<br />

innovative approaches for signal<br />

processing, classification and modelling<br />

that can be used for Brain Computer<br />

Interface design. She made a crucial<br />

improvement in the theoretical study and<br />

practical application of GMDH-type<br />

(Group Method of Data Handling) neural<br />

networks, effective self learning approach<br />

for the regression analysis which is used<br />

as a basis for self learning procedure of<br />

Brain Computer Interface (BCI).<br />

Her activity at CLINATEC ® overlaps with<br />

the project Neurolink which aims at<br />

improving the stability and the quality of<br />

electrical interface between neural<br />

network and nanostructured electrodes<br />

using multiwall carbon nanotubes.<br />

The challenge of the project is to design<br />

fully autonomous self-paced systems for<br />

continuous long term monitoring of<br />

neuronal activity functioning in natural<br />

noisy environment. Major achievements<br />

have already been obtained:<br />

Functional self-paced BCI with<br />

one degree of freedom in freely moving<br />

animals (rodents) was achieved during<br />

the first year of the project. It includes<br />

the development of basic methods and<br />

algorithms (offline and online), software<br />

implementation on MatLab and their<br />

incorporation into the BCI platform. (A<br />

patent has been submitted in <strong>2010</strong>.)<br />

The second year concerned<br />

preclinical studies in animals. Self paced<br />

1D BCI system demonstrated perfect<br />

robustness and high quality of prediction:<br />

the 8 month- long experiment with one<br />

animal validated the robustness of<br />

algorithms. The experiments to study of<br />

Subject-to-Subject variability with<br />

several animals are in progress.<br />

6


The laureates of the <strong>2010</strong><br />

Chairs of Excellence<br />

program<br />

The laureates of the <strong>2010</strong> program have<br />

been chosen on the same three-step<br />

process used previously (3 international<br />

reviewers assigned per application; the<br />

Steering Committee’s evaluation based<br />

on the reviewers’ reports; and the<br />

Board’s ultimate decision taking into<br />

account the financial resources<br />

available). In <strong>2010</strong>, 5 excellent scientists<br />

qualified amongst 11 eligible applications.<br />

One obtained a full time Chair of<br />

Excellence (500 k€) and four other<br />

obtained part time Chair (between 300<br />

and 330 k€). Funds are mostly assigned<br />

to the Chair’s salary and the support of<br />

PhD and post-doctoral fellows.<br />

OVERVIEW<br />

A sixth proposal kept on the short list,<br />

DIABONE (standing for ‘Diamond for<br />

Biology and Neurology’) has not been<br />

funded despite the very high quality of<br />

the project.<br />

This project was lead by Institut Néel,<br />

and endorsed by three other laboratories<br />

SPrAM, LEPMI, and the Grenoble Institute<br />

of Neurosciences. The proposed part time<br />

Chair of Excellence should have allowed<br />

José Antonio GARRIDO, Assistant<br />

Professor at T.U. Munich to bring his<br />

expertise in diamond-base electronics to<br />

develop two particular device concepts<br />

focused on bioelectronics:<br />

nanostructured diamond<br />

microelectrode arrays for electrical<br />

recordings from /and for stimulation of<br />

cell cultures and living tissue,<br />

array of diamond solution-gated<br />

FETs for electrical recordings from cell<br />

cultures.<br />

Such a project was directed to advanced<br />

health monitoring, as well as applications<br />

in information science and technology.<br />

This particular interdisciplinary project<br />

received a warm evaluation by its three<br />

referees but wasn’t qualified as<br />

outstanding despite its ambitious goals -<br />

as it may occur for projects bridging two<br />

cultures.<br />

With 62 papers, 17 invited conferences,<br />

non tenure but with recent habilitation at<br />

TU Munich, José Antonio GARRIDO, 39,<br />

had the typical profile we are looking for,<br />

in accordance with the Scientific<br />

Committee’s recommendations.<br />

This whole development is made here to<br />

let the Scientific Committee know that<br />

the 2011 Chairs of Excellence Program<br />

clearly points out the Foundation’s will to<br />

host at least one life science-inspired<br />

project, as long as the excellence and<br />

integration criteria are fulfilled.<br />

7


OVERVIEW<br />

<strong>2010</strong> Full-time Chair of Excellence<br />

The first laureate got an excellent rating.<br />

Max HOFHEINZ (Quantum Optics, THz) is<br />

the fourth scientist to come on full time<br />

basis with the Nanosciences Foundation’s<br />

support. He is presently admitted to<br />

compete for the final step in the 2011<br />

junior ERC call. The commitment of CEA<br />

is strong: in case of success he will<br />

obtain a permanent position within his<br />

three-years stay at the Nanosciences<br />

Foundation.<br />

<strong>2010</strong> Part-time Chairs of Excellence<br />

The four part-time Chairs are all from<br />

USA, working at prestigious universities:<br />

Harold BARANGER is from Duke<br />

University, David GRAVES from Berkeley<br />

UC, Juan Min ZUO is Professor at Urbana<br />

Champaign University of Illinois, and<br />

Yoshio NISHI is from Stanford University<br />

with a long experience in high tech<br />

companies, starting at Toshiba (for 23<br />

years), then at Hewlett Packard (for 10<br />

years as Director of research), then<br />

Texas Instrument (7 years as Senior VP<br />

and Director of R&D until 2002 when he<br />

joined Stanford University).<br />

Fig.1: The Nanosciences Foundation’s Chairs of Excellence and their University of origin<br />

The 2009 Chairs of Excellence program had allowed recruiting on a part-time basis<br />

three North-American laureates, from University of Montreal, Stanford University and<br />

NREL.<br />

This world map displaying the photos of laureates pinned in accordance with their<br />

University of origin clearly evidences the dominant flow of North American applications<br />

in response of the Foundation’s Chairs of Excellence programs.<br />

8


‘Mobilité d’Excellence’: a new program<br />

For the current year <strong>2010</strong>-2011 the<br />

Board decided to implement a new kind<br />

of financial support, designed to boost<br />

the scientific implementation of one<br />

outstanding scientist who would have<br />

decided to move to Grenoble - taking<br />

advantage of the mobility allowance open<br />

to government officers. To be considered<br />

by the Foundation, the candidate has to<br />

be nominated by the head of one of the<br />

four founding members.<br />

What have achieved our<br />

supported scientists?<br />

For the second consecutive year, a oneday-long<br />

reviewing session, chaired by<br />

the Chairman of our Scientific<br />

Committee, was organized on April 8 th to<br />

review running projects supported by the<br />

Foundation.<br />

From this audit, the most striking<br />

information comes from the extreme<br />

quality and vitality of the 4 young<br />

scientists who were laureates of “New<br />

comers” projects in 2008 – a financial<br />

support designed to boost the freshly<br />

hired scientists (the year before 2008).<br />

Just one year later, one of them applied<br />

successfully for a junior ERC grant and<br />

we were pleased to hear that the funding<br />

of the Foundation had significantly helped<br />

him to implement new experiments that<br />

he was able to put in the core of his ERC<br />

application.<br />

One can urge that 2 senior<br />

scientists from the Nanosciences<br />

Foundation community, succeeded to the<br />

advanced ERC grant since 2008. Three of<br />

them succeeded at the junior call and two<br />

of them are qualified for the second step<br />

of the 2011 competition. Of course the<br />

quality of the candidates is the key<br />

element, but it is fair to say that funding<br />

of the Nanosciences Foundation brought<br />

additional amplification of their scientific<br />

outputs, at least for two of them.<br />

At the end of the PhD students’<br />

presentations, feelings were mixed. Even<br />

if the selected PhD students have already<br />

been working for more than two years,<br />

some of them do not “fit” their programs<br />

(or vice-versa) and do not reach the<br />

expected criteria of the Foundation.<br />

This reality was already acknowledged in<br />

2009 by the Board of the Foundation,<br />

early alerted on the difficulties of<br />

recruiting students from unknown<br />

universities. It decided to improve the<br />

hiring process in <strong>2010</strong>. Consequently, the<br />

steering committee now decides on a<br />

short list of candidates, later appointed to<br />

introduce themselves and to present their<br />

project to a jury panel composed by the<br />

steering committee and the chair of the<br />

Ecole Doctorale. All interviewee’s travel<br />

expenses to France are covered by the<br />

Foundation. This new way to check the<br />

real knowledge of applicants has proven<br />

to be more efficient in avoiding<br />

inadequate recruitment.<br />

The Foundation’s PhDs<br />

The staff policy has been slightly changed<br />

in <strong>2010</strong>: the Board of the Foundation<br />

decided to “support” instead of “employ”<br />

the new Ph.D. students taking part in<br />

funded projects or being selected through<br />

the “Ph.D. program” – which supplants<br />

the “doctorants au fil de l’eau”<br />

enrollment. This decision came from the<br />

limited lifetime of the Foundation given<br />

its actual status.<br />

The new Ph.D. students, hired by<br />

founding members, still have six<br />

commitments to fulfill regarding the<br />

Foundation, written in a document signed<br />

by themselves and their PhD advisor.<br />

They are asked:<br />

to have a meeting with the<br />

director of the Foundation before the end<br />

of their first year of PhD thesis<br />

to supply the Foundation with a<br />

yearly scientific report<br />

to affix on their signature “Ph.D.<br />

student funded by the Nanosciences<br />

Foundation”<br />

to inform the Foundation of their<br />

publications, their communications, their<br />

conferences and their seminars<br />

to mention the financial support<br />

of the Foundation in any communication<br />

to place the Foundation’s logo on<br />

all their communication’s materials ( for<br />

conference, talks, poster sessions…)<br />

The initial students’ defense and future<br />

The first Ph.D. students hired at the<br />

beginning of the Foundation in 2007 have<br />

defended their thesis with success in<br />

December <strong>2010</strong> and February 2011. One<br />

of them Mr. DATTA, Indian, particularly<br />

brilliant, was hired by the prestigious ENS<br />

of Paris for a post doctorate contract.<br />

Two students have not defended their<br />

thesis: one resigned after maternity<br />

leave, as she made the choice to follow<br />

her husband, led by his scientific career<br />

to the USA. One other student came with<br />

an unsuitable level of education and his<br />

thesis advisors decided not to allow him<br />

to present his defense.<br />

At the end of <strong>2010</strong>, the Foundation had<br />

hired 29 Ph.D. students. (Appendix 9)<br />

OVERVIEW<br />

9


OVERVIEW<br />

The <strong>2010</strong> PhD program<br />

The <strong>2010</strong> Ph.D. program selected 6<br />

students; 5 of them being already at<br />

work between October <strong>2010</strong> and<br />

February 2011. In Appendix 9, one can<br />

find their name, hosting laboratories, as<br />

well as the subject and starting date of<br />

their thesis.<br />

The 6 PhD students selected in <strong>2010</strong><br />

have all been educated in Europe - which<br />

differs with most of the previous PhD<br />

students and post-doctoral fellows who<br />

joined the Nanosciences Foundation via<br />

the other three different channels: as<br />

part of a Chair of Excellence project, as<br />

part of a RTRA project or in the frame of<br />

the ‘fil de l’eau’ recruitment (ended in<br />

2009).<br />

Both <strong>2010</strong> and 2011 programs will make<br />

Europe strongly dominant. For European<br />

applicants, CV data are certainly more<br />

reliable and even checkable via networks<br />

involving one or another member<br />

belonging to the extended management<br />

of the Nanosciences Foundation. The oral<br />

presentations of the candidates allow<br />

selecting those who are deeply involved<br />

in their PhD subjects.<br />

The 2011 PhD program<br />

The first session of the 2011 PhD<br />

program is extremely competitive since<br />

22 applications were received. One may<br />

consider the growing number of highquality<br />

applications as a sign that the<br />

Nanosciences PhD support is slowly<br />

getting known and searched by its<br />

potential beneficiaries.<br />

The Steering Committee decided on a<br />

short-list of 8 outstanding applicants<br />

coming from Germany (3), Spain (1),<br />

Russia (2), Brazil (1), and India - with a<br />

long presence in Europe (1).<br />

On May 18 th , 2011 auditions will take<br />

place in order to select 2 or 3 final<br />

laureates.<br />

Fig.2: The Nanosciences Foundation’s PhD students and Post-doctoral fellows and their country of<br />

origin<br />

10<br />

In contrast with the world map displaying the Chairs of Excellence’s University of<br />

origin, this map identifies Asiatic and European countries as main sources of PhD<br />

students for the Foundation.


INTEGRATION ON SITE<br />

BETWEEN BASIC<br />

RESEARCH AND R&D<br />

LABS<br />

CEA-Léti<br />

NanoINNOV<br />

OVERVIEW<br />

Let us focus on the Léti whose fame in<br />

micro and nano electronics is known all<br />

around the world. This large laboratory<br />

very well connected to companies,<br />

through strong local or international<br />

networks felt five-ten years ago the<br />

weakening of its links between basic<br />

research and their own programs which<br />

are under the permanent pressure of the<br />

industrial commitments. Obviously the<br />

everyday life has to take into account the<br />

short term reality of the microelectronics<br />

world which lives into a hard competition<br />

requiring increasingly huge investments.<br />

The common feeling of the need to close<br />

the gap between both communities, basic<br />

research on one side, R&D laboratories<br />

(with a big ‘D’) on the other side, have to<br />

find its way to set side by side real<br />

programs: there is no obvious business<br />

plan for this type of joint venture to take<br />

place in a world where most of the<br />

companies (except in Asia) have decided<br />

to reduce their basic research<br />

commitments.<br />

The Nanosciences Foundation is not the<br />

single actor to work on this issue but<br />

obviously its organization is suited to act<br />

significantly at the ground level, via<br />

common sessions of brainstorming<br />

organized by the Steering Committee.<br />

These actions were clearly supported by<br />

the GIANT wave which brings together all<br />

the scientific entities of the “presqu’île”<br />

and the local authorities which commit<br />

themselves to transform the “presqu’île”,<br />

formerly isolated sad business area, into<br />

a scientific campus closely related to the<br />

eastern campus and linked to the city of<br />

Grenoble.<br />

The <strong>2010</strong> Chairs of Excellence program<br />

supported 3 projects in which Léti was<br />

involved (out of 6 preselected projects).<br />

An overview of the Léti<br />

involvement on the<br />

Foundation’s Chairs of<br />

Excellence projects can<br />

be glanced thanks to<br />

the graph presented in<br />

the opening pages of<br />

this report.<br />

The NanoINNOV program has proceeded<br />

with the same concept of integration<br />

between basic research, R&D and<br />

innovation.<br />

During its last session the Scientific<br />

Committee was aware of the emergence<br />

of NanoINNOV and asked naturally to<br />

know more about its practical impact to<br />

the strategy of the Nanosciences<br />

Foundation.<br />

In May 2009 NanoINNOV was launched<br />

as a first step preceding a large program,<br />

announced by the French President in<br />

January 2009. The idea was very close to<br />

the National Nanotechnologies Initiative<br />

(NNI) strategic plan in USA, “its 10-year<br />

anniversary just celebrated with much<br />

fanfare” (2 successive waves: Bill Clinton<br />

in 2001 & Strategic plan in 2007. Next,<br />

the US reauthorization act voted by the<br />

congress in <strong>2010</strong> led to a 10% increase<br />

of the NNI’s budget). The NNI provides a<br />

vision of the long-term opportunities and<br />

benefits of nanotechnology identifying 4<br />

prominent goals.<br />

Advance a world-class<br />

nanotechnology research and<br />

development program.<br />

Foster the transfer of new<br />

technologies into products for commercial<br />

and public benefit.<br />

Develop and sustain educational<br />

resources, a skilled workforce, and the<br />

supporting infrastructure and tools to<br />

advance nanotechnology.<br />

Support responsible development<br />

of nanotechnology.<br />

NanoINNOV has been focused on three<br />

areas: the ‘Saclay plateau’, Toulouse and<br />

Grenoble, this last ensemble giving an<br />

image of the profile to be developed. Out<br />

of 70 M€ the main part went to construct<br />

science-oriented buildings in Saclay. A<br />

second line of expenses was ought to<br />

implement a procedure to reduce the gap<br />

for the French publications in Nano<br />

(around 15% of the global total) and the<br />

fraction of nano-related patents<br />

estimated around only 5% of the global<br />

total.<br />

The relevant program had given large<br />

support to 9 proposals with a request of<br />

success: it was asked to create two<br />

patents per million of euro. The program<br />

11


OVERVIEW<br />

was made operative in only three months<br />

which is an exceptionally short timeframe.<br />

In addition the Steering Committee of<br />

NanoINNOV pays attention to support<br />

programs directed to societal issues:<br />

societal acceptability, science<br />

dissemination,… taking into account the<br />

diversity of publics, using different<br />

approaches to introduce debates with<br />

citizens.<br />

NanoINNOV had a very good start,<br />

fostered in a very short time an effective<br />

strategy and instruments to implement it.<br />

However national issues, (The Grenelle<br />

for Environment, and the GDPN standing<br />

for ‘National Grand Public Debate’) arose<br />

and crashed into this “French NNI”<br />

program.<br />

The GDPN, badly driven, introduced the<br />

debate with ‘a hypothetic grand public”<br />

mimicking what has been termed<br />

“participative democracy”, adopting the<br />

format of TV-oriented talk show, to trace<br />

“reality”. This format was very suited to<br />

give the stage to the most vocal groups<br />

of opponents to nanotechnology which<br />

denied the basic principles of democracy<br />

by killing dialog in the nest.<br />

Beside this cultural context, nanosciences<br />

and nanotechnologies certainly find<br />

themselves in the frontline of another<br />

recent important shift in science funding<br />

policies. In many countries, one’s seeing<br />

a shift in emphasis in the aims of publicly<br />

funded science, away from narrowly<br />

discipline-based objectives, and towards<br />

goals defined through societal needs,<br />

partly because research has become<br />

eligible for political TV-related dramatic<br />

speeches. This context, beneficial in<br />

terms of global money generates drastic<br />

transformations of the operative modes<br />

with a time constant much smaller than<br />

that used for scientific discoveries.<br />

NanoINNOV surely was innovative in<br />

terms of objectives (limited targets at the<br />

beginning) fast start of the operation,<br />

and original steering committee mixing<br />

Scientists, Technologists, and companies<br />

CTOs. Unfortunately it came to its end,<br />

after a difficult birth which occurred too<br />

late with an almost 10 years delay.<br />

Investissements d’Avenir<br />

Within the context<br />

described above, the<br />

“Investissements d’Avenir”<br />

initiative was launched in<br />

the middle of <strong>2010</strong>.<br />

It kept scientists and technologists in a<br />

six month-long brainstorming and<br />

project-making and eventually gave birth<br />

to a double series of proposals designed<br />

to acquire large set of shared equipments<br />

(EQUIPEX) and to benefit from new<br />

supports given to implement more<br />

integrated managements of the scientific<br />

and technological programs carried out at<br />

a large scale (LABEX).<br />

Both call for proposals requested to<br />

conceive a deeper local integration of<br />

Research and R&D groups in order to<br />

interlink them into the virtuous chain:<br />

Basic Science-R&D-Innovation-Transfer.<br />

Similar instruments of the research policy<br />

had previously – and successfully - been<br />

implemented and supported by the<br />

neighboring companies (years 2005-<br />

2006: Pôles de compétitivité and Carnot<br />

Institutes).<br />

To make the story short let us describe<br />

briefly only the successful Labex “LANEF”<br />

(Laboratory of Alliances on Nanosciences-<br />

Energies for the Future) which has been<br />

laureate with others (MINOS,..), and is<br />

fully relevant of the Nanosciences<br />

Foundation’s topics.<br />

The LANEF proposal can<br />

actually be viewed as an<br />

extension of the<br />

Nanosciences Foundation<br />

strategy - and of the<br />

NanoINNOV strategy too.<br />

LANEF is built as a consortium of<br />

research groups from 5 laboratories:<br />

three of them, INAC, Institut<br />

Néel, and LP2MC fully relevant of the<br />

Nanosciences Foundation<br />

LNCMI (Grenoble High Magnetic<br />

Field Laboratory) is partly involved in the<br />

Nanosciences Foundation<br />

G2ELab, (Grenoble Electrical<br />

Engineering Laboratory) which is lightly<br />

involved in the Nanosciences Foundation,<br />

and mostly implicated with Institut Néel<br />

as project bearer, because of their long<br />

term collaborations. However G2ELab has<br />

a huge expertise in a large number of<br />

energy-related issues partly casted in<br />

important patents, and has carried out<br />

strong partnerships with energy<br />

companies for years.<br />

12


OVERVIEW<br />

Fig.3: LANEF framework.<br />

Based on 7 focused alliances (a scheme<br />

very similar to the axes of the<br />

Nanosciences Foundation but with a<br />

much narrower spectrum), LANEF is<br />

conceived as an operator of the<br />

integration to make the virtuous chain<br />

‘Basic Science-R&D-Innovation-Transfer’<br />

effective. LANEF has been fully supported<br />

by all the actors of the local dynamics<br />

(University of Grenoble, GIANT, Pôles de<br />

compétitivité, Carnot Institutes and 14<br />

companies) and got the strong support of<br />

national research organisms.<br />

This successful result demonstrates the<br />

incubating role of the Nanosciences<br />

Foundation in the creation of LANEF and<br />

its cross-fertilization with the ideas<br />

launched by the NanoINNOV initiative.<br />

LANEF and the Nanosciences Foundation<br />

Given its envisaged framework, it is<br />

clearly possible for LANEF to insert itself<br />

within the Nanosciences Foundation<br />

structure, as a second department, with<br />

its full financial autonomy, its own<br />

Steering Committee, etc... the founders<br />

being again CEA, <strong>CNRS</strong>, UJF and<br />

Grenoble-INP.<br />

This perspective of evolution is further<br />

detailed within the coming section “The<br />

future of the Foundation”.<br />

13


OVERVIEW<br />

THE NANOSCIENCES FOUNDATION’S IMPACT<br />

Financial and human supports viewed in two tables<br />

At the end of <strong>2010</strong>, the total support to technological equals 5.62 M€, with more than<br />

its 2/3 given within the first two calls, as it was planned from start.<br />

The support for the scientific animation, schools and scientific events has been around<br />

60 k€ for the last two years.<br />

14<br />

These raw figures along with the scientific information given in the next sections of<br />

this report give an overview of the magnitude of the efforts implemented by the<br />

Nanosciences Foundation. The main part of its activity is not made visible by a fast<br />

look at these raw data. The Foundation acts as a specific catalyser in a field of science<br />

where the human initiatives play a key-role and the main fuel (salaries, fluids,<br />

buildings, diversity of supports...) comes from the four founding members: CEA,<br />

<strong>CNRS</strong>, Grenoble-INP and University Joseph Fourier.


The Nanosciences Foundation budget<br />

Resources<br />

The Foundation can spend every year a maximum amount of 4 680 k€ during the 5<br />

years over the period 2007-2011, which is the consumable part of the capital given by<br />

the Ministry in 2007 with the addition of the annual contribution of the founding<br />

members.<br />

After 2012, it will be allowed to employ the remaining part of the unused part of this<br />

capital, i.e. 4 833 k€ which was not spent at the end of 2009, as a consequence of the<br />

low level of the initial expenses in the Foundation’s first year.<br />

OVERVIEW<br />

The financial incomes can be used with no time restriction. At the end of 2009 the<br />

remaining financial incomes reach 1 423 k€. Therefore, financial resources of the<br />

Foundation are large enough to support runs in 2012 and 2013.<br />

The partnership with INRIA signed on the 26 th of May <strong>2010</strong> provides in addition 100 k€<br />

to the Foundation, every year from <strong>2010</strong> to 2013.<br />

Considering the international financial crisis and the new inputs of the French research<br />

policy, the process of fundraising has been reconsidered in accordance to the<br />

conclusions of the dedicated mission given by “Ianmore Associates” (February <strong>2010</strong>).<br />

The board session held on December 17, <strong>2010</strong> took the decision to split the remaining<br />

resources between two calls for proposals to be launched in 2011 and 2012, in order<br />

to attribute financial supports from 2011 to 2013 or 2014.<br />

Expenditures and Commitments<br />

The financial support given to a yearly call for proposals is generally spread, over 3<br />

calendar years. The budget of a current year includes in addition the expenses for the<br />

Foundation management (salaries of the administrative staff and operating expenses)<br />

and the payments related to the commitments of the year (N), but also those related<br />

to the previous calls (year N-1 and N-2).<br />

The table below gives the distribution of the expenses during the years 2007 to <strong>2010</strong>.<br />

The financial line dedicated to salaries directly paid by the Foundation is increasing, as<br />

a result of Board’s decisions.<br />

Commitments taking into account all calls for proposals, including the last one in<br />

2012, have been double checked in relation with the lowest profile of expected<br />

resources from financial income. Hence the Foundation will be able to support all the<br />

expenses without using the non-consumable part (10%) of the capital initially given<br />

by the Ministry and the founding members, i.e. 2 600 k€.<br />

15


OVERVIEW<br />

The calls for proposals for 2011 and 2012 are spread between the 5 components listed<br />

above. The 2011 call for proposals budget has been approved by the Foundation<br />

Board on the 17th of December <strong>2010</strong>. The 2012 call for proposal will duly be adjusted<br />

at the end of 2011, considering updated values for commitments and resources.<br />

Overview for the coming years<br />

The following table shows the income available to finance the commitments of the<br />

Foundation for the next 4 years. (The possible interest income from bank disposals of<br />

around 250 k€ for 2011 is not included)<br />

16


The evolution of the funding programs<br />

Along the years, the Nanosciences Foundation has modified the selection process of its<br />

programs; it has also abandoned some sorts of supports and has created some other<br />

ones. The table bellows indicates when and how those changes have occurred.<br />

OVERVIEW<br />

Enhancing collaborations across the Foundation’s network<br />

One of the most crucial Foundation’s goals is to encourage research projects involving<br />

several complementary Grenoble-based expertises. For any call for proposals or<br />

recruitment program, the partnering aspect has been a criterion considered at the<br />

time of the projects selection. As a result, more than 2/3 of the projects supported<br />

since the inception of the Foundation involve 3 or 4 partnering laboratories.<br />

Fig. 4: Number of supported projects<br />

involving 1 or several laboratories,<br />

from 2007 to <strong>2010</strong>.<br />

17


OVERVIEW<br />

Relevant bibliometric data<br />

Another way to measure the<br />

repercussions of the Nanosciences<br />

Foundation’s collaboration guidelines is to<br />

study the cross fertilization between its 2<br />

major entities: INAC and NEEL. A<br />

bibliometric study of their co-elaborated<br />

publications, supported by the<br />

NanoINNOV program, was achieved in<br />

March 2011 by Simon JUMEL, Master<br />

student at Stendhal University, and<br />

Laurent LÉVY, Professor of Physics at<br />

University Joseph Fourier.<br />

INAC and NEEL have co-published 129<br />

papers within the 2006-<strong>2010</strong> timeframe.<br />

Plenary talks will be given to introduce<br />

these topics and Don MARTIN will close<br />

the session with a talk describing his<br />

project funded by the Foundation. In<br />

conclusion of this workshop a prize will<br />

be attributed for the best poster of each<br />

topic.<br />

In order to animate and broaden this<br />

community, the Organizing Committee<br />

also aims to set up regular seminars, to<br />

be given by top-level scientists in visit in<br />

Grenoble. The Nanosciences Foundation<br />

will announce and support these<br />

seminars, such as the one given by<br />

Michael SHEETZ, Director of the<br />

Mechanobiology Institute of Singapore,<br />

on April 29 th , 2011.<br />

Fig. 5: Number of publications resulting from<br />

collaborations between INAC and Institut Néel<br />

The annual amount has grown by a factor<br />

4 between 2006 (prior to the genesis of<br />

the Nanosciences Foundation) and <strong>2010</strong>.<br />

The ‘nano-bio’ working<br />

group strengthens rapidly<br />

The working group “Nano in life sciences”<br />

organized a very successful workshop on<br />

‘Nano and micro environment for cell<br />

biology’ on November 25 th , <strong>2010</strong>. More<br />

than one hundred attendants went to the<br />

Institut Albert Bonniot to listen to<br />

presentations exclusively given by young<br />

researchers (Master students, PhD<br />

students, Post-doctoral fellows…).<br />

The great enthusiasm crystallized in this<br />

meeting improved the awareness of the<br />

local community of biologists working<br />

closely with physicists. A committee of 5<br />

scientists (from IAB, LMGP, LIPhy and<br />

iRTSV) emerged and decided to keep<br />

alive the spirit of this first meeting by<br />

organizing on June 24 th , 2011 a new<br />

workshop mainly based on posters<br />

presentation, in order to encourage once<br />

again the participation of the younger.<br />

This day will be dedicated to three topics:<br />

Design of nano and<br />

microstructured materials for cell biology<br />

Cell interactions with materials of<br />

controlled properties<br />

Biomimetic systems<br />

Fig. 4: Michael SHEETZ was the prestigious<br />

orator of the successful ‘Nano-Bio’ seminar on<br />

April 29th 2011.<br />

A rising visibility online<br />

The website is the main information tool<br />

that allows the Foundation to display its<br />

results, its events, its recruitment ads<br />

and its scientific funding programs to a<br />

local, national or international audience.<br />

Statistics of the website’s frequentation,<br />

highlighting the visitors’ country of origin,<br />

the time spent on the visiting pages, the<br />

way followed to reach the website…<br />

provide accurate information to establish<br />

the growing attractiveness and visibility<br />

of the Foundation across the world.<br />

The following graphs and maps help us to<br />

figure out the audience reached through<br />

the Foundation’s efforts to communicate<br />

through various channels:<br />

Emailing to local, national and<br />

international contacts<br />

Quarterly newsletter<br />

Announcements via French<br />

embassies, online portals (EURAXESS,<br />

naturejobs.com, sciencecareer.org) and<br />

advertisements in specialised media<br />

(Nature Nanotechnology, Nano Letters)<br />

18


OVERVIEW<br />

Fig. 6: Total number of visits over two similar periods (Since no statistics are available prior to<br />

May 2009, we chose to study annual visits from April to April)<br />

As one can see on Figure 6, the total<br />

number of visits on our website is<br />

constantly increasing, and even more<br />

than doubled for the concerned periods.<br />

One can also correlates each peak to<br />

particular events (i.e Newsletter N°5, at<br />

the end of September <strong>2010</strong>; Workshop<br />

‘Nano-Bio’ at the end of November;<br />

Announcement of the PhD program in<br />

February 2011)<br />

Over the period April 2009 – April 2011,<br />

one registered:<br />

24 650 visits from French<br />

internet users (half of them are based in<br />

Grenoble)<br />

4 850 visits from European<br />

internet users (excluding French users)<br />

3240 visits from Asian internet<br />

users<br />

1 300 visits from US-based<br />

internet users (with a clear majority of<br />

Californian visitors)<br />

Fig. 7: Maps displaying the origin of our website visitors in France, in Europe, in the USA and in<br />

Asia.<br />

19


OVERVIEW<br />

20<br />

THE FUTURE OF THE<br />

FONDATION<br />

What beyond 2012?<br />

Beyond 2012, the FCS created to operate RTRA<br />

networks (like the Nanosciences Foundation) were<br />

supposed to have raised enough donations in order<br />

to create sufficient cash flow for their annual<br />

budget from incomes provided by the raised funds.<br />

Such a future drawn by the 2007 business plan<br />

was expected, thanks to a “brave new world”<br />

where French companies and French individuals<br />

would adopt new routes to demonstrate their<br />

generosity, as it is currently carried out in the US<br />

and in Switzerland, for the funding of large<br />

Universities.<br />

This ideal scheme was over sizing the FCS<br />

notoriety with national and international<br />

recognition. However such reputation, based on<br />

research only, cannot be seriously compared to<br />

that of the best Universities throughout the world<br />

whose fame comes from the quality of the<br />

provided education.<br />

Nevertheless two foundations, the first one in<br />

economy (Fondation Jean Jacques Laffont) and the<br />

second one in mathematics (Fondation Sciences<br />

Mathématiques de Paris) have distinguished<br />

themselves as entities able to successfully raise<br />

funds these recent years.<br />

Such an innovative initiative requires deep<br />

changes in mind, as well as a clean and politicallystable<br />

scientific and economic landscape to<br />

succeed.<br />

Unfortunately the 2007-<strong>2010</strong> years have suffered<br />

from two unexpected events:<br />

the world-wide crisis of the banking<br />

system<br />

the dramatic change of the operative<br />

pattern in the Universities which impacts and<br />

destabilizes CEA and <strong>CNRS</strong> along new, less<br />

secured roads.<br />

What opportunity is given by the<br />

“Investissements d’Avenir”?<br />

As described earlier in a dedicated section entitled<br />

‘Investissements d’Avenir’, this government<br />

initiative has strongly impacted the research<br />

entities at all scales (teams, laboratories,<br />

Universities, foundations, clusters of Universities,<br />

Engineering Schools) which had to merge, and<br />

build together a common response to calls taking<br />

into account the strong presence in Grenoble of<br />

CEA and <strong>CNRS</strong> without leaving aside the European<br />

large scale facilities ILL and ESRF.<br />

The successfully selected projects (namely<br />

Equipex, Labex, and Idex) in the field of basic<br />

research shall be managed within a frame able to<br />

take into account i) the multi-partnership inherent<br />

to the proposals, ii) the split of the delivered grant<br />

between expendable and non expendable funds,<br />

iii) the implementation of Chairs of Excellence and<br />

PhD programs open worldwide<br />

Based on these requirements, it appeared to the<br />

Board that the Nanosciences Foundation could be<br />

mandated to fulfill this role – as long as it adopts<br />

relevant adjustments.<br />

Although it is too early to foresee a decision for<br />

now, the Foundation currently investigates such an<br />

option - supported by three significant arguments:<br />

1. The creation of a new FCS is a long<br />

process. Alternatively, evolving by amendment to<br />

broaden the set of founders and the spectrum of<br />

missions has already proven to be a more efficient<br />

and much faster process.<br />

This has been demonstrated by the FCS “Paris-<br />

Saclay” previously named the FCS “DIGITEO-<br />

Triangle de la Physique” which achieved its<br />

transformation in 3 months. From 9 founders, the<br />

evolved Foundation now counts 22 of them. Five<br />

other significant changes were introduced very<br />

smoothly: the name of the FCS, its objectives, its<br />

operating bodies, its splitting into departments<br />

with a respective steering committee, and the<br />

reception of additional resources brought by each<br />

founders, new or old.<br />

2. The know-how built and accumulated<br />

these last four years to address the FCS<br />

peculiarities in term of scientists’ recruitment (on<br />

permanent basis or temporary basis), of selection<br />

process, and of fast implementation of projects is a<br />

valuable asset.<br />

3. The staff of four persons is a treasure to<br />

be preserved and exploited as a strong core for a<br />

larger Foundation<br />

Moreover the Government encourages Universities<br />

and consortia to take full advantage of the existing<br />

Foundations, being particularly concerned by the<br />

endless multiplication of FCS, which increases by<br />

much the numbers of councils and bodies requiring<br />

the presence of high level managers and by<br />

extension adds inherent costs to certify their<br />

financial actions and reports by accountancy firms.<br />

Citation de la Ministre: réponse<br />

Comptes:<br />

à la Cour des<br />

"Le ministère soutiendra également toutes les<br />

initiatives permettant une simplification du<br />

paysage institutionnel, les fondations de<br />

coopération scientifique porteuses des RTRA et<br />

CTRS pouvant héberger des structures abritées<br />

dans le cadre des investissements d’avenir.<br />

L’objectif, à terme, pourrait être d’avoir une<br />

fondation unique au niveau du site, se substituant<br />

aux fondations des membres, comme l’autorise<br />

désormais la loi du 13 décembre <strong>2010</strong>."<br />

(Source : chapitre PRES du rapport de la Cour des<br />

Comptes)


ACKNOWLEDGEMENTS<br />

One couldn’t finish this first part of the report without telling Roland HÉRINO and Jean-Paul DURAUD the<br />

great recognition of all the Foundation’s members for the high quality of the work they provided with<br />

professionalism and human warmth.<br />

Roland HÉRINO put a strong energy in the directorship he has assumed for two years.<br />

Jean-Paul DURAUD has kept a strong commitment to commute from the south of Paris and serve the<br />

Grenoble community with the same talent and open mind he used to demonstrate when at the Head of<br />

the former CEA-DSM-DFRMC, now better known under the name of INAC. He has been in a crucial<br />

position these last four years to keep a common strategy among the four founders.<br />

Both of them deserve to receive our best congratulations for boosting a lot the integration dynamics<br />

within the scientific community of Grenoble.<br />

OVERVIEW<br />

Farid OUABDESSELAM, President of University Joseph Fourier and President of the Grenoble ‘Pôle de<br />

Recherche et d'Enseignement Supérieur’ (PRES), has accepted to become the chairman of the<br />

Foundation Board from March 2011, despite his many important responsibilities - most of them evolving<br />

rapidly by the repeated initiatives of the French ministry. It is of course a great honor for the Foundation<br />

to have him chairing the Board and his commitment is seen by each of us as a positive evaluation of the<br />

past activity which should help to forecast a future beyond 2012.<br />

The last words will be to thank the Steering Committee members who work really hard to maintain an<br />

effective running of the Foundation and always manage to work extra time when it is truly needed.<br />

The spirit present during each Steering Committee session shows the ability of each member to serve the<br />

entire community, leaving individual interests behind the shared advices.<br />

Also, the four founding members have always been positively engaged to solve problems and to<br />

converge towards real solutions. It is a real pleasure to work in such a reliable ambiance, equally<br />

experienced by the Board members.<br />

21


OVERVIEW<br />

POST FACE<br />

The Scientific Committee, duly filling its role, proposed recommendations and asked relevant questions in<br />

its report following its last meeting on November 19 th – 20 th 2009.<br />

1. This <strong>2010</strong> activity report attempts to bring answers to most of the items for the form and the<br />

substance. Improvements in methods and in process of selection have been implemented in<br />

response of the non homogeneity of the quality of the recruited students.<br />

Better identifications of the results, comparison with the ERC procedure have been made more<br />

accessible.<br />

2. The achievement of the third goal of the Foundation (as listed below) concerning integration<br />

starts to be more visible and appears also in an unexpected way, stimulated by initiatives,<br />

NanoINNOV and the call for ‘Investissement d’avenir’, which didn’t exist at the beginning of the<br />

Nanosciences Foundation.<br />

3. Fund raising and creation of the prestigious Louis Néel chair require a better identification of the<br />

Foundation with the help of a small brochure containing a dozen of highlights. Initiative to act<br />

along this path has been activated.<br />

4. An additional step forward, envisaged by the Board is to meet the need of a Company to create a<br />

shared Chair of Excellence. The ambition is to convince a Company motivated by relevant<br />

research topics to share the cost of one Chair. The tax discount available for companies investing<br />

in research is presently very appealing.<br />

5. The weakness remains the difficulty to encompass all the calls with enhanced coherency of the<br />

strategic vision. The Foundation intervenes in a very moving landscape, not being the main fund<br />

agency to support groups. It is difficult to pretend to play a prominent role considering the<br />

amount of its resources.<br />

The targets of the Nanosciences Foundation were given by the Ministry of Research, leading to<br />

specific contracts with each founding members. Sadly, ambitions have to be limited by these<br />

frames focused on three (nevertheless not so modest) aspects:<br />

Human resources with a focus on creation of Chairs of Excellence and opening new<br />

sources of recruitment of outstanding PhD students and post-doctoral fellows<br />

<br />

<br />

Investments to upgrade experimental facilities to the current international level, and<br />

to make them fully shared by the scientific community<br />

To challenge all the laboratories, those dedicated to basic research as well as those<br />

dedicated to R&D, encouraged to achieve a better integration between them.<br />

6. The Foundation has not been known rapidly enough throughout Grenoble and worldwide. The<br />

improvement of the website quality gives robust signals: more visits and a better quality of the<br />

applicants to the PhD program have been noticed these two last years. The 20 successful<br />

laureates of Chair of Excellence came all from top universities and a large part of them plays an<br />

effective role in mixing research groups. Outstanding results, accumulated during three years,<br />

led to the recruitment of three of them on permanent positions at Grenoble.<br />

7. The last comment is to point out the top quality of the results obtained by the young incoming<br />

researchers selected by the two initial calls (2007 & 2008). Boosting the best of the incoming<br />

researchers, full of dynamism, seems mandatory to me. It is the more efficient way to make<br />

them competitive in European and international calls. Once again the characteristic time to judge<br />

the viability of top quality research projects, based on originality and risk, is difficult to be kept<br />

within a couple of years. We may regret to have abandoned such a call which is truly novel out of<br />

“the more of me” line since the laureates are new comers willing to investigate their new ideas.<br />

Grenoble – 1, May 2011<br />

Alain FONTAINE<br />

22


Part II: SCIENTIFIC REPORT<br />

1 - QUANTUM NANOELECTRONICS 3<br />

Beyond CMOS: Quantum coherent phenomena 3<br />

Very Large Scale Integration of NEMS 4<br />

Core/shell nanowires: conductance 5<br />

Tunneling-based nano-FETs 6<br />

2 – NANOMAGNETISM AND SPINTRONICS 7<br />

Nano-Spintronics 7<br />

Domain walls in nanowires 7<br />

Perpendicular Anisotropy and exchange interactions 8<br />

Electric field control of anisotropy 8<br />

Graphene as a template for magnetic structures 9<br />

Spintronics and germanium 9<br />

Magnetic Microsystems 10<br />

Spin transfer torque in nanoparticles 10<br />

Quantum Spintronics 10<br />

Magnetic order in graphene 10<br />

Carbon nanotubes for single spin detection 11<br />

Semiconductor quantum dots 12<br />

Dissemination and Training 12<br />

3 – NANOPHOTONICS 13<br />

Quantum dots and wires 13<br />

Catalyst-free growth of GaN nanowire heterostructures 13<br />

Ultrabright quantum dots in II-VI nanowires 13<br />

Exploring new concepts for photovoltaics with II-VI heterostructures 14<br />

Optical microcavities 14<br />

High Q silica microtoroids and microspheres 14<br />

Cavity-feeding : decoherence as a ressource for quantum optoelectronics 15<br />

Photonic wires for quantum optics 15<br />

Spontaneous emission control of QDs in photonic wires 15<br />

1D exciton-polaritons in ZnO wires 16<br />

4 - MOLECULAR ELECTRONICS 17<br />

5 - NANOMATERIALS, NANOASSEMBLY AND NANOSTRUCTURATION 19<br />

Self Assembly 19<br />

Nanowires 19<br />

Graphene 20<br />

Phase-change memory 21


6 – NANO- CHARACTERISATION AND NANO-METROLOGY 23<br />

In situ X-ray investigation of growing semiconductor nanowires 24<br />

New generation of nano-detectors for astrophysics 24<br />

Scanning gate Nanoelectronics 25<br />

Superconducting Nanostructures 25<br />

3D coherent diffractive imaging at the nanometer scale 26<br />

7 – NANO APPROACHES TO LIFE SCIENCES 27<br />

Micro- and nano Fabrication for the Life Sciences 27<br />

Contribution of 3D micro-environment to cell adhesion 27<br />

Nanodroplet chip for controlled assembly of lipid bilayers and electrical detection of single-protein activity 27<br />

Medical Applications of the Nanobiosciences 28<br />

Second harmonic imaging of potentials in nanoscale neuronal structures 28<br />

Innovative biochips to detect and screen biological cells 29<br />

Biomimetic artificial membrane systems for generating electro-chemical energy 29<br />

Implantable brain computer interface 31<br />

8 – NANOMODELING, THEORY & SIMULATION 33<br />

Electronic properties 33<br />

Thermal properties 34<br />

Growth, patterning, defects & structure of nano-objects. 35<br />

9 – TECHNOLOGICAL FACILITIES 37<br />

The Network 37<br />

The Nanofabrication Facility 37<br />

The Nanocharacterization Facility 38<br />

The Nano-Chemistry and Biology Facility 40<br />

The Numerical Simulation Facility 41<br />

Funding of the network 41<br />

Conclusions 42<br />

10 - EDUCATION AND SCIENTIFIC ANIMATION 43<br />

The Foundation monthly Seminars 43<br />

The Foundation workshops 43<br />

The Foundation’s Thesis Prize 43<br />

Call for proposals “Education and Scientific Animation” 44<br />

PhD students & research training 45<br />

Physics Olympiads 46<br />

Thesis Prize Award Ceremonies 47<br />

List of the Foundation’s monthly Seminars<br />

Erreur ! Signet non défini.48<br />

List of the Foundation’s workshops<br />

Erreur ! Signet non défini.49<br />

List of the Quantum Nanoelectronics Seminars<br />

Erreur ! Signet non défini.53


1 - QUANTUM<br />

NANOELECTRONICS<br />

Moore’s law has been the key driver for<br />

microelectronics scaling and performance<br />

improvement over the past decades. The<br />

basic operation of nano field-effecttransistors<br />

has roughly been kept the<br />

same as its micrometric counterpart.<br />

However when all typical dimensions of<br />

the device (gate length, width or channel<br />

thickness) are within the nanometer<br />

range, quantum physics tends to rule the<br />

electric characteristics: quantum<br />

confinement induces quantification of the<br />

energy levels within the channel, tunnel<br />

current flows through the gate oxide or<br />

through the source-to-drain barrier.<br />

In the framework of CMOS based<br />

microelectronics, these quantum effects<br />

have to be taken into account to design<br />

reliable and efficient circuits, where they<br />

are mostly considered as parasitic. In this<br />

context, the ability of Si-CMOS based<br />

logic to continue improving performance<br />

while increasing density is more and<br />

more questioned: variability and power<br />

consumptions are two key knobs that can<br />

rapidly be turned into show stoppers.<br />

A growing field of interest is proposing to<br />

exploit the new emergent quantum<br />

effects rather than being spoiled by<br />

them: this is the goal of quantum<br />

nanoelectronics. There is a widely open<br />

field of research where quantum<br />

mechanical effects are very useful and<br />

promising to design new devices or<br />

functions. Charge quantization,<br />

interference effects and quantum<br />

superposition of states are examples of<br />

effects which are investigated.<br />

Benefiting from the huge technological<br />

developments of microelectronics, the<br />

ability to fabricate nanostructures, such<br />

as nanowires; quantum box; 2D electron<br />

gas; or tunnel and Josephson nanojunctions,<br />

on a large variety of materials,<br />

and the development of new<br />

experimental techniques open a wide<br />

field of investigation in the domain of<br />

quantum nanoelectronics.<br />

Beyond CMOS: Quantum<br />

coherent phenomena<br />

Chair of Excellence 2007: Leonid<br />

GLAZMAN<br />

Coordinator: Manuel HOUZET<br />

(INAC/SPSMS).<br />

Prof. Leonid GLAZMAN is a leading<br />

theorist from Yale University, specialised<br />

in the field of quantum coherent<br />

phenomena in mesoscopic and<br />

nanoscopic systems. He comes regularly<br />

to Grenoble for long-term stays, and<br />

develops close collaborations with local<br />

theorists and experimentalists.<br />

There are some examples of the topics<br />

discussed during his stays:<br />

Kondo effect in a dot with<br />

superconducting leads,<br />

spin-orbit interactions,<br />

kinetics of SNS junctions ,<br />

electron transport in Si-As<br />

nanostructures<br />

theory of electron transport in<br />

carbon nanotubes with Prof. A. ANDREEV,<br />

persistent current fluctuations<br />

and Josephson current noise,<br />

counterpart of the Shapiro steps<br />

for a blockaded Josephson junction,<br />

impedance of a superconductor<br />

with magnetic impurities,<br />

analogs of Kondo effect in<br />

superconducting nano devices,<br />

non-equilibrium Kondo problem<br />

and double-dot Kondo problem,<br />

transport in mesoscopic spin<br />

glasses,<br />

and superconductivity in Boron<br />

doped diamond.<br />

The project is very lively and led to the<br />

organization of several workshops:<br />

“Electronic noise and relaxation in<br />

nanostructures” (April 2011) and<br />

“Superconducting hybrids: from<br />

conventional to exotic” (September<br />

2011).<br />

FURTHER READING:<br />

SCIENTIFIC REPORT<br />

Phys. Rev. A 80, 043611 (2009)<br />

Dynamic response of 1D bosons in a trap<br />

Phys. Rev.Lett. 104, 116403 (<strong>2010</strong>)<br />

The fate of 1D spin-charge separation away<br />

from Fermi points<br />

Phys. Rev. B 82, 161417(R) (<strong>2010</strong>)<br />

Distribution function of persistent current<br />

Phys. Rev. B 83, 075401 (2011)<br />

Single-dopant resonance in a single-electron<br />

transistor<br />

Grenoble benefits from a unique<br />

environment where some of the best<br />

technological facilities live close by<br />

worldwide known simulation and<br />

characterization teams. This enhances<br />

fruitful and healthy collaborations among<br />

several laboratories belonging to the<br />

Foundation’s network, such as LPMMC,<br />

LETI, IMEP-LAHC, INAC, Institut Néel...<br />

Fig.1: Leonid GLAZMAN, Chair of Excellence<br />

2007<br />

CONTACTS<br />

Maud VINET<br />

maud.vinet@cea.fr<br />

Tel: +33 4 38 78 90 87<br />

Olivier BUISSON<br />

olivier.buisson@grenoble.cnrs.fr<br />

Tel: +33 4 76 88 90 66<br />

3


SCIENTIFIC REPORT<br />

FURTHER READING:<br />

Appl. Phys. Lett. 95, 103111 (2009)<br />

Piezoelectric nanoelectromechanical<br />

resonators based on aluminum nitride thin<br />

films<br />

Nanotechnology 21, 165504 (<strong>2010</strong>)<br />

In-plane nanoelectromechanical resonators<br />

based on silicon nanowire piezoresistive<br />

detection<br />

Fig. 2: NEMS applications domains with Pr Roukes<br />

Very Large Scale<br />

Integration of NEMS<br />

Chair of Excellence 2007: Michael<br />

ROUKES<br />

Coordinator: Philippe ANDREUCCI (Léti).<br />

The purpose of the project is to leverage<br />

the scientific and technological activity<br />

based on Nano Electro Mechanical<br />

Systems (NEMS). Relying on the<br />

framework of LETI-Caltech Alliance, the<br />

project is now clearly structured around<br />

three topics more and more related to life<br />

science (Fig. 2):<br />

Gas sensing in air<br />

Mass spectroscopy in vacuum<br />

Biodetection in liquid.<br />

(a mixed team UJF/INSERM/CEA-DSV).<br />

Pr Roukes has contributed to identify new<br />

applications domains and consequently<br />

projects with IBS and INSERM are<br />

expected within the next months.<br />

Finally biodetection in liquid is becoming<br />

an important field: Pr Roukes is at the<br />

origin of an ANR project on cellular force<br />

sensor. Within this project, researchers<br />

are travelling back and forth between<br />

France and USA in order to set up the<br />

measurements.<br />

In addition to several publications, 11<br />

patents have been deposited within the<br />

frame of this Chair of Excellence.<br />

First topic, gas sensing, has led to the<br />

creation of a French-American start up<br />

(founded both by LETI and Caltech).<br />

Developments towards applications are<br />

going to be pursued within this start up.<br />

In the meantime more advanced studies<br />

on gas biosensors for precocious<br />

diagnosis are still planned within the<br />

Chair.<br />

Mass spectroscopy has provided very<br />

promising results; one shall mention for<br />

example a nanomechanical resonator for<br />

direct mass measurement of neutral and<br />

ionized biomolecules. This work has been<br />

performed together with EDyp laboratory<br />

Fig.3: Michael ROUKES, Chair of Excellence<br />

2007<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

4


Core/shell<br />

nanowires:<br />

conductance<br />

Chair of Excellence 2007: H.-S. Philip<br />

WONG<br />

Coordinator: Mireille MOUIS (IMEP-<br />

LAHC).<br />

The dominant features that will<br />

determine the applicability of semiconducting<br />

nanowires as nanoelectronic<br />

devices or for sensing applications are<br />

related to their enhanced sensitivity to<br />

surface charges. They are the ideal<br />

structure for MOS scaling thanks to the<br />

excellent electrostatic control of the gate,<br />

while a partially ungated structure can be<br />

used as a very sensitive sensor once<br />

functionalized with the suitable molecule.<br />

Figure 3 summarizes the different devices<br />

studied within the project. There remain<br />

several challenges to be solved however.<br />

Jae Woo LEE (the PhD student employed<br />

by the Foundation in the frame of this<br />

Chair) has been able to decorrelate<br />

surface scattering arising from the top<br />

interface from that of the etched vertical<br />

edges (presented at ESSDERC'<strong>2010</strong>).<br />

On the other hand, nanowires sensitivity<br />

to surface charges is an advantage when<br />

these charges are the signature of some<br />

molecules to be detected; however it is<br />

detrimental when it arises from interface<br />

states at the semiconductor/oxide<br />

interface.<br />

In a real sensor both effects are present<br />

and the team used a simulation approach<br />

to analyze the conditions in terms of<br />

dimensions, doping level and interface<br />

trap density to obtain an operational<br />

sensor.<br />

On September 28th, <strong>2010</strong> a workshop<br />

entitled “Contact and surface effects in<br />

nanostructures” was organised within the<br />

framework of the Chair of Excellence of<br />

Prof. H. S. Philip WONG.<br />

In total, 10 oral contributions given by<br />

local researchers from various<br />

laboratories enhanced and illustrated a<br />

fruitful discussion on contact issues.<br />

SCIENTIFIC REPORT<br />

FURTHER READING:<br />

Journal of Applied Physics, 107, 044501<br />

(<strong>2010</strong>)<br />

Analysis of charge sensitivity and low<br />

frequency noise limitation in silicon<br />

nanowire sensors<br />

Fig. 4: SEM images of devices with 1 to 3<br />

CNTs<br />

Nanotechnology 21, 485201 (<strong>2010</strong>)<br />

Degradation pattern of SnO2 nanowire field<br />

effect transistors<br />

Fig. 3: Summary of the devices based on<br />

nanowires. Top is a NW-FET with a wrapped<br />

around gate. The channel is controlled by the<br />

gate. Middle is NW-FET with an incomplete<br />

wrapping of the gate (narrow FD-SOI or<br />

FinFET). The channel is controlled by the gate.<br />

It is possible to modulate the threshold<br />

voltage with a substrate bias. Bottom is NW<br />

controlled by an external charge. An additional<br />

biasing can be applied using the substrate.<br />

Prof. H.-S. Philip Wong is now extending<br />

his activities towards new axes of<br />

collaboration between Stanford University<br />

and Grenoble laboratories: near-field<br />

characterization of nano-relays and<br />

electro-mechanical characterization of<br />

graphene nanodevices are considered.<br />

During <strong>2010</strong>, the CORE project has<br />

brought significant progress about two<br />

main aspects.<br />

One risk with nanowires is that surface<br />

roughness scattering increases as<br />

dimensions decrease, so that the<br />

improvement in electrostatic control<br />

would have to be traded against a<br />

degradation of transport properties.<br />

5


SCIENTIFIC REPORT<br />

Fig. 5: Tunneling FET operating principle and schematics of the device. The TFET is made out a<br />

gated PN diode: when the gate is biased at 0, no carrier can flow from drain to source because of<br />

the wide tunnel barrier they have to flow through. But when the gate voltage is decreased the<br />

barrier width is narrowed down allowing for band to band tunneling current.<br />

FURTHER READING:<br />

Appl. Phys. Lett. 94, 263508 (2009)<br />

Tunneling field-effect transistor with<br />

epitaxial junction in thin germanium-oninsulator<br />

Microelectronic Engineering (2011)<br />

Gate-induced drain leakage in FD-SOI<br />

devices: What the TFET teaches us about the<br />

MOSFET<br />

6<br />

Tunneling-based nano-FETs<br />

Chair of Excellence 2008: Alex<br />

ZASLAVSKY<br />

Coordinator: Sorin CRISTOLOVEANU<br />

(IMEP-LAHC).<br />

The objective of this project is to<br />

investigate the technological potential of<br />

tunneling FETs (TFETs) built in<br />

semiconductor-in-insulator technology to<br />

complement or possibly replace standard<br />

CMOS FETs in digital logic circuits. These<br />

TFETs are theoretically predicted to<br />

manifest sharper on-off characteristics<br />

and higher I ON currents than Si<br />

CMOSFETs.<br />

If this theoretical promise is confirmed,<br />

the technological insertion of such<br />

devices is likely in the longer term, when<br />

hybrid systems combining standard<br />

CMOS logic with islands of alternative<br />

technologies become standard. Also TFET<br />

devices provide an experimental testbed<br />

for interband tunneling (and other<br />

quantum effects).<br />

So far experimental demonstrations have<br />

not fulfilled the theoretical expectations.<br />

The originality of the approach of this<br />

project is to combine advanced<br />

technological fabrication with solid<br />

modeling and characterization.<br />

A emphasis is put on the comparison of<br />

germanium-on-insulator (GeOI) TFETs<br />

with their silicon-on-insulator (SOI)<br />

counterparts in order to address high on<br />

currents. Indeed there have been<br />

already several reports of sub-60<br />

mV/decade subthreshold slope in SOI<br />

TFETs (including a world-leading result<br />

from LETI-CEA) but at the expense of<br />

relatively low I ON due to the large<br />

bandgap of Si and insufficiently abrupt<br />

junctions. Conversely, GeOI TFETs are<br />

expected to have considerably larger I ON .<br />

The project has already allowed to<br />

experimentally demonstrate theoretical<br />

calculations: interest of HfO 2 as high k<br />

gate dielectric in order to improve the<br />

subthreshold slope, interest of Ge to<br />

increase the on current… The project has<br />

lead to 3 publications in <strong>2010</strong> (ESSDERC,<br />

JAP and APL) and some patents are<br />

pending.<br />

Fig.6: Alex ZASLAVSKY, Chair of Excellence<br />

2008


2 – NANOMAGNETISM<br />

AND SPINTRONICS<br />

By tailoring the magneto-transport<br />

properties and using nanofabrication<br />

techniques, we optimize new functions<br />

for spintronics devices based on the<br />

manipulation of domain walls by a<br />

current or the control of magnetism by<br />

an electric field. We also develop<br />

nanostructures with quantum properties,<br />

such as carbon nanotubes and graphene,<br />

magnetic molecules or semiconductor<br />

quantum dots.<br />

NANO-SPINTRONICS<br />

Conventional Spintronics devices make<br />

use of the spin of the electron to control<br />

the current flow (magneto-resistance)<br />

through Ferromagnetic/Nonmagnetic(NM)<br />

/Ferromagnetic nanostructures and to<br />

control in return the magnetization state<br />

via the spin polarized current (spin<br />

momentum transfer). Replacing the NM<br />

part by a domain wall makes it possible<br />

to encode sequences of “0” or “1 states<br />

in magnetic nanowires and to move these<br />

states at high speed along the wire by a<br />

spin polarized current. Understanding<br />

such domain wall motion in relation to<br />

structural and magnetic properties of the<br />

nanowires is one focus of the studies.<br />

Furthermore, optimization of the domain<br />

wall speed and more generally of the<br />

stability of the magnetization state is<br />

achieved for out-of plane magnetized<br />

materials. A strong perpendicular<br />

magnetic anisotropy (PMA) induced at<br />

interfaces in Fe/MgO/Fe magnetic tunnel<br />

junctions as well as at Co/graphene<br />

interfaces is thus of particular interest.<br />

Besides exploiting interfacial electronic<br />

properties, a completely novel approach<br />

to control the magnetic properties is<br />

explored by using an electric field.<br />

Finally, new systems are developed, such<br />

as a ferromagnetic system based on<br />

germanium and a new perspective for the<br />

controlled growth and properties of<br />

magnetic nanoparticles by using<br />

graphene as a template.<br />

Domain walls in nanowires<br />

RTRA Project 2009: MIDWEST<br />

Coordinator: Jan VOGEL (Institut Néel).<br />

To address important questions on the<br />

interaction of domain walls with<br />

structural defects and to elucidate the<br />

dynamics of the domain wall motion<br />

under spin transfer torque in real time,<br />

state of the art and complementary<br />

microscopy techniques of high spatial and<br />

temporal resolution are being developed<br />

in the frame of the project MIDWEST.<br />

These techniques include Polarized<br />

Electron Emission Microscopy (PEEM),<br />

Lorentz holography, Magnetic Force<br />

Microscopy (MFM) and Kerr microscopy.<br />

Important advances have been made, by<br />

establishing focused ion beam (FIB)<br />

etching techniques to prepare nanowires<br />

on SiN membranes. Holographic imaging<br />

was then used to determine the magnetic<br />

state diagram of domain walls (Fig. 1).<br />

The time resolved PEEM imaging<br />

elucidated that<br />

in FeNi/Cu/Co spin valve<br />

nanowires the spins in FeNi rotate due to<br />

the Oersted field. This needs to be taken<br />

into account for analysing the wall<br />

propagation [1].<br />

in Pt/Co/AlOx (perpendicular<br />

magnetization) the wall moves mainly<br />

during the current pulse and not (or<br />

little) after pulse termination in contrast<br />

to in-plane materials.<br />

Fig. 1: Magnetization distribution in color code<br />

of a 500 nm wide Co/Cu/FeNi wire. A domain<br />

wall is visible in the bend of the wire. The spin<br />

directions are indicated by the arrows.<br />

Furthermore, in contrast to almost all<br />

other perpendicular systems, in<br />

Pt/Co/AlOx long distance current-induced<br />

motion of domain walls was observed<br />

using Kerr microscopy with maximum<br />

wall velocities above 400 m/s. The<br />

Rashba effect [2] due to the structural<br />

inversion asymmetry is thought to be at<br />

the origin of this high wall mobility. The<br />

different microscopy techniques will help<br />

to elucidate the underlying mechanism of<br />

these effects.<br />

To better control the structural properties<br />

and to relate the pinning of domain walls<br />

to structural defects, epitaxial systems<br />

are being developed and studied.<br />

A particular system is FePt whose strong<br />

perpendicular magnetic anisotropy results<br />

in narrow walls. This system is well suited<br />

to study the stochastic effects linked to<br />

FURTHER READING:<br />

CONTACTS<br />

Ursula EBELS<br />

ursula.ebels@cea.fr<br />

Tel: +33 4 38 78 53 44<br />

Joël CIBERT<br />

joel.cibert@grenoble.cnrs.fr<br />

Tel: +33 4 76 88 11 93<br />

7<br />

SCIENTIFIC REPORT<br />

[1] Phys. Rev. B 83, 020406 (2011)<br />

Direct observation of Oersted-field-induced<br />

magnetisation dynamics in magnetic<br />

nanowires<br />

[2] Nature Mater. 9, 230 (<strong>2010</strong>)<br />

Current-Induced Spin-Orbit Torque in a<br />

Uniformly Magnetized Ferromagnetic Layer<br />

with Rashba Inversion Asymmetry.


