23.11.2014 Views

Actin-based Motility - WPI

Actin-based Motility - WPI

Actin-based Motility - WPI

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Actin</strong>-<strong>based</strong> <strong>Motility</strong><br />

Lamellipodium and filopodium<br />

extension<br />

propulsion<br />

Listeria<br />

actin tail<br />

bacteria<br />

(Vic SMALL)<br />

(M-F Carlier et al)


actin<br />

<strong>Actin</strong> Filament<br />

ATP<br />

(Ken Holmes et al, Nature 1990


Treadmilling<br />

Rate of polymerization<br />

0<br />

C cB<br />

Barbed end<br />

Pointed end<br />

concentration<br />

p<br />

T<br />

Pi<br />

e<br />

D<br />

d<br />

C ss<br />

C cP<br />

ADP<br />

ATP<br />

At steady state the filament treadmills :<br />

Subunit flux = d = e = p = k+B.(Css-CcB)


Lamellipodium Protrusion<br />

Signal<br />

TREADMILLING<br />

ADF-F-actin<br />

growing barbed end<br />

shrinking pointed end<br />

capped barbed end<br />

cross linker<br />

Anchorage<br />

nucleation<br />

elongation<br />

capping<br />

release


imicking lamellipodium with a glass rod ?<br />

30 µm Glass fibre, ∅ =1 µm<br />

<strong>Actin</strong> lamella


Treadmilling<br />

Depolymerization<br />

Polymerization<br />

Vitesse = 4µm /min = 66 nm/s = 26 a/fil/s


Synergy between Profilin and ADF<br />

ADF<br />

D<br />

D<br />

T<br />

ADF<br />

D<br />

K T prof<br />

Profilin<br />

ADP<br />

ATP<br />

Profilin<br />

K D prof<br />

Profilin<br />

T<br />

P<br />

D


Treadmilling of actin filaments :<br />

Effect of capping<br />

Rate of polymerization<br />

0<br />

C ss<br />

Barbed end<br />

C cB C cP<br />

Pointed end<br />

C ss<br />

k B + kP + (CP C -CB C )<br />

C ss<br />

C ss<br />

C ss<br />

C ss<br />

concentration<br />

Rate of filaments growth<br />

+<br />

0<br />

-<br />

J γ G<br />

0 0,5 1<br />

Extent of barbed end capping:γ<br />

« Tous pour un et un pour tous »<br />

Jγ ss<br />

J γ Les trois G mousquetaires. = 1- (1- γ γ) k B A. Dumas<br />

+ +kP +


Role of capping proteins in motility:<br />

funneling the treadmilling<br />

Slow pointed end disassembly<br />

from many capped filaments<br />

Nucleotide exchange<br />

Fast barbed end assembly<br />

of few uncapped filaments<br />

and<br />

Capping


WASP family proteins :<br />

activators of Arp2/3 complex<br />

« closed N-WASP »<br />

WH1<br />

B<br />

A<br />

GBD<br />

VV C<br />

Pro<br />

+ X<br />

+ Arp2/3<br />

+G-actin<br />

Cdc42<br />

IcsA<br />

TccP<br />

Plasma membrane<br />

« activated N-WASP »<br />

X<br />

WH1 B<br />

GBD Pro VVC A<br />

A<br />

VV C<br />

Pro<br />

R. Robinson et al<br />

(Science, 2001)<br />

(Miki et al., 1998; Machesky and Insall, 1998; Rohatgi et<br />

al., 1999; Egile et al., 1999;<br />

Kim, Rosen et al., 2000; Prehoda et al;, 2000)


Filament branching array in lamellipodia<br />

Arp 2/3<br />

50<br />

40<br />

Count<br />

30<br />

20<br />

Branching<br />

(T. Svitkina and G.G. Borisy, 1999; Blanchoin et al.; Pantaloni et al., 2000)<br />

