22.11.2014 Views

Rotating neutron star models with a toroidal magnetic field - SFB/TR7

Rotating neutron star models with a toroidal magnetic field - SFB/TR7

Rotating neutron star models with a toroidal magnetic field - SFB/TR7

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Rotating</strong> <strong>neutron</strong> <strong>star</strong> <strong>models</strong> <strong>with</strong> a <strong>toroidal</strong> <strong>magnetic</strong> <strong>field</strong><br />

Joachim Frieben<br />

in collaboration <strong>with</strong><br />

Luciano Rezzolla<br />

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)<br />

<br />

June 18, 2007<br />

<strong>SFB</strong>/<strong>TR7</strong>


Outline<br />

1<br />

(1) Motivation<br />

(2) Theoretical formulation<br />

(3) Numerical implementation<br />

(4) Results for an n=1 polytropic equation of state<br />

(5) Results for realistic equations of state<br />

(6) Conclusion<br />

Joachim Frieben Golm, June 18, 2007


Motivation<br />

2<br />

Quest for astrophysical sources of gravitational radiation triggered by large scale Laser<br />

interferometric gravitational wave detectors, such as LIGO, Virgo, or GEO600.<br />

Potential candidates: rapidly rotating, strongly magnetized <strong>neutron</strong> <strong>star</strong>s (magnetars<br />

beyond B ≃ 10 15 G) <strong>with</strong> a dominant <strong>toroidal</strong> <strong>field</strong> component inducing a prolate deformation<br />

of the <strong>star</strong>.<br />

Jones (1975): viscous processes drive the axis of symmetry orthogonal to J<br />

=⇒ bar shaped source of gravitational waves!<br />

Open questions:<br />

• Prolate deformation (Q < 0) possible? Dependency<br />

on rotation frequency f and <strong>toroidal</strong> <strong>magnetic</strong> <strong>field</strong><br />

strength B? Magnitude?<br />

• Influence of general relativistic effects?<br />

• Influence of the equation of state?<br />

If so, for which parame-<br />

• Configurations unstable?<br />

ters?<br />

Figure from Braithwaite & Spruit (2004)<br />

Joachim Frieben Golm, June 18, 2007


Theoretical formulation<br />

3<br />

Assumptions: (1) space-time stationary, axisymmetric, and asymptotically flat,<br />

(2) matter obeys circularity condition (no meridional component of momentum density<br />

vector (massless charge carriers)), hereafter restriction to a perfect fluid.<br />

Then: stress-energy tensor reads<br />

T = (e+p)u ⊗ u + pg + T EM , (1)<br />

<strong>with</strong> fluid proper energy density e, fluid pressure p, fluid four-velocity u and space-time<br />

metric tensor g. Standard coordinates compliant <strong>with</strong> assumptions are quasi-isotropic<br />

(polar) coordinates, conformally flat in (r,θ)-coordinate planes.<br />

g µν d x µ d x ν = −N 2 dt 2 + B 2 r 2 sin 2 θ (dφ − N φ dt) 2 + A 2 (dr 2 + r 2 dθ 2 ) . (2)<br />

Coordinates are global ones and cover all space. Compatibility of a purely <strong>toroidal</strong><br />

<strong>magnetic</strong> <strong>field</strong> <strong>with</strong> quasi-isotropic coordinates established by Oron (2002).<br />

Electro<strong>magnetic</strong> contribution to stress energy tensor:<br />

T EM<br />

αβ = (1/4π)(F ακF κ β − (1/4)F κλ F κλ g αβ ) . (3)<br />

Joachim Frieben Golm, June 18, 2007


Theoretical formulation<br />

4<br />

Electro<strong>magnetic</strong> contribution to (3+1) matter variables E, J, and S:<br />

E EM = 1 (<br />

8π<br />

B φ<br />

Br sinθ<br />

Equation of stationary motion:<br />

) 2<br />

, J EM<br />

i = 0 , S EMr r = S EMθ θ = −S EMφ φ = E EM . (4)<br />

∂<br />

1<br />

∂xi(H + ν − lnΓ) +<br />

e + p<br />

1<br />

8πB 2 N 2 r 2 sin 2 θ<br />

∂(NB φ ) 2<br />

∂x i = 0 . (5)<br />

Eq. (5) only satisfied if Lorentz force term derived from a scalar function M(r,θ), hence<br />

1 1 ∂(NB φ ) 2<br />

e + p8πB 2 N 2 r 2 sin 2 θ ∂x i<br />

= ∂M<br />

∂x i . (6)<br />

Existence of a first integral of motion established for the particular (simple) choice of<br />

NB φ = µ(e+p) B 2 N 2 r 2 sin 2 θ , M = µ2<br />

4π (e+p) B2 N 2 r 2 sin 2 θ . (7)<br />

Joachim Frieben Golm, June 18, 2007


Numerical method<br />

5<br />

Problem: (1) sources of elliptic <strong>field</strong> equations fill all space,<br />

(2) exact boundary condition (of asymptotic flatness) only known at spatial infinity,<br />

