24.11.2014 Views

VariTrane VAV and Controls Catalog PRODUCT NOTE This ... - Dalkia

VariTrane VAV and Controls Catalog PRODUCT NOTE This ... - Dalkia

VariTrane VAV and Controls Catalog PRODUCT NOTE This ... - Dalkia

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>VariTrane</strong> ®<br />

Products<br />

Single-Duct <strong>and</strong> Dual-Duct<br />

Parallel <strong>and</strong> Series Fan-Powered<br />

Low-Height Parallel <strong>and</strong> Series Fan-Powered<br />

<strong>VAV</strong> <strong>Controls</strong><br />

Diffusers<br />

May 2006<br />

<strong>VAV</strong>-PRC008-EN


<strong>Catalog</strong><br />

Contents<br />

Features <strong>and</strong> Benefits FB 1 – 5<br />

Application Considerations AC 1 – 23<br />

Single-Duct Terminal Units SD 1 – 30<br />

Dual-Duct Terminal Units DD 1 – 15<br />

Parallel Fan-Powered Terminal Units FPP 1 – 37<br />

Series Fan-Powered Terminal Units FPS 1 – 40<br />

Low-Height Parallel Fan-Powered Terminal Units LHP 1 – 29<br />

Low-Height Series Fan-Powered Terminal Units LHP 1 – 27<br />

<strong>VariTrane</strong> <strong>Controls</strong> C 1 – 67<br />

Diffusers D 1 – 34<br />

Index by Nomenclature<br />

Index by Section<br />

IBN i – ii<br />

IBS i – v<br />

© 2006 American St<strong>and</strong>ard, Inc All rights reserved


Features<br />

<strong>and</strong><br />

Benefits<br />

<strong>VariTrane</strong> – <strong>VAV</strong> Leadership:<br />

<strong>VariTrane</strong> variable-air-volume (<strong>VAV</strong>)<br />

units lead the industry in quality <strong>and</strong><br />

reliability <strong>and</strong> are designed to meet the<br />

specific needs of today’s applications.<br />

<strong>This</strong> generation of <strong>VariTrane</strong> units<br />

builds upon the history of quality <strong>and</strong><br />

reliability <strong>and</strong> exp<strong>and</strong>s the products<br />

into the most complete <strong>VAV</strong> offering in<br />

the industry.<br />

VCCF<br />

Single-duct units provide an<br />

economical energy-savings system<br />

solution. <strong>This</strong> is the most common<br />

type of <strong>VAV</strong> unit.<br />

VSCF<br />

Series fan-powered units have fans<br />

which are always energized in<br />

occupied mode. They are common in<br />

premium <strong>VAV</strong> systems <strong>and</strong> in<br />

applications such as conference<br />

rooms, cafeterias, etc. looking for<br />

constant high airflow rates.<br />

LPCF<br />

Low-height parallel units provide the<br />

energy savings of an intermittent fan<br />

with the flexibility of an 11"–11.5" casing<br />

height. <strong>This</strong> is a good choice for tight<br />

plenum spaces.<br />

% HVAC Energy Consumption<br />

100<br />

Energy Efficiency:<br />

A significant consumer of energy in<br />

commercial buildings is heating <strong>and</strong> air<br />

conditioning. One of the most energyefficient<br />

HVAC solutions is the <strong>VAV</strong><br />

system. <strong>This</strong> inherent system efficiency,<br />

along with high-quality, affordable DDC<br />

controls, has steadily increased dem<strong>and</strong><br />

for <strong>VAV</strong> systems over the years. <strong>VAV</strong><br />

systems save significant energy, comply<br />

with ventilation requirements, <strong>and</strong><br />

provide reliable <strong>and</strong> personalized<br />

occupant comfort.<br />

90<br />

80<br />

70<br />

60<br />

50<br />

<strong>VAV</strong><br />

System<br />

Miami Mpls. Seattle Toronto<br />

<strong>VAV</strong><br />

System w/<br />

Pressure<br />

Optimization<br />

<strong>VAV</strong><br />

System w/<br />

Ventilation Reset<br />

<strong>and</strong> Pressure<br />

Optimization<br />

Fan Pressure Optimization <strong>and</strong> Ventilation Reset are<br />

just two of the many energy-saving strategies offered<br />

by Trane. Contact your local Trane Sales Office for<br />

more details. (Analysis performed with Trace ® 700<br />

building energy <strong>and</strong> economic analysis software.)<br />

VDDF<br />

Dual-duct units have two air valves.<br />

One heating valve <strong>and</strong> one cooling air<br />

valve modulate simultaneously to<br />

provide occupant comfort. These<br />

systems were popular prior to the<br />

energy crisis of the early 1970s.<br />

Popularity is increasing with system<br />

concepts which use one valve for<br />

maintaining <strong>and</strong> monitoring 100%<br />

ventilation air.<br />

LSCF<br />

Low-height series units have been<br />

used for years in projects with strict<br />