SCIENTIFIC REPORT<br />

FURTHER READING:<br />

[3] Phys. Rev. B 81, 134408 (<strong>2010</strong>)<br />

Effect of crystalline defects on domain wall<br />

motion under field and current in<br />

nanowires with perpendicular<br />

magnetization<br />

[4] New J. Phys. 12, 103040 (<strong>2010</strong>)<br />

Ultrathin epitaxial cobalt films on graphene<br />

for spintronic investigations and applications<br />

[5] Appl. Phys. Lett. 96, 262509 (<strong>2010</strong>)<br />

Effect of structural relaxation and oxidation<br />

conditions on interlayer exchange coupling<br />

in Fe|MgO|Fe tunnel junctions<br />

[6] Phys. Rev. B 81, 220407 (<strong>2010</strong>)<br />

Oscillatory interlayer exchange coupling in<br />

MgO tunnel junctions with perpendicular<br />

magnetic anisotropy<br />

[7] Science 315 349 (2007)<br />

Electric Field-Induced Modification of<br />

Magnetism in Thin-Film Ferromagnets<br />

8<br />

the depinning of the domain wall from a<br />

single pinning centre using spin polarized<br />

current injection [3]. Combining<br />

structural and magnetic contrast in<br />

Lorentz imaging it was possible to show a<br />

clear correlation between a micromacle<br />

and the domain wall pinning in a FePt<br />

nanowire.<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

Perpendicular Anisotropy<br />

and exchange interactions<br />

Chair of Excellence 2007: Mairbek<br />

CHSHIEV<br />

PhD student: Hongxin YANG<br />

(INAC/SPINTEC).<br />

Perpendicular anisotropy materials play a<br />

more and more important role for the<br />

design of spintronics devices. Here,<br />

theoretical electronic band structure<br />

calculations provide an important mean<br />

to study the effect and the role of the<br />

structural properties on the electronic<br />

and magnetic properties and thus a guide<br />

for the development of spintronics<br />

devices. Confirming recent experiments<br />

relevant to strong perpendicular<br />

magnetic anisotropy (PMA), it is shown<br />

by first principles calculation that the PMA<br />

in Fe/MgO magnetic tunnel junctions<br />

(MTJ) can be as large as 3 erg/cm 2 . The<br />

nature of the PMA has been clarified and<br />

is attributed to the hybridization between<br />

Fe and oxygen orbitals via spin orbit<br />

interaction (SOI). Additional oxygen or<br />

oxygen vacancies at the interface,<br />

destroys the hybridization between Fe<br />

and oxygen and leads to a reduction of<br />

the PMA. Hence good crystalline quality<br />

of the Fe/MgO interface is of importance<br />

to obtain a large PMA.<br />

Similarly, in order to explain recent<br />

experiments realized at Institut Néel, it<br />

has been confirmed by calculation that a<br />

strong PMA is induced at Co/graphene<br />

interfaces [4].<br />

As a further result of the band structure<br />

calculations it has been revealed that<br />

structural relaxation influences the<br />

interlayer exchange coupling (IEC)<br />

between the Fe layers in Fe/MgO/Fe<br />

tunnel barriers. In particular oxygen<br />

vacancies increase the antiferromagnetic<br />

coupling strength, while oxygen rich<br />

interfaces decrease the coupling or<br />

induce a ferromagnetic interaction [5].<br />

Finally, oscillations of the IEC as a<br />

function of the ferromagnetic layer<br />

thickness in magnetic tunnel junctions of<br />

PMA ferromagnetic layers has been<br />

observed experimentally and explained in<br />

the frame of a free electron model [6].<br />

An experimental study (“fil de l’eau” PhD<br />

student 2007: Marcio MEIDEROS-<br />

SOARES) of the exchange coupling<br />

between antiferromagnetic PtMn and<br />

chemically ordered ferromagnetic FePt<br />

with strong PMA has been performed to<br />

better understand the exchange bias<br />

mechanism. XMCD measurements<br />

(ID08/ESRF beamline) at the Mn and Fe<br />

L 2 , L 3 -edges show that the major part of<br />

the Mn spins reverse along with the Fe<br />

spins and thus only 10% contribute to<br />

the exchange-bias shift. This outcome<br />

shows that interfacial Mn spins are<br />

strongly coupled to the ferromagnetic<br />

FePt layer and less coupled to the spins<br />

inside the antiferromagnetic layer.<br />

Electric field control of<br />

anisotropy<br />

RTRA Project 2007: POMME<br />

Coordinator: Dominique GIVORD (Institut<br />

Néel).<br />

As a new approach to control the intrinsic<br />

magnetic properties in metals, a large<br />

electric field is used to appreciably<br />

change the electron density at surfaces<br />

or interfaces in ultrathin ferromagnetic<br />

metal films. This has been demonstrated<br />

in 2007 by the Institut Néel for FePt and<br />

FePd immersed in an electrolyte where<br />

the magneto-crystalline anisotropy can<br />

be reversibly modified by an applied<br />

electric field [7]. The aim of the current<br />

studies is to replace the electrolyte with<br />

an insulating material to charge the<br />

ferromagnetic surface (Fig. 2). The<br />

challenge is to develop oxide overlayers<br />

of high breakdown voltage.<br />

Fig. 2: FEM simulation of the electric field and<br />

surface charge induced on a nanocontact. The<br />

charge distribution is maximum at the apex of<br />

the nanocontact<br />

Al 2 0 3 and HfO 2 barriers have been<br />

prepared by Atomic Layer Deposition<br />

(ALD) that permits to grow extremely<br />

homogeneous and compact layers. The<br />

mean voltage breakdown shows that the<br />

goal of 10 8 V/m has been reached<br />

allowing the application of strong electric<br />

fields to the surface. The next step will be<br />

to characterize the effect on a 2 nm FePt<br />

thin film under electric fields of more


than 10 8 V/m and to compare this to the<br />

original work in an electrolyte [7].<br />

As a first direct observation of the E-field<br />

effect across an oxide barrier, it was<br />

shown that the coercivity in cobalt<br />

nanostructures, see Figure 2, is<br />

influenced by strong electrical fields.<br />

In order to study in more details the<br />

charging effect at the metal surfaces a<br />

new original experimental tool has been<br />

developed using X-ray reflectometry at<br />

the ESRF. First experiments on Pt films in<br />

an electrolyte reveal the interfacial<br />

charging effect. The depth of the<br />

charging effect, of the order of 1 nm, is<br />

larger than the depth (around 0.4 nm at<br />

most) usually considered for metallic<br />

systems. In addition an oscillation in the<br />

electron density around z=0 is found.<br />

These two effects may tentatively be<br />

attributed to interfacial roughness.<br />

Graphene as a template for<br />

magnetic structures<br />

“Fil de l’eau” PhD student 2009: Chi VO<br />

VAN<br />

Coordinator: Olivier FRUCHART (Institut<br />

Néel).<br />

The high structural quality of graphene<br />

will provide an ideal new type of template<br />

to fabricate self-organised magnetic dots.<br />

Furthermore, the structural properties of<br />

graphene are expected to allow adjusting<br />

the nanodot structural parameters<br />

(nanodot size, symmetry and pitch of the<br />

lattice) and addressing novel magnetic<br />

properties (magnetic collective states by<br />

tuning the magnetic interaction between<br />

dots through the system's geometry).<br />

Here the first challenging steps have<br />

been realized, which are to prepare a<br />

suitable substrate, chosen to be Ir (111)<br />

for the growth of graphene. The first<br />

Ir/Graphene films (Fig. 3) show good<br />

structural properties and permit to<br />

address now the self organised growth of<br />

magnetic nanoparticles using PLD.<br />

As an intermediate study Co films grown<br />

on graphene reveal a strong<br />

perpendicular anisotropy [4].<br />

Spintronics and germanium<br />

RTRA Project 2008: IMAGE<br />

Coordinator: Matthieu JAMET<br />

(INAC/SP2M).<br />

Making nonmagnetic semiconductors<br />

ferromagnetic above room temperature<br />

would allow the development of an allsemiconductor<br />

spintronics. The model<br />

system up to now is the diluted magnetic<br />

semiconductor (Ga,Mn)As, with a Curie<br />

temperature which remains too low<br />

(


SCIENTIFIC REPORT<br />

Magnetic Microsystems<br />

“Fil de l’eau” PhD student 2007: Mikhail<br />

KUSTOV<br />

Coordinators: Nora DEMPSEY (Institut<br />

Néel), Orphée CUGAT et Gilbert REYNE<br />

(G2ELab)<br />

Due to the scalability of magnetic forces<br />

upon reducing size, they are successfully<br />

used in microsystems. A close<br />

collaboration covering materials sciences<br />

and electrical engineering, and potential<br />

users (such as biologists) allowed us to<br />

optimize arrays of micro-patterned hard<br />

magnets (NdFeB). The stray fields<br />

produced are fully characterized thanks<br />

to the development of new tools such as<br />

3D measurements using a singlecomponent<br />

Hall probe and quantitative<br />

magneto-optic imaging using a uniaxial<br />

magneto-optic indicator film in a bias<br />

field [9]. New micro-systems have been<br />

demonstrated, such as the "flying carpet"<br />

shown in Fig.5, or micromagnet arrays<br />

for the manipulation of biological objects.<br />

QUANTUM<br />

SPINTRONICS<br />

Downscaling spintronics devices one<br />

reaches the limit of single magnetic<br />

molecules and atomic spins in magnetic<br />

quantum dots. A major challenge here is<br />

to read and manipulate the spin states<br />

and to perform basic quantum<br />

operations. On the one hand, Carbon<br />

nanotubes (CNTs) are very good<br />

candidates to study these effects due to<br />

their high sensitivity to small changes in<br />

the electrostatic environment. On the<br />

other hand, inserting a single Mn atom<br />

into a quantum dot provides the ultimate<br />

tool to manipulate individual spin states.<br />

Finally, for developing beyond “CMOS”<br />

nanoelectronics, graphene as a new<br />

material has emerged recently. The<br />

conditions under which the magnetic<br />

order can be obtained is explored<br />

theoretically by atomic scale<br />

‘nanopatterning’.<br />

Magnetic order in graphene<br />

Chair of Excellence 2007: Mairbek<br />

CHSHIEV<br />

PhD student: Hongxin YANG<br />

(INAC/SPINTEC).<br />

FURTHER READING:<br />

[9] J. Appl. Phys. 108, 063914 (<strong>2010</strong>)<br />

Magnetic characterization of<br />

micropatterned Nd-Fe-B hard magnetic films<br />

using scanning Hall probe microscopy<br />

10<br />

Fig. 5: The "flying carpet": the design of the<br />

assembly of micromagnets ensures stability in<br />

both directions and can replace complex<br />

systems involving superconductors and<br />

associated cryogenics.<br />

Spin transfer torque in<br />

nanoparticles<br />

“Fil de l’eau” PhD student 2008: Irina<br />

GROZA<br />

Coordinator: Alain MARTY (INAC/SP2M).<br />

Aggregates of magnetic Co/CoO coreshell<br />

nanoparticles (5 nm diameter)<br />

provide a test system to study the effect<br />

of the spin polarized current on the<br />

antiferromagnetic exchange bias from the<br />

CoO to the Co. As a first step a few tens<br />

of nm thick films of nanoparticles were<br />

prepared and the correlation between the<br />

particles was established using the<br />

magneto-resistance effect. At room<br />

temperature, the CoO is unblocked and<br />

the correlation comes from the dipolar<br />

interaction between particles.<br />

Huge values of the charge mobility in<br />

addition to a weak intrinsic spin-orbit<br />

coupling in carbon-based sp 2 structures<br />

could potentially allow for very large<br />

(micron long) spin diffusion lengths.<br />

These features, together with the other<br />

”semi-conductor like” properties of<br />

graphene, make graphene-based<br />

spintronic devices highly promising and<br />

have triggered a quest for controlling<br />

spin injection in graphene. Many routes<br />

have been attempted to induce<br />

magnetism by proximity effect or inject<br />

spins from magnetic electrodes. Here we<br />

graphene nanomeshes investigate by<br />

first-principles calculations to address the<br />

important question of whether and under<br />

what conditions graphene can exhibit<br />

correlated (ordered) magnetic properties.<br />

By removing an equal number of A and B<br />

sites of the graphene bipartite lattice, a<br />

regular network of atomic scale vacancies<br />

is obtained. Such a nanomesh (Fig. 6)<br />

made mostly of zigzag (armchair) type<br />

edges exhibits antiferromagnetic (spin<br />

unpolarized) states. In contrast, in a<br />

situation of sublattice symmetry<br />

breaking, stable ferrimagnetic states are<br />

obtained. For a hydrogen-passivated<br />

nanomesh, the ground state is found to<br />

strongly depend on the vacancies shape<br />

and size. The obtained net magnetic<br />

moments increase with the difference<br />

between the number of removed A and B


sites. The calculations indicate that using<br />

highly asymmetric vacancies, one may<br />

reach high exchange splitting values<br />

(0.5~eV) and obtain a promising<br />

candidate material for room temperature<br />

carbon based spintronics materials.<br />

Fig. 6: H-passivated Graphene nanomesh with<br />

different triangular shapes. The corresponding<br />

net magnetic moments for each structure are<br />

also indicated.<br />

Carbon nanotubes for single<br />

spin detection<br />

“Fil de l’eau” PhD student 2007:<br />

Subhadeep DATTA<br />

“Fil de l’eau” PhD student 2009: Marc<br />

GANZHORN<br />

Coordinator: Wolfgang WERNSDORFER<br />

(Institut Néel).<br />

properties of carbon nanotubes (Fig. 8).<br />

The mechanical oscillation frequency of<br />

the CNT changes as a function of the spin<br />

state of the SMM. This change in<br />

frequency is visible in the electron<br />

conduction where the Coulomb peak<br />

voltage decreases at the resonance. First<br />

devices have been fabricated by chemical<br />

vapour deposition. The detection scheme<br />

has been validated for empty CNT and<br />

the longitudinal bending modes have<br />

been characterized. The next step will be<br />

to apply an external magnetic field and to<br />

define an adequate method for depositing<br />

SMM inside the CNT.<br />

SCIENTIFIC REPORT<br />

When encapsulating a magnetic Fe or Co<br />

nanoparticle (


SCIENTIFIC REPORT<br />

FURTHER READING:<br />

[10] Phys. Rev. B 81, 245315 (<strong>2010</strong>).<br />

Optical initialization, readout, and dynamics<br />

of a Mn spin in a quantum dot<br />

Semiconductor<br />

quantum<br />

dots<br />

Chair of Excellence 2007: Joaquin<br />

FERNANDEZ-ROSSIER<br />

Coordinator: Henri MARIETTE (Institut<br />

Néel).<br />

Electron spins confined in quantum dots<br />

(QDs) are one of the proposed physical<br />

realizations for a qubit. The most studied<br />

system is a QD defined by gating a 2D<br />

electron gas in GaAs. Two original<br />

systems based on self-assembled QDs<br />

are studied within programs of the<br />

Nanosciences Foundation: a single<br />

magnetic impurity in a QD, and Si-Ge<br />

QDs (see the Quantum Electronics<br />

report).<br />

Thanks to the strong spin-carrier<br />

coupling, one can exploit the absorption<br />

of an individual II-VI QD to optically<br />

initialize the spin state of a single<br />

magnetic impurity contained in the QD,<br />

and to optically monitor its dynamics.<br />

A new set-up involving resonant<br />

excitation to achieve optical pumping of<br />

the single quantum dot, with or without a<br />

trapped carrier, allowed us to study the<br />

dynamics of an isolated Mn spin, and the<br />

effect of the Mn spin on the electron-hole<br />

pair dynamics. For instance, when the Mn<br />

spin is embedded in the strongly strained<br />

QD, we observe a long spin lifetime in the<br />

dark, and a short one in the presence of<br />

an exciton, so that an efficient optical<br />

pumping is achieved. Within the Chair of<br />

Excellence, the full dynamics of the<br />

coupled system has been modelled [10].<br />

In a second step, the model is further<br />

extended to encompass coherent<br />

manipulation through optical Stark effect<br />

or microwaves. This is a much more<br />

complex experiment for which<br />

preliminary results have been obtained<br />

(Fig. 9).<br />

Dissemination and Training<br />

A user list has been established to<br />

coordinate the conferences and seminars<br />

held at the Institut Néel (<strong>CNRS</strong>),<br />

Nanomagnétisme Laboratory (CEA/INAC)<br />

and SPINTEC Laboratory (UMR<br />

CEA/<strong>CNRS</strong>/UJF & Grenoble INP).<br />

A two day colloquium “Nanomagnetism<br />

and Spintronics” has been organized on<br />

November, 24 th and 25 th <strong>2010</strong> with the<br />

aim to present an overview on current<br />

research in Rhône-Alpes and in France, in<br />

Quebec and Canada, along with a<br />

broader outline of cutting-edge research<br />

on-going in other European research<br />

centres.<br />

Thesis Prize Laureate<br />

Dimitri HOUSSAMEDDINE, one of the two<br />

laureates of the <strong>2010</strong> Nanosciences<br />

Foundation Thesis Prize, has deposited 3<br />

patents and published 4 publications as<br />

main author (in addition to 6 other<br />

publications) during his thesis.<br />

On December 2, <strong>2010</strong>, in the frame of<br />

the Prize Award Ceremony, his talk<br />

entitled “Magnetization dynamics in spin<br />

torque microwave nano-oscillators” has<br />

illustrated the excellence of his results.<br />

Fig. 9: Spin dependent optically dressed states<br />

in a Mn-doped QD: TEM cross section of a QD<br />

(left) and anticrossing due to the optical Stark<br />

effect (right).<br />

12


3 – NANOPHOTONICS<br />

The optical properties of matter can be<br />

tailored to a very large extent by playing<br />

with the quantum confinement of<br />

electrons or photon confinement on the<br />

wavelength scale. Besides new physics,<br />

researchers belonging to the Foundation’s<br />

network pave the way toward new<br />

devices and applications through the<br />

development of original nano/micro<br />

structures.<br />

QUANTUM DOTS<br />

AND WIRES<br />

Since the early days of the Nanosciences<br />

Foundation, supporting the development<br />

of research on semiconductor nanowires<br />

in Grenoble has been seen as a priority.<br />

Nanowires offer indeed an unprecedented<br />

flexibility for building novel<br />

semiconductor nanostructures and open<br />

large-scale application prospects in<br />

various fields of photonics, including<br />

solid-state lighting and photovoltaics.<br />

Catalyst-free growth of GaN<br />

nanowire heterostructures<br />

“Fil de l’eau” PhD student 2007: Xiaojun<br />

CHEN<br />

Coordinator: Joel EYMERY (INAC/SP2M)<br />

As of 2008, it was already known that<br />

GaN nanowires can be formed by vapor<br />

phase epitaxy from organo-metallic<br />

precursors (MOVPE), without using<br />

catalysts that may degrade the electronic<br />

and optical properties of the material.<br />

This PhD work has considerably improved<br />

the understanding of elementary growth<br />

mechanisms entering into play and the<br />

mastering of the synthesis of nanowire<br />

heterostructures. Noticeably, the<br />

formation of either pyramids or<br />

nanowires on various substrates has<br />

been unambiguously related to the<br />

polarity of the GaN nucleation layer [1].<br />

The presence of silane in the gas phase<br />

has been shown to favour vertical growth<br />

through the formation of a protective<br />

silicon nitride layer on the sidewalls<br />

(patent pending). Also, an optimisation of<br />

the substrate preparation and growth<br />

sequence has led to a strong<br />

improvement of the homogeneity of<br />

dense nanowire arrays grown on<br />

patterned substrates, which is a key<br />

issue in view of an application to lightemitting<br />

diodes.<br />

This mastering of growth processes<br />

enables the synthesis of original and<br />

functional heterostructures, such as<br />

quantum dots or radial quantum wells.<br />

Nano-LEDs and UV photodetectors based<br />

on a single wire have been demonstrated<br />

in collaboration with IEF (Orsay).<br />

Fig. 1: View of a blue light-emitting diode<br />

exploiting a single nanowire with radial<br />

GaN/InGaN multiquantum well structure.<br />

Ultrabright quantum dots in<br />

II-VI nanowires<br />

“Fil de l’eau” PhD student 2009: Miryam<br />

ELOUNEG-JAMROZ<br />

Coordinators: Serge TATARENKO (Institut<br />

Néel) and Edith BELLET-AMALRIC<br />

(INAC/SP2M)<br />

This work focuses on the development<br />

and study of quantum dots in nanowires<br />

made of II-VI semiconductors<br />

(ZnSe/CdSe).<br />

Following the pionneering experiments<br />

conducted by the team in 2007, the<br />

growth relies on molecular beam epitaxy,<br />

using gold droplets as catalysts. The<br />

homoepitaxy on ZnSe substrates<br />

(instead of GaAs) has been developped.<br />

Arrays of vertical nanowires with<br />

diameters in the 10-20nm diameter<br />

range have been grown on both (100)<br />

and (111)B surfaces.<br />

A major reduction of the size dispersion<br />

of the nanowires resulted from an<br />

optimisation of the dewetting of the gold<br />

layer, which is used to prepare the gold<br />

catalysts.<br />

Overall, a strong improvement of the<br />

quality of such CdSe/ZnSe QDs has been<br />

obtained, as highlighted by the first<br />

observation of single photon emission at<br />

300K.<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

FURTHER READING<br />

CONTACTS<br />

Jean-Michel GERARD<br />

jean-michel.gerard@cea.fr<br />

Tel: +33 4 38 78 31 34<br />

Jean-Emmanuel BROQUIN<br />

broquin@minatec.inpg.fr<br />

Tel: +33 4 56 52 95 29<br />

SCIENTIFIC REPORT<br />

[1] Appl. Phys. Lett 97, 151909 (<strong>2010</strong>)<br />

Homoepitaxial growth of catalyst-free<br />

GaN wires on N-polar substrates<br />

13


SCIENTIFIC REPORT<br />

Exploring new concepts for<br />

photovoltaics with II-VI<br />

heterostructures<br />

Chair of Excellence 2009: Yong ZHANG<br />

Coordinator: Henri MARIETTE (Institut<br />

Néel)<br />

Thanks to their appropriate range of<br />

energy gaps, II-VI materials are already<br />

intensively used in solar cells.<br />

This novel project explores new concepts<br />

which are likely to improve the efficiency<br />

of II-VI solar cells and/or reduce their<br />

cost. Among the most promising ones<br />

figure type II band configurations, which<br />

favour the separation of photogenerated<br />

electron – hole pairs, and the nanowire<br />

geometry, which can be used to<br />

enhance light absorption and improve<br />

current collection.<br />

Promising first results have already been<br />

obtained along both lines. Noticeably,<br />

test planar CdSe/ZnTe heterostructures,<br />

grown by molecular beam epitaxy,<br />

display a three orders of magnitude<br />

enhancement of the lifetime of<br />

photogenerated carriers thanks to their<br />

type II band configuration.<br />

Novel type II core-shell nanowire<br />

heterostructures have been synthesized<br />

using either molecular beam epitaxy or<br />

“low cost” techniques to coat ZnO<br />

nanowires by a thin layer of CdSe or<br />

CdTe (see Figure 2).<br />

OPTICAL<br />

MICROCAVITIES<br />

High Q silica microtoroids<br />

and microspheres<br />

“New comers” Project 2007: Julien<br />

CLAUDON (INAC/SP2M)<br />

PhD student: Nitin Singh MALIK<br />

Among dielectric microcavities, silica<br />

microspheres and microtoroids display<br />

remarkably high quality factors. This<br />

project aims at exploring the physics of<br />

hybrid systems formed by a microtoroid<br />

coupled to one or few self-assembled<br />

QDs.<br />

Within this project, high Q (Q>10 7 )<br />

microtoroids and microspheres have been<br />

fabricated on a Si chip, through a CO 2<br />

laser-assisted melting of the silica. The<br />

assembly of microtoroids to tiny GaAs<br />

mesa structures containing InAs QDs has<br />

been realized for the first time in the<br />

RTRA dual beam FIB system, following a<br />

cut, pick and place procedure (see Figure<br />

3).<br />

µ-toroid<br />

Mesa<br />

Fig. 3: Scanning electron micrograph of a silica<br />

microtoroid coupled to InAs self-assembled<br />

QDs in a GaAs mesa structure.<br />

Fig. 2: Scanning electron micrograph of an<br />

array of ZnO nanowires after conformal<br />

coating by CdTe (typical diameter: 200 nm)<br />

The modes of the coupled system show<br />

up on the emission spectra, with Q’s in<br />

the few 10 3 range, in agreement with<br />

calculated values for a mesa-toroid<br />

system in contact. Modelling shows that<br />

the introduction of a small air gap should<br />

restore a higher quality factor (Q>10 5 ),<br />

enabling a laser operation and possibly<br />

the vacuum Rabi-flopping of a single QD.<br />

14


Cavity-feeding :<br />

decoherence as a ressource<br />

for<br />

quantum<br />

optoelectronics<br />

Chair of Excellence 2008: Marcelo<br />

FRANCA SANTOS<br />

Coordinator: Alexia AUFFEVES (Institut<br />

Néel)<br />

The general goal of this project is to<br />

study how the results of Cavity Quantum<br />

Electrodynamics (CQED), which are well<br />

known for isolated atoms, transform<br />

when these emitters are replaced with<br />

solid-state artificial atoms such as<br />

quantum dots.<br />

Among other striking results, recent<br />

experiments have revealed that an<br />

emitter that is detuned with respect to a<br />

resonant cavity mode can nevertheless<br />

emit photons at the mode frequency. This<br />

important basic effect, known as “cavityfeeding”,<br />

can be explained by<br />

perturbations of the emitter by its solidstate<br />

environment, such as Coulomb<br />

interactions with a fluctuating charge<br />

environment or the coupling to the<br />

phonon bath.<br />

The influence of pure dephasing was<br />

studied [2] as well as the coupling to<br />

acoustic phonons on the dynamics of a<br />

coupled QD-cavity system. A generalized<br />

expression has been introduced for the<br />

Purcell factor, to describe the case of<br />

spectrally broad emitters. While<br />

dephasing decreases the spontaneous<br />

emission rate of an emitter-cavity system<br />

in resonance, it can increase it for<br />

spectrally detuned systems. It can also<br />

be used to induce lasing in systems<br />

containing one or few detuned QDs.<br />

Decoherence, which is usually considered<br />

a drawback, can be seen as a novel<br />

fundamental resource for solid-state<br />

CQED, offering appealing perspectives in<br />

the context of quantum optoelectronic<br />

devices such as single-photon sources<br />

and nanolasers.<br />

PHOTONIC WIRES FOR<br />

QUANTUM OPTICS<br />

Until recently, most quantum optics<br />

experiments aiming at a control of the<br />

spontaneous emission of solid-state<br />

emitters have been either performed in<br />

optical microcavities or photonic crystals.<br />

Although all major basic CQED effects<br />

have now been observed (vacuum Rabi<br />

flopping and related non-linear properties<br />

at the single photon level, enhancement<br />

and inhibition of spontaneous emission),<br />

these structures present significant<br />

limitations, such as the relatively poor<br />

control over the far-field radiation pattern<br />

of high Q cavities or 3D photonic crystals.<br />

Several pioneering experiments<br />

performed in Grenoble have recently<br />

revealed the strong interest of photonic<br />

wires (PWs) as a novel template for<br />

quantum optics.<br />

Spontaneous emission<br />

control of QDs in photonic<br />

wires<br />

“New comers” Project 2007: Julien<br />

CLAUDON (INAC/SP2M)<br />

Photonic wires (PWs) are onedimensional<br />

single mode dielectric<br />

waveguides characterized by a large<br />

refraction index contrast between the<br />

core and cladding materials. As such,<br />

they ensure a strong lateral confinement<br />

of the guided mode, as well as an<br />

efficient dielectric screening of nonguided<br />

modes. Thanks to this<br />

combination of effects, optical properties<br />

of an embedded emitter with dipole<br />

normal to the PW axis (such as a QD)<br />

are predominantly governed by its<br />

coupling to the guided mode of the PW.<br />

Thereby, this system, known as a “onedimensional<br />

atom”, has unique optical<br />

properties and application prospects in<br />

the field of quantum optoelectronics.<br />

FURTHER READING<br />

SCIENTIFIC REPORT<br />

[2] Phys. Rev. B 81, 245419 (<strong>2010</strong>)<br />

Controlling the dynamics of a coupled atomcavity<br />

system by pure dephasing.<br />

[3] Phys. Rev. Lett. 106, 103601 (2011)<br />

Inhibitiion, enhancement and control of<br />

spontaneous emission in photonic<br />

nanowires<br />

Experiments have been performed on<br />

etched GaAs PWs with embedded InAs<br />

QDs, prepared within the PTA facility.<br />

Among a rich set of results, one can<br />

emphasize:<br />

The strong inhibition (x0.05) of the<br />

QD spontaneous emission rate in very<br />

thin PWs, which confirms the efficient<br />

screening of non-guided modes [3];<br />

The control of the polarization of the<br />

photons emitted by QDs, through their<br />

embedding in anisotropic PWs;<br />

15


SCIENTIFIC REPORT<br />

FURTHER READING<br />

[4] Nature Photon. 4, 174 (<strong>2010</strong>) A highly<br />

efficient single photon source based on a<br />

quantum dot in a photonic nanowire<br />

The development of a single-photon<br />

source that exploits the funnelling of QD<br />

spontaneous emission into the guided<br />

mode of the PW; this source exhibits for<br />

the first time a record high photon<br />

collection efficiency and a very pure<br />

single photon emission [4].<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

These results open the way to the<br />

development of novel devices that will<br />

exploit the broadband spontaneous<br />

emission control provided by PWs, such<br />

as spectrally tuneable single-photon<br />

sources or ultrabright sources of<br />

entangled photon pairs. From a more<br />

basic perspective, one-dimensional atoms<br />

have also attractive non-linear properties<br />

at the single photon level, which are<br />

presently investigated theoretically and<br />

experimentally within the Chair of<br />

Excellence of Marcelo FRANCA SANTOS.<br />

1D exciton-polaritons in<br />

ZnO wires<br />

“New comers” Project 2008: Maxime<br />

RICHARD (Institut Néel)<br />

This project investigates the non linear<br />

properties (superradiance, radiative<br />

coupling, Bose stimulation) of ensembles<br />

of emitters that are embedded in PWs, so<br />

as to increase their mutual coupling via<br />

the electromagnetic field. The study is<br />

focused on ZnO and GaN nanowires in<br />

order to exploit the large binding energy<br />

and oscillator strength of excitons in<br />

these materials.<br />

A new setup providing spatial, angular<br />

and time-resolution (~6 ps) in the near-<br />

UV range has been assembled.<br />

For single ZnO PWs with diameter around<br />

0.5 µm, high Q (~1000) resonant modes<br />

similar to whispering gallery modes are<br />

observed. As shown in figure 4, these<br />

modes interact strongly interact with bulk<br />

excitons to form one dimensional excitonpolaritons<br />

at room temperature, with a<br />

normal mode splitting exceeding 200<br />

meV.<br />

With such a splitting, which is much<br />

larger than LO phonon energy, a strong<br />

quenching of the polariton-phonon<br />

interaction is achieved, even at 300K and<br />

for a large excitonic fraction [5]. Thus, a<br />

record figure of merit of 50 for the ratio<br />

of the Rabi splitting to the polariton full<br />

width at half maximum is achieved as a<br />

consequence of negligible thermal<br />

contribution to dephasing.<br />

This system looks particularly attractive<br />

for the observation of a Bose-Einstein<br />

condensation of polaritons in a 1D<br />

system. In preliminary experiments, a<br />

strong non-linear increase of the<br />

population of some polariton states has<br />

already been observed for increasing<br />

optical excitation. The evidence of the<br />

Bose-Einstein condensation of polaritons<br />

at 300K in this system would constitute a<br />

major scientific achievement, opening<br />

attractive application opportunities in the<br />

field of coherent semiconductor light<br />

sources in the UV.<br />

[5] Phys. Rev. B 83, 041302(R) (2011) Onedimensional<br />

ZnO exciton-polaritons with<br />

negligible thermal broadening at room<br />

temperature.<br />

Fig. 4 Measured luminescence signal as a function of angle and energy for a ZnO PW. Comparison<br />

to the dispersion of uncoupled modes (dashed lines) reveals their strong coupling with ZnO<br />

excitons<br />

16


4 - MOLECULAR<br />

ELECTRONICS<br />

Molecular electronics, including organic<br />

electronics, is an emerging topic in<br />

nanosciences and nanotechnologies<br />

holding great promise to extend Moore's<br />

Law beyond the limits of conventional<br />

silicon integrated circuits. The main<br />

objective is to use molecular objects as<br />

active components in devices such as<br />

transistors, diodes or data storage media<br />

as well as offering new ways for energy<br />

harvesting.<br />

Current efforts in molecular electronics<br />

follow a bottom up approach, i.e. partly<br />

rely on self-assembly to integrate the<br />

molecule within the circuits. More<br />

generally it involves a series of steps<br />

such as:<br />

the design and preparation of<br />

molecules, molecular arrays or networks<br />

with unique and specific electronic,<br />

structural or photochemical properties,<br />

their integration into solid state<br />

devices,<br />

the measurements, control and<br />

exploitation of their electron transport<br />

properties.<br />

Fig. 1: Molecular Electronics concept: using<br />

molecules and their specific properties to<br />

develop new functionality for electronics<br />

The most important issues that need to<br />

be addressed in this highly competitive<br />

area are now:<br />

How to find reliable ways to<br />

predict and understand the electron<br />

transport properties of molecular objects<br />

as well as their use in electronic device<br />

performing a specific function (diode,<br />

transistor, memory…)?<br />

How to manipulate single<br />

molecular objects and incorporate them<br />

into devices?<br />

How to organize functionalized<br />

molecules in solid devices?<br />

Both the grafting techniques and<br />

the nature of the substrate are key<br />

parameters determining the application<br />

of the device.<br />

How to go from the nano-scale<br />

level to the macro-scale one, from an<br />

isolated single-molecule device to an<br />

integrated electronic circuit?<br />

How to connect the<br />

nanoscale/molecular level (for example a<br />

single molecule device) to the<br />

macroscopic world?<br />

Molecular electronics is based on the<br />

exploitation of responses and transport<br />

properties of matter at the molecular<br />

level. Selective self-organization of<br />

molecules on solid substrates requires<br />

the involvement of a large palette of<br />

reversible and non-covalent interactions<br />

between molecules.<br />

Therefore, interdisciplinarity clearly<br />

appears as the key factor of the actual<br />

development of molecular electronics. Its<br />

frontiers are largely beyond those of<br />

nanoelectronics since it involves<br />

mesoscopic physics (theory and<br />

experimental works in electronic system<br />

of low dimensionality), nanofabrication<br />

(ultimate lithography…), as well as<br />

numerous areas of chemistry (organic<br />

synthesis, supramolecular chemistry,<br />

chemical functionalization of surfaces,<br />

electrochemistry, photochemistry...).<br />

Grenoble has a fast growing expertise in<br />

the main aspects of molecular<br />

electronics, from fundamental research<br />

up to industrial activities. The following<br />

topics are addressed in the Foundation’s<br />

network of laboratories:<br />

Design, synthesis and<br />

characterization of specific molecular<br />

assemblies with redox and photochemical<br />

properties<br />

Study of molecular machines and<br />

motors<br />

Functionalization of surfaces and<br />

metal-molecule coupling<br />

Bottom-up approach for the<br />

conception of molecular wires or<br />

assemblies for photo-electronics<br />

Functionalization of nanoparticles<br />

and carbon nanotubes<br />

Conductive polymers<br />

Molecular memories and<br />

molecular magnetism<br />

Theoretical calculations on<br />

molecular junctions using ab initio<br />

methods<br />

Molecular junctions (fabrication,<br />

integration, and electrical measurements)<br />

Self-organization and self<br />

assembling of carbon nanotube based<br />

transistors<br />

Molecular switches and organic<br />

transistors<br />

Integration of carbon nanotubes<br />

for logical gates or interconnections<br />

Photosensitive molecules for solar<br />

cell applications<br />

CONTACTS<br />

Vincent BOUCHIAT<br />

Vincent.bouchiat@grenoble.cnrs.fr<br />

Tel: +33 4 38 78 39 86<br />

Eric SAINT AMAN<br />

Eric.aint-aman@ujf-grenoble.fr<br />

Tel: +33 4 76 51 48 75<br />

17<br />

SCIENTIFIC REPORT


Several shared research programs based<br />

on interdisciplinarity and combined<br />

expertise exist in Grenoble. Since 2008,<br />

the Foundation finances one of them: the<br />

2008 RTRA project called “POLYSUPRA”.<br />

SCIENTIFIC REPORT<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

Among important results that have been<br />

obtained recently within the Foundation’s<br />

network of laboratories, one can mention<br />

two examples.<br />

The mechanism of photovoltaic<br />

(PV) conversion inside an organic solar<br />

cell observed at the nanoscale using<br />

Atomic Force Microscopy.<br />

This challenging result obtained by a<br />

team from INAC/SPrAM/ in collaboration<br />

with chemists from XLIM Limoges was an<br />

important achievement that shaded light<br />

on the complex physical process that<br />

takes place within new generation of<br />

organic photocell, paving the way to the<br />

increase of the efficiency of solar energy<br />

harvesting<br />

Fig. 3: Up: Sketch of principle of the<br />

superconducting quantum dot involving a<br />

fullerene molecular transistor. Down:<br />

Differential resistance dV / dI of a junction as<br />

a function of gate voltage and bias current. For<br />

currents below a threshold given by the two<br />

crests above, the resistance drops strongly.<br />

The extension of the superconducting state<br />

(dark zone) can be tuned by the gate voltage.<br />

Nicolas ROCH, one of the two laureates of<br />

the <strong>2010</strong> Nanosciences Foundation Thesis<br />

Prize, was part of this team. On<br />

December 2, <strong>2010</strong>, in the frame of the<br />

Prize Award Ceremony, his talk entitled<br />

“Single molecule transistor: toward<br />

molecular spintronics” has illustrated the<br />

excellence of his results.<br />

18<br />

Fig. 2: Near field image of a showing the<br />

heterogeneous structure of an organic solar<br />

cell (mixture of P3HT polymer (light) / PCBM<br />

(dark) under illumination at 532nm. On top of<br />

the topographic image, an electrical image of<br />

local potential which is superimposed show<br />

that the potential difference is localized at the<br />

interface between the two components.<br />

The first demonstration of the<br />

control with an electrostatic Gate of the<br />

superconducting current within a<br />

molecular transistor based on a single<br />

fullerene (C 60 ) molecule.<br />

This result obtained by the Nanospin<br />

team (Institut Néel), proves that the high<br />

electrical resistance that plagues most of<br />

the devices when made at the molecular<br />

scale can be overcame using<br />

superconductivity.<br />

The foundation supports dissemination of<br />

recent results with various scientific<br />

events including successful international<br />

conferences such as the series of<br />

conferences ELECMOL:<br />

December 8 th – 12 th 2008, at<br />

MINATEC in Grenoble<br />

December 6 th – 10 th <strong>2010</strong>, at<br />

MINATEC in Grenoble<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information


5 - NANOMATERIALS,<br />

NANOASSEMBLY AND<br />

NANOSTRUCTURATION<br />

The introduction of new materials and the<br />

progress of self-assembling and nanostructuration<br />

technologies at the edge of<br />

nanoscience and nanoelectronics are a<br />

promising source of innovation and<br />

development for ground-breaking types<br />

of applications. The new perspectives<br />

offered by nanomaterials in the fields of<br />

energy, as well as biology and healthcare<br />

are also particularly interesting avenues<br />

to explore. Grenoble is a preferred site<br />

for conducting such projects because of<br />

the diversity of its scientific expertise in<br />

the fields of physics, chemistry, biology,<br />

or medicine. The Foundation’s network of<br />

laboratories (Institut Néel, INAC, LTM,<br />

LETI, LMGP, SIMAP, CERMAV, DCM, LIPhy<br />

....) is therefore really representative of<br />

the various local cross-themes.<br />

Self Assembly<br />

RTRA Project 2007: “Cellulose hybrid<br />

block copolymers”<br />

Coordinator: Redouane BORSALI<br />

(CERMAV)<br />

Post-doctoral Fellow: Karim AISSOU<br />

Under the project Cellulose Hybrid,<br />

original systems of block copolymers<br />

were synthesized by "click-chemistry"<br />

that combines an oligosaccharide as a<br />

natural block: maltoheptaose (MAL7),<br />

with a synthetic block: polystyrene. The<br />

composition of MAL7 was varied between<br />

0.13 and 0.5 to obtain the phase diagram<br />

of this compound. For a composition of<br />

18% MAL7, a copolymer layer is<br />

deposited on a substrate and annealed to<br />

promote microsphase separation. An<br />

organization of cylinders parallel to the<br />

substrate is obtained, with diameters of<br />

about 5 nm and 12 nm periodicity. These<br />

copolymers were then functionalized with<br />

a bipyridine group to give it the<br />

properties of photoluminescence. An<br />

increase in the photoluminescence<br />

intensity is observed when the systems<br />

are organized. (Fig.1)<br />

In order to better understand the<br />

interaction and communication of cells<br />

with their environment, systems of<br />

copolymers P3HT-b-PMAGP were<br />

synthesized. Vesicles with a diameter of<br />

83 nm have been made. Their properties<br />

will be studied in the future.<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

Fig. 1: AFM phase images obtained from<br />

Mal7(bipy) 1.0-b-PS thin film of Mal7-b-PS thin<br />

film<br />

Nanowires<br />

RTRA Project 2007: “Electronic properties<br />

of group IV nanowires”<br />

Coordinator: Nicolas PAUC (INAC/SP2M)<br />

This project focuses on the fundamental<br />

issue of controlling electronic properties<br />

of nanowires with very small dimensions.<br />

The crystal growth of group IV<br />

semiconductor nanowires allows<br />

exploring a new class of electronic<br />

properties compared to "standard"<br />

silicon.<br />

The control of these properties first<br />

requests a perfect control of composition<br />

and interface. The growth method by<br />

catalytic chemical vapor deposition (CVD)<br />

is a promising way to achieve these<br />

objectives. Si n-type and p-type have<br />

been successfully obtained using<br />

phosphorus and boron atoms as dopants<br />

in a range between 1016 and 1020 cm-3.<br />

Similarly, the growth of SiGe and Ge<br />

nanowires was studied.<br />

To passivate the interface states, an<br />

original method was developed by the<br />

partners: it consists in functionalising the<br />

surface of the nanowires by an organic<br />

monolayer. A further study of nanowires<br />

photoluminescence has shown that<br />

functionalisation leads to a low rate of<br />

recombination of free carriers in surface -<br />

permitting the detection of their radiative<br />

recombination. (Fig. 2)<br />

The influence of the roughness of the<br />

nanowires on their transport properties<br />

was simulated. It causes a positive shift<br />

of threshold voltage, while the<br />

subthreshold slope remains unaltered.<br />

Similarly, the roughness should be<br />

responsible for a sharp reduction in the<br />

mobility measured in devices with<br />

channel nanowires.<br />

CONTACTS<br />

Thierry BARON<br />

thierry.baron@cea.fr<br />

Tel: +33 4 76 88 10 20<br />

François MARTIN<br />

francois.martin@cea.fr<br />

Tel: +33 4 38 78 35 86<br />

SCIENTIFIC REPORT<br />

19


SCIENTIFIC REPORT<br />

FURTHER READING:<br />

J. Phys. D: Appl. Phys. 43 374008 (<strong>2010</strong>)<br />

Interface structure of graphene on SiC : an<br />

ab initio and STM approach<br />

Fig. 2: Silicium nanowires used for<br />

photoluminescence studies (the scale marker<br />

equals 10 μm)<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

Graphene<br />

RTRA Project 2008 : “Graphene : from<br />

materials to test devices ”<br />

Coordinator: Laurence MAGAUD (Institut<br />

Néel)<br />

Post-doctoral Fellow: Vincent RENARD<br />

Since 2005, interest in graphene has<br />

been growing among condensed matter<br />

physicists, due to exceptional<br />

fundamental properties, promising a high<br />

potential for the development of future<br />

nanoelectronics. As silicon reaches its<br />

limits, it becomes crucial to find new<br />

alternative materials and graphene is a<br />

very serious candidate for that purpose.<br />

Fig. 3: Graphene on the C-face of SiC<br />

observed by AFM (sample grown in LMGP)<br />

Finally the team has modelled the effect<br />

of ripples in quantum transport<br />

calculations for both zigzag (ZGNR) and<br />

armchair (AGNR) graphene nanoribbons<br />

and extracted relevant physical quantities<br />

such as band structure, conductance and<br />

mobility of nanoribbons with different<br />

lateral width.<br />

In that purpose, the active part of the<br />

device is defined either by an armchair or<br />

a zigzag graphene nanoribbon of length<br />

≈ 20 nm, for the simulation of a realistic<br />

device. An example of the simulated<br />

ripples is shown in Figure 4 for the case<br />

of 1D and 2D ripples.<br />

The RTRA project “DISPOGRAPH” aims to<br />

unify the community in Grenoble and to<br />

design devices based on the unique<br />

properties of this material.<br />

An original endeavour focused on the<br />

elaboration of graphene led to a new<br />

synthesis method on SiC carbon face -<br />

instead of the commonly used silicon<br />

face. Thick layers of graphene were<br />

obtained and characterized by Raman<br />

spectroscopy and AFM. (Fig. 3)<br />

Thin films obtained under ultrahigh<br />

vacuum were characterized by STM,<br />

showing in this case a weak coupling<br />

between graphene and the substrate, and<br />

thus the formation of a quasi-ideal layer<br />

graphene. Magneto transport<br />

measurements at low temperatures also<br />

show a weak anti-localization in<br />

agreement with the theory WAL.<br />

Fig.4: Examples of nanoribbons with 1D<br />

ripples (up) and 2D ripples (down).<br />

20


Phase-change memory<br />

RTRA Project 2009: “Phase changE<br />

Ramdom aCcess mEmory: Validation of<br />

material smALl scaLe effect”<br />

Coordinator: Sylvain MAITREJEAN (Léti)<br />

Post-doctoral Fellow: Billel SALHI<br />

PhD student: Giada GHEZZI<br />

The main objective of this project is to<br />

study the effect of reduced dimensions on<br />

the mechanisms of phase transformation<br />

of alloys used for the phase change<br />

memories. The effects of intrinsic and<br />

extrinsic (resulting from the confinement<br />

technology) are investigated.<br />

Initially, the one-dimensional effects are<br />

investigated while in parallel,<br />

technologies for the 2D and 3D<br />

confinement will be developed.<br />

Experiences of change in reflectivity and<br />

X-rays diffraction at the ESRF have<br />

shown the effect of thickness, of the<br />

annealing temperature and of the nature<br />

of the interface on the texture of thin<br />

films of GeTe and GeSb 6 obtained by<br />

magnetron sputtering.<br />

It was also showed that the structure of<br />

GeTe is strongly modified by the addition<br />

of carbon and to a lesser extent by the<br />

addition of nitrogen. This change may<br />

affect the stability of the amorphous<br />

phase.<br />

Seminars<br />

As part of the PERCEVALL project, two<br />

seminars were organised in the frame of<br />

the “Séminaires de la Fondation”.<br />

The first one, on December 14 th <strong>2010</strong>,<br />

was given by Claudia WIEMER from the<br />

Institute for the microeclectronics and<br />

the Microsystems (Agrate Brianza, Italy).<br />

The second one was given by Jean-Pierre<br />

GASPARD, from the University of Liège<br />

(Belgium) on April 18 th 2011. (Fig. 5)<br />

Both seminars were well appreciated by<br />

the local community which could benefit<br />

from those specialists input on such a<br />

promising field.<br />

Fig. 5: Jean-Pierre GASPARD giving his talk on<br />

April 18 th 2011.<br />

SCIENTIFIC REPORT<br />

GeTe thin films were deposited by CVD<br />

(Chemical Vapor Deposition) and PECVD<br />

(Plasma Enhanced CVD) using a<br />

deposition reactor by pulsed liquid<br />

injection of organometallic precursors.<br />

The use of plasma assistance allows<br />

obtaining thin films of amorphous or<br />

crystalline GeTe depending on the<br />

deposition temperature and the nature of<br />

the plasma. The amount of carbon in the<br />

layers can be modulate by and a<br />

judicious choice of plasma parameters<br />

which alters the temperature of<br />

crystallization of these layers.<br />

Finally, the etching mechanisms of GeTe<br />

were studied with etching chemistries<br />

based halogens such as chlorine, bromine<br />

and fluorine. Whatever the plasma<br />

etching is, the team observed that the<br />

analyzed surface (~ 10 nm) is Ge poor -<br />

indicating a preferential etching of Ge<br />

with respect to Te.<br />

21


SCIENTIFIC REPORT<br />

22


6 – NANO-<br />

CHARACTERISATION<br />

AND NANO-METROLOGY<br />

This cross-theme is animated by a<br />

scientific committee composed of 5<br />

renowned experts who belong to the<br />

main Grenoble institutes. This group<br />

helps the community to identify the<br />

needs for new instrumental and<br />

methodological developments that will<br />

improve the sensitivity and scale down<br />

the spatial resolution of our instruments<br />

to measure physical and structural<br />

properties at the nanometer scale. It is<br />

worth noting that this effort, started in<br />

2007, has lead a general movement of<br />

structuring the cross-theme “Nanocharacterisation<br />

and metrology” at the<br />

full scale of the Grenoble University. The<br />

scientific instrumentation is one of the<br />

well identified highly unifying themes of<br />

the GUI+ IDEX project.<br />

Broad scientific and instrumental<br />

activities are relevant of «Nano-<br />

Characterisation -Nanometrology», as for<br />

instance:<br />

Electron (with aberration<br />

correction) and x-ray microscopies.<br />

These include diffraction, coherent<br />

diffraction, spectroscopy, tomography,<br />

holography, …<br />

Advanced surface/subsurface<br />

spectroscopy, surface imaging, and<br />

surface crystallography. Atomic Force<br />

Microscopy (AFM) (STM), Scanning<br />

Tunnelling Microscopy, Scanning Gate<br />

Microscopy (SGM), PhotoEmission<br />

Electron Microscopy (PEEM), Angle<br />

Resolved Photoelectron Spectroscopy<br />

(ARPES), Medium Energy Ion Scattering<br />

(MEIS), Grazing Incidence X-ray<br />

(GISAXS)..., to measure electronic,<br />

magnetic and structural properties at the<br />

surface and/or subsurface.<br />

In operando and in situ<br />

studies. In situ X-ray studies, in real<br />

time, of nucleation and growth of thin<br />

film, nanostructures, … In situ, in<br />

operando studies as a function of<br />

temperature, external field (electric or<br />

magnetic field, stress, electric current),<br />

external stress, gas, ...<br />

Instrumentation at very low<br />

temperature and / or high magnetic<br />

field. Nuclear Magnetic Resonance.<br />

Cryogenic Nano-detectors, ...<br />

Combined techniques. Raman<br />

scattering with Atomic Force Microscopy,<br />

X-ray spectroscopy with X-ray diffraction<br />

…<br />

Micro Electro-Mechanical<br />

System, Nano Electro Mechanical<br />

System.<br />

Advanced instrumentation.<br />

Manipulation and study of micro- nanosized<br />

object (optical tweezers, …), ...<br />

The field “Nanocharacterisation” enjoys<br />

an exceptional scientific environment:<br />

the large scale facilities (ESRF for<br />

X rays, ILL for neutrons, Laboratoire<br />

National des Champs Magnétiques<br />

Intenses (GHMFL) for high magnetic field,<br />

...) and the Léti,<br />

a unique expertise in the field of<br />

instrumentation at very low temperatures<br />

in particular at Institut Néel and Institut<br />

des Nanosciences et Cryogénie (INAC),<br />

nine technological facilities<br />

gathering state of the art instruments (or<br />

equipment)<br />

excellent clean room-based<br />

facilities for nanofabrication (Nanofab at<br />

Institut Néel or “Plateforme<br />

Technologique Avancée” at MINATEC).<br />

One should also mention a strong<br />

expertise in surface imaging, including<br />

near field spectroscopy, Transmission<br />

Electron Microscopy and crystallography.<br />

The French Collaborative Research Group<br />

at the ESRF, run by <strong>CNRS</strong> and CEA, has<br />

set up three dedicated beam lines and<br />

developed world leading methods and<br />

instruments for studying the growth and<br />

structural properties of nanostructures.<br />

Several activities in the field of<br />

nanocharacterisation and nanometrology<br />

benefit of a dedicated Focus Ion Beam<br />

dual instrument bought by the<br />

Foundation in 2008.<br />

In 2009 a Chair of Excellence was<br />

granted to Pr John KIRTLEY (Stanford<br />

University, USA).<br />

In <strong>2010</strong>, it was decided to focus the call<br />

applications onto the topic “Coherent<br />

Diffraction Imaging at the nanometer<br />

scale”. Accordingly, a Chair of Excellence<br />

has been granted to Pr Jian Min ZUO<br />

(University of Illinois, USA).<br />

Fig. 1: Juan Min ZUO, Chair of Excellence <strong>2010</strong><br />

CONTACTS<br />

Hubert RENEVIER<br />

hubert.renevier@inpg.fr<br />

Tel: +33 4 56 52 93 43<br />

Joël CHEVRIER<br />

joel.chevrier@grenoble.cnrs.fr<br />

Tel: +33 4 76 88 74 63<br />

SCIENTIFIC REPORT<br />

23


SCIENTIFIC REPORT<br />

FURTHER READING<br />

Nature 464, 1174-1177 (<strong>2010</strong>)<br />

Substrate-enhanced supercooling in<br />

AuSi eutectic droplets<br />

Astronomy and Astrophysics, 521, id.<br />

A29 (<strong>2010</strong>)<br />

NIKA: A millimeter-wave kinetic<br />

inductance camera<br />

In situ X-ray investigation<br />

of growing semiconductor<br />

nanowires<br />

“New comers” Project 2007: Tobias<br />

SCHÜLLI (ESRF & French CRG)<br />

Post-doctoral Fellow: Valentina CANTELLI<br />

Supercooled liquids are trapped in a<br />

metastable state even well below their<br />

freezing point, which can only be<br />

achieved in liquids that do not contain<br />

seeds that may trigger crystallization. It<br />

was during their studies, focused on the<br />

growth of semiconducting nanowires,<br />

that T. Schülli et al. discovered the<br />

unusual properties of a gold-silicon alloy,<br />

in contact with silicon (111) surface.<br />

(Fig.2)<br />

As they were observing the first stage of<br />

growth of nanowires, they saw that the<br />

metal-semiconductor alloy they used<br />

remained liquid at a much lower<br />

temperature than its crystallization point.<br />

The team studied what happened to the<br />

liquid in contact with a five-fold<br />

coordinated surface and then performed<br />

the control experiment with the same<br />

liquid exposed to three-fold and four-fold<br />

coordinated surfaces, which reduced the<br />

supercooling effect dramatically. This<br />

constituted the first experimental proof<br />

that pentagonal order is at the origin of<br />

supercooling.<br />

the solid–liquid interaction for the<br />

structure of the adjacent liquid layers.<br />

Such processes are crucial for present<br />

and future technologies, as fluidity and<br />

crystallization play a key part in soldering<br />

and casting, as well as in processing and<br />

controlling chemical reactions for<br />

microfluidic devices or during the<br />

vapour–liquid–solid growth of<br />

semiconductor nanowires.<br />

New generation of nanodetectors<br />

for astrophysics<br />

“New comers” Project 2007: Alessandro<br />

MONFARDINI (Institut Néel)<br />

Post-doctoral Fellow: Loren SWENSON<br />

The Néel IRAM KIDs Arrays (NIKA)<br />

project was kicked off in November 2008<br />

to develop a large mm-wave resident<br />

instrument at the 30-m IRAM<br />

radiotelescope on the Pico Veleta, near<br />

Granada (Spain). The main competitor to<br />

achieve this goal at IRAM is the GISMO<br />

collaboration led by the NASA Goddard<br />

Space Flight Center, focusing on<br />

superconducting TES (Transition Edge<br />

Sensors).<br />

An excellent post-doc (Loren SWENSON)<br />

was hired in July 2008 coming from Dr.<br />

Cleland’s famous group at the University<br />

of California Santa Barbara. A new<br />

dilution cryostat was developed, adapted<br />

for KIDs testing, when also started the<br />

designing/fabricating/testing of the first<br />

NbN resonators in collaboration with<br />

INAC (J.C. Villegier) and Olivier Buisson<br />

at the Institut Néel.<br />

In 2009, beginned the investigation of a<br />

particular KID concept known as LEKID<br />

(Lumped Element KID), allowing a purely<br />

planar design and a good optical<br />

coupling. Totally unexplored at that time,<br />

the potential of this new configuration for<br />

future large instruments operating in the<br />

mm-wave range was well appreciated.<br />

24<br />

Fig. 2: Droplet of a gold-silicon liquid alloy on<br />

a silicon (111) surface. Pentagonal clusters<br />

formed at the interface exhibit a denser<br />

structure compared to solid gold and prevent<br />

the liquid from crystallization at temperatures<br />

as low as 300 Kelvin below the solidification<br />

temperature. Graphics: M. Collignon<br />

It was therefore revealed that pentagonal<br />

atomic arrangements of Au atoms at this<br />

interface favour a lateral-ordering<br />

stabilization process of the liquid phase.<br />

This interface-enhanced stabilization of<br />

the liquid state shows the importance of<br />

Thanks to the rapid development of the<br />

project, a request for one week technical<br />

time at the 30-m telescope was made in<br />

September 2009. (To better understand<br />

the amplitude of the project, the<br />

approximate cost of one single hour time<br />

at Pico Veleta is estimated 1 k€.)<br />

The first run took place in October 2009,<br />

with very encouraging results. One could<br />

observe, for example, a number of faint<br />

galactic and extra-galactic sources.<br />

This LEKID array, used at the telescope,<br />

had been fabricated at the PTA-Grenoble<br />

platform.<br />

After the first light, and despite the small<br />

number of pixels (30-40) NIKA was<br />

already exhibiting better performances


when compared, for example, to the<br />

prototype of the US “competitor” project<br />

MUSIC (to be installed at the CSO 10-m<br />

sub-mm observatory in Mauna Kea, and<br />

being developed years before NIKA).<br />

MUSIC involves laboratories like Caltech,<br />

JPL, University of Santa Barbara and<br />

others.<br />

A second week technical time on the<br />

IRAM telescope was approved in October<br />

<strong>2010</strong>. The sensitivity of the LEKID array<br />

improved by a factor of three compared<br />

to the first run in 2009, verifying that<br />

NIKA is rapidly approaching the final<br />

target of sensitivity.<br />

This second run was a total success,<br />

allowing the observation, for example, of<br />

a large number of extended sources.<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information.<br />