10<br />

0<br />

0 1 2 3 4<br />

Ratio D/M


Modeling barbed end branching<br />

by Arp2/3 complex: un autocatalytic<br />

process<br />

2.5<br />

Polymerised actin, µM<br />

2<br />

1.5<br />

1<br />

0.5<br />

A+A F<br />

F +A F<br />

k +1<br />

= 2.10 -9 s -1 µM -1<br />

k -1<br />

= 5.10 -4 s -1<br />

k +2<br />

= 10 s -1 µM -1<br />

k -2<br />

= 1 s -1<br />

F +Y+2A ===> 2F<br />

Arp2/3<br />

app k +3<br />

= 0.64 s -1 µM -3<br />

0-71 nM<br />

2Y Y 2<br />

active inactive<br />

0<br />

0 500 1000 1500 2000<br />

Time, s<br />

K<br />

4<br />

= 10 -2 µM


Arp2/3: Branching Mechanism<br />

(Pantaloni et al., NCB 2000)<br />

WA or ActA


Cycles of filament attachment-detachment are coupled to branching<br />

VCA<br />

Pantaloni et al., NCB 2000; Science 2001


<strong>Actin</strong> polymerization and force production:<br />

Evolution of the Brownian Ratchet .<br />

(Oster and Mogilner, 1996-2003)


Reconstitution of actin-<strong>based</strong><br />

movement from pure proteins (Loisel et al.,<br />

Nature 1999)<br />

• Treadmilling of filaments feeds movement<br />

• Functions required for movement:<br />

3) Site-directed generation of barbed ends<br />

by N-WASP (resp. ActA)-activated Arp2/3<br />

2) Chemostat maintaining a high steady-state<br />

concentration of ATP-G-actin : <strong>Actin</strong>,<br />

ADF/cofilin, profilin, Capping protein<br />

• Movement results from a balance between the<br />

creation of new growing filaments (branching)<br />

and death of these filaments (capping).


Movement of E. coli (IcsA) and Listeria monocytogenes with<br />

pure components.<br />

E. coli IcsA<br />

Rate :<br />

≈2 µm/min<br />

Listeria<br />

Rate :<br />

≈3 µm/min<br />

Essential Proteins :<br />

N-WASP IcsA-bound<br />

Arp2/3 0.1 µM<br />

Capping Protein 0.1 µM<br />

ADF 2 µM<br />

ATP-actin+F-actin 8 µM<br />

Useful Proteins :<br />

Profilin 2 µM<br />

α-actinin 0.5 µM<br />

VASP 0.1 µM


Mimicking<br />

Lamellipodium Protrusion<br />

TREADMILLING<br />

ADF-F-actin<br />

cross linker<br />

shrinking pointed end<br />

capped barbed end


Biomimetic motility assay: actin<br />

assembly against a functionalized solid<br />

surface<br />

Beads of 3 different sizes<br />

Stuck bead


A break of symmetry in the<br />

actin meshwork leads to a<br />

polarized actin tail and<br />

movement


Biomimetic motility assay: actin assembly<br />

against a functionalized lipid membrane (GUV)


<strong>Actin</strong> tail forms and propels the liposome<br />

following break of symmetry


03:18 pm<br />

Encounters of the third kind<br />

<strong>Motility</strong> medium :<br />

N-WASP bead-bound<br />

Arp2/3 0.1 µM<br />

Capping Protein 0.1 µM<br />

ADF 2 µM<br />

ATP-actin+F-actin 8 µM<br />

Profilin 2 µM


Four Symmetric Comets


The two helices rotate in register<br />

and display opposite handedness<br />

<strong>Actin</strong> insertion


The helical parameters of the actin tails<br />

depend on the geometry of the<br />

microsphere


The surface density of N-WASP affects bead motility<br />

comet-forming beads [%]<br />

[%]<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Mean velocity [µm/min]<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

0 5 10 15 20 25<br />

mean distance between N-WASP [nm]<br />

100<br />

• Movement requires a threshold<br />

80<br />

of N-WASP density<br />

[%]<br />

60<br />

• Velocity 40 is proportional to filament<br />

number, i.e. to N-WASP density<br />

20<br />

0<br />

0 100 200 300 400 500<br />

gelsolin concentration [nM]<br />

mean tail density [∆ gray value]<br />

0<br />

60<br />

40<br />

20<br />

0<br />

0 0.04 0.08 0.12<br />

N-WASP surface density [ molecules/nm 2 ]