plenum height requirements. Units<br />

are available in 11.0" height.<br />

Energy saving features of the Trane<br />

<strong>VAV</strong> terminal units include:<br />

• System strategies like Ventilation Reset,<br />

<strong>and</strong> Static Pressure Optimization, etc.<br />

• Night setback<br />

• Occupied/unoccupied control<br />

• Dem<strong>and</strong>-controlled ventilation<br />

• Electrically Commutated Motors (ECM)<br />

• EarthWise Systems utilizing lowtemperature<br />

air<br />

To determine the potential energy<br />

savings a <strong>VAV</strong> system can bring to<br />

your applications, Trane offers<br />

energy-modeling programs like<br />

System Analyzer, <strong>and</strong> Trace 700 ®<br />

simulation software. Contact your<br />

local Trane Sales Engineer for<br />

additional information.<br />

VPCF<br />

Fan-powered parallel units offer<br />

energy savings due to intermittent fan<br />

control. The fan energizes only in<br />

heating mode when the space needs<br />

heat. Additional energy savings are<br />

obtained by using warm plenum air for<br />

free reheat. Motor heat is never wasted<br />

in parallel units. They are an excellent<br />

choice when minimal zone heating is<br />

needed.<br />

<strong>VAV</strong>-PRC008-EN FB 1


Features<br />

<strong>and</strong><br />

Benefits<br />

New!<br />

Control Flexibility—Trane<br />

factory installs more <strong>VAV</strong><br />

controllers than any other<br />

manufacturer in the industry.<br />

In addition to Trane DDC<br />

controls <strong>and</strong> simple factorymounting<br />

of non-Trane <strong>VAV</strong><br />

controllers, Trane now offers a<br />

LonMark controller that is<br />

completely factorycommissioned<br />

for the highest<br />

quality installations available.<br />

Labor savings are maximized<br />

with Trane factorycommissioned<br />

controllers.<br />

Accurate Flow Ring—Housed <strong>and</strong><br />

recessed within the air valve to provide<br />

flow ring h<strong>and</strong>ling/shipping protection.<br />

The patented flow ring provides<br />

unmatched airflow measurement<br />

accuracy.<br />

Rugged Air Valve—Trane air valves are<br />

heavy gage steel with a continuous<br />

welded seam to limit inlet deformation.<br />

<strong>This</strong> provides consistent <strong>and</strong> repeatable<br />

airflow across the flow ring.<br />

Technologically Advanced<br />

"SQ" Units— New superquiet<br />

(SQ) fan/motor/wheel<br />

assemblies are engineered<br />

as an air delivery system to<br />

provide the most efficient<br />

design available in the<br />

industry. For quiet comfort<br />

you can trust, rely on Trane<br />

SQ units.<br />

Service Friendly<br />

• External shaft with<br />

removable shaft extension<br />

<strong>and</strong> easily read position<br />

indicator.<br />

• Same-side NEC jumpback<br />

clearance—provides all high<strong>and</strong><br />

low-voltage components<br />

on the same side <strong>and</strong><br />

minimizes field labor.<br />

• SQ fan-powered units have<br />

improved accessability to<br />

internal components<br />

New!<br />

Optional Narrow Corridor control box<br />

configuration — designed for our<br />

customers looking to minimize building<br />

material expenses by squeezing more into<br />

less space. Meets all NEC jumpback<br />

clearance requirements for these extratight<br />

areas. Narrow Corridor Configuration<br />

not pictured here. Refer to Series Fan-<br />

Powered dimensional data for reference<br />

drawings.<br />

Full Range of Insulation—From<br />

double-wall to matte-faced, closed-cell<br />

to foil-faced, Trane has the right<br />

insulation for your project.<br />

Tough Interlocking<br />

Panels— Ruggedness <strong>and</strong><br />

rigidity are assured with<br />

Trane’s patent-pending<br />

interlocking panel<br />

construction.<br />

Superior Metal<br />

Encapsulated Edges— All<br />

<strong>VariTrane</strong> Units are complete<br />

with metal encapsulated<br />

edges to arrest cut insulation<br />

fibers <strong>and</strong> prevent erosion in<br />

the airstream.<br />

Construction:<br />

UL-listed products—<br />

Safety <strong>and</strong> reliability are<br />

vital in commercial<br />

construction. All<br />

<strong>VariTrane</strong> units are<br />

completely listed in<br />

accordance with UL -<br />

1995 as terminal units.<br />

<strong>This</strong> listing includes the <strong>VAV</strong> terminal<br />

with electric heaters. Additionally, all<br />

insulation materials pass UL 25/50<br />