group at Université Catholique de<br />

Louvain-Louvain-la-Neuve. The upgrading<br />

of the SGM tool is the main activity of a<br />

shared PhD student hired by the<br />

foundation (Peng LIU).<br />

InGaAs/InAlAs heterostructures are<br />

grown by Molecular Beam Epitaxy at<br />

IEMN (Lille) and patterned by e-beam<br />

lithography at UCL for obtaining Quantum<br />

Rings. The results are interpreted thanks<br />

to quantum conductance simulations<br />

performed at IMEP (Grenoble) by Marco<br />

Pala.<br />

SCIENTIFIC REPORT<br />

Scanning<br />

gate<br />

Nanoelectronics<br />

Chair of Excellence 2007: Vincent BAYOT<br />

Coordinators: Hervé COURTOIS and<br />

Serge HUANT (Institut Néel).<br />

In the framework of Vincent Bayot’s Chair<br />

of Excellence, two major results were<br />

obtained by Scanning Gate Microscopy<br />

(SGM) :<br />

a theoretical understanding of SGM<br />

images in the coherent regime of<br />

transport both in the presence of<br />

defects and weak magnetic field<br />

the discovery of Coulomb islands in a<br />

Quantum Hall (QH) interferometer.<br />

In the latter, SGM was used for obtaining<br />

a spatially resolved investigation of<br />

electron transport inside an<br />

interferometer formed by an<br />

InGaAs/InAlAs Quantum Ring (QR),<br />

driven in the integer QH regime. The<br />

pseudo Aharonov–Bohm (AB) period was<br />

associated with a specific Coulomb island<br />

formed by edge state loops enclosing a<br />

hill or a valley in the potential. Each<br />

active Coulomb island was located<br />

precisely inside the QR by tuning the<br />

magnetic field and imaging the spatial<br />

shift of Coulomb resonances by means of<br />

SGM.<br />

The (SGM) uses the electrically polarized<br />

tip of a low-temperature AFM to scan<br />

above a semiconductor device and record<br />

the change in conductance at point (x,y),<br />

induced by the tip located at that point.<br />

The SGM tool is being developed jointly<br />

at the Institut Néel by the group of Serge<br />

HUANT and Hermann SELLIER in<br />

collaboration with Vincent BAYOT and his<br />

Fig. 3: Vincent BAYOT, Chair of Excellence in<br />

2007<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information.<br />

Superconducting<br />

Nanostructures<br />

Chair of Excellence 2009: John R.<br />

KIRTLEY<br />

Coordinator: Klaus HASSELBACH (Institut<br />

Néel).<br />

John R. KIRTLEY is one of the world’s<br />

leading experts on Josephson junction<br />

devices and superconductivity. The<br />

project is aimed at the study of the<br />

physical properties of high quality<br />

superconducting films and their<br />

integration into quantum nano-devices.<br />

First results have been obtained in <strong>2010</strong>.<br />

As a matter of fact the core of a<br />

conventional tunnel barrier is formed of<br />

oxidized nano-grains with fluctuating<br />

electric charges at their surface. These<br />

charges are suspected of causing<br />

decoherence of superconducting Qbits.<br />

Thanks to molecular beam epitaxy a<br />

charge-free junction was achieved by<br />

growing epitaxial layers of Rhenium /<br />

Sapphire / Rhenium (Re/Al 2 O 3 /Re), giving<br />

a superconducting Qubit. The layers have<br />

been grown successfully by the group of<br />

B. Gilles (SIMAP), on sapphire substrates,<br />

and characterized by STM, AFM and X-ray<br />

diffraction.<br />

FURTHER READING<br />

Nat. Commun. 1:39, (<strong>2010</strong>)<br />

Imaging Coulomb islands in a quantum<br />

Hall interferometer<br />

Nanotechnology, 20, 264021 (2009)<br />

Scanning gate microscopy of quantum<br />

rings: effects of an external magnetic<br />

field and of charged defects.<br />

25


SCIENTIFIC REPORT<br />

FURTHER READING<br />

Nature Materials 7, 308-313 (2008)<br />

Coordination-dependent surface<br />

atomic contraction in nanocrystals<br />

revealed by coherent diffraction<br />

Sapphire barriers were obtained by<br />

several cycles alternating deposition of<br />

aluminium followed by controlled<br />

oxidation by XPS.<br />

Fig. 4: Magnetic microscopy (nanoSQUID)<br />

image of a rhenium superconducting film at T<br />

= 0.3 K. The vortex of quantized magnetic flux<br />

pops up out of the plane. Due to the low<br />

trapping, a vortex moved during the scan<br />

(upper left).<br />

The Re epitaxial layers were studied by<br />

electrical transport (Tc=1.75K and 24 nm<br />

for the coherence length) and by STM<br />

spectroscopy at low temperature by C.<br />

Chapelier and T. Dubouchet (INAC).<br />

Tunnelling spectroscopy has allowed<br />

measuring an electronic density gap of<br />

the order of 250 μeV which vanishes with<br />

a BCS behaviour at a critical temperature<br />

of 1.6K. A coherence length in between<br />

20 and 25 nm has been found, in good<br />

agreement with the value of 24 nm<br />

deduced from measurements of critical<br />

field near Tc.<br />

The nanoSQUID magnetic imaging (probe<br />

size of about 500 nm) was used to<br />

estimate the strength of trapping of a<br />

single vortex below 4 10 -16 N for a film<br />

thickness of 80 nm (Fig. 4 - Z. S. Wang,<br />

D. Hykel, K. Hasselbach and J. Kirtley).<br />

This latter value is several orders of<br />

magnitude smaller than that found in<br />

conventional superconductors, indicating<br />

the high crystalline quality of the<br />

epitaxial layer elements. The penetration<br />

depth is about 60 nm. Further<br />

measurements (optical spectroscopy) are<br />

planned to confirm the electron density.<br />

Pr. John KIRTLEY has played an active<br />

role in many aspects of the project, by<br />

interpreting nanoSQUID microscopy<br />

images and also conceiving, designing<br />

and modelling reversible nanoSQUIDs.<br />

These prototypes are currently tested (E.<br />

Andre and T. Crozes, Institut Néel).<br />

3D coherent diffractive<br />

imaging at the nanometer<br />

scale<br />

Chair of Excellence <strong>2010</strong>: Jian Min ZUO<br />

Coordinators: Jean-Luc ROUVIERE &<br />

Vincent FAVRE-NICOLIN (INAC/SP2M)<br />

The project involves INAC, CERMAV and<br />

LETI. Although ESRF is not affiliated to<br />

the RTRA, international beamlines ID01<br />

and ID13 at the ESRF open to any user<br />

through a peer review selection, will play<br />

an active role in this project.<br />

Coherent Diffraction Imaging (CDI) is an<br />

emerging method to get information<br />

about the structure of nano-objects by<br />

resolving the so-called inversion problem<br />

(Fig. 5).<br />

This project aims to promote CDI<br />

research in Grenoble by applying the CDI<br />

technique to different nanostructures<br />

elaborated in Grenoble; by comparing<br />

and combining electron and X-ray CDI<br />

(e-CDI and X-CDI) experiments; by<br />

improving the CDI technique to obtain<br />

quantitative structural information; and<br />

by giving lectures and training to junior<br />

researchers on electron diffraction and<br />

CDI.<br />

Fig. 5: HRTEM Sub-ångström imaging of a CdS<br />

quantum dot of 7nm in diameter along the<br />

cubic CdS crystal [112] orientation (a) The<br />

reconstructed image using information from<br />

the HRTEM image (b) and the diffraction<br />

pattern (c). The inset shows a magnification of<br />

the outlined region.<br />

Two types of structures will be studied:<br />

semiconductor or oxide nanowires and<br />

crystalline biopolymer complexes. It is<br />

planned to determine their 3D shape,<br />

strain and defects. In studying<br />

biopolymers, the challenge is to image<br />

the polysaccharide chains and locate the<br />

guest ligands, which requires a resolution<br />

at about 0.4 nm. Radiation damage is a<br />

major issue for biopolymers. A<br />

comparison between X-CDI and e-CDI<br />

data will be carried out.<br />

Besides X-ray experiments performed at<br />

ESRF, electron microscopy will be carried<br />

out at the Nanocharacterisation facility<br />

(PFNC) with TITAN probe-corrected<br />

microscopes.<br />

26


7 – NANO APPROACHES<br />

TO LIFE SCIENCES<br />

Life sciences are one of the main<br />

application fields of nanosciences, as<br />

evidenced by the increasing number of<br />

proposals received along the successive<br />

call for proposals. Biological cells and<br />

molecules can be manipulated and<br />

analyzed with the greatest specificity in<br />

small volumes. Innovative devices will<br />

help building tomorrow’s medicine.<br />

MICRO- AND NANO<br />

FABRICATION FOR THE<br />

LIFE SCIENCES<br />

Contribution of 3D microenvironment<br />

to cell<br />

adhesion<br />

“New comers” Project 2008: Martial<br />

BALLAND (LIPhy)<br />

PhD student: Kalpana MANDAL<br />

Biological tissues are complex composite<br />

materials made of cells and intercellular<br />

matrix molecules secreted by the cells.<br />

Their formation and maintenance depend<br />

on both chemical and mechanical cues<br />

present in the microenvironment of each<br />

cell. Tissue biology involves therefore<br />

complex feedback loops. The aim of this<br />

project is to reproduce the organized<br />

geometry of biological tissues and to<br />

analyse quantitatively the mechanical<br />

forces developed at the cell/substrate<br />

and cell/cell interfaces.<br />

In order to measure mechanical forces,<br />

thin hydrogels are prepared that contain<br />

a homogeneous distribution of<br />

fluorescent 200nm beads (Fig. 1). The<br />

hydrogel surface is coated with<br />

fluorescent adhesion proteins, using an<br />

innovative deep-UV irradiation method<br />

developed in collaboration with Manuel<br />

Thery (IRTSV).<br />

This setup paves the way to a functional<br />

analysis of tumor cell invasiveness, which<br />

will be very useful to analyze biopsies<br />

and thus help cancer therapy.<br />

Fig. 1: Top: pictures of the adhesive protein<br />

micropattern (left) and the nanobeads<br />

distribution (right) used to calculate the cellsubstrate<br />

force distribution.<br />

Bottom: distribution of actin microfilaments<br />

(left) and traction forces (right) in a single<br />

micropatterned cell. Barscale: 20 µm<br />

Nanodroplet chip for<br />

controlled assembly of lipid<br />

bilayers and electrical<br />

detection of single-protein<br />

activity<br />

RTRA Project 2008: “Nanobiodrop"<br />

Benjamin CROSS (LEGI)<br />

Post-doctoral fellow: Anne MARTEL (IBS<br />

& LEGI)<br />

Transmembrane channels form a large<br />

class of molecules that play essential<br />

roles in cell physiology by allowing polar<br />

molecules, for instance ions, to cross<br />

biological lipid bilayer membranes. They<br />

are the target of numerous drugs and<br />

toxins. Nevertheless, conventional<br />

electrophysiological methods used to<br />

study ion channel activity are laborious<br />

and slow.<br />

FURTHER READING:<br />

SCIENTIFIC REPORT<br />

Front Biosci (Elite Ed). Jan 1;3:476-88 (2011)<br />

Multi-confocal fluorescence correlation<br />

spectroscopy<br />

The traction force distribution is<br />

computed from the bead displacement<br />

map by a Fast Fourier Traction Cytometry<br />

software. The forces developed by the<br />

micropatterned cells can thus be<br />

calculated and averaged, taking<br />

advantage of the similar geometry of the<br />

patterned cells. Significant differences<br />

between tumor cells have been<br />

evidenced, that are modulated by<br />

different tumorigenic signals.<br />

This innovative project called<br />

‘Nanobiodrop’ uses digital microfluidics to<br />

reconstitute lipid bilayers from two<br />

nanodroplets covered with phospholipids.<br />

Electrowetting is used to manipulate<br />

these droplets and put them into contact.<br />

Some of the nanodroplets are filled with<br />

membrane proteins, which are able to<br />

spontaneously insert in the membrane,<br />

once it is formed. The electrodes are then<br />

used to monitor the ionic current that<br />

flows from one droplet into the apposed<br />

one through the incorporated<br />

transmembrane channels.<br />

CONTACTS<br />

Franz BRUCKERT<br />

franz.bruckert@inpg.fr<br />

Tel: +33 4 56 52 93 21<br />

Julian GARCIA<br />

julian.garcia@ujf-grenoble.fr<br />

Tel: +33 4 56 52 08 31<br />

27


MEDICAL<br />

APPLICATIONS OF THE<br />

NANOBIOSCIENCES<br />

SCIENTIFIC REPORT<br />

FURTHER READING:<br />

Optical Materials (2011)<br />

Development of a non-linear optical<br />

microscope for real-time measurement of<br />

neuronal activity in sub-micrometric<br />

structures<br />

Fig. 2: Principle (top) and realization (down) of<br />

the formation of lipid bilayers by bringing<br />

together two nanodroplets covered with<br />

phospholipids.<br />

In <strong>2010</strong>, the team already demonstrated<br />

the formation of a lipid bilayer, as shown<br />

by the large increase of capacitance.<br />

Furthermore, incorporation of hemolysin,<br />

a pore-forming protein, in the bilayer<br />

membrane results in current steps<br />

characteristic of single molecule activity.<br />

This device will therefore offer an<br />

alternative to electrophysiological “patchclamp”<br />

methods using microelectrodes -<br />

a process which is difficult to miniaturize<br />

and automate.<br />

Second harmonic imaging<br />

of potentials in nanoscale<br />

neuronal structures<br />

“New comers” Project 2007: Julien<br />

DOUADY (LIPhy)<br />

Post doctoral fellow: Hartmut WEGE<br />

The electric activities of neurons trigger<br />

neurotransmitter release at synapses that<br />

are small structures of about 200 nm. In<br />

order to measure individual synapse<br />

activation, neuroscientists use voltage<br />

dependent fluorescent dyes. In this<br />

project, such a series of dyes suitable for<br />

two-photon activation has been<br />

synthesized by the ENS-Lyon “Chemistry<br />

for Optics” group. The Motiv group at the<br />

LiPhy has built a custom two-photon<br />

microscope to image neuronal activity<br />

within brain slices, with a radial<br />

resolution of about 340 nm (Fig. 4). To<br />

address the actual challenges in<br />

neurosciences, the sensitivity of the<br />

setup will be improved to allow imaging<br />

at about 2 kHz.<br />

In the future, cell communication and<br />

potential propagation within a brain slice<br />

or cultured neurons will be studied.<br />

Thanks to this ongoing multidisciplinary<br />

project, the Grenoble neurophysiologist<br />

community now possesses a new<br />

powerful instrument to study neural<br />

networks, either in micropatterns or in<br />

brain slices.<br />

Fig. 3: recording of -hemolysin activity<br />

reconstituted in the Nanobiodrop device, the<br />

15 pA current increase represents the<br />

incorporation of one active protein molecule in<br />

the bilayer.<br />

28<br />

Fig. 4: Two-photon fluorescence imaging of<br />

pyramidal neurons located 70 µm inside in a<br />

300 µm thick sagittal slice of the mouse<br />

cortex, stained with a voltage sensitive dye.<br />

Note that the interspacing glial cells are not<br />

stained. Barscale: 10 µm


Innovative biochips to<br />

detect and screen biological<br />

cells<br />

“Fil de l’eau” PhD student 2008:<br />

Radoslaw BOMBERA<br />

Thesis Directors: Thierry LIVACHE and<br />

Yann ROUPIOZ (INAC/SPrAM).<br />

The biological matter is a complex<br />

mixture of cells and molecules. Selective<br />

capture and release are therefore<br />

necessary to sort and analyze cells, in the<br />

blood for instance. In this project, living<br />

cells are reversibly adsorbed on a<br />

functionalized surface.<br />

This technique could provide a low-cost<br />

alternative to flow cytometry methods,<br />

currently used in biology and medicine to<br />

quantitatively analyze cell mixtures.<br />

The development of these new biochips<br />

combines different innovations:<br />

using complementary DNA<br />

strands to immobilize antibodies onto<br />

surfaces; these antibodies can selectively<br />

capture cells entering in contact with the<br />

biochip surface.<br />

locally heating up the surface to<br />

dissociate DNA strands and releasing<br />

cells; cells and molecules are both<br />

detected by surface plasmon resonance<br />

imaging.<br />

Figure 5 shows a proof-of-concept<br />

experiment. Three different probes are<br />

used. The first two ones allow antibodies<br />

to be immobilized, that in turn capture B<br />

and T lymphocytes, respectively. The last<br />

one is a negative control. The relative<br />

reflectivity of a gold surface, which is<br />

related to the mass adsorbed to the<br />

surface of the biochip, is measured in<br />

real-time.<br />

In a) the coupling DNA strands bind to<br />

the DNA probes, in b) the antibodies are<br />

immobilized, in c) the cells are captured.<br />

In d) and e) they are selectively released<br />

from the surface using restriction<br />

enzymes to cleave the DNA molecules.<br />

Further work already demonstrated that<br />

the local heating of the gold surface<br />

provided by resonant plasmons induced<br />

by laser illumination is sufficient to<br />

induce DNA strand dissociation and their<br />

release in the bulk solution. Studies are<br />

ongoing to show that the released cells<br />

are still viable and to analyze their<br />

content.<br />

a)<br />

b)<br />

Fig. 5: Kinetic curves of the gold surface<br />

relative reflectivity detected by Surface<br />

Plasmon Resonance Imaging.<br />

Biomimetic artificial<br />

membrane systems for<br />

generating electro-chemical<br />

energy<br />

Chair of Excellence 2007: Don MARTIN<br />

Coordinator: Philippe CINQUIN (TIMC-<br />

IMAG).<br />

One of the bottlenecks in the<br />

development of implantable prostheses<br />

and devices is the lack of small size<br />

electric sources. It is nevertheless well<br />

known that certain fish possesses electric<br />

organs able to generate powerful<br />

discharges (tens of kW). The energy is<br />

provided by large Na + currents flowing<br />

rapidly through membrane channels into<br />

stacked cells, similarly to the action<br />

potentials generated in neurons and<br />

muscle cells. It is therefore theoretically<br />

possible to mimic these biological<br />

processes and develop implantable<br />

devices to harvest the energy resulting<br />

from differences in ion concentrations<br />

within the human body.<br />

Thus, the objective of the project is to<br />

develop new electrochemical energy<br />

sources that are both biocompatible and<br />

biologically-inspired. The core principle is<br />

to reconstitute a supported biomimetic<br />

bilayer membrane incorporating<br />

transmembrane channels separating two<br />

compartments with different ion<br />

composition. Ion flow, driven by the<br />

difference in ion concentration, will<br />

accordingly provide the electro-chemical<br />

energy of the device. A large contact area<br />

(tens of mm 2 ) between the membrane<br />

and the bathing fluids is necessary to<br />

generate enough electrochemical energy,<br />

but since the lipid bilayer is only 5 nm<br />

thick, this active structure is extremely<br />

fragile.<br />

c)<br />

d)<br />

e)<br />

FURTHER READING:<br />

SCIENTIFIC REPORT<br />

IET Nanobiotechnology,<br />

vol. 4, n o 3, pp. 77-90 (<strong>2010</strong>)<br />

Terminating polyelectrolyte in<br />

multilayer films influences growth and<br />

morphology of adhering cells<br />

29


SCIENTIFIC REPORT<br />

A polyelectrolyte multilayer film was thus<br />

developed by the team to provide<br />

sufficient mechanical stability and ion<br />

porosity to the bilayer membrane.<br />

Fig. 6: Polyelectrolyte membrane (in blue)<br />

made of 16 PAH/PSS layers constructed over<br />

3mm diameter holes in the Delrin carrierdevice<br />

(in grey)<br />

Another critical aspect of the project is to<br />

achieve a large density of ion channels in<br />

the bilayer membrane. During the 2008-<br />

<strong>2010</strong> period, the team indeed studied<br />

various membrane proteins and<br />

developed a method to incorporate some<br />

of them into large unilamellar vesicles<br />

(Fig. 7).<br />

The activity of the membrane proteins<br />

incorporated in the large unilamellar<br />

vesicles was checked by electrophysiological<br />

methods. It is now<br />

necessary to upscale the method by coincorporating<br />

all the necessary proteins<br />

and by fusing all these large unilamellar<br />

vesicles into a single membrane bilayer<br />

at the top of the polyelectrolyte<br />

multilayer film. The resulting biomimetic<br />

membranes will be tested in a parallel<br />

diffusion chamber apparatus (Fig. 8).<br />

Fig. 8: Top : Patch-clamp recording of porins<br />

incorporated into large unilamellar vesicles by<br />

the method explained in Fig. 7.<br />

Bottom: diffusion chamber apparatus to<br />

measure simultaneously ion currents across 6<br />

different biomimetic membranes<br />

30<br />

Fig. 7: Top: general procedure for the<br />

formation or large unilamellar vesicles<br />

containing membrane proteins (VDAV).<br />

Bottom: Purified and concentrated<br />

fluorescently labelled vesicles containing<br />

membrane proteins (scale bar = 100 µm)


Implantable brain computer<br />

interface<br />

Chair of Excellence 2008: Tetiana<br />

AKSENOVA<br />

Coordinator: Corinne MESTAIS (Léti).<br />

Severe motor disabilities require the<br />

development of new communication<br />

pathways to allow the patient controlling<br />

efficiently and safely external aids, such<br />

as wheelchairs and prostheses. The<br />

current method consists in redirecting the<br />

injured nerves into non-essential muscles<br />

and using the electric signals associated<br />

to muscle contraction to monitor the<br />

patient’s intention.<br />

The aim of the “Brain-Computer<br />

Interface” project (BCI) is to directly<br />

interpret the brain’s neural activity and to<br />

translate it into useful command signals.<br />

This project therefore relies on the<br />

development of nanostructured<br />

microelectrodes for peri- or intra-cranial<br />

neuron recording and stimulation - one of<br />

the goals of Clinatec ® . Furthermore,<br />

“motor signals” are relatively large in the<br />

brain, and can thus be discriminated from<br />

the other neural activity.<br />

Fig. 9: Scheme of the brain-computer interface<br />

experiments.<br />

Top: training stage, the recorded signals are<br />

used to calibrate the Iterative N-way Partial<br />

Least Squares projection algorithm.<br />

Bottom: the algorithm is used to command the<br />

reward distributor.<br />

SCIENTIFIC REPORT<br />

In fact, this work consists in developing<br />

and implementing innovative signal<br />

processing algorithms to analyze<br />

Electrocorticographic signals (ECoG:<br />

electric signals recorded at the brain<br />

surface). Rats were trained to press a<br />

pedal to get food at their will and ECoG<br />

signals were recorded. A first set of rats<br />

was used to build a “predictor” of the<br />

animal’s intention. The algorithm was<br />

then implemented in real time as an<br />

order to control the food reward<br />

independently of the pedal position (Fig.<br />

9).<br />

The results obtained are quite<br />

impressive, and clearly demonstrate that<br />

it is possible to monitor the animal<br />

intentions in this way. Also, the detection<br />

is stable for several months without<br />

recalibration, which is very important for<br />

future patient rehabilitation (Fig. 10).<br />

This Brain Computer Interface system is<br />

currently applied to primates to control a<br />

motorized arm (Fig. 11).<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

Fig. 10: Plot of the recorded observation points<br />

as a function of the first and second principal<br />

components of the predictor, at the beginning<br />

(left) and at the end (right) of the experiment.<br />

Fig. 11: A real-time brain computer interface<br />

experiment. The rat presses the pedal but<br />

decision whether to give a reward is made on<br />

the basis of the recorded ECoG signal.<br />

The success of this stage is essential to<br />

strongly demonstrate that electrocortical<br />

electrodes could be used in human to<br />

control external mechanical devices and<br />

thus rehabilitate paralyzed people. For<br />

this purpose, it is necessary to further<br />

improve the reliability of the detection.<br />

FURTHER READING:<br />

Neural Computation, 21, 2648–2666,<br />

(2009)<br />

Filtering out of Artifacts of Deep Brain<br />

Stimulation Using Nonlinear<br />

Oscillatory Model<br />

31


SCIENTIFIC REPORT<br />

32


8 – NANOMODELING,<br />

THEORY & SIMULATION<br />

Theory and simulation concerns about 50<br />

permanent researchers within the<br />

Nanosciences Foundation community.<br />

Theorists aim at developing new concepts<br />

and new tools while nurturing a strong<br />

coupling with experimentalists in<br />

Grenoble. This strong synergy has been<br />

supported and significantly improved by<br />

the Nanosciences Foundation.<br />

Several important scientific themes have<br />

benefited from the Foundation actions:<br />

electronic properties, thermal properties,<br />

growth patterning and structure. The<br />

Foundation had also enhanced the<br />

collaboration of simulation specialists<br />

through the NanoSTAR project.<br />

Electronic properties<br />

RTRA Project 2007: NanoSTAR<br />

Coordinator: Valerio OLEVANO (Institut<br />

Néel).<br />

PhD students: Bhaarathi NATARAJAN and<br />

Omid FAIZY NAMARVAR<br />

One of the two pillars of the NanoSTAR<br />

project deals with theoretical<br />

spectroscopy developments and their<br />

specific applications to nanomaterials and<br />

molecules. Bhaarathi NATARAJAN’s thesis<br />

work is focused on the development of<br />

new approximations for the exchangecorrelation<br />

(xc) kernel of time-dependent<br />

density-functional theory in order to<br />

explicitly include double excitations; and<br />

as second task, the implementation of<br />

such developments in a time-dependent<br />

density-functional theory code relying on<br />

a new basis set, that on the wavelets.<br />

These developments will improve the<br />

treatment of photochemical reactions<br />

which are at the heart of excitonic<br />

devices in particular for photovoltaic<br />

applications. In order to describe<br />

photoreactions by direct simulation one<br />

particular challenge is the description of<br />

the so-called conical intersection. These<br />

intersections between the fundamental<br />

state S0 and the excited state S1 are<br />

seen as the photochemical analogue of<br />

the transition state in thermal reactions.<br />

(Figure 1) The contribution of the team<br />

is an introduction of a spin-flip method.<br />

Fig. 1: Caption of a conical intersection. The<br />

graph represents the energy of the<br />

fundamental state S0 and the excited state S1<br />

in the configuration space obtained by<br />

different numerical methods.<br />

The other research line at the basis of the<br />

NanoSTAR project is quantum transport<br />

in nanodevices. This approach focuses on<br />

applications and methodological<br />

developments in general frameworks<br />

such as the Landauer-Buttiker or the<br />

Kubo-Greenwood. These techniques are<br />

applied to interesting new systems like<br />

graphene nanoribbons in presence also of<br />

defects and functionalisation. The work is<br />

carried out in collaboration by the Léti,<br />

INAC/SPSMS and Institute NEEL.<br />

Fig. 2: A methodology has been developed to<br />

treat the effect of contact resistance. This has<br />

been applied to short graphene nanoribbons<br />

connected to half graphene planes. Fabry<br />

Perot oscillations of the conductance, due to<br />

contact resistance, are predicted for armchair<br />

(up) and zig-zag (down) nanoribbons.<br />

The project also aims at developing new<br />

methodologies for transport of excitons in<br />

a given material. The methodology,<br />

which is adapted to small excitons, such<br />

as those found in organic semiconductors<br />

for example, is an extension of the<br />

methodology which has been highly<br />

successful for diffusion and conduction of<br />

electrons.<br />

FURTHER READING:<br />

CONTACTS<br />

Didier MAYOU<br />

didier.mayou@grenoble.cnrs.fr<br />

Tel: +33 4 76 88 74 66<br />

Gilles LECARVAL<br />

gilles.lecarval@cea.fr<br />

Tel: +33 4 38 78 54 62<br />

SCIENTIFIC REPORT<br />

Phys. Chem. Chem. Phys. 12, 12811<br />

(<strong>2010</strong>)<br />

Assessment of noncollinear spin-flip<br />

Tamm-Dancoff approximation timedependent<br />

density-functional theory<br />

for the photochemical ring-opening of<br />

oxirane<br />

Nanoresearch 3, 288 (<strong>2010</strong>)<br />

Quantum Transport Properties of<br />

Chemically<br />

Functionalized Long Semiconducting<br />

Carbon Nanotubes<br />

33


SCIENTIFIC REPORT<br />

FURTHER READING:<br />

Phys. Rev. B (2011) - accepted<br />

Thermoelectric transport properties of<br />

silicon: Towards an ab initio approach<br />

Appl. Phys. Lett. 94, 203109 (2009).<br />

Improved thermoelectric properties of<br />

Mg 2Si xGe ySn 1-x-y nanoparticle in alloy<br />

materials.<br />

Photovoltaic, in particular for organic<br />

systems or for molecular photochemical<br />

system (where the energy conversion<br />

takes place in a single molecule),<br />

represents also a new orientation with an<br />

interesting synergy among theorists of<br />

simulation. It actually appears that all<br />

competences needed to tackle the four<br />

aspects of a photovoltaic device (as<br />

described in Figure 3) are present among<br />

NanoSTAR project members.<br />

Fig. 3: The different steps of a photovoltaic<br />

device with a pn junction.<br />

Chair of Excellence <strong>2010</strong>: Harold<br />

BARANGER<br />

Coordinator: Mireille LAVAGNA<br />

(INAC/SPSMS).<br />

The so-called CORTRANO project focuses<br />

on novel correlations that can be probed<br />

in nanoscale systems, and their influence<br />

on electronic transport or other nonequilibrium<br />

observables. A strong link<br />

between computational, analytical and<br />

model approaches will be implemented to<br />

tackle several problems in this field, i.e<br />

steady-state quantum transport,<br />

correlation and conductance in strongly<br />

inhomogeneous low-density electron gas<br />

or correlations induced on the fly by<br />

localized impurities in particular in the<br />

Josephson junction context.<br />

Thermal properties<br />

“New comers” Project 2007: Natalio<br />

MINGO (Liten)<br />

Post-doc fellow: Shidong WANG<br />

Thermal properties and in particular heat<br />

conduction are important in the contexts<br />

of electronics (heat dissipation) and<br />

energy conversion (thermoelectric<br />

devices).<br />

This project’s challenge precisely consists<br />

in mastering thermal properties of such a<br />

system.<br />

In the context of thermoelectric<br />

applications the aim is to get a system<br />

which behaves simultaneously as a<br />

crystal for electrons and as a glass for<br />

phonons. Different systems have been<br />

studied to reduce heat conduction<br />

without destroying electrical conduction<br />

in order to get a good factor of merit Z.<br />

One of the strategies employed here is to<br />

introduce nanoparticle or produce<br />

nanocomposites to obtain ‘NEAT’<br />

materials (‘Nanoparticle Embedded in<br />

Alloy Thermoelectric’ materials).<br />

(see Figure 4).<br />

For example simulation showed that<br />

Mg 2 Si x Ge y Sn 1-x-y alloys with embedded<br />

Mg 2 Si nanoparticles are promising<br />

thermoelectrics to be operated at<br />

intermediate temperature. A design of a<br />

new thermoelectric device based on semi<br />

randomly dispersed wires has also been<br />

proposed. This is the object of a patent<br />

application. The invention allows to<br />

considerably simplifying the fabrication<br />

procedure for planar thermoelectric<br />

devices. Shidong WANG, the postdoctoral<br />

fellow employed by the<br />

Foundation as part of this project,<br />

performed calculations to assess the<br />

robustness of the approach as well as its<br />

feasibility.<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

Fig. 4: The heat conduction and thermoelectric properties of system (here SiGe) can be modified<br />

by introducing nanodots which scatter phonons and reduce heat conductivity.<br />

