23.11.2014 Views

New Reagents for Lithium Assisted ... - Chemspec Events

New Reagents for Lithium Assisted ... - Chemspec Events

New Reagents for Lithium Assisted ... - Chemspec Events

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Jens Röder – Business Development <strong>Lithium</strong><br />

© 2010 CHEMETALL GMBH - This document and all in<strong>for</strong>mation contained herein is the proprietary in<strong>for</strong>mation of CHEMETALL GMBH.<br />

No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be<br />

reproduced or disclosed to a third party without the express written consent of CHEMETALL GMBH. This document and its content shall<br />

not be used <strong>for</strong> any purpose other than that <strong>for</strong> which it is supplied.


• Chemetall – The <strong>Lithium</strong> Company<br />

• <strong>New</strong> <strong>Reagents</strong> <strong>for</strong> <strong>Lithium</strong> <strong>Assisted</strong> Addition<br />

and Deprotonation Reactions:<br />

- Improving Grignard-addition reactions -<br />

LaCl 3 x LiCl<br />

- Li-powered metalation reactions - <strong>New</strong><br />

Mg- and Zn-amide bases<br />

2


Group Structure 2008<br />

Net Sales: $ 3.380<br />

Employees: 10.000<br />

Specialty<br />

Chemicals<br />

(Chemetall)<br />

Pigments &<br />

Additivs<br />

Advanced<br />

Materials<br />

Net Sales: $ 1.233 Net Sales: $ 1.370 Net Sales: $ 767<br />

Rockwood – Global specialty chemicals and advanced materials company<br />

3


Chemetall Group – At a glance 2008<br />

1923 <strong>Lithium</strong> operations<br />

started by Metallgesellschaft<br />

1992 Dynamit Nobel-Group<br />

1998 Acquisition Foote Corp.<br />

2004 Rockwood Holdings<br />

Chemetall-Group<br />

Sales: 847 million €<br />

Employees: 3008<br />

Subsidiaries: More than 40<br />

Production sites: 33<br />

Fine Chemicals<br />

Surface<br />

Treatment<br />

• <strong>Lithium</strong><br />

• Special Metals<br />

• Metal Sulphides<br />

• Automotive<br />

Technologies<br />

• Advanced<br />

Technologies<br />

• Per<strong>for</strong>mance<br />

Products<br />

• System<br />

Technologies<br />

4<br />

4


Chemetall <strong>Lithium</strong> - Manufacturing Sites<br />

La Porte, TX, USA<br />

<strong>New</strong> Johnsonville, TN, USA<br />

Langelsheim, Germany<br />

Silver Peak, NV, USA<br />

Taichung, Taiwan<br />

Antofagasta, Chile<br />

Kings Mountain, NC, USA<br />

5


<strong>Lithium</strong> – Selected Applications<br />

Key Products<br />

Key Applications<br />

<strong>Lithium</strong><br />

carbonate<br />

Li-Ionen-Batteries<br />

Glass ceramics<br />

Cement<br />

Aluminum<br />

<strong>Lithium</strong><br />

hydroxide<br />

Li-Ionen-Batterien<br />

Grease<br />

CO 2<br />

Absorption<br />

Mining<br />

<strong>Lithium</strong><br />

metal<br />

<strong>Lithium</strong> Batteries<br />

Pharmaceuticals<br />

Al - alloys<br />

Butyllithium<br />

Elastomers<br />

Pharmaceuticals<br />

Agrochemicals<br />

<strong>Lithium</strong><br />

specialties<br />

Electronic Materials<br />

Pharmaceuticals<br />

Agrochemicals<br />

6<br />

6


The “<strong>Lithium</strong> Tree”<br />

Li-Acetylide<br />

Li-<br />

Peroxide<br />

LiBOB<br />

Li-<br />

Perchlorate<br />

Li-<br />

Iodide<br />

Methyllithium<br />

Phenyllithium<br />

Li-t-<br />

Butoxide<br />

Li-<br />

Methoxide<br />

LDA<br />

LHS<br />

<strong>Lithium</strong><br />

Metal<br />

Li-<br />

Hydride<br />

Li-tri<br />

(t-butoxy)-<br />

alanate<br />

Butyllithium<br />

Li-<br />

Alanate<br />

Li-Tetraborate<br />

Li-<br />

Nitride<br />

Li-<br />

Amide<br />

Sabalith<br />

Li-<br />

Silicate<br />

Li-<br />

Phosphate<br />

Comments<br />

• Providing lithium compounds<br />

throughout all stages of the<br />

value chain<br />

• Constant expansion due to<br />

new applications<br />

• Optimization according to<br />

customer needs<br />

Li-<br />

Salicylate<br />

Li-<br />

Fluoride<br />

Foils<br />

<strong>Lithium</strong><br />

Chloride<br />

Li-<br />

Nitrate<br />

Li-<br />

Citrate<br />

Li-<br />

Benzoate<br />

Li-<br />

Acetate<br />

Li-<br />

Bromide<br />

Li-<br />

Hydroxide<br />

Anodes<br />

<strong>Lithium</strong><br />

Carbonate<br />

Li-<br />

Zeolite<br />

Li-<br />

Sulphate<br />

STB<br />

STA STAB MTB<br />

Sodium<br />

Compounds<br />

R-Zn-X<br />

Grignards<br />

Magnesium<br />

Compounds<br />

MDA<br />

Potash<br />

CO2-<br />

Absorption<br />

Products<br />

Brines<br />

Bischofite<br />

Know<br />

How<br />

7


Application Areas<br />

8


1,2-Addition Reactions with R-MgX<br />

Most Grignard products are used <strong>for</strong> 1,2-addition reactions to carbonyl compounds:<br />

OMgX<br />

R 2 R 3<br />

O<br />

R 2<br />

R 3<br />

R 1 MgX<br />

OMgX<br />

R 2 +<br />

R 3<br />

R 1<br />

enolisation<br />

OMgX<br />

side<br />

reactions<br />

R 2 R 3<br />

reduction<br />

Especially when bulky groups are present in the molecule side reactions take place<br />

which<br />

• lead to lower yields<br />

• require extensive purification of the product<br />

• sometimes inhibit the desired reaction<br />

9


Soluble Lanthanoide Halides - LiCl Complexes<br />

Reducing <strong>for</strong>mation of by-products by Lewis-acid activation of the ketone:<br />