smoke <strong>and</strong> flame safety st<strong>and</strong>ards.<br />

ARI Certified<br />

Performance—<br />

All <strong>VariTrane</strong> units<br />

are ARI certified. ARI<br />

880 guarantees the<br />

pressure drop, flow<br />

performance, <strong>and</strong><br />

acoustical performance<br />

provided is reliable <strong>and</strong> has been<br />

tested in accordance with industry<br />

accepted st<strong>and</strong>ards. ARI 885 uses ARI<br />

880 <strong>and</strong> applies accepted industry<br />

methods to estimate expected “NC”<br />

sound levels in an occupied space.<br />

FB 2<br />

Casing Design:<br />

Interlocking Panels—<strong>VariTrane</strong><br />

products are manufactured in the most<br />

state-of-the-art <strong>VAV</strong> facility in the world.<br />

The patent-pending interlocking panels<br />

are designed using integral I-beam<br />

construction technology. <strong>This</strong> limits<br />

deformation <strong>and</strong> creates tremendous<br />

product rigidity. An additional benefit<br />

is a smooth unit exterior with few<br />

exposed screws—ideal for exposed<br />

ceiling applications.<br />

Metal Encapsulated Edges—All<br />

<strong>VariTrane</strong> units are complete with<br />

encapsulated edges to arrest cut fibers<br />

<strong>and</strong> prevent erosion into the airstream.<br />

<strong>This</strong> is the st<strong>and</strong>ard of care in<br />

applications concerned with fiberglass<br />

erosion or projects with either doublewall<br />

or externally wrapped ductwork.<br />

The Trane Air Valve—is at the heart of<br />

<strong>VariTrane</strong> terminal units. <strong>This</strong> is where<br />

airflow is measured <strong>and</strong> controlled.<br />

Repeatability <strong>and</strong> ruggedness is vital.<br />

<strong>VariTrane</strong> products are the most<br />

rugged <strong>and</strong> reliable available.<br />

Air Valve:<br />

18-gage Cylinder—limits deformation<br />

or damage during shipment <strong>and</strong> job<br />

site h<strong>and</strong>ling, <strong>and</strong> provides even<br />

airflow distribution across flow ring for<br />

unmatched airflow measurement<br />

accuracy.<br />

Continuously Welded Seam — an<br />

automated weld process creates the<br />

highest quality continuous seam,<br />

which is “right” every time. The<br />

welded seam improves air valve<br />

rigidity <strong>and</strong> creates consistent <strong>and</strong><br />

repeatable airflow across the flow<br />

measurement device. <strong>This</strong> further<br />

ensures even airflow across the flowmeasuring<br />

device.<br />

<strong>VAV</strong>-PRC008-EN


Features<br />

<strong>and</strong><br />

Benefits<br />

Flow Ring—The proven reliability of<br />

the Trane flow ring is at the heart of all<br />

<strong>VariTrane</strong> units. Trane’s patented flow<br />

ring is now recessed within the air<br />

valve cylinder to reduce the potential<br />

for damage during job site h<strong>and</strong>ling<br />

<strong>and</strong> installation.<br />

External Shaft—<strong>This</strong> simple design<br />

provides controller flexibility <strong>and</strong> is<br />

designed for simple actuator field<br />

replacement.<br />

Position Indicator—The position<br />

indicator shows current air valve<br />

position to aid in system<br />

commissioning.<br />

External Actuator—<strong>This</strong> feature<br />

increases serviceability <strong>and</strong> control<br />

system compatibility.<br />

Indoor Air Quality (IAQ)<br />

Features:<br />

The oil embargo of the early 1970s<br />

created an energy crisis, which resulted<br />

in tighter buildings, <strong>and</strong> reduced<br />

ventilation requirements. A fallout<br />

issue of tighter building construction<br />

was poor indoor air quality. <strong>This</strong><br />

heightened IAQ awareness. IAQ issues<br />

have been featured in publications<br />

from the smallest towns to the largest<br />

cities. System design should consider<br />

applicable ventilation <strong>and</strong> IAQ<br />

st<strong>and</strong>ards.(See your local Trane Sales<br />

Engineer or visit www.trane.com for<br />

additional information).<br />

Good indoor air quality results from<br />

units <strong>and</strong> systems which:<br />

• Adhere to ventilation requirements<br />

• Limit particulates from entering<br />

occupied spaces<br />

• Allow proper access for cleaning.<br />

Access made easy on new <strong>VariTrane</strong><br />

units, as shown on this Series Fan-<br />

Powered unit.<br />

<strong>VariTrane</strong> units are designed with<br />

