23.11.2014 Views

Evaluating real integrals using the Residue Theorem - The Live Toad

Evaluating real integrals using the Residue Theorem - The Live Toad

Evaluating real integrals using the Residue Theorem - The Live Toad

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

EVALUATING REAL INTEGRALS<br />

USING THE RESIDUE THEOREM<br />

PR HEWITT<br />

All examples taken from chapter 7 of Complex Variables and Applications,<br />

8th edition, by James Brown and Ruel Churchill.<br />

Problem 6, page 267. We start with a simple example which never<strong>the</strong>less<br />

illustrates <strong>the</strong> general strategy. We wish to evaluate<br />

(1)<br />

To do this we first evaluate<br />

where<br />

and C R is <strong>the</strong> contour<br />

∫ ∞<br />

−∞<br />

∫<br />

f(z) =<br />

dx<br />

x 2 + 2x + 2<br />

C R<br />

f(z) dz<br />

1<br />

z 2 + 2z + 2<br />

<strong>the</strong>n take <strong>the</strong> limit as R → ∞. To obtain our final result we show that <strong>the</strong><br />

contribution to <strong>the</strong> integral from <strong>the</strong> semicircle A R tends to 0.<br />

Date: 27 March 2013.<br />

1


2 PR HEWITT<br />

First we evaluate <strong>the</strong> contour integral <strong>using</strong> <strong>the</strong> <strong>Residue</strong> <strong><strong>The</strong>orem</strong>. Since<br />

z 2 + 2z + 2 = (z + 1) 2 + 1 we see that <strong>the</strong>re is exactly one singularity interior<br />

to <strong>the</strong> contour, namely a simple pole at z = −1 + i. Hence<br />

∫<br />

f(z) dz = 2πi · Res f(z) = 2πi · 1<br />

C z=−1+i R<br />

2(−1 + i) + 2 = π<br />

Now we need to estimate |f(z)| when |z| = R. <strong>The</strong>re are several ways to do<br />

this. Using an idea from a previous exercise we note that if z 2 +2z +2 = z 2 w<br />

<strong>the</strong>n<br />

w = 1 + 2 z + 2 → 1 as z → ∞.<br />

z2 Hence we may choose an R so that |w| ≥ 1 2<br />

when |z| ≥ R. In this range we<br />

find that<br />

|f(z)| ≤ 1<br />

1<br />

≤ 2 when |z| ≥ R<br />

2 |z|2 R2 Hence<br />

∫<br />

lim<br />

R→∞<br />

∣ f(z) dz<br />

∣ ≤ πR · 2<br />

A R<br />

R 2 → 0 as R → ∞<br />

When we put this all toge<strong>the</strong>r we find that<br />

∫ ∞<br />

−∞<br />

∫<br />

dx<br />

∞<br />

x 2 + 2x + 2 = P. V.<br />

−∞<br />

dx<br />

x 2 + 2x + 2<br />

∫<br />

= lim f(z) dz<br />

R→∞ I<br />

(∫<br />

R<br />

∫ )<br />

= lim f(z) dz − f(z) dz<br />

R→∞ C R A<br />

( ∫ ) R<br />

= lim<br />

R→∞<br />

π − f(z) dz<br />

A R<br />

= π − 0.<br />

We can check our work directly, without recourse to complex variables,<br />

by making <strong>the</strong> substitution u = x + 1 in (1):<br />

∫ b<br />

a<br />

∫<br />

dx<br />

b+1<br />

∣<br />

x 2 + 2x + 2 = du<br />

∣∣∣<br />

b+1<br />

u 2 + 1 = arctan(u)<br />

as a → −∞ and b → +∞.<br />

a+1<br />

a+1<br />

→ 1 2 π − − 1 2 π


REAL INTEGRALS AND RESIDUES 3<br />

Problem 8, pages 267–268. We are asked to evaluate<br />

(2)<br />

∫ ∞<br />

0<br />

dx<br />

x 3 + 1<br />

<strong>The</strong> book suggests taking f(z) = 1/(z 3 + 1) and integrating f along <strong>the</strong><br />

contour<br />

This will proceed along <strong>the</strong> same lines as above, <strong>using</strong> <strong>the</strong> <strong>Residue</strong> <strong><strong>The</strong>orem</strong><br />