34


Growth, patterning, defects<br />

& structure of nano-objects.<br />

The elaboration and characterisation of<br />

nano-objects is of primary importance in<br />

nanosciences and requires a mastering of<br />

complex experimental methods.<br />

Numerical simulation is of great help in<br />

understanding the details of the physical<br />

mechanism involved in elaboration<br />

procedure and in interpreting the output<br />

of methods used to analyze the structure<br />

of these objects.<br />

In this context the Nanosciences<br />

Foundation supports so far three Chairs<br />

of Excellence and one PhD student.<br />

Chair of Excellence 2009: Normand<br />

MOUSSEAU<br />

Coordinator: Pascal POCHET<br />

(INAC/SP2M)<br />

This project started in early <strong>2010</strong>. It aims<br />

at coupling a kinetic method (k-ART)<br />

developed by Pr MOUSSEAU and the abinitio<br />

code BigDFT developed initially at<br />

INAC. The new methodology will then be<br />

coupled to study the growth of three<br />

types of nanostructures: SiGe quantum<br />

dots, Si nanowires and graphene on SiC.<br />

The first tests of the new methodology<br />

have already been done on the simpler<br />

system consisting of a fullerene C20.<br />

The goal of this project is therefore to<br />

benefit from the expertise of Pr Graves in<br />

the field of MDS applied to plasmasurface<br />

interactions to assist the fast<br />

development of etching processes of<br />

graphene layers.<br />

“Fil de l’eau” PhD student 2008: Arpan<br />

Krishna DEB<br />

Thesis Director: Thierry DEUTSCH and<br />

Damien CALISTE (INAC/SP2M).<br />

This thesis deals with cluster approach to<br />

simulate defects in Si or Ge. Indeed<br />

working with charged periodic systems is<br />

a bit complicated as it involves the long<br />

range Coulomb forces and it is impossible<br />

to negate the interaction between the<br />

images created due to the periodicity in<br />

the simulation. A very common approach<br />

is to add a neutralizing background<br />

charge. But even this trick does not<br />

completely eliminate the spurious<br />

interaction of the image charges. The<br />

cluster approach clearly avoids these<br />

difficulties and open new possibilities to<br />

treat these defects.<br />

SCIENTIFIC REPORT<br />

Chair of Excellence <strong>2010</strong>: David GRAVES<br />

Coordinator: Gilles CUNGE (LTM).<br />

The Chair of Excellence of Pr GRAVES<br />

(University of California at Berkeley) will<br />

deal with Nanometer Scale Control of<br />

Graphene Processing with Innovative<br />

Plasma Technology (NSCGP). This project<br />

aims to advance nanometer-scale control<br />

of graphene processing using advanced,<br />

innovative plasma technology. In order to<br />

exploit the extraordinary power of plasma<br />

for large area, smooth and damage-free<br />

graphene film growth and patterning, it<br />

will be necessary to take a leap in plasma<br />

technology.<br />

LTM is currently investing such a new<br />

technology: pulsed plasmas. However,<br />

the interactions between reactive<br />

plasmas and surfaces are so complex<br />

that the efficient development of<br />

processes for new materials requires<br />

numerical simulations.<br />

For 20 years, Molecular Dynamic<br />

Simulations (MDS) have proved to be<br />

powerful for this purpose, but this<br />

expertise does not exist locally.<br />

Fig. 5: Cluster of Si used for the simulation of<br />

a defect. Left: cluster with no defect inside.<br />

Right: cluster with one vacancy<br />

.<br />

35


SCIENTIFIC REPORT<br />

36


9 – TECHNOLOGICAL<br />

FACILITIES<br />

Created at the early stage of the<br />

Nanosciences Foundation in 2006, the<br />

“network of technological facilities”<br />

gathers most of the facilities concerned<br />

by nanofabrication, characterization at<br />

nanoscale, simulation and modeling of<br />

nanostructures, within the scientific area<br />

covered by the Foundation. The network<br />

is aimed to coordinate the financial<br />

support provided by the Foundation to<br />

the facilities. By supporting running costs<br />

of some facilities, the Foundation also<br />

eases the access to shared equipments.<br />

With almost 1/3 of its budget dedicated<br />

to the network of technological facilities,<br />

the Foundation contributes efficiently to<br />

the development of nanotechnologies<br />

involving physics, chemistry and biology.<br />

The facilities are opened to the whole<br />

community of researchers, post doctoral<br />

fellows and students involved in<br />

nanosciences. They offer state-of-the-art<br />

equipments for nanofabrication,<br />

nanocharacterisation and numerical<br />

simulation. More than 80% of the overall<br />

projects supported by the Foundation<br />

uses or have used the equipments of the<br />

network and many other national and<br />

European projects also benefits from<br />

them.<br />

THE NETWORK<br />

The network is composed by four<br />

facilities dedicated to:<br />

Nanofabrication<br />

Nanocharacterization<br />

Nano-chemistry and biology<br />

Numerical simulation<br />

The Nanofabrication Facility<br />

This Nanofabrication facility covers 1000<br />

m 2 dispatched over two clean rooms<br />

located in close proximity. These clean<br />

rooms offer top level equipments for<br />

optical and electron beam lithography,<br />

metals and oxides deposition, reactive<br />

ion etching, chemical cleaning and<br />

etching, characterization and metrology.<br />

They are specially equipped to process<br />

samples of various sizes (from millimetre<br />

up to 4 inches). Special procedures have<br />

been implemented to avoid cross<br />

contamination as different types of<br />

materials (semiconductors, metals and<br />

polymers) can be processed in the<br />

facility. This flexibility is particularly<br />

important to provide a full access to the<br />

networks members.<br />

PTA:<br />

The Plateforme Technologique Amont<br />

(PTA) operated by CEA, <strong>CNRS</strong>, Grenoble<br />

INP and UJF and located on the MINATEC<br />

campus, provides to the community upto-date<br />

equipments for nanofabrication<br />

including electron beam lithography,<br />

etching (ion beams, reactive plasma) and<br />

deposition. The main topics developed in<br />

the PTA deal with nanoelectronics,<br />

spintronics, and photonics. Since 2009<br />

and thanks to the merger of PTA and<br />

CIME Nanotech clean rooms, the PTA<br />

provides also equipments dedicated to<br />

the fabrication of Micro-Electro<br />

Mechanical Systems (MEMS).<br />

Fig. 1: Elliptical GaAs photonic etched<br />

nanowires for shape-controlled single mode<br />

photon emission. [Coll. LETI-INAC & PTA and<br />

Nitin MALIK, a PhD student employed by the<br />

Foundation as part of the 2007 “new comers”<br />

project of Julien CLAUDON.]<br />

The Foundation provides funding to the<br />

PTA for both equipments and running<br />

costs. In 2009, the Foundation co-funded<br />

the purchase of a LPCVD equipment<br />

dedicated to polysilicon and silicon nitride<br />

deposition for an amount of 220k€. In<br />

<strong>2010</strong>, the Foundation contributed to the<br />

acquisition of a second electron beam<br />

evaporator for metal thin film deposition<br />

for an amount of 300k€. This second<br />

equipment will solve the bottle neck<br />

created by the overbooking of the<br />

existing evaporator. On the other hand,<br />

the Foundation contribution to the<br />

running costs in 2009 (250k€) and <strong>2010</strong><br />

(200k€) allowed to keep a constant cost<br />

for the PTA users in spite of the increase<br />

of the PTA running costs due partly to the<br />

merger with the CIME Nanotech facilities.<br />

Thanks to the Foundation funding, the<br />

PTA presently provides a fully operational<br />

nanofabrication facility, largely accessible<br />

to the nanotechnology and nanosciences<br />

community.<br />

The PTA activity has been constantly<br />

growing since its opening, especially for<br />

the last two years.<br />

CONTACTS<br />

François LEFLOCH<br />

francois.lefloch@cea.fr<br />

Tel: +33 4 38 78 48 22<br />

Cécile GOURGON<br />

cecile.gourgon@cea.fr<br />

Tel: +33 4 38 78 98 37<br />

37<br />

SCIENTIFIC REPORT


SCIENTIFIC REPORT<br />

An increase has been registered from<br />

11500 hours in 2009 to 19000 hours in<br />

<strong>2010</strong> which represents approximately<br />

150 running projects for the facility.<br />

The PTA serves the upstream research<br />

community but also provides an access to<br />

private companies such as CROCUS and<br />

Solar Force. An important feature of this<br />

strategy is the increase of the number of<br />

projects oriented toward industrial<br />

applications and technology transfer<br />

mostly driven by the LETI. As a<br />

consequence, LETI became the second<br />

biggest user of the PTA in <strong>2010</strong>.<br />

In conclusion, the Foundation support<br />

allowed the PTA to reach a critical mass<br />

in terms of equipments and to constantly<br />

maintain a rather accessible cost for a<br />

large community of scientists. Thanks to<br />

its potential, the PTA is expected to<br />

maintain the continuous increase of its<br />

activity in both academic and industrial<br />

areas.<br />

is crucial for the deposition of nanotubes<br />

on the substrate. Since carbon nanotubes<br />

are hydrophobic, it is difficult to suspend<br />

them in a solvent. Silanisation can treat<br />

the surfaces directly into the frame<br />

(plasma activation) without exposing the<br />

sample to the water (which reacts with<br />

the aminosilane) and reproducibly<br />

(through mass flow controllers).<br />

Another example lays in functionalization<br />

of substrates for the electrical<br />

characterization of neurons, as it was<br />

achieved in the 2007 RTRA project<br />

‘NEUROFET’.<br />

NanoFab:<br />

NanoFab facility embedded at Institut<br />

Néel hosts nanofabrication of many<br />

research programs within the<br />

nanosciences community. Equipped with<br />

tools for nanolithography (e-beam, FIB,<br />

DUV lithography), etching (RIE, IBE) and<br />

deposition (PVD, evaporation, ALD), its<br />

clean room trains a large number of PhD<br />

students and postdoctoral fellows.<br />

Originally dedicated to the fabrication of<br />

nano-objects for low temperatures<br />

nanophysics, NanoFab has kept its<br />

specialty but also evolved into new<br />

activities and new materials. The support<br />

of the Nanosciences Foundation was<br />

particularly decisive in the evolution<br />

toward "biophysics” and characterization<br />

of individual nano-objects.<br />

In 2009, the Foundation enabled the<br />

acquisition of a surface functionalization<br />

tool by oxygen plasma and "silanisation"<br />

for 120 k€. This equipment has been<br />

installed in a nano-chemistry dedicated<br />

room and open to all projects requiring<br />

surface activation.<br />

Molecular electronics involves devices<br />

whose active part is a molecule,<br />

sometimes single, connected to<br />

electrodes. Electrical measurements then<br />

give direct access to molecular orbitals. It<br />

then becomes possible to probe the<br />

quantum properties of a single molecule<br />

as Coulomb blockade or the Kondo effect.<br />

The challenge involves connecting a<br />

quantum dot consisting of a carbon<br />

nanotube and to couple it to a single<br />

molecular quantum dot magnet.<br />

However, the realization of these circuits<br />

requires a controlled silanisation step that<br />

Fig. 2 : Neuron as a gate of nanofabricated<br />

FET [C.Villard et al – NanoFab - as part of the<br />

2007 RTRA project ‘NEUROFET’)<br />

In <strong>2010</strong>, the Nanosciences Foundation<br />

helped to upgrade the FIB and e-beam<br />

nanolithography tools (for an amount of<br />

50 k €) and therefore encouraged a<br />

significant increase in work on the<br />

fabrication of devices dedicated to the<br />

characterization of individual objects,<br />

often randomly arranged on surfaces.<br />

The Nanosciences Foundation plays a<br />

crucial role in the life of NanoFab. Its<br />

contribution enables the development of<br />

a large number of funded projects (ANR,<br />

ERC...) but also not yet funded…<br />

The Nanocharacterization<br />

Facility<br />

This facility gathers top level equipments<br />

for probing nanostructures and<br />

nanodevices from atomic up to macro<br />

scale with beams of electrons, ions and<br />

X-rays. These facilities are available on<br />

the three following sites.<br />

PFNC:<br />

The so called ‘PlateForme de Nano<br />

Caractérisation’ (PFNC), located on the<br />

MINATEC campus is particularly<br />

specialized in crystallography and<br />

chemical measurements of inorganic<br />

nanostructures by high Resolution<br />

Transmission Electron Microscopy and Ion<br />

beam analysis.<br />

38


CRG:<br />

The French Cooperative Research Group<br />

(CRG) at ESRF operates equipments for<br />

the structural and chemicals analysis of<br />

nanostructures by hard X-rays diffraction<br />

and diffusion.<br />

CMTC:<br />

Grenoble INP’s ‘Consortium de Moyens<br />

Technologiques Communs’ (CMTC) offers<br />

laboratory equipments for X-ray<br />

characterization and electron microscopy<br />

analysis of nanomaterials.<br />

The nanocharacterization facility is open<br />

to a large part of the Foundation<br />

members while there are no uniform<br />

access rules because some top level<br />

equipments can only be operated by<br />

trained experts or because the selection<br />

by Program Committees is required<br />

(ESRF).<br />

In 2008, the Foundation contributed to<br />

the acquisition of a new dual beam<br />

Focused Ion Beam (FIB) that is located at<br />

the PFNC. This NVision ZEISS FIB was<br />

installed during summer 2009. Since<br />

then, numerous “expert” users have been<br />

trained to use this equipment. Now,<br />

more than 10 users from the 3 partner’s<br />

laboratories (CMTC, PTA and PFNC) are<br />

working every day to perform advanced<br />

experiments:<br />

Nanomanipulation of nanoobjects<br />

as tripod ZnO, nanowires or tores<br />

using the 4 nanomanipulators<br />

Fig. 3: MEB-FIB nanomanipulators<br />

Electrical testing on nanodevices<br />

(carbon nanotubes, memories,<br />

transistors)<br />

Thin lamella preparation for TEM<br />

observations: classical lift out with<br />

optimised end milling at low voltage to<br />

reduced implantation /amorphisation;<br />

back end preparation to avoid ion beam<br />

damage on critical structures<br />

Ion milling for nano-object<br />

making (nanopillar for 3D X-ray<br />

tomography, hole in thin layers for<br />

Synchrotron experiments, others…)<br />

3D reconstruction using the “slice<br />

and view” method. Experiment of series<br />

of images is done overnight to perform<br />

3D reconstruction with nm resolution.<br />

Tests were done on a large range of<br />

materials: SC, porous materials,<br />

Biological sample (rat heart tissues),<br />

devices for microelectronic, fuel cell …<br />

Fig. 4: TEM images of YBaCuO/LaZrO thin bilayer<br />

on NiW substrate obtained from a single<br />

12 µm TEM slice cut using the FIB (Coll.<br />

CMTC/Grenoble INP)<br />

Please read the corresponding Highlight<br />

at the end of this report for further<br />

information<br />

These experiments are done for various<br />

kinds of projects: ANR, Nanosciences<br />

Foundation, Carnot Institutes, PhD<br />

Thesis, Nano2012 for nanoscience and<br />

nanodevices applications.<br />

Additional experiments were also<br />

conducted by Earth Science Institute<br />

(‘Institut des Sciences de la Terre’ or<br />

‘ISTerre’) and ‘Grenoble Institute of<br />

Neuroscience’ or ‘GIN’ for biological<br />

applications.<br />

In <strong>2010</strong>, the Foundation has decided to<br />

partially support (~50%) the purchase of<br />

a new X-ray optics for the D2AM French<br />

CRG beamline at ESRF. This operation,<br />

which was also supported by Léti, will<br />

enable to extend the X ray photon energy<br />

up to 40 keV, and cover an energy range<br />

that is complementary to the available<br />

one at synchrotron Soleil in Saint-Aubin.<br />

This high energy range is particularly well<br />

suited to the characterization of buried<br />

interfaces and nanostructures.<br />

A significant improvement of the beam<br />

quality is also expected, which will reduce<br />

by a factor of 10 to 100 the acquisition<br />

time.<br />

SCIENTIFIC REPORT<br />

39


SCIENTIFIC REPORT<br />

The Nano-Chemistry and<br />

Biology Facility<br />

The objectives of these facilities are to<br />

provide to the community the tools for<br />

the synthesis and characterisation of<br />

molecules as well as the equipments<br />

required for analysis of organic/inorganic<br />

heterostructures and interfaces.<br />

NanoBio:<br />

The "Plateforme NanoBio-Chimie" located<br />

on the campus of Grenoble University<br />

offers equipments and tools for the<br />

synthesis of molecules, the grafting on<br />

surfaces and their characterisation (mass<br />

spectroscopy, AFM, IR spectroscopy...)<br />

and the imagery.<br />

IBS:<br />

The electron microscopy team of the<br />

‘Institut de Biologie Structurale’ (IBS) has<br />

developed the tools to study fragile<br />

materials such as living cells, proteins ,…<br />

grafted on inorganic nanostructures.<br />

The nano-chemistry and biology facility<br />

initiated in 2006 is dedicated to the<br />

conception and synthesis of bio molecules<br />

and to surface grafting. It is now well<br />

equipped for analytical characterization of<br />

final products, functionalized surfaces<br />

and molecular interactions, and is largely<br />

open to the community - the number of<br />

users increasing regularly.<br />

In 2008, the Foundation funded the<br />

purchase of an atomic force microscope<br />

AFM that works in biological media. Set<br />

up at the ‘Interdisciplinary Physics<br />

Laboratory’ (LIPhy), this new equipment<br />

belongs to the Nanobio facility (East<br />

Campus) and scientific activities have<br />

really started in September 2009.<br />

Coupled to an inverted Zeiss optical<br />

microscope, the JKP-Berlin AFM-Bio<br />

instrument allows various measurements<br />

such as cell-cell adhesion properties, the<br />

elasticity of gels or the topography of<br />

biological cells (Fig.5).<br />

The types of molecules analyzed by this<br />

technique are:<br />

biopolymers (oligonucleotides,<br />

peptides, carbohydrates)<br />

synthetic polymers<br />

various modified molecular<br />

objects functionalized by bio-organic<br />

molecules tag<br />

bio organic and inorganic<br />

complexes (non-covalent structure).<br />

MALDI-TOF mass spectral analysis was<br />

used to characterize the relative<br />

molecular weight distribution of low<br />

molecular weight polymers - decanoate<br />

-CD ester (-CD-C 10 ) - presenting a<br />

low polydispersity of substitution. The<br />

correlation between the nanoparticle<br />

ultrastructure and the total degree of<br />

substitution has been demonstrated in<br />

the case of -CD-C 10 derivatives. (DPM-<br />

ICMG).<br />

It will also be possible to perform surface<br />

imaging (laser Smartbeam TM available<br />

with this new instrument). This feature<br />

has been used to discriminate between<br />

different in vitro bacteria culture<br />

(preliminary work, CERMAV-ICMG)<br />

Finally, using modified supports by<br />

adjunction of carbon nanotubes or others<br />

nanoparticles (gold), it will be possible to<br />

increase the capabilities of the<br />

instrument. The mass spectrometry<br />

technical staff is composed by 1 research<br />

engineer (<strong>CNRS</strong>), 1 design engineer<br />

(UJF) and 2 Technicians (<strong>CNRS</strong> and UJF).<br />

In 2009, the NanoBio facility acquired a<br />

new Maldi-ToF mass spectrometer<br />

(standing for ‘Matrix assisted laser<br />

desorption/ionisation – Time of Flight’).<br />

The objectives of this facility are to<br />

provide to the community the tools for<br />

the characterization by mass<br />

spectrometry of various kinds of<br />

molecules of high mass (superior limit<br />

500 000 Da).<br />

Fig. 5: Example of AFM topography on<br />

biological cell.<br />

40


The Numerical Simulation<br />

Facility<br />

The CIMENT (Intensive Calculus,<br />

Modelisation, Numerical and Technical<br />

Experimentation) facility provides access<br />

to medium size frames for computer<br />

simulations of the physical and chemical<br />

properties of nanostructures. Operated<br />

by the Grenoble University, it is<br />

dedicated to the High Performance<br />

Computing and is actually used by<br />

several members of the Foundation for<br />

simulation of the physical, mechanical<br />

and chemical properties of<br />

nanostructures.<br />

The CIMENT facility has been financed by<br />

the Foundation via thematic projects.<br />

One of them is a 2007 RTRA project titled<br />

‘NanoSTAR’ (standing for ‘Spectroscopy<br />

and Transport Properties in Nanomaterials:<br />

Applications and Research’).<br />

This project aims at developing highlyaccurate<br />

and efficient numerical<br />

theoretical methods and applying them to<br />

spectroscopy and transport properties in<br />

nanomaterials. Such a challenge relies on<br />

the internationally recognized and<br />

complementary competences of several<br />

groups belonging to the main Grenoble<br />

institutions: Institut Neel, INAC, Grenoble<br />

INPG, UJF and Léti/MINATEC.<br />

Meanwhile this project aims at creating<br />

and funding the Grenoble node of the<br />

European Theoretical Spectroscopy<br />

Facility (ETSF, http://www.etsf.eu). The<br />

ETSF is a “knowledge centre” focusing on<br />

electronic excitations, spectroscopy and<br />

quantum transport in nanostructures and<br />

in condensed matter systems. The impact<br />

of former and future developments in the<br />

Grenoble node will be greatly enhanced<br />

by making them available through the<br />

ETSF. The sharing of the different<br />

expertises and the pool of computational<br />

resources such as CIMENT facility are<br />

crucial for the development of ETSF-<br />

Grenoble. The contribution of the<br />

Foundation (315 k€) was devoted to 2<br />

PhD thesis grants and a new<br />

supercomputer (135 k€), which is used<br />

for the calculations in the topics of the<br />

NanoSTAR project.<br />

Another action within CIMENT is led by<br />

the 2009 Chair of Excellence Normand<br />

MOUSSEAU, who has stimulated new<br />

interactions between physics groups and<br />

computer scientists. Thanks to this<br />

collaboration, CIMENT and now the<br />

‘Modeling House project’ (‘Maison de la<br />

modélisation’) has strong competences in<br />

hybrid architectures using graphics cards<br />

which boost ab initio calculations applied<br />

to nanosciences<br />

FUNDING OF THE<br />

NETWORK<br />

Except for 2011, about 20% of the<br />

budget allocated by the Foundation to the<br />

network of technological facilities is<br />

attributed to cover clean rooms operating<br />

costs and the remaining 80 % is ought to<br />

purchase new equipment.<br />

In 2009, the Foundation co-funded a new<br />

LPCVD machine at the PTA whose benefit<br />

is recognized for a wide range of activity<br />

from the MEMS and NEMS fabrication to<br />

nano-photonics and nano-electronics.<br />

At NanoFab, new equipment for surface<br />

functionalisation and “silanisation” was<br />

funded. This instrument has been crucial<br />

for the implementation of new biophysics<br />

oriented activities.<br />

In <strong>2010</strong>, 350 k€ have been devoted for<br />

the acquisition of a new metal evaporator<br />

at the PTA. This equipment is crucial to<br />

allow to continue welcoming new users<br />

and increasing the activity. The foreseen<br />

increase of this activity is expected to<br />

compensate the decrease of the support<br />

for running expenses that will stop in<br />

2012. The same year, 50 k€ were<br />

devoted to NanoFab in order to improve<br />

its electronic beam lithography (EBL)<br />

system. With this funding, NanoFab will<br />

acquire a state-of-the-art EBL system<br />

using a commercial scanning electronic<br />

microscope with enhanced repositioning<br />

performances.<br />

In 2008, the nanofabrication and<br />

nanocharacterisation facilities agreed<br />

together to ask the Foundation for the<br />

funding of a dual-beam FIB equipment.<br />

This new instrument is located at the<br />

PFNC-Minatec and is accordingly used by<br />

both facilities.<br />

The investment towards CRG-D2AM at<br />

the ESRF beam line is co-funded by both<br />

the Foundation and the Léti (RTB<br />

funding). This equipment will re-enforce<br />

the characterization capabilities of this<br />

beam line especially in the field of<br />

semiconducting nanostructures using<br />

Multiwavelength Anomalous Diffraction<br />

(MAD) and Diffraction Anomalous Fine<br />

Structure (DAFS)<br />

The Nano-Chemistry and Biology facility<br />

beneficiated in 2008 of a support for an<br />

AFM-Bio that is now fully operative. In<br />

2009, the Foundation co-funded half of a<br />

new Maldi-ToF mass spectrometer (150<br />

k€). The equipment, presently installed in<br />

LIPhy, will be located in the new Nanobio<br />

building in November 2011. Due to the<br />

complexity of the financial timing<br />

41<br />

SCIENTIFIC REPORT


consortium (Nanosciences Foundation,<br />

Région Rhône-Alpes, ICMG, CPER), this<br />

new apparatus has only been opened to<br />

scientific community lately.<br />

SCIENTIFIC REPORT<br />

Year<br />

2007-<br />

2009<br />

<strong>2010</strong> 2011<br />

Equipment<br />

Nanofabrication 1425 350 -<br />

Bio & Chemistry 660 - -<br />

Characterization 1740 200 -<br />

Simulation 135 - -<br />

Operating costs<br />

Fabrication 850 230 200<br />

Bio & Chemistry 32 - -<br />

Characterization - - -<br />

Simulation - - -<br />

Tab. 1: The Nanosciences Foundation support<br />

for the equipment and the running costs of its<br />

network facilities<br />

CONCLUSIONS<br />

After 5 years, the “network of<br />

technological facilities” offers to the<br />

community of nanosciences and<br />

nanotechnologies a large panel of top<br />

level equipments operated by very highly<br />

skilled research and technical staff. The<br />

initial choice of the Foundation to support<br />

financially a limited number of selected<br />

facilities, has been essential, first in the<br />

creation and then in the operation of the<br />

network.<br />

A true coherency now exists between the<br />

facilities which are prompted to build<br />

collaborative projects. Gaps in<br />

technologies have been filled up<br />

essentially in nanofabrication tools and<br />

processes, with a substantial support of<br />

the Foundation in a restricted number of<br />

equipments.<br />

Finally, the positive effect of networking<br />

has been the spreading out of the<br />

“culture” of technology in the community.<br />

This is shown by the increasing number<br />

of projects (research projects, Ph.D.<br />

thesis, Chairs of Excellence) which rely<br />

on micro and nanodevices built and<br />

characterized in the facilities of the<br />

network. Therefore it seems important,<br />

for the short and long term future, that<br />

the Foundation maintains a high level of<br />

involvement in the technological facilities.<br />

42


10 - EDUCATION AND<br />

SCIENTIFIC<br />

ANIMATION<br />

The scientific animation is first of all<br />

driven by the Working Groups of the<br />

Foundation that are organizing different<br />

meetings along the year with two main<br />

objectives: fostering the exchanges<br />

allowing a better reciprocal knowledge<br />

between the Foundation's partners, and<br />

helping to build a strategic and<br />

prospective analysis of possibly new<br />

scientific orientations of the Foundation.<br />

The Foundation monthly<br />

Seminars<br />

Entitled "Les Séminaires de la Fondation",<br />

this event takes place every month since<br />

November 2008. A specialist is invited to<br />

present his field of activity and its own<br />

research: it can be either a visiting<br />

scientist or one of the "Chairs of<br />

Excellence" funded by the Foundation.<br />

There is a particular will to browse a wide<br />

range of subjects, in order to offer to the<br />

Grenoble scientific community an<br />

opportunity to discover new aspects of<br />

Nanosciences. The list of all the<br />

Foundation’s monthly seminars is given<br />

below.<br />

Fig. 1: “Nano & Micro-Environment for Cell<br />

Biology” workshop. The speaker’s panel was<br />

exclusively composed of PhD students and<br />

Post-doctoral fellows, in order to encourage<br />

young researchers to share and discuss their<br />

results with all Grenoble-based research teams<br />

The Foundation’s Thesis<br />

Prize<br />

The Thesis Prize of the Foundation has<br />

been created in 2009. Its aim is to<br />

highlight the best PhD research<br />

performed in one of the laboratories of<br />

the network.<br />

In <strong>2010</strong>, two laureates have been chosen<br />

by the Steering Committee. Each of their<br />

theses was an advanced combination of<br />

basic research and device-oriented<br />

research that is central to the strength of<br />

Grenoble scientific community.<br />

SCIENTIFIC REPORT<br />

The Foundation workshops<br />

In <strong>2010</strong>, 5 workshops have also been<br />

organized by the Foundation:<br />

“Electronic Noise and Relaxation<br />

in Nanostructures” - 1 st & 2 nd April <strong>2010</strong><br />

“Grenoble projects with MEB-FIB<br />

microscope” - 11th May <strong>2010</strong><br />

“Contact and surface effects in<br />

nanostructures” - 28 th September <strong>2010</strong><br />

“New trends in Electrical<br />

Scanning Probe Microscopies” - 18 th<br />

October <strong>2010</strong><br />

“Nano & Micro-Environment for<br />

Cell Biology” – 25 th November <strong>2010</strong><br />

The aim of those workshops is to bring<br />

together local and invited scientists in<br />

order to share their experience on a<br />

chosen topic. After several talks, time is<br />

left for discussions in order to identify the<br />

roadblocks for which a collaborative effort<br />

could be beneficial in Grenoble.<br />

Those workshops’ programs are detailed<br />

below, with the names of local and<br />

invited speakers, as well as the titles of<br />

their talks.<br />

Each year, a thesis Prize Award<br />

Ceremony was organised and highlighted<br />

with talks of brilliant Grenoble scientists<br />

supported by an ERC grant or<br />

acknowledged by a prestigious scientific<br />

award. The scientific content of those<br />

ceremonies, along with the winning thesis<br />

subjects, are listed in the next pages.<br />

Fig. 2: There were two laureates for the<br />

<strong>2010</strong> Foundation Thesis Prize: Nicolas ROCH<br />

(Institut Néel) and Dimitri HOUSSAMEDDINE<br />

(INAC/SPINTEC).<br />

CONTACTS<br />

Hervé COURTOIS<br />

herve.courtois@grenoble.cnrs.fr<br />

Tel: +33 4 76 88 11 51<br />

Panagiota MORFOULI<br />

morfouli@minatec.inpg.fr<br />

Tel: +33 4 56 52 95 55<br />

43


SCIENTIFIC REPORT<br />

FURTHER READING<br />

www.elecmol.com<br />

qfs<strong>2010</strong>.neel.cnrs.fr<br />

www-moriond2011.fr<br />

www.minatec.com/infos2011<br />

embe2011.neel.cnrs.fr<br />

www.esonn.fr<br />

www.migas.inpg.fr<br />

esm.neel.cnrs.fr/2011<br />

Call for proposals<br />

“Education and Scientific<br />

Animation”<br />

In addition to its own events, the<br />

Foundation also supports actions that<br />

promote exchanges in the Nanoscience<br />

scientific community and contribute to<br />

the national and international recognition<br />

of the Grenoble network. They are<br />

workshops, conferences, or training<br />

courses for PhD students and postdoctoral<br />

scientists, like summer schools.<br />

The funding is attributed through a call<br />

for proposals process. The Steering<br />

Committee is in charge of the evaluation<br />

of all the submitted projects and<br />

agreement from the Board of the<br />

submitted proposals (that must include a<br />

tentative well-balanced budget).<br />

Since 2009, the Call for training and<br />

scientific animation proposals is<br />

disconnected from the other calls.<br />

The criteria for selection are:<br />

relevance to nanoscience<br />

strong relationship with scientific<br />

activities developed in Grenoble<br />

international visibility<br />

Grenoble campus promotion<br />

benefit for the Foundation<br />

laboratories<br />

and readability of the Foundation<br />

action.<br />

As for the selection process, an oral and<br />

public presentation of every proposal is<br />

given in front of the Working Group on<br />

Education which then reports to the<br />

Steering Committee. The latter analyses<br />

the report and makes its propositions for<br />

funding.<br />

Actions that have been supported by the<br />

Foundation are listed in tables of<br />

Appendix 5 and 6.<br />

Since 2007, the Foundation supports a<br />

series of weekly seminars entitled<br />

"Quantum Nano-electronics Seminar".<br />

The Foundation has maintained its<br />

support since then. The attendance is<br />

growing, with an average of about 30<br />

people, and consists of various scientists<br />

from many different laboratories. The<br />

support of the Foundation allows inviting<br />

speakers from foreign countries (they are<br />

listed in the Part 7 – section 3). In 2011,<br />

thanks to the related topical group, a<br />

similar series of seminars on<br />

"Nanomagnetism and Spintronics" is to<br />

be launched.<br />

In <strong>2010</strong> and 2011, 5 international<br />

conferences have been supported:<br />

5 th International Conference on<br />

Molecular Electronics, which is a major<br />

conference in the field (more than 300<br />

attendees over 5 days).<br />

QFS<strong>2010</strong>, an international<br />

symposium on Quantum Fluids and Solids<br />

organized in Grenoble with about 200<br />

participants.<br />

2011 Rencontres de Moriond on<br />

"Quantum Mesoscopic Physics" organized<br />

in the Alps by the French community,<br />

with about 150 attendees.<br />

INFOS2011, an international<br />

conference on Microelectronic devices<br />

fabrication and physics, organized in<br />

2011 on Minatec campus.<br />

EuroMBE 2011 an international<br />

conference devoted to Molecular Beam<br />

Epitaxy of semiconducting nanostructures<br />

and epilayers, organized at l'Alpe d'Huez<br />

by the <strong>CNRS</strong>-CEA joint team.<br />

Since 2008, a very significant effort is<br />

made to support the European School on<br />

Nanosciences and Nanotechnology<br />

(ESONN), created in 2004, offering young<br />

researchers (graduate students and postdoctoral<br />

scientists entering the field) a<br />

thorough training in the field, based on 3<br />

week-long program with an exact balance<br />

lectures and laboratory trainings. Many<br />

research groups of the network are<br />

involved allowing the students to work on<br />

very sophisticated experiments. The<br />

support to ESONN has been maintained<br />

in 2011, the funding being increased to<br />

26.5 k€ helping to compensate the<br />

decreasing support from the European<br />

Community.<br />

Fig. 3: ESONN <strong>2010</strong> students.<br />

In <strong>2010</strong> and 2011, the total amount<br />

dedicated to the support of actions of<br />

education and scientific animation has<br />

reached 51 and 60 k€ respectively. More<br />

events have been supported, at different<br />

levels. (see Appendix 6). Apart from<br />

ESONN, three other summer schools<br />

have received some funding from the<br />

Foundation: Graphene International<br />

School in <strong>2010</strong>, MIGAS <strong>2010</strong> and 2011<br />

and the European School on Magnetism<br />

2011.<br />

44


Q-NET: a new European<br />

Initial Training Network<br />

Fig. 4: Group picture taken at the Graphene<br />

International School. Konstantin NOVOSELOV,<br />

invited lecturer, had just received his Nobel<br />

Prize in Physics (jointly with Andre GEIM).<br />

Three workshops of one to two days,<br />

dealing with specific topics, have been<br />

supported. Even if the contribution of the<br />

Foundation is most often low compared<br />

to the total budget of the events, this<br />

commitment contributes to improve the<br />

awareness of the Foundation and of its<br />

role in the scientific community: in most<br />

cases, the opportunity is given to the<br />

Foundation Director to make a short<br />

presentation of the scope of Foundation<br />

actions.<br />

PhD students & research<br />

training<br />

The other major action of the Foundation<br />

in terms of education is research training.<br />

By providing the financial support to<br />

enrol top-level students for the<br />

preparation of a thesis, the Foundation<br />

contributes to the education of the new<br />

scientists that our society will need. It is<br />

crucial to prepare future generations to<br />

develop and adopt new technologies<br />

beyond nanotechnology. The Foundation<br />

is also closely linked to the Doctoral<br />

Schools of Grenoble. According to their<br />

topic, the Foundation’s PhD students are<br />

registered to different schools, but most<br />

of them belong either to the Doctoral<br />

School of Physics, or to the Doctoral<br />

School of Chemistry and Life Sciences.<br />

Since 2009, the relationships with the<br />

different doctoral schools have been<br />

particularly enhanced. The Director of the<br />

Foundation is now an invited member of<br />

the Council of the Doctoral School of<br />

Physics. He also acts to facilitate the<br />

involvement of the Chairs of Excellence in<br />

the lessons program of all Doctoral<br />

Schools.<br />

Focused on Quantum Nano-Electronics,<br />

Q-NET has been initiated within the<br />

Nanosciences Foundation and is to be<br />

launched in April 2011. It will provide<br />

doctoral training in the general field of<br />

Quantum Nano-Electronics, in particular<br />

spintronics, molecular electronics, singleelectronics,<br />

quantum dots and nanowires,<br />

nano-cooling.<br />

The recruited PhD students will be trained<br />

to state-of-the-art technologies of<br />

nanofabrication, near-field microscopies,<br />

transport measurement under extreme<br />

conditions (low temperatures, magnetic<br />

field, radio-frequency irradiation) and<br />

theoretical calculations. Ultimate<br />

detectors, innovative local probes, new<br />

metrological standards, on chip microcoolers<br />

will be developed. The training<br />

will be implemented through systematic<br />

secondments of young researchers from<br />

one partner to several academic and<br />

private partners.<br />

Q-NET will contribute to organize<br />

sessions of the European School On<br />

Nanosciences and Nanotechnologies<br />

(ESONN) devoted to Quantum Nano-<br />

Electronics, combining both theoretical<br />

and practical training. Annual special<br />

training sessions will be organized,<br />

covering seven complementary domains<br />

such as ethics, project management,<br />

‘IPR’ (Intellectual Property Rights),<br />

communication skills...<br />

The consortium involves most of the<br />

leading groups in the domain which<br />

contributed to the European leadership in<br />

Quantum Nanoelectronics these last ten<br />

years. Q-NET will therefore significantly<br />

contribute to meet the needs of the<br />

industry in terms of highly-skilled and<br />

open-minded scientists for leading the<br />

competition in “Beyond C-MOS” Nano-<br />

Electronics.<br />

Q-NET involves 9 partners:<br />

1. Institut Néel & LPMMC, U. Joseph<br />

Fourier and <strong>CNRS</strong>, Grenoble (H. Courtois,<br />

coordinator),<br />

2. Low Temperature Laboratory, Aalto<br />

University, Helsinki (J. P. Pekola),<br />

3. NEST CNR-INFM, Pisa (F. Giazotto),<br />

4. Attocube systems, München (K.<br />

Karrai),<br />

5. School of Physics &<br />

Astronomy,University of Leeds (C. H.<br />

Marrows),<br />

6. Laboratory for Solid State Physics,<br />

ETH Zürich (K. Ensslin),<br />

7. Microtechnology and Nanoscience,<br />

Chalmers University, Göteborg (T. Bauch),<br />

8. NanoGUNE, San Sebastian (L. E.<br />

Hueso),<br />

9. AIVON, Helsinki (J. Penttilä).<br />

FURTHER READING<br />

www.quantum-net.org<br />

SCIENTIFIC REPORT<br />

45


SCIENTIFIC REPORT<br />

Physics Olympiads<br />

The Foundation has provided for two<br />

consecutive years its financial support to<br />

the “Olympiades de Physique”, a friendly<br />

contest in which High School students<br />

from all over France take part.<br />

The idea is to give the participants the<br />

opportunity to manage their own project,<br />

according to a proper scientific approach<br />

(involving bibliographic research,<br />

experimental activities, and results<br />

analysis).<br />

In <strong>2010</strong>, the Foundation awarded the<br />

team from the French High School<br />

Regnault, which developed a micro-robot<br />

able to follow a line traced on the floor.<br />

In 2011, 3 girls from the High School<br />

Louis le Grand (Paris) demonstrated and<br />

explained the behaviour of Non-<br />

Newtonian fluids. They analysed<br />

astonishing observations collected with<br />

(dry or wet) corn starch or ketchup and<br />

even simulated these changing behaviour<br />

with specialised researchers.<br />

Fig. 5: Malik BENKIRANE and Nawfal EL JAYID<br />

were awarded by the Nanosciences Foundation<br />

Prize in <strong>2010</strong><br />

Fig. 6: Justine SAINT-HILAIRE, Alice CALLIGER<br />

and Dalia BARKLEY were awarded by the<br />

Nanosciences Foundation Prize in 2011<br />

46


Thesis Prize Award Ceremonies<br />

2009 Thesis Prize Award Ceremony<br />

19 th November 2009<br />

Speakers From Title<br />

Wolfgang<br />

WERNSDORFER<br />

Senior "ERC Advanced<br />

Grant"<br />

Bernard DIENY<br />

Senior "ERC Advanced<br />

Grant"<br />

Thomas ERNST<br />

"ERC Starting Grant"<br />

François VARCHON<br />

Laureate of the “<strong>2010</strong><br />

Nanosciences Foundation<br />

Prize”<br />

Institut Néel<br />

INAC/SPINTEC<br />

Léti<br />

Institut Néel<br />

Molecular spintronics using single-molecule magnets<br />

Spintronics phenomena and their implementation in<br />

functional devices<br />

Nanowires for multiphysics devices and circuits<br />

Electronic and structural properties of graphene on<br />

silicon carbide<br />

SCIENTIFIC REPORT<br />

<strong>2010</strong> Thesis Prize Award Ceremony<br />

2 nd December <strong>2010</strong><br />

Speakers From Title<br />

Xavier WAINTAL<br />

"ERC Consolidator Grant"<br />

Maxime RICHARD<br />

"ERC Starting Grant"<br />

INAC/SPSMS<br />

Institut Néel<br />

An example of computer assisted theory: quantum<br />

Monte-Carlo simulations of correlated quantum<br />

transport<br />

Quantum degeneracy in solid-state environment made<br />

easy<br />

Catherine PICART<br />

"ERC Starting Grant"<br />

Dimitri<br />

HOUSSAMEDDINE<br />

Laureate of the “<strong>2010</strong><br />

Nanosciences Foundation<br />

Prize”<br />

Nicolas ROCH<br />

Laureate of the “<strong>2010</strong><br />

Nanosciences Foundation<br />

Prize”<br />

Le SI DANG<br />

Laureate of the “<strong>2010</strong><br />

Gentner-Kastler Prize”<br />

LMGP<br />

INAC/SPINTEC<br />

Institut Néel<br />

Institut Néel<br />

Biomimetic films and membranes as advanced<br />

materials for studies on cellular processes<br />

Magnetization dynamics in spin torque microwave<br />

nano-oscillators<br />

Towards molecular spintronics<br />

Bose-Einstein condensation in solids<br />

47


List of the Foundation’s monthly Seminars<br />

2008<br />

Speaker From Date Title<br />

SCIENTIFIC REPORT<br />

Grant WILLSON<br />

Vincent BAYOT<br />

Chair of Excellence<br />

2009<br />

University of Texas - Austin<br />

(USA)<br />

Catholic University of<br />

Leuven (Belgium)<br />

Nov 17 th<br />

High Resolution Imaging Technology : a View of<br />

the Future<br />

Dec 18 th Scanning gate microscopy : A new tool for<br />

Nanoelectronics<br />

Speaker From Date Title<br />

Younes EZZAHRI<br />

University of California -<br />

Santa Cruz (USA)<br />

Jan 15 th Thermoélectricité: L’apport des nanostructures<br />

pour des sources d’énergie renouvelable<br />

Mairbek CHSHIEV<br />

Chair of Excellence<br />

University of Alabama<br />

(USA)<br />

Feb 26 th Recent Advances in Theory of Spintronics<br />

Phenomena<br />

Michael ROUKES<br />

Chair of Excellence<br />

California Institute of<br />

Technology – Pasadena<br />

(USA)<br />

Mar 26 th<br />

Complexity and Nanosystems: From "Craft" – to<br />

Technology – to New Frontiers<br />

Daniel BLOCH<br />

CEA Medical advisor for<br />

nanomaterials – Grenoble<br />

(France)<br />

May 26 th Nanoparticules et santé au travail: Une<br />

problématique nouvelle?<br />

Stefan JAKOBS<br />

Max Planck Institute for<br />

Biophysical Chemistry –<br />

Goettingen (Germany)<br />

Jun 18 th<br />

STED Microscopy: Focusing on Mitochondria.<br />

Paul F. BARBARA<br />

Yong ZHANG<br />

Chair of Excellence<br />

Center for Nano and<br />

Molecular Science and<br />

Technology – Austin (USA)<br />

NREL at the University of<br />

North Carolina – Charlotte<br />

(USA)<br />

Jul 6 th Are the electronic properties of conjugated<br />

polymers deformable?<br />

Oct 1 st Novel Multifunctional Inorganic-Organic Hybrid<br />

Semiconductors with Extraordinary Properties<br />

Tetiana AKSENOVA<br />

Chair of Excellence<br />

National Academy of<br />

Sciences (Ukraine)<br />

Nov 26 th<br />

Brain Computer Interfacing: From the laboratory<br />

to real life applications<br />

Alain ROCHEFORT<br />

Département de génie<br />

physique de l’École<br />

Polytechnique de Montréal<br />

Dec 17 th<br />

Imagerie STM de nanostructures organiques<br />

48


<strong>2010</strong><br />

Speaker From Date Title<br />

Researchers<br />

supported by the<br />

Foundation<br />

Jan 28 th<br />

Nanosciences Foundation’s Projects Review<br />

Nayla FAROUKI<br />

Marcelo<br />

FRANCA SANTOS<br />

Chair of Excellence<br />

John KIRTLEY<br />

Chair of Excellence<br />

Jim GREER<br />

Baruch FELDMAN<br />

Independent Philosopher<br />

and Science Historian<br />

University of Belo Horizonte<br />

(Brazil)<br />

Stanford University<br />

(USA)<br />

Tyndall National Institute -<br />

University College Cork<br />

(Ireland)<br />

Tyndall National Institute -<br />

University College Cork<br />

(Ireland)<br />

Mar 23 rd<br />

La science et l'éthique: quelle éthique?<br />

April 29 th Protecting and recovering information in<br />

entangled open systems<br />

May 27 th Fundamental studies of superconductors using<br />

scanning magnetic imaging<br />

Jun 22 nd<br />

Jun 22 nd<br />

Charge transport in molecular and semiconductor<br />

nanowires<br />

Simulations of electronic transport in ultra-thin<br />

and ultra-short junctionless transistors<br />

SCIENTIFIC REPORT<br />

Samuel MAO<br />

University of California –<br />

Berkeley (USA)<br />

July 6 th<br />

Nanostructured Organic Light-Emitting Diodes for<br />

Energy Efficient Lighting<br />

Philip WONG<br />

Chair of Excellence<br />

Stanford University<br />

(USA)<br />

Sept 23 rd<br />

Carbon Electronics – From Material Synthesis to<br />

Circuit Demonstration<br />

Stéphane REDON<br />

Center of Research ‘INRIA<br />

Grenoble - Rhône Alpes’<br />

(France)<br />

Nov 4 th<br />

Adaptive algorithms for modelling and simulating<br />

nanosystems<br />

Michael J. GORDON<br />

University of California -<br />

Santa Barbara (USA)<br />

Nov 26 th<br />

Nano to macro: synthesis, characterization, and<br />

evaluation of nanoparticle catalysts and organic<br />

photovoltaic films<br />

Claudia WIEMER<br />

RTRA Project<br />

PERCEVALL<br />

Instituto per la Microelletronica<br />

e Microsistemi -<br />

Agrate Brianza (Italy)<br />

Dec 14 th<br />

Material Perspectives for Phase Change Memories<br />

Sabine SZUNERITS<br />

Institut de Recherche<br />

Interdisciplinaire -<br />

Villeneuve d’Ascq (France)<br />

Dec 16 th<br />

Biological And Chemical Sensing On Nanoparticle<br />

Based Plasmonic Interfaces<br />

2011<br />

Speaker From Date Title<br />

Xavier BLASE<br />

Institut Néel – Grenoble<br />

(France)<br />

Jan 27 th<br />

Electronic conductivity of nanotubes and graphene<br />

from quantum simulations<br />

Normand MOUSSEAU<br />

Chair of Excellence<br />

Montreal<br />

(Canada)<br />

University<br />

Feb 22 nd ART cinétique, une méthode Monte-Carlo<br />

cinétique hors réseau avec calcul des barrières à<br />

la volée<br />

Roland HELLMANN,<br />

Géraldine SARRET<br />

& Laurent CHARLET<br />

Institute for Earth Sciences<br />

& Observatory for Earth and<br />

Planetary Sciences -<br />

Grenoble (France)<br />

Mar 31 st Geochemistry at the nanoscale: chemistry of<br />

fluid-mineral interfaces, phytoremediation, and<br />

nanotoxocology<br />

Jean-Pierre GASPARD<br />

RTRA Project<br />

PERCEVALL<br />

University of Liège<br />

(Belgium)<br />

Apr 18 th<br />

Electronic structural instabilities and information<br />

storage in Phase Change Materials<br />

49


List of the Foundation’s workshops<br />

Workshop “Auto-assemblage 2D et 3D”<br />

19 th January 2009<br />

SCIENTIFIC REPORT<br />

Invited Speakers From Title<br />

Alain DEFFIEUX<br />

Kornelius NIELSCH<br />

Laboratoire de Chimie des<br />

Polymères Organiques -<br />

Bordeaux (France)<br />

Institute of Applied Physics -<br />

University of Hamburg<br />

(Germany)<br />

Workshop “Contributions of computational simulation to Nanosciences”<br />

23 rd March 2009<br />

Nanoobjects based on single macromolecules : design<br />

and properties<br />

Lithographically Controlled Growth of Al2O3<br />

Membranes: A Tool-Box for 1D Nanostructures<br />

Local Speakers From Title<br />

Valerio OLEVANO<br />

RTRA Project<br />

NanoSTAR<br />

Institut Néel – Grenoble<br />

(France)<br />

The European Theoretical Spectroscopy Facility and the<br />

RTRA NanoSTAR: Theory and Nanoscience<br />

Christophe<br />

PRUD'HOMME<br />

Pascale MALDIVI<br />

Laboratoire Jean Kuntzmann –<br />

Grenoble<br />

(France)<br />

INAC/SCIB – Grenoble<br />

(France)<br />

Algorithmes et méthodes sur architecture hybride: le<br />

point de vue des mathématiques<br />

Apport de la chimie quantique moléculaire pour l'étude<br />

de systèmes intéressant lesnanosciences<br />

Alain PASTUREL<br />

SIMAP – Grenoble<br />

(France)<br />

Ingénierie quantique: succès et limitations<br />

Xavier BLASE<br />

Institut Néel – Grenoble<br />

(France)<br />

Transport électronique dans les nanostructures: de l'ab<br />

initio à la physique mésoscopique<br />

Mairbek CHSHIEV<br />

Chair of Excellence<br />

INAC/Spintec – Grenoble<br />

(France)<br />

Description of spintronics phenomena with tightbinding<br />

and ab-initio simulation Tools<br />

Sylvain BARRAUD<br />

LETI-Minatec – Grenoble<br />

(France)<br />

Modélisation du transport électronique dans les nanodispositifs<br />

semi-conducteurs<br />

Workshop “Super Resolution Optical Microscopy”<br />

19 th June 2009<br />

Invited Speakers From Title<br />

Stefan JAKOBS<br />

Mark NEIL<br />

Heinrich LEONHARDT<br />

Max Planck Institute -<br />

Göttingen (Germany)<br />

Imperial College – London<br />

(United Kingdom)<br />

LMU Biozentrum - Munich<br />

(Germany)<br />

STED Microscopy: Focusing on Mitochondria<br />

Structured Illumination for 3D microscopy<br />

Subdiffraction multicolor imaging of the nuclear<br />

periphery with 3D structured illumination microscopy<br />

Ulrich NIENHAUS Karlsruhe University (Germany) Advanced Fluorescent Proteins for Optical Nanoscopy<br />

50


Workshop “Super Resolution Optical Microscopy” (continued)<br />

Local Speakers From Title<br />

André VERDEL<br />

Institut Albert Bonniot –<br />

Grenoble (France)<br />

Heterochromatin formation and maintenance<br />

Annie MOLA<br />

Claire MONGE<br />

Isabelle MARTY<br />

Yves GOLDBERG<br />

Sergiy AVILOV<br />

Institut Albert Bonniot –<br />

Grenoble (France)<br />

Laboratoire de Bioénergétique<br />

Fondamentale et Appliquée –<br />

Grenoble (France)<br />

Grenoble Institute of<br />

Neurosciences – Grenoble<br />

(France)<br />

Grenoble Institute of<br />

Neurosciences – Grenoble<br />

(France)<br />

European Molecular Biology<br />

Laboratory – Grenoble<br />

(France)<br />

Le complexe passager : régulateur clé de la mitose<br />

Intracellular diffusion and organization of metabolism:<br />

system biology approach<br />

Molecular complex involved in calcium signaling<br />

Cell-cell communication in the brain via exosome<br />

transfer & CHMP2B assemblies and their role in<br />

dendritic spine morphogenesis<br />

Potential of super-resolution techniques for imaging<br />

influenza virus life cycle<br />

SCIENTIFIC REPORT<br />

Dimitrios A. SKOUFIAS<br />

Institute of Structural Biology<br />

– Grenoble (France)<br />

The need of high resolution microscopy for studies on<br />

kinetochore and centromere associated proteins<br />

Andrei POPOV<br />

Grenoble Institute of<br />

Neurosciences – Grenoble<br />

(France)<br />

Action at the microtubule ends<br />

Sébastien VIOLOT<br />

Institut de Recherche en<br />

Technologie et Sciences pour<br />

le Vivant – Grenoble (France)<br />

Interaction of actin-binding proteins with actin<br />

filaments<br />

Sylva MACHE<br />

Institut de Recherche en<br />

Technologie et Sciences pour<br />

le Vivant – Grenoble (France)<br />

Single cell transcript profiling and intracellular<br />

localisation of transcriptional components<br />

Gilles FAURY<br />

Institut de Recherche en<br />

Technologie et Sciences pour<br />

le Vivant – Grenoble (France)<br />

Evolution de la morphologie des fibres élastiques au<br />

cours du développement et du vieillissement<br />

Workshop “From Smart Materials to Devices”<br />

12 th and 13 th October 2009<br />

Invited Speakers From Title<br />

Paul BARBARA<br />

Xiaoyang ZHU<br />

Ken SHIH<br />

Lauren WEBB<br />

Keith STEVENSON<br />

Graeme HENKELMAN<br />

Sanjay BANERJEE<br />

University of Texas – Austin<br />

(USA)<br />

University of Texas – Austin<br />

(USA)<br />

University of Texas – Austin<br />

(USA)<br />

University of Texas – Austin<br />

(USA)<br />

University of Texas – Austin<br />

(USA)<br />

University of Texas – Austin<br />

(USA)<br />

University of Texas – Austin<br />

(USA)<br />

Electrogenerated Chemiluminescence of Soliton Waves<br />

in Conjugated Polymers<br />

For 0D to 3D: electron transfer at the quantum dot/bulk<br />

semiconductor interface<br />

Resonant Fluorescence of Single Quantum Dots<br />

Towards Electrostatic Control of Protein-Surface<br />

Interactions<br />

Porous Electrode Architectures for Energy Conversion<br />

and Storage<br />

Optimal annealing schedules to achieve self-assembly<br />

Nanoparticle floating gate memory<br />

51


Workshop “From Smart Materials to Devices” (continued)<br />

Local Speakers From Title<br />

SCIENTIFIC REPORT<br />

Henri MARIETTE<br />

Hervé COURTOIS<br />

Mairbek CHSHIEV<br />

Chair of Excellence<br />

Vincent BOUCHIAT<br />

Philippe PEYLA<br />

Guy ROYAL<br />

Institut Néel – Grenoble<br />

(France)<br />

Institut Néel – Grenoble<br />

(France)<br />

INAC/Spintec – Grenoble<br />

(France)<br />

Institut Néel – Grenoble<br />

(France)<br />

Laboratory for Interdisciplinary<br />

Physics – Grenoble<br />

(France)<br />

Departement de Chimie<br />

Moléculaire – Grenoble<br />

(France)<br />

Recent progresses on III-V and II-VI semiconductors<br />

nanowires at the Nanophysique et Semiconducteurs<br />

group<br />

Josephson effect and hysteresis in superconducting<br />

hybrid nanostructures<br />

Quantum description of spintronic phenomena in<br />

crystalline magnetic tunnel junctions<br />

Superconducting Transport in Carbon Nanostructures<br />

Rheology of a suspension of microswimmers<br />

Switchable materials and electronic components based<br />

on macrocyclic metal complexes<br />

Rachel AUZELY<br />

Centre de Recherche sur les<br />

Macromolécules Végétales –<br />

Grenoble (France)<br />

Polysaccharide-based hydrogels and capsules with<br />

tailor-made functional properties for drug delivery<br />

Valérie<br />

STAMBOULI-SENÉ<br />

Laboratoire des Matériaux et<br />

du Génie Physique – Grenoble<br />

(France)<br />

Label-free DNA biosensors based on<br />

electrical/electrochemical detection : towards an<br />

optimization through the electrode electrical properties<br />

Patrice RANNOU<br />

INAC/SPRAM – Grenoble<br />

(France)<br />

Self-organized thiazolo[5,4-d]thiazole-based liquid<br />

crystalline organic semiconductors for (supra)molecular<br />

(opto)electronic applications<br />

Jean-Pierre TRAVERS<br />

INAC/SPRAM – Grenoble<br />

(France)<br />

Semiconductor nanocrystals and hybrid photovoltaics<br />

Didier BOTURYN<br />

Departement de Chimie<br />

Moléculaire – Grenoble<br />

(France)<br />

New Peptidic Vectors for Tumor Imaging and Cancer<br />

Therapy<br />

David PEYRADE<br />

Laboratoire des Technologies<br />

de la Microélectronique –<br />

Grenoble (France)<br />

Colloidal nanodevices<br />

Laurent LEVY<br />

Institut Néel – Grenoble<br />

(France)<br />

Quantum Hall effect in epitaxial grapheme<br />

Mark CASIDA<br />

Departement de Chimie<br />

Moléculaire – Grenoble<br />

(France)<br />

Theoretical spectroscopy at the nano interface between<br />

solids and molecules: a beginner's guide to timedependent<br />

density-functional theory<br />

Said SADKI<br />

INAC/SPRAM – Grenoble<br />

(France)<br />

Electrochemical and spectroscopic properties of new<br />

low band gap conjugated polymers and double cable<br />

polymers for photovoltaic applications<br />

Francisco AIRES<br />

Institut de recherches sur la<br />

catalyse et l'environnement –<br />

Lyon (France)<br />

Surface science studies of catalytic surfaces in realistic<br />

conditions<br />

Loic BLUM<br />

Institut de Chimie et Biochimie<br />

Moléculaire<br />

&<br />

Supramoléculaire – Lyon<br />

(France)<br />

Structured biomolecular assemblies for the<br />

development of biochips, biomimetic membranes and<br />

enzymatic biofuel cells<br />

52


Workshop “Electronic Noise and Relaxation in Nanostructures”<br />

1 st and 2 nd April <strong>2010</strong><br />

Organised with Leonid GLAZMAN, Chair of Excellence<br />

Invited Speakers From Title<br />

Bertrand REULET<br />

Jesper NYGÅRD<br />

Carles ALTIMIRAS<br />

Simon NIGG<br />

Takis KONTOS<br />

Laboratoire de Physique des<br />

Solides – Orsay (France)<br />

Niels Bohr Institute -<br />

Copenhagen (Denmark)<br />

Laboratoire de Photonique et<br />

de Nanostructures – Marcoussis<br />

(France)<br />

Geneva University<br />

(Switzerland)<br />

Ecole Normale Supérieure -<br />

Paris (France)<br />

Elastic and Inelastic relaxation in long SNS bridges<br />

Transport in semiconductor nanowire quantum dots<br />

with superconducting contacts<br />

Non-equilibrium edge channel spectroscopy in the<br />

integer quantum Hall regime<br />

Interaction induced edge channel equilibration<br />

Orbitally phase coherent spintronics with carbon<br />

nanotubes<br />

SCIENTIFIC REPORT<br />

Alessandro DE MARTINO<br />

University of Cologne<br />

(Germany)<br />

Phonon-phonon interactions and phonon damping in<br />

carbon nanotubes<br />

Hélène BOUCHIAT<br />

Laboratoire de Physique des<br />

Solides – Orsay (France)<br />

Contact less investigation of electronic properties of<br />

nanoconductors coupled to a multimode microwave<br />

resonator<br />

Thierry MARTIN<br />

Centre de Physique Théorique<br />

– Marseille (France)<br />

Dynamic response of a mesoscopic capacitor in the<br />

presence of strong electron interactions<br />

Christophe MORA<br />

Ecole Normale Supérieure -<br />

Paris (France)<br />

Universal Resistances of the Quantum RC circuit<br />

Local Speakers From Title<br />

Laurent SAMINADAYAR<br />

Institut Néel – Grenoble<br />

(France)<br />

Electron Coherence in Quantum-Wires: The Quest for<br />

the Fermi Liquid Ground State in the Kondo Regime<br />

David CARPENTIER<br />

Ecole Normale Supérieure -<br />

Lyon (France)<br />

Conductance Fluctuations in a Spin Glass Nanowire<br />

Pascal DEGIOVANNI<br />

Ecole Normale Supérieure -<br />

Lyon (France)<br />

Decoherence and relaxation in quantum Hall edge<br />

channels<br />

Wolfgang<br />

WERNSDORFER<br />

Institut Néel – Grenoble<br />

(France)<br />

Energy Level Lifetimes in the Single-Molecule Magnets<br />

Raphaël<br />

VAN ROERMUND<br />

INAC/SPSMS – Grenoble<br />

(France)<br />

Anderson Model out of equilibrium: decoherence effects<br />

53


MEB-FIB microscope: Inauguration & Workshop<br />

11 th May <strong>2010</strong><br />

Invited Speakers From Title<br />

SCIENTIFIC REPORT<br />

Marco CANTONI<br />

Ecole Polytechnique Fédérale<br />

De Lausanne (Switzerland)<br />

Reconstruction 3D dans un FIB<br />

Local Speakers From Title<br />

Laurent MANIGUET<br />

Florence ROBAUT<br />

Fréderic CHARLOT<br />

Eric GAUTIER<br />

Consortium des Moyens<br />

Technologiques Communs –<br />

Grenoble (France)<br />

Consortium des Moyens<br />

Technologiques Communs –<br />

Grenoble (France)<br />

Consortium des Moyens<br />

Technologiques Communs –<br />

Grenoble (France)<br />

INAC/Spintec – Grenoble<br />

(France)<br />

Présentation du Projet MEB-FIB<br />

Présentation technique des colonnes MEB et FIB, des<br />

équipements et des applications<br />

Préparation de plots magnétiques par FIB face arrière<br />

pour l’observation en TEM-holographie<br />

Etienne BUSTARET<br />

Institut Néel – Grenoble<br />

(France)<br />

FIB Preparation of Single Crystal Diamond for TEM<br />

Observations<br />

Jean François MOTTE<br />

Nanofab Facilities- Grenoble<br />

(France)<br />

FIB at Nanofab : an overview of results and projects<br />

Workshop « Contact and surface effects in nanostructures »<br />

28 th September <strong>2010</strong><br />

Organised with Philip WONG, Chair of Excellence<br />

Invited Speakers From Title<br />

Philip WONG<br />

Chair of Excellence<br />

Stanford University<br />

(USA)<br />

Metal to Carbon Nanotube Low Resistance Contacts<br />

Local Speakers From Title<br />

Guillaume ALBERT<br />

INAC/SPSMS – Grenoble<br />

(France)<br />

Study of superconductor-graphene interfaces<br />

Murielle<br />

LECOCQ<br />

FAYOLLE-<br />

LETI-Minatec – Grenoble<br />

(France)<br />

Advanced Interconnect: from Copper to Carbon<br />

Nanotube via integration<br />

Pascale PHAM<br />

LETI/DTBS – Grenoble<br />

(France)<br />

Electrolyte/SC interfacial impedance<br />

Romain WACQUEZ<br />

INAC/SPSMS – Grenoble<br />

(France)<br />

Atomistic Characterisation of doped contacts in a nano<br />

MOSFET<br />

Massimo MONGILLO<br />

INAC/SPSMS – Grenoble<br />

(France)<br />

Fabrication and control of silicide contacts to undoped<br />

silicon nanowires<br />

Laurent MONTES<br />

Raul SALAZAR ROMERO<br />

Chair of Excellence<br />

Yong ZHANG<br />

IMEP-LAHC –Grenoble<br />

(France)<br />

LETI – Grenoble<br />

(France)<br />

Contacts to nanostructures<br />

"eta" solar cells with nanostructured II-VI absorber<br />

54


Workshop « New trends in Electrical Scanning Probe Microscopies»<br />

18 th October <strong>2010</strong><br />

Invited Speakers From Title<br />

Laurent NONY<br />

Franz GIESSIBL<br />

Bruno GRANDIDIER<br />

Institut des Materiaux, de la<br />

Microelectronique et des<br />

Nanosciences De Provence –<br />

Marseille (France)<br />

University of Regensburg<br />

(Germany)<br />

Institut d’Electronique, de<br />

Microélectronique et de<br />

Nanotechnologie – Lille<br />

(France)<br />

Advances in Kelvin Probe Force Microscopy on the<br />

atomic-scale: charge state characterization and<br />

chemical identification<br />

Improving spatial resolution, force resolution and ease<br />

of use in atomic force microscopy with quartz based<br />

force sensors<br />

Four-probe electrical transport measurements on<br />

individual inorganic nanowires<br />

Local Speakers From Title<br />

Benjamin GRÉVIN<br />

INAC/SPRAM – Grenoble<br />

(France)<br />

High resolution Kelvin Probe Force Microscopy<br />

investigations of organic photovoltaic blends<br />

SCIENTIFIC REPORT<br />

Nicolas CHEVALIER<br />

LETI - Grenoble<br />

(France)<br />

Applications of SCM and SSRM techniques for doping<br />

characterization<br />

Laurent MONTES<br />

IMEP-LAHC –Grenoble<br />

(France)<br />

AFM measurement of young modulus & piezoelectricity<br />

on individual nanostructures<br />

Antoine NIGUES<br />

Martin KOGELSCHATZ<br />

Bruno GILLES<br />

Claude CHAPELIER<br />

Europen Synchrotron Research<br />

Facilities – Grenoble (France)<br />

Laboratoire des Technologies<br />

de la Microélectronique –<br />

Grenoble (France)<br />

Science et Ingénierie des<br />

Matériaux et Procédés –<br />

Grenoble (France)<br />

INAC/SPSMS – Grenoble<br />

(France)<br />

Dual probes AFM head: Toward a versatile mechanical<br />

haptic nanotweezer<br />

TUNA and surface potentiel measurements<br />

Local electron tunneling measurement using an AFM<br />

Tunneling spectroscopy and Andreev spectroscopy of<br />

highly disordered superconducting films<br />

Workshop “Nano & Micro-Environment for Cell Biology”<br />

25 th November <strong>2010</strong><br />

Organised with Martial BALLAND, «New comers» project Balland<br />

Local Speakers From Title<br />

Tatiana PINEDO-RIVERA<br />

Galina DUBACHEVA<br />

Laure FOUREL<br />

Myriam REGENT<br />

Laboratoire des Technologies<br />

de la Microélectronique –<br />

Grenoble (France)<br />

Département de Chimie<br />

Moléculaire – Grenoble<br />

(France)<br />

Laboratoire des Matériaux et<br />

Génie Physique – Grenoble<br />

(France)<br />

Institut Albert Bonniot –<br />

Grenoble (France)<br />

Capillary force assembly of hard and soft-matter<br />

Detachable polymer films based on redox-driven<br />

multivalent host-guest interactions as a sacrificial<br />

platform for cell sheet engineering<br />

Unraveling BMP-2 activity on cell adhesion and<br />

migration by a combination of physical and<br />

biochemical clues<br />

Changing the rigidity of environment reveals new<br />

insights into cell adhesion and migration<br />

Bertrand FOURCADE<br />

Institut Albert Bonniot –<br />

Grenoble (France)<br />

A mechano-transduction model for integrin activation<br />

and clustering<br />

55


Valentina PESCHETOLA<br />

Laboratoire Interdisciplinaire de<br />

Physique – Grenoble (France)<br />

Cancer cell migration on 2D deformable substrates<br />

Ghislain BUGNICOURT<br />

Grenoble Institute of<br />

Neurosciences – Grenoble<br />

(France)<br />

Neurons on micro- or nano-structured surfaces: from<br />

enhanced growth to a control of polarity<br />

SCIENTIFIC REPORT<br />

Muriel AUZAN<br />

Ofélia MANITI<br />

Agnes KAWSKA<br />

Anne MARTEL<br />

RTRA Project<br />

NANOBIODROP<br />

Lydia CARO<br />

CYTOO – Grenoble (France)<br />

Laboratoire des Matériaux et<br />

Génie Physique – Grenoble<br />

(France)<br />

Institut de Recherche en<br />

Technologie et Sciences pour le<br />

Vivant – Grenoble (France)<br />

Institut de Biologie Structurale<br />

– Grenoble (France)<br />

Institut de Biologie Structurale<br />

– Grenoble (France)<br />

Using adhesive micropatterns in cell-based assays<br />

improves visualization and quantitative analysis of drug<br />

effects<br />

Systèmes biomimétiques d’étude de l’interaction<br />

cytosquelette/membrane plasmique médiée par une<br />

protéine de la famille des ERM<br />

Force generation in dense actin networks<br />

Artificial membranes on chip for high throughput studies<br />

of ion channels<br />

Bio-inspired receptor-ion channels to control the<br />

electrical activity of cells<br />

Jing JING<br />

Centre de Recherche sur les<br />

Macromolécules Végétales –<br />

Grenoble (France)<br />

Nano-engineered capsules based on chemically modified<br />

polysaccharides as multicompartment drug carriers<br />

56


List of the Quantum Nanoelectronics Seminars<br />

Quantum Nanoelectronics Seminars in 2008<br />

Speaker From Date Title<br />

Christian<br />

SCHÖNENBERGER<br />

Michael ROUKES<br />

Chair of Excellence<br />

Xavier WAINTAL<br />

University of Basel<br />

(Switzerland)<br />

Californian Institute of<br />

Technology(USA)<br />

Service de Physique de<br />

l'Etat Condense –<br />

CEA Saclay (France)<br />

Jan 15 th<br />

Jan 16 th<br />

Spin and Charge Transport in Carbon Nanotube<br />

Hybrid Quantum Dots<br />

Advances in Nanoelectromechanical systems<br />

Jan 22 nd Existe-t-il des métaux à deux dimensions?<br />

Localisation et corrélations électroniques dans les<br />

MOSFETS au Silicium de haute mobilité.<br />

Vittorio PELLEGRINI INFM - Pisa (Italy) Feb 5 th Shining light on correlated electrons in lowdimensional<br />

semiconductors<br />

Xiaoqin LI<br />

Felicien SCHOPFER<br />

University of Texas - Austin<br />

(USA)<br />

Laboratoire National de<br />

Métrologie et d’Essais –<br />

Trappes (France)<br />

Feb 12 th<br />

Mar 12 th<br />

Multidimensional snapshots of electron dynamics<br />

and couplings in semiconductors<br />

Métrologie quantique<br />

SCIENTIFIC REPORT<br />

Pascal DEGIOVANNI<br />

Ecole Normale Supérieure -<br />

Lyon (France)<br />

Mar 18 th<br />

Quantum detection of electronic flying qubits<br />

Yaroslav M. BLANTER<br />

Delft University of<br />

Technology<br />

(The Netherlands)<br />

Mar 25 th<br />

Boundaries in graphene<br />

Frederic PIERRE<br />

Laboratoire de Photonique<br />

et de Nanostructures –<br />

Marcoussis<br />

(France)<br />

Lois de composition des impédances dans les<br />

Apr 1 st circuits mésoscopique: Test expérimental de la<br />

théorie du blocage de Coulomb dynamique<br />

généralisée aux conducteurs cohérents<br />

Patrice BERTET<br />

Service de Physique de<br />

l'Etat Condense –<br />

CEA Saclay (France)<br />

May 13 th<br />

Continuously monitoring the quantum oscillations<br />

of an electrical circuit<br />

Olivier BOURGEOIS<br />

Institut Néel - Grenoble<br />

(France)<br />

May 20 th<br />

Effet de la topologie sur la capacité calorifique et<br />

la conductance thermique de nano-objets<br />

Klaus ENSSLIN ETH – Zürich (Switzerland) May 27 th Electron counting in quantum dots<br />

Laurent VILA INAC – Grenoble (France) Jun 3 rd Evolution of the Spin Hall Effect in Pt Nanowires:<br />

Size and Temperature Effects<br />

Pertti HAKONEN<br />

Helsinki University of<br />

Technology (Finland)<br />

Jun 10 th<br />

Shot noise in single walled carbon nanotubes and<br />

in graphene<br />

David CARPENTIER<br />

Ecole Normale Supérieure -<br />

Lyon (France)<br />

Jun 17 th Coherent Electronic Transport Through a Spin<br />

Glass<br />

David VITALI Camerino University (Italy) Jun 24 th micromechanical oscillators in optomechanical<br />

Ground state cooling and entanglement of<br />

systems<br />

Aashish CLERK<br />

McGill University – Montreal<br />

(Canada)<br />

Jul 1 st<br />

Entanglement dynamics in a dispersively coupled<br />

qubit-resonator system<br />

Michelle SIMMONS<br />

University of New South<br />

Wales – Sydney (Australia)<br />

Sep 2 nd<br />

Atomic scale silicon device fabrication<br />

Michele GOVERNALE<br />

Ruhr Universität - Bochum<br />

(Germany)<br />

Sep 10 th<br />

Non-equilibrium superconducting proximity effect<br />

and non-local Andreev transport in hybrid<br />

systems with interacting quantum dots<br />

Joaquin<br />

FERNANDEZ-ROSSIER<br />

Chair of Excellence<br />

University of Alicante<br />

(Spain)<br />

Sep 16 th Magnetism and spintronics in graphene<br />

nanostructures<br />

Max HOFHEINZ<br />

Chair of Excellence<br />

University of California -<br />

Santa Barbara (USA)<br />

Oct 14 th<br />

Manipulating photons in a microwave resonator<br />

with a phase qubit<br />

57


Mikhail FEIGEL'MAN<br />

Landau Institute for<br />

Theoretical Physics –<br />

Moscow (Russia)<br />

Oct 21 st Fractal superconductivity near localization<br />

threshold<br />

Jukka PEKOLA Helsinki University (Finland) Nov 12 th Experiments on the quantum of thermal<br />

conductance<br />

SCIENTIFIC REPORT<br />

Alberto MORPURGO<br />

Hartmut BUHMANN<br />

Felix VON OPPEN<br />

Geneva University<br />

(Switzerland)<br />

Würzburg University<br />

(Germany)<br />

Free University of Berlin<br />

(Germany)<br />

Quantum Nanoelectronics Seminars in 2009<br />

Takis KONTOS<br />

Nov 18 th<br />

Nov 26 th<br />

Dec 2 nd<br />

Mesoscopic physics with organic transistors<br />

Phase Coherent Transport Phenomena in HgTe<br />

Quantum Well Structures<br />

Physics of single-molecule transistors<br />

Speaker From Date Title<br />

Fabien PORTIER<br />

Ecole Normale Supérieure -<br />

Paris (France)<br />

Service de Physique de<br />

l'Etat Condense –<br />

CEA Saclay (France)<br />

Jan 6 th<br />

Jan 13 th<br />

Le bruit d'une impureté Kondo<br />

Une expérience d'Hanburry-Brown et Twiss avec<br />

des électrons et des photons<br />

Jonathan FINLEY<br />

Walter Schottky Institute –<br />

Munich (Germany)<br />

Jan 27 th Electrical control of spontaneous emission and<br />

strong coupling for a single quantum dot<br />

Marco APRILI<br />

Laboratoire de Physique des<br />

Solides – Orsay (France)<br />

Feb 3 rd<br />

Dynamique de la Phase et de l’Aimantation dans<br />

des Jonctions Josephson Ferromagnétiques<br />

Martino POGGIO<br />

University of Basel<br />

(Switzerland)<br />

Mar 3 rd<br />

Ultra-sensitive force detection applied to magnetic<br />

resonance imaging<br />

Miguel MONTEVERDE<br />

Maxime RICHARD<br />

«New comers»<br />

Project Richard<br />

Laboratoire de Physique des<br />

Solides – Orsay (France)<br />

Institut Néel – Grenoble<br />

(France)<br />

Mar 10 th Quantum magneto-transport in monolayer and<br />

bilayer graphene<br />

Mar 17 th Toward room temperature Bose-Einstein<br />

Condensation of exciton-polaritons<br />

M. YAMAMOTO University of Tokyo (Japon) Mar 24 th Aharonov-Bohm ring with a fully controlled flying<br />

Observation of quantum phase shift in an<br />

charge qubit<br />

Vladimir I. FALKO<br />

University of Lancaster<br />

(United Kingdom)<br />

Mar 31 st<br />

Quantum transport in disordered graphene: weak<br />

localisation and mesoscopics<br />

Denis VASYUKOV<br />

University of Exeter<br />

(United Kingdom)<br />

Apr 28 th Photo-induced anomalous Hall and circular<br />

photogalvanic effects in 2D hole gases in<br />

perpendicular magnetic field<br />

Adrian BACHTOLD<br />

Institut Català de<br />

Nanotecnologia - Bellaterra<br />

(Spain)<br />

May 5 th<br />

Nanotube and Graphene ElectroMechanics<br />

Marine GUIGOU<br />

Université de Marseille<br />

(France)<br />

May 12 th<br />

Ecrantage d'un fil quantique par une pointe de<br />

STM : propriétés spectrales et de transport<br />

Lieven VANDERSYPEN<br />

Delft University of<br />

Technology<br />

(The Netherlands)<br />

May 19 th<br />

Coherence and control of individual electron spins<br />

in quantum dots<br />

Laurent<br />

SAMINADAYAR<br />

Institut Néel – Grenoble<br />

(France)<br />

Jun 9 th<br />

Cohérence quantique, effet Kondo et désordre<br />

58


Hélène LE SUEUR<br />

Laboratoire de Photonique<br />

et de Nanostructures –<br />

Marcoussis (France)<br />

Jun 16 th Interactions entre électrons en régime Hall<br />

quantique<br />

Joël CHEVRIER<br />

Institut Néel – Grenoble<br />

(France)<br />

Jun 23 th Measures of Casimir force and of near-field<br />

radiative heat transfer<br />

Christoph STRUNK<br />

Joaquin<br />

FERNANDEZ-ROSSIER<br />

Chair of Excellence<br />

G. A. STEELE<br />

Arne BRATAAS<br />

Thierry CHAMPEL<br />

University of Regensburg<br />

(Germany)<br />

University of Alicante<br />

(Spain)<br />

Delft University of<br />

Technology<br />

(The Netherlands)<br />

Norwegian University of<br />

Science and Technology –<br />

Trondheim (Norway)<br />

Laboratoire de Physique et<br />

Modélisation des Milieux<br />

Condensés – Grenoble<br />

(France)<br />

Jun 30 th<br />

Jul 7 th<br />

Carbon nanotubes as a playground for quantum<br />

physics: From band structure to splitting Cooper<br />

pairs<br />

Probing and manipulating the spin of magnetic<br />

adatoms and molecules with tunneling electrons<br />

Jul 21 st Clean carbon nanotubes: From single electron<br />

quantum dots to ultra-high quality mechanical<br />

resonators<br />

Sep 8 th Magnetoelectronic Spin Transfer Torque,<br />

Dissipation, and Noise<br />

Sep 29 th Local density of states in disordered twodimensional<br />

electron gases at high magnetic field<br />

SCIENTIFIC REPORT<br />

Aurélien FAY<br />

Low<br />

Temperature<br />

Laboratory, Helsinki<br />

University of Technology,<br />

Finland<br />

Oct 13 th Conductivity, shot noise, and hot phonons in<br />

bilayer graphene<br />

Gonzalo USAJ<br />

Centro Atomico Bariloche e<br />

Instituto Balseiro –<br />

Bariloche (Argentina)<br />

Oct 20 th<br />

Spintronics in Graphene<br />

Peter SAMUELSSON Lund University (Sweden) Dec 1 st Finite temperature entanglement in the electronic<br />

two-particle interferometer<br />

Hongqi XU Lund University (Sweden) Dec 15 th Spin States and Spin correlation in Semiconductor<br />

Quantum Structures<br />

Quantum Nanoelectronics Seminars in <strong>2010</strong><br />

Speaker From Date Title<br />

Nicolas REGNAULT<br />

Frank HEKKING<br />

Xavier JEHL<br />

Ecole Normale Supérieure -<br />

Paris (France)<br />

Laboratoire de Physique et<br />

Modélisation des Milieux<br />

Condensés – Grenoble<br />

(France)<br />

INAC/SPSMS – Grenoble<br />

(France)<br />

Jan 12th Anatomie des états de l'effet Hall quantique<br />

fractionnaire<br />

Jan 19 th Phase-charge duality in Josephson junction<br />

circuits: Role of inertia and effect of microwave<br />

irradiation<br />

Jan 26 th Probing a single dopant in ultra-scaled CMOS<br />

transistors<br />

Antoine HEIDMANN<br />

Laboratoire Kastler Brossel<br />

– Paris (France)<br />

Feb 2 nd<br />

Micro-résonateurs et pression de radiation : vers<br />

l'optomécanique quantique.<br />

Oleg YEVTUSHENKO<br />

University of Munich<br />

(Germany)<br />

Mar 2 nd<br />

Dimensional Crossover of the Dephasing Time in<br />

Disordered Mesoscopic Rings<br />

Sergio O.<br />

VALENZUELA<br />

Institut Català de<br />

Nanotecnologia - Bellaterra<br />

(Spain)<br />

Mar 9 th Landau-Zener-Stuckelberg interferometry in<br />

superconducting qubits<br />

59


Yuli V. NAZAROV<br />

Delft University of<br />

Technology<br />

(The Netherlands)<br />

Mar 16 th<br />

Fully Overheated Single-Electron Transistor<br />

Anton ANDREEV<br />

University of Washington –<br />

Seattle (USA)<br />

Mar 23 rd<br />

Resistance of pn- junctions in strongly correlated<br />

armchair nanotubes<br />

SCIENTIFIC REPORT<br />

Alexei ORLOV<br />

Thierry GIAMARCHI<br />

Yakov FOMINOV<br />

Xavier MARIE<br />

University of Notre-Dame –<br />

Indiana (USA)<br />

Geneva University<br />

(Switzerland)<br />

Landau Institute for<br />

Theoretical Physics –<br />

Moscow (Russia)<br />

Laboratoire de Physique et<br />

Chimie des Nano-Objets –<br />

Toulouse (France)<br />

Apr 6 th Recent Experimental Developments In<br />

Nanomagnetic Logic<br />

April 13 th<br />

April 20 th<br />

Luttinger liquid in presence of a bath<br />

Superconducting triplet spin valve<br />

May 4 th Dynamique de Spin dans des Nano-Objets<br />

Semiconducteurs<br />

Moshe GOLDSTEIN Bar-Ilan University (Israel) May 5 th quantum dots: A case for quantum phase<br />

Population switching and charge sensing in<br />

transitions<br />

Hakan TURECI ETH – Zürich (Switzerland) May 11 th The Kondo exciton: a quantum quench towards<br />

strong spin-reservoir correlations<br />

Alexey BEZRYADIN<br />

University of Illinois -<br />

Urbana-Champaign (USA)<br />

May 18 th<br />

Superconductor-insulator transition in sub-10 nm<br />

nanowires<br />

Robert S WHITNEY<br />

Institut Laue-Langevin -<br />

Grenoble (France)<br />

May 25 th<br />

From the Aharonov-Bohm effect to Peltier-cooling<br />

in mesoscopic devices<br />

Gwendal FÈVE<br />

Ecole Normale Supérieure -<br />

Paris (France)<br />

Jun 1 st Fluctuations de courant d’une source d’électrons :<br />

une preuve de l’émission contrôlée d'électrons<br />

uniques<br />

Thomas EBBESEN<br />

Institut de Science &<br />

d'Ingénierie<br />

Supramoléculaires –<br />

Strasbourg (France)<br />

Jun 8 th<br />

Light and Metal - Fundamentals and Applications<br />

of Surface Plasmons<br />

LianFu WEI<br />

Southwest<br />

University (China)<br />

Jiaotong<br />

Jun 15 th<br />

Adiabatic manipluations of Josephson qubits for<br />

quantum computing<br />

Vincent BOUCHIAT<br />

Institut Néel – Grenoble<br />

(France)<br />

Jun 22 nd Graphene as an Open Platform for Tuning 2D<br />

Electronic Transitions<br />

Michel DEVORET<br />

Yale University (USA) &<br />

Collège de France – Paris<br />

(France)<br />

Jun 29 th<br />

L'amplification des signaux quantiques<br />

Markus BUTTIKER<br />

Geneva University<br />

(Switzerland)<br />

Aug 31 st<br />

Chirality and fluctuation relations in mesoscopic<br />

tranpsort<br />

Alexander ALTLAND<br />

Cologne University<br />

(Germany)<br />

Sep 7 th<br />

Fluctuation relations in mesoscopic transport<br />

Jürgen LISENFELD<br />

Karlsruhe University<br />

(Germany)<br />

Sep 14 th Coherence properties of two-level-systems in<br />

superconducting phase qubits<br />

Jason ROBINSON<br />

Cambridge University<br />

(United Kingdom)<br />

Sep 28 th<br />

Enhancing the Proximity Effect in Superconductor<br />

/ Ferromagnet Devices<br />

Sebastian BERGERET<br />

San Sebastian University<br />

(Spain)<br />

Oct 5 th Theory of supercurrent in microwave-irradiated<br />

quantum point contacts<br />

60


Quantum Nanoelectronics Seminars in <strong>2010</strong> (continued)<br />

Philippe JOYEZ<br />

Service de Physique de<br />

l'Etat Condense –<br />

CEA Saclay (France)<br />

Oct 12 th Tunneling spectroscopy of individual Andreev<br />

Bound States in a carbon nanotube<br />

Stevan NADJ-PERGE<br />

Corinna KOLLATH<br />

Delft University of<br />

Technology<br />

(The Netherlands)<br />

Ecole Polytechnique -<br />

Palaiseau (France)<br />

Nov 2 nd<br />

Nov 9 th<br />

Spin-orbit qubits in InAs nanowires<br />

Dynamics in strongly correlated ultracold gases<br />

Thomas ERNST Léti – Grenoble (France) Nov 16 th A multilevel nanowire technology<br />

Marco APRILI<br />

Thierry DEUTSCH<br />

Christophe DELERUE<br />

Laboratoire de Physique des<br />

Solides – Orsay (France)<br />

INAC/SP2M/L_SIM –<br />

Grenoble (France)<br />

Institut d'Electronique, de<br />

Microélectronique et de<br />

Nanotechnologie – Lille<br />

(France)<br />

Nov 23 rd<br />

Phase cooling<br />

Nov 30 th Calcul intensif pour les nanosciences : les<br />

méthodes ab initio<br />

Dec 7 th<br />

A single silicon dangling bond: deep insight into a<br />

quantum system<br />

SCIENTIFIC REPORT<br />

Tomáš NOVOTNÝ<br />

Charles University – Prague<br />

(Czech Republic)<br />

Dec 14 th<br />

Interaction effects on noise in nanojunctions<br />

Quantum Nanoelectronics Seminars in 2011<br />

Speaker From Date Title<br />

Andrea FERRARI<br />

Markus MÜLLER<br />

University of Cambridge<br />

(USA)<br />

International Centre for<br />

Theoretical Physics – Trieste<br />

(Italy)<br />

Jan 11 th Nanotechnology with graphene, nanotubes and<br />

diamond-like carbon<br />

Jan 18 th Quantum glasses – frustration and collective<br />

behavior at zero temperature<br />

Claude CHAPELIER<br />

INAC/SPSMS/<br />

LATEQS, France<br />

Jan 25 th<br />

Localization of preformed Cooper pairs in highly<br />

disordered superconducting films<br />

Inès SAFI<br />

Laboratoire de Physique des<br />

Solides – Orsay (France)<br />

Feb 1 st How to measure tunnelling charges without<br />

recourse to current noise?<br />

Erik BAKKERS<br />

Delft University of<br />

Technology<br />

(The Netherlands)<br />

Feb 8 th<br />

Periodic Nanowire Structures<br />

Alexey USTINOV<br />

Leonardo DICARLO<br />

Karlsruhe University<br />

(Germany)<br />

Delft University of<br />

Technology<br />

(The Netherlands)<br />

Feb 15 th Using a Josephson junction for manipulating<br />

microscopic atomic dipoles<br />

Feb 22 nd Preparation and measurement of multi-qubit<br />

entanglement<br />

Ali EICHENBERGER<br />

Federal Office of Metrology<br />

– Bern (Switzerland)<br />

Mar 1 st<br />

The watt balance route towards a new definition<br />

of the kilogram<br />

Piet BROUWER<br />

Free University of Berlin<br />

(Germany)<br />

Mar 8 th Majorana fermions and the superconductor<br />

proximity effect in half-metallic ferromagnets<br />

Vincent BAYOT<br />

Chair of Excellence<br />

Catholic University of<br />

Leuven (Belgium)<br />

Mar 29 th<br />

Imaging Coulomb islands inside a quatum Hall<br />

interferometer<br />

Tobias MICKLITZ<br />

Free University of Berlin<br />

(Germany)<br />

Apr 12 th<br />

Equilibration and Transport in 1D quantum wires<br />

61


Part III: SCIENTIFIC<br />

PRODUCTION<br />

2007 Call for Proposals<br />

Modelisation of magnetic nanostructures<br />

Chair of Excellence: Mairbeck CHSHIEV<br />

Post-doctoral fellow: Alan KALITSOV<br />

PhD student: Hongxin YANG<br />

Book chapter<br />

"Introduction to spin transfer torque", C. Baraduc, M. Chshiev, U. Ebels, in Nanomagnetism and Spintronics -<br />

Fabrication, Materials, Characterization and Applications , Eds: F. Nasirpouri, A. Nogaret, World Scientific Publishing,<br />

Singapore, 2009, pp. 173-192<br />

Publications<br />

"A two-band model of spin polarized transport in Fe|Cr|MgO|Fe magnetic tunnel junctions”, A. Vedyayev, N.<br />

Ryzhanova, N. Strelkov, M. Chshiev and B. Dieny, J. Appl. Phys. 107, 09C720 (<strong>2010</strong>)<br />

"Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel<br />

junctions", S.-C. Oh, S.-Y. Park, A. Manchon, M. Chshiev, J.-H. Han, H.-W. Lee, J.-E. Lee, K.-T. Nam, Y. Jo, Y.-C. Kong, B.<br />

Dieny & K.-J. Lee, Nature Physics 5, 898 (2009); advance online publication, 25 October 2009 | doi:10.1038/nphys1427<br />

"Stable hydroxyl network on diamond (001) via first-principles and MD investigation", H. X. Yang, L. F. Xu, C. Z.<br />

Gu, Z. Fang, S. B. Zhang, M. Chshiev, Surf. Sci. 603, 3035 (2009)<br />

"Origin of low Gilbert damping in half metals", C. Liu, C. K. A. Mewes, M. Chshiev, T. Mewes, and W. H. Butler,<br />

Appl. Phys. Lett. 95, 022509 (2009)<br />

"Spin-transfer torque in magnetic tunnel junctions", A. Kalitsov, M. Chshiev, I. Theodonis, N. Kioussis, and W. H.<br />

Butler, Phys. Rev. B 79, 174416 (2009)<br />

"Voltage Dependence of Spin Transfer Torque in Magnetic Tunnel Junctions", M. Chshiev, I. Theodonis, A.<br />

Kalitsov, N. Kioussis and W. H. Butler, IEEE Trans. Magn., IEEE Trans. Magn. 44, 2543 (2008)<br />

"Description of current-driven torques in magnetic tunnel junctions", A. Manchon, N. Ryzhanova, A. Vedyayev,<br />

M. Chshiev and B. Dieny, J. Phys.: Cond. Matter, 20, 145208 (2008)<br />

"Oscillatory interlayer exchange coupling in MgO tunnel junctions with perpendicular magnetic anisotropy", L. E.<br />

Nistor, B. Rodmacq, S. Auffret, A. Schuhl, M. Chshiev and B. Dieny, Phys. Rev. B. Received 16 April <strong>2010</strong>; published 15<br />

June <strong>2010</strong>. 10.1103/PhysRevB.81.220407<br />

"Effect of Structural Relaxation and Oxidation Conditions on Interlayer Exchange Coupling in Fe|MgO|Fe Tunnel<br />

Junctions," H. X. Yang, M. Chshiev, A. Kalitsov, A. Schuhl, W. H. Butler, Appl. Phys. Lett., <strong>2010</strong>, vol. 96, n o 26, [Note(s):<br />

262509.1-262509.3]<br />

"Finite Element Modeling of Charge and Spin-currents in Magnetoresistive Pillars with Current Crowding Effects,"<br />

N. Strelkov, A. Vedyayev, D. Gusakova, L. D. Buda-Prejbeanu, M. Chshiev, S. Amara, A. Vaysset, B.Dieny, Magnetic<br />

Letters, 10.1109/LMAG.<strong>2010</strong>.2069556<br />

PART 3<br />

Invitations to talk at conferences:<br />

"Spin transfer torques in magnetic tunnel junctions ", Gordon Research Conferences "Magnetic nanostructures",<br />

Bates College, Lewiston, ME, USA, August 8-13, <strong>2010</strong><br />

"Non-collinear spin transport in layered structures and bulk materials for spintronics", MINATEC Upstream<br />

Research, MINATEC Crossroads'10, Grenoble, France, June 23-24, <strong>2010</strong><br />

"Quantum theory of spin transfer torques in a view of memory applications", International Symposium on<br />

Integrated Functionalities (ISIF <strong>2010</strong>), San Juan, PR, USA, June 13-16 <strong>2010</strong><br />

"Finite element modeling of charge and spincurrents in CPP GMR structures", N. Strelkov, A. Vedyaev, L. Buda-<br />

Prejbeanu, M. Chshiev and B. Dieny, 2009 Intermag Conference, Sacramento, CA, USA, May 4-8, 2009, EA-06<br />

"Voltage dependence properties of ballistic spin currents and spin transfer torques in magnetic tunnel junctions",<br />

2009 APS March Meeting, Pittsburgh, PA, March 16-20, X29.0006<br />

"Description of spintronic phenomena with tight-binding and ab-initio simulation tools", Workshop de la<br />

Fondation Nanosciences "Les apports de la simulation numérique en nanosciences", Grenoble, France, March 23, 2009<br />

"Nature of voltage dependence of spin transfer torque in magnetic tunnel junctions", 2008 Intermag Conference,<br />

Madrid, Spain, May 4-8, 2008, CC-02<br />

"Design of new spintronic materials"(with W. H. Butler), International School M-SNOW 2008, Nancy, France,<br />

November 23-25, 2008<br />

"Voltage dependence of spin transfer torques in magnetic tunnel junctions", MINT Workshop "Materials for Spin<br />

Transfer Torque MRAM", Tuscaloosa, AL, October 15, 2008<br />

"Modelling Spintronic Phenomena", MINATEC Crossroads'08, Grenoble, France, June 24, 2008<br />

"Finite element modeling of charge and spincurrents in CPP GMR structures" N. Strelkov, A. Vedyaev, L. Buda-<br />

Prejbeanu, M. Chshiev and B. Dieny, 2009 Intermag Conference, Sacramento, CA, USA, May 4-8, 2009, EA-06<br />

1


Invitations to talk at seminars:<br />

"Recent advances in theory of spintronic phenomena", a Nanosciences Foundation seminar, Grenoble,<br />

France, February 26, 2009<br />

"Spin dependent transport properties and electronic structure of materials for spintronics", University of<br />

Maryland Eastern Shore, Princess Anne, MD, USA, October 30, 2007<br />

"Spin torque in magnetic tunnel junctions and electronic structure of materials for spintronics", <strong>CNRS</strong>/Thales,<br />

June 13, 2007<br />

"Spin torque in magnetic tunnel junctions and electronic structure of materials for spintronics",<br />

IPCMS/GEMME, Strasbourg (France), July 27, 2007<br />

"Spin-dependent transport in structures with giant and tunnel magnetoresistance", California State University,<br />

Northridge, CA, USA, January 2005<br />

"Transport polarisé en spin dans une jonction tunnel à double barrière", an Institut Louis Neel seminar, Avril,<br />

2002<br />

"Spin-Polarized Transport in Double Barrier Junctions assisted by quantum well states", Colloquium, Thales CSF –<br />

Université Paris-Sud, January, 2001<br />

PART 3<br />

Oral presentations and posters<br />

"Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel<br />

junctions", S.-C. Oh, S.-Y. Park, A. Manchon, M. Chshiev, J.-H. Han, H.-W. Lee, J.-E. Lee, K.-T. Nam, Y. Jo, Y.-C. Kong, B.<br />

Dieny & K.-J. Lee, <strong>2010</strong> APS March Meeting, March 15–19, <strong>2010</strong>; Portland, OR, USA, L37.00010;<br />

"Effect of oxidation on interlayer exchange coupling in Fe|MgO|Fe tunnel junctions", H. Yang, M. Chshiev, A.<br />

Kalitsov, A. Schuhl and W.H. Butler, <strong>2010</strong> APS March Meeting, March 15–19, <strong>2010</strong>; Portland, OR, USA, S1.00121;<br />

"Voltage induced control and magnetoresistance of magnetically frustrated systems", A. Kalitsov, M. Chshiev, B.<br />

Canals and C. Lacroix, <strong>2010</strong> APS March Meeting, March 15–19, <strong>2010</strong>; Portland, OR, USA, Y34.00011;<br />

"Voltage induced control and magnetoresistance of magnetically frustrated systems",A. Kalitsov, M. Chshiev, B.<br />

Canals and C. Lacroix, 11 th Joint MMM/Intermag Conference, Washington, DC, Jan. 18-22, FV-16<br />

"Spin polarized transport in Fe|Cr|(Fe)|MgO|Fe magnetic tunnel junctions using a two-band model", A.<br />

Vedyayev, N. Ryzhanova, N. Strelkov, M. Chshiev and B. Dieny, 11 th Joint MMM/Intermag Conference, Washington, DC,<br />

Jan. 18-22, FB-07<br />

"Effect of oxidation conditions on interlayer exchange coupling in Fe|MgO|Fe tunnel junctions from first-principles<br />

and tightbinding approaches",<br />

H. Yang, M. Chshiev, A. Kalitsov, A. Schuhl and W.H. Butler, 11 th Joint MMM/Intermag Conference, Washington, DC, Jan.<br />

18-22, FB-08<br />

"Modélisation des courants de charge et de spin dans des dispositifs de géométrie complexe", Strelkov N., D.<br />

Gusakova, Vedyayev A., Ryzhanova N., Buda-Prejbeanu L. D., Chshiev M., Amara S., Vaysset A., Baraduc C., Dieny B,<br />

XIIIeme Colloque Louis Neel, Albe, 31 mars – 2 avril, <strong>2010</strong>; O-TMM-1<br />

"Mechanism of magnetotransport properties modulation via interfacial electronic structure in single crystal Fe-<br />

MgO-Fe tunnel junctions",<br />

C. Tiusan, H.Yang, M. Chshiev, F. Greullet, C. Bellouard, Y. Lu, F. Montaigne and M. Hehn, 11 th Joint MMM/Intermag<br />

Conference, Washington, DC, Jan. 18-22, <strong>2010</strong>; EV-07<br />

"Modeling and measurement of transport properties in Current Confined Path GMR structures",<br />

S. Amara, C. Baraduc, N. Strelkov, A. Vedyayev, L. Buda-Prejbeanu, M. Chshiev, Y. Liu, M. Li, K. Zhang and B. Diény,<br />

11 th Joint MMM/Intermag Conference, Washington, DC, Jan. 18-22, AC-11<br />

"Calculation of intrinsic damping in half metals",<br />

C. Liu, C. Mewes, M. Chshiev, T. Mewes, W.H. Butler, 2009 APS March Meeting, Pittsburgh, PA, March 16-20, T32.0005<br />

"Nonequilibrium properties of spin transfer torque and tunnel magnetoresistance in magnetic tunnel junctions",<br />

M. Chshiev; A. Kalitsov, I. Theodonis; N. Kioussis, W. H. Butler, 53 rd MMM Conference, Austin, TX, Nov. 10-14, EB-01<br />

"Calculation of intrinsic damping in half metals",<br />

C. Liu, C. Mewes, M. Chshiev, T. Mewes, W. H. Butler, 53 rd MMM Conference, Austin, TX, Nov. 10-14, GF-04<br />

"Perpendicular magnetic anisotropy at Fe|MgO interfaces"<br />

J. Lee, K. Shin, M. Chshiev, A. Manchon, B. Rodmacq and B. Dieny, 11 th Joint MMM/Intermag Conference, Washington,<br />

DC, Jan. 18-22, <strong>2010</strong>; EV-09<br />

Biomimetic Artificial Membrane Systems for Generating Electrochemical Energy<br />

Chair of Excellence: Donald MARTIN<br />

Post-doctoral fellow: Lavinia LIGUORI<br />

Publications<br />

"Terminating polyelectrolyte in multilayer films influences growth and morphology of adhering cells"<br />

Ting JHY, Haas M, Valenzuela S, Martin DK, IET Nanobiotechnology (<strong>2010</strong>) IET nanobiotechnology ISSN 1751-875X<br />

(accepted 30/3/10)<br />

"Crystallization of the membrane protein hVDAC1 produced in cell-free system"<br />

Aurélien Deniaud, Lavinia Liguori, Iulia Blesneac, Jean-Luc Lenormand, Eva Pebay-Peyroula (<strong>2010</strong>). Biochim Biophys<br />

Acta. <strong>2010</strong> Aug;1798(8):1540-6. Epub <strong>2010</strong> May 9<br />

"Characterization of the cell-penetrating properties of the Epstein-Barr virus ZEBRA trans-activator "<br />

Romy Rothe, Lavinia Liguori, Bruno Marques, Didier Grunwald, Emmanuel Drouet and Jean-LucLenormand (April <strong>2010</strong>).<br />

First Published on April 9, <strong>2010</strong>, doi: 10.1074/jbc.M110.101550 June 25, <strong>2010</strong> The Journal of Biological Chemistry, 285,<br />

20224-20233.<br />

"A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles."<br />

Armelle Varnier, Frédérique Kermarrec, Iulia Blesneac, Christophe Moreau, Lavinia Liguori, Jean Luc Lenormand, and<br />

Nathalie Picollet-D’hahan (<strong>2010</strong>). J Membr Biol. 233: 85-92.<br />

"Single-step Production of Functional OEP24 proteoliposomes."<br />

L. Liguori, I.Blesneac, D.Madern, M.Vivaudou and J-L Lenormand (<strong>2010</strong>). Protein Expr Purif. 69: 106-111<br />

2


Invitations to talk at conferences and seminars<br />

"Characterisation of diffusion in a free thin polyelectrolyte membrane"<br />

Alcaraz JP, Liguori L, Stidder B, Cinquin P, Martin DK (<strong>2010</strong>), NanoBio Europe<strong>2010</strong>, June 15-17, Munster, Germany<br />

"Towards a biological battery to power implantable devices"<br />

Stidder, B, Alacarz JP, Liguori L, Cinquin P, Martin DK (<strong>2010</strong>). NanoBio Europe<strong>2010</strong>, June 15-17, Munster, Germany<br />

"Production of proteoliposomes with a cell-free expression system to develop new nanotechnology devices"<br />

Liguori L, Alcarz JP, Stidder B, Cinquin P, Martin DK (<strong>2010</strong>), NanoBioEurope<strong>2010</strong>, June 15-17, Munster, Germany<br />

“MekaNo – Biomimetic Artificial Membrane Systems for Generating Electrochemical Energy”,<br />

D. Martin, P. Cinquin, S. Cosnier, C. Gondran, J-L. Lenormand, L. Liguori, J-P. Alcaraz. Inauguration of RTRA, Grenoble,<br />

19 September 2008<br />

“Providing Permeability to Microcapsules with Incorporated Ion Channels”,<br />

D. Martin, P. Cinquin, S. Cosnier, C. Gondran, J-L. Lenormand, L. Liguori, J-P. Alcaraz, Laboratoire de Spectrometrie<br />