(3) sources of elliptic equations involve quadratic terms of derivatives of metric<br />

potentials themselves.<br />

Approach: iterative procedure (relaxation) based on surface-adapted multi-domain<br />

spectral method derived from LORENE C++ class library for numerical relativity.<br />

Expand scalar and vector functions according to<br />

f (r,θ) =<br />

L∑<br />

a l (r)coslθ , U ˜φ (r,θ) =<br />

l=0<br />

L∑<br />

l=1<br />

a ˜φ<br />

l<br />

(r)sinlθ . (8)<br />

Angular expansion by Fourier series, radial expansion by Chebyshev polynomials.<br />

Use three domains: (1) spheroidal kernel containing all the matter,<br />

(2) intermediate domain covering the neighbourhood of the <strong>star</strong>,<br />

(3) outer (vacuum) domain stretching to spatial infinity, mapped onto finite grid.<br />

Code validation: (1) Full agreement <strong>with</strong> Newtonian results e.g. of Sinha (1968),<br />

(2) for each model, error estimate provided by GRV2/GRV3 (10 −6 to 10 −10 ).<br />

Joachim Frieben Golm, June 18, 2007


Results for an n=1 polytropic equation of state<br />

6<br />

Isocontours of the <strong>magnetic</strong> <strong>field</strong><br />

strength for a non-rotating M = 1.4 M ⊙<br />

model <strong>with</strong> a circumferential radius of<br />

R = 12km in the non-<strong>magnetic</strong> case. The<br />

peak value is B p = 5.34 × 10 17 G which is<br />

the maximum possible. Upper physical<br />

limit for B p due to buoyancy estimated<br />

by Wheeler (2000):<br />

( )<br />

B f ≃ 2 × f 1/2 ρ 1/2<br />

×<br />

10 13 gcm −3 × 10 18 G ,<br />

where f ≃ 0.01. Resulting maximum<br />

<strong>field</strong> strengths of B = 10 16 − 10 17 G.<br />

Joachim Frieben Golm, June 18, 2007


Results for an n=1 polytropic equation of state<br />

7<br />

Isocontours of the <strong>magnetic</strong> potential<br />

for the same model as on the previous<br />

slide.<br />

Joachim Frieben Golm, June 18, 2007


Results for an n=1 polytropic equation of state<br />

8<br />

Isocontours of the log-enthalpy for the<br />

same model as on the previous slide.<br />

Joachim Frieben Golm, June 18, 2007


Results for an n=1 polytropic equation of state<br />

9<br />

11.25<br />

11<br />

polar coordinate radius<br />

equatorial coordinate radius<br />

R [km]<br />

10.75<br />

10.5<br />

10.25<br />

10<br />

Equatorial and polar radius<br />

as a function of the peak<br />

<strong>magnetic</strong> <strong>field</strong> strength for<br />

a non-rotating M = 1.4 M ⊙<br />

model <strong>with</strong> a circumferential<br />

radius of R = 12km in<br />

the non-magnetized case.<br />

9.75<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

(B p /5.34 × 10 17 G) 2<br />

Joachim Frieben Golm, June 18, 2007


Results for an n=1 polytropic equation of state<br />

10<br />

1<br />

0.9<br />

0.8<br />

(Bp/5.34 × 10 17 G) 2<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

1<br />

0.95<br />

0.85<br />

0.75 0.7<br />

Isocontours of ratio r p /r e of polar<br />

to equatorial radius as a function<br />

of peak <strong>magnetic</strong> <strong>field</strong> strength<br />

and rotation frequency for an M =<br />

1.4 M ⊙ model <strong>with</strong> a circumferential<br />

radius of R = 12km in the nonmagnetized<br />

case.<br />

0.2<br />

0.65<br />

0.1<br />

0.9<br />

0.8<br />

0.6<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

( f /828 Hz) 2<br />

Joachim Frieben Golm, June 18, 2007


Results for an n=1 polytropic equation of state<br />

11<br />

1<br />

0.9<br />

-0.06<br />

-0.05<br />

0.8<br />

-0.04<br />

-0.03<br />

(Bp/5.34 × 10 17 G) 2<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

-0.02<br />

-0.01<br />

0.01<br />

0<br />

0.02<br />

0.03<br />

0.04<br />

0.05<br />

0.06<br />

0.07<br />

0.08<br />

0.090.1<br />

Isocontours of distortion ɛ = −3/2×<br />

Q zz /I as a function of peak <strong>magnetic</strong><br />

<strong>field</strong> strength and rotation frequency<br />

for an M = 1.4 M ⊙ model<br />

<strong>with</strong> a circumferential radius of<br />

R = 12km in the non-magnetized<br />

case.<br />

0.1<br />

0.12 0.13<br />

0<br />

0.11<br />

0.14<br />

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1<br />

( f /828 Hz) 2<br />

Joachim Frieben Golm, June 18, 2007


12<br />