and demonstrating that <strong>the</strong> contribution to <strong>the</strong> integral from <strong>the</strong> circular arc<br />

tends to 0. <strong>The</strong> main difference is <strong>the</strong> extra segment J R : <strong>the</strong> contribution<br />

from this segment is significant, and so we must parametrize it carefully and<br />

study <strong>the</strong> integral <strong>the</strong>re.<br />

Again <strong>the</strong>re is only one singularity inside <strong>the</strong> contour, and that is a simple<br />

pole at e iπ/3 . Hence<br />

∫<br />

C R<br />

f(z) dz = 2πi ·<br />

Res f(z) = 2πi ·<br />

z=e iπ/3<br />

1<br />

3(e iπ/3 ) 2 = i 2 2π/3<br />

3πe−i When |z| = R > 1 <strong>the</strong> Triangle Inequality tells us that<br />

1<br />

|f(z)| ≤<br />

R 3 − 1<br />

whence ∣∫<br />

∣∣∣ f(z) dz<br />

∣ ≤ 2 3 πR · 1<br />

A R<br />

R 3 → 0 as R → ∞.<br />

− 1<br />

Now <strong>the</strong> new and interesting bit. Along J R we take <strong>the</strong> parametrization<br />

z = re i 2π/3 for 0 ≤ r ≤ R. This parametrizes J R backwards, hence<br />

∫<br />

∫<br />

∫ R<br />

e i 2π/3 ∫<br />

dr<br />

f(z) dz = − f(z) dz = −<br />

J R −J R 0 r 3 + 1<br />

= −ei 2π/3 f(z) dz.<br />

I R


4 PR HEWITT<br />

When we put all this toge<strong>the</strong>r we find that<br />

i 2 3 πe−i 2π/3 = (1 − e i 2π/3 )<br />

∫<br />

f(z) dz +<br />

I R<br />

∫<br />

f(z) dz.<br />

A R<br />

If we take <strong>the</strong> limit as R → ∞ and divide both sides by 1 − e i 2π/3 we<br />

conclude that<br />

∫ ∞<br />

0<br />

dx<br />

x 3 + 1 =<br />

i 2π<br />

3(e i 2π/3 − e −i 2π/3 ) = π<br />

3 sin(2π/3) = 2π<br />

3 √ 3<br />

This integral can also be done without recourse to <strong>the</strong> <strong>Residue</strong> <strong><strong>The</strong>orem</strong>,<br />

by factoring x 3 + 1 as (x + 1)(x 2 − x + 1) and <strong>the</strong>n applying <strong>the</strong> standard<br />

techniques from Callc II — partial fractions, trig substitution, etc. I will<br />

leave this as an exercise.<br />

Problem 7, page 276. We now do a simple application of Jordan’s Lemma.<br />

We are asked to evaluate<br />

(3)<br />

∫ ∞<br />

−∞<br />

x sin x dx<br />

(x 2 + 1)(x 2 + 4)<br />

Notice that <strong>the</strong> integrand is even. Hence<br />

We take<br />

∫ ∞<br />

−∞<br />

∫<br />

x sin x dx<br />

∞<br />

(x 2 + 1)(x 2 + 4) = Im P. V.<br />

f(z) =<br />

−∞<br />

z<br />

(z 2 + 1)(z 2 + 4)<br />

x e ix dx<br />

(x 2 + 1)(x 2 + 4)<br />

and integrate f(z)e iz over <strong>the</strong> contour below and apply Jordan’s Lemma to<br />

<strong>the</strong> integral over <strong>the</strong> semicircle.


REAL INTEGRALS AND RESIDUES 5<br />

Inside this contour <strong>the</strong>re are two singularities, simple poles at i and 2i.<br />

Hence<br />

∫<br />

(<br />

)<br />

f(z)e iz dz = 2πi · Res<br />

C z=i f(z)eiz + Res<br />

z=2i f(z)eiz R<br />

(<br />

ie −1<br />

= 2πi ·<br />

2i · (−1 + 4) + 2ie −2 )<br />

(−4 + 1) · 4i<br />

π(e − 1)<br />

= i<br />

3e 2 .<br />

When |z| = R > 2 we find that<br />

R<br />

|f(z)| ≤<br />

(R 2 − 1)(R 2 → 0 as R → ∞.<br />

− 4)<br />

Hence by Jordan’s Lemma we have<br />

∫<br />

f(z)e iz dz → 0 as R → ∞.<br />

A R<br />

If we put this all toge<strong>the</strong>r <strong>the</strong>n we conclude<br />