Physique, UJF, Grenoble, 9 March 2009<br />

“Providing Permeability to Microcapsules with Incorporated Ion Channels”,<br />

D. Martin, P. Cinquin, S. Cosnier, C. Gondran, J-L. Lenormand, L. Liguori, J-P. Alcaraz, CEA, Grenoble, 10 March 2009 et<br />

Spectro UJF Grenoble 9 March 2009<br />

“Possibilities of Power using Biological Transport Proteins Built into Artificial Biomimetic Membranes – MekaNo”.<br />

D. Martin, P. Cinquin, J-P. Alcaraz, L. Liguori, B. Stidder, J-L. Lenormand, S. Cosnier, C. Gondran.<br />

TIMC-GMCAO, Grenoble, 2 June 2009<br />

“Possibilities of Power using Biological Transport Proteins Built into Artificial Biomimetic Membranes”.<br />

D.K.Martin, L.Liguori, B.Stidder, J-P.Alcaraz, P.Cinquin, J-L. Lenormand, Journées Nationales en Nanosciences et<br />

Nanotechnologies (ANR - J3N), Toulouse, 21-23 Octobrer, 2009 and TIMC GMCAO Grenoble June 2nd 2009<br />

"Biomimetic membrane systems with incorporated biological transport proteins provide stable platforms for novel<br />

biosensors."<br />

Martin DK, Alcaraz JP, Liguori L, Stidder B, Cinquin P, Cornell BA, Valenzuela SM (<strong>2010</strong>), NanoAgri <strong>2010</strong>, June 20-25,<br />

Brésil<br />

“Le point sur les membranes biologiques”.<br />

J-P. Alcaraz, TIMC-GMCAO, 19 May 2009<br />

“Engineering Human Bak Proteoliposomes: a New Approach for the Treatment of Glioblastoma”.<br />

L. Liguori, Lenormand JL.EHRLICH II, 2nd World Conference on Magic Bullets“, October 3-5, 2008, Nürnberg, Germany.<br />

“Optimized bacterial cell-free expression system for membrane proteins and proteoliposomes production”<br />

L. Liguori, Lenormand JL.CHI (Cambridge healthtech institute) protein expression Europe. 20-21 October 2008 Lisbona,<br />

Portugal.<br />

PART 3<br />

Patent<br />

<br />

Cinquin P, Martin DK (2007). “Biomimetic artificial membrane device”, PCT/EP2008/058253, WO/2009/003936<br />

Coherent quantum phenomena<br />

Chair of Excellence: Leonid GLAZMAN<br />

Post-doctoral fellow: Vitaly GOLOVACH<br />

Publications<br />

“Dynamic response of 1D bosons in a trap”<br />

V. Golovach, A. Minguzzi, L. Glazman, Phys. Rev. A 80,043611 (2009), [also selected for Nov. 2009 issue of Virtual<br />

Journal of Atomic Quantum Fluids].<br />

“Electron liquids and solids in one dimension”,<br />

Vikram V. Deshpande, Marc Bockrath, Leonid I.Glazman & Amir Yacoby, Nature (Insight article) 464, 209-216 (<strong>2010</strong>).<br />

“The fate of 1D spin-charge separation away from Fermi points”,<br />

Thomas L. Schmidt, Adilet Imambekov, Leonid I. Glazman, Phys. Rev.Lett. 104, 116403 (<strong>2010</strong>).<br />

“Decay of a plasmon into neutral modes in a carbon nanotube”,<br />

Wei Chen, A.V. Andreev, E.G. Mishchenko, L.I. Glazman, arXiv:1006.2150.<br />

“Distribution function of persistent current” ,<br />

M. Houzet, Received 29 July <strong>2010</strong>; published 22 October <strong>2010</strong>, DOI:10.1103/PhysRevB.82.161417<br />

“Single dopant resonance in a single electron transistor”,<br />

V. Golovach, X. Jehl, M. Houzet, M. Pierre, B.Roche, M. Sanquer, L. Glazman, Received 5 November <strong>2010</strong>; published 2<br />

February 2011, DOI:10.1103/PhysRevB.83.075401<br />

“Phonon assisted transport through suspended carbon nanotube quantum dots”,<br />

G. Rastelli, M. Houzet, F. Pistolesi, L. Glazman (in preparation).<br />

Invitations to talk at seminars<br />

Leonid Glazman has given a talk on “Dynamics of one-dimensional quantum fluids in Tomonaga-Luttinger model<br />

and beyond it” on Nov 24, 2009, during the “Theoretical Physics Days” organized by A. Minguzzi with the CTPG in<br />

Grenoble on Nov 24-25, 2009.<br />

He has given a 2x2h blackboard lecture at Graduate level on “Dynamic correlation function in 1D quantum<br />

liquids” at Maison des Magistères on May 6-7, <strong>2010</strong>. His guest Yuli V. NAZAROV (TU Delft, Netherlands) has given a 1h<br />

blackboard lecture on “Phase-slip oscillator” Mar 11, 2009 at Maison des Magistères<br />

With his guests, he has organized 5 seminars that contributed substantially to the “Quantum Nanoelectronics<br />

seminar” program:<br />

- Hakan TURECI (ETH Zurich, Suisse), on May 11, <strong>2010</strong>. Title: The Kondo exciton: a quantum quench<br />

towards strong spin-reservoir correlations [funded with the “Quantum nanoelectonics seminar” RTRA<br />

project];<br />

- Moshe GOLDSTEIN (Département de Physique, Université Bar-Ilan, Israel) on May 5, <strong>2010</strong>. Title :<br />

Population switching and charge sensing in quantum dots: A case for quantum phase transitions;<br />

- Yakov FOMINOV (Institut Landau, Moscou) on April 20, <strong>2010</strong>. “Superconducting triplet spin valve”<br />

3


- Anton ANDREEV (University of Washington, Seattle) on Mar 23, <strong>2010</strong>. Title: Resistance of pnjunctions<br />

in strongly correlated armchair nanotubes;<br />

- Yuli V. NAZAROV (TU Delft, Netherlands) on Mar 16, <strong>2010</strong>. Title : Fully Overheated Single-Electron Transistor.<br />

Scanning gate nanoelectronics<br />

Chair of Excellence: Vincent BAYOT<br />

PhD student: Peng LIU<br />

Publications<br />

"Scanning gate microscopy of quantum rings: effects of an external magnetic field and of charged defects"<br />

M.G. Pala, S. Baltazar, F. Martins, B. Hackens, H. Sellier, T. Ouisse, V. Bayot, S. Huant. Nanotechnology 20, 264021<br />

(2009)<br />

“Imaging Coulomb islands in a quantum Hall interferometer”<br />

B. Hackens, F. Martins, S. Faniel, C.A. Dutu, H. Sellier, S. Huant, M. Pala, L. Desplanque, X. Wallart & V. Bayot. Received<br />

22 Mar <strong>2010</strong> | Accepted 24 Jun <strong>2010</strong> | Published 27 Jul <strong>2010</strong>. Nature Communications<br />

PART 3<br />

Invitations to talk at conferences<br />

"Imaging the electron LDOS inside buried quantum rings"<br />

ICPS-29 (2008), International conference on the physics of semiconductors<br />

"Imaging electron transport close to filling factor nu=2 in a quantum ring"<br />

EP2DS (2009), Electronic properties of two dimensional systems<br />

"Scanning gate microscopy on quantum rings : influence of themagnetic field and of charged defects" EP2DS<br />

(2009)<br />

Invited contributions<br />

Imaging confined semiconductor systems, "9th International Balkan Workshop on Applied Physics », July 7-9,<br />

2008, CONSTANTA, ROMANIA, B. Hackens (orateur)<br />

XXXIX « Jaszowiec » International School & Conference on the Physics of semiconductors, Poland, June <strong>2010</strong>, S.<br />

Huant (orateur)<br />

"Imaging Electron Transport By Scanning Gate Microscopy"<br />

P. Liu 1, H. Sellier 1, S. Huant 1, X. Wallart 2, L. Desplanque 2, B. Hackens 3, F. Martins 2 and V. Bayot<br />

Le Forum <strong>2010</strong> des Microscopies à Sondes Locales, Mittelwihr, France, 15—19, March, <strong>2010</strong><br />

Transport in core/shell nanowires<br />

Chair of Excellence: Philip WONG<br />

PhD student: Jae Woo LEE<br />

Posters<br />

"Charge Transport Characteristics in Time Domain"<br />

JW LEE, X.MESCOT,M.MOUIS, G. KIM and G.GHIBAUDO, MIGAS summer school, 20th-26th June 2009, Autrans-Grenoble,<br />

France<br />

"Analysis of charge sensitivity and low frequency noise limitation in silicon nanowire sensors"<br />

J.W. Lee, D. Jang, G.T. Kim, M. Mouis, G. Ghibaudo, , Journal of Applied Physics, Volume 107, n°4, pp. 044501:1-4 (Feb.<br />

<strong>2010</strong>)<br />

"Experimental Analysis of Surface Roughness Scattering in FinFET devices"<br />

Jae Woo Lee, Doyoung Jang, Mireille Mouis, Gyu Tae Kim, Thomas Chiarella, Thomas Hoffmann and Gérard Ghibaudo, ,<br />

40 th European Solid-State Device Research Conference, ESSDERC'<strong>2010</strong>, 13-17 September <strong>2010</strong>, Sevilles, Spain, IEEE<br />

Conference Proceedings (Sept. <strong>2010</strong>)<br />

Publications<br />

"Maskless optical microscope lithography system"<br />

Eung Seok Park, Doyoung Jang, Jaewoo Lee, Yun Jeong Kim, Junhong Na, Hyunjin Ji, Jae Wan Choi, and Gyu-Tae Kim,<br />

Review of Scientific Instruments, 80, 126101 (2009)<br />

"Analysis of charge sensitivity and low frequency noise limitation in silicon nanowire sensors"<br />

Jae Woo Lee, Doyoung Jang, Gyu Tae Kim, Mireille Mouis, and Gérard Ghibaudo, Journal of Applied Physics, 107, 044501<br />

(<strong>2010</strong>)<br />

"Degradation pattern of SnO2 nanowire field effect transistors"<br />

Junhong Na, Junghwan Huh, Sung Chan Park, DaeIlKim,DongWook Kim, JaeWoo Lee, In-Sung Hwang,Jong-Heun Lee,<br />

Jeong Sook Ha and Gyu Tae Kim IOP publishing Nanotechnology 21 (<strong>2010</strong>) 485201 (6pp) doi:10.1088/0957-<br />

4484/21/48/485201<br />

Downsizing nanospintronics: single atom control<br />

Chair of Excellence: Joaquim FERNANDEZ-ROSSIER<br />

PhD student: Chonglong CAO<br />

Publications<br />

"Optical probing of spin fluctuations of a single paramagnetic Mn atom in a semiconductor quantum dot".<br />

L. Besombes, Y. Léger, J. Bernos, H. Boukari, H. Mariette, J.P. Poizat, T. Clement, J. Fernandez-Rossier, R. Aguado, Phys.<br />

Rev. B 78, 125324 (2008)<br />

"Optical Spin Orientation of a Single Manganese Atom in a Semiconductor Quantum Dot Using Quasiresonant<br />

Photoexcitation"<br />

4


C. Le Gall, L. Besombes, H. Boukari, R. Kolodka, J. Cibert, and H. Mariette, Phys. Rev. Lett. 102, 127402 (2009)<br />

"Modelling optical spin pumping of a single Mn atom in a CdTe quantum dot"<br />

C. Chonglong, L. Besombes, J. Fernandez-Rossier, Proceeding of the conference OECS 11 (Journal of Physics), Madrid,<br />

septembre 2009.<br />

"Optical spin orientation of a single manganese atom in a quantum dot"<br />

L. Besombes, C. Le Gall, H. Boukari, R. Kolodka, J. Cibert, D. Ferrand, H. Mariette Solid State Comm., special issue on<br />

Fundamental Phenomena and Application of Quantum Dots, 149, 1472 (2009)<br />

"Optical initialization, readout and dynamics of a single Mn spin in a quantum dot"<br />

R. Kolodka, C. Le Gall, C. Chonglong, H. Boukari, H. Mariette, J. Fernandez-Rossier, L. Besombes,<br />

in preparation for Phys. Rev. B<br />

“Spins in semiconducting nanostructures”<br />

Besombes L, Ferrand D, Mariette H, Cibert, J., Jamet, M., Barski A.International journal of nanotechnology, Volume 7<br />

Pages: 641-667 <strong>2010</strong><br />

“Dynamical equilibrium between magnetic ions and photocarriers in low Mn-doped single quantum dots”<br />

Clement T, Ferrand D, Besombes L., Boukari H., Mariette H. PHYSICAL REVIEW B, Volume: 81 Pages: 155328 (<strong>2010</strong>)<br />

“Optical spin orientation of a single manganese atom”<br />

C. Le Gall, R. Kolodka, L. Besombes, H. Boukari, J. Cibert, D.Ferrand, H. Mariette, 14th International Conference on II-VI<br />

Compounds, St Petersburg, RUSSIA, AUG, 2009 PHYSICA STATUS SOLIDI C , Volume 6 Pages: 1651-1654 (<strong>2010</strong>)<br />

“Modelling optical spin pumping of a single Mn atom in a CdTe quantum dot”<br />

C L Cao, L Besombes and J Fernández-Rossier, 30th International Conference on Physics of semiconductors, Seoul July<br />

<strong>2010</strong>, J. Phys.: Conf. Ser. Volume:210, Pages: 012046 (<strong>2010</strong>)<br />

“Optical control of a Mn spin embedded in a quantum dot”<br />

R S Kolodka , L Besombes , C Le Gall, et al. 30th International Conference on Physics of Semiconductors, Seoul July<br />

<strong>2010</strong>, J. Phys.: Conf. Ser. Volume: 210 Pages: 012038 (<strong>2010</strong>)<br />

Invitation to talk at seminar<br />

J. Fernandez-Rossier in Grenoble for 10 days in Septembre <strong>2010</strong>: Lectures at Ecole Doctorale de physique of UJF<br />

(4 x 1H30)<br />

X ray investigations on nanoparticles<br />

Chair of Excellence: Vaclav HOLY<br />

PART 3<br />

Publication<br />

"In situ x-ray scattering study on the evolution of Ge island morphology and relaxation for low growth rate :<br />

advanced transition to superdomes."<br />

MI. Richard, T. Schulli, G. Renaud, E. Wintersberger, G. Chen, G. Bauer, V. Holy, Physical Review B 80(4) 04 53 13<br />

(2009)<br />

Very Large Scale Integration of NEMS<br />

Chair of Excellence: Michael ROUKES<br />

Invitations to talk at conferences<br />

OMNT – NEMS (June 2008), "Nanomechanics for NEMS – Scientific and technological issues "<br />

CHU – GIN (March 2009) "NEMS for biological applications"<br />

RTRA (March 2009) : Complexity and Nanosystems: from « Craft » to Technology<br />

Workshop Alliance for NEMS VLSI (June 2009)<br />

Publications<br />

"Piezoelectric nanoelectromechanical resonators based on aluminum nitride thin films "<br />

R. B. Karabalin,M. H. Matheny,X. L. Feng, E. Defaÿ,G. Le Rhun,C. Marcoux,S. Hentz, P. Andreucci,and M. L. Roukes, Appl.<br />

Phys. Lett. 95, 103111 (2009)<br />

“In-plane nanoelectromechanical resonators based on silicon nanowire piezoresistive detection”,<br />

E. Mile, G. Jourdan, I. Bargatin, S. Labarthe, C. Marcoux, P. Andreucci, S. Hentz, C. Kharrat, E. Colinet, and L.<br />

Duraffourg, Nanotechnology 21 (<strong>2010</strong>) 165504<br />

Patents<br />

« moyens de transduction pour les NEMS à base de matériaux métalliques »<br />

(on going) P.Andreucci/P.Brianceau/S.Hentz/L.Duraffourg/C.Marcoux/S.Minoret + E.Myers/M.Roukes<br />

« couches de fonctionnalisation chimique localisée sur des NEMS pour des applications de détection de gaz »<br />

(on going) G.Delapierre/Y.Hou + E.Myers/H.McCaig/M.Roukes<br />

2 patents on « des architectures de spectrométrie de masse à base de NEMS «<br />

(on going) L.Duraffourg/P.Andreucci + A.Naik/M.Roukes<br />

« une architecture de détection/analyse multigaz »<br />

(on going) P.Puget + E.Myers/M.Roukes<br />

« technique d’intégration hybride de NEMS »<br />

(on going) T.Ernst/P.Andreucci/E.Colinet/L.Duraffourg + M.Roukes<br />

2 patents (on going) on « des dispositifs NEMS de détection ultra-sensibles de masse »<br />

S. Hentz/P. Andreucci/E.Colinet/L. Duraffourg + M. Roukes<br />

5


Cellulose Hybrid block copolymers / RTRA project<br />

Post-doctoral fellow: Karim AISSOU<br />

Communication<br />

"Chemistry and Self-Assembly Properties"<br />

I. Otsuka, K. Fuchise, A. Narumi, S. Halila, S. Fort, T. Kakuchi, R. Borsali, Methods in Polymer and Materials Science<br />

EUPOC 2009 "Hybrid Oligosaccharide-Poly(N-isopropylacrylamide) Block Copolymer Systems: 31 May - 4 June, 2009,<br />

Gargnano, Lake Garda, Italy<br />

Patent<br />

"Auto-organisation de films minces d’amylose(4’,4-bipyridine)-bloc-polystyrène pour des applications dans la<br />

microélectronique et les nanotechnologies” Réf CRO-AM BFF 09P0656<br />

K. Aissou, S. Halila, S. Fort, R. Borsali, T. Baron: deposited by the <strong>CNRS</strong> July 31st <strong>2010</strong>.<br />

PART 3<br />

Publications<br />

“Thermo-responsive vesicular morphologies obtained by self-assemblies of hybrid oligosaccharide-block-poly(Nisopropylacrylamide)<br />

copolymer systems”<br />

Otsuka, K. Fuchise, S. Halila, S. Fort, K. Aissou, I. Pignot-Paintrand, Y. Chen, A. Narumi, T. Kakuchi and R. Borsalii,<br />

LANGMUIR, <strong>2010</strong>, 26 (4), pp 2325–2332.<br />

“Nano-organizations of Amylose-b-Polystyrene Block Copolymer Films doped with Bipyridine”<br />

Karim Aissou, Issei Otsuka, Cyrille Rochas, Sébastien Fort, Sami Halila, and Redouane Borsali, LANGMUIR, 2011, 27 (7),<br />

pp 4098–4103.<br />

"Nanostructured films made from zwitterionic phosphorylcholine diblock copolymer systems"<br />

Porto, Ledilege; Aissou, Karim; Giacomelli, Cristiano; Baron, Thierry; Rochas, Cyrille; Pignot-Paintrand, Isabelle; Armes,<br />

Steven; Lewis, Andrew; Soldi, Valdir; Borsali, Redouane, Macromolecules, 2011, 44 (7), pp 2240–2244<br />

Publications in preparation :<br />

“Nanostructured Light-Emitting Small molecules via Hybrid Natural-block-Synthetic Supramolecular Assembly”<br />

K. Aissou, S. Fort, S. Halila, I. Otsuka, B. Salem, T. Baron and R. Borsali: To submit in ACS Nano.<br />

“Fluorescent Vesicles Formed using Water by Glycose-based Amphiphilic Copolymer With a -Conjugated<br />

Sequence Self-assembled in Water"”<br />

K. Aissou, A. Pfaff, C. Giacomelli, C. Travelet, A. Müeller and R. Borsali (submitted to Macromol. Rapid Commnication)<br />

January 2011<br />

NEP-IV (New Electronic Properties with Group Four Nanowires) / RTRA project<br />

Publications<br />

“The morphology of silicon nanowires grown in the presence of trimethylaluminium”,<br />

F Oehler, P Gentile, T Baron, M Den Hertog, J Rouvière and P Ferret, Nanotechnology 20 (2009) 245602,<br />

“Recombination Dynamics of Spatially Confined Electron-Hole System in Luminescent Gold Catalyzed Silicon<br />

Nanowires”,<br />

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noe´, F. Oehler, P. Gentile,and N. Magnea,<br />

Nanoletters 2009 Vol. 9, No. 7 2575-2578,<br />

"Photoluminescence of confined electron-hole plasma in core-shell silicon/silicon oxide nanowires"<br />

O. Demichel, F. Oehler, P. Noé, V. Calvo, N. Pauc, P. Gentile, T. Baron, D. Peyrade, and N. Magnea, Appl. Phys.Lett. 93,<br />

213104 (2008),<br />

"Three-Dimensional Real-Space Simulation of Surface Roughness in Silicon Nanowire FETs"<br />

C. Buran, M.G. Pala, M. Bescond, et al. ,IEEE-Transactions on Electron Devices 56, 2186 (2009),<br />

"Phonon- and surface-roughness-limited mobility of gate-all-around 3C-SiC and Si nanowire FETs"<br />

K. Rogdakis, S. Poli, E. Bano, K. Zekentes, and M.G. Pala, Nanotechnology 20, 295202 (2009),<br />

"Self-connected horizontal silicon nanowire field effect transistor"<br />

B. Salem ,F. Dhalluin, H. Abed, T. Baron, P. Gentile, N. Pauc and P. Ferret, Solid StateCommunications, 149, p 799<br />

(2009)<br />

"Recombination Dynamics of Spatially Confined Electron−Hole System in Luminescent Gold Catalyzed Silicon<br />

Nanowires"<br />

O. Demichel, V. Calvo, N. Pauc, A. Besson, P. Noé, F. Oehler, P. Gentile and N. Magnea, Nano Lett., 2009, 9 (7), pp<br />

2575–2578<br />

"Photoluminescence of silicon nanowires obtained by epitaxial chemical vapor deposition"<br />

O. Demichel, F. Oehler, V. Calvo, P. Noé, N. Pauc, P. Gentile, P. Ferret, T. Baron and N. Magnea, Physica E 41 (2009)<br />

963–965<br />

"Surface Recombination Velocity Measurements of Efficiently Passivated Gold-Catalyzed Silicon Nanowires by a<br />

New Optical Method"<br />

O. Demichel, V. Calvo, A. Besson, P. Noé, B. Salem, N. Pauc, F. Oehler, P. Gentile and N. Magnea, Nano Lett., <strong>2010</strong>, 10<br />

(7), pp 2323–2329<br />

Invitations to talk at conferences<br />

“Electrical characterization of silicon nanowires FET”,<br />

B. Salem, H. Abed, F. Dhalluin, M. Panabière, T. Baron, P. Noé, F. Oehler, N. Pauc, P. Gentile, ECS Vienne (Austria) 2009,<br />

"Backscattering coefficient in gate-all-around 3C-SiC nanowire FETs",<br />

K. Rogdakis, S. Poli, E. Bano, K. Zekentes, and M.G. Pala, IEEE-NANO 2009, Jul 26-30, Genoa (Italy).<br />

6


NANOSTAR / RTRA project<br />

PhD students: Bharathi NATARAJAN, Omid FAIZY NAMARAVAR<br />

Oral presentations and Posters<br />

"Behaviour of Conical Intersections within Noncollinear" "Spin-Flip Time-Dependent Density-Functional Theory:<br />

Oxirane as Test Case Conical Intersections and Photochemistry"<br />

Bhaarathi Natarajan, Miquel Huix-Rotllant, Andrei Ipatov, C. Muhavini Wawire, Thierry Deutsch, and Mark E. Casida,<br />

DFT09 International Conference(2009), Lyon, August 31 – September 4<br />

Bhaarathi Natarajan has been invited to present a talk on the state of achievements of her PhD work at the Psi-k<br />

conference in Berlin<br />

Publications<br />

"Assessment of noncollinear spin-ip Tamm{Danco_ ap-proximation time-dependent density-functional theory for<br />

the photochemical ring-opening of oxirane",<br />

Mark Casida, Thierry DeutschPhys. Chem. Chem. Phys. 12, 12811 (<strong>2010</strong>).<br />

"Ab initio high-energy excitonic e_ects in graphite and grapheme"<br />

P. E. Trevisanutto, M. Holzmann, M. Cote and V.Olevano, Phys.Rev. B Rapid Comm., 81, 121405 (<strong>2010</strong>).<br />

"Improving the theoretical ability to predict experimental spectra by interpolation tech-niques"<br />

H.C. Weissker, R. Hambach, V. Olevano and L. Reining, Phys. Rev. B 79, 094102 (2009).<br />

"Substrate-enhanced supercooling in AuSi eutectic droplets"<br />

T.U. Schulli, R. Daudin, G. Renaud, A. Vaysset, O. Geaymond and A. Pasturel, Nature, 464, 1174 (<strong>2010</strong>)<br />

"Quantum Transport Properties of ChemicallyFunctionalized Long Semiconducting Carbon Nanotubes"<br />

A. Lopez-Bezanilla, X. Blase X, S. Roche, 3, 288(<strong>2010</strong>);<br />

"Chemically Induced Mobility Gaps in Graphene Nanoribbons: A Route for Upscaling Device Performances"<br />

B. Biel, F. Triozon, X. Blase and S. Roche, Nanoletters 9, 2725 (2009)<br />

"Electronic transport through graphene constrictions: subwavelength regime and optical analogy"<br />

P. Darancet, V. Olevano, and D. Mayou, Coherent , Phys. Rev. Lett., vol. 102, 136803, 2009<br />

Neuro FETs /RTRA project<br />

Post-doctoral fellow: Libertad ABAD MUNOZ<br />

PART 3<br />

Communications<br />

"Achieving in vitro axonal polarization by using micropatterns",<br />

S. Roth, J. Brocard, S. Gory- Faur´e, C.Villard, APS March meeting, mars 2009, Pittsburg, USA<br />

"Neurones sur motifs d’adhésion : vers un contrôle de la polarisation axonale",<br />

S. Roth, J.Brocard, G.Bugnicourt, S.Gory-Fauré, et C.Villard. SFP Conference, July 2009, Palaiseau.<br />

Publication in preparation<br />

" Shaping neurons : how morphology controls polarity"<br />

Roth, S., Brocard, J., M. Bisbal, Bugnicourt, G., Saoudi, Y.,Andrieux, A., Gory-Faur´e, S. and Villard, C.<br />

POMME / RTRA project<br />

Post-doctoral Fellows: Alexey DOBRYNIN and Anne BERNAND-MANTEL<br />

Invitation to talk at conference<br />

“ Toward electric field control of magnetization in a metallic nanostructure”<br />

ISAMMA <strong>2010</strong>, July <strong>2010</strong>, Sendai, Japan<br />

Poster<br />

“Effets de charge dans les métaux ferromagnétiques : vers un contrôle électrique de l’aimantation” Colloque<br />

Louis Néel <strong>2010</strong>, march <strong>2010</strong>, Albé, France<br />

A DC-to-THz cryogenic platform for new generation of nano-detectors / New Incoming project<br />

Alexandro MONFARDINI<br />

Post-doctoral fellow: Loren SWENSON<br />

Publications<br />

"In situ measurement of the permittivity of helium using microwave NbN resonators"<br />

G. J. Grabovskij, L. J. Swenson, O. Buisson, C. Hoffmann, A. Monfardini, and J.-C. Villégier, Applied Physics Letters 93,<br />

134102 (2008)<br />

"Kinetic inductance detectors development for MM-wave astronomy"<br />

A. Monfardini, L. J. Swenson, A. Benoit, A. Bideau, G. Bres, P.Camus, G. Garde, C. Hoffmann, J. Minet, H. Rodenas and<br />

the NIKA collaboration, EAS Publications Series, 2009<br />

"A Fast, Ultra-Sensitive and Scalable Detection Platform Based on Superconducting Resonators for Fundamental<br />

Condensed-Matter and Astronomical Measurements"<br />

L. J. Swenson, J. Minet, G. J. Grabovskij, O. Buisson, F. Lecocq, C.Hoffmann, P. Camus, J.C. Villégier, S. Doyle, P.<br />

Mauskopf, M. Roesch, M.Calvo, C. Giordano, S.J.C. Yates, A.M. Baryshev,Y, J.J.A. Baselmans, A.Benoit , A. Monfardini, in<br />

Proc. 13th Int.Workshop on Low Temperature Detectors (LTD-13), AIP Conf. Proc. 1185, 84 (2009).<br />

"Readout for large arrays of Microwave Kinetic Inductance Detectors using a Fast Fourier Transform<br />

Spectrometer"<br />

7


PART 3<br />

S. J. C. Yates, J. J. A. Baselmans, A. M. Baryshev, Y. J. Y. Lankwarden, L.Swenson, A. Monfardini, B. Klein and R. Güsten,<br />

LTD 13, Proceedings of the 13 th International Workshop on Low Temperature Detectors, Edited by B.Cabrera, A.Miller, and<br />

B.Young in Proc. 13th Int. Workshop on Low Temperature Detectors (LTD-13), AIP Conf. Proc. 1185, 249 (2009).<br />

“Optimisation of lumped-element kinetic-inductance detectors for use in ground based large arrays,”<br />

S. Doyle, P. Mauskopf, J. Zhang, S. Withington, D. Goldie, L. J. Swenson, A.Monfardini and D. Glowacka, in Proc. 13th<br />

Int. Workshop on Low Temperature Detectors (LTD-13), AIP Conf. Proc. 1185, 156 (2009).<br />

“Kinetic inductancedetectors development for mm-wave astronomy,”<br />

A. Monfardini, L. J. Swenson, A. Benoit, A. Bideau, G. Bres, P. Camus, G. Garde, C.Hoffmann, J. Minet, H. Rodenas and<br />

the NIKA collaboration, “Astrophysics Detector Workshop 2008, P. Kern (ed), EAS Publications Series, 37 (2009) 95-9.<br />

“In situ measurement of the permittivity of helium using microwave NbNresonators,”<br />

Grabovskij, G. J.; Swenson, L. J.; Buisson, O.; Hoffmann, C.; Monfardini, A.; Villégier, J.-C., Applied Physics Letters,<br />

Volume 93, Issue 13, 134102 (2008).<br />

"High-speed phonon imaging using frequency-multiplexed kinetic inductance detectors"<br />

L. J. Swenson, A. Cruciani, A. Benoit, M. Roesch, C. S. Yung, A. Bideaud, and A. Monfardini<br />

Submitted on 28 Apr <strong>2010</strong>, last revised 18 Jun <strong>2010</strong>, Accepted for publication in Applied Physics Letters<br />

"NIKA: A millimeter-wave kinetic inductance camera"<br />

A. Monfardini, L. J. Swenson, A. Bideaud, F. X. D´esert, S. J. C. Yates, A. Benoit, A. M. Baryshev, J. J. A.<br />

Baselmans, S. Doyle, B. Klein, M. Roesch, C. Tucker, P. Ade, M. Calvo, P. Camus, C. Giordano, R. Guesten,<br />

C. Hoffmann, S. Leclercq, P. Mauskopf, K. F. Schuster, Astronomy & Astrophysics manuscript no. NIKA˙v6 c ESO <strong>2010</strong>,<br />

June 22, <strong>2010</strong><br />

“Optimisation of Lumped Element Kinetic Inductance Detectors for use in ground based mm and sub-mm<br />

arrays”,<br />

Simon Doyle, Philip Mauskopf, Jin Zhang, Stafford Withington, David Goldie, Dorota Glowacka, Alessandro Monfardini,<br />

Loren Swenson, Markus Roesch. The Thirteenth International Workshop On Low Temperature Detectors-LTD13. AIP<br />

Conference Proceedings, Volume 1185, pp. 156-159 (2009).<br />

“Development of KIDs detectors for large submillimetric telescopes”,<br />

M. Calvo, C. Giordano, P. de Bernardis, R. Battiston, A. Cruciani, B. Margesin, S. Masi , A. Monfardini . EAS Publications<br />

Series, Volume 40, <strong>2010</strong>, pp.443-448.<br />

"The new NIKA: A dual-band millimeter-wave kinetic inductance camera for the IRAM 30-meter telescope"<br />

A. Monfardini1, A. Benoit, A. Bideaud, L. J. Swenson, M. Roesch, F. X. D´esert, S. Doyle, A. Endo, A.<br />

Cruciani, P. Ade, A. M. Baryshev, J. J. A. Baselmans, O. Bourrion, M. Calvo, P. Camus, L. Ferrari, C.<br />

Giordano, C. Hoffmann, S. Leclercq, J. Macias-Perez, P. Mauskopf, K. F. Schuster, C. Tucker, C. Vescovi, S.J. C. Yates.<br />

arXiv:1102.0870v2 [astro-ph.IM] 8 Feb 2011<br />

Communications<br />

"A Fast, Ultra-Sensitive and Scalable Detection Platform Based on Superconducting Resonators for Fundamental<br />

Condensed-Matter and Astronomical Measurements"<br />

L. J. Swenson and J. Minet and G. J. Grabovskij and O.Buisson and F. Lecocq and C. Hoffmann and P. Camus and J.-<br />

C.Villegier and S. Doyle and P. Mauskopf and M. Roesch and M. Calvo and C.Giordano and S. J. C. Yates and A. M.<br />

Baryshev and J. J. A.Baselmans and A. Benoit and A. Monfardini<br />

editor = Betty Young and Blas Cabrera and Aaron Miller, 13 th International Workshop on low temperarure detectors<br />

(2009), Stanford (USA)<br />

"Readout for large arrays of Microwave Kinetic Inductance Detectors using a Fast Fourier Transform<br />

Spectrometer "<br />

S. J. C. Yates and J. J. A. Baselmans and A. M. Baryshev and Y. J.Y. Lankwarden and L. Swenson and A. Monfardini and<br />

B. Klein and R.Gusten, 13 th International Workshop on low temperarure detectors (2009), Stanford (USA)<br />

Dentritic potentials imaging by second harmonic generation / New Incoming project<br />

Julien DOUADY<br />

Post-doctoral Fellow: Hartmut WEGE<br />

Publications<br />

"Neutral push-pull chromophores for nonlinear optical imaging of cell membranes"<br />

Cyril Barsu, Rouba Cheaib, Stéphane Chambert, Yves Queneau, Olivier Maury, Davy Cottet, Hartmut Wege, Julien<br />

Douady, Yann Bretonnière and Chantal Andraud. Org. Biomol. Chem., <strong>2010</strong>, 8, 142-150<br />

“Development of a non-linear optical microscope for real-time measurement of neuronal activity in submicrometric<br />

structures”<br />

Davy Cottet, Julien Douady, Jean-Claude Vial, Hartmut A. Wege, Optical Materials, 2011<br />

Poster<br />

"Second harmonic generation microscopy : a way to study neuronal potentials"<br />

"TOPIM – European Society for Molecular Imaging"<br />

Davy Cottet, Hartmut Wege, Julien Douady, Jean-Claude Vial, Jonathan Coles, Mireille Albrieux, Patrick Mouche), Yann<br />

Bretonnière, Chantal Andraud, Catherine Villard.<br />

Ecole Thématique "Dual and Innovative Imaging Modalities",Les Houches – 26-30 January 2009<br />

Invitation to talk at conference<br />

« Nonlinear optical imaging of cell membranes: new probes and applications in the field of neuronal activity »<br />

Julien DOUADY, French/Polish Workshop « WOREN : Workshop on Organic Electronics and Nanophotonics », February<br />

<strong>2010</strong>.<br />

8


Computational modelling of novel nanostructured thermoelectric materials / New Incoming project Natalio<br />

MINGO<br />

Post-doctoral Fellow: Shidong WANG<br />

Invitations to talk at conferences<br />

Invited talk, First-principles thermal transport calculations, at Minatec Crossroads, Grenoble, 2008.<br />

Invited talk, Quantum Mechanical Description of Phonon Transport Through Atomically Defined Systems, MRS<br />

meeting, San Francisco, 2007.<br />

Invited talk, Lattice thermal transport through atomically defined systems in a quantum mechanical description.<br />

APS March meeting, Denver, 2007.<br />

The ``Nanoparticle in Alloy” Approach to Efficient Thermoelectrics: Silicides in SiGe, N. Mingo et al, MRS, San<br />

Francisco, 2009.<br />

Tailoring Interface Roughness and Superlattice Period Length in Novel Electron Filtering Thermoelectric Materials.<br />

Shidong Wang and Natalio Mingo, MRS, San Francisco, 2009.<br />

Predicting the Very Low Thermal Conductivity of Carbon Nanotubes Junctions Using Atomistic Green's Functions.<br />

Chalopin Yann, Volz Sebastian and Natalio Mingo. MRS, San Francisco, 2009.<br />

The impact of isotopes on the thermal conductivity of boron nitride nanotubes, (poster) D. A. Stewart, I. Savic,<br />

N. Mingo, 6th Japan-US Joint Seminar on Nanoscale Transport Phenomena, Boston, MA, July 15th, 2008.<br />

Thermal conduction mechanisms in isotope-disordered boron nitride and carbon nanotubes, I. Savic, N. Mingo,<br />

D. Stewart, APS meeting, 2009.<br />

“A first principles perspective on thermal transport in nanostructures with defects”, D. A. Stewart, I. Savic, N.<br />

Mingo, APS March Meeting, New Orleans, March 12th, 2008.<br />

Disorder and geometry effects in thermal transport across an interface in semiconductor nanowires I. Savic, N.<br />

Mingo, MRS Meeting, San Francisco, 2008<br />

Workshop<br />

Invited talk, CECAM workshop on structural, electronic and transport properties of quantum wires, Lyon, 2008.<br />

Patents<br />

“Silicide nanoparticle in silicon germanium matrix nanocomposites for silicon compatible thermoelectric energy<br />

conversion”,<br />

N. Kobayashi, N. Mingo, M. Plissonnier, and A. Shakouri, international patent filed, PCT/2008/001020, 11 July 2008.<br />

“Magnesium based nanocomposite materials for thermoelectric energy conversion”,<br />

Natalio MINGO, Marc PLISSONNIER, Shidong WANG, PCT/FR2009000392 provisional number, March 2009<br />

“Micro-structure pour générateur thermoélectrique à effet Seebeck et procédé de fabrication d'une telle microstructure”<br />

N. Mingo, T. Caroff, M. Plissonnier, V. Remondiere, S. Wang , N° E.N. :09 53930, Date: June 12, 2009.<br />

PART 3<br />

Publications<br />

"Cooling electrons one by one."<br />

S. De Franceschi, N. Mingo, Nature Nanotechnology 2, 538 (2007).<br />

"Intrinsic lattice thermal conductivity of semiconductors from first principles."<br />

D. A. Broido, M. Malorny, G. Birner, Natalio Mingo, D. A. Stewart, Appl. Phys. Lett. 91, 231922 (2007).<br />

"Thermal conduction mechanisms in boron nitride nanotubes: few-shell or all-shell?"<br />

I. Savic, D. A. Stewart, and N. Mingo, Physical Review B, 78 235434 (2008).<br />

"Phonon transport in isotope-disordered carbon and boron-nitride nanotubes: is localization observable?"<br />

I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008).<br />

"Phonon transmission through defects in carbon nanotubes from first principles."<br />

N. Mingo, D. A. Stewart, D. A. Broido, and D. Srivastava, Phys. Rev. B 77, 033418 (2008).<br />

"Phonon thermal transport in bulk and nanostructured materials from first principles.."<br />

D. A. Broido, N. Mingo, and D. A. Stewart, IMECE 2008-67049 (2008).<br />

"Carbon Nanotube MicroArchitecture for Enhanced Thermal Conduction at Ultra-Low Mass Fraction in Composite<br />

Materials".<br />

M. Bozlar, D. He, J. Bai, Y. Chalopin, N. Mingo, and S. Volz. , Adv. Mat., 22, 1654 (2009).<br />

"Improved thermoelectric properties of Mg 2Si xGe ySn 1-x-y nanoparticle in alloy materials."<br />

S. Wang and N. Mingo, Appl. Phys. Lett. 94, 203109 (2009).<br />

"Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and<br />

phonon-phonon scattering selection rules"<br />

L. Lindsay, D.A. Broido, and Natalio Mingo, Phys. Rev. B 80, 125407 (2009).<br />

"Reducing the thermal conductivity of carbon nanotubes below the random isotope limit."<br />

Gabriel Stoltz, Natalio Mingo, Francesco Mauri, Phys. Rev. B 80, 113408 (2009).<br />

"Mesoscopic Size Effects on the Thermal Conductance of Silicon Nanowire."<br />

J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Nano Letters 9, 1861 (2009).<br />

"Interface heat transfer between crossing carbon nanotubes, and the thermal conductivity of nanotube pellets."<br />

Y. Chalopin, S. Volz, and N. Mingo, Journal of Applied Physics, 105, 084301 (2009).<br />

"Turning carbon nanotubes from exceptional heat conductors into insulators."<br />

R. S. Prasher, X.J. Hu, Y. Chalopin, N. Mingo, K. Lofgreen, S. Volz, L. F. Cleri, and P. Keblinski, Phys. Rev. Lett., 102,<br />

105901 (2009).<br />

"The nanoparticle in alloy approach to efficient thermoelectrics: silicides in SiGe."<br />

N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Letters 9, 711 (2009).<br />

"Effects of interface roughness and superlattice period length on thermoelectric electron filtering."<br />

S. Wang and N. Mingo, Phys. Rev. B, 79, 115316 (2009).<br />

"First-Principles Calculation of the Magnitude of the Isotope Effect on Boron Nitride<br />

Nanotube Thermal Conductivity."<br />

9


D. A. Stewart, I. Savic, and N. Mingo, Nano Letters, 9, 81 (2009).<br />

"Marked effects of alloying on the thermal conductivity of nanoporous materials".<br />

C. Bera, N. Mingo, and S. Volz, Phys. Rev. Lett., 104, 115502 (<strong>2010</strong>).<br />

Precise control of thermal conductivity at the nanoscale via individual phonon barriers.<br />

G. Pernot, M. Stoffel, I. Savic, A. Jacquot, J. Schumann, G. Savelli, A. Rastelli, O.G. Schmidt, J. M. Rampnoux, S. Dilhaire,<br />

M. Plissonnier, S. Wang, and N. Mingo, Nature Materials, accepted (<strong>2010</strong>).<br />

“Cluster” isotope effects on phonon conduction: the case of graphene."<br />

N. Mingo, K. Esfarjani, D. A. Broido, and D. A. Stewart, Phys. Rev. B, 81, 045408 (<strong>2010</strong>)<br />

Two-Dimensional Phonon Transport in Supported Graphene.<br />

J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R. S.<br />

Ruoff, and L. Shi, Science, 328, 213 (<strong>2010</strong>).<br />

Book Chapter<br />

N. Mingo, to appear within the series “Topics in Applied Physics”, Springer (2009).<br />

“Phonon transport through nano-contacts by Green’s function methods”.<br />

UHV – CVD growth and measuring equipment / New Incoming project<br />

Tobias SHULLI<br />

Post-doctoral Fellow : Valentina CANTELLI<br />

PART 3<br />

Publication<br />

"Substrate-enhanced supercooling in AuSi eutectic droplets"<br />

T.U. Schülli, R. Daudin, G. Renaud, A. Vaysset, O. Geaymond & A. Pasturel, Nature, April <strong>2010</strong><br />

STRONGCHIP / New Incoming project<br />

Julien CLAUDON<br />

PhD student: Nitin Singh MALIK<br />

Publications<br />

"A highly efficient single-photon source based on a quantum dot in a photonic nanowire"<br />

Julien Claudon, Joël Bleuse, Nitin Singh Malik, Maela Bazin, Perine Jaffrennou, Niels Gregersen, Christophe Sauvan,<br />

Philippe Lalanne and Jean-Michel Gerard, Nature Photonics 4, p174 (<strong>2010</strong>)<br />

"Whispering gallery mode lasing in high quality GaAs/AlAs pillar Microcavities"<br />

P. Jaffrennou, J. Claudon, M. Bazin, N. S. Malik, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel, and J.-M. Gérard<br />

Applied Physics Letters 96, 071103 _<strong>2010</strong><br />

2008 Call for Proposals<br />

Implantable computer-brain interface<br />

Chair of Excellence: Tetiana AKSENOVA<br />

PhD student: Andrey YELISYEYEV<br />

Invitations to talk at conferences<br />

"Filtrage spatial robuste à partir d’un sous-ensemble optimal d’électrodes en BCI EEG"<br />

Barachant А., Aksenova T., Bonnet S, Proceedings of 22e Colloque GRETSI, Dijon, France, September 2009<br />

"RPNN: Structural modeling robust to outliers in input and output variables, Proceedings of International<br />

Conference on Intelligent Information and Engineering Systems"<br />

Shaposhnyk V., Villa A.E.P., Aksenova T., INFOS 2009, Krynica, Poland, September 2009<br />

"Iterative N-way PLS for real-time control of external effectors with ECoG recordings",<br />

Eliseyev, A., Moro, C., Costecalde, T., Torres, N., Gharbi, S., Mestais, C., Benabid, A.L., Aksenova, T. Bernstein<br />

Conference on Computational Neuroscience <strong>2010</strong>.<br />

"Brain –computer interface: Approaches and methods"<br />

5rd Open Summer School AACIMP <strong>2010</strong>, National Technical University, Kiev, Ukraine, August 3-18, <strong>2010</strong><br />

Invitation to talk at seminar<br />

Brain computer interface : from laboratory to real life applications"<br />

Tetiana AKSENOVA, Séminaire de la Fondation nanosciences, November 2009, Grenoble<br />

Publications<br />

"Filtering out of Artifacts of Deep Brain Stimulation Using Nonlinear Oscillatory Model"<br />

Aksenova, T.I., Novicki D.V., Benabid A.-L., Neural Computation, 21, 2648–2666, (2009)<br />

"Filtering of Multichannel Recordings of Neuronal <strong>Activity</strong> during Deep Brain Stimulation"<br />

Aksenova TI, Nowicki DV, Benabid AL,Frontiers in Neuroinformatics. September 2009<br />

"Iterative N-way PLS for self-paced BCI in freely moving animals".<br />

Eliseyev, A., Moro, C., Costecalde, T., Torres, N., Gharbi, S., Mestais, C., Benabid, A.L., Aksenova, T. (submitted to J.<br />

Neural Eng.)<br />

"First successful self-paced non-supervised ECoG based on-line BCI in freely moving rats performing a binary<br />

behavioral task during long term experiments"<br />

Moro, C., Aksenova, T., Torres, N., Yelisyeyev, A., Costecalde, T., Charvet, G., Sauter, F., Gharbi, S., Porcherot, J.,<br />

Mestais, C., Benabid, A.L.,. (submitted to Brain)<br />

10


"Deep brain stimulation: BMI at large, where are we going to?"<br />

Benabid A.-L., Torres N., Moro C., Aksenova T., Costecalde T., Yelisyeyev A., Charvet G., Ratel D., Pham P., Mestais C.,<br />

Pollack P., Chabardes S., (submitted to Prog in Brain Reseach)<br />

Publications in books of proceedings<br />

"Advances in structural modeling robust to outliers in explanatory and response variables", Shaposhnyk, V., Villa<br />

A.E.P., Aksenova T., IJCNN <strong>2010</strong>, Barcelona, Spain, July 18-23, <strong>2010</strong><br />

"Tensor based self-paced BCI in freely moving animals"<br />

Aksenova, T., Eliseyev, A., Moro, C., Torres, N., Costecalde, T., Charvet, G., Gharbi, S., Mestais, C. Benabid, A.L.; <strong>2010</strong>..<br />

SfN<strong>2010</strong>, San-Diego, 13-17 November, <strong>2010</strong>.<br />

Patents<br />

Direct neural interface System and method of calibrating it. Aksenova, T., Yelisyeyev, A., <strong>2010</strong>. Patent<br />

PCT/IB<strong>2010</strong>/001528. (submitted)<br />

Aksenova, T. Fast Continuous Wavelet Transform with piecewise polynomials for real time BCIs<br />

Tunneling-based nano-FETs<br />

Chair of Excellence: Alexander ZASLAVSKY<br />

PhD Student: Jing WAN<br />

Publications<br />

"Tunneling field-effect transistor with epitaxial junction in thin germanium-on-insulator,"<br />

D. Kazazis, P. Jannaty, A. Zaslavsky, C. Le Royer, C. Tabone, L. Clavelier, and S. Cristoloveanu, Appl. Phys. Lett. 94,<br />

263508 (2009).<br />

"GeOI as a platform for ultimate devices,"<br />

W. Van Den Daele, S. Cristoloveanu, E. Augendre, C. Le Royer, J.-F. Damlencourt, D. Kazazis, and A. Zaslavsky, chapter<br />

in: S. Luryi, J. M. Xu, and A. Zaslavsky, eds, Future Trends in Microelectronics: From Nanophotonics to Sensors to<br />

Energy, New York: Wiley, <strong>2010</strong>.<br />

"SOI TFETs: Suppression of ambipolar leakage and low-frequency noise behavior"<br />

Jing Wan, C. Le Royer, A. Zaslavsky, and S. Cristoloveanu, accepted by ESSDERC (<strong>2010</strong>).<br />

PART 3<br />

EPOCA Emission Properties Of a semiconducting Cavity coupled to an Artifical atom<br />

Chair of Excellence: Marcelo FRANCA SANTOS<br />

PhD Student: Daniel VALENTE<br />

Publications<br />

"Pure emitter dephasing: A resource for advanced solid-state single-photon sources"<br />

A.Auffèves, JM.Gérard and JP.Poizat, Phys. Rev. A 79, 053838 (2009)<br />

"Controlling the dynamics of a coupled atom-cavity system by pure dephasing"<br />

A. Auffèves, D. Gerace, J.-M. Gérard, M. França Santos, L. C. Andreani, and J.-P.<br />

Poizat, PRB 81,245419 (<strong>2010</strong>).<br />

POLYSUPRA / RTRA project<br />

Post-doctoral Fellow: Minhao YAN<br />

Publication<br />

"Soluble Heterometallic Coordination Polymers Based on a Bis-terpyridine-Functionalized Dioxocyclam Ligand"<br />

AurLelien Gasnier, Jean-Michel Barbe, Christophe Bucher, Carole Duboc, Jean-Claude Moutet,<br />

Eric Saint-Aman, Pierre Terech, and Guy Royal, Inorg. Chem. <strong>2010</strong>, 49, 2592–2599<br />

NANOBIODROP / RTRA project<br />

Post-doctoral Fellow: Anne MARTEL<br />

Invitations to talk at conferences<br />

Second Conference on Advances in Microfluidics and Nanofluids –<br />

5-7 January 2011 Singapore<br />

11


DISPOGRAPH / RTRA project<br />

Post-doctoral Fellow: Vincent RENARD<br />

PART 3<br />

Publications<br />

"Graphene on the C-terminated SiC (000-1) surface : An ab initio study"<br />

L.Magaud, F.Hiebel, F.Varchon, P.Mallet, J.-Y.Veuillen, Phys. Rev. B79, 161405(R)(2009)<br />

"Scanning tunneling Microscopy investigation of the graphene/6H-SiC(000-1)(3x3)<br />

Interface"<br />

F.Hiebel, P.Mallet, F.Varchon, L.Magaud, J.-Y.Veuillen, Solid Stat. Comm 149,1157 (2009)<br />

"How the SiC substrate impacts graphene's atomic and electronic structure"<br />

L.Magaud, F.Hiebel, F.Varchon, P.Mallet, J.-Y.Veuillen, Phys. Status Solidi RRL, 3,172-174 (2009)<br />

"Electronic properties of epitaxial grahene"<br />

C.Berger et al, Int.J.Nanotechnol 7, 383 (<strong>2010</strong>)<br />

"Interface structure of graphene on SiC : an ab initio and STM approach"<br />

J.-Y.Veuillen, F.Hiebel, L.Magaud, P.Mallet, F.Varchon, J. Phys. D: Appl. Phys. 43 374008 doi: 10.1088/0022-<br />

3727/43/37/374008<br />

M. Dubois, M.G. Pala and M. Mouis, submitted to Nanotechnology<br />

"Tuning the electron phonon coupling in multilayer graphene with magnetic fields"<br />

C.Faugeras, M. Amado, P. Kossacki, M. Orlita, M. Sprinkle, C. Berger, W.A. de Heer, and<br />

M. Potemski, Phys. Rev. Lett. 103, 186803 (2009).<br />

"Using Landau quantization to suppress Auger scattering in grapheme"<br />

P.Plochocka, P.Kossacki, A. Golnik, T. Kazimierczuk, C. Berger, W.A. de Heer, M. Potemski, Phys. Rev.<br />

B 80, 245415 (2009).<br />

"How perfect can graphene be ?"<br />

P. Neugebauer, M. Orlita, C. Faugeras, A.-L. Barra, M.Potemski, Phys. Rev. Lett. 103, 136403 (2009)<br />

"Thermal conductivity of graphene membrane in Corbino geometry"<br />

C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R.R. Nair, and A.K. Geim, ACS<br />

Nano, 4, 1889 (<strong>2010</strong>).<br />

"Graphite from the viewpoint of Landau level spectroscopy: An effective graphene<br />

bilayer and monolayer"<br />

M. Orlita, C. Faugeras, J. M. Schneider, G. Martinez, D. K.Maude, M. Potemski, Phys. Rev. Lett. 102, 166401 (2009).<br />

"A consistent interpretation of the low temperature magneto-transport in graphite using<br />

the Slonczewski--Weiss--McClure 3D band structure calculations"<br />

J. M. Schneider, M.Orlita, M. Potemski, D. K. Maude, Phys. Rev. Lett. 102, 166403 (2009).<br />

"Using magnetotransport to determine the spin splitting in graphite"<br />

J. M. Schneider, N. A. Goncharuk, P. Vašek, P. Svoboda, Z. Vyborny, L. Smrčka, M.Orlita, M. Potemski, and D. K. Maude,<br />

Phys. Rev. B 81, 195204 (<strong>2010</strong>).<br />

"Few graphene layers/carbon nanotube composites grown at complementary-metal-oxide-semiconductor<br />

compatible temperature"<br />

V. Jousseaume, J. Cuzzocrea, N. Bernier, and V. T. Renard, Received 15 October <strong>2010</strong>; accepted 2 March 2011; published<br />

online 21 March 2011_APPLIED PHYSICS LETTERS 98, 123103 _2011<br />

Invitations to talk at conferences<br />

"Anomalous half-integer Quantum Hall effect in graphene : three-probe measurements"<br />

G. Albert, L. Jansen, F. Lefloch, and Z. Osvath, GDR Mesoscopic Quantum Physics Meeting,5 - October 2009, Aussois,<br />

France – poster<br />

"Superconductor-Graphene Junctions"<br />

G. Albert, L. Jansen, F. Lefloch, Z. Osvath, and C. Chapelier, , Transalp’Nano <strong>2010</strong>, the 2nd Transalpine Conference on<br />

Nanoscience and Nanotechnology, 3 – 5 June <strong>2010</strong>, Como, Italy – accepted poster<br />

"Magnetotransport measurements in grapheme on SiC"<br />

C.Naud, TransAlp'Nano, May/June.<br />

"Electronic properties of graphitic layers: magnetic field studies"<br />

M. Potemski, European Science Fundation Conference in Partnership with LFUI<br />

“Graphene Week 2009”, (Obergurgl, Austria, 2-7 March, 2009).<br />

"Landau level spectroscopy of Dirac fermions in multilayer epitaxial graphene, graphite<br />

and grapheme"<br />

M. Potemski, 2009 American Physical Society March Meeting(Pittsburgh, USA, 16-20 March, 2009)<br />

Two-dimensional gas of Dirac-fermions (M. Potemski), M. Potemski, International<br />

workshop on “Emergent phenomena in quantum Hall systems”, (Villa Guinigi,<br />

Capannori (Lucca), Italy, 25 - 28 June 2009)<br />

Magneto spectroscopy of Dirac fermions (M. Potemski), M. Potemski, International<br />

workshop on “Recent progress in graphene research”, (Seoul, Korea, June 29 – July 2,<br />

2009)<br />

How ideal can graphene be, M. Orlita, 14th International Conference on Narrow Gap<br />

Semiconductors and Systems, (Sendai, Japan, 13 – 17 July, 2009)<br />

Tuning the electron phonon coupling in multilayer graphene with magnetic fields<br />

C. Faugeras, Graphene Tokyo Workshop, (Tokyo, Japan, 25-26 July, 2009)<br />

Magneto-spectroscopy of multilayer epitaxial graphene, of graphite and of graphene.<br />

M. Potemski, International workshop on “Graphene”, (Benasque, Spain, July 25 –<br />

August 8, 2009)<br />

Electronic structure of graphene based systems: magneto-spectroscopy studies<br />

M. Potemski, Canada-Poland-Japan International Symposium on Nanoscience,<br />

(Wroclaw, Poland, 5-8 October, 2009)<br />

Magneto-spectroscopy of Dirac fermionsM. Orlita, 16th InternationalWinterschool on<br />

12


New Developments in Solid State. Physics: Low Dimensional Systems, (Mauterndorf,<br />

Austria, 22 – 26 February, <strong>2010</strong>).<br />

Magneto-optics of grahene systems, M. Potemski, Nobel Symposium on “Physics of<br />

graphene”, (Stockholm, Sweden, 28-31 May, <strong>2010</strong>)<br />

RICOPHIN / New Incoming project<br />

Maxime RICHARD<br />

Publication<br />

" One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature"<br />

A. Trichet, L. Sun, G. Pavlovic, N.A. Gippius, G. Malpuech, W. Xie, Z. Chen, M. Richard, and Le Si Dang, Phys. Rev. B 83,<br />

041302(R) (2011)<br />

Invitations to talk at conferences<br />

August <strong>2010</strong>: Talk « 12eme Journées de la Matière Condensée » (Troyes, France)<br />

February 2011: Talk « 5th International Conference on Spontaneous Coherence in Excitonic<br />

Systems » (Lausanne, Suisse)<br />

August 2011: Invitation received for a 30mn talk at the « The 15th International Conference on II-VI<br />

Compounds» (Cancun, Mexico)<br />

MECCA / New Incoming project<br />

Martial BALLAND<br />

PhD Student: Kalpana MANDAL<br />

Publication<br />

" Multi-confocal fluorescence correlation spectroscopy"<br />

Galland R, Gao J, Kloster M, Herbomel G, Destaing O, Balland M, Souchier C, Usson Y, Derouard J, Wang I, Delon A, Front<br />

Biosci (Elite Ed). 2011 Jan 1;3:476-88<br />

PART 3<br />

IMAGE / RTRA project<br />

Invitations to talk at conferences<br />

Results obtained on RPE sur l’anisotropie magnétiques des nanostructures de (Ge,Mn) :<br />

“Investigation of magnetic anisotropy of (Ge,Mn) nanocolumns”,<br />

A. Jain, M. Jamet, A. Barski, T. Devillers, C. Porret, P. Bayle-Guillemaud, S. Gambarelli, V. Maurel, G. Desfonds, Appl.<br />

Phys. Lett. 97, 202502 (<strong>2010</strong>).<br />

“Structure and magnetism of Ge3Mn5 clusters”,<br />

A. Jain, M. Jamet, A. Barski, T. Devillers, II.-S. Yu, C. Porret, P. Bayle-Guillemaud, V. Favre-Nicolin, S. Gambarelli, V.<br />

Maurel, G. Desfonds, J.-F. Jacquot, S. Tardif, J. Appl. Phys. 109, 013911 (2011).<br />

“Magnetic anisotropy in (Ge ,Mn) nanostructures “,<br />

A. Jain, M. Jamet, A. Barski, T. Devillers, I.-S. Yu, C. Porret, S. Tardif, P. Bayle-Guillemaud, V. Favre-Nicolin, V. Maurel,<br />

S. Gambarelli, J.-F. Jacquot, G. Desfonds, S. Cherifi, J. Cibert, Journal of Physics: Conference Series (in press).<br />

“Magnetic anisotropy of (Ge,Mn) nanostructures“,<br />

A. Jain, M. Jamet, A. Barski, T. Devillers, I.-S. Yu, C. Porret, S. Tardif, P. Bayle-Guillemaud, V. Favre-Nicolin, V. Maurel,<br />

S. Gambarelli, J.-F. Jacquot, G. Desfonds, S. Cherifi, J. Cibert, 12 e Journées de la Matière Condensée, August <strong>2010</strong>,<br />

Troyes (oral).<br />

“Magnetic anisotropy of (Ge,Mn) nanostructures“,<br />

A. Jain, M. Jamet, T. Devillers, I.-S. Yu, C. Porret, A. Barski, P. Bayle-Guillemaud, V. Favre-Nicolin, V. Maurel, S.<br />

Gambarelli, S. Tardif, S. Cherifi, J. Cibert, 13 e Colloque Louis Néel, March/April <strong>2010</strong>, Albé (poster).<br />

“Magnetic anisotropy in (Ge,Mn) nanostructures”,<br />

A. Jain, M. Jamet, A. Barski, T. Devillers, I.-S; Yu, C. Porret, S. Tardif, P. Bayle-Guillemaud, V. Favre-Nicolin, V. Maurel,<br />

S. Gambarelli, J.-F. Jacquot, G. Desfonds, S. Cherifi, J. Cibert, Trends in Spintronics and Nanomagnetism, 23-27 May<br />

<strong>2010</strong>, Lecce (Italie) (oral).<br />

“Magnetic anisotropy in (Ge,Mn) nanostructures”,<br />

A. Jain, M. Jamet, A. Barski, T. Devillers, I.-S; Yu, C. Porret, S. Tardif, P. Bayle-Guillemaud, V. Favre-Nicolin, V. Maurel,<br />

S. Gambarelli, J.-F. Jacquot, G. Desfonds, S. Cherifi, J. Cibert, 23 e Rencontres Jacques Cartier, Colloque Nanomagnétisme<br />

et Spintronique, 24-25 November <strong>2010</strong>, Minatec-Grenoble (poster).<br />

13


2009 Call for Proposals<br />

MUSCADE<br />

Chair of Excellence: Normand MOUSSEAU<br />

Post-doctoral Fellow: Eduardo MACHADO-CHARRY<br />

Publication subdued<br />

“Optimized energy landscape exploration using the ab initio based ART-nouveau”<br />

Eduardo Machado-Charry;; Damien Caliste;; Luigi Genovese;;Thierry Deutsch;; Normand Mousseau et Pascal Pochet. Journal<br />

of Chemical Physics (March 2011, ongoing)<br />

Publications in preparation<br />

“Charge dependent energy landscape exploration of small fullerene”<br />

Eduardo Machado-Charry;; Seth Burleigh;; Luigi Genovese;; Normand Mousseau et Pascal Pochet. Journal of Chemical<br />

Physics (ongoing)<br />

“Bourguoin-Corbett diffusion mechanism in silicon probed by ab initio based ART-nouveau”<br />

Eduardo Machado-Charry; Emmanuel Arras; Damien Caliste; Normand Mousseau et Pascal Pochet. Phys. Rev B (ongoing)<br />

PART 3<br />

Invitations to talk at conference and poster<br />

“Growth and self-organization of nanostructures using BART”<br />

Eduardo Machado-Charry;; Luigi Genovese;; Damien Caliste;; Pascal Pochet;; Normand Mousseau. Présentation à la Psi_k<br />

conference (September <strong>2010</strong>)<br />

“Growth and self-organization of nanostructures using BART”<br />

Eduardo Machado-Charry;; Luigi Genovese;; Damien Caliste;; Pascal Pochet;;<br />

Normand Mousseau. Presentation at the 27th Max Born Symposium: Multi-scale Modeling of Real Materials (September<br />

<strong>2010</strong>)<br />

II VI Photovoltaic<br />

Chair of Excellence: Yong ZHANG<br />

PhD Student: Raul SALAZAR<br />

Communications<br />

Journées de la Matière Condensée (JMC12)- Troyes, France, August <strong>2010</strong><br />

61 st annual meeting of ISE, Nice, France, 26 September – 1 October <strong>2010</strong><br />

218 th The Electrochemical Society Meeting, Las Vegas, USA, October 10-15 (<strong>2010</strong>).<br />

E-MRS Fall Meeting, Warsaw, Poland, September 13-17 (<strong>2010</strong>).<br />

Second International Workshop on Advanced, nano- and Biomaterials and Their Applications (nabm), Sibiu,<br />

Romania, September 15-19 (<strong>2010</strong>).<br />

Solar Fuels / Photochemistry conference, Puerto Morelos Mexico, December 1-4 (<strong>2010</strong>).<br />

Publications<br />

"Optical initialization, readout, and dynamics of a Mn spin in a quantum dot"<br />

Le Gall C, Kolodka RS, Cao CL, Boukari H., Mariette H., Fernandez-Rossier J., Besombes L.<br />