simplified access <strong>and</strong> a full line of<br />

insulation options including:<br />

Matte-faced—Typical industry<br />

st<strong>and</strong>ard with reduced first cost.<br />

Closed-cell—<strong>This</strong> insulation has an<br />

R-value <strong>and</strong> performance equivalent<br />

to matte-faced insulation. The main<br />

difference is the reduction of water<br />

vapor transmission. Closed-cell is<br />

designed for use in installations with a<br />

high chance of water formation. (It has<br />

been used to coat the exterior of chiller<br />

evaporator barrels for many years.)<br />

Foil-faced—A fiberglass insulation with<br />

a thin aluminum coating on the air<br />

stream side to prevent fibers from<br />

becoming airborne. The aluminum<br />

lining is acceptable for many<br />

applications, however it is not as<br />

rugged as double-wall<br />

Double-wall—Premium insulation<br />

often used in hospital applications with<br />

insulation locked between metal liners.<br />

<strong>This</strong> eliminates the possibility for<br />

insulation entering the airstream.<br />

IAQ relates to ventilation requirements,<br />

particulates entering occupied spaces,<br />

<strong>and</strong> ensuring units can be cleaned.<br />

<strong>VariTrane</strong> units are the most prepared<br />

IAQ units in the industry.<br />

The end result is a reliable product<br />

designed for peak performance,<br />

regardless of job site conditions or<br />

h<strong>and</strong>ling. <strong>VariTrane</strong> units are designed<br />

for use in systems that operate up to<br />

5" w.c. of inlet pressure.<br />

Integrated<br />

Comfort<br />

Systems (<strong>Controls</strong><br />

Integration):<br />

<strong>VariTrane</strong> units are designed to meet<br />

today’s electronic <strong>and</strong> pneumatic<br />

control system needs. An Integrated<br />

Comfort System consists of units <strong>and</strong><br />

controls that are:<br />

• Pre-engineered to consistently<br />

integrate into your system “right out of<br />

the box.”<br />

• Factory-Commissioned for the highest<br />

level of quality <strong>and</strong> reliability.<br />

• Single-Sourced (controller <strong>and</strong><br />

equipment) to provide the assurance<br />

that when you have system questions,<br />

your local Trane Sales Office is your<br />

personal full-service provider for all<br />

your comfort needs.<br />

(Additional control options <strong>and</strong><br />

sequence-of-operations are located in<br />

the “<strong>Controls</strong>” section.)<br />

Trane DDC Controller<br />

DDC (communicating<br />

electronic)—DDC controllers are<br />

today’s industry st<strong>and</strong>ard. DDC<br />

controllers provide system-level data<br />

used to optimize SYSTEM<br />

performance. Variables such as<br />

occupied/unoccupied, minimum <strong>and</strong><br />

maximum cfm <strong>and</strong> temperature, valve<br />

position, ventilation fraction, etc. are<br />

available on a simple twisted-shielded<br />

wire pair. For additional information,<br />

see “Industry Issues: Energy Efficiency”.<br />

Trane DDC controllers provide Tranedesigned<br />

solid-state electronics<br />

intended specifically for <strong>VAV</strong><br />

temperature control in space comfort<br />

applications. DDC control capabilities<br />

include:<br />

• Pressure-independent (PI) operation—<br />

Provides airflow required by the room<br />

thermostat to maintain occupant<br />

comfort. The controller automatically<br />

adjusts valve position to maintain<br />

required airflow. Minimum <strong>and</strong><br />

maximum airflow is factory-set <strong>and</strong><br />

field-adjustable.<br />

• Factory-set airflow <strong>and</strong> temperatures<br />

• Most advanced system integration in<br />

the industry.<br />

NEW!<br />

Trane now offers a full line of LonTalk<br />

controllers designed for simple<br />

integration into any LonTalk control<br />

system. These controllers are also<br />

completely factory-commissioned (see<br />

"Factory-installed vs. Factorycommissioned–page<br />

FB4).<br />

<strong>VAV</strong>-PRC008-EN FB 3


Features<br />

<strong>and</strong><br />

Benefits<br />

Pneumatic—Pneumatic controllers<br />

provide proven reliability <strong>and</strong><br />

performance. A full line of options<br />

provide:<br />

• Highest quality PVR available, which<br />

maximizes zone temperature control.<br />

Pressure-independent operation<br />

• All <strong>VariTrane</strong> pneumatic controllers use<br />