Effect of external force on motility<br />

4<br />

3<br />

billes 1600 N-WASP<br />

mean velocity [ µm/min]<br />

1.6<br />

1.2<br />

0.8<br />

0.4<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

bead diameter [µm]<br />

mean velocity [ µm/min]<br />

2<br />

1<br />

billes 200 N-WASP<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

methyl cellulose concentration [% w/v]


Simulation of actin-<strong>based</strong> motility: balance between<br />

filament branching and capping (A.E. Carlsson, 2003,<br />

Biophys. J.)<br />

Autocatalytic branching :<br />

1. Growth velocity is independent of applied force<br />

2. Branch spacing decreases with capping


Measurement of force velocity relationship for actin-<strong>based</strong><br />

propulsion<br />

tail section versus force<br />

Experimental design<br />

force<br />

displacement<br />

pulling<br />

pushing<br />

elastic extension<br />

Tail lengthening<br />

Force velocity diagram<br />

Fast pulling, detachment and regeneration of the actin tail<br />

Marcy et al., PNAS, 2004


Arp2/3 incorporates in actin tails upon barbed<br />

end branching at the surface of N-WASP coated<br />

beads<br />

Rhodamine-actin<br />

Alexa green-Arp2/3<br />

Phase contrast<br />

Alexa green-Arp2/3<br />

Addition of Alexa green-Arp2/3


Branch spacing decreases steeply<br />

upon increasing capping (Wiesner et al.,<br />

JCB, 2003)<br />

Gelsolin: 25 nM 50 nM 100 nM 200 nM<br />

Rh-actin<br />

Alexa488<br />

-Arp2/3<br />

Both<br />

. . .<br />

. . .


Conclusions<br />

• The velocity of beads depends on the number<br />

of filaments pushing the bead.<br />

• Movement is controlled by a balance between<br />

filament branching and capping (Carlsson’s<br />

model).<br />

• Velocity is not sensitive to external load<br />

(viscous drag), i.e. the force due to<br />

polymerization at the bead surface is balanced<br />

by the internal brake (friction) due to attached<br />

filaments.


Importance of the detachment<br />

of filaments following formation<br />

of the branched junction:<br />

role of VASP


Effect of VASP on the motility of ActA-coated<br />

beads


Effect of VASP on the motility of ActA-coated<br />

beads


VASP decreases the density of<br />

filament branching<br />

+ VASP - VASP<br />

A<br />

<strong>Actin</strong><br />

Arp2/3<br />

Merged<br />

(Samarin, Romero et al., J. Cell Biol. 2003)<br />

<strong>Actin</strong>, pico­moles<br />

Arp2/3, femto­moles<br />

60<br />

40<br />

20<br />

0<br />

Arp2/3<br />

(Arp2/3:actin)x1000<br />

2<br />

1<br />

0<br />

<strong>Actin</strong><br />

+ VASP ­ VASP<br />

Arp2/3<br />

+ VASP ­ VASP<br />

Arp2/3<br />

<strong>Actin</strong><br />

<strong>Actin</strong>


VASP enhances actin-<strong>based</strong> motility by accelerating<br />

filament detachment allowing growth after branching<br />

+ VASP<br />

ActA on BEADS<br />

Fluorescence, a.u.<br />

Soluble ActA<br />

+ VASP<br />

ActA on BEADS<br />

control<br />

0 2000 4000 6000 seconds


Without VASP the rate of detachment of the branched<br />

junction from ActA, is slow.<br />

k = 1.510 -3 s -1<br />

- VASP<br />

A<br />

YA<br />

Y<br />

A<br />

Y<br />

ActA<br />

A<br />

VASP<br />

Arp2/3<br />

Filament<br />

V<br />

Y<br />

Y<br />

A<br />

ActA-coated-Bead<br />

A<br />

Y<br />

A<br />

Y<br />

Y Y<br />

A<br />

Y<br />

- VASP<br />

k = 2.5 10 -4 s -1<br />

A<br />

Y<br />

A<br />

Y


<strong>Actin</strong>-<strong>based</strong> motility<br />

• Control of filament turnover<br />

• Site-directed generation of new filaments:<br />

2 mechanisms:<br />

Branching<br />

Barbed end<br />

nucleation (WASP/Arp2/3)<br />

and<br />

processive growth<br />

(formins)