∫ ∞<br />

∫<br />

x sin x dx<br />

−∞ (x 2 + 1)(x 2 = Im lim f(z)e iz dz<br />

+ 4) R→∞ I<br />

(∫<br />

R<br />

∫<br />

)<br />

= Im lim f(z)e iz dz − f(z)e iz dz<br />

R→∞ C R A R<br />

π(e − 1)<br />

= Im(i<br />

3e 2 − 0)<br />

π(e − 1)<br />

=<br />

3e 2


6 PR HEWITT<br />

Problem 1, page 286. We are asked to evaluate<br />

∫ ∞<br />

cos(ax) − cos(bx)<br />

(4)<br />

0 x 2 dx<br />

Note that<br />

cos(az)<br />

z 2 = 1 z 2 − a 2 + · · ·<br />

and thus<br />

cos(az) − cos(bz)<br />

z 2 = b − a + · · ·<br />

2<br />

which is entire! <strong>The</strong>re will be no residues to compute if we integrate this<br />

function.<br />

Instead we integrate<br />

f(z) = eiaz − e ibz<br />

z 2 = i a − b + · · · ,<br />

z<br />

which has a simple pole at 0, and <strong>the</strong>n look at <strong>the</strong> <strong>real</strong> part. <strong>The</strong> complication<br />

is that this function is singular at a point along <strong>the</strong> natural contour<br />

for this problem — in fact <strong>the</strong> improper integral near 0 diverges. So we<br />

take an “indented contour” to ensure that <strong>the</strong> integrand is analytic along<br />

<strong>the</strong> contour:<br />

By <strong>the</strong> <strong>Residue</strong> <strong><strong>The</strong>orem</strong> we have that<br />

∫<br />

C R<br />

f(z) dz = 0.<br />

Since 1/|z| 2 = 1/R 2 along A R Jordan’s Lemma (applied twice) tells us<br />

that<br />

∫<br />

A R<br />

f(z) dz → 0 as R → ∞


REAL INTEGRALS AND RESIDUES 7<br />

Along J we take <strong>the</strong> parametrization z = −x for ρ ≤ x ≤ R and find that<br />

∫<br />

∫<br />

∫ R<br />

e −iax − e −ibx<br />

f(z) dz = − f(z) dz = −<br />

(−dx)<br />

Hence<br />

J<br />

∫<br />

I+J<br />

−J<br />

ρ<br />

x 2<br />

∫ R<br />

cos(ax) − cos(bx)<br />

f(z) dz = 2<br />

ρ x 2 dx<br />

It remains to study what happens to <strong>the</strong> integral along Γ ρ as ρ → 0. Here<br />

we meet an old friend in a new guise. Let us consider a slightly more general<br />

situation. Suppose that g(z) has a simple pole at z 0 with residue B, and we<br />

integrate g along circular arc of small radius ρ:<br />

Near z 0 we have that<br />

g(z) =<br />

B<br />

z − z 0<br />

+ h(z)<br />

where h(z) is analytic. For sufficiently small ρ we have (say)<br />

|h(z)| ≤ |h(z 0 )| + 1<br />

whence<br />

∫<br />

h(z) dz<br />

∣ Γ ρ<br />

∣ ≤ (β − α)ρ · (|h(z 0)| + 1) → 0 as ρ → 0<br />

This yields<br />

∫<br />

lim<br />

ρ→0<br />

∫ β<br />

g(z) dz = lim<br />

Γ ρ ρ→0 α<br />

B · iρe iθ dθ<br />

ρe iθ<br />

∫<br />

+ lim h(z) dz = i (β − α)B<br />

ρ→0 Γ ρ<br />

When α = 0 and β = 2π we recover <strong>the</strong> essential computation in <strong>the</strong> proof of<br />

<strong>the</strong> <strong>Residue</strong> <strong><strong>The</strong>orem</strong>. In our case we have α = π, β = 0, and B = i(a − b).