PHYSICAL REVIEW B Volume: 81 Pages: 245315 (<strong>2010</strong>)<br />

"Spins in semiconducting nanostructures"<br />

Besombes L, Ferrand D, Mariette H, Cibert, J., Jamet, M., Barski A.<br />

International journal of nanotechnology, Volume 7 Pages: 641-667 <strong>2010</strong><br />

"Dynamical equilibrium between magnetic ions and photocarriers in low Mn-doped single quantum dots"<br />

Clement T, Ferrand D, Besombes L., Boukari H., Mariette H. Physical review b, Volume: 81 Pages: 155328 (<strong>2010</strong>)<br />

"Optical spin orientation of a single manganese atom"<br />

C. Le Gall, R. Kolodka, L. Besombes, H. Boukari, J. Cibert, D.Ferrand, H. Mariette<br />

14th International Conference on II-VI Compounds, St Petersburg, RUSSIA, AUG, 2009 PHYSICA STATUS SOLIDI C,<br />

Volume 6 , Pages: 1651-1654 (<strong>2010</strong>)<br />

"Modelling optical spin pumping of a single Mn atom in a CdTe quantum dot"<br />

C L Cao, L Besombes and J Fernández-Rossier<br />

30th International Conference on Physics of Semiconductors, Seoul July <strong>2010</strong>. J. Phys.: Conf. Ser. Volume:210, Pages:<br />

012046 (<strong>2010</strong>)<br />

"Optical control of a Mn spin embedded in a quantum dot"<br />

R S Kolodka , L Besombes , C Le Gall, et al. 30th International Conference on Physics of Semiconductors, Seoul July<br />

<strong>2010</strong>. J. Phys.: Conf. Ser. Volume: 210 Pages: 012038 (<strong>2010</strong>)<br />

MIDWEST / RTRA project<br />

Post-doctoral Fellow: Aurélien MASSEBOEUF<br />

Publications<br />

“Current-Induced Spin-Orbit Torque in a Uniformly Magnetized Ferromagnetic Layer with<br />

Rashba Inversion Asymmetry”,<br />

I.M. Miron, G. Gaudin, S. Auffret, B. Rodmacq, A. Schuhl, S. Pizzini, J. Vogel, P. Gambardella, Nature Mater. 9, 230<br />

(<strong>2010</strong>).<br />

“Effect of crystalline defects on domain wall motion under field and current in nanowires with perpendicular<br />

magnetization”,<br />

14


F. Garcia-Sanchez, H. Szambolics, A.P. Mihai, L. Vila, A. Marty, J.-C. Toussaint, L.D. Buda-Prejbeanu, Phys. Rev. B 81,<br />

134408 (<strong>2010</strong>)<br />

“Invasion percolation universality class and fractal geometry of magnetic domains”,<br />

J. P. Attané,M. Tissier, A. Marty, and L. Vila, Phys. Rev. B 82, 024408 (<strong>2010</strong>).<br />

“Non-adiabatic spin-torques in narrow magnetic domain walls”,<br />

C.Burrowes, A.P. Mihai, D.Ravelosona, J.-V. Kim, C. Chappert, L. Vila, A. Marty, Y. Samson, F. Garcia-Sanchez, L.D.<br />

Buda-Prejbeanu, I. Tudosa, E.E. Fullerton, J.-P. Attané, Nature Physics 6, 17 (<strong>2010</strong>).<br />

“Current-induced motion and pinning of domain walls in spin-valve nanowires studied by<br />

XMCD-PEEM”,<br />

V. Uhlir, S. Pizzini, N. Rougemaille, J. Novotny, V. Cros, E. Jimenez, G. Faini, L. Heyne, F. Sirotti, C. Tieg, A. Bendounan,<br />

F. Maccherozzi, R. Belkhou, J. Grollier, A. Anane, J. Vogel, Phys. Rev. B 81, 224418 (<strong>2010</strong>)<br />

“Direct observation of Oersted-field-induced magnetisation dynamics in magnetic nanowires”,<br />

V. Uhlir, S. Pizzini, N. Rougemaille, V. Cros, E. Jiménez, L. Ranno, O. Fruchart, M. Urbánek, G.<br />

Gaudin, J. Camarero, C. Tieg, F. Sirotti, E. Wagner and J. Vogel, Phys. Rev. B 83, 020406 (2011).<br />

“Fast current-induced domain wall motion controlled by the Rashba effect”,<br />

I.M. Miron, T.A.Moore, H. Szambolics, G. Gaudin, L.D. Buda-Prejbeanu, S. Auffret, B. Rodmacq, S. Pizzini, J.Vogel, A.<br />

Schuhl, (on going).<br />

PERCEVALL / RTRA project<br />

Post-doctoral Fellow: Billel SALHI<br />

PhD student: Giada GHEZZI<br />

Communications<br />

"Effect of C and N on the structure of amorphous GeTe"<br />

G. Ghezzi, A. Roule, E. Elkaim, F. Hippert, S. Maitrejean, oral, , accepted to the MRS spring meeting 2011, Session:<br />

Phase-Change Materials for Memory and Reconfigurable Electronics Applications<br />

"PECVD of GeTe material for phase change memories"<br />

C. Vallée, E. Gourvest, P. Michallon, R. Blanc, D. Jourde, S. Lhostis, S. Maitrejan, poster, accepted to the MRS spring<br />

meeting 2011, Session: Phase-Change. Materials for Memory and Reconfigurable Electronics Applications<br />

"Crystallization study of GeSb4 phase change material thin films"<br />

A. Bastard, G. Ghezzi, J.P. Simon, F. Hippert, C. Bonafos, J.P. Gaspard, F. Fillot, A. Roule, B. Hyot, S. Maitrejean, S.<br />

Lhostis, poster, , presented to the European Symposium on Phase Change and Ovonic Science (E\PCOS <strong>2010</strong>),<br />

September 6th to 7th, <strong>2010</strong>, Milan, Italy<br />

"Growth of GeTe Films by MOCVD and PE-MOCVD for Phase Change"<br />

E. Gourvest, C. Vallee, Ph. Michallon, J. Vitiello, R. Blanc, D. Jourde, S. Lhostis, S. Maitrejean, Oral, , presented to the<br />

AVS 57th International Symposium & Exhibition, October 17, <strong>2010</strong><br />

"Crystallisation mechanisms of amorphous GeTe and GeSb6 thin films used in phase change random access<br />

memories (PCRAM)",<br />

JP Simon, F. Hippert, G. Ghezzi, F. Fillot, A. Roule, A. Bastard, J-P Gaspard, S. Maitrejean, Oral, presented to the<br />

conference on solid-solid phase transformation in inorganic materials <strong>2010</strong> (PTM <strong>2010</strong>), June 6-11 <strong>2010</strong>, Avignon, France<br />

PART 3<br />

THE SCIENTIFIC PRODUCTION FROM THE PHD STUDENTS “AU<br />

FIL DE L’EAU”<br />

Mikhail KUSTOV<br />

Posters<br />

"Diamagnetic levitation applied to the μ-manipulation of μ- and nanoobjects and biological cells"<br />

Christian Pigot, Paul Kauffmann, Hichem Chetouani, Mikhail Kustov, Minatec Crossroads 2008, Grenoble, FRANCE, June<br />

23-27, 2008<br />

"Quantitative imaging and straightforward calculation of magnetic fields of micropatterned permanent magnet<br />

films for magnetic MEMS"<br />

Mikhail Kustov, Rostislav Grechishkin, Frederic Dumas-Bouchiat, and Nora M. Dempsey,<br />

JCGE (Conférence des Jeunes Chercheurs en Génie Electrique), Lyon, France, December 16-17, 2008<br />

"Modeling a "flying carpet" stable in both the positive and negative z-directions" *<br />

Mikhail Kustov, Paul Kauffmann, Orphee Cugat, Gilbert Reyne, Compumag 2009, Florianopolis, Brésil, November 22-26,<br />

2009<br />

"Measurement of the 3 components of a magnetic field using a single component Scanning Hall Probe<br />

Microscope"<br />

Mikhail Kustov, Nora M. Dempsey, Piotr Laczkowski, Danny Hykel, Dominique Givord, Orphée Cugat, Rostislav<br />

Grechishkin and Klaus Hasselbach, EMSA <strong>2010</strong> (8th European Conference on Magnetic Sensors and Actuators), Bodrum,<br />

Turquie, July 4-7, <strong>2010</strong>, (accepted)<br />

Communications<br />

"Comparative magneto-optic and scanning Hall probe microscopy of magnetic field istributions in patterned Nd-<br />

Fe-B films"<br />

Mikhail Kustov, Rostislav Grechishkin, Frederic Dumas-Bouchiat, Daniel O’Brien, Klaus Hasselbach,<br />

15


Piotr Laczkowski, Danny Hykel, Sergey Soshin, Dominique Givord, and Nora M. Dempsey<br />

EUROMAT 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, UK<br />

September 7-10, 2009<br />

M. Kustov, R. Grechishkin, F. Dumas-Bouchiat, D. O’Brien, K. Hasselbach, P. Laczkowski, D. Hykel, S. Soshin, D. Givord,<br />

and N.M. Dempsey, “Comparative magneto-optic and scanning Hall probe microscopy of magnetic field distributions in<br />

patterned Nd-Fe-B films”, EUROMAT 2009 (European Congress and Exhibition on Advanced Materials and Processes),<br />

Glasgow, UK, September 7-10, 2009 (oral).<br />

PART 3<br />

Publications<br />

"Thermomagnetically patterned micromagnets"<br />

F. Dumas-Bouchiat, L. F. Zanini, M. Kustov, N. M. Dempsey, R.Grechishkin, K. Hasselbach, J. C. Orlianges, C.<br />

Champeaux, A.Catherinot, D. Givord, Appl. Phys. Letters, 96, 102511 (<strong>2010</strong>)<br />

"Contactless dielectrophoretic handling of diamagnetic levitating water droplets in air"<br />

P. Kauffmann, P. Pham, A. Masse, M. Kustov, T. Honegger, D. Peyrade, V.Haguet, G. Reyne,<br />

IEEE Trans. on Magn., <strong>2010</strong> (accepted)<br />

"Magnetic characterization of micropatterned Nd–Fe–B hard magnetic films<br />

using scanning Hall probe microscopy"<br />

M. Kustov,P. Laczkowski,D. Hykel, K. Hasselbach, F. Dumas-Bouchiat,D. O’Brien, P. Kauffmann, R. Grechishkin, D.<br />

Givord, G. Reyne, O. Cugat, andN. M. Dempsey<br />

Journal of applied physics 108, 063914 _<strong>2010</strong>_Received 26 May <strong>2010</strong>; accepted 5 August <strong>2010</strong>; published online 23<br />

September <strong>2010</strong><br />

“Calculations and measurements of the magnetic field of patterned permanent magnetic films for lab-on-chip<br />

applications”<br />

S. Chigirinsky, M. Kustov, N. Dempsey, C. Ndao, and R. Grechishkin, , Rev. Adv. Mater. Sci., 20, pp. 85 – 91, 2009.<br />

Irina GROZA<br />

Posters<br />

“Transport measurements with nanometric magnetic clusters”<br />

Irina Groza, Robert Morel, Ariel Brenac, Damien Le Roy and Lucien Notin, Réunion Thématique du GDR Nanoalliages-<br />

Nanoaliiages&Magnétisme, January 2009, Lyon<br />

‘’Correlations in core-shell clusters’’<br />

Irina Groza, Robert Morel, Ariel Brenac, Damien Le Roy and Lucien Notin, European School on Magnetism, September 1-<br />

10th 2009, Timisoara, Romania<br />

"Corrélations magnétiques dans les agrégats Co-CoO"<br />

Irina Groza, Robert Morel, Ariel Brenac, Cyrille Beigné et Lucien Notin, Colloque Louis Néel <strong>2010</strong>, March/April, Albé (<strong>2010</strong>)<br />

Akash CHAKRABORTY<br />

Publication<br />

"Dynamical properties of a three-dimensional diluted Heisenberg model"<br />

Akash Chakraborty, Georges Bouzerar, Physical Review B, 81, 172406 (<strong>2010</strong>)<br />

Poster<br />

"Magnetic Spin Excitations in Diluted Ferromagnetic Systems"<br />

Akash Chakraborty, Georges Bouzerar, workshop "New trends in the theory of strongly correlated electron systems", 8-9<br />

April,<strong>2010</strong><br />

Xiaojun CHEN<br />

Communications<br />

The 4 th Nanowire Growth Workshop, Oct. 26-27, 2009, Paris :Poster contribution<br />

The 3 rd international symposium on the Growth of Nitride Materials July-4th-7th, <strong>2010</strong>, Montpellier: Oral<br />

presentation contribution<br />

Publications<br />

“Wafer-scale selective area growth of GaN hexagonal prismatic nanostructures on c-sapphire substrate”<br />

X.J. Chen, J.S.Hwang, G.Perillat-Merceroz, S.Landis, B.Martin, D. LeSiDang, J.Eymery, C.Durand. ,Journal of Crystal<br />

Growth, 322 (2011) 15–22<br />

"Homoepitaxial growth of catalyst-free GaN wires on N-polar substrates"<br />

X.J. Chen, G. Perillat-Merceroz, D. Sam-Giao, C. Durand , J. Eymery , Applied Physics Letters 97, 151907 (<strong>2010</strong>)<br />

"Selective area growth of GaN hexagonal nanoprisms on patterned c-sapphire substrates"<br />

X.J. Chen, J.S. Hwang, G. Perillat-Merceroz, D. S. Landis, D. Le Si Dang, J. Eymery, C. Durand (Submitted to J. of Appl.<br />

Phys.)<br />

Patent<br />

“Procédé de croissance sélective sur une structure semiconductrice"<br />

Xiaojun CHEN, Joel EYMERY, Damien SALOMON, Christophe DURAND 5 avril 2011, 1152926 (on going)<br />

16


Miryam ELOUNEG JAMROZ<br />

Posters<br />

"CdSe Quantum Dots Insertion in ZnSe Nanowires: MBE Growth and Microstrucural Analysis"<br />

Miryam Elouneg-Jamroz, Y. Genuist, E. Bellet-Amalric, C. Bougerol, Samir Bounouar, J.P. Poizat, R. André, Martien den<br />

Hertog, K. Kheng and S. Tatarenko, GDR Nanofils 2009, Autrans (France)<br />

“CdSe QD heterostructure layer in ZnSe NWs for single-photon emission”<br />

M. Elouneg-Jamroz, M. den Hertog, S. Bounouar, E. Bellet-Amalric, Y. Genuist, R. André, K. Kheng, J.P. Poizat and S.<br />

Tatarenko, 5th Nanowire Growth Workshop, Roma (November <strong>2010</strong>)<br />

“Correlation of structural, chemical and optical characterization of CdSe quantum dots inserted in ZnSe<br />

nanowires”<br />

M. Elouneg-Jamroz, M. den Hertog, S. Bounouar, E. Bellet-Amalric, R. Andre, Y. Genuist, K.Kheng, J-P Poizat, S.<br />

Tatarenko, 16 th European Molecular Beam Epitaxy Workshop, Alpes d’Huez (Mars 2011)<br />

Publication<br />

"Epitaxial growth of ZnSe and ZnSe/CdSe Nanowires on ZnSe"<br />

E. Bellet-Amalric, M. Elouneg-Jamroz, C. Bougerol, M. Den Hertog, Y. Genuist, S. Bounouar, J.P.<br />

Poizat, K. Kheng, R. André, S. Tatarenko, Physica Status Solidi <strong>2010</strong> (on going)<br />

Chi VO VAN<br />

Poster<br />

"Ultrathin epitaxial cobalt films on graphene: perpendicular magnetic anisotropy"<br />

C.Vo-Van,Z.Kassir-Bodon,H.Yang,J.Coraux,J.Vogel,S.Pizzini,P.Bayle-Guillemaud, M.Chshiev, L.Ranno, V.Santonacci,<br />

P.David, V.Salvador, O.Fruchart., 13th Colloque Louis Néel, Albé (<strong>2010</strong>)<br />

Radoslaw BOMBERA<br />

PART 3<br />

Posters<br />

"Reversible cell capture on a dna biochip coupled to spr imaging": Ecole thématique CRNS « Fonctionnalisation<br />

de surfaces et méthodes de détection pour les biocapteurs » (8-12 February <strong>2010</strong>)<br />

<br />

<strong>2010</strong>)<br />

"Reversible cell capture on a DNA biochip monitored by SPR imaging": congrès Biosensors <strong>2010</strong> (26-28 May<br />

Aleš HRABEC<br />

Invitations to talk at conferences<br />

"Light-induced ultrafast spin dynamics in a Gd 1-xCo x ferrimagnetic film"<br />

Cormier M., Mekonnen A., Kimel A.V., Kirilyuk A., Hrabec A., Ranno L., Rasing Th., 13th Colloque Louis Neel, Albé <strong>2010</strong><br />

"Compensation domain walls in Gd 1-xCo x films, Joint European Magnetism Symposium (JEMS)"<br />

Hrabec A., Nam N.T., Pizzini S., Ranno L., Krakow, August, <strong>2010</strong><br />

"Laser-induced ultrafast magnetization dynamics in Gd 1-xCo x ferrimagnetic thin film"<br />

Mekonnen A., Cormier M., Kimel A.V., Kirilyuk A., Hrabec A., Ranno L., Rasing Th., JEMS, Krakow,<br />

August, <strong>2010</strong><br />

Posters<br />

" Deplacement de parois de domaines par courant polarise dans des alliages ferromagnetiques compenses "<br />

Hrabec A., Ranno L., Pizzini S., 13th Colloque Louis Neel, Albé <strong>2010</strong><br />

" Domain wall displacement in compensated ferrimagnetic Gd 1-xCox alloy "<br />

Sao Paulo School of advanced Science: Spintronics and quantum computation (Nov,<strong>2010</strong>)<br />

Marc GANZHORN<br />

Poster<br />

"Carbon nanotube based NEMS as magnetic force detector"<br />

M. Ganzhorn, M. Urdampilleta, A. Reserbat-Plantey, V. Nguyen, JP. Cleuziou, and W. Wernsdorfer, ElecMol’10, December<br />

<strong>2010</strong><br />

17


Part IV: SUPPLEMENTS<br />

Appendix 1: the RTRA laboratories 3<br />

Appendix 2: the Foundation’s board 4<br />

Appendix 3: the Scientific Committee 5<br />

Appendix 4: the Steering Committee 6<br />

Appendix 5: 2009 Call for Proposals funded projects 7<br />

Appendix 6: <strong>2010</strong> Call for Proposals funded projects 10<br />

Appendix 7: List of the Chairs of Excellence 13<br />

Appendix 8: List of the Post Doc Fellows 16<br />

Appendix 9: List of the PhD students 18<br />

Appendix 10: "Les Parrains de la Fondation" 21<br />

Appendix 11: List of the Reviewers involved in the Calls for Proposals in 2009 and <strong>2010</strong> 22<br />

Appendix 12: "Les Indicateurs Académiques" 25<br />

Appendix 13: <strong>Report</strong> of the 2 nd Scientific Committee held in 2009, November 19 th – 20 th 47


Appendix 1: the RTRA laboratories<br />

Laboratory’s Name Short name * Website<br />

Centre de Recherche sur les Macromolécules Végétales CERMAV 2 www.cermav.cnrs.fr<br />

Département de Chimie Moléculaire DCM 2,3 dcm.ujf-grenoble.fr<br />

Grenoble Electrical Engineering Laboratory G2Elab 2,3, 4 www.g2elab.grenoble-inp.fr<br />

Grenoble Institut des Neurosciences GIN 1,3 neurosciences.ujf-grenoble.fr<br />

Institut Albert Bonniot IAB 2,3 www-iab.ujf-grenoble.fr<br />

Institut de Biologie Structurale IBS 1,2,3 www.ibs.fr<br />

Institut de Microélectronique, Electromagnétisme et<br />

Photonique<br />

IMEP 2,3,4 www.imep-lahc.grenoble-inp.fr<br />

Institut de Planétologie et d'Astrophysique de Grenoble IPAG 2,3 ipag.osug.fr<br />

Institut de Recherches en Technologies et Sciences pour<br />

le Vivant<br />

IRTSV 1,2,3 www-dsv.cea.frirtsv<br />

Institut Fourier IF 2,3 www-fourier.ujf-grenoble.fr<br />

Institut Nanosciences et Cryogénie INAC 1,2,3,4 inac.cea.fr<br />

INAC – Service de Chimie Inorganique et Biologique INAC/SCIB 1,2,3,4 inac.cea.frscib<br />

INAC – Service de Physique des Matériaux et<br />

Microstructures<br />

INAC/SP2M 1,2,3,4 inac.cea.frsp2m<br />

INAC – Service de Physique Statistique, Magnétisme et<br />

Supraconductivité<br />

INAC/SPSMS 1,2,3,4 inac.cea.frspsms<br />

INAC - Spintronique et Technologie des Composants INAC/SPINTEC 1,2,3,4 www.spintec.fr<br />

INAC - Structure et Propriétés d’Architectures<br />

Moléculaires<br />

INAC/SPAM 1,2,3 inac.cea.frspram<br />

Institut Néel NEEL 2 www.neel.cnrs.fr<br />

Laboratoire d’Electro et Physico-chimie des Matériaux et<br />

Interfaces<br />

Laboratoire d’Electronique et de Technologie de<br />

l’Information<br />

LEPMI 2,3,4 lepmi.grenoble-inp.fr<br />

LETI 1 www-leti.cea.fr<br />

SUPPLEMENTS<br />

Laboratoire d’Informatique de Grenoble LIG 2,3,4 www.liglab.fr<br />

Laboratoire d’Innovations pour les Technologies des<br />

Energies nouvelles et les Nanomatériaux<br />

Laboratoire de biologie structurale des interactions virus<br />

cellule hôte<br />

Laboratoire de Physique et Modélisation des Milieux<br />

Condensés<br />

Laboratoire des Ecoulements Géophysiques et<br />

Industriels<br />

LITEN 1 www-liten.cea.fr<br />

LBSIVCH 2,3<br />

LP2MC 2,3 lpmmc.grenoble.cnrs.fr<br />

LEGI 2,3,4 www.legi.inpg.fr<br />

Laboratoire des Matériaux et du Génie Physique LMGP 2,4 www.lmgp.inpg.fr<br />

Laboratoire des Technologies de la Microélectronique LTM 1,2,3 www.ltm-cnrs.fr<br />

Laboratoire Interdisciplinaire de Physique LIPhy 2,3 www-liphy.ujf-grenoble.fr<br />

Laboratoire Jean Kuntzmann LJK 2,3,4,5 www-ljk-imag.fr<br />

Laboratoire National des Champs Magnétiques Intenses LNCMI 2,3 ghmfl.grenoble.cnrs.fr<br />

Science et Ingénierie des Matériaux et Procédés SIMAP 2,3,4 simap.grenoble-inp.fr<br />

Technique de l’Informatique, de la Microélectronique<br />

pour l’Architecture des ordinateurs<br />

Techniques de l’Imagerie, de la Modélisation et de la<br />

Cognition<br />

TIMA 2,3,4 www.tima.imag.fr<br />

TIMC 2,3,4 www-timc .imag.fr<br />

* 1 = CEA, 2= <strong>CNRS</strong>, 3= UJF, 4= Grenoble INP, 5 = INRIA<br />

3


Appendix 2: the Foundation’s board<br />

(As of May 2011)<br />

Representatives of the Founding Institutions:<br />

Since June <strong>2010</strong>, there are three representatives (instead of two) in the Foundation’s board.<br />

CEA<br />

<br />

<br />

<br />

Jean-Paul DURAUD, Deputy Director of the ‘Direction des Sciences de la Matière’, CEA Saclay<br />

Simon DELEONIBUS, Director of the ‘Laboratoire Nanodispositifs Electroniques’, CEA-LETI<br />

Engin MOLVA, Director of the ‘Institut Nanosciences et Cryogénie’, CEA Grenoble<br />

<strong>CNRS</strong><br />

Claude AMRA, Deputy Scientific Director of the ‘Institut des Sciences de l'Ingénierie et des<br />

Systèmes’, <strong>CNRS</strong><br />

Jérôme VITRE 1 , Regional Representative of the Alpes Sector, <strong>CNRS</strong><br />

Giancarlo FAINI 2 , Deputy Scientific Director of the ‘Institut de Physique’, <strong>CNRS</strong><br />

Grenoble INP<br />

Paul JACQUET, President of Grenoble INP<br />

Roland MADAR, Research Director of the ‘Laboratoire des Materiaux et du Genie Physique’, Grenoble<br />

INP<br />

Pierre BENECH, Professor, Director of PHELMA, Grenoble INP<br />

SUPPLEMENTS<br />

Université Joseph Fourier:<br />

Farid OUABDESSELAM 3 , President of Joseph Fourier University<br />

Thierry DOMBRE, Director of the ‘Laboratoire Interdisciplinaire de Physique’, UJF<br />

Alain SCHUHL, Director of the ‘Institut Néel’, <strong>CNRS</strong>-UJF<br />

Representative of the Partnering Institution:<br />

<br />

François SILLION 4 , Director of the Centre of Research ‘INRIA Grenoble - Rhône Alpes’<br />

Qualified personalities:<br />

Andre-Jacques AUBERTON-HERVE, CEO of SOITEC (Bernin, Isere, France)<br />

Elisabeth CHARLAIX, Professor of the ‘ Laboratoire de Physique de la Matière Condensée et<br />

Nanostructures’, Claude Bernard Lyon 1 University<br />

Gabriel M. CREAN, Professor & Scientific Director of the ‘Direction de la Recherche Technologique’,<br />

CEA Grenoble<br />

Michel DUCASSY, Sector Manager, CIC Lyonnaise de Banque, Grenoble<br />

Jean-Yves MARZIN, Director of Laboratory ‘Photonique et de Nanostructures’ (Marcoussis, France)<br />

Representatives of the network researchers:<br />

<br />

INAC<br />

<br />

Marc SANQUER, Head of the ‘Laboratoire de Transport Electronique Quantique et Supraconductivité’,<br />

Jean-Claude MOUTET 5 , Deputy Director of the ‘Département de Chimie Moléculaire’<br />

The Commissioner of the Government:<br />

<br />

Olivier AUDEOUD, Grenoble local Education Officer<br />

Invited representative of the Ministry of Higher Education and Research:<br />

<br />

Robert PLANA, Scientific Director of the Ministry of Research<br />

The Executive Office of the Board<br />

Chairman: Farid OUABDESSELAM 6<br />

First vice-chairman: Jean-Paul DURAUD 7<br />

Second vice-chairman: Giancarlo FAINI 8<br />

Treasurer: Roland MADAR 9<br />

1 : succeeds to Pascale BUKHARI, former Regional Representative [from 18/10/<strong>2010</strong>]<br />

2 : succeeds to Alain FONTAINE, former Director of the ‘Institut Néel’ [from 01/01/2011]<br />

3 : succeeds to Ahmad BSIESY, Director of the CIME Nanotech [from 15/12/<strong>2010</strong>]<br />

4 : from 26/05/<strong>2010</strong><br />

5 : succeeds to Jacques DEROUARD [from 14/12/2009]<br />

6 : succeeds to Jean-Paul DURAUD [from 23/03/2011]<br />

7 : succeeds to Alain FONTAINE [from 23/03/2011]<br />

8 : succeeds to Roland MADAR [from 23/03/2011]<br />

9 : succeeds to Alain SCHUHL [from 23/03/2011]<br />

4


Appendix 3: the Scientific Committee<br />

(As of May 2011)<br />

President:<br />

Benoît DEVEAUD-PLEDRAN, Head of the Laboratoire d'Optoélectronique Quantique, Ecole<br />

Polytechnique Fédérale de Lausanne (Switzerland)<br />

Members:<br />

François AMALRIC, Director of the ‘Institut de Pharmacologie et de Biologie Structurale’, University<br />

Paul Sabatier in Toulouse (France)<br />

<br />

Jean-Philippe BOURGOIN, Director of the Nanoscience Program at the CEA in Saclay (France)<br />

Alain CAPPY, Director of the ‘Institut d'Electronique, de Microélectronique et de Nanotechnologie’<br />

in Lille (France)<br />

Marc DRILLON, Director of the ‘Institut de Physique et Chimie des Matériaux’ in Strasbourg<br />

(France)<br />

<br />

Philippe FAUCHET, Director of the Center for Future Health, University of Rochester (USA)<br />

Klaus KERN, Director of the Nanoscale Science Department, Max-Planck-Institute for Solid State<br />

Research in Stuttgart (Germany)<br />

Jagadeesh MOODERA, Senior Research Scientist and Group Leader of the Francis Bitter Magnet<br />

Laboratory, Massachussetts Institute of Technology in Cambridge (USA)<br />

Michel ORRIT 1 , Senior Research Scientist and Group Leader of the Molecular Nano-Optics and<br />

Spins team at Leiden University (Netherlands)<br />

Benoît PERTHAME, Professor, University Pierre et Marie Curie in Paris (France)<br />

Clivia SOTOMAYOR TORRES, Professor, Catalan Institute of Nanotechnology in Barcelone (Spain)<br />

Dominique THOMAS 2 , Director of R&D Partnerships at STMicroelectronics in Crolles (France)<br />

SUPPLEMENTS<br />

1 : succeeds to Paul F. BARBARA, former Director of the Center for Nano and Molecular Science and Technology, University of Texas in<br />

Austin (USA) [from 09/03/2011]<br />

2 : succeeds to Giorgio BACCARANI, Professor, University of Bologna (Italy) [from 05/11/<strong>2010</strong>]<br />

5


Appendix 4: the Steering Committee<br />

(As of May 2011)<br />

Quantum Nanoelectronics:<br />

<br />

<br />

Appointed member: Maud VINET, Research engineer, CEA<br />

Deputy member: Olivier BUISSON, Senior Researcher, <strong>CNRS</strong><br />

Nanomagnetism:<br />

<br />

<br />

Appointed member: Ursula EBELS 1 , Research engineer, CEA<br />

Deputy member: Joël CIBERT, Senior Researcher, <strong>CNRS</strong><br />

Nanophotonics:<br />

<br />

<br />

Appointed member: Jean Michel GERARD, Research engineer, CEA<br />

Deputy member: Jean-Emmanuel BROQUIN, Professor, Grenoble INP<br />

Molecular Electronics:<br />

<br />

<br />

Appointed member: Vincent BOUCHIAT, Researcher, <strong>CNRS</strong><br />

Deputy member: Eric SAINT AMAN, Professor, UJF<br />

Nanomaterials:<br />

<br />

<br />

Appointed member: Thierry BARON, Senior Researcher, <strong>CNRS</strong><br />

Deputy member: François MARTIN, Research engineer, CEA<br />

SUPPLEMENTS<br />

Nanocharacterisation:<br />

<br />

<br />

Appointed member: Hubert RENEVIER, Professor, Grenoble INP<br />

Deputy member: Joël CHEVRIER, Professor, UJF<br />

Nano approaches to Life Sciences:<br />

<br />

<br />

Appointed member: Franz BRUCKERT 2 , Professor, Grenoble INP<br />

Deputy member: Julian GARCIA 3 , Professor, UJF<br />

Nanosimulation:<br />

<br />

<br />

Appointed member: Didier MAYOU, Senior Researcher, <strong>CNRS</strong><br />

Deputy member: Gilles LECARVAL, Research engineer, CEA<br />

Education:<br />

<br />

<br />

Appointed member: Hervé COURTOIS, Professor, UJF<br />

Deputy member: Morfouli PANAGIOTA, Professor, Grenoble INP<br />

Technical Platforms:<br />

<br />

<br />

Appointed member: François LEFLOCH 4 , Research engineer, CEA<br />

Deputy member: Cécile GOURGON, Researcher, <strong>CNRS</strong><br />

INRIA experts:<br />

Appointed member: Stéphane REDON, Team leader, INRIA [from 17/12/<strong>2010</strong>]<br />

Deputy member: Alain GIRAULT, Researcher, INRIA [from 09/03/2011]<br />

6<br />

1 : succeeds to Alain SCHUHL, Senior Researcher, UJF [from 01/02/<strong>2010</strong>]<br />

2 : succeeds to Pierre LABBE, Professor, UJF [from 14/05/2011]<br />

3 : succeeds to Franz BRUCKERT, Professor, Grenoble INP [from 14/05/2011]<br />

4 : succeeds to Noël MAGNEA, Research engineer, CEA [from 14/05/2011]