the patented flow sensor input to<br />

provide the most accurate<br />

performance available.<br />

Analog-Electronic Controller<br />

Analog (non-communicating<br />

electronic)—Analog controllers are<br />

used in st<strong>and</strong>-alone applications where<br />

communication/<strong>VAV</strong> system<br />

coordination required is minimal. If<br />

integration with a Building Automation<br />

System (BAS) is required, DDC<br />

controls are needed.<br />

Factory-installed vs. Factory-commissioned:<br />

Factory-installed <strong>and</strong> factory-commissioned terminology is often used<br />

interchangeably. Trane takes great pride in being the industry leader in factorycommissioned<br />

DDC controllers. The following table differentiates these concepts<br />

<strong>and</strong> indicates where options can be obtained (either the field, or the factory):<br />

Factory-installed Factory-commissioned<br />

Transformer optionally installed X X<br />

Wires terminated in reliable/ consistent setting X X<br />

Controller mounted X X<br />

Electric heat contactors <strong>and</strong> fan relay wired X X<br />

Testing of heater contactors <strong>and</strong> fan relay<br />

X<br />

Controller addressing <strong>and</strong> associated testing<br />

X<br />

Minimum & Maximum airflows (occupied/unoccupied)<br />

X<br />

Minimum & Maximum temperature setpoints<br />

(occupied/unoccupied)<br />

X<br />

Minimum ventilation requirements<br />

(used to calculate ventilation fraction)<br />

X<br />

Thumbwheel enable/ disable<br />

X<br />

Heating offset<br />

X<br />

Factory-commissioned controllers provide the highest quality <strong>and</strong> most reliable<br />

units for your <strong>VAV</strong> system. Additional testing verifies proper unit operation including<br />

occupied/unoccupied airflow, temperature setpoints, communication link<br />

functionality, <strong>and</strong> output device functionality. The benefits of factory-commissioning<br />

are st<strong>and</strong>ard on <strong>VariTrane</strong> terminal units with Trane DDC controls, including the new<br />

Trane LonMark DDC controller.<br />

FB 4<br />

<strong>VAV</strong>-PRC008-EN


Features<br />

<strong>and</strong><br />

Benefits<br />

Advanced Control<br />

Sequences:<br />

Trane is the industry leader in <strong>VAV</strong><br />

system integration <strong>and</strong> controls. <strong>This</strong><br />

leadership began with customers<br />

seeking the most reliable <strong>VAV</strong> products<br />

in the industry. The solution was<br />

factory-commissioned products (see<br />

Factory-installed vs. Factorycommissioned<br />

on page FB 4). Since<br />

then, it has blossomed to include<br />

integrated ventilation <strong>and</strong><br />

pressurization control logic into the<br />

control system.<br />

Control strategies are often made<br />

more complicated than necessary.<br />

<strong>VariTrane</strong> DDC controls simplify control<br />

strategies by pre-installing logic <strong>and</strong><br />

sequencing into the controller. <strong>This</strong><br />

information is available via a twistedshielded<br />

wire pair, <strong>and</strong> accessible via a<br />

Trane Summit Panel. Data is easily<br />

accessed via a computer workstation<br />

utilizing today’s industry st<strong>and</strong>ard<br />

operating system.<br />

Simplified solutions are available via<br />

use of <strong>VariTrane</strong> unit-level DDC<br />

controllers operating as part of a Tracer<br />

Summit building automation system.<br />

The latest ASHRAE St<strong>and</strong>ards, such as<br />

equation 6-1 of ASHRAE St<strong>and</strong>ard 62,<br />

can be pre-programmed into the<br />

system to minimize the amount of<br />

outside air required <strong>and</strong> remain in<br />

compliance with industry st<strong>and</strong>ards.<br />

<strong>This</strong> is known as “Ventilation Reset.”<br />

Additionally, CO 2<br />

sensor inputs are<br />

available for simplified alarming <strong>and</strong><br />

“Dem<strong>and</strong> Controlled Ventilation” logic.<br />

Finally, “Static Pressure Optimization”<br />

control logic can be used to minimize<br />

supply fan BHP by adjusting duct<br />

pressure to maximize <strong>VAV</strong> system<br />

efficiency. Coordinating <strong>VAV</strong> controller<br />

<strong>and</strong> <strong>VAV</strong> hardware with a single<br />

manufacturer provides a single contact<br />

for all HVAC system related questions.<br />

Shown with touchscreens are the Tracer Summit Building Control Unit <strong>and</strong> the<br />