State State of of the theart art solution solutionisisthe theuse useof<br />

of<br />

water waterfree freeCe Ce (III) (III) salts salts (Imamoto (Imamoto<br />

method) method)<br />

-Low -Low solubility solubilityof of CeCl CeCl 3 in process<br />

3 in process<br />

solvent solvent THF THF (0.6 (0.6 weight%) weight%) results results<br />

in in inhomogeneous inhomogeneousreaction<br />

mixtures mixtures<br />

-Handling -Handling of of highly highlyhygroscopic<br />

hygroscopic<br />

CeCl CeCl 3 3<br />

-Only -Onlyspecial specialgrades (pretreatment)<br />

(pretreatment)<br />

CeCl CeCl 3 result in good results<br />

3 result in good results<br />

Improved ImprovedChemetall solution solutionisisthe<br />

the<br />

use useof of LaCl LaCl 3 LiCl solution in<br />

3 x 2 LiCl solution in<br />

THF THF<br />

+ High High solubility solubilityof of LaCl LaCl 3 due to<br />

3 due to<br />

addition additionof of LiCl LiCl<br />

+ Ready Readyto to use useproduct<br />

+ Easy Easy handling handlingand and dosing dosing<br />

+ Low Low water watercontent<br />

+ Lots Lots of of examples examplesdescribed describedin in the the<br />

literature literature<br />

10


LaCl 3 x LiCl - Examples<br />

O<br />

+<br />

MgCl<br />

OH<br />

without additive<br />

CeCl 3 (Imamoto, Dimitriov)<br />

LnCl 3 *2 LiCl<br />

3-5%<br />

80%<br />

>90%<br />

O<br />

+<br />

MgCl*LiCl<br />

OH<br />

Ln = La, Ce, Nd<br />

Ln = La, Ce, Nd<br />

without additive<br />

CeCl 3 (Imamoto, Dimitriov)<br />

LnCl 3 *2 LiCl<br />

4%<br />

-<br />

> 90%<br />

O<br />

+<br />

MgCl<br />

OH<br />

without additive<br />

CeCl 3 (Imamoto, Dimitriov)<br />

LnCl 3 *2 LiCl<br />

21%<br />

-<br />

> 90%<br />

A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2006, 45,497-500.<br />

11


LaCl 3<br />

x LiCl - Influence of Stoichiometry<br />

MgBr·LiCl<br />

+<br />

Ph<br />

O<br />

Me<br />

Ph HO Me<br />

without additive: 33 %<br />

LaCl 3<br />

.<br />

2 LiCl (30 mol%) 87 %<br />

LaCl 3 . 2 LiCl (100 mol%) 93 %<br />

O<br />

i-PrMgCl + Ph Ph<br />

Ph<br />

OH<br />

Ph<br />

without additive: 3 %<br />

LaCl 3<br />

.<br />

2 LiCl (30 mol%) 65 %<br />

LaCl 3 . 2 LiCl (100 mol%) 86 %<br />

A. Metzger, G. Gavryushin, P. Knochel, Synlett, 2009, 9, 1433<br />

12


LaCl 3<br />

x LiCl – Synthesis of Tryptamines<br />

N<br />

Boc<br />

MeO<br />

OMe<br />

I<br />

Boc<br />

N<br />

Me<br />

1. iPrMgCl . LiCl;<br />

2. LaCl . 3 2LiCl;<br />

OH<br />

O<br />

Boc<br />

3. MeO<br />

N<br />

N Boc<br />

OMe Me<br />

without isolation of intermediates<br />

78%<br />

NH 2<br />

“An “An expedient strategy <strong>for</strong> <strong>for</strong> the the synthesis of of<br />