8 PR HEWITT<br />

If we put all this toge<strong>the</strong>r <strong>the</strong>n we obtain<br />

∫ ∞<br />

∫<br />

cos(ax) − cos(bx)<br />

1<br />

0 x 2 dx = lim<br />

ρ→0, R→∞ 2<br />

∫<br />

1<br />

= − lim<br />

ρ→0 2<br />

I+J<br />

f(z) dz<br />

Γ ρ<br />

f(z) dz − lim<br />

R→∞<br />

= − 1 2i (−π) · i (a − b) − 0<br />

Problem 3, page 286. We are asked to use <strong>the</strong> function<br />

to evaluate <strong>the</strong> <strong>integrals</strong><br />

(5)<br />

f(z) = z1/3 log z<br />

z 2 + 1<br />

, − 1 2 π < arg z < 3 2 π<br />

∫ ∞<br />

0<br />

3√ ∫ x ln x<br />

∞ 3√ x<br />

x 2 + 1 dx and x 2 + 1 dx<br />

0<br />

∫<br />

1<br />

f(z) dz<br />

2 A R<br />

Two for <strong>the</strong> price of one! As with <strong>the</strong> previous example we will use what<br />

<strong>the</strong> text calls an “indented contour”, but in this case we will be eschewing<br />

a branch cut, not an isolated singularity. <strong>The</strong> limit calculations will be very<br />

different for <strong>the</strong> indentation.<br />

We use <strong>the</strong> same contour as above:<br />

When R is large and ρ is small <strong>the</strong> enclosed region contains exactly one<br />

singularity, namely a simple pole at i. Hence<br />

∫<br />

C<br />

f(z) dz = 2πi · Res<br />

z=i f(z) = 2πi · i1/3 log i<br />

2i<br />

= i π2<br />

2 eiπ/6


REAL INTEGRALS AND RESIDUES 9<br />

Now we need to estimate <strong>the</strong> contributions to <strong>the</strong> integral from A and Γ.<br />

When |z| = r we find that<br />

Hence<br />

and<br />

|f(z)| ≤ r1/3 (| ln r| + 3 2 π)<br />

|r 2 − 1|<br />

∫<br />

∣ f(z) dz<br />

∣ ≤ πR · R1/3 (ln R + 3 2 π)<br />

A R<br />

R 2 → 0 as R → +∞<br />

− 1<br />

∣ ∣∣∣∣ ∫<br />

f(z) dz<br />

Γ ρ<br />

∣ ≤ πρ · ρ1/3 (− ln ρ + 3 2 π)<br />

1 − ρ 2 → 0 as ρ → 0 +<br />

by L’Hospital’s Rule.<br />

Thus, in <strong>the</strong> limit, all of <strong>the</strong> action is along I and J. We can parametrize<br />

J backwards <strong>using</strong> z = −x for ρ ≤ x ≤ R. Along this segment we have that<br />

−x = e iπ x. Thus<br />

∫<br />

J<br />

∫<br />

f(z) dz = −<br />

−J<br />

= e iπ/3 ∫ R<br />

ρ<br />

∫ R<br />

e iπ/3 3√ x (ln x + iπ)<br />

f(z) dz = −<br />

ρ x 2 + 1<br />

3√ x ln x<br />

x 2 + 1 dx + i πeiπ/3 ∫ R<br />

ρ<br />

3√ x<br />

x 2 + 1 dx<br />

When we put all <strong>the</strong>se <strong>integrals</strong> toge<strong>the</strong>r we find that<br />

∫ ∫<br />

∫ ∫<br />

i π2<br />

2 eiπ/6 = f(z) dz + f(z) dz + f(z) dz +<br />

I<br />

= (1 + e iπ/3 )<br />

J<br />

∫ R<br />

ρ<br />

∫<br />

+ f(z) dz +<br />

Γ<br />

0<br />

Γ<br />

3√ ∫ x ln x<br />

R<br />

x 2 + 1 dx + i πeiπ/3 ρ<br />

∫<br />

f(z) dz<br />

A<br />

A<br />

(−dx)<br />

f(z) dz<br />

3√ x<br />

x 2 + 1 dx<br />

If we take limits as ρ → 0 and R → +∞, <strong>the</strong>n divide both sides by e iπ/6<br />