VariTrac ® Central Control Panel. The new Trane LonMark controller also integrates<br />

into non-Trane control systems that comprise a LONWORKS network.<br />

<strong>VAV</strong>-PRC008-EN FB 5


Application<br />

Considerations<br />

Table of<br />

Contents<br />

Introduction<br />

The <strong>VariTrane</strong> line of variable-airvolume<br />

(<strong>VAV</strong>) products has been an<br />

industry leader in performance <strong>and</strong><br />

quality for many years. The <strong>VariTrane</strong><br />

line includes single-duct <strong>VAV</strong> units,<br />

dual-duct <strong>VAV</strong> units, fan-powered <strong>VAV</strong><br />

units (series, parallel, <strong>and</strong> low-height<br />

series <strong>and</strong> parallel), direct digital<br />

controls, pneumatic controls, analogelectronic<br />

controls, direct digital control<br />

retrofit kits <strong>and</strong> diffusers. <strong>This</strong><br />

application section will focus on <strong>VAV</strong><br />

units.<br />

Introduction AC 1<br />

Systems AC 2 – 4<br />

Parallel vs. Series AC 5<br />

Low-Temperature Air AC 6 – 7<br />

Energy Savings <strong>and</strong> System Control AC 8<br />

Agency Certifications AC 9<br />

Control Types AC 10 – 12<br />

Flow Measurement <strong>and</strong> Control AC 13 – 14<br />

Reheat Options AC 15<br />

Insulation AC 16<br />

Acoustics AC 17 – 18<br />

Duct Design AC 19<br />

Selection Program AC 20<br />

Best Practices AC 21<br />

Unit Conversions AC 22<br />

Additional References AC 23<br />

<strong>VAV</strong>-PRC008-EN AC 1


Application<br />

Considerations<br />

Systems<br />

<strong>VAV</strong> Systems<br />

There are two primary types of <strong>VAV</strong> systems—single-duct <strong>and</strong> dual-duct.<br />

Single-Duct Systems<br />

Single-duct systems include one supply fan <strong>and</strong> a single supply duct, which is<br />

attached to each zone. The supply fan delivers cooled air to the <strong>VAV</strong> zones in variable<br />

volumes, depending upon the cooling requirements. The supply fan is usually<br />

designed to modulate airflow delivered to the <strong>VAV</strong> zones.<br />

Many <strong>VAV</strong> zones require heating as well as cooling. The supply air-h<strong>and</strong>ling unit<br />

provides either no heat (cooling only), morning warm-up heat or occupied<br />

(changeover) heat. In addition, heat may be provided at any individual <strong>VAV</strong> zone<br />

(within the zone or within the <strong>VAV</strong> terminal) by reheating cool air provided by the<br />

central air h<strong>and</strong>ler.<br />

Variable-Air-Volume (<strong>VAV</strong>) System<br />

EA<br />

OA<br />

supply<br />

fan<br />

cooling<br />

coil<br />

variablespeed<br />

drive<br />

PA<br />

thermostat<br />

RA<br />

<strong>VAV</strong><br />

box<br />

SA<br />

No Heat<br />

Central Cooling Only—In some systems, the central air h<strong>and</strong>ler provides only<br />

cooling <strong>and</strong> ventilation during zone occupied periods. The supply air is maintained at<br />

a constant temperature <strong>and</strong> the supply airflow is modulated to match the <strong>VAV</strong><br />

airflow rate with the zone cooling requirements.<br />

Central Heat<br />

Central Heat for Morning Warm-up—Many buildings cool down during the night. To<br />

be at a comfortable temperature in the morning when the building is again<br />

occupied, heat must be added to the spaces. Heat provided by the central air<br />

h<strong>and</strong>ler for morning warm-up is supplied at constant air volume to the zones, prior<br />

to the time of occupancy. During the morning warm-up period, the <strong>VAV</strong> terminal<br />

units must open to allow heated air to flow into the zones. In most instances very<br />