tryptamines and and other other heterocycles…”<br />

MeO<br />

OMe<br />

N<br />

Me<br />

key intermediate <strong>for</strong> aspidophytine<br />

K. C. Nicolaou et al, Angew. Chem. Int. Ed 2008, 47, 4217.<br />

13


LaCl 3<br />

x LiCl – Industrial Interest<br />

Challenge:<br />

Suppression of side products generated by<br />

enolization of ketone intermediate<br />

Cl<br />

N<br />

OH<br />

O<br />

O<br />

R<br />

Method<br />

Method<br />

A:<br />

A:<br />

1<br />

1<br />

equiv.<br />

equiv.<br />

anhydrous<br />

anhydrous<br />

CeCl<br />

CeCl 3 3<br />

•<br />

•<br />

Special<br />

Special<br />

two<br />

two<br />

step<br />

step<br />

drying<br />

drying<br />

method<br />

method<br />

is<br />

is<br />

essential<br />

essential<br />

•<br />

•<br />

Special<br />

Special<br />

crystal<br />

crystal<br />

habit<br />

habit<br />

of<br />

of<br />

CeCl<br />

CeCl 3<br />

is critical<br />

3<br />

is critical<br />

•<br />

•<br />

Tedious<br />

Tedious<br />

activation<br />

activation<br />

method<br />

method<br />

is<br />

is<br />

required<br />

required<br />

•<br />

•<br />

Low<br />

Low<br />

solubility<br />

solubility<br />

results<br />

results<br />

in<br />

in<br />

heterogenous<br />

heterogenous<br />

reaction<br />

reaction<br />

mixture<br />

mixture<br />

Adv.<br />

Adv.<br />

Synth.<br />

Synth.<br />

Catal.<br />

Catal.<br />

2004,<br />

2004,<br />

346,<br />

346,<br />

1307<br />

1307<br />

Cl<br />

CH 3 -MgCl (5 equiv.)<br />

N<br />

OH<br />

HO CH 3<br />

CH 3<br />

Method<br />

Method<br />

B:<br />

B:<br />

LaCl<br />

LaCl 3<br />

*2 LiCl – THF solution<br />

3<br />

*2 LiCl – THF solution<br />

•<br />

•<br />

Highly<br />

Highly<br />

soluble,<br />

soluble,<br />

homogenous<br />

homogenous<br />

reaction<br />

reaction<br />

conditions<br />

conditions<br />

•<br />

•<br />

Water-free<br />

Water-free<br />

product<br />

product<br />

•<br />

•<br />

Lower<br />

Lower<br />

LaCl<br />

LaCl 3<br />

/ester ratios possible:<br />

3<br />

/ester ratios possible:<br />

1.0<br />

1.0<br />

equiv.<br />

equiv.<br />

LaCl<br />

LaCl 3<br />

: 94,9% yield<br />

3<br />

: 94,9% yield<br />

0.5<br />

0.5<br />

equiv.<br />

equiv.<br />

LaCl<br />

LaCl 3<br />

: 88,3% yield<br />

3<br />

: 88,3% yield<br />

EP<br />

EP<br />

2<br />

2<br />

014<br />

014<br />

633<br />

633<br />

(Lonza<br />

(Lonza<br />

AG)<br />

AG)<br />

key intermediate in the synthesis of Montelukast<br />

14


Application Areas<br />

15


Directed ortho-Metalation (DOM) Reactions<br />

DG<br />

DG<br />

DG<br />

FG<br />

H<br />

Base<br />

FG<br />

M<br />

E +<br />

FG<br />

E<br />

DG = directing group<br />

FG = functional group<br />

Base= e.g. BuLi, LDA, MDA or other<br />

M = Li (BuLi, TMPLi, LDA ..)<br />

• High reactivity<br />

• Low functional group tolerance<br />

M = Mg, Zn<br />

• Lower reactivity<br />