Appendix 5: 2009 Call for Proposals funded projects<br />

Chairs of Excellence support<br />

Major topic Action Title & Description<br />

Super Nano Charac<br />

Partners<br />

1 2 3<br />

Financial<br />

support<br />

(k€)<br />

Nano -<br />

characterisation<br />

Part<br />

Time<br />

Chair<br />

John R. KIRTLEY, one of the world’s<br />

leading experts on Josephson junction<br />

devices and superconductivity, will join this<br />

project aimed at the study of the physical<br />

properties of high quality superconducting<br />

films and their integration into quantum<br />

nano-devices.<br />

Epitaxial superconducting films will be grown<br />

by MBE and characterized at the nanoscale<br />

at room temperature as well as at very low<br />

temperature. The epitaxial trilayers will be<br />

patterned into phase qubits. Novel<br />

nanoSQUID microscopy techniques will be<br />

employed to image the high quality circuits.<br />

Institut<br />

Néel<br />

SIMAP<br />

INAC/<br />

SPSMS<br />

350<br />

II-VI Photovoltaics<br />

Nanophotonics<br />

Part<br />

Time<br />

Chair<br />

Yong ZHANG is an expert in both optical<br />

spectroscopy and electronic structure<br />

computation, and is involved in<br />

optoelectronic applications of materials<br />

(e.g.,solar cell, solid state lighting,<br />

thermoelectrics).<br />

The goal of the project is to validate and<br />

combine new ideas for solar cells along<br />

three axis: 1/Type II band alignment at the<br />

interfaces, 2/1D architecture, using arrays<br />

of II-VI wires, 3/Direct band gap II-VI<br />

semiconductors. It will be done by exploring<br />

a new class of photovoltaic cells, based on<br />

core/shell nanowires architecture with type<br />

II band alignment such as ZnO/CdTe and<br />

ZnTe/CdSe.<br />

Institut<br />

Néel<br />

Léti LTM 300<br />

SUPPLEMENTS<br />

MUSCADE<br />

Nanosimulation<br />

Part<br />

Time<br />

Chair<br />

The core of this project is the true<br />

integration of Professor Normand<br />

MOUSSEAU from the University of Montréal<br />

into a local organization regrouping both<br />

physicists and computer scientists and<br />

working on condensed matter and<br />

nanostructures.<br />

Through the study of three prototype<br />

systems motivated by the experimental<br />

community, multiscale simulations are<br />

expected to advance our fundamental<br />

understanding of the key issues governing<br />

the formation and stability of<br />

semiconducting quantum dots, silicon<br />

nanowires and graphene sheets.<br />

INAC/<br />

SP2M<br />

SIMAP<br />

&<br />

Institut<br />

Néel<br />

LIG<br />

&<br />

Léti<br />

280<br />

TOTAL (k€) 930<br />

7


RTRA projects support<br />

Major topic Action Title & Description<br />

PERCEVAL<br />

Partners<br />

1 2 3<br />

Financial<br />

support<br />

(k€)<br />

Nanomaterials<br />

RTRA<br />

project<br />

The main target of the project is the study<br />

of the effect of reducing dimensions on<br />

phase transitions in new materials candidate<br />

for phase change random access memories<br />

(PCRAM). Special focus will be made on the<br />

effect of scaling on the variability of material<br />

composition in an array, the variation of<br />

melting temperature and the shift in<br />

crystallization.<br />

The studied materials will be Ge2Sb2Te5,<br />

GeTe and GeSb6. With Ge2Sb2Te5 (GST)<br />

being considered as a reference materials.<br />

LETI<br />

INAC/<br />

SP2M<br />

LMGP<br />

&<br />

LTM<br />

280<br />

MIDWEST<br />

SUPPLEMENTS<br />

Nanomagnetism<br />

Quantum<br />

Nanoelectronics<br />

RTRA<br />

project<br />

RTRA<br />

project<br />

The objective is to establish a local platform<br />

for magnetic imaging particularly suited for<br />

current-induced domain wall motion, which<br />

will be unique in France and even worldwide.<br />

The project outcomes will allow addressing<br />

the open questions in the field and<br />

producing ground-breaking results in the<br />

coming years in this competitive and fastmoving<br />

field.<br />

TRANSPIN<br />

The goal of this project is to realize coherent<br />

transport of a single electron spin in a<br />

scalable condensed matter system (lateral<br />

quantum dots defined in a GaAs<br />

heterostructure).<br />

The realization of teleportation of a single<br />

electron spin will open new possibilities to<br />

the field of Quantum Information and is an<br />

essential step towards coherent control of a<br />

large number of Q-Bits.<br />

Institut<br />

Néel<br />

Institut<br />

Néel<br />

INAC/<br />

LEMMA<br />

Spintec 250<br />

IMEP TIMA 230<br />

TOTAL (k€) 760<br />

Technological Platforms support<br />

Platform<br />

Attributed support<br />

Financial<br />

support<br />

(k€)<br />

PTA<br />

& CIME<br />

Operating expenses 250<br />

High temperature LP CVD system 220<br />

NanoBio Mass spectroscopy for bio-molecules 150<br />

NanoFab Silanisation system 120<br />

TOTAL (k€) 740<br />

8


Education and Scientific Animation support<br />

Topic Name of the event Location Dates (2009)<br />

Financial<br />

support<br />

(k€)<br />

EDUCATION<br />

Life sciences, Nanomaterials,<br />

Quantum Nanoelectronics, etc<br />

ESONN'09<br />

Grenoble<br />

August 23 rd -<br />

September 12 th 25<br />

Nanocharaterisation<br />

10th HERCULES<br />

specialized courses<br />

Grenoble<br />

May 18 th –<br />

May 22 nd 5<br />

Life sciences, Nanomaterials<br />

Sciences de la<br />

Miniaturisation et<br />

Biologie<br />

Grenoble<br />

June 8 th –<br />

June 12 th 5<br />

Quantum Nanoelectronics MIGAS 09 "SOI" Autrans<br />

SCIENTIFIC ANIMATION<br />

June 20 th –<br />

June 26 th 2<br />

Nanomaterials, Quantum<br />

Nanoelectronics<br />

4ème Colloque GDR<br />

«Nanowires,<br />

nanotubes,<br />

semiconductors»<br />

Autrans<br />

June 30 th –<br />

July 3 rd 2<br />

Quantum Nanoelectronics<br />

Seminars on Quantum<br />

Nanoelectronics<br />

Grenoble Weekly 6,5<br />

Nanomaterials, Quantum<br />

Nanoelectronics<br />

Nanomaterials, Quantum<br />

Nanoelectronics<br />

Nanomagnetism<br />

2nd France-Chine<br />

Workshop «Quantum<br />

Information and<br />

Spintronics with<br />

Semiconductors»<br />

2nd Grenoble & UT<br />

Austin workshop on<br />

nanosciences<br />

Daniel Dautreppe<br />

Seminars<br />

Grenoble<br />

Autrans<br />

Biviers<br />

October 11 th –<br />

October 16 th 2<br />

October 14 th –<br />

October 16 th 2<br />

November 16 th –<br />

November 20 th 2<br />

TOTAL (k€) 51.5<br />

SUPPLEMENTS<br />

9


Appendix 6: <strong>2010</strong> Call for Proposals funded projects<br />

Chairs of Excellence support<br />

Major topic Action Title & Description<br />

JoQOLaT<br />

Partners<br />

1 2 3<br />

Financial<br />

support<br />

(k€)<br />

Quantum<br />

Nanoelectronics<br />

Full<br />

Time<br />

Chair<br />

The new expertise in microwave quantum<br />

optics and dynamical Coulomb blockade<br />

brought by Max HOFHEINZ is at the core of<br />

this project that will include the development<br />

of various specific devices and circuits -<br />

based on his experience with<br />

superconducting quantum circuits (phase<br />

qubits and microwave resonators).<br />

INAC/<br />

SPSMS<br />

Institut<br />

Néel<br />

LPMMC 500<br />

NISHI<br />

SUPPLEMENTS<br />

Nanomaterials<br />

Nanosimulation<br />

Part<br />

Time<br />

Chair<br />

Part<br />

Time<br />

Chair<br />

Yoshio NISHI and his team at Stanford<br />

have a strong expertise in the field of MOS<br />

devices and technology and have made<br />

recent breakthroughs in the technology of Ge<br />

channel NMOS devices. The know-how of<br />

Prof. Nishi regarding Ge material, Metallic<br />

source and drains MOSFET will strongly<br />

benefit to the local community and will allow<br />

making significant progress in terms of<br />

technological and scientific aspects.<br />

CORTRANO<br />

Harold BARANGER has a track record of<br />

making connections between theorists<br />

working with computational techniques and<br />

those making analytic progress. He will<br />

bring specific expertise in several<br />

computational and theoretical areas: pathintegral<br />

quantum Monte Carlo simulation,<br />

molecular electronics using DFT combined<br />

with one-body Green function and in<br />

particular one of the first applications to<br />

spintronics.<br />

Léti IMEP 330<br />

INAC/<br />

SPSMS<br />

LPMMC<br />

Institut<br />

Néel<br />

300<br />

NSCGP<br />

Nanosimulation<br />

Part<br />

Time<br />

Chair<br />

This project is to benefit from the expertise<br />

of Prof. David GRAVES in the field of<br />

Molecular Dynamic Simulations applied to<br />

plasma-surface interactions. The goal is to<br />

determine under which plasma conditions<br />

graphene layers can be etched without<br />

damage. If it succeeds it will provide a<br />

technology to get the high quality samples<br />

that are required for fundamental studies of<br />

graphene properties as well as the possibility<br />

to pattern large area wafers for industrial<br />

applications.<br />

LTM<br />

Institut<br />

Néel<br />

Léti 300<br />

3D-CDI<br />

Nanosimulation<br />

Part<br />

Time<br />

Chair<br />

At University of Illinois, Prof. Jian Min ZUO<br />

has dedicated the past 8 years on the<br />

development of electron Coherent Diffractive<br />

Imaging (CDI) for structure characterization<br />

of nanoparticles and carbon nanotubes. This<br />

project on semiconductor, oxide nanowires,<br />

and organic nanostructures provides a<br />

further opportunity to broaden the<br />

application of electron CDI and to improve<br />

this technique with comparison with<br />

synchrotron.<br />

INAC/<br />

SP2M<br />

Cermav Léti 300<br />

10


TOTAL (K€) 1 730<br />

Ph. D. program<br />

Session Topic Host lab.<br />

Quantum<br />

Nanoelectronics<br />

INAC/<br />

SPSMS<br />

/LaTEQS<br />

Successful applicant<br />

Name Nationality Thesis title<br />

Andreas<br />

PFEFFER<br />

German<br />

Hybrid superconducting<br />

nanostructures: towards the<br />

realization of an EPR<br />

electronic source<br />

Financial<br />

support<br />

(k€)<br />

115<br />

April <strong>2010</strong><br />

Nanophotonics,<br />

Nano approaches<br />

to Life Sciences<br />

LIPhy<br />

Teodora<br />

SCHEUL<br />

Romanian<br />

Super-resolved microscopy:<br />

instrumental development<br />

and application to life science<br />

115<br />

Nanomaterials,<br />

Nanocharac.<br />

Nanomagnetism<br />

& Nano<br />

approaches to<br />

Life Sciences<br />

G2ELAB &<br />

Léti<br />

Nanostructured multilayers of<br />

Dmitry<br />

ZAKHAROV Russian exotic magnetic materials for<br />

energy-harvesting MEMS &<br />

NEMS<br />

115<br />

Quantum<br />

Nanoelectronics<br />

Institut<br />

Néel<br />

Hadi<br />

ARJMANDI<br />

TASH<br />

Iranian<br />

Quantum Transport in<br />

Suspended and Metal Doped<br />

Graphene<br />

115<br />

October<br />

<strong>2010</strong><br />

Nano approaches<br />

to Life Sciences<br />

Institut de<br />

Biologie<br />

Structurale<br />

Francesca<br />

COSCIA<br />

Italian<br />

Protein symmetrisation as a<br />

novel tool in structural<br />

biology<br />

115<br />

Quantum<br />

Nanoelectronics<br />

Institut<br />

Néel<br />

Thomas<br />

WEISSL<br />

German<br />

Quantum Dynamics in a<br />

Josephson Junction Chain<br />

TOTAL (K€) 690<br />

Technological Platforms support<br />

Platform<br />

Attributed support<br />

115<br />

Financial<br />

support<br />

(k€)<br />

SUPPLEMENTS<br />

PTA<br />

&<br />

CIME<br />

Operating expenses for the PTA platform<br />

New metal evaporator<br />

500<br />

CRG Monochromator equipment dedicated for spectroscopy 200<br />

NanoFab<br />

Operating expenses for the NanoFab platform 30<br />

Upgrade of the lithography e-beam equipment 50<br />

TOTAL (k€) 780<br />

11


Education and Scientific Animation support<br />

Topic Name of the event Location Dates (<strong>2010</strong>)<br />

Financial<br />

support<br />

(k€)<br />

EDUCATION<br />

All topics covered ESONN'10 Grenoble<br />

Quantum Nanoelectronics,<br />

Molecular electronics,<br />

Nanosimulation<br />

Graphene International<br />

School<br />

Cargese<br />

Quantum Nanoelectronics MIGAS'10 "MEMS & NEMS" Autrans<br />

August, 22 nd –<br />

September, 11 th 25,0<br />

October, 11 th –<br />

October 23 rd 2,0<br />

June, 26 th –<br />

July, 2 nd 2,0<br />

SCIENTIFIC ANIMATION<br />

Molecular electronics,<br />

Nanocharacterisation, Nano<br />

approaches to Life Sciences,<br />

Nanosimulation<br />

ElecMol’10<br />

Grenoble<br />

December, 6 th –<br />

December 10 th 10,0<br />

Quantum Nanoelectronics<br />

Nanocharacterisation, Nano<br />

approaches to Life Sciences,<br />

Nanosimulation<br />

Séminaires de<br />

Nanoélectronique Quantique<br />

Séminaire OMNT - Interactions<br />

biologie<br />

synthétique et<br />

micronanotechnologies<br />

Grenoble Weekly 6,5<br />

Grenoble March, 30 th 2,0<br />

SUPPLEMENTS<br />

Nanomagnetism and Spin<br />

Electronics<br />

Quantum Nanoelectronics,<br />

Nanocharacterisation,<br />

Nanosimulation<br />

Nanomagnétisme et<br />

Spintronique<br />

(Entretiens Jacques Cartiers)<br />

QFS<strong>2010</strong> : International<br />

Symposium on Quantum<br />

Fluids and Solids<br />

Grenoble<br />

Grenoble<br />

November, 24 th –<br />

November, 25 th 2,0<br />

August, 1 st –<br />

August, 7 th 1,5<br />

TOTAL (k€) 51,0<br />

12


Appendix 7: List of the Chairs of Excellence<br />

2007 Call for Proposals<br />

Name<br />

Nationality<br />

Duration<br />

FULL TIME<br />

Major topic Description From<br />

Starting<br />

on<br />

Modelisation of magnetic nanostructures<br />

Mairbek<br />

CHSHIEV<br />

Russian<br />

3 years<br />

Nanomagnetism<br />

The research of M. Chshiev is focused on the theory of<br />

spin-dependent electronic transport phenomena in<br />

nanostructures with giant and tunnel magnetoresistance<br />

as well as on electronic band structure of materials for<br />

spin electronics.<br />

University<br />

of Alabama<br />

(USA)<br />

May 2008<br />

Donald<br />

MARTIN<br />

Australian<br />

3 years<br />

Nano<br />

approaches to<br />

Life Sciences<br />

Biomimetic artificial membrane.<br />

D. Martin is one of the leaders of the Nanobiotechnology<br />

program at the University of Technology Sydney. He has<br />

launched the OzNano2Life program, in partnership with<br />

the European project Nano2life. His research focuses on<br />

ion channels in cell membranes.<br />

University<br />

of<br />

Technology<br />

of Sydney<br />

(Australia)<br />

January<br />

2009<br />

PART TIME<br />

Quantum coherent phenomena<br />

Leonid<br />

GLAZMAN<br />

American<br />

3m/year x3<br />

Vincent<br />

BAYOT<br />

Belgium<br />

2,5 m/year x3<br />

Quantum<br />

Nanoelectronics<br />

Nanocharacterisation<br />

L. Glazman is a renowned expert in the physics of<br />

mesoscopic systems with major contributions to the<br />

theory of electron transport and correlations in systems of<br />

reduced dimensionality, such as quantum dots and<br />

quantum wires.<br />

Scanning-gate Nanoelectronics<br />

V. Bayot has been involved in low-dimensional electronic<br />

systems and mesoscopic physics. More recently, he has<br />

concentrated on the study of mesoscopic and quantum<br />

transport by scanned gate microscopy.<br />

Transport in core/shell devices<br />

Yale<br />

University<br />

(USA)<br />

Catholic<br />

University<br />

of Leuven<br />

(Belgium)<br />

July 2008<br />

April<br />

2008<br />

SUPPLEMENTS<br />

Philip<br />

WONG<br />

American<br />

1m/year x3<br />

Quantum<br />

Nanoelectronics<br />

P. Wong is interested in exploring new materials, novel<br />

fabrication techniques, and novel device concepts for<br />

future nanoelectronics systems. His research covers a<br />

broad range of topics including carbon nanotubes,<br />

semiconductor nanowires, self-assembly, exploratory<br />

logic devices, and novel memory devices.<br />

Stanford<br />

University<br />

(USA)<br />

June<br />

2008<br />

Downsizing nanospintronics<br />

Joaquin<br />

FERNANDEZ-<br />

ROSSIER<br />

Spanish<br />

1,5 m/year x3<br />

Nanomagnetism<br />

J. Fernandez-Rossier works in the broad research field of<br />

condensed matter theory. He is particularly interested in<br />

the magnetic properties of systems of reduced<br />

dimensionality and in the manipulation of these properties<br />

by means of electrical fields and currents as well as laser<br />

excitation.<br />

University<br />

of Alicante<br />

(Spain)<br />

Sept.<br />

2008<br />

Vaclav<br />

HOLY<br />

Czech Republic<br />

1 m/year x4<br />

Nanocharacterisation<br />

X ray investigations on nanoparticles<br />

V. Holy is a well known specialist of X-ray diffusion by<br />

nanostructures. His expertise is particularly focused on<br />

the quantum objects prepared in situ on the beam lines<br />

and on the nano-defects induced in silicon by the<br />

technological processes.<br />

University<br />

of Masarik<br />

(Czech<br />

Republic)<br />

July 2008<br />

Michael<br />

ROUKES<br />

American<br />

3 m/year x 4<br />

Quantum<br />

Nanoelectronics<br />

Very Large Scale Integration of NEMS<br />

M. Roukes is the founding director of the Kavli<br />

Nanosciences Institute. His research interests are focused<br />

on developing and using of nanodevices in the exploration<br />

of single-quantum and single-molecule phenomena.<br />

Californian<br />

Institute of<br />

Technology<br />

(USA)<br />

May 2008<br />

13


2008 Call for Proposals<br />

Name<br />

Nationality<br />

Duration<br />

FULL TIME<br />

Major topic Description From<br />

Starting<br />

on<br />

Implantable computer –brain interface<br />

Tetiana<br />

AKSENOVA<br />

Russian<br />

3 years<br />

Nano<br />

approaches to<br />

Life Sciences<br />

T. Aksenova is a leading expert in the field of machine<br />

learning and real time signal processing. She invented<br />

several innovative approaches for signal processing,<br />

classification and modeling that will be used for Brain<br />

Computer Interface design.<br />

National<br />

Academy of<br />

Sciences<br />

(Ukraine)<br />

Novemb.<br />

2008<br />

PART TIME<br />

Alexander<br />

ZASLAVSKY<br />

American<br />

3m/year x3<br />

Quantum<br />

Nanoelectronics<br />

Tunneling-based nano-FETs<br />

A. Zaslavsky conducts research on devices that could<br />

supplement the current silicon transistor-based<br />

microelectronics technology.<br />

Brown<br />

University<br />

(USA)<br />

June<br />

2009<br />

SUPPLEMENTS<br />

Marcelo<br />

FRANCA<br />

SANTOS<br />

Brazilian<br />

3m/year x3<br />

Leonardo<br />

FONSECA<br />

Brazilian<br />

6m/ 3 years<br />

Nanophotonics<br />

Nanosimulation<br />

2009 Call for Proposals<br />

Emission Properties Of a semiconducting Cavity<br />

coupled to an Artifical atom<br />

M. Franca Santos is a theoretician specialized in quantum<br />

optics and cavity QED.<br />

Nanometric Devices calculated ab initio<br />

L. Fonseca is an expert in theory and modeling of<br />

nanostructures.<br />

University<br />

of Belo<br />

Horizonte<br />

(Brazil)<br />

W. Von<br />

Braun<br />

Center<br />

(Brazil)<br />

July 2009<br />

Novemb.<br />

<strong>2010</strong><br />

Name<br />

Nationality<br />

Duration<br />

PART TIME<br />

Major topic Description From<br />

SuperNanoCharach<br />

Starting<br />

on<br />

John<br />

KIRTLEY<br />

American<br />

3m/year x 3<br />

Nanocharacterisation<br />

J. Kirtley, one of the world’s leading experts on<br />

Josephson junction devices and superconductivity. For<br />

the past dozen years, he has developed the technique of<br />

scanning SQUID microscopy and used the resulting novel<br />

instruments for fundamental studies. This project aims to<br />

achieving the nanocharacterisation of superconducting<br />

nanostructures.<br />

Stanford<br />

University<br />

(USA)<br />

April<br />

<strong>2010</strong><br />

II-VI Photovoltaic<br />

Yong<br />

ZHANG<br />

American<br />

2m/year x 2<br />

Nanophotonics<br />

Y. Zhang is an expert in both optical spectroscopy and<br />

electronic structure computation, and is involved in<br />

optoelectronic applications of materials (e.g.solar cell,<br />

solid state lighting, thermoelectrics). This project aims to<br />

developing new concepts solar cells with II-VI<br />

semiconductor nanostructures.<br />

National<br />

Renewable<br />

Energy<br />

Laboratory<br />

(USA)<br />

Novemb.<br />

2009<br />

Normand<br />

MOUSSEAU<br />

Canadian<br />

2m/year x 3<br />

Nanosimulation<br />

MUSCADE<br />

N. Mousseau is an expert in theoretical and numerical<br />

studies of the structural and dynamical properties of<br />

complex materials. Through the study of three prototype<br />

systems, multiscale simulations are expected to advance<br />

the fundamental understanding of the key issues<br />

University<br />

of<br />

Montreal<br />

(Canada)<br />

Sept.<br />

<strong>2010</strong><br />

14


governing the formation and stability of semiconducting<br />

quantum dots, silicon nanowires and graphene sheets.<br />

<strong>2010</strong> Call for Proposals<br />

Name<br />

Nationality<br />

Duration<br />

FULL TIME<br />

Major topic Description From<br />

JoQOLaT<br />

Starting<br />

on<br />

Max<br />

HOFHEINZ<br />

3 years<br />

Quantum<br />

Nanoelectronics<br />

The new expertise in microwave quantum optics and<br />

dynamical Coulomb blockade brought by Max HOFHEINZ<br />

is at the core of this project that will include the<br />

development of various specific devices and circuits -<br />

based on his experience with superconducting quantum<br />

circuits (phase qubits and microwave resonators).<br />

IRAMIS/<br />

SPEC,<br />

CEA Saclay<br />

(France)<br />

July 2011<br />

PART TIME<br />

CORTRANO<br />

Harold<br />

BARANGER<br />

9m/3 years<br />

David<br />

GRAVES<br />

9m/3 years<br />

Nanosimulation<br />

Nanosimulation<br />

Harold BARANGER has a track record of making<br />

connections between theorists working with computational<br />

techniques and those making analytic progress. He will<br />

bring specific expertise in several computational and<br />

theoretical areas: path-integral quantum Monte Carlo<br />

simulation, molecular electronics using DFT combined with<br />

one-body Green function and in particular one of the first<br />

applications to spintronics.<br />

NSCGP<br />

This project is to benefit from the expertise of Prof. David<br />

GRAVES in the field of Molecular Dynamic Simulations<br />

applied to plasma-surface interactions. The goal is to<br />

determine under which plasma conditions graphene layers<br />

can be etched without damage. If it succeeds it will<br />

provide a technology to get the high quality samples that<br />

are required for fundamental studies of graphene<br />

properties as well as the possibility to pattern large area<br />

wafers for industrial applications.<br />

Duke<br />

University<br />

(USA)<br />

Berkeley<br />

University<br />

(USA)<br />

June<br />

2011<br />

June<br />

2011<br />

SUPPLEMENTS<br />

NISHI CHAIR<br />

Yoshio<br />

NISHI<br />

9m/3 years<br />

Nanomaterials<br />

Yoshio NISHI and his team at Stanford have a strong<br />

expertise in the field of MOS devices and technology and<br />

have made recent breakthroughs in the technology of Ge<br />

channel NMOS devices. The know-how of Prof. Nishi<br />

regarding Ge material, Metallic source and drains MOSFET<br />

will strongly benefit to the local community and will allow<br />

making significant progress in terms of technological and<br />

scientific aspects.<br />

Stanford<br />

University<br />

(USA)<br />

April<br />

2011<br />

3D-CDI<br />

Jian-Min<br />

ZUO<br />

9m/3 years<br />

Nanocharacterisation<br />

At University of Illinois, Prof. Jian Min ZUO has dedicated<br />

the past 8 years on the development of electron Coherent<br />

Diffractive Imaging (CDI) for structure characterization of<br />

nanoparticles and carbon nanotubes. This project on<br />

semiconductor, oxide nanowires, and organic<br />

nanostructures provides a further opportunity to broaden<br />

the application of electron CDI and to improve 3D<br />

coherent diffractive imaging with comparison with<br />

synchrotron.<br />

University<br />

of Illinois<br />

(USA)<br />

May<br />

2011<br />

15


Appendix 8: List of the Post Doc Fellows<br />

Post Doc Fellows recruited in 2008<br />

Name<br />

Project<br />

Nationality Stay Topics Laboratory<br />

Hartmut WEGE<br />

«New comers»<br />

Project Douady<br />

German<br />

March 2008<br />

-<br />

September 2009<br />

Dentritic potentials imaging by second<br />

harmonic generation<br />

Spectro<br />

Lavinia LIGUORI<br />

Chair of Excellence<br />

Donald MARTIN<br />

Italian<br />

July 2008<br />

-<br />

June <strong>2010</strong><br />

Biomimetic artificial membrane systems<br />

for generating electrochemical energy<br />

TIMC<br />

Loren SWENSON<br />

«New comers»<br />

Project Monfardini<br />

American<br />

July 2008<br />

-<br />

June <strong>2010</strong><br />

A DC-to-THz cryogenic platform for new<br />

generations of nano-detectors<br />

Institut Néel<br />

Alexey DOBRYNIN<br />

RTRA Project<br />

POMME<br />

Russian<br />

July 2008<br />

-<br />

June <strong>2010</strong><br />

Properties of magnetic metals under<br />

electric field<br />

Institut Néel<br />

Libertad<br />

ABAD MUNOZ<br />

RTRA Project<br />

NeuroFET<br />

Spanish<br />

November 2008<br />

-<br />

May <strong>2010</strong><br />

Coupling of neurons with silicon nano Field<br />

Effect Transistors<br />

Institut Néel &<br />

CRETA<br />

SUPPLEMENTS<br />

Post Doc Fellows recruited in 2009<br />

Name<br />

Project<br />

Karim AISSOU<br />

RTRA Project<br />

Cellulose hybrid<br />

Alan KALITSOV<br />

Chair of Excellence<br />

Mairbek CHSHIEV<br />

Nationality Stay Topics Laboratory<br />

French<br />

Russian<br />

February 2009<br />

–<br />

August <strong>2010</strong><br />

April 2009<br />

–<br />

July <strong>2010</strong><br />

Cellulose Hybrid Block Copolymers<br />

Modeling of spin-dependent electronic<br />

transport in nanostructures<br />

CERMAV<br />

SPINTEC<br />

Shidong WANG<br />

«New comers»<br />

Project Mingo<br />

Chinese<br />

May 2009<br />

–<br />

February <strong>2010</strong><br />

Computational modeling of novel<br />

nanostructured thermoelectric materials<br />

LITEN<br />

Vitaly HOLOVACH<br />

Chair of Excellence<br />

Leonid GLAZMAN<br />

Ukrainian<br />

November 2009<br />

–<br />

November 2011<br />

Quantum coherent nanoscale devices<br />

INAC/SPSMS<br />

Eduardo MACHADO<br />

CHARRY<br />

Chair of Excellence<br />

Normand MOUSSEAU<br />

Colombian<br />

December 2009<br />

–<br />

September 2011<br />

Multi-scale Design of Nano-materials with<br />

simulations on hybrid architectures<br />

INAC/SP2M<br />

16


Post Doc Fellows recruited in <strong>2010</strong><br />

Name<br />

Project<br />

Nationality Stay Topics Laboratory<br />

Anne<br />

BERNAND MANTEL<br />

RTRA Project<br />

POMME<br />

French<br />

January <strong>2010</strong><br />

-<br />

September <strong>2010</strong><br />

Preparation and study of models revealing<br />

magnetism activation effects under a<br />

given electric field<br />

Institut Néel<br />

Vincent<br />

CONSONNI<br />

Chair of Excellence<br />

John KIRTLEY<br />

French<br />

February <strong>2010</strong><br />

–<br />

January 2011<br />

Réalisation de nanostructures de type<br />

coeur-coquille à base de nanofils de ZnO<br />

LTM<br />

Vincent RENARD<br />

RTRA Project<br />

DISPOGRAPH<br />

French<br />

March <strong>2010</strong><br />

–<br />

September 2011<br />

DISPOGRAPH project: Study of graphene<br />

and its application to new devices<br />

Institut Néel<br />

Aurelien<br />

MASSEBOEUF<br />

RTRA Project<br />

MIDWEST<br />

French<br />

March <strong>2010</strong><br />

–<br />

October 2011<br />

Projet MIDWEST : Etude des mouvements<br />

de parois induits par des courants<br />

polarisés en spin<br />

INAC/SP2M<br />

Valentina<br />

CANTELLI<br />

«New comers»<br />

Project Schülli<br />

Italian<br />

April <strong>2010</strong><br />

–<br />

September 2011<br />

UHV-CVD measuring station for in-situ x-<br />

ray investigation of growing<br />

semiconductor nanowires<br />

INAC/SP2M<br />

Anne MARTEL<br />

RTRA Project<br />

NANOBIODROP<br />

Anupam KUNDU<br />

«New comers»<br />

Project Mingo<br />

Sergiy BOKOCH<br />

«New comers»<br />

Project Labbé<br />

Jean Faber<br />

FERREIRA DE<br />

ABREU<br />

Chair of Excellence<br />

Tetiana AKSENOVA<br />

French<br />

Indian<br />

Ukrainian<br />

Brazilian<br />

May <strong>2010</strong><br />

–<br />

November 2011<br />

August <strong>2010</strong><br />

–<br />

April 2011<br />

September <strong>2010</strong><br />

–<br />

August 2011<br />

September <strong>2010</strong><br />

–<br />

September 2011<br />

Artificial membranes on chip for the study<br />

of membrane proteins<br />

Computational modeling of novel<br />

nanostructured thermoelectric materials<br />

Modeling of hysteresis in ferromagnetic<br />

materials<br />

Interface Brain computer interface, selflearning<br />

adaptative embedded solution<br />

IBS<br />

LITEN<br />

Laboratoire<br />

KUNTZMAN<br />

LETI<br />

/CLINATEC<br />

SUPPLEMENTS<br />

Benjamin SACEPE<br />

Chair of Excellence<br />

Vincent BAYOT<br />

French<br />

September <strong>2010</strong><br />

–<br />

February 2012<br />

Use of scanning gate microscopy to study<br />

coherent quantum transport in the<br />

quantum hall effect.<br />

Institut Néel<br />

Billel SALHI<br />

RTRA Project<br />

PERCEVALL<br />

French<br />

October <strong>2010</strong><br />

–<br />

September 2011<br />

Study of the location of metal catalyst for<br />

the growth of silicon nanowires<br />

LTM<br />

Minhao YAN<br />

RTRA Project<br />

POLYSUPRA<br />

Chinese<br />

October <strong>2010</strong><br />

–<br />

March 2012<br />

Preparation and characterization of<br />

functional and multi-responsive self<br />

assembled metallo-suprapolymers<br />

INAC/SPRAM &<br />

DCM<br />

Cécile DELACOUR<br />

RTRA Project<br />

NeuroFET<br />

French<br />

December <strong>2010</strong><br />

–<br />

March 2011<br />

Silicon nano transistors for the detection<br />

of neural network activity<br />

Institut Néel<br />

Thomas NOGARET<br />

Chair of Excellence<br />

Normand MOUSSEAU<br />

French<br />

December <strong>2010</strong><br />

–<br />

November 2011<br />

Approche multi-échelle de la croissance de<br />

nanofils de silicium<br />

SIMAP<br />

17


Appendix 9: List of the PhD students<br />

PhD students recruited in 2007<br />

Name<br />

Project<br />

Nationality Thesis started on Thesis title Laboratory<br />

Thomas QUAGLIO<br />

"fil de l'eau"<br />

French October 2007<br />

Local spectroscopy of nanostructured<br />

superconductors out of equilibrium<br />

Institut Néel<br />

Xu WANG<br />

"fil de l'eau"<br />

Chinese October 2007<br />

New nanometric bio-sensors<br />

nanotubes<br />

from carbon<br />

DCM<br />

Subhadeep DATTA<br />

"fil de l'eau"<br />

Indian October 2007<br />

Molecular spintronics using singlemolecule<br />

magnets<br />

Institut Néel<br />

Jun-Seok<br />

HWANG<br />

"fil de l'eau"<br />

South<br />

Korean<br />

November 2007 Transport and optics of single nanowires Institut Néel<br />

Mikhail KUSTOV<br />

"fil de l'eau"<br />

Russian December 2007<br />

Micromanipulation of nanoparticles using<br />

the diamagnetic levitation approach<br />

G2ELAB<br />

PhD students recruited in 2008<br />

Name<br />

Project<br />

Nationality Thesis started on Thesis title Laboratory<br />

SUPPLEMENTS<br />

Sandeep<br />

AGNIHOTRI<br />

"fil de l'eau"<br />

Marcio MEDEIROS<br />

SOARES<br />

"fil de l'eau"<br />

Aleš HRABEC<br />

"fil de l'eau"<br />

Peng LIU<br />

Chair of Excellence<br />

Vincent BAYOT<br />

Indian March 2008<br />

Brazilian May 2008<br />

Czech September 2008<br />

Chinese September 2008<br />

Spin-based electronics in II-VI<br />

semiconductors : Spin-dependent tunnel<br />

current in heterostructures<br />

Growth, structure and magnetism in<br />

perpendicular coupled systems<br />

Magnetization reversal in compensated<br />

ferrimagnets and current-induced domain<br />

wall displacement in magnetic<br />

nanostructures<br />

Nanoelectronics by scanning probe<br />

microscopy<br />

Institut Néel &<br />

INAC/SP2M<br />

Institut Néel<br />

Institut Néel<br />

Institut Néel<br />

Bharathi<br />

NATARAJAN<br />

RTRA Project<br />

NANOSTAR<br />

Indian September 2008<br />

Development of New Functionals and<br />

Algorithms for Time Dependent Density<br />

Functional Theory<br />

INAC/SP2M<br />

Nitin Singh MALIK<br />

«New comers»<br />

project Claudon<br />

Indian September 2008<br />

Study of strong atom-light interaction on<br />

chip<br />

INAC/SP2M<br />

Chonglong CAO<br />

Chair of Excellence<br />

FERNANDEZ-<br />

ROSSIER<br />

Chinese September 2008<br />

Optical and electronic properties of<br />

quantum dots with a single Mn impurity<br />

Institut Néel<br />

Arpan Krishna<br />

DEB<br />

"fil de l'eau"<br />

Indian October 2008<br />

Multiscale study of the charge effect on<br />

diffusion in silicon<br />

INAC/SP2M<br />

Radoslaw<br />

BOMBERA<br />

"fil de l'eau"<br />

Polish October 2008<br />

Development of novel biochips destined<br />

for cell characterization and sorting<br />

INAC/SCIB<br />

Irina GROZA<br />

"fil de l'eau"<br />

Romanian October 2008<br />

Spin-torque effects in magnetic<br />

nanoparticules<br />

INAC/SP2M<br />

Akash<br />

CHAKRABORTY<br />

"fil de l'eau"<br />

Indian October 2008<br />

Magnetism and transport in diluted<br />

magnetic systems and effects of<br />

nanoscale inhomogeneities<br />

Institut Néel<br />

Xiaojun CHEN<br />

"fil de l'eau"<br />

Chinese October 2008<br />

Selective growth of nitride nanowires for<br />

photonics applications<br />

INAC/SP2M<br />

18


PhD students recruited in 2009<br />

Name<br />

Project<br />

Nationality Thesis started on Thesis title Laboratory<br />

Andriy<br />

YELISYEYEV<br />

Chair of Excellence<br />

Tetiana AKSENOVA<br />

Ukrainian January 2009<br />

Brain-Computer Interface using electrocorticogram<br />

(ECoG) from the cortical<br />

surface<br />

Léti<br />

Jae Woo LEE<br />

Chair of Excellence<br />

Philip WONG<br />

South<br />

Korean<br />

February 2009 Transport in core-shell nanowires IMEP LAHC<br />

Hongxin YANG<br />

"fil de l'eau"<br />

Chinese March 2009<br />

Electronic structure and spin-polarized<br />

currents in magnetic epitaxial tunnel<br />

junctions.<br />

INAC/SPINTEC<br />

Miryam ELOUNEG<br />

JAMROZ<br />

"fil de l'eau"<br />

Canadian March 2009<br />

Development of quantum dots in II-VI<br />

semiconductors nanowires for photonic<br />

applications<br />

Institut Néel<br />

Vinicius<br />

FERRAZ<br />

GUIMARAES<br />

"fil de l'eau"<br />

Brazilian June 2009<br />

Preparation and characterization of yttrium<br />

aluminoborate nanopowders for the<br />

development of a new generation of<br />

phosphors for lighting<br />

Institut Néel<br />

Jing WAN<br />

Chair of Excellence<br />

Alexander<br />

ZASLAVSKY<br />

Chinese June 2009<br />

Quantum and tunneling nanodevices<br />

integrated in the "semiconductor-oninsulator"<br />

platform<br />

IMEP/LETI<br />

Omid FAIZY<br />

RTRA Project<br />

NANOSTAR<br />

Purvi JAIN<br />

"fil de l'eau"<br />

Van Dai NGUYEN<br />

"fil de l'eau"<br />

Kalpana MANDAL<br />

«New comers»<br />

project Balland<br />

Natalia ARES<br />

"fil de l'eau"<br />

Iranian July 2009 Quantum transport in nanostructures Institut Néel<br />

Indian September 2009<br />

Vietnamese October 2009<br />

Indian October 2009<br />

Argentinean October 2009<br />

Antibody phage display in materials<br />

sciences : new nano-probes and linkers for<br />

nano-objects<br />

Injection of electrical current and the<br />

dynamics of magnetic walls propagation<br />

Contribution of the physical properties of<br />

the environment to cell/cell interactions<br />

Electronic transport and spin dynamics in<br />

coupled SiGe self-assembled quantum<br />

dots<br />

SPECTRO<br />

INAC/SP2M<br />

SPECTRO<br />

INAC/SPSMS<br />

SUPPLEMENTS<br />

Chi VO VAN<br />

"fil de l'eau"<br />

Vietnamese October 2009<br />

Graphene epitaxy on metals for a new<br />

generation of self-organized, highly<br />

ordered, tunable magnetic nanosystems<br />

Institut Néel<br />

Raul SALAZAR<br />

ROMERO<br />

Chair of Excellence<br />

Yong ZHANG<br />

Mexican November 2009<br />

New concepts solar cells with II-IV<br />

semiconductor nanostructures<br />

Léti<br />

Siddarth NAMBIAR<br />

"fil de l'eau"<br />

Indian November 2009<br />

Plasmons assisted Si electro-optical<br />

devices<br />

Léti<br />

Daniel VALENTE<br />

Chair of Excellence<br />

Marcelo FRANCA<br />

SANTOS<br />

Brazilian November 2009<br />

Emission properties of a semi-conducting<br />

Cavity coupled to an Artificial Atom<br />

Institut Néel<br />

Marc GANZHORN<br />

"fil de l'eau"<br />

German December 2009<br />

Molecular spintronics using single molecule<br />

magnets: magnetic force measurements<br />

using carbon nanotube based mechanical<br />

resonators.<br />

Institut Néel<br />

19


PhD students supported in <strong>2010</strong><br />

Name<br />

Project<br />

Nationality Thesis started on Thesis title Laboratory<br />

Giada GHEZZI Italian February <strong>2010</strong><br />

Dimensional effect on phase transition in<br />

materials for phase change memories<br />

Léti & LMGP<br />

PhD students supported by the PhD program <strong>2010</strong><br />

Name<br />

Project<br />

Nationality Thesis started on Thesis title Laboratory<br />

Teodora SCHEUL Romanian October <strong>2010</strong><br />

Superresolved microscopy: instrumental<br />

development and application to live<br />

sciences<br />

SPECTRO<br />

Andreas PFEFFER German November <strong>2010</strong><br />

Hybrid superconducting nanostructures:<br />

towards the realization of an EPR<br />

electronic source<br />

INAC/SPSMS<br />

Dmitri ZAKHAROV Russian January 2011<br />

Nanostructured multilayers of exotic<br />

magnetic materials for energy-harvesting<br />

MEMS & NEMS<br />

Léti & GE2lab<br />

Francesca COSCIA Italian February 2011<br />

Protein symmetrization as a novel tool in<br />

structural biology<br />

IBS<br />

SUPPLEMENTS<br />

Thomas WEISSL German February 2011<br />

Hadi<br />

ARJMANDI TASH<br />

Iranian April 2011<br />

Quantum Dynamics in a Josephson<br />

Junction Chain<br />

Quantum Transport in Suspended and<br />

Metal Doped Graphene<br />

Institut Néel<br />

Institut Néel<br />

20


Appendix 10: "Les Parrains de la Fondation"<br />

Alim-Louis BENABID, Member of the Academy of Sciences, Professor Emeritus of Biophysics at the<br />

University Joseph Fourier, Scientific Counselor at the 'Direction de la Recherche Technologique’ of the CEA.<br />

<br />

<br />

<br />

<br />

Michel BRUEL: Scientific Counsellor at the Léti and Founder of the Consulting Company APLINOV.<br />

Jean-Lou CHAMEAU: President of the Californian Institute of Technology.<br />

Albert FERT: 2007 Nobel Prize in Physics, Professor at the University Paris-Sud (Paris XI).<br />

Axel KAHN: Geneticist, President of the University Paris Descartes (Paris V).<br />

Etienne KLEIN: Physicist and Doctor in Philosophy of Sciences, Research Director at the CEA<br />

Saclay, Director of the ‘Laboratoire de Recherche sur les Sciences de la Matiere’.<br />

Joël MONNIER: Founder of the start-up Kalray and former Vice-President and Director of R&D in<br />

STMicroelectronics.<br />

Eva PEBAY-PEROULA: Member of the Academy of Sciences, Director of the ‘Institut de Biologie<br />

Structurale’, Professor at the University Joseph Fourier.<br />

<br />

Francesco SETTE: General Director of the European Synchrotron Radiation Facility.<br />

<br />

Jean THERME: Director of the CEA Grenoble.<br />

SUPPLEMENTS<br />

21


Appendix 11: List of the Reviewers involved in the Calls for<br />

Proposals in 2009 and <strong>2010</strong><br />

2009 Call for Proposals<br />

Reviewer Laboratory / University / Institution Country<br />

Jacqueline BLOCH Laboratoire de Photonique et de Nanostructures LPN/<strong>CNRS</strong> France<br />

Daniel BOUCHIER Institut d'Electronique Fondamentale, Orsay France<br />

Guillaume CASSABOIS Laboratoire Pierre Aigrain, Ecole Normale Supérieure France<br />

Maria CHAMARRO Institut des Nanosciences de Paris, Université Pierre et Marie Curie France<br />

Laurent COGNET<br />

Centre de Physique Moléculaire Optique et Hertzienne, Université de<br />

Bordeaux and <strong>CNRS</strong><br />

France<br />

Jean-Pierre COLINGE Tyndall National Institute, Cork Ireland<br />

Ana CROS STÖTTER Instituto de Ciencia de Materiales, Universidad de Valencia Spain<br />

Maxime DAHAN<br />

Christophe DELERUE<br />

Laboratoire Kastler Brossel, Département de Physique et de Biologie,<br />

Ecole Normale Supérieure<br />

Institut d'Electronique, de Microélectronique et de Nanotechnologie,<br />

<strong>CNRS</strong> Lille<br />

France<br />

France<br />

SUPPLEMENTS<br />

Hervé DEVAUX<br />

Stefan DILHAIRE<br />

Laboratoire Structure et Dynamique par Résonance Magnétique, URA<br />

CEA/<strong>CNRS</strong> 331, DSM/IRAMIS/Service Interdisciplinaire sur les<br />

Systèmes Moléculaires et les Matériaux<br />

Groupe de PhotoThermique des Microsystèmes et Nanomatériaux,<br />

CPMOH, Université Bordeaux1-<strong>CNRS</strong><br />

France<br />

France<br />

Klaus ENSSLIN Laboratorium f. Festkörperphysik Switzerland<br />

Giancarlo FAINI<br />

Groupe de Physique et Technologie des Nanostructures, Laboratoire<br />

de Photonique et Nanostructures, <strong>CNRS</strong>, Marcoussis<br />

France<br />

Vladimir FALKO Physics Department, Lancaster University United Kingdom<br />

Jayne GARNO<br />

Howard Hughes Medical Institute , Chemistry Department, Chevy<br />

Chase<br />

Christian GLATTLI Ecole Normale Supérieure Paris France<br />

USA<br />

Stefan GODECKER University of Basel Switzerland<br />

Marcello GOFFMAN<br />

Laboratoire d'Electronique Moléculaire, DSM / IRAMIS /SPEC/ CEA<br />

Saclay<br />

France<br />

Jean-Jacques GREFFET Ecole Centrale Paris France<br />

Mihai Adrian IONESCU Nanolab, Ecole Polytechnique Fédérale de Lausanne Switzerland<br />

Alain JONAS<br />

Unité de Chimie et de Physique des Hauts Polymères (POLY),<br />

Université catholique de Louvain<br />

Belgium<br />

Ali KHADEMHOSSEINI Harvard-MIT, Cambridge USA<br />

Jean-Philippe LACHAUX<br />

Philippe LAFARGE<br />

INSERM U821 Brain Dynamics and Cognition, Centre Hospitalier Le<br />

Vinatier<br />

Laboratoire Matériaux et Phénomènes Quantiques<br />

<strong>CNRS</strong> – Université de Paris 7<br />

France<br />

France<br />

Astrid LAMBRECHT Laboratoire Kastler Brossel, <strong>CNRS</strong> Université de Paris 6 France<br />

Didier LETOURNEUR CHU, Bichat France<br />

Salvatore LOMBARDO STMicroelectronics Italy<br />

22


2009 Call for Proposals (continued)<br />

Reviewer Laboratory / University / Institution Country<br />

Stéphane MANGIN Institut Jean Lamour, <strong>CNRS</strong> – Nancy University France<br />

Chris MARROWS School of Physics and Astronomy, University of Leeds United Kingdom<br />

Thierry MARTIN Centre de Physique Théorique et Université de la Méditerranée France<br />

Dominique MASSIOT<br />

Mikael MERTIG<br />

CEMHTI (Conditions Extrêmes et Matériaux : Haute Température et<br />

Irradiation) –<strong>CNRS</strong> Université d'Orléans, Directeur Fédération RMN<br />

Solide Hauts Champs FR2950<br />

BioNanotechnologie und Strukturbildung, Max Bergmann Zentrum für<br />

Biomaterialien und Institut für Werkstoffwissenschaft, Technische<br />

Universität Dresden<br />

France<br />

Germany<br />

David MOONEY Harvard , Engineering & Applied Science Dpt USA<br />

Vincent PAILLARD CEMES-<strong>CNRS</strong> & Univ. Toulouse France<br />

Jukka PEKOLA Low Temperature Laboratory, Helsinki University of Technology Finland<br />

Alain PEREZ<br />

Laboratoire de Physique de la Matière Condensée et Nanostructures<br />

Université Claude Bernard Lyon 1 et <strong>CNRS</strong><br />

France<br />

Frédéric PETROFF Unité Mixte de Physique <strong>CNRS</strong>/Thales France<br />

Jean-Claude PLENET<br />

Laboratoire de Physique de la Matière Condensée et Nanostructure,<br />

<strong>CNRS</strong> Université de Lyon<br />

France<br />

Hughes POTHER Quantronics group, SPEC, CEA-Saclay France<br />

Stephan REITZENSTEIN Lehrstuhl für Technische Physik, Nuremberg Germany<br />

Patrice ROCHE CEA Saclay France<br />

Sven ROGGE Delft University of Tehnology Netherlands<br />

Sylvie ROUSSET Matériaux et Phénomènes Quantiques, Université Paris Diderot France<br />

Stéphane ROUX LMT-Cachan, <strong>CNRS</strong> Université Pierre et Marie Curie France<br />

Markus SAUER<br />

Applied Laser Physics & Laser Spectroscopy<br />

Bielefeld University<br />

Germany<br />

Christian SHÖNENBERGER Department of Physics, University of Basel Switzerland<br />

SUPPLEMENTS<br />

Mark SMITH Warwick University, Coventry United Kingdom<br />

Etienne SNOECK CEMES-<strong>CNRS</strong> - Groupe NanoMatériaux France<br />

Patrice TURCHI<br />

Advanced Metallurgical Science and Engineering, Condensed Matter<br />

and Materials Division (CMMD), Lawrence Livermore National<br />

Laboratory<br />

USA<br />

Alexey USTINOV University of Karlsruhe Germany<br />

Herre van DER ZANT Delft University of Technology Netherlands<br />

Olivier VANBESIEN<br />

Institut d'Electronique, de Microélectronique et de Nanotechnologie,<br />

<strong>CNRS</strong> Lille<br />

France<br />

Paul VOISIN Laboratoire de Photonique et Nanostructures, <strong>CNRS</strong>, Marcoussis France<br />

Marcy ZENOBI WONG<br />

Laboratory for Biosensors & Bioelectronics, Institute for Biomedical<br />

Engineering , Zurich<br />

Switzerland<br />

23


<strong>2010</strong> Call for Proposals<br />

Reviewer Laboratory / University / Institution Country<br />

Philippe BERGONZO Laboratoire Capteurs Diamant - CEA Saclay / DRT/DCSI//LCD France<br />

Daniel BOUCHIER Institut d'Electronique Fondamentale, Orsay France<br />

Mads BRANDBYGE DTU Danemark - Chimie quantique Danemark<br />

Alain BRISSON<br />

Equipe Imagerie Moléculaire et NanoBioTechnologie - IECB - <strong>CNRS</strong>-<br />

Université Bordeaux 1<br />

France<br />

Virginie CHAMARD Institut Fresnel, <strong>CNRS</strong>, Marseille France<br />

Alain CLAVERIE CEMES France<br />

Laurent COGNET<br />

Maxime DAHAN<br />

Christophe DELERUE<br />

Centre de Physique Moléculaire Optique et Hertzienne - Université de<br />

Bordeaux and <strong>CNRS</strong><br />

Laboratoire Kastler Brossel, Département de Physique et de Biologie,<br />

Ecole Normale Supérieure<br />

Institut d'Electronique, de Microélectronique et de Nanotechnologie,<br />

<strong>CNRS</strong> Lille<br />

France<br />

France<br />

France<br />

Klaus ENSSLIN Laboratorium f. Festkörperphysik Switzerland<br />

Daniel ESTEVE Quantronics group - SPEC-CEA Saclay France<br />

SUPPLEMENTS<br />

Giancarlo FAINI<br />

Groupe de Physique et Technologie des Nanostructures, Laboratoire de<br />

Photonique et Nanostructures, <strong>CNRS</strong>, Marcoussis<br />

France<br />

Fabrice GOURBILLEAU ENSICAEN France<br />

Alain JONAS<br />

Unité de Chimie et de Physique des Hauts Polymères (POLY),<br />

Université catholique de Louvain<br />

Belgium<br />

Takis KONTOS Département de Physique de l’Ecole Normale supérieure France<br />

Gilles LERONDEL LNIO-UTT - expert for OMNT France<br />

Didier LETOURNEUR CHU, Bichat France<br />

Frederic PETROFF THALES France<br />

Sven ROGGE Delft University of Technology Netherlands<br />

Stéphane ROUX LMT-Cachan, <strong>CNRS</strong> Université Pierre et Marie Curie France<br />

Christian SHONENBERGER University of Basel, Institute of Physics Suisse<br />

Pierre STADELMANN EPFL, Lausanne Suisse<br />

Patrice TURCHI<br />

Advanced Metallurgical Science and Engineering, Condensed Matter<br />

and Materials Division (CMMD), Lawrence Livermore National<br />

Laboratory<br />

USA<br />

Marcy ZENOBI WONG<br />

Laboratory for Biosensors & Bioelectronics, Institute for Biomedical<br />

Engineering , Zurich<br />

Suisse<br />

24


Appendix 12: "Les Indicateurs Académiques"<br />

Nom du laboratoire<br />

Centre de Recherche sur les Macromolécules Végétales (CERMAV)<br />

Identification UPR 5301<br />

Directeur<br />

Redouane BORSALI<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 23/9 24/9 24/9 24/9<br />

dont quel % dans la thématique "Nano" ? 10% 20% 30% 30%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 1/35 2/30 2/20 3/24<br />

Nombre total de doctorants 33 33 34 33<br />

dont combien de doctorants étrangers ? 23 23 22 21<br />

Nombre de doctorants employés par la Fondation<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 0 1 2 0<br />

Nombre de thèses soutenues dans l'année 7 6 11 2<br />

dont combien dans la thématique "Nano" ? 1 0 4 0<br />

Nombre de publications dans l'année 72 100 80 56<br />

dont combien dans la thématique "Nano" ? 7 5 12 8<br />

Nombre de brevets dans l'année ? 7 2 2 4<br />

Nombre de licences dans l'année ? 0 0 1 1<br />

Organisation de grandes conférences internationales (Nombre et noms) 3 4,5,6 1 3 2 1,2 1<br />

Evénements de dissémination culture scientifique/débats sociétaux 2 3<br />

SUPPLEMENTS<br />

RESSOURCES (K€)<br />

Budget total hors salaires 931,889 1138,445 1746,300 1622,816<br />

Total des ressources contractuelles 953,508 824,799 1173,000 1043,671<br />

dont ANR 278,914 251,791 523,500 289,460<br />

dont Europe 410,445 198,519 221,900 35,500<br />

dont Région 88,302 134,794 122,600 40,250<br />

dont Industrie 147,272 240,105 164,200 33,257<br />

dont Fondation Nanosciences : RTRA retenu en 2008 et financé<br />

en 2009 ; Copolymères Hybrides, R. Borsali<br />

0 0 88000 0<br />

Part salariale (CDD "de fait") des ressources contractuelles 566419 163854 493338 639204<br />

Part salariale du soutien Fondation Nanosciences 0<br />

Salaire<br />

Post-doc<br />

K. Aissou<br />

5572 +<br />

CDD payé<br />

par la<br />

fondation<br />

Yoko<br />

OTSUKA ~<br />

45 000€<br />

0<br />

1 : Coll. franco-brésilien Polymères Environnement, Maracana, Rio de Janeiro, Brésil, 18-20 oct. 09<br />

2 :6th Int. Conf. on Proteoglycans, Aix-les-Bains, 13-17 sept. 09<br />

3 :FBPol.2008, 2e congrès franco-brésilien sur les polymères, Florianopolis, Brésil, 20-25 avril 08<br />

4 :Coll. Raw Materials for the Future, Lyon, 5-6 déc. 07<br />

5 :3e Sém. sur les Polymères, Béjaia, Alg., 22-24 mai 07<br />

6 :Congrès du GGMM, Autrans, 2-5 mai 07<br />

25


Nom du laboratoire<br />

Département de Chimie Moléculaire (DCM)<br />

Identification UMR 5250<br />

Directeur<br />

Pascal DUMY<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 22/41 20/39 22/40 21/41<br />

dont quel % dans la thématique "Nano" ? 21% 22% 23% 42%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 5 5 5<br />

Nombre total de doctorants 39 35 44 35<br />

dont combien de doctorants étrangers ? 14 15 14 10<br />

Nombre de doctorants employés par la Fondation 1 2 2 1<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

SUPPLEMENTS<br />

Nombre de HDR soutenues dans l'année 0 0 0 1<br />

Nombre de thèses soutenues dans l'année 9 8 6 14<br />

dont combien dans la thématique "Nano" ? 3 0 1 5<br />

Nombre de publications dans l'année 83 86 88 99<br />

dont combien dans la thématique "Nano" ? 5 9 19 27<br />

Nombre de brevets dans l'année ? 1 2 2 4<br />

Nombre de licences dans l'année ? 1 1<br />

Organisation de grandes conférences internationales (Nombre et noms) 1 1 2 3 5 4<br />

Evénements de dissémination culture scientifique/débats sociétaux 1 2 1 5<br />

RESSOURCES (K€)<br />

Budget total hors salaires 2 773,773 2498,529 1943,451 1780,263<br />

Total des ressources contractuelles 2422,473 2169,529 1514,518 1429,263<br />

dont ANR 223,545 241,082 176,140 240,519<br />

dont Europe 9,302 51,492 9,500<br />

dont Région 37,048 18,579 34,000 20,000<br />

dont Industrie 40,000 65,425<br />

dont Fondation Nanosciences 223,000 20,000 25,000<br />

Part salariale (CDD "de fait") des ressources contractuelles 370,227 560,433 561,000 762,961<br />

Part salariale du soutien Fondation Nanosciences 9,500 50,667 67,083 67,083<br />

1:<br />

5 th France-China Workshop on Surface Electrochemistry of Molecules of Biological Interest & Biosensor<br />

applications, Changsha, 17-20 mai 2008<br />

2: XI Colloque National du Groupe Français de Bioélectrochimie, Lacanau, 29 sept-2 oct 2008<br />

3: The 6th Sino-French Workshop on « Surface Electrochemistry of Molecules of Biological Interest & Biosensor<br />

Applications », Lyon, 29 novembre-2 décembre 2009<br />

Workshop on Nanosciences & Nanotechnology : From Smart Materials to Devices, Octobre 2009, Autrans, 41<br />

participants<br />

4: 4 th International IMBG Meeting, Villard-de-Lans, septembre <strong>2010</strong>, 90 participants<br />

5 th International Meeting on Molecular Electronic, Grenoble, déc. <strong>2010</strong>, 400 participants<br />

CEFISO / IFCOS (Centre Franco Indien pour la Synthèse Organique), Isère, 14-17 sept. <strong>2010</strong><br />

Journée Alpine de Chimie Organique (JACO) AE Greene, Isère, juin <strong>2010</strong><br />

11 e Journées Francophones des Jeunes Physico-Chimistes (JFJPC), Isère, 17-21 oct. <strong>2010</strong><br />

5: Fellow of the International Society of Electrochemistry <strong>2010</strong><br />

26


Nom du laboratoire<br />

Grenoble Electrical Engineering Laboratory (G2Elab)<br />

Identification UMR 5269<br />

Directeur<br />

James ROUDET<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 70 68 69<br />

dont quel % dans la thématique "Nano" ? 2 % 3 % 5 %<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 20 27 25<br />

Nombre total de doctorants 144 145 141<br />

dont combien de doctorants étrangers ? 76 74 79<br />

Nombre de doctorants employés par la Fondation 1 1 1<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1 1 2<br />

Nombre de thèses soutenues dans l'année 26 33 28<br />

dont combien dans la thématique "Nano" ? 1<br />

Nombre de publications dans l'année 288 302 291<br />

dont combien dans la thématique "Nano" ? 10<br />

Nombre de brevets dans l'année ? 3 6 3<br />

Nombre de licences dans l'année ?<br />

Organisation de grandes conférences internationales (Nombre et noms)<br />

SUPPLEMENTS<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

RESSOURCES (K€)<br />

Budget total hors salaires 3060,794 2277,269 2374,945<br />

Total des ressources contractuelles 3343,223 2523,026 3756,197<br />

dont ANR 1795,969 869,249 1044,533<br />

dont Europe 416,007 145,902 94,910<br />

dont Région 267,244 210,472 246,623<br />

dont Industrie 864,003 1297,403 2370,131<br />

dont Fondation Nanosciences<br />

Part salariale (CDD "de fait") des ressources contractuelles 976,081 1360,644 1499,834<br />

Part salariale du soutien Fondation Nanosciences<br />

27


Nom du laboratoire<br />

GRENOBLE INSTITUT DES NEUROSCIENCES (GIN)<br />

Identification Unité Inserm U 836<br />

Directeur<br />

Claude FEUERSTEIN<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 72 81 104 84<br />

dont quel % dans la thématique "Nano" ? NC NC NC NC<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 1 1 6 7<br />

Nombre total de doctorants 41 45 67 44<br />

dont combien de doctorants étrangers ? 5 13 6<br />

Nombre de doctorants employés par la Fondation 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1 2 1 2<br />

SUPPLEMENTS<br />

Nombre de thèses soutenues dans l'année 11 8 11 15<br />

dont combien dans la thématique "Nano" ? NC NC NC NC<br />

Nombre de publications dans l'année 156 111 126 127<br />

dont combien dans la thématique "Nano" ? NC NC NC NC<br />

Nombre de brevets dans l'année ? 1 1<br />

Nombre de licences dans l'année ? -<br />

Organisation de grandes conférences internationales (Nombre et noms) 1 -<br />

Evénements de dissémination culture scientifique/débats sociétaux 2 2<br />

RESSOURCES (K€)<br />

Budget total hors salaires 1233,000 1102,000 1261,660 1200,000<br />

Total des ressources contractuelles 2553,593 3371,728 2651,844 2050,000<br />

dont ANR 792,078 605,763 750,000<br />

dont Europe 371,731 362,008 400,000<br />

dont Région 927,414 505,000 600,000<br />

dont Industrie 10,000 232,750 300,000<br />

dont Fondation Nanosciences<br />

Part salariale (CDD "de fait") des ressources contractuelles<br />

Part salariale du soutien Fondation Nanosciences<br />

28


Nom du laboratoire<br />

Institut de Biologie Structurale (IBS)<br />

Identification UMR 5075<br />

Directeur<br />

Eva PEBAY-PEYROULA<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 90 101 93 93<br />

dont quel % dans la thématique "Nano" ? 7% 7% 7% 7%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 32 25 20 29<br />

Nombre total de doctorants 29 32 39 40<br />

dont combien de doctorants étrangers ? 7 11 18 19<br />

Nombre de doctorants employés par la Fondation<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 2 3 0 2<br />

Nombre de thèses soutenues dans l'année 11 12 7 9<br />

dont combien dans la thématique "Nano" ? 2 2 1 1<br />

Nombre de publications dans l'année 127 141 163 150<br />

dont combien dans la thématique "Nano" ? 12 14 10 11<br />

Nombre de brevets dans l'année ? 2 1 0 3<br />

Nombre de licences dans l'année ? 1 0 0<br />

Organisation de grandes conférences internationales (Nombre et noms) 1 0<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

RESSOURCES (K€)<br />

SUPPLEMENTS<br />

Budget total hors salaires 4509,799 4321,767 6369,882 6832,800<br />

Total des ressources contractuelles 2831,799 2743,167 4363,737 4342,000<br />

dont ANR 665,154 1048,930 1196,875 1900,000<br />

dont Europe 931,978 606,417 698,013 550,000<br />

dont Région 155,670 67,500 189,500 209,000<br />

dont Industrie 302,032 336,588 351,790 273,000<br />

dont Fondation Nanosciences<br />

Part salariale (CDD "de fait") des ressources contractuelles 1577,550 1666,000 1597,872 1973,000<br />

Part salariale du soutien Fondation Nanosciences<br />

29


Nom du laboratoire<br />

Institut de Microélectronique, Electromagnétisme et Photonique et<br />

Laboratoire d'Hyperfréquences et de Caractérisation (IMEP-LAHC)<br />

Identification UMR 5130<br />

Directeur<br />

Gérard GHIBAUDO<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 59 57 58 60<br />

dont quel % dans la thématique "Nano" ? 60% 60% 60% 60%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 10 10 12 12<br />

Nombre total de doctorants 85 80 88 96<br />

dont combien de doctorants étrangers ? 45 40 50 55<br />

Nombre de doctorants employés par la Fondation 1 2 2<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

SUPPLEMENTS<br />

Nombre de HDR soutenues dans l'année 0 0 0 0<br />

Nombre de thèses soutenues dans l'année 22 21 25 24<br />

dont combien dans la thématique "Nano" ? 16 12 18 17<br />

Nombre de publications dans l'année 80 75 85 82<br />

dont combien dans la thématique "Nano" ? 60 55 65 61<br />

Nombre de brevets dans l'année ? 3 3 4 2<br />

Nombre de licences dans l'année ? 0 0 0 0<br />

Organisation de grandes conférences internationales (Nombre et noms) 3 1,2,3,4 3 1,2,5 4 1,6,7,8 3 2,8,9<br />

Evénements de dissémination culture scientifique/débats sociétaux 0 0 0 0<br />

RESSOURCES (K€)<br />

Budget total hors salaires 2500,000 2500,000 2700,000 2500,000<br />

Total des ressources contractuelles 2200,000 2200,000 2400,000 2250,000<br />

dont ANR 440,000 450,000 430,000 400,000<br />

dont Europe 1450,000 1490,000 800,000 1000,000<br />

dont Région 50,000 40,000 60,000 70,000<br />

dont Industrie 240,000 200,000 540,000 600,000<br />

dont Fondation Nanosciences 20,000 20,000 30,000 20,000<br />

Part salariale (CDD "de fait") des ressources contractuelles 400,000 400,000 500,000 600,000<br />

Part salariale du soutien Fondation Nanosciences 0 0 0 60,000<br />

1: ECS SOI<br />

2: MIGAS<br />

3: UWB<br />

4: Optique<br />

5 : Supra<br />

6 : SOI Workshop<br />

7 : JNM<br />

8 : Nanosil Workshop<br />

9 : WOFE<br />

30


Nom du laboratoire<br />

Institut de Recherche en Technologies et Sciences pour le vivant (IRTSV)<br />

Identification FR 3425<br />

Directeur<br />

Jérôme GARIN<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 29/8 28/8 110/18<br />

dont quel % dans la thématique "Nano" ? 13% 20% 10-20%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 0 0 5<br />

Nombre total de doctorants 11 16 54<br />

dont combien de doctorants étrangers ? 1 1 10<br />

Nombre de doctorants employés par la Fondation 0 0 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1 1 2<br />

Nombre de thèses soutenues dans l'année 3 5 9<br />

dont combien dans la thématique "Nano" ? 0 1 2<br />

Nombre de publications dans l'année 42 56 161<br />

dont combien dans la thématique "Nano" ? 1 3<br />

Nombre de brevets dans l'année ? 1 5<br />

Nombre de licences dans l'année ? 3<br />

Organisation de grandes conférences internationales (Nombre et noms) 1 2<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

SUPPLEMENTS<br />

RESSOURCES (K€)<br />

Budget total hors salaires 735 707 5 833<br />

Total des ressources contractuelles 636 767 3 200<br />

dont ANR 460 559 1 064<br />

dont Europe na na 348<br />

dont Région 60 80 50<br />

dont Industrie na na 150<br />

dont Fondation Nanosciences na na 16<br />

Part salariale (CDD "de fait") des ressources contractuelles 234 348 890<br />

Part salariale du soutien Fondation Nanosciences na na 0<br />

31


Nom du laboratoire<br />

Institut Fourier<br />

Identification UMR 5582<br />

Directeur<br />

Gérard BESSON<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 14/69 15/69 15/68 15/71<br />

dont quel % dans la thématique "Nano" ? 1,2% 1,2% 1,2% 1,2%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 7 11 7 11 7 13 7/26<br />

Nombre total de doctorants 29 35 45 49<br />

dont combien de doctorants étrangers ? 10 10 15 21<br />

Nombre de doctorants employés par la Fondation 0 0 0 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

SUPPLEMENTS<br />

Nombre de HDR soutenues dans l'année 3 5 1 3<br />

Nombre de thèses soutenues dans l'année 7 5 5 10<br />

dont combien dans la thématique "Nano" ? 0 0 0 0<br />

Nombre de publications dans l'année 86 89 78 72<br />

dont combien dans la thématique "Nano" ? 0 0 0 0<br />

Nombre de brevets dans l'année ? 0 0 0 0<br />

Nombre de licences dans l'année ? 0 0 0 1<br />

Organisation de grandes conférences internationales (Nombre et noms) 2 1<br />

2 5<br />

Evénements de dissémination culture scientifique/débats sociétaux 1 1<br />

1 4<br />

RESSOURCES (K€)<br />

Budget total hors salaires 296,000 518,000 461,000 415,000<br />

Total des ressources contractuelles 51,000 245,000 239,000 180,000<br />

dont ANR 39,000 105,000 83,000 116,000<br />

dont Europe 0 125,000 7,000 0<br />

dont Région 12,000 0 0 64,000<br />

dont Industrie 0 0 0 0<br />

dont Fondation Nanosciences 0 4,000 1,500 0<br />

Part salariale (CDD "de fait") des ressources contractuelles 0 0<br />

0 0<br />

Part salariale du soutien Fondation Nanosciences 0 0 0 0<br />

32


Nom du laboratoire<br />

Identification<br />

Directeur<br />

Institut Nanosciences et Cryogénie (INAC)<br />

CEA/DSM-Direction des Sciences de la Matière<br />

Engin MOLVA<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 230 230 230 230<br />

dont quel % dans la thématique "Nano" ?<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 30 97 105 78<br />

Nombre total de doctorants 86 100 107 107<br />

dont combien de doctorants étrangers ? 20 34 45 20<br />

Nombre de doctorants employés par la Fondation 1 6 9 11<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1 8 3 3<br />

Nombre de thèses soutenues dans l'année 27 20 24 27<br />

dont combien dans la thématique "Nano" ? 19 14 17 17<br />

Nombre de publications dans l'année 342 356 350 350<br />

dont combien dans la thématique "Nano" ? 205 214 210 210<br />

Nombre de brevets dans l'année ? 17 22 13 25<br />

Nombre de licences dans l'année ? 0 0 0 0<br />

Organisation de grandes conférences internationales (Nombre et noms) 0 1 1 0 1 2<br />

Evénements de dissémination culture scientifique/débats sociétaux 2 3,4 2 3,4 2 3,4 2 3,4<br />

RESSOURCES (M€)<br />

SUPPLEMENTS<br />

Budget total hors salaires 15 15.3 15.3 16,4<br />

Total des ressources contractuelles 11 11.9 11.9 14,5<br />

dont ANR 3.2 2.9 2.9 1,8<br />

dont Europe 2 2.6 2.6 1,6<br />

dont Région 0.2 0.2 0.2 0,3<br />

dont Industrie 1 0.3 0.3 1,2<br />

dont Fondation Nanosciences 0,8 0,2 0,2 1<br />

Part salariale (CDD "de fait") des ressources contractuelles 0 0 0 0<br />

Part salariale du soutien Fondation Nanosciences 0,15 0,15 0,15 0,15<br />

1: Elecmol’08<br />

2: Elecmol’10<br />

3: Fête de la science<br />

4: Débat NS&NT<br />

33


Nom du laboratoire<br />

Institut Néel<br />

Identification UPR 2940<br />

Directeur<br />

Alain SCHUHL<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 170 169 165 173<br />

dont quel % dans la thématique "Nano" ? 2/3 2/3 2/3 2/3<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 62 68 75 72<br />

Nombre total de doctorants 105 106 119 108<br />

dont combien de doctorants étrangers ? 30 22 35 49<br />

Nombre de doctorants employés par la Fondation 3 5 10 13<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 0 3 7 5<br />

SUPPLEMENTS<br />

Nombre de thèses soutenues dans l'année 33 28 32 16<br />

dont combien dans la thématique "Nano" ? 70% 70% 70% 70%<br />

Nombre de publications dans l'année 340 360 365 352<br />

dont combien dans la thématique "Nano" ? 210 225 222<br />

Nombre de brevets dans l'année ? 12 8 1 19 1 20 1<br />

Nombre de licences dans l'année ? 4 ou 5 3 ou 4 2 7 2 5 1<br />

Organisation de grandes conférences internationales (Nombre et noms)<br />

SFO-SFP-<br />

JISI-<br />

Elecmol<br />

Nano RA<br />

SFO-SFP-<br />

Elecmol<br />

QFS<strong>2010</strong><br />

Evénements de dissémination culture scientifique/débats sociétaux 1 4 2 4,5 5 6,7,8,9 6 4,10,11<br />

RESSOURCES (K€)<br />

Budget total hors salaires 9,3M€ 9,57 M€ 11,85 M€ 11,95M€<br />

Total des ressources contractuelles 4,05M€ 6,27 M€ 8,79 M€ 9.61M€<br />

dont ANR 2,5 M€ 3,45 M€ 3,43 M€ 3,7M€<br />

dont Europe 1,00M€ 1,12 M€ 2,28 M€ 1,6M€<br />

dont Région 0,35 M€ 0,3 M€ 0,44 M€ 0,55 M€<br />

dont Industrie 0,2 M€ 0,7 M€ 1,14 M€ 1,01 M€<br />

dont Fondation Nanosciences 0 0,42 M€ 1,14 M€ 0,866<br />

Part salariale (CDD "de fait") des ressources contractuelles 0,84 M€ 1,1 M€ 1.15 M€ 1,724 M€<br />

Part salariale du soutien Fondation Nanosciences 0,02M€ 0,129M€ 0,25 M€<br />

1: actifs : 30 cumulés<br />

2: actives : 20 cumulées<br />

4: Esonn - Hercules<br />

5: Journée des 7 lauréats des prix scientifiques<br />

6: DVD Lacaze<br />

7: débats nanosciences<br />

8: Voyage dans le cristal Cryo<br />

9: Fête de la science<br />

10: Journées 40 ans prix Nobel Néel<br />

11: Workshop on XANES and RXD simulation<br />

34


Nom du laboratoire<br />

Identification<br />

Directeur<br />

Laboratoire d'Electronique et de Technologies de l'Information (LETI)<br />

CEA<br />

Laurent MALIER<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 723 757 837 901<br />

dont quel % dans la thématique "Nano" ? 10% 11% 17% 17%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 54 50 90 110<br />

Nombre total de doctorants 175 173 176 202<br />

dont combien de doctorants étrangers ? 32 36 47 61<br />

Nombre de doctorants employés par la Fondation 1 2<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 6 4 4 8<br />

Nombre de thèses soutenues dans l'année 33 57 59 50<br />

dont combien dans la thématique "Nano" ? 6 14 15 13<br />

Nombre de publications dans l'année 236 249 337 367<br />

dont combien dans la thématique "Nano" ? 61 52 70 69<br />

Nombre de brevets dans l'année ? 205 258 283 265<br />

Nombre de licences dans l'année ? 31 1 21 1 26 1 22 1<br />

Organisation de grandes conférences internationales (Nombre et<br />

noms)<br />

Evénements de dissémination culture scientifique/débats<br />

sociétaux<br />

8 3<br />

1<br />

SUPPLEMENTS<br />

RESSOURCES (M€)<br />

Budget total hors salaires 130,3 120,1 125,5 135,9<br />

Total des ressources contractuelles 152,2 152,8 160,1 168,1<br />

dont ANR 4,1 7,4 6,9 9,7<br />

dont Europe 21,8 2 24,8 3 21,5 26,5<br />

dont Région 0,9 1,0 2,4 0,9<br />

dont Industrie 69,2 64,0 65,2 69,9<br />

dont Fondation Nanosciences 0,042 0,07 0,11<br />

Part salariale (CDD "de fait") des ressources contractuelles<br />

Part salariale du soutien Fondation Nanosciences<br />

1: Licences ayant généré un retour financier dans l'année<br />

2: PCRD (9,2 M€) ; Eureka (12,6 M€)<br />

3: PCRD (10,3 M€) ; Eureka (14,5 M€)<br />

35


Nom du laboratoire<br />

Laboratoire d'Informatique de Grenoble (LIG)<br />

Identification UMR 5217<br />

Directeur<br />

Hervé MARTIN<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 51/124 49/131 48/132 48/136<br />

dont quel % dans la thématique "Nano" ? 6% 6% 6% 6%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 11 14 16/11 14/11<br />

Nombre total de doctorants 228 204 182 170<br />

dont combien de doctorants étrangers ? 105 94 89 101<br />

Nombre de doctorants employés par la Fondation 0 0 0 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 7 3 7 9<br />

SUPPLEMENTS<br />

Nombre de thèses soutenues dans l'année 32 46 55 50<br />

dont combien dans la thématique "Nano" ? 0 0 0 0<br />

Nombre de publications dans l'année 463 478 603 -<br />

dont combien dans la thématique "Nano" ? 0 0 0 0<br />

Nombre de brevets dans l'année ? N/A N/A N/A N/A<br />

Nombre de licences dans l'année ? N/A N/A N/A N/A<br />

Organisation de grandes conférences internationales (Nombre et noms) 2 1 2 2 3 3 4 4<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

RESSOURCES (K€)<br />

Budget total hors salaires 490,959 644,492 514,992 545,100<br />

Total des ressources contractuelles 6621,170 5056,982 6857,061 7012,169<br />

dont ANR 1634,550 2396,526 2046,974 2217,907<br />

dont Europe 591,509 553,472 1560,756 1234,000<br />

dont Région 409,101 331,098 659,670 990,156<br />

dont Industrie 149,700 294,371 253,940 2144,960 5<br />

dont Fondation Nanosciences 0 0 82,000 0<br />

Part salariale (CDD "de fait") des ressources contractuelles 2376,146 2995,739 1779,762 4256,687<br />

Part salariale du soutien Fondation Nanosciences 0 0 0 0<br />

1: Plate-forme AFIA 2007 (association française pour l'intelligence artificielle),<br />

ICFI 2007 (Feature Interactions in Software and Communication Systems)<br />

2: Ecole d'été Web Intelligence, 2/ CFIP 2008 (Colloque francophone sur l'ingénierie des protocoles)Nom de<br />

l’évènement<br />

3: Iihm'09 (21ème Conférence Francophone sur l'Interaction Homme-Machine), 2/ Jvrc09 (Joint Virtual Reality<br />

Conference), 3/ LSHTC (Large Scale Hierarchical Text classification Pascal Challenge)Nom de l’évènement<br />

4: SLTU <strong>2010</strong>, 2/ CBMI <strong>2010</strong>, 3/ PASCO'10, 4/ GCM 1 st International Workshop on Green Computing Middleware<br />

5 : non compris gestion propre FLORALIS<br />

36


Nom du laboratoire<br />

Laboratoire d’Innovations pour les Technologies des Energies nouvelles et<br />

des Nanomatériaux (LITEN)<br />

Identification -<br />

Directeur<br />

Didier MARSACQ<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 430<br />

dont quel % dans la thématique "Nano" ? 28%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 50<br />

Nombre total de doctorants 83<br />

dont combien de doctorants étrangers ? 20<br />

Nombre de doctorants employés par la Fondation 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1<br />

Nombre de thèses soutenues dans l'année 21<br />

dont combien dans la thématique "Nano" ? 11<br />

Nombre de publications dans l'année 112<br />

dont combien dans la thématique "Nano" ? 45<br />

Nombre de brevets dans l'année ? 152<br />

Nombre de licences dans l'année ? 3<br />

Organisation de grandes conférences internationales (Nombre et noms) 1 1<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

SUPPLEMENTS<br />

RESSOURCES (K€)<br />

Budget total hors salaires 90,574<br />

Total des ressources contractuelles 82,798<br />

dont ANR 6,940<br />

dont Europe 6,493<br />

dont Région 4,642<br />

dont Industrie 47,401<br />

dont Fondation Nanosciences 60<br />

Part salariale (CDD "de fait") des ressources contractuelles 7,344<br />

Part salariale du soutien Fondation Nanosciences<br />

1: Nanosafe<br />

37


Nom du laboratoire<br />

Laboratoire de Physique et de Modélisation des Milieux Condensés<br />

(LPMMC)<br />

Identification UMR 5493<br />

Directeur<br />

Bart VAN TIGGELEN<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 11 13 12 13<br />

dont quel % dans la thématique "Nano" ? 75% 75% 75% 75%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 8 10 10 13<br />

Nombre total de doctorants 9 8 6 5<br />

dont combien de doctorants étrangers ? 3 3 3 2<br />

Nombre de doctorants employés par la Fondation 0 0 0 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1 0 0 0<br />

SUPPLEMENTS<br />

Nombre de thèses soutenues dans l'année 1 2 2 2<br />

dont combien dans la thématique "Nano" ? 1 1 2 2<br />

Nombre de publications dans l'année 34 27 42 45<br />

dont combien dans la thématique "Nano" ? 85% 85% 85% 85 %<br />

Nombre de brevets dans l'année ? 0 0 1 0<br />

Nombre de licences dans l'année ? 0 0 0 0<br />

Organisation de grandes conférences internationales (Nombre et noms) 2 2 2 3 1<br />

Evénements de dissémination culture scientifique/débats sociétaux 0 0 0 3 2<br />

RESSOURCES (K€)<br />

Budget total hors salaires 220,330 231,721 282,221<br />

Total des ressources contractuelles 144,800 131,229 182,773<br />

dont ANR 77,600 101,247 152,058<br />

dont Europe 37,500 29,982 24,215<br />

dont Région 0 0 0<br />

dont Industrie 5,060 0 0<br />

dont Fondation Nanosciences 0 0 0 6500<br />

Part salariale (CDD "de fait") des ressources contractuelles 184,000 81,000 117,199<br />

Part salariale du soutien Fondation Nanosciences 0 0 0 0<br />

1: Ecole thématique “Wave and chaos in Complex media, juillet <strong>2010</strong> IESC Cargèse (GDR MESOIMAGE/ DFG<br />

Forschungsgruppe Van Tiggelen/Stockmann ) : ; Fluctuations,Correlations,and Disorder (PEPS/ GDR<br />

MESOIMAGE : Skipetrov/Minguzzi): <strong>CNRS</strong> Grenoble nov <strong>2010</strong> ; Frontières en Physique de la Matière<br />

Condensée (Ecole prédoctorale, Hekking.Hippert), Les Houches aout <strong>2010</strong>.<br />

2: ECOINFO (Berthoud) : Comment l'informatique peut devenir plus écologique (Toulouse) ; quels critères de<br />

développement durable l'acheteur peut-il utiliser (Lyon, Paris)<br />

38


Nom du laboratoire<br />

Laboratoire des MATERIAUX et du GENIE PHYSIQUE (LMGP)<br />

Identification UMR 5628<br />

Directeur<br />

Bernard CHENEVIER<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 12 / 12 12 / 14 12 / 14 13/13<br />

dont quel % dans la thématique "Nano" ? 20% 30% 30% 30%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 3 4 3/4 3/4<br />

Nombre total de doctorants 22 20 25 21<br />

dont combien de doctorants étrangers ? 8 7 7 12<br />

Nombre de doctorants employés par la Fondation - - - -<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1 - - 2<br />

Nombre de thèses soutenues dans l'année 8 4 6 3<br />

dont combien dans la thématique "Nano" ? 4 3 4 2<br />

Nombre de publications dans l'année 48 52 50 60<br />

dont combien dans la thématique "Nano" ? 20 26 25 22<br />

Nombre de brevets dans l'année ? 2 2 3 1<br />

Nombre de licences dans l'année ? - - - -<br />

Organisation de grandes conférences internationales (Nombre et noms) 2 1 3 2 1 3 1 4<br />

Evénements de dissémination culture scientifique/débats sociétaux Voir 5 Voir 5 Voir 5 Voir 5<br />

RESSOURCES (K€)<br />

SUPPLEMENTS<br />

Budget total hors salaires 1751,915 1495,834 1334,408 1460,382<br />

Total des ressources contractuelles 1315,633 983,322 801,178 1358,971<br />

dont ANR 160,582 59,942 364,028 572,829<br />

dont Europe 231,956 167,226 240,067 153,666<br />

dont Région 123,283 38,270 17,120 304,834<br />

dont Industrie 154,250 185,375 113,575 94,913<br />

dont Fondation Nanosciences - - 13,000 14,000<br />

Part salariale (CDD "de fait") des ressources contractuelles 255,526 360,377 406,624 463,836<br />

Part salariale du soutien Fondation Nanosciences - - - -<br />

1: June 28-29, 2007: ORG HETERO-SiC’O7 - Workshop on 3C-SiC hetero-epitaxy;<br />

July 2-6, 2007: ORG European School on Multiferroics (ESMF)<br />

2: March 6-19, 2008: Workshop ORG "Oxydes fonctionnels pour intégration en micro et nano-électronique"<br />

May 26-30, 2008: E-MRS SYMPOSIUM F ORG "Multiferroics and magnetoelectric materials", Strasbourg;<br />

September 1-5, 2008: ORG ESMF 2008, 2nd European School on Multiferroics<br />

3: March 8-11, 2009: MAM 2009 – Grenoble- MINATEC<br />

4: June 7-11 <strong>2010</strong>: E-MRS SYMPOSIUM "Frontiers of multifunctional oxides"<br />

39


SUPPLEMENTS<br />

5 :<br />

Très nombreuses visites de laboratoires (Lycées, Collèges, organismes socio-économiques), écoles<br />

thématiques, participations aux MIDI-MINATEC, Coordination Fête de la Science sur MINATEC, débat ETHIQUE<br />

40


Nom du laboratoire<br />

Laboratoire des Technologies de la Microélectronique (LTM)<br />

Identification UMR 5129<br />

Directeur<br />

Olivier JOUBERT<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 21 22 23 26<br />

dont quel % dans la thématique "Nano" ? 10% 14% 20% 22%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 0 0 1 1<br />

Nombre total de doctorants 27 31 34 34<br />

dont combien de doctorants étrangers ? 7 8 11 8<br />

Nombre de doctorants employés par la Fondation 0 0 0 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 2 2 2 1<br />

Nombre de thèses soutenues dans l'année 6 6 12 9<br />

dont combien dans la thématique "Nano" ? 2 2 4 3<br />

Nombre de publications dans l'année 78 48 56 77<br />

dont combien dans la thématique "Nano" ? 10 12 20 18<br />

Nombre de brevets dans l'année ? 0 0 0 4<br />

Nombre de licences dans l'année ? 0 0 0 0<br />

Organisation de grandes conférences internationales (Nombre et noms) 0 0 0 3<br />

Evénements de dissémination culture scientifique/débats sociétaux 0 0 0 0<br />

RESSOURCES (K€)<br />

SUPPLEMENTS<br />

Budget total hors salaires 408,600 497,553<br />

Total des ressources contractuelles 2384,092 3 398,473 2147,509 4649,097<br />

dont ANR 906,849 1351,111 1075,359 727,230<br />

dont Europe 146,404 173,410 214,588 83,510<br />

dont Région 373,621 128,870 80,547 514,057<br />

dont Industrie 205,160 499,822 185,048 283,223<br />

dont Fondation Nanosciences 225,000 107,000 220,000 300,000<br />

Part salariale (CDD "de fait") des ressources contractuelles 548,330 720,020 724,536 713,456<br />

Part salariale du soutien Fondation Nanosciences 0 0 0 0<br />

41


Nom du laboratoire<br />

Laboratoire Interdisciplinaire de Physique (LIPhy)<br />

Identification UMR 5588<br />

Directeur<br />

Thierry DOMBRE<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 53 57 27/23 28/25<br />

dont quel % dans la thématique "Nano" ? 51% 49% 54% 53%<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 8 10 10 11<br />

Nombre total de doctorants 21 20 29 31<br />

dont combien de doctorants étrangers ? 16 15 19 21<br />

Nombre de doctorants employés par la Fondation 0 0 2 2<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 3 0 2<br />

SUPPLEMENTS<br />

Nombre de thèses soutenues dans l'année 10 8 2 6<br />

dont combien dans la thématique "Nano" ? 4 4 1 3<br />

Nombre de publications dans l'année 83 102 90 88<br />

dont combien dans la thématique "Nano" ? 34 40 38 48<br />

Nombre de brevets dans l'année ? 0 0<br />

Nombre de licences dans l'année ? 1 2 1<br />

Organisation de grandes conférences internationales (Nombre et noms) 1 1 1 1 0<br />

Evénements de dissémination culture scientifique/débats sociétaux 1 2 1 2 1 2 4 2,3<br />

RESSOURCES (K€)<br />

Budget total hors salaires 1088,817 1400,387 1405,471 1434807<br />

Total des ressources contractuelles 311,007 415,718 779,810 699296<br />

dont ANR 123,032 19,954 446,930 526106<br />

dont Europe 128,103 79,307 20,000 61692<br />

dont Région 20,328 30,622 28,880 56848<br />

dont Industrie 39,544 100,835 5000 4 0<br />

dont Fondation Nanosciences 0 12,000 299,000 54,650<br />

Part salariale (CDD "de fait") des ressources contractuelles 14,571 78,954 160,984 275,855<br />

Part salariale du soutien Fondation Nanosciences 0 43,500 6413,483 45,603<br />

1: Ecole Internationale de Cargèse « Complex and Biofluid Flows » (juillet 2009)<br />

2: Fête de la Science<br />

3: 50 ans du Laser, participation au spectacle « Boucle d’Or et les 33 variations » à l’Hexagone Meylan suite à<br />

l’obtention du prix A.R.T.S. 2009, participation à l’exposition Michel Paysant : OnLab au Musée du Louvre<br />

4: Actions de valorisation passant maintenant quasi-exclusivement par la filiale de l’UJF Floralis, et la Business<br />

Unit SARA pour ce qui concerne les applications des techniques de spectroscopie ultra-sensible (ressources non<br />

intégrées dans le budget du laboratoire)<br />

42


Nom du laboratoire<br />

Laboratoire Jean Kuntzmann (LJK)<br />

Identification UMR 5224<br />

Directeur<br />

Eric Bonnetier<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 111 111 113 105<br />

dont quel % dans la thématique "Nano" ? 7 7 13 7<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 22 20<br />

Nombre total de doctorants 85 84 1 83 82<br />

dont combien de doctorants étrangers ? 23 36 26<br />

Nombre de doctorants employés par la Fondation 1 1 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 3 4 3 5<br />

Nombre de thèses soutenues dans l'année 20 26 17 20<br />

dont combien dans la thématique "Nano" ? 1 2 0 0<br />

Nombre de publications dans l'année 442 405 397 348<br />

dont combien dans la thématique "Nano" ? 25 25 12 10<br />

Nombre de brevets dans l'année ? 3 6<br />

Nombre de licences dans l'année ? 6<br />

Organisation de grandes conférences internationales (Nombre et noms) 2 2 2 3 2 4<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

RESSOURCES (K€)<br />

SUPPLEMENTS<br />

Budget total hors salaires 2196 2348 3131 2619<br />

Total des ressources contractuelles 1923 2041 2696 2291<br />

dont ANR 376 527 1551 1396<br />

dont Europe 407 395 _ _<br />

dont Région 410 69<br />

dont Industrie 78 338 203 732<br />

dont Fondation Nanosciences 40 43 _<br />

Part salariale (CDD "de fait") des ressources contractuelles NC NC<br />

NC<br />

NC<br />

Part salariale du soutien Fondation Nanosciences 40 43 _<br />

1: dont 4 sur la thématique Nanosciences<br />

2: SMAI 2007, EGCR2007<br />

3: ECCV2008, VIRPHYS 2008<br />

4: PASCO’10 Convex Analysis, Optimization and Applications<br />

43


Nom du laboratoire<br />

Laboratoire National des Champs Magnétiques Intenses (LNCMI)<br />

Identification UPR 3228<br />

Directeur<br />

Geert RIKKEN<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 11/3 10/2 15/11 17/11<br />

dont quel % dans la thématique "Nano" ? 2 2 4/4 4/4<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 4 /12 4/8 4/100 4/100<br />

Nombre total de doctorants 5 5 11 13<br />

dont combien de doctorants étrangers ? 5 5 7 7<br />

Nombre de doctorants employés par la Fondation 0 0 0 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 0 1<br />

SUPPLEMENTS<br />

Nombre de thèses soutenues dans l'année 3 1 3 4<br />

dont combien dans la thématique "Nano" ? 1 0 1 3<br />

Nombre de publications dans l'année 103 70 126 139<br />

dont combien dans la thématique "Nano" ? 13 15 60 70<br />

Nombre de brevets dans l'année ? 1 0 0 4<br />

Nombre de licences dans l'année ? 0 0 0 0<br />

Organisation de grandes conférences internationales (Nombre et noms) 1 1 1 2 - -<br />

Evénements de dissémination culture scientifique/débats sociétaux - 2<br />

RESSOURCES (K€)<br />

Budget total hors salaires 3321,712 3544,111 5197,000 5000,000<br />

Total des ressources contractuelles 507,212 646,611 1967,000 1800,000<br />

dont ANR 164,245 222,112 716,000 700,000<br />

dont Europe 275,000 154,725 1050,000 1050,000<br />

dont Région 8,402 8,024 0 0<br />

dont Industrie 59,565 26,750 0 0<br />

dont Fondation Nanosciences 0 0 0 0<br />

Part salariale (CDD "de fait") des ressources contractuelles 300,941 181,699 300,000 300,000<br />

Part salariale du soutien Fondation Nanosciences 0 0 0 0<br />

1: Ecole Magnétic Fields for Sciences Cargèse 2007<br />

2: ESF MFFM - ILL Grenoble 2008<br />

44


Nom du laboratoire<br />

Science et Ingénierie des Matériaux et Procédés (SIMAP)<br />

Identification UMR 5266<br />

Directeur<br />

Michel PONS<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 64 62 63 63<br />

dont quel % dans la thématique "Nano" ? 18 18 17 17<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 12 10 15 5<br />

Nombre total de doctorants 81 83 75 80<br />

dont combien de doctorants étrangers ? 24 28 22 29<br />

Nombre de doctorants employés par la Fondation 0 0 0 0<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 3 0 0 0<br />

Nombre de thèses soutenues dans l'année 21 23 21 19<br />

dont combien dans la thématique "Nano" ? 3 2 3 3<br />

Nombre de publications dans l'année 153 132 192 171<br />

dont combien dans la thématique "Nano" ? 25 32 25 28<br />

Nombre de brevets dans l'année ? 1 4 4 5<br />

Nombre de licences dans l'année ? 0 1 0 0<br />

Organisation de grandes conférences internationales (Nombre et noms)<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

SUPPLEMENTS<br />

RESSOURCES (K€)<br />

Budget total hors salaires 4305,000 3920,312 4403,432 4460,235<br />

Total des ressources contractuelles 3557,662 3172,812 3524,279 3378,504<br />

dont ANR 634,312 802,693 1121,808 1120,689<br />

dont Europe 978,580 272,724 264,272 144,603<br />

dont Région 151,651 72,546 73,029 164,591<br />

dont Industrie 1508,662 1775,854 1320,059 1019,000<br />

dont Fondation Nanosciences 0 8,866 1 0 2 29,200<br />

Part salariale (CDD "de fait") des ressources contractuelles 611,530 590,600 896,508 1236,793<br />

Part salariale du soutien Fondation Nanosciences 0 0<br />

0 Thomas<br />

Nogaret<br />

(post-doc)<br />

1: Investissement RX géré par le CMTC non comptabilisé<br />

2: Investissement FIB géré par le CMTC non comptabilisé<br />

45


Nom du laboratoire<br />

Techniques de l’Imagerie, de la Modélisation et de la Cognition<br />

(TIMC-IMAG)<br />

Identification UMR 5525<br />

Directeur<br />

Philippe CINQUIN<br />

ANNEES 2007 2008 2009 <strong>2010</strong><br />

EFFECTIFS<br />

Nombre de Chercheurs / Enseignants chercheurs 78 83<br />

dont quel % dans la thématique "Nano" ? NC NC<br />

Nombre de chercheurs étrangers (permanents/visiteurs) 7 9<br />

Nombre total de doctorants 79 83<br />

dont combien de doctorants étrangers ? 32 32<br />

Nombre de doctorants employés par la Fondation 0 0<br />

SUPPLEMENTS<br />

PRODUCTION SCIENTIFIQUE / RAYONNEMENT<br />

Nombre de HDR soutenues dans l'année 1 2<br />

Nombre de thèses soutenues dans l'année 28 15<br />

dont combien dans la thématique "Nano" ? 0 0<br />

Nombre de publications dans l'année<br />

275 (216<br />

ACL + 59<br />

ACTI)<br />

dont combien dans la thématique "Nano" ? 0 1<br />

Nombre de brevets dans l'année ? 13 7<br />

Nombre de licences dans l'année ? 0<br />

282 (233<br />

ACL + 49<br />

ACTI)<br />

Organisation de grandes conférences internationales (Nombre et noms)<br />

Evénements de dissémination culture scientifique/débats sociétaux<br />

RESSOURCES (K€)<br />

Budget total hors salaires 3199,312 1912,845<br />

Total des ressources contractuelles 3860,737 3692,553<br />

dont ANR 365,257 1150,133<br />

dont Europe 309,024 273,012<br />

dont Région 941,520 132,200<br />

dont Industrie 222,341 563,966<br />

dont Fondation Nanosciences 442,000 0<br />

Part salariale (CDD "de fait") des ressources contractuelles 1034,627 2110,188<br />

Part salariale du soutien Fondation Nanosciences 438,000 0<br />

46


SUPPLEMENTS<br />

Appendix 13: <strong>Report</strong> of the 2 nd Scientific Committee held in<br />

2009, November 19 th – 20 th<br />

47


SUPPLEMENTS<br />

48


49<br />

SUPPLEMENTS


HIGHLIGHTS<br />

QUANTUM NANOELECTRONICS: Nano-Electromechanical Resonators 1<br />

TECHNOLOGICAL FACILITIES: FIB Nano-Tomography of Defects in ZnMgO Heterostructures 2<br />

NANOMAGNETISM AND SPINTRONICS: Domain Wall Dynamics in Nanostripes 3<br />

NANOMAGNETISM AND SPINTRONICS: Detecting Single Nanoparticle Magnetization Reversal With a Nanotube 4<br />

NANOPHOTONICS: A Bright Single-Photon Source Based on a Photonic Nanowire 5<br />

NANOPHOTONICS: Quantum Heterostructures in II-VI Nanowires 6<br />

MOLECULAR ELECTRONICS: Terpyridine-based Macrocycles for Switches 7<br />

MOLECULAR ELECTRONICS: ELECMOL’10 conference 8<br />

NANOMATERIALS: Hybrid Natural-block-Synthetic Supramolecular Assembly 9<br />

NANOMATERIALS: Cristal Phase Transitions in Pressurized Silicon Nanowires 10<br />

NANOCHARACTERISATION: The Néel IRAM KIDs ARRAYs (NIKA) 11<br />

NANOCHARACTERISATION: Scanning Gate Nanoelectronics 12<br />

THEORY AND NANOSIMULATION: Nano-Ordering & Deep Undercooling Drive the Silicon Nanowire Growth 13<br />

THEORY AND NANOSIMULATION: Control of Thermal Conductivity at the Nanoscale 14<br />

LIFE SCIENCES: Implantable Computer Brain Interface 15


HIGHLIGHT : QUANTUM NANOELECTRONICS<br />

CONTACTS<br />

laurent.duraffourg@cea.fr<br />

philippe.andreucci@cea.fr<br />

roukes@caltech.edu<br />

FURTHER READING<br />

R. B. Karablin et al, Applied Physics Letters,<br />

95, 103111, (2009)<br />

E. Mile et al, Nanotechnology, 21, 165504<br />

(<strong>2010</strong>)<br />

1<br />

NANO-<br />

ELECTROMECHANICAL<br />

RESONATORS<br />

The Chair of Excellence of Michael<br />

ROUKES aims to merge advances in<br />

nanotechnology with very-large-scale<br />

integration (VLSI) processes in order to<br />

create complex nanomechanical systemsbased<br />

tools for science and industry—<br />

thus accelerating nanoscience out of the<br />

laboratory and into the marketplace.<br />

The emerging field of<br />

nanoelectromechanical systems (NEMS)<br />

is attracting considerable interest. These<br />

miniaturized nanoscale devices,<br />

particularly cantilever and beam flexuralmode<br />

resonators, have enabled the<br />

demonstrations of single molecule mass<br />

sensors and single cell level-force<br />

sensors. The small displacements of<br />

these miniaturized devices induce very<br />

low signals which are overwhelmed by<br />

parasitic background. A lot of efforts<br />

have been devoted to developing new<br />

transduction and background reduction.<br />

Piezoelectric and piezoresistive<br />

transductions appear to be particularly<br />

advantageous compared to the more<br />

conventionally employed magnetomotive<br />

and capacitive techniques.<br />

Amongst the attributes of chosen<br />

transduction, principles are intrinsic<br />

integrability, high efficiency and electrical<br />

tunability, low power consumption, and<br />

low thermal budgets for materials<br />

processing, permitting post-CMOS<br />

integration.<br />

Silicon nanowire<br />

piezoresistive detection<br />

A piezoresistive detection scheme offers<br />

great potential compared to a capacitive<br />

one especially for high resonant<br />

frequency measurements. Recently, mass<br />

resolution down to 7 zeptograms Hz 1/2 has<br />

been demonstrated using a metallic<br />

gauge layer deposited on the top of a<br />

cantilever. Another approach consists in<br />

using a doped silicon nanowire. However<br />

to date bottom-up nanowires cannot be<br />

fabricated using a VLSI process<br />

compatible with a standard CMOS<br />

technology.<br />

We demonstrate a new kind of detection<br />

scheme based on doped silicon nanowire<br />

strain gauges that are fully compatible<br />

with CMOS processes. This allows very<br />

large scale integration of devices in a<br />

straightforward manner. Measurements<br />

obtained with this approach are showing<br />

promising performances in terms of<br />

frequency stability, dynamic range, and<br />

achievable mass resolution (Fig.1).<br />

Fig. 1: Nano cantilever beam resonator based<br />

on silicon nanowire piezoresistive detection –<br />

Very large signal to noise ratio<br />

The devices tested in this work were<br />

developed as prototypes and were not<br />

optimized for mass detection at this<br />

stage. Such NEMS have a great potential<br />

for future performance improvements<br />

and new applications opportunities.<br />

Further device optimization for lower<br />

mass and higher frequency, based on<br />

advanced top-down nanowire fabrication<br />

techniques (for instance 40nm-silicon<br />

thickness), will lead to a resolution in the<br />

range of a few zeptograms or less.<br />

Piezoelectric<br />

nanoelectromechanical<br />

resonators<br />

We also demonstrated piezoelectrically<br />

actuated, electrically tunable NEMS based<br />

on multilayers containing a 100-nm-thin<br />

aluminum nitride (AlN) layer. Efficient<br />

piezoelectric actuation of very high<br />

frequency fundamental flexural modes up<br />

to 80 MHz has been demonstrated at<br />

room temperature (Fig.2).<br />

Fig. 2: Very High Frequency AlN beam<br />

resonators demonstrating nonlinearity (a) and<br />

frequency tuning behaviour (b).<br />

To conclude, 11 patents were deposited.<br />

Moreover an Alliance for Nanosystems<br />

VLSI between Caltech/KNI and Léti-<br />

Minatec was created thanks to the<br />

support of the Nanosciences Foundation.