little additional heat is needed once the building is occupied.<br />

Central Occupied Heating-Changeover—Some<br />

buildings use the same air h<strong>and</strong>ler to provide both<br />

occupied cooling <strong>and</strong> occupied heating. <strong>This</strong> is<br />

commonly referred to as a changeover system. The<br />

system changes between heating <strong>and</strong> cooling<br />

depending on the need of the zones on the system.<br />

In a changeover system, the operation of the <strong>VAV</strong><br />

terminal units must also change over, opening to<br />

provide heat in the heating mode <strong>and</strong> opening to<br />

provide cooling in the cooling mode. Trane's main<br />

product in this type of application is called VariTrac .<br />

<strong>VariTrane</strong> products can also be used in these<br />

systems. (These types of systems are beyond the<br />

scope of this manual <strong>and</strong> are discussed in detail in<br />

the VariTrac II Manual, <strong>VAV</strong>-PRC003-EN.)<br />

Terminal Heat<br />

Remote Heat—In some zones of a single-duct <strong>VAV</strong><br />

system, perimeter heating equipment, remote from<br />

the terminal unit, is used to add heat to the zone<br />

EA<br />

Single-Fan, Dual-Duct <strong>VAV</strong> System<br />

OA<br />

40˚F<br />

(4.4˚C)<br />

55˚F<br />

(12.8˚C)<br />

RA<br />

75˚F<br />

(23.9˚C)<br />

when the cooling load is lower than the<br />

minimum cooling capacity of the <strong>VAV</strong><br />

terminal unit. Heat is added directly to<br />

the zone while cool supply air continues<br />

to enter the zone at a minimum rate for<br />

zone ventilation.<br />

Terminal Reheat—In some zones of a<br />

single-duct <strong>VAV</strong> system, a minimum<br />

flow of cool supply air is reheated at the<br />

terminal unit before entering the zone.<br />

Terminal reheat can be provided by<br />

electrical resistance heaters or by hot<br />

water coils.<br />

Parallel Fan-Powered Heat—In some<br />

zones of a single-duct <strong>VAV</strong> system, cool<br />

supply air at minimum flow is mixed<br />

with warm plenum air before entering<br />

the zone at a constant flow rate. A fan in<br />

the terminal unit, in parallel with the<br />

central fan, draws air from the plenum<br />

whenever the zone requires heat.<br />

Series Fan-Powered Heat—In some<br />

zones of a single-duct <strong>VAV</strong> system, the<br />

airflow to the zone is held constant,<br />

during both heating <strong>and</strong> cooling, by a<br />

terminal unit fan that is in series with the<br />

central fan. The terminal unit fan runs<br />

continuously. When the zone requires<br />

heat, cool supply air at minimum flow is<br />

mixed with warm, return plenum air<br />

before entering the zone.<br />

Dual-Duct Systems<br />

Dual-duct systems have either one or<br />

two supply fans <strong>and</strong> two duct systems.<br />

One duct system carries heated air <strong>and</strong><br />

the other duct system carries cooled air.<br />

Heated air <strong>and</strong> cooled air are modulated<br />

<strong>and</strong>/or mixed at each zone in the proper<br />

proportions to control zone temperature.<br />

Terminal reheat is not required in a dualduct<br />

system.<br />

central air h<strong>and</strong>ler<br />

supply<br />

fan<br />

VSD<br />

heating<br />

coil<br />

cooling<br />

coil<br />

105˚F (40.6˚C)<br />

dual-duct<br />

<strong>VAV</strong><br />

terminal<br />

units<br />

AC 2<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Systems<br />

<strong>VariTrane</strong> <strong>VAV</strong> Terminal Units<br />

The function of the <strong>VariTrane</strong> terminal<br />

unit in a <strong>VAV</strong> control zone is to vary the<br />

volumetric airflow rate to the zone.<br />

<strong>VariTrane</strong> units are available with either<br />

microprocessor-based DDC controls or<br />

pneumatic or analog electronic controls.<br />

Factory-installed controls are available<br />

with all types of terminal units.<br />

<strong>VariTrane</strong> <strong>VAV</strong><br />

Terminal Unit Types<br />

Single-Duct<br />

Single-duct terminal units control the<br />

volumetric flow of supply air to the<br />

space to maintain the zone temperature<br />

at setpoint. These units are generally<br />

applied in cooling-only <strong>VAV</strong> zones that<br />

require no heat during occupied hours. If<br />

local zone heat is necessary it can be<br />

provided either remotely (for example,<br />

perimeter heat) or by terminal reheat<br />

(either electric or hot water coils).<br />