<strong>the</strong>n we obtain<br />

∫ ∞ 3√ ∫<br />

i π2<br />

x ln x<br />

∞ 3√ x<br />

2 = 2 cos(π/6) x 2 + 1 dx + i πeiπ/6 x 2 + 1 dx<br />

If we look at <strong>the</strong> <strong>real</strong> and imaginary parts of <strong>the</strong> above equation we find<br />

that<br />

√<br />

∫ ∞ 3√ x ln x<br />

3<br />

0 x 2 + 1 dx = π ∫ ∞ 3√ x<br />

2 0 x 2 + 1 dx<br />

π 2<br />

2 = π√ ∫<br />

3 ∞ 3√ x<br />

2 x 2 + 1 dx<br />

which lead to <strong>the</strong> answers given in <strong>the</strong> text.<br />

0<br />

0


10 PR HEWITT<br />

Problem 6, page 291. Finally we show how we can sometimes use residues<br />

to evaluate ordinary (that is, not improper) <strong>integrals</strong> by making a substitution<br />

that transforms <strong>the</strong> <strong>real</strong> integral into a contour integral. For example,<br />

to compute<br />

(6)<br />

∫ π<br />

0<br />

dθ<br />

(a + cos θ) n , a > 1.<br />

we use <strong>the</strong> substitution<br />

Thus<br />

where<br />

z = e iθ , dz = i e iθ dz = iz dz, cos θ = 1 2 (z + z−1 ).<br />

∫ π<br />

0<br />

dθ<br />

(a + cos θ) n = 1 ∫ 2π<br />

dθ<br />

2 0 (a + cos θ) n<br />

= 1 ∫<br />

dz<br />

2 iz(a + 1 2 (z + z−1 )) n<br />

= 2n−1<br />

i<br />

= 2n−1<br />

i<br />

|z|=1<br />

∫<br />

∫<br />

|z|=1<br />

|z|=1<br />

r, s = −a ± √ a 2 − 1.<br />

z n−1 dz<br />

(z 2 + 2az + 1) n<br />

z n−1 dz<br />

(z − r) n (z − s) n<br />

Since r < −1 we find that <strong>the</strong> only singularity in <strong>the</strong> circle is a pole of order<br />

n is <strong>the</strong> root s = 1/r. Thus<br />

∫ π<br />

0<br />

dθ<br />

(a + cos θ) n = z n−1<br />

2n π · Res<br />

z=s (z − r) n (z − s) n<br />

We expand z n−1 /(z − r) n in a Laurent series around s:<br />

z n−1 (z − s + s)n−1<br />

=<br />

(z − r) n (s − r + z − s) n<br />

=<br />

n−1<br />

1 ∑<br />

(s − r) n<br />

×<br />

j=0<br />

( n − 1<br />

j<br />

∞∑<br />

( ) −n (z − s)<br />

k<br />

k (s − r) k<br />

k=0<br />

)<br />

s j (z − s) n−1−j


Hence<br />

∫ π<br />

dθ<br />

(a + cos θ) n = 2n n−1<br />

π ∑<br />

(s − r) n<br />

0<br />

REAL INTEGRALS AND RESIDUES 11<br />

l=0<br />

( n − 1<br />

= 2n n−1<br />

π ∑<br />

( n − 1<br />

(s − r) n l<br />

=<br />

l=0<br />

2 n n−1<br />

π ∑<br />

(s − r) 2n−1<br />

l=0<br />

l<br />

( n − 1<br />

)( −n<br />

l<br />

) ( s<br />

s − r<br />

)( n + l − 1<br />

l<br />

) l<br />

) l<br />

) ( −s<br />

l s − r<br />

)( ) n + l − 1<br />

(−s) l (s − r) n−l−1<br />

l<br />

Note that −s = a − √ a 2 − 1 and s − r = 2 √ a 2 − 1. Thus when n = 2 we<br />

obtain<br />

4π<br />

(<br />

8(a 2 − 1) 3/2 2 √ a 2 − 1 + 2(a − √ )<br />

a 2 πa<br />

− 1) =<br />

(a 2 − 1) 3/2<br />

When n = 3 we obtain<br />

8π<br />

(<br />

32(a 2 − 1) 5/2 4(a 2 − 1) + 6(a − √ a 2 − 1) · 2 √ a 2 − 1 + 6(a − √ a 2 − 1) 2)<br />

What is <strong>the</strong> pattern for arbitrary n?<br />

= π(4a2 + 2)<br />

4(a 2 − 1) 5/2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!