FIB NANO-<br />

TOMOGRAPHY OF<br />

DEFECTS IN Z N M G O<br />

HETEROSTRUCTURES<br />

In 2008 the Nanosciences Foundation<br />

funded, through the network of<br />

technological facilities, the acquisition of<br />

a dual beam Focused Ion Beam – FIB –<br />

system that is located at the Minatec<br />

nanocharacterisation facility (PFNC). 3D<br />

reconstruction of two dimensional zinc<br />

and magnesium oxide heterostructures<br />

has been obtained using this new<br />

instrument in the nano-tomography<br />

mode. This work has been carried out in<br />

collaboration with the LETI in the<br />

framework of the “Eclairage” Carnot<br />

Institute project.<br />

The principle of FIB nano-tomography is<br />

depicted in Figure 1: in a dual-beam<br />

instrument, a gallium ion beam allows a<br />

sample to be etched layer by layer, and<br />

the electron beam is used for imaging the<br />

surface in scanning electron microscopy<br />

(SEM). In this serial sectioning technique,<br />

the sample is "sliced and viewed",<br />

without any mechanical movement. The<br />

spacing between each slice can be nearly<br />

the same as the pixel size of the SEM<br />

images. Thus the acquired stack of<br />

images is transformed directly into a 3D<br />

data volume, without any reconstruction.<br />

Fig. 1: Principle of the FIB nano-tomography<br />

technique in a dual-beam focused ion beam<br />

microscope.<br />

A big advantage is the robustness and<br />

the versatility of this technique. It is<br />

possible to observe almost any sample,<br />

even non-conductive ones. The ultimate<br />

spatial resolution is about two<br />

nanometers in the three dimensions. In x<br />

and y, it is limited by the size of the<br />

electron probe, and the thinnest possible<br />

slices in z is nearly of the same size. The<br />

acquisition of each slice takes typically<br />

one minute - 10 seconds for cutting, and<br />

50 seconds for image recording, so a full<br />

volume acquisition takes typically 10<br />

hours.<br />

Figure 2 shows an example of application<br />

for the study of growth defects in two<br />

dimensional zinc and magnesium oxide<br />

heterostructures. These structures are<br />

grown at the Léti by metal organic vapor<br />

phase epitaxy on sapphire substrates, for<br />

the realisation of new solid state lightning<br />

devices.<br />

Fig. 2: Virtual plan-view images of a ZnMgO<br />

heterostructure at various steps of the growth.<br />

It reveals (a) the spinel network at the<br />

sapphire/ZnO interface, (b) the porosity at the<br />

beginning of the growth, (c) the sub-grains in<br />

the ZnO layer, and (d) the defaults in the<br />

ZnMgO heterostructure<br />

Under certain growth conditions, the<br />

surface presents several large defects,<br />

with a shape of hexagonal based<br />

pyramids. A stack of nine hundred<br />

images has been acquired, with a pixel<br />

size of 4 nm and a slice thickness of 10<br />

nm. From this stack, it is possible to<br />

reconstruct virtual images of the layer in<br />

perpendicular directions, as well as<br />

virtual plan view images. A lot of new<br />

details appear compared to a single<br />

cross-sectional view.<br />

For example a characteristic network due<br />

to a new phase appears at the beginning<br />

of the growth. It consists of a zinc<br />

aluminate spinel formed by a solid state<br />

reaction between sapphire and zinc oxide<br />

during the high temperature growth step<br />

at 1000 °C. The 3D shape of this spinel<br />

network can be visualized, and it is<br />

noticeable that its two faces are not<br />

equivalent: the top face is very smooth,<br />

but the bottom face presents a<br />

characteristic and almost continuous<br />

crater, hardly seen on a single 2D<br />

projection.<br />

The porosity at the beginning of the<br />

growth is also clearly revealed. It can be<br />

quantified, and correlated with sub-grains<br />

slightly mis-oriented in the ZnO layer.<br />

This corresponds to a growth mechanism<br />

with small islands at the beginning. The<br />

porosity appears during the coalescence<br />

of these islands, but the small misorientations<br />

are kept in the whole ZnO<br />

layer. Finally it is shown that the<br />

pyramidal defects start exactly at the<br />

interface between ZnO and zinc and<br />

magnesium oxide.<br />

CONTACTS<br />

pierre-henri.jouneau@cea.fr<br />

pascale.bayle-guillemaud@cea.fr<br />

2<br />

HIGHLIGHT : TECHNOLOGICAL FACILITIES


HIGHLIGHT : NANOMAGNETISM AND SPINTRONICS<br />

CONTACTS<br />

jan.vogel@grenoble.cnrs.fr<br />

gilles.gaudin@cea.fr<br />

laurent.vila@cea.fr<br />

FURTHER READING<br />

V.Uhlir et al., Physical Review B, Rapid<br />

Communications, 83, 020406 (2011)<br />

C. Burrowes et al., Nature Physics, 6, 17<br />

(<strong>2010</strong>).<br />

T.A. Moore et al., Applied Physics Letters,<br />

93, 252604 (2008).<br />

I.M. Miron et al., Nature Materials, 9, 230<br />

(<strong>2010</strong>).<br />

3<br />

DOMAIN WALL<br />

DYNAMICS<br />

IN NANOSTRIPES<br />

Magnetic domain walls in nanostripes<br />

have been proposed to be the basic<br />

element of a new type of fast and cheap<br />

magnetic storage medium. The<br />

displacement of the domain walls in these<br />

nanostripes is induced by current pulses,<br />

through the spin-transfer-torque (STT)<br />

effect. Several Grenoble laboratories<br />

(Institut Néel, INAC/SPINTEC & NM &<br />

LEMMA) work together to obtain groundbreaking<br />

results in this very competitive<br />

field of research, through the fabrication<br />

of innovating materials and the<br />

development and the use of advanced<br />

tools for characterization and modelling.<br />

In 2009, the RTRA project MIDWEST,<br />

yields funds to the 4 laboratories to<br />

develop and share complementary<br />

magnetic imaging techniques allowing a<br />

detailed metrology of domain wall<br />

dynamics in magnetic nanostructures.<br />

Current induced domain wall motion<br />

(CIDM) has mainly been studied in<br />

nanostripes of soft magnetic permalloy<br />

(Ni 80 Fe 20 ) with in-plane magnetization. In<br />

these stripes, relatively high domain wall<br />

velocities were obtained (> 100 m/s), but<br />

the current densities needed were<br />

relatively high (> 10 12 A/m 2 ). These high<br />

current densities are a drawback both for<br />

the power consumption and for the<br />

associated Joule heating of the stripes.<br />

In collaboration with a team from Unité<br />

Mixte de Physique <strong>CNRS</strong>/Thales, the<br />

group of the Institut Néel has used timeresolved<br />

Photo Emission Electron<br />

Microscope (PEEM) magnetic imaging to<br />

investigate CIDM in Co/Cu/NiFe trilayers.<br />

Domain wall velocity up to 600 m/s was<br />

observed in this system, for current<br />

densities that were a factor 2-3 smaller<br />

than required for single permalloy layers.<br />

Images taken during the application of<br />

the current pulses revealed that the NiFe<br />

magnetization, which is parallel to the<br />

axis of the stripes when no current is<br />

applied, tilts in the direction transverse to<br />

the stripes during the current pulses. It<br />

was shown that this is due to the Oersted<br />

magnetic field generated by the current<br />

itself, which is relatively large for these<br />

trilayer systems where most of the<br />

current flows in the Cu and Co layers.<br />

The effect of the Oersted field on the<br />

magnetization of the stripes and the<br />

domain wall may be at the origin of the<br />

high efficiency of CIDM in this system<br />

[Uhlir2011].<br />

Perpendicular magnetized materials are<br />

very attractive for applications since, due<br />

to the simpler and narrower domain<br />

walls, CIDM is predicted to be much more<br />

efficient and the induced displacements<br />

reproducible.<br />

The group of INAC/NM, together with<br />

colleagues from Spintec and IEF Orsay,<br />

has studied domain wall motion in FePt<br />

alloys and Co/Ni multilayers with<br />

perpendicular anisotropy. By studying the<br />

probability of depinning a domain wall<br />

from a natural or artificial defect, as a<br />

function of applied field and current<br />

density, important information was<br />

provided on the STT efficiency, the socalled<br />

non-adiabatic torque. Contrary to<br />

what was expected, the results showed<br />

that this non-adiabatic torque is relatively<br />

insensitive to the domain wall width<br />

[Burrowes2008].<br />

Another system with perpendicular<br />

magnetic anisotropy, consisting of<br />

Pt/Co/AlO x trilayers, was developed by<br />

Spintec, and CIDM was studied in<br />

collaboration with Institut Néel. It shows<br />

a very high CIDM efficiency and, in<br />

contrast to almost all other perpendicular<br />

systems, long distance current-induced<br />

motion of domain walls, essential for<br />

most of the applications, can be observed<br />

in this system, as shown in Fig. 1.<br />

Fig. 1: Differential Kerr images of currentinduced<br />

domain wall motion in 500nm wide<br />

Pt/Co(0.6nm)/AlOx stripes, for two different<br />

current densities (1x10 12 and 1.5x10 12 A/m 2 )<br />

These images were obtained with Kerr<br />

microscopy, using the difference between<br />

images taken before and after the<br />

application of current pulses. For the<br />

lower current densities, the domain wall<br />

velocity increases with current density<br />

following a so-called creep law<br />

[Moore2008], while at higher current<br />

densities a linear increase is observed,<br />

with maximum velocities above 400 m/s.<br />

The Rashba effect due to the structural<br />

inversion asymmetry is thought to be at<br />

the origin of both the high CIDM<br />

efficiency and the high velocities<br />

[Miron<strong>2010</strong>].


DETECTING SINGLE<br />

NANOPARTICLE<br />

MAGNETIZATION<br />

REVERSAL WITH A<br />

NANOTUBE<br />

Nanospintronics benefits from advances<br />

in quantum transport and molecular<br />

electronics. Combining these concepts<br />

provides new devices highly sensitive to<br />

the local electromagnetic environment<br />

such as carbon nanotube quantum dots.<br />

Moreover molecular objects offer great<br />

versatility in their functionnalization with<br />

magnetic systems such as nanoparticles<br />

or molecular magnets, offering new<br />

routes towards nanoscale spin detection.<br />

Magneto-Coulomb effect in<br />

nanotube quantum dots<br />

filled with magnetic<br />

nanoparticles<br />

“Fil de l’eau” PhD student 2007:<br />

Subhadeep DATTA<br />

Carbon nanotubes at low temperature<br />

behave as quantum dots (QD) for which<br />

charging processes become quantized,<br />

giving rise to Coulomb blockade. Any<br />

small change in the electrostatic<br />

environment (tuned by the gate<br />

electrode, see Fig. 1, top) can induce a<br />

shift of the energy of the QD, leading to<br />

conductivity variation. A carbon nanotube<br />

can therefore be a very accurate<br />

electrometer. If a magnetic system is<br />

electronically coupled to a nanotube, its<br />

spin state can influence sequential<br />

tunneling through the nanotube (socalled<br />

magneto-Coulomb effect).<br />

The context in which the magneto-<br />

Coulomb effect (MCE) was first observed<br />

was that of single-electron transistors<br />

connected with two ferromagnetic leads.<br />

This effect was characterized by an<br />

enhanced magnetoresistance (MR) of the<br />

island in the Coulomb blockade regime.<br />

This feature originated from the Zeeman<br />

energy of the ferromagnetic contacts,<br />

inducing a shift between the majority and<br />

minority spin energy bands. It resulted in<br />

a modification of the island chemical<br />

potential, which is equivalent to effective<br />

electrostatic gating. The MCE thus<br />

enabled the single electron transistor to<br />

be driven by the magnetic field.<br />

In our case, the hollow center of a double<br />

wall carbon nanotube is filled with<br />

magnetic nanoparticles such as iron<br />

(collaboration with Institut Carnot<br />

CIRIMAT, University of Toulouse). We<br />

observe unprecedented high MR reaching<br />

up to 53% at 40 mK with a hysteretic<br />

behaviour and sharp jumps at specific<br />

magnetic fields corresponding to the<br />

magnetization reversal of the<br />

encapsulated particle (see Fig. 1,<br />

bottom). Moreover these features are<br />

strongly gate dependent and reflect<br />

directly the features from Coulomb<br />

blockade in the QD. Indeed, the spin flip<br />

of the iron island at non-zero magnetic<br />

field causes a sharp change in the<br />

nanoparticle chemical potential due to<br />

the Zeeman energy, which is acting on<br />

the nanotube like an effective offset<br />

charge. Such coupling allows the<br />

detection of a single reversal event, with<br />

high accuracy considering its strong<br />

influence on the magnetoresistance.<br />

This effect is thus a new gate dependent<br />

MR, which differs from that described in<br />

previous reports in which the MCE<br />

originated from the contact between<br />

nanostructures and ferromagnetic leads.<br />

Here the MCE is induced by the local<br />

coupling of a nanotube quantum dot with<br />

low-dimensional magnets. This coupling<br />

allows differentiating the sensor from the<br />

probed magnetic object. It opens up new<br />

possibilities for exploiting the versatility<br />

of nanotube QD functionnalization with<br />

different nanomagnets, using double wall<br />

nanotube (DWNTs) filled with various<br />

materials, functionalized on their surface<br />

with molecular magnets.<br />

Fig. 1: Top: transistor based on a double wall<br />

carbon nanotube, the inner tube of which is<br />

filled with magnetic iron nanomagnet; Bottom:<br />

strong resistance variations R and strong MR<br />

hysteresis observed for different applied gate<br />

voltages Vg. Quantum transport and<br />

magnetization reversal are directly correlated<br />

and appear as color changes.<br />

CONTACTS<br />

4<br />

HIGHLIGHT : NANOMAGNETISM AND SPINTRONICS<br />

laetitia.marty@grenoble.cnrs.fr<br />

wolfgang.wernsdorfer@grenoble.cnrs.fr<br />

FURTHER READING<br />

L. Bogani et al., Nature Mater. 7, p179,<br />

(2008)


HIGHLIGHT : NANOPHOTONICS<br />

CONTACTS<br />

julien.claudon@cea.fr<br />

FURTHER READING<br />

J. Claudon et al. Nature Photonics, 4,<br />

p174, (<strong>2010</strong>)<br />

J. Bleuse et al, Phys. Rev. Lett, 106,<br />

103601 (2011)<br />

5<br />

A BRIGHT SINGLE-<br />

PHOTON SOURCE<br />

BASED ON A PHOTONIC<br />

NANOWIRE<br />

The realization of an efficient, on-demand<br />

single-photon source (SPS) is an<br />

important goal for the development of<br />

quantum cryptography and photonic<br />

quantum information processing. In this<br />

context, semiconductor quantum dots<br />

(QD) are very attractive: at low<br />

temperature, they offer a stable singlephoton<br />

emission with a nearly perfect<br />

radiative yield. However, they are<br />

generally embedded in a high index<br />

semiconductor matrix that prevents the<br />

efficient collection of light in the far field.<br />

Within the “Strongchip” young scientist<br />

project supported by the Nanoscience<br />

Foundation, we have overcome this<br />

limitation and demonstrated a very bright<br />

SPS by inserting the QD inside a novel,<br />

well controlled electromagnetic<br />

environment: a photonic nanowire.<br />

A photonic wire is a monomode optical<br />

waveguide that is made of a high index<br />

dielectric material. Specifically, we<br />

consider here a structure defined in III-<br />

As semiconductors and shown in Fig. 1:<br />

the wire is made of GaAs (n=3.5) and is<br />

surrounded by air (n=1). It contains an<br />

InAs QD whose fundamental optical<br />

transition emits single photons at a free<br />

space wavelength around 920 nm. The<br />

high refractive index contrast between<br />

the wire and the air cladding has two<br />

important consequences. First, the<br />

guided mode is confined very tightly<br />

inside a wire having a 200 nm diameter,<br />

which guarantees a good coupling to the<br />

emitter. In addition, the coupling to the<br />

continuum of non-guided modes is<br />

strongly inhibited, thanks to a<br />

pronounced dielectric screening effect. As<br />

a consequence, the spontaneous<br />

emission of the QD is nearly completely<br />

funneled into the guided mode. Next, one<br />

has to collect efficiently the guided<br />

photons with a microscope objective<br />

located above the wire. For this goal, the<br />

two ends of the wire are carefully<br />

engineered. The photons emitted<br />

downward are reflected back into the<br />

guided mode with an integrated mirror,<br />

made of gold and silica. The upper wire<br />

end features a conical tip, designed to<br />

deconfine progressively the guided mode<br />

into the air cladding, in order to obtain a<br />

more directive far-field emission pattern.<br />

The fabrication process of such devices<br />

starts from a planar structure grown by<br />

molecular beam epitaxy. After deposition<br />

of the SiO 2 -Au mirror and a flip-chip step,<br />

the photonic nanowires are obtained with<br />

a dry plasma etching. Because it defines<br />

the nanowire geometry, this last step is<br />

critical and was carefully optimized.<br />

The sample was then mounted in a<br />

micro-photoluminescence setup and<br />

cooled down to liquid helium<br />

temperature. The injection of electronhole<br />

pairs to excite the QD luminescence<br />

was provided by a pulsed laser. The<br />

source efficiency, defined as the<br />

probability to emit a photon into the<br />

collecting cone of the microscope<br />

objective after an excitation pulse,<br />

reaches a maximum when the emitter is<br />

saturated. In these conditions, a record<br />

value of 0.72 photon per pulse was<br />

obtained. Simultaneously, intensity<br />

correlation measurements have provided<br />

the unambiguous signature of a very<br />

pure single-photon emission (g (2)


QUANTUM<br />

HETEROSTRUCTURES<br />

IN II-VI NANOWIRES<br />

Semiconductor nanowires (NWs) have<br />

attracted much attention in recent years<br />

because of their unique properties and<br />

potential use in a variety of technological<br />

applications. The flexibility of the NW<br />

growth allows designing quantum<br />

structures with unprecedented freedom.<br />

With narrow NW, quantum dot structures<br />

can be formed by inserting a low gap<br />

semiconductor along the NW axis<br />

(without the necessity of self-assembly),<br />

at defined position and size. On the other<br />

hand, core-shell heterostructures can be<br />

grown where the nanowires are<br />

surrounded by a radial shell which<br />

enables passivation of interfaces, and<br />

allows efficient charge separation in type<br />

II heterostructures for photovoltaic<br />

application.<br />

We have developed the growth of<br />

ZnSe/CdSe nanowire heterostructures by<br />

molecular beam epitaxy, using gold<br />

droplets as catalysts. Narrow wires with<br />

typical diameter of 10 nm have been<br />

obtained so that carriers in the CdSe QD<br />

are in the strong confinement regime<br />

(bulk exciton Bohr diameter is 11 nm for<br />

CdSe). These NW-QD show intense<br />

photoluminescence (PL) thank to the<br />

efficient light extraction from such<br />

structures as well as high linear<br />

polarization (linear polarization rate is<br />

about 90%) induced by the wire<br />

geometry. The strong Coulomb<br />

interaction in CdSe/ZnSe QDs (excitonbiexciton<br />

separation is 20meV in fig 1)<br />

makes this system particularly suitable<br />

for an application as high temperature<br />

(non cryogenic) single photon source.<br />

for non-classical light emission from a<br />

non-blinking semiconductor QD system.<br />

The intense PL emission of such QDs<br />

enables to carry out fine optical studies<br />

on the dynamics of elementary QD<br />

excitations (exciton, biexciton and trion).<br />

Moreover, we have introduced a novel<br />

technique to probe the dynamics of the<br />

microscopic events responsible for the<br />

spectral diffusion and broadening of QD<br />

lines. It relies on the measurement of the<br />

temporal correlations between photons<br />

emitted in the low-energy or high-energy<br />

parts of the QD exciton line; its resolution<br />

(90ps) represents an improvement by<br />

four orders of magnitude with respect to<br />

previous work.<br />

However pretty little control could be<br />

obtained with the growth on oxidized<br />

silicon: no epitaxial relation between the<br />

substrate, random orientation, quality<br />

hard to be reproduced. In order to gain<br />

control over the NW crystal structure and<br />

growth direction, we have investigated<br />

the epitaxial growth on a ZnSe buffer<br />

layer. The epitaxial growth has allowed<br />

us to obtain vertical and uniform NW (fig.<br />

2b) and a better reproducibility.<br />

With CdSe QD inserted in these ZnSe<br />

NW, we have managed very recently to<br />

demonstrate single photon emission up<br />

to room temperature, within the project<br />

of Miryam ELOUNEG, a PhD student<br />

funded by the Foundation.<br />

Fig. 2 (a) HRTEM image of two ZnSe NW<br />

embbeding a CdSe QD (gold catalyst is on<br />

top). (b) Low density of ZnSe NWs of uniform<br />

10nm diameter.<br />

HIGHLIGHT : NANOPHOTONICS<br />

Fig. 1: Very pure emission spectrum showing<br />

exciton (X) and biexciton (XX) from a single<br />

ZnSe/CdSe NW-QD<br />

With a first generation of NWs grown on<br />

an oxidized Si (001) wafer, we have<br />

demonstrated in 2008 single photon<br />

emission up to 220 K, which was at that<br />

time the highest reported temperature<br />

This expertise of CdSe axial<br />

heterostructures into II-VI nanowires is<br />

extended nowadays to lateral growth: a<br />

conformal layer of CdSe over a template<br />

of ZnO nanowires is an optimized<br />

geometry configuration for photovoltaic<br />

cells. In such core-shell semiconductor<br />

wires, the electron and the hole<br />

wavefunctions are naturally confined in<br />

the core and the shell region<br />

respectively.<br />

Such “quantum coaxial cables” open a<br />

promising route towards high efficiency<br />

solar cells which is explored within Yong<br />

ZHANG’s Chair of Excellence project<br />

entitled “II-VI photovoltaics”.<br />

CONTACTS<br />

kuntheak.kheng@cea.fr<br />

jean-philippe.poizat@grenoble.cnrs.fr<br />

henri.mariette@grenoble.cnrs.fr<br />

FURTHER READING<br />

A. Tribu et al. Nano Lett 8, 4326 (2008)<br />

G. Sallen et al, Phys. Rev. B 80, 085310<br />

(2009)<br />

G. Sallen et al, Nature Photonics 4, 696<br />

(<strong>2010</strong>)<br />

6


TERPYRIDINE-BASED<br />

MACROCYCLES FOR<br />

SWITCHES<br />

HIGHLIGHT : MOLECULAR ELECTRONICS<br />

The POLYSUPRA project , coordinated by<br />

Guy ROYAL (DCM, UJF) with Pierre<br />

TÉRECH (INAC/SPrAM) and Eric<br />

JALAGUIER, Julien BUCKLEY (Léti) as copartners<br />

concerns the preparation and<br />

study of self-assembled coordination<br />

polymers whose originality is to be able<br />

to respond to an external input (stimulus)<br />

that can be optical, electrical or chemical.<br />

The proposed systems are<br />

macromolecules based on polytopic<br />

ligands containing two coordinating units<br />

(terpyridines) bridged by a spacer having<br />

particular redox, optical or chemical<br />

properties. (Fig. 1) These molecules are<br />

particularly attractive for the preparation<br />

of smart materials or for electronic<br />

devices (transistors, memories).<br />

Fig. 1: Schematics detailing the formation of<br />

self-assembled metallo-polymers. The spacer<br />

induces additional chemical properties.<br />

The objectives of POLYSUPRA project<br />

supported by the Foundation are: i) the<br />

preparation and study of new<br />

metallopolymers; ii) the structural<br />

characterization of the polymers; iii) the<br />

attachments of the polymers onto solid<br />

substrates and study of the modified<br />

surfaces and iv) the incorporation of the<br />

systems into electronic devices. At of<br />

spring 2011, the first three tasks have<br />

been successfully realized.<br />

Fig. 2: Electrochromic behavior of a cobalt<br />

polymer.<br />

Structural and Rheological switching<br />

characterization of the polymers and their<br />

attachment onto solid substrates<br />

These metallopolymers can also form<br />

solution or gels, depending on the<br />

experimental conditions and it has been<br />

shown that a reversible gel to liquid<br />

conversion can be electrochemically<br />

controlled by changing the oxidation<br />

state of the metal ions in the polymers<br />

chains (Fig. 3). These polymers have<br />

been characterized using rheology,<br />

viscosimetry and SANS experiments.<br />

Their grafting onto solid substrates is also<br />

under way.<br />

Ox<br />

Red<br />

Fig. 3: Redox controlled Gel/Liquid conversion<br />

CONTACT<br />

guy.royal@ujf-grenoble.fr<br />

FURTHER READING<br />

A. Gasnier et al, Langmuir, 25(15), 8751–<br />

8762 (2009)<br />

A. Gasnier, et al., Inorganic Chemistry, 49,<br />

2592 (<strong>2010</strong>)<br />

Synthesis and study of the<br />

metallopolymers in solution.<br />

Some polynuclear metallopolymers<br />

incorporating a binding unit as spacer<br />

have been prepared and investigated.<br />

These electroactive materials originally<br />

incorporate different types of metal<br />

complexes in the same polymer chain<br />

which induces novel functionalities.<br />

For example, remarkable electrochromic<br />

properties have been demonstrated (see<br />

Fig. 2).<br />

Fig. 4: Cover of the march <strong>2010</strong> issue of<br />

Inorganic Chemistry featuring the first phase<br />

of work supported by this RTRA project.<br />

7


ELECMOL’10<br />

CONFERENCE<br />

An important effort was provided by the<br />

Foundation to support dissemination of<br />

results through scientific conferences.<br />

The Foundation has therefore provided a<br />

continuous financial support of a series of<br />

international conferences on molecular<br />

electronics. This support from the<br />

academic community was constant since<br />

the first edition of the conference held in<br />

2004.<br />

The last edition of this conference was<br />

held last December <strong>2010</strong> at MINATEC.<br />

385 participants gathered for a 5 days<br />

conference featuring the last advances in<br />

the field of Molecular Electronics. The<br />

organizing committee was composed of<br />

12 scientists among which 8 are<br />

permanent researchers within the<br />

laboratories members of the RTRA<br />

network.<br />

Among other distinguished speakers, one<br />

should note the presence of Jean-Marie<br />

LEHN, from ISIS Strasbourg, Nobel Prize<br />

winner of Chemistry for his contributions<br />

on supramolecular chemistry; Georges<br />

WHITESIDES from Harvard University<br />

known for his pioneering works on Selfassembled<br />

systems, Paul ALIVISATOS,<br />

Director of the Lawrence Berkeley<br />

Laboratories, who presented his latest<br />

works on nanorods and Nadrian SEEMAN,<br />

discoverer of DNA based nanotechnology.<br />

The scope of the conference was chosen<br />

to encompass the broadest spectrum of<br />

molecular electronics and was structured<br />

in 8 topics organized as below:<br />

T1: Single Molecules & Quantum Dots:<br />

Junctions, Memories & Switches<br />

T2: Organic Electronics & Spintronics:<br />

Materials & Devices<br />

T3: Organic Optoelectronics & Photonics:<br />

Materials & Devices<br />

Fig. 1: Poster for the announcement of the<br />

fifth edition of the conferences ELECMOL<br />

Roland HERINO, former Director<br />

of the Nanoscience Foundation gave the<br />

opening ceremony talk during which he<br />

presented the scope of the Foundation.<br />

The conference included 15<br />

invited keynote lectures (45 minutes), 45<br />

Oral communications of 15 Minutes and<br />

256 Poster communications shared<br />

between 3 Poster Sessions.<br />

In order to facilitate the<br />

interaction between participants and<br />

promote interdisciplinarity, the choice of<br />

a single session conference held in a<br />

single amphitheatre was preferred over<br />

multiple parallel sessions.<br />

The total budget of the<br />

conference was about 149,000 Euros on<br />

which the Nanosciences Foundation<br />

contributed for the amount of 10,000<br />

Euros. The rest of the budget is shared<br />

between other public funding (20%),<br />

corporate and private support (sponsors)<br />

for 25%, the rest being provided by the<br />

registration fees of the participants.<br />

HIGHLIGHT : MOLECULAR ELECTRONICS<br />

T4: Graphene, Carbon Nanotubes &<br />

Nanowires: Synthesis & Devices<br />

T5: Self-Assembly & Supramolecular<br />

Architectures<br />

T6: Scanning Probe Microscopies & Near<br />

Field Approaches<br />

T7: Molecular Theoretical Modelling<br />

T8: Bioinspired Approaches & Biomimetic<br />

Devices<br />

Fig 2: The conference was hosted by the<br />

House of Micro and Nanotechnologies at<br />

MINATEC-Grenoble<br />

CONTACT<br />

patrice.rannou@cea.fr<br />

FURTHER READING<br />

www.elecmol.com<br />

8


HIGHLIGHT : NANOMATERIALS, NANOASSEMBLY AND NANOSTRUCTURATION<br />

CONTACTS<br />

borsali@cermav.cnrs.fr<br />

FURTHER READING<br />

K. Aissou et al., Langmuir, 27 (7), pp 4098–<br />

4103 (2011)<br />

C. Porto et al., Macromolecules, 44 (7), pp<br />

2240–2244 (2011)<br />

NANOSTRUCTURED<br />

LIGHT-EMITTING SMALL<br />

MOLECULES VIA<br />

HYBRID NATURAL-<br />

BLOCK-SYNTHETIC<br />

SUPRAMOLECULAR<br />

ASSEMBLY<br />

Self-assembly is emerging as an elegant,<br />

'bottom-up' method for fabricating<br />

nanostructured materials. As current<br />

polymers derive from petroleum - a<br />

resource that is being rapidly depleted -<br />

oligo and polysaccharides constitute an<br />

abundant, renewable, and yet<br />

undervalued resource for the fabrication of<br />

bio-inspired nanoelectronic devices. Within<br />

the framework of the 2007 RTRA project<br />

called “CELLULOSE HYBRID”, 3<br />

laboratories (CERMAV, LTM and Léti) have<br />

conceived a new method to build a<br />

versatile hierarchical assembly of hybrid<br />

diblock copolymer (cellulose based<br />

material) which led to tunable-lightemitting<br />

films. (1 patent)<br />

Synthesis and self-assembly<br />

of glycopolymer-based<br />

copolymers in thin films<br />

First, the team designs a hybrid naturalblock-synthetic<br />

copolymer system where<br />

the synthetic block is polystyrene and the<br />

natural one is an amylose fragment:<br />

maltoheptaose (noted maltoheptaoseblock-polystyrene<br />

(Mal7-b-PS))<br />

TEM pictures of Mal7-b-PS copolymer thin<br />

film confirm its phase organization (Fig.<br />

1). They show a stripe pattern, with dark<br />

regions smaller than bright ones, caused<br />

by the orientation of MAL7 cylinders<br />

parallel to the film free surface.<br />

Fig. 1: TEM picture of Mal7-b-PS thin film<br />

showing a stripe pattern, with a lattice period of<br />

about 12 nm measured from FFT inset.<br />

Photoluminescence of lightemitting<br />

thin film<br />

For light-emitting applications, one<br />

important challenge is to fabricate thin<br />

films with an optimal structure i.e. having<br />

large interface area and domain size<br />

similar to the exciton diffusion length<br />

about 10 nm. It has been possible to<br />

fabricate supramolecular architecture with<br />

active 4’,4-bipyridine on maltoheptaose<br />

blocks which fits this requirement to get<br />

expected photonic properties.<br />

Photoluminescence (PL) data of<br />

Mal7(bipy) 1.0 -b-PS thin films deposited on<br />

SiO 2 substrate were recorded (Fig. 2) after<br />

different annealing times. It yields wellorganized<br />

films (48h annealing),<br />

exhibiting a three times higher PL signal<br />

compared to a poorly organized film (15<br />

min annealing).<br />

Fig. 2: Photoluminescence spectra (excitation at<br />

365 nm) of Mal7(bipy)1.0-b-PS thin film after<br />

15 min (red) and 48h (black) annealing time.<br />

F<br />

ig.3: AFM phase image obtained from<br />

Mal7(bipy)1.0-b-PS thin film. The phase crosssection<br />

profile of the continuous red line on the<br />

AFM phase image inset revealed a distance of<br />

11nm between two white spots.<br />

This innovative conception of organic<br />

light-emitting diodes (OLEDs) has been<br />

patented (French patent deposited in<br />

<strong>2010</strong>).<br />

9


CRISTAL PHASE<br />

TRANSITIONS IN<br />

PRESSURIZED SILICON<br />

NANOWIRES<br />

The possibility to synthesize new<br />

crystalline phases in single silicon<br />

nanowires recently attracted attention<br />

owing to the potential tuning of the opto<br />

electronic properties that can be expected<br />

when the crystal structure undergoes<br />

phase transitions. In particular, it is<br />

predicted that the wurtzite phase which is<br />

metastable at room pressure and<br />

temperature is an indirect semiconductor<br />

with a 0.85 eV band gap. Unlike most of<br />

its III-V compounds counterparts where<br />

axial phase switching between cubic and<br />

hexagonal structure is routinely observed,<br />

direct crystal growth and characterization<br />

of wurtzite silicon nanowires is still a<br />

challenging task.<br />

In the frame of the NEP-IV project, we<br />

initiated a structural study of phase<br />

transitions in Si NWs, based on a<br />

“pressure engineering” approach that uses<br />

diamond (phase I) Si NWs as a starting<br />

material instead of the direct synthesis of<br />

modified wires, still under controversy.<br />

Indeed, in the case of bulk material, it was<br />

shown in the 60’s and 70’s that a highpressure<br />

loading and unloading cycle leads<br />

to high-pressure intermediate metallic or<br />

semimetallic phases that relax upon<br />

pressure release into the metastable Si III<br />

phase (body centred cubic, semimetallic)<br />

and Si IV phase (wurtzite, semiconductor)<br />

under a slight annealing of Si III at room<br />

pressure. In our experiment, we used a<br />

diamond-anvil cell to monitor the<br />

pressure-induced phase changes, which<br />

we followed by confocal micro-Raman<br />

spectroscopy. Size calibrated Si NWs were<br />

synthesized using 50 nm gold colloids as<br />

seeds for the vapour liquid solid growth.<br />

The sample was sonicated in a 4:1<br />

methanol-ethanol mixture and the<br />

resulting enriched solution was drop<br />

casted in the pressure cell for Raman<br />

investigation. This resulted in the<br />

formation of visible Si NW bundles at<br />

some preferential places in the cell that<br />

permitted precise excitation of the same<br />

group of wires all along the pressure rise<br />

and release cycle. The results are reported<br />

in Fig. 1 and show the characteristic<br />

Stokes Raman spectrum observed in bulk<br />

silicon I under increasing hydrostatic<br />

pressures up to 16-18 GPa where a first<br />

phase transition occurs, presumably<br />

towards the Si II phase (body centred<br />

tetragonal, metallic), which has no sharp<br />

Raman response. After completion of the<br />

phase transition and transformation of all<br />

Si I into Si II, pressure is progressively<br />

released. This does not lead to Si I phase<br />

retrieval but instead, and like in the bulk<br />

material, Si II remains stable down to the<br />

5-10 GPa range where a phase transition<br />

towards Si III phase takes place. The<br />

characteristic Raman peaks of Si III are<br />

detected together with two broader bands<br />

corresponding to amorphous Si but no<br />

contribution from Si I is found. Upon<br />

aperture of the cell, as the pressure is<br />

fully released to room pressure, the<br />

alcohol evaporates and Si I phase is<br />

immediately recovered, without any<br />

transit via Si IV. This is most likeky due to<br />

the lack of heat sink in the wire<br />

surroundings and subsequent intense laser<br />

annealing of Si III. Further experiments<br />

are necessary to fully understand the<br />

diameter dependence of the phase<br />

transitions and special care will be given<br />

to the low-pressure domain upon pressure<br />

release where observation of the Si IV<br />

phase is expected.<br />

Fig. 1: Raman spectra obtained on a bundle of<br />

50 nm diameter Si NWs for increasing<br />

pressures (top) and decreasing pressures<br />

(bottom). The different phases are labeled I, II<br />

and III<br />

CONTACTS<br />

nicolas.pauc@cea.fr<br />

pierre.bouvier@grenoble-inp.fr<br />

mael.guennou@grenoble-inp.fr<br />

10<br />

HIGHLIGHT : NANOMATERIALS, NANOASSEMBLY AND NANOSTRUCTURATION


THE NÉEL IRAM KIDS<br />

ARRAYS (NIKA)<br />

The Institut Néel is coordinating the NIKA<br />

collaboration, which is developing a new<br />

instrument for the 30-m IRAM (Institut<br />

de Radio Astronomie Millimetrique)<br />

telescope at Pico Veleta, near Granada<br />

(Spain). The peculiarity of this project is<br />

the use, in the focal plane, of large arrays<br />

of the new Kinetic Inductance Detectors<br />

(KIDs).<br />

the first technical run in Pico Veleta took<br />

place already in October 2009, with very<br />

encouraging results. We could observe,<br />

for example, a number of faint galactic<br />

and extra-galactic sources. The LEKID<br />

array used at the telescope in 2009 has<br />

been fabricated at the PTA-Grenoble<br />

platform.<br />

HIGHLIGHT : NANO-CHARACTERIZATION AND METROLOGY<br />

CONTACTS<br />

monfardini@grenoble.cnrs.fr<br />

alain.benoit@grenoble.cnrs.fr<br />

FURTHER READING<br />

A. Monfardini et al., Astronomy and<br />

Astrophysics, 521, id.A29 (<strong>2010</strong>)<br />

L. Swenson et al., Applied Physics Letters,<br />

96, Issue 26, id. 263511 (<strong>2010</strong>).<br />

A. Monfardini et al., The Astrophysioal<br />

Journal, in press (2011), arXiv:1102.0870v2<br />

KIDS development<br />

The importance of millimeter and submillimeter<br />

astronomy is rapidly<br />

increasing. In particular, three main<br />

areas of millimeter continuum research<br />

have motivated the rapid development of<br />

new technologies:<br />

1. The study of the cold star-forming<br />

regions in the Galaxy<br />

2. The investigation of high-redshift<br />

galaxies, dimmed in higher energy<br />

bands<br />

3. Cosmic Microwave Background (CMB)<br />

and its anomalies (e.g. SZ effect)<br />

The Néel IRAM KIDs Arrays (NIKA)<br />

project was kicked off in November 2008.<br />

The international collaboration, led by the<br />

Institut Néel, includes Institutions in the<br />

UK (University of Cardiff), Holland<br />

(SRON), Italy (Università di Roma) and of<br />

course France (Institut Néel, IRAM-<br />

Grenoble, LPSC, LAOG). NIKA, in its final<br />

configuration, uses, in the focal plane,<br />

thousands pixels arrays of KIDs (Kinetic<br />

Inductance Detectors). A KID consist<br />

basically in a planar superconducting<br />

resonator sensitive, through changes in<br />

the film kinetic inductance, to incoming<br />

mm-wave radiation.<br />

The development of KIDs detectors in<br />

France started in 2008 in Grenoble<br />

thanks to a “Jeunes Entrants” project<br />

titled “A DC-to-THz cryogenic platform for<br />

new generations of nano-detectors”. The<br />

project was funded by the “Fondation<br />

Nanosciences” Grenoble for the period<br />

2008-2011. In particular, Dr. Loren<br />

Swenson, post-doc hired by the<br />

Foundation, boosted incredibly the<br />

project with his pre-existing competences<br />

in RF electronics.<br />

In 2009, we started investigating a<br />

particular KID concept known as LEKID<br />

(Lumped Element KID), allowing a purely<br />

planar design and a good optical<br />

coupling. Totally unexplored at that time,<br />

we realized immediately the potential of<br />

this new configuration for future large<br />

instruments operating in the mm-wave<br />

range. Thanks to the rapid development,<br />

Fig. 1: The giant IRAM telescope, located at<br />

2900m on the Sierra Nevada, south of Spain<br />

[Credits L.Swenson]. Insets: Alessandro<br />

MONFARDINI (top), Loren SWENSON (bottom<br />

left) and Christian HOFFMANN (bottom right).<br />

In <strong>2010</strong> we have further developed the<br />

first NIKA prototype to build a new, dualband<br />

instrument able to observe<br />

simultaneously at the wavelengths of<br />

2mm (150GHz) and 1.25mm (240GHz).<br />

Fig. 2: The Crab observed by NIKA in October<br />

<strong>2010</strong> from the 30-m telescope.<br />

A new observational run with the<br />

improved system, and including two KIDs<br />

arrays of respectively 144 and 256 pixels<br />

has been carried out in October <strong>2010</strong>.<br />

Thanks to the larger number of pixels,<br />

the two colors and the three-fold<br />

improvement in the detectors sensitivity,<br />

a large number of galactic and<br />

extragalactic extended sources have been<br />

detected during the six days on the sky.<br />

NIKA is today the state-of-the art<br />

concerning KIDs-based experiments, and<br />

this encourages us in proposing a multithousands<br />

pixels resident instrument,<br />

based on kinetic inductance detectors, at<br />

Pico Veleta.<br />

11


SCANNING GATE<br />

NANOELECTRONICS<br />

In the framework of Vincent Bayot’s Chair<br />

of Excellence, two major results were<br />

obtained by scanning gate microscopy<br />

(SGM): a theoretical understanding of<br />

SGM images in the coherent regime of<br />

transport both in the presence of defects<br />

and weak magnetic field; and the<br />

discovery of Coulomb islands in a<br />

quantum Hall interferometer.<br />

In the quantum Hall (QH) regime, near<br />

integer Landau level filling factors,<br />

electrons should be perfectly transmitted<br />

through spatially separated edge states<br />

(Fig. 2).<br />

SGM uses the electrically polarized tip of<br />

a low-temperature AFM to scan above a<br />

semiconductor device while the conductance<br />

changes, due to the tip perturbation,<br />

are simultaneously mapped in real<br />

space. Previously, we have applied the<br />

SGM technique to InGaAs-based quantum<br />

rings (QRs) at low temperature and<br />

under the effect of an external magnetic<br />

field (Hackens et al., Nature Phys 2006,<br />

Martins et al., PRL 2007). When the AFM<br />

tip scans over the QR surface, fringes are<br />

observed in the tip-induced conductance<br />

changes which are essentially radial with<br />

the QR. To understand the physics behind<br />

SGM experiments, we have focused on<br />

the correspondence between the local<br />

density of states (LDOS) and SGM<br />

conductance images by including an<br />

external magnetic field in the<br />

simulations. We also generate a realistic<br />

potential profile to account for disorder,<br />

and include many conduction channels<br />

contributing to the transport. We find<br />

that, in contrast with the current density<br />

distribution, the LDOS can often be<br />

determined by recursive semi-classical<br />

trajectories with energies close to the<br />

Fermi energy. As a result, the<br />

correspondence between LDOS and SGM<br />

images is clearly established (Fig. 1).<br />

Fig. 2: An artist’s view of edge states in the<br />

quantum ring confining potential. The tip (in<br />

green) induces a local perturbation of the<br />

potential that can be scanned over the<br />

quantum Hall interferometer.<br />

However, in mesoscopic systems,<br />

electronic transmission turns out to be<br />

more complex, giving rise to a large<br />

spectrum of magnetoresistance<br />

oscillations. To explain these<br />

observations, recent models (Rosenow et<br />

al., PRL 2007) put forward the theory<br />

that, as edge states come close to each<br />

other, electrons can hop between<br />

counterpropagating edge channels, or<br />

tunnel through Coulomb islands, giving<br />

rise to a new kind of Coulomb blockade<br />

effect. We have used SGM to<br />

demonstrate the presence of QH Coulomb<br />

islands, and reveal the spatial structure<br />

of transport inside a QH interferometer.<br />

The locations of electron islands are<br />

found by modulating the tunneling<br />

between edge states and confined<br />

electron orbits, i.e. the SGM polarized tip<br />

is used to modulate Coulomb blockade,<br />

resulting in concentric fringes<br />

surrounding the active island (Fig. 3).<br />

HIGHLIGHT : NANO-CHARACTERIZATION AND METROLOGY<br />

Fig. 1: Comparison between the LDOS (A) and<br />

conductance variation images (B) when<br />

negatively charged defects are included in the<br />

system.<br />

Moreover, by varying the Fermi<br />

level and magnetic field strength, we find<br />

that the LDOS and conductance images<br />

are periodical with the external field and<br />

that they bear the same periodicity as<br />

the Aharonov-Bohm effect. This finding<br />

strengthens our view that SGM in the<br />

weak tip-potential limit is the analogue of<br />

STM for imaging the electronic LDOS in<br />

buried open mesoscopic systems.<br />

Fig. 3: SGM image in the QH regime. The<br />

center of the resulting concentric fringes mark<br />

the position of the active quantum Coulomb<br />

island.<br />

Tuning the magnetic field, we<br />

were able to unveil a continuous<br />

evolution of active quantum Coulomb<br />

islands. This allows to decrypt the<br />

complexity of high-magnetic field<br />

magnetoresistance oscillations, and<br />

opens the way to further local-scale<br />

manipulations of QH localized states.<br />

CONTACTS<br />

vincent.bayot@uclouvain.be<br />

serge.huant@grenoble.cnrs.fr<br />

herve.courtois@grenoble.cnrs.fr<br />

FURTHER READING<br />

M. G. Pala et al., Nanotechnology, 20,<br />

264021 (2009)<br />

B. Hackens et al., Nature Communications<br />

1:39 (<strong>2010</strong>).<br />

12


NANO-ORDERING &<br />

DEEP UNDERCOOLING<br />

DRIVE THE SILICON<br />

NANOWIRE GROWTH<br />

Deep undercooling gives rise to a peculiar<br />

state of matter in which a liquid does not<br />

solidify even far below the normal<br />

freezing point. A good example of this<br />

phenomenon is found every day in<br />

meteorology: clouds in high altitude are<br />

an accumulation of undercooled droplets<br />

of water below their freezing points due<br />

to the high purity of the atmosphere at<br />

these altitudes.<br />

temperatures. Such a property is<br />

employed to manufacture high-purity Si<br />

nanowires through a vapour-liquid-solid<br />

growth mechanism. Very recently, the<br />

origin of the deep eutectic point was<br />

shown to be related to the presence of a<br />

well-defined chemical short-range order<br />

that enhances AuSi interactions in the<br />

liquid phase, in contrast with the solid<br />

mixture and with the occurrence of an<br />

important icosahedral ordering in the<br />

undercooled region [3].<br />

HIGHLIGHT : THEORY AND NANOSIMULATION<br />

CONTACTS<br />

alain.pasturel@grenoble.cnrs.fr<br />

noel.jakse@grenoble-inp.fr<br />

FURTHER READING<br />

[1] N. Jakse et al., Physical Review Letters,<br />

91, p205702, (2003); 93, p207801, (2004)<br />

[2] T.U. Schulli et al., Nature 464, p1174,<br />

(<strong>2010</strong>)<br />

[3] A. Pasturel et al., Phys. Rev. B 81,<br />

p140202R (<strong>2010</strong>)<br />

Undercooling was discovered in 1724 by<br />

Fahrenheit while observing that water<br />

droplets stay liquid below 0°C. However<br />

numerous questions about the underlying<br />

mechanisms remain nowadays still open.<br />

In the 1950’s, theoricians postulated the<br />

structure at the atomic level to be<br />

incompatible with crystallization. This led<br />

to the speculation that the atoms in the<br />

liquid could locally arrange in icosahedra<br />

characterized by a five-fold symmetry<br />

which is incompatible with the long-range<br />

periodicity of the crystalline solid.<br />

Fig. 1: Icosahedron<br />

and pentagonal<br />

rings<br />

Fifty years later, ab initio molecular<br />

dynamics simulations revealed for the<br />

first time five-fold coordinated clusters<br />

(pentagons) in pure liquid metals as well<br />

as liquid metallic alloys, some of them<br />

being known to form quasicrystalline<br />

phases or bulk metallic glasses upon<br />

rapid solidification [1].<br />

Using ab initio molecular dynamics<br />

simulations, a new remarkable<br />

undercooling phenomenon has been<br />

explained [2], namely an undercooling as<br />

deep as 350°C for Gold-Silicon (Au 81 Si 19 )<br />

eutectic alloy in contact with a specially<br />

decorated silicon (111) surface where the<br />

outermost layer of the solid featured<br />

pentagonal atomic arrangements. This<br />

alloy is characterized by an unusually<br />

deep eutectic temperature, 359°C, that is<br />

hundreds of degrees below the melting<br />

points of Au (1063°C) and Si (1412°C)<br />

and guarantees a very high mobility of<br />

the Si atoms at relatively low<br />

Fig. 2: Pentagonal arrangements in the goldsilicon<br />

eutectic liquid are stabilized at the<br />

interface. The close-packing of 7 atoms leads<br />

to build the five-fold ring.<br />

In order to understand the effect of the<br />

silicon surface on the local structure of<br />

the eutectic alloy and its undercooling<br />

properties, we carried out calculations of<br />

solid / eutectic liquid interfaces as a<br />

function of different silicon surfaces. The<br />

Silicon (111) surface forces the presence<br />

of local pentagonal arrangements in the<br />

liquid phase at the interface (see Figure<br />

2) The main consequence is that the<br />

alloy’s atoms near this interface display a<br />

local order that increases the stability of<br />

the supercooled phase of the liquid<br />

instead of triggering heterogeneous<br />

nucleation. It is also observed that the<br />

pentagonal decorated silicon (111) [2]<br />

surface influences the short-range order<br />

and the metastability of the liquid<br />

eutectic alloy, favouring the increase of<br />

pentagons in the liquid phase.<br />

This result has wide implications, not only<br />

for fundamental studies of freezing, but<br />

also for practical control of the phase<br />

transition. For instance, it should lead to<br />

important technological applications in<br />

the field of nanowire growth for which the<br />

eutectic alloy act as a catalyst. It is also<br />

speculated that the containerless<br />

techniques required today to obtain<br />

undercooling could be in the future be<br />

replaced by icosahedrally coated solid<br />

containers.<br />

13


CONTROL OF THERMAL<br />

CONDUCTIVITY AT THE<br />

NANOSCALE<br />

The ability to precisely control the<br />

thermal conductivity of a material is<br />

fundamental in the development of onchip<br />

heat management or energy<br />

conversion. By engineering a set of<br />

individual phonon-scattering nanodot<br />

barriers, researchers from the University<br />

of Bordeaux, IFW Dresden, and Liten,<br />

have accurately tailored the thermal<br />

conductivity of a single-crystalline SiGe<br />

material in spatially defined regions as<br />

short as 15 nm, attaining ultra low<br />

thermal conductivities below 1 W/m-K.<br />

The motivation of this study was to know<br />

whether it is possible to achieve fully<br />

diffusive phonon barriers in a single<br />

crystalline material.<br />

Previous studies on planar Si/SiGe<br />

superlattices had reported reductions in<br />

thermal conductivity compatible with<br />

partially diffusive interfaces. In our case,<br />

having dots rather than flat layers leads<br />

to a much stronger phonon scattering,<br />

and allows us to achieve fully diffusive<br />

barriers.<br />

The single crystalline nanodot samples<br />

were grown at IFW Dresden.<br />

Measurements of their thermal<br />

conductivity were performed by two<br />

different methods:<br />

3- method (by A. Rastelli at IFW<br />

Dresden)<br />

time domain thermoreflectance<br />

(TDTR), by S.Dilhaire at the University of<br />

Bordeaux.<br />

Theoretical modelling of flat and nanodot<br />

based superlattices was performed at<br />

Liten, employing atomistic Green’s<br />

function methods.<br />

The thermal conductivity was measured<br />

in the cross plane direction. Singlebarrier<br />

thermal resistances between 2<br />

and 4x10 -9 m 2 K W -1 were attained. This<br />

results in a room-temperature<br />

conductivity down to about 0.9Wm -1 K -1 ,<br />

in multilayered structures with only five<br />

barriers.<br />

Such low thermal conductivity is<br />

compatible with a totally diffuse<br />

mismatch model for the barriers, and it is<br />

well below the amorphous limit. The<br />

results are in agreement with atomistic<br />

Green’s function simulations.<br />

HIGHLIGHT : THEORY AND NANOSIMULATION<br />

Fig. 1: Schematic of the self-assembled<br />

nanodot multilayers fabricated by molecular<br />

beam epitaxy.<br />

Fig. 2: Experimental thermal conductivities of<br />

the samples, as a function of period length<br />

This demonstrated ability to tailor<br />

thermal conductivity with 1 Wm -1 K -1<br />

precision and confirmed a spatial<br />

resolution below the 20nm range which is<br />

very relevant to the development of<br />

integrated miniaturized energy<br />

harvesting or thermal management<br />

devices, fully compatible with silicon<br />

nanoelectronics.<br />

CONTACTS<br />

natalio.mingo@cea.fr<br />

FURTHER READING<br />

G.Pernot et al., Nature Materials, 9, 491<br />

(<strong>2010</strong>).<br />

14


HIGHLIGHT : NANO APPROACHES TO LIFE SCIENCES<br />

CONTACTS<br />

tetiana.aksenova@cea.fr<br />

corinne.mestais@cea.fr<br />

FURTHER READING<br />

Eliseyev et al., LNCS, 6792, 2011 (in press)<br />

IMPLANTABLE<br />

COMPUTER BRAIN<br />

INTERFACE<br />

Up to now, drugs were the main way for<br />

a physician to repair the brain and its<br />

connections to the rest of the body. Deep<br />

brain stimulation has nevertheless<br />

already demonstrated the interest of local<br />

stimulation to correct neural circuit<br />

defects using implantable electrodes.<br />

Nanotechnologies, allowing to record,<br />

stimulate or deliver drugs to neurons<br />

with an unprecedented (unmatched,<br />

unrivaled) resolution will surely help<br />

developing some of the tomorrow’s<br />

neurological treatments. Development of<br />

robust brain-computer interfaces is a key<br />

issue for these progresses.<br />

Development of selflearning<br />

adaptive solutions<br />

for the control of<br />

mechanical effectors<br />

Chair of Excellence 2008: Tetiana<br />

AKSENOVA<br />

Severe motor disabilities require the<br />

development of new communication<br />

pathways to allow the patient controlling<br />

efficiently and safely external aids, such<br />

as wheelchairs and prostheses. The<br />

current method consists in redirecting the<br />

injured nerves into non-essential muscles<br />

and using the electric signals associated<br />

to muscle contraction to monitor the<br />

patient’s intention. The aim of the “Brain-<br />

Computer Interface” project (BCI) is to<br />

directly interpret the brain neural activity<br />

and to translate it into useful command<br />

signals. “Motor signals” are relatively<br />

large in the brain, and can thus be<br />

discriminated from the other neural<br />

activity.<br />

In fact, this work consists in developing<br />

and implementing innovative signal<br />

processing algorithms to analyze<br />

Electrocorticographic signals (ECoG:<br />

electric signals recorded at the surface of<br />

the brain). Animals were instrumented<br />

with ECoG electrodes and trained to<br />

press a pedal to get food at their will,<br />

while ECoG signals were recorded. After<br />

training, a “predictor” was built that could<br />

successfully predict the animal’s intention<br />

(Fig. 1 & 2).<br />

One of the prominent features of this<br />

algorithm is that the success of the<br />

detection is stable for several months<br />

without recalibration, which is very<br />

important for future patient<br />

rehabilitation. Brain computer interface<br />

experiments are now in progress in nonhuman<br />

primates (the step toward human<br />

implantation) and show promising<br />

results.<br />

A<br />

B<br />

Fig. 1: scheme of the brain-computer interface<br />

experiments.<br />

A: training stage, the recorded signals are<br />

used to calibrate the algorithm.<br />

B: the algorithm is used to command the<br />

reward distributor.<br />

Fig. 2: A real-time brain computer interface<br />

experiment. The rat presses the pedal but<br />

decision whether to give a reward is made on<br />

the basis of the recorded ECoG signal.<br />

Although it is still necessary to further<br />

improve the reliability of the detection,<br />

these results successfully demonstrate<br />

that electrocortical electrodes could be<br />

used to control external mechanical<br />

devices and thus rehabilitate paralyzed<br />

people.<br />

Of course, a less invasive system is under<br />

development, consisting in electrodes to<br />

record ECoG signals and circuits to<br />

ensure wireless transmission to the<br />

computer. The first implantation is<br />

scheduled for 2012.<br />

15


Roland HERINO<br />

(past Director)<br />

Jean-Paul DURAUD<br />

(past President)<br />

Farid OUABDESSELAM<br />

(President)<br />

Alain FONTAINE<br />

(Director)<br />

Karine ARGENTO<br />

(past Chief<br />

Administrative Officer)<br />

Stéphanie MONFRONT<br />

(Head of Fundraising<br />

& Communications)<br />

Marie-Anne CARRE<br />

(Chief<br />

Administrative Officer)<br />

Maud DAYEZ<br />

(Human Resources<br />

Administrator<br />

and Assistant)


Copyrights:<br />

© CEA/Avavian<br />

© CEA/Eymery<br />

© Hofheinz<br />

© Morgenstern

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!