The formin family<br />

FH3<br />

FH1<br />

FH2<br />

DAD<br />

Fmn1/2, cdc12p<br />

Rho<br />

cdc42<br />

GBD<br />

FH3<br />

FH1<br />

FH2<br />

DAD<br />

Bni1p, Bnr1p<br />

Rac1<br />

GBD<br />

FH1<br />

FH2<br />

DAD<br />

FHOS/FHOD1<br />

RhoA<br />

GBD<br />

FH3<br />

FH1<br />

FH2<br />

DAD<br />

Dia, hDia1/mDia1<br />

cdc42<br />

GBD<br />

FH3<br />

FH1<br />

FH2<br />

DAD<br />

hDia3/mDia2<br />

RhoD<br />

GBD<br />

FH3<br />

FH1<br />

FH2<br />

DAD<br />

hDia2/mDia3<br />

DAD<br />

RhoA<br />

GBD<br />

FH2<br />

FH3<br />

FH1<br />

Rho<br />

GTPases<br />

<strong>Actin</strong><br />

nucleation<br />

profilin<br />

Autoregulatory<br />

domain<br />

RhoA<br />

GBD<br />

FH3 FH1 FH2<br />

FH1<br />

DAD<br />

DAD<br />

FH2


Properties of formins<br />

• Nucleate actin assembly (FH2 is sufficient)<br />

• Active as FH2 or FH1-FH2 dimers<br />

• Bind to barbed ends without greatly affecting rat<br />

parameters for actin assembly and disassembly<br />

• Postulated to be processive « leaky cappers »<br />

remaining bound to growing barbed ends


Formin is a processive motor that directs barbed<br />

end assembly of actin filaments from profilinactin<br />

Romero et al., Cell (2004)


Formin remains bound to a growing barbed end for<br />

1200 to 2500 seconds before detaching (Romero et al.,<br />

Cell, 2004)<br />

QuickTime et un décompresseur Video sont requis pour visionner cette image.<br />

Solution of F-actin (0.5 µM) and profilin (4 µM)<br />

Frequency of detachment of a barbed end:<br />

kd = 7.5. 10 -4 ± 1.5.10-4 s -1


Formin increases the rate of profilin-actin<br />

association to barbed ends<br />

0 profilin + profilin<br />

FH1-FH2<br />

FH2<br />

free<br />

FH1-FH2<br />

free<br />

PA


Formin increases the rate of ATP hydrolysis<br />

in profilin-actin assembly


Reconstitution of formin-<strong>based</strong> motility<br />

FH1FH2<br />

coated bead<br />

ADF : 4µM<br />

Prof : 3µM<br />

F-actin : 7µM<br />

Bead velocity, µm/min<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20 25 30<br />