• Higher selectivity and functional<br />

group tolerance<br />

16


Hauser Base with LiCl<br />

N<br />

MgCl/LiCl<br />

(TMP- MgCl/LiCl)<br />

• the combination of Mg and Li increases the deprotonation<br />

power<br />

• nevertheless selectivity and functional group tolerance remain<br />

at a high level<br />

• reagent exhibts excellent solubility and stability in THF<br />

17


TMP-MgCl x LiCl – Crystal Structure<br />

Source of powerful magnesiating ability:<br />

• active basic ligand binds to Mg (not to Li)<br />

• four-coordinate Mg center is coordinatively saturated, but has a labile<br />

THF ligand geminal to TMPH<br />

• bimetallic, ate („Li + MgR 3-<br />

) constitution could be a key factor <strong>for</strong> the<br />

enhanced magnesiating ability<br />

P. Garcia-Alvarez, R. E. Mulvey, Angew. Chem.Int. Ed. 2008, 47, 8079-8081.<br />

18


TMP-MgCl x LiCl - Examples<br />

high functional group<br />

tolerance…<br />

DG<br />

DG<br />

H<br />

MgCl/LiCl<br />

TMPMgCl/LiCl<br />

FG<br />

FG<br />

DG = OBoc, CO 2 R, COR.....<br />

FG = CO 2 R, CN, COR,.... not FG = CHO, NO 2<br />

LDA<br />

THF, -78 °C<br />

Br<br />

Li<br />

Br<br />

Br<br />

Br<br />

N<br />

…different selectivity<br />

N<br />

Br<br />

Br<br />

TMPMgCl . LiCl (1.1 eq)<br />

THF, -25°C<br />

N<br />

MgCl . LiCl<br />

19


TMP-MgCl x LiCl – Synthesis of Talnetant<br />

CO 2 Et<br />

1) TMPMgCl/LiCl<br />

-10 °C, 3 h<br />

2)<br />

O<br />

B<br />

O<br />

OEt<br />

CO 2 Et<br />

B<br />

R R<br />

N<br />

92 %<br />

Br<br />

3) HCl, Et 2<br />

O<br />

N<br />

71 %<br />

Br<br />

1) iPrMgCl/LiCl<br />

-78°C,2h<br />

2) NC-CO 2 Et<br />

-78 °C to rt, 12 h<br />

Br<br />

O<br />

Ph<br />

NH<br />

Et<br />

OH<br />

N<br />

N<br />

Br<br />

Nadege Boudet, P. Knochel, Org. Lett., 2007,9, 5525-5528.<br />

under research <strong>for</strong> treatment of schizophrenia<br />

and as potential antipsychotic<br />

20


TMP-MgCl x LiCl – Hexasubstituted Benzene<br />

Multiple functionalization of 3-chlorobenzoate by successive magnesations:<br />

CO 2 Et<br />

1) TMPMgCl LiCl<br />

1,2equiv,0°C,6h<br />

CO 2 Et<br />

CN<br />

1) TMPMgCl LiCl<br />

1,5equiv,-20°C,5h<br />

CO 2 Et<br />

CO 2 Et<br />

CN<br />

Cl<br />

2) TsCN<br />

Cl<br />

2) EtOCOCN<br />

Cl<br />

76%<br />

60%<br />

1) TMPMgCl LiCl<br />

1,2 equiv, -50 °C to -30 °C,<br />

30 min<br />

CO 2 Et<br />

CO 2<br />

Et<br />

CN<br />

1) TMPMgCl LiCl<br />

1,2equiv,-50°C,1.5h<br />

CO 2 Et<br />

CO 2<br />

Et<br />

CN<br />

2) ZnCl 2<br />

3) Pd(PPh 3 ) 4 (2 mol%)<br />

ElOCOCl (1.5 equiv)<br />

CO 2<br />

Et<br />

83%<br />

Cl<br />

2) an electrophile<br />

CO 2<br />

Et<br />

E<br />

Cl<br />

W. Lin, O. Baron, P. Knochel, Org. Lett. 2006, 8, 5673 - 5676<br />

21


TMP-MgCl x LiCl – Magnesation of Chloropyrimidines<br />

Lithiation of pyrimidines is difficult due to high reactivity of the ring<br />

towards addition reactions there<strong>for</strong>e requiring low temperatures<br />