Results for an n=1 polytropic equation of state<br />

10 −2<br />

10 −3<br />

10 −4<br />

10 −5<br />

Bonazzola & Gourgoulhon (1996)<br />

Cutler (2002)<br />

Magnetic distortion ɛ B as a<br />

function of circumferential<br />

radius R at fixed average<br />

<strong>magnetic</strong> <strong>field</strong> strength for<br />

a non-rotating M = 1.4 M ⊙<br />

model computed according<br />

to Bonazzola & Gourgoulhon<br />

(1996) and Cutler<br />

(2002) respectively.<br />

−ǫ B<br />

10 1 10 2<br />

10 −6<br />

R [km]<br />

Joachim Frieben Golm, June 18, 2007


Results for realistic equations of state<br />

13<br />

Isocontours of the <strong>magnetic</strong> <strong>field</strong><br />

strength for a non-rotating M = 1.4 M ⊙<br />

model based on the SLy4 EOS. The peak<br />

value is B p = 2.47 × 10 17 G which is the<br />

maximum possible.<br />

Joachim Frieben Golm, June 18, 2007


Results for realistic equations of state<br />

14<br />

Isocontours of the <strong>magnetic</strong> potential<br />

for the same model as on the previous<br />

slide.<br />

Joachim Frieben Golm, June 18, 2007


Results for realistic equations of state<br />

15<br />

Isocontours of the log-enthalpy for the<br />

same model as on the previous slide.<br />

Joachim Frieben Golm, June 18, 2007


Results for realistic equations of state<br />

16<br />

3×10 −6<br />

2×10 −6<br />

• BalbN1H1<br />

• GlendNH3<br />

• Pol2C10<br />

2×10 −7 3×10 −7<br />

c B Pol2F10 •<br />

1×10 −6<br />

• SLy4<br />

Pol2 •<br />

AkmalPR<br />

BBB2 •<br />

• FPS<br />

• BPAL12<br />

0<br />

0 1×10 −7 4×10 −7<br />

Distortion coefficients for realistic<br />

equations of state for<br />

<strong>models</strong> <strong>with</strong> M = 1.4 M ⊙ in the<br />

non-rotating and non-magnetized<br />

case. The <strong>star</strong> radius<br />

increases as a function of the<br />

EOS from BPAL12 bottom left<br />

to GlendNH3 top right. Pol2<br />

labels a relativistic model based<br />

upon a γ = 2 polytropic<br />

EOS <strong>with</strong> a radius of R =<br />

12km. Pol2F10 denotes the<br />

coefficients of a model at the<br />

Newtonian limit <strong>with</strong> a radius<br />

of R = 10km, Pol2C10 the<br />

corresponding values given<br />

by Cutler (2002).<br />

c Ω<br />

( ) 2 ( ) 2<br />

¯B f<br />

ɛ = ɛ B + ɛ Ω = −c B + c<br />

10 15 Ω , ¯B = 〈B 2 〉 1/2 . (9)<br />

G Hz<br />

Joachim Frieben Golm, June 18, 2007


Conclusion<br />

17<br />

• First fully relativistic <strong>models</strong> of rotating <strong>star</strong>s <strong>with</strong> a <strong>toroidal</strong> <strong>magnetic</strong> <strong>field</strong>:<br />

⋆ Only slight prolate deformation of the apparent shape.<br />

⋆ Noticeable impact on matter distribution inside the <strong>star</strong>.<br />

⋆ Magnetic <strong>field</strong> leads to an overall growth of the <strong>star</strong>.<br />

⋆ For astrophysically relevant range of rotation frequency and <strong>magnetic</strong> <strong>field</strong> strength<br />

perturbative treatment justified.<br />

⋆ General relativistic effects attenuate the <strong>magnetic</strong> distortion.<br />

⋆ Influence of realistic EOS dominated by impact on actual radius.<br />

⋆ Magnetic and rotational deformation parameters given by Cutler (2002) significantly<br />

too large.<br />

• Further directions to explore:<br />

⋆ Global study of <strong>neutron</strong> <strong>star</strong> <strong>models</strong> <strong>with</strong> a <strong>toroidal</strong> <strong>magnetic</strong> <strong>field</strong>.<br />

⋆ Implement differential rotation.<br />

⋆ Implement mixed <strong>magnetic</strong> <strong>field</strong>s (poloidal and <strong>toroidal</strong>).<br />

⋆ Investigate instability of magnetized <strong>models</strong>.<br />

Joachim Frieben Golm, June 18, 2007


References<br />

18<br />

P. B. Jones, Astrophys. Space Sci., 33, 215 (1975)<br />

A. Oron, Phys. Rev. D 66, 023006 (2002)<br />

http://www.lorene.obspm.fr<br />

N. K. Sinha, Aust. J. Phys., 21, 283 (1968)<br />

J. C. Wheeler, I. Yi, P. Höflich, and L. Wang, Astrophys. J., 537, 810 (2000)<br />

S. Bonazzola and E. Gourgoulhon, Astron. Astrophys. 312, 675 (1996)<br />

C. Cutler, Phys. Rev. D 66, 084025 (2002)<br />

Golm, June 18, 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!