[ADF] in µM<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20<br />

[profilin] in µM<br />

V = 2,5 µm/min


<strong>Actin</strong>-<strong>based</strong> motility<br />

LEBS, CNRS, Gif-sur-Yvette<br />

▼<br />

▼<br />

▼<br />

▼<br />

▼<br />

Dominique Pantaloni<br />

Marie-France Carlier<br />

Emmanuèle Helfer<br />

Dominique Didry<br />

Diep Lê<br />

Stanislav Samarin<br />

Sebastian Wiesner<br />

Christophe Le Clainche<br />

✆ Stéphane Romero<br />

✆ Vincent Delatour<br />

Collaborators<br />

(Institut Pasteur) :<br />

Coumaran Egile<br />

Philippe Sansonetti<br />

(Institut Curie):<br />

Jacques Prost<br />

Cécile Sykes<br />

(Harvard medical<br />

school) :<br />

Christine Kocks


Capping proteins regulate the speed and<br />

duration of formin-<strong>based</strong> motile processes


Microfilaments: Polarity,<br />

Flexibility.<br />

Persistance length : 12 µm<br />

7 nm


Mimicking « hopping Listeria »:<br />

From continuous to periodic actin<strong>based</strong><br />

movement


Formin drives rapid site-directed barbed end<br />

assembly of actin filaments from profilin-actin<br />

Distance<br />

Time


DPi<br />

DPi


ATP hydrolysis occurs on Arp2 only following<br />

branch formation and drives debranching<br />

(Le Clainche » et al., 2003, revised, PNAS)


Model for actin-<strong>based</strong> motility<br />

i n a c t i v e N - W A S P<br />

1. Signal-mediated activation of N-WASp, the branching<br />

enzyme<br />

2. G-actin, Arp2/3 and filaments as substrates of N-WASp<br />

3. Dissociation of the branch (product) and recycling<br />

Question: Role of ATP exchange and hydrolysis on Arp2/3<br />

in the branching and recycling of Arp2/3 complex ?


Dendritic nucleation on ActA<br />

beads .<br />

(Svitkina and Borisy)


Gallery


Localization of Arp2/3 complex at the branch<br />

junction and on the mother filament<br />

50<br />

40<br />

Count<br />

30<br />

20<br />

10<br />

0<br />

0 1 2 3 4<br />

Ratio D/M<br />

Rhodamine-<strong>Actin</strong><br />

200 ms<br />

Alexa488-Arp2/3<br />

30 seconds


Arp2/3-stimulated actin polymerization is an<br />

autocatalytic process<br />

2.5<br />

Polymerised actin, µM<br />

2<br />

1.5<br />

1<br />

Arp2/3<br />

0.5<br />

1-71 nM<br />

Ln [(F-Fo)/(Fmax-F)]<br />

1<br />

0<br />

-1<br />

-2<br />

-200 0 200<br />

Time, s<br />

0<br />

0 500 1000 1500 2000<br />

Time, s


Contraintes de Polymérisation<br />

?


Comète Hélicoïdale


Forces of the order of 1 nN are developed<br />

by actin polymerization<br />

Effect of methylcellulose on G(f)<br />

(Laser Tracking Microrheology)<br />

Force-velocity relationship


Using the motility assay to understand<br />

the mechanism of production of force<br />

and directional movement<br />

• Control of the concentration of soluble proteins<br />

in the motility medium.<br />

• Control of the surface density of filament<br />

branching enzyme (N-WASP or ActA).<br />

• Load/velocity relationship: control of the size of<br />

the bead and of the viscosity of the medium.<br />

• Frequency of filament branching during<br />

movement: two fluorophores (actin and Arp2/3)


<strong>Actin</strong>-<strong>based</strong> motility:<br />

How vectorial assembly of actin filaments<br />

can generate force and movement


Microfilaments: Polarité,<br />

Flexibilité.<br />

7 nm


PERSPECTIVES<br />

• Biomimetics: Reconstitution of lamellipodium protrusion<br />

(force applied to a membrane, functionalized liposome)<br />

• Coupling of adhesion and protrusion during cell<br />

migration: concerted actin dynamics at focal contacts<br />

and in lamellipodium.<br />

• Signaling, actin-<strong>based</strong> motility and morphogenesis:<br />

specifying different motile actin-<strong>based</strong> structures.