S<br />

N<br />

N<br />

Cl<br />

TMP-MgCl LiCl<br />

(1,1 equiv.)<br />

THF, 25°C, 5 min<br />

S<br />

N<br />

N<br />

Cl<br />

E<br />

MgCl LiCl<br />

Cl<br />

N<br />

N<br />

S<br />

TMP-MgCl LiCl<br />

(1,1 equiv.)<br />

THF, 25°C, 30 min<br />

Cl<br />

ClLi ClMg<br />

N<br />

N<br />

S<br />

E<br />

Cl<br />

Cl<br />

M. Mosrin, P. Knochel, Chem. Eur. J. 2009, 15, 1468<br />

22


Even higher functional group tolerance – Zn-Amides<br />

In contrast to TMPMgCl/LiCl, TMP 2 Zn/2MgCl 2 /LiCl<br />

• tolerates NO 2 and CHO functionalities<br />

• as well as labile hetero-arenes<br />

• both TMP-groups are active !!<br />

23


Zn-amides - Examples<br />

High functional group tolerance:<br />

O 2 N<br />

Cl<br />

N<br />

TMP 2 Zn (0.55 Eq.)<br />

THF, -25 °C, 1.5 h<br />

Cl<br />

N<br />

NO 2<br />

2<br />

Zn<br />

Br<br />

CuCN * 2 LiCl (5 mol%)<br />

Cl<br />

N<br />

NO 2<br />

80 %<br />

N<br />

CHO<br />

TMP 2 Zn (0.55 eq.)<br />

THF, 25 °C, 45 min<br />

N<br />

CHO<br />

Br<br />

Zn<br />

2 CuCn * 2 LiCl (5 mol%)<br />

CHO<br />

N<br />

Me<br />

Me<br />

Me<br />

71 %<br />

TMP 2 Zn = TMP 2 Zn/2MgCl 2 /2LiCl<br />

S. Wunderlich, P. Knochel, Angew. Chem. Int. Ed. 2007, 46, 7685.<br />

24


Zn-amides – increasing selectivity…..<br />

N<br />

ZnCl LiCl<br />

• highly chemoselective deprotonation (zincation)<br />

• of various sensitive aromatics and heteroaromatics<br />

• even at room temperature (25°C)<br />

M.Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837<br />

25


TMP-ZnCl/LiCl - Examples<br />

Cl<br />

N<br />

N<br />

Cl<br />

Cl<br />

N<br />

N<br />

Cl<br />

• zincation of electron poor aromatics<br />

• with highly sensitive functional group<br />

• at 25°C !<br />

Cl<br />

N<br />

Cl<br />

N<br />

TMPZnCl LiCl<br />

1,1 equiv<br />

25°C<br />

I<br />

Cl<br />

I<br />

I<br />

N<br />

Cl<br />

N<br />

NO 2<br />

F<br />

TMP-ZnCl LiCl<br />

1,1 equiv.<br />

25°C<br />

NO 2<br />

F<br />

ZnCl LiCl<br />

Cl<br />

N<br />

Cl<br />

Cl<br />

N<br />

Cl<br />

F<br />

F<br />

>95%<br />

N<br />

I<br />

N<br />

regio- and chemoselective<br />

deprotonation of diazines at 25°C<br />

M.Mosrin, P. Knochel, Org. Lett. 2009, 11, 1837<br />

26


Chemetall Products – Mg- and Zn-amides<br />

N<br />

MgCl LiCl<br />

20% solution in THF/toluene<br />

reactivity<br />

N Zn N<br />

2LiCl2MgCl 2<br />

15% solution in THF/toluene<br />

N<br />

ZnCl LiCl<br />

20%solutioninTHF<br />

selectivity<br />

Chemetall offers:<br />

• a tool box of bases <strong>for</strong> effective and selective deprotonation reactions<br />

• with varying basicity and selectivity<br />

• <strong>for</strong> the synthesis of (highly) substituted aromatics and heteroaromatics<br />

• under reasonable reaction conditions<br />

27


Thank you very much <strong>for</strong> your kind attention<br />

© 2010 CHEMETALL GMBH - This document and all in<strong>for</strong>mation contained herein is the proprietary in<strong>for</strong>mation of CHEMETALL GMBH.<br />

No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be<br />

reproduced or disclosed to a third party without the express written consent of CHEMETALL GMBH. This document and its content shall<br />

not be used <strong>for</strong> any purpose other than that <strong>for</strong> which it is supplied.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!