Arp2/3 Complex : downstream target of<br />

multiple signaling pathways leading to actin<br />

assembly<br />

Arp3<br />

21 47<br />

20 34<br />

16<br />

Arp2<br />

42<br />

Non-zero crosslink<br />

Two hybrid<br />

Zero-length crosslink<br />

40<br />

(Higgs and Pollard, 1999)<br />

R. Robinson et al<br />

(Science, 2001)<br />

• Localized in actin-<strong>based</strong> motility processes:<br />

• Listeria and Shigella propulsion (Welch, 1997;<br />

Egile et al., 1998)<br />

• Lamellipodium extension (Svitkina and Borisy,<br />

1999)<br />

• Phagocytic cups (Machesky, 2000)<br />

• Endocytic vesicles (Taunton et al., 1999)<br />

• <strong>Actin</strong> patches (Li 1997; Cooper 1999)<br />

• Cadherin-mediated adhesion (Yap, 2002)<br />

• Morphological events in Drosophila (Cooley,<br />

2002)<br />

• Must interact with an activator:<br />

• ActA on Listeria<br />

• WASP and Scar/WAVE proteins in


03:18 pm<br />

Encounters of the third kind<br />

<strong>Motility</strong> medium :<br />

N-WASP bead-bound<br />

Arp2/3 0.1 µM<br />

Capping Protein 0.1 µM<br />

ADF 2 µM<br />

ATP-actin+F-actin 8 µM<br />

Profilin 2 µM


Nucléation Polymérisation : f(c)<br />

Mg ++<br />

λex<br />

λem<br />

polymérisation<br />

concentration<br />

c 3<br />

c 2<br />

c 0<br />

c 1<br />

•<br />

•<br />

c 4<br />

•<br />

•<br />

•<br />

c 5<br />

•<br />

Temps, minutes


Structure de l’<strong>Actin</strong>e<br />

Séquence des 375 acides aminés<br />

constituant l’actine humaine<br />

MDDDIAALVVDNGSGMCKAGFAGDDAP<br />

RAVFPSIVGRPRHQGVMVGMGQKD<br />

SYVGDEAQSKRGILTLKYPIEHGIVTN<br />

WDDMEKIWHHTFYNELRVAPEEHP<br />

VLLTEAPLNPKANREKMTQIMFETFNT<br />

PAMYVAIQAVLSLYASGRTTGIVM<br />

DSGDGVTHTVPIYEGYALPHAILRLDL<br />

AGRDLTDYLMKILTERGYSFTTTA<br />

EREIVRDIKEKLCYVALDFEQEMATAA<br />

SSSSLEKSYELPDGQVITIGNERF<br />

RCPEALFQPSFLGMESCGIHETTFNSI<br />

MKCDVDIRKDLYANTVLSGGTTMY<br />

PGIADRMQKEITALAPSTMKIKIIAPP<br />

ERKYSVWIGGSILASLSTFQQMWI<br />

SKQEYDESGPSIVHRKCF


<strong>Actin</strong> filaments in cell movement and<br />

morphogenesis<br />

• <strong>Actin</strong> filaments have a polar structure<br />

• They are semi-flexible polymers<br />

• Assembly dynamics is regulated in vivo<br />

• Filament assembly is a dissipative<br />

reaction (hydolysis of actin-bound ATP)


Cell motility and signaling<br />

f-Met.Leu.Phe<br />

Neutrophils<br />

Chasing Leucocyte


How ATP hydrolysis regulates motility and the<br />

stability/mechanical strength of branched actin<br />

arrays<br />

Le Clainche et al., J. Biol. Chem. Accel. Publ. 2001; PNAS 2003


TP hydrolysis on Arp2/3 drives filament debranching<br />

WA<br />

Pi<br />

ADP ATP<br />

G<br />

ATP<br />

2<br />

ADP<br />

2<br />

ATP<br />

3<br />

Pi<br />

ATP<br />

G<br />

ATP<br />

2<br />

Arp2/3<br />

Activé<br />

ATP<br />

3<br />

ATP<br />

2<br />

ATP<br />

3<br />

Arp2/3<br />

Inactif


Control of actin dynamics<br />

in cell motility<br />

• Control of the [G-actin]/[F-actin] ratio<br />

• Control of filament turnover<br />

• Spatial control of the generation of new<br />

filaments (link to signaling)


Structural basis for the switch from inhibition<br />

to promotion of actin assembly in ciboulot<br />

(Hertzog et al., Cell 2004)<br />

Pointed End<br />

Barbed End


Treadmilling (Wegner, 1976)<br />

Barbed end<br />

Pointed end<br />

Pi<br />

T<br />

D<br />

C ss<br />

Css Filament turnover<br />

ADP<br />

ATP<br />

Pure actin: 0.1 µM 3µm / 90 min<br />

Lamellipodium: 2 µM ? 3 µm / 1 min


B<br />

Ciboulot regulates axonal growth in Drosophila central brain<br />

during metamorphosis by acting like profilin<br />

(Boquet et al. Cell, 2000)<br />

Low level of Cib expression<br />

Overexpression of Cib<br />

A:wild type<br />

B: mutant


Branching Models<br />

C<br />

A<br />

Autocatalytic barbed end branching<br />

B<br />

Arp2/3 activation and side branching<br />

Nucleation at the membrane and side branching


Fluorescence Video Microscopy of F-actin<br />

2000- fold dilution<br />

in unlabeled G-actin<br />

at Cc in F buffer<br />

1 filament per field<br />

= 1 filament / 50 picoliter<br />

F-Rh-actin<br />

+G-Rh- actin<br />

40 µ M<br />

F-Rh-actin<br />

20 nM<br />

+ G-actin<br />

=Cc<br />

Isambert, Venier, Maggs and Carlier (1995)


F l e xi b il i t y o f A c t i n F il ame n t s<br />

C or r e l a t io n o f t a n ge nti al di re ct io ns<br />

s<br />

θ ( s )<br />

O<br />

< c ( s ) > = c o s [ θ ( s ) - θ ( 0 ) ]<br />

< c ( s ) > = e - | s | / 2 L p<br />

l n < c ( s ) > = -<br />

s<br />

2 L p


Reconstitution of actin-<strong>based</strong><br />

movement from pure proteins<br />

Essential Proteins<br />

N-WASP<br />

Useful Proteins<br />

VASP<br />

Rate µm/min<br />

2<br />

1<br />

Arp2/3<br />

Capping<br />

protein<br />

ADF<br />

2<br />

1<br />

α-<strong>Actin</strong>in<br />

Profilin<br />

0<br />

0<br />

0.001 0.01 0.1 1 10 100.001 0.01 0.1 1 10 100<br />

Concentration, µM<br />

Concentration, µM


Motile activities of living cells<br />

Migration<br />

Endocytosis<br />

Division<br />

Intracellular<br />

transport<br />

Directionality<br />

Energy dissipation<br />

Molecular motors<br />

Directed assembly of polymer


ADF increases the treadmilling of F-actin<br />

without ADF with ADF<br />

Rate of polymerization<br />

0<br />

C cB<br />

Barbed end<br />

C cP<br />

Pointed end<br />

concentration<br />

C cP<br />

C ss<br />

Pointed end<br />

C ss


Arp2/3 interacts with barbed ends,<br />

independently of filament length<br />

(D.Pantaloni et al. 2000)<br />

Polymerised actin, µM<br />

2<br />

1<br />

0<br />

20 pM<br />

0 200 400 600<br />

Time, s<br />

control<br />

Seeds length<br />

( µm)<br />

0<br />

1<br />

2 µm<br />

Spectrin-actin<br />

Gelsolin


VASP increases the rate of detachment of the branched<br />

junction from ActA, allowing growth after branching<br />

ActA in solution<br />

V<br />

Y<br />

Y<br />

V<br />

V Y<br />

k = 1.510 -3 s -1<br />

± VASP<br />

- VASP<br />

Y<br />

V<br />

V<br />

Y<br />

Bead<br />

ActA<br />

VASP<br />

V<br />

+ VASP<br />

Arp2/3<br />

Y<br />

ActA-coated beads<br />

V<br />

Y<br />

Y V<br />

k = 3.10 -2 s -1<br />

- VASP<br />

k = 2.5 10 -4 s -1<br />

V<br />

Y<br />

+Y<br />

Filament

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!