Single-Duct Cooling Only Unit<br />

Dual-Duct<br />

Dual-duct terminal units are used in a<br />

special type of air distribution system<br />

where the main system has both warm<br />

air <strong>and</strong> cold air separately ducted to<br />

each terminal unit. The flow of both<br />

warm air <strong>and</strong> cool air is modulated,<br />

delivering air to the <strong>VAV</strong> zone at<br />

variable air volumes as well as variable<br />

temperatures. Since full capacity<br />

occupied heating is always available,<br />

control of additional local heat is<br />

not provided.<br />

Dual-Duct Terminal Unit<br />

When no heat is needed, the local<br />

parallel fan is off <strong>and</strong> a backdraft<br />

damper on the fan’s discharge is closed<br />

to prevent cool air entry into the return<br />

plenum. When cool airflow to the <strong>VAV</strong><br />

zone is at a minimum <strong>and</strong> the zone<br />

temperature drops below setpoint, the<br />

local parallel fan is turned on <strong>and</strong> the<br />

backdraft damper opens. A constant<br />

volume of air is delivered to the zone<br />

because the fan delivers a constant<br />

volume of warm plenum air which is<br />

mixed with cool primary air at a<br />

minimum flow. Remote heat or<br />

terminal reheat can provide additional<br />

local heating.<br />

Parallel Fan-Powered Unit with<br />

Hot Water Coil<br />

Single-Duct Unit with Hot Water Coil<br />

Parallel Fan-Powered<br />

Parallel fan-powered units are<br />

commonly used in <strong>VAV</strong> zones which<br />

require some degree of heat during<br />

occupied hours—when the primary<br />

supply air is cool. The terminal unit fan is<br />

in parallel with the central unit fan; no<br />

primary air from the central fan passes<br />

through the terminal unit fan. The<br />

terminal unit fan draws air from the<br />

space return plenum.<br />

Parallel Fan-Powered Unit<br />

Cooling Only<br />

Parallel Fan-Powered Unit with<br />

Electric Coil<br />

<strong>VAV</strong>-PRC008-EN AC 3


Application<br />

Considerations<br />

Systems<br />

Series Fan-Powered<br />

Series fan-powered terminal units are<br />

used commonly in <strong>VAV</strong> zones that not<br />

only require heat during occupied<br />

hours, but also desire constant air<br />

volume delivery. The terminal unit fan<br />

is in series with the central fan. Primary<br />

air from the central fan always passes<br />

through the terminal unit fan.<br />

The local series fan within the terminal<br />

unit operates whenever the unit is in<br />

the occupied mode. The volume of air<br />

delivered to the <strong>VAV</strong> zone is constant,<br />

but the temperature of the delivered air<br />

varies. As the zone requires less<br />

cooling, the primary air damper closes.<br />

As the primary air damper closes, the<br />

air mixture supplied to the zone<br />

contains less cool air <strong>and</strong> more warm<br />

plenum air. Remote heat or terminal<br />

reheat can provide additional local<br />

heating.<br />

Series fan-powered terminal units are<br />

also useful in low supply air<br />

temperature systems, since the<br />

terminal unit fan can be sized so that<br />

warm plenum air is always mixed with<br />

low temperature supply air. <strong>This</strong> raises<br />

the supply air temperature to an<br />

acceptable distribution level <strong>and</strong><br />

reduces condensation potential.<br />

Series Fan-Powered Unit Cooling Only<br />

Low-Height Fan-Powered<br />

Low-height fan-powered terminal units<br />

are a slightly modified version of a fanpowered<br />

terminal unit. As its name<br />

suggests, the low-height fan-powered<br />

unit has a shorter height dimension to<br />

accommodate applications where<br />

ceiling space is limited. To reduce the<br />

height, shorter terminal unit fans are<br />

integrated into the st<strong>and</strong>ard height<br />

series or parallel terminal unit. The<br />

result is a unit with a maximum height<br />

of 11.0"–11.5".<br />

For low-height units with the smaller<br />

fan sizes (sizes 08SQ <strong>and</strong> 09SQ), a<br />

single low-profile fan is used. Lowheight<br />

units with the largest fan size<br />

(size 10SQ) use two low-profile fans.<br />

Each fan operates off a separate motor.<br />

The fans still remain in series or<br />

parallel with the primary system<br />

central fan. Low acoustic levels are<br />

much more challenging in these low<br />

ceiling space applications, due to the<br />

reduced radiated ceiling pleunum<br />

effect.<br />

The operation of the low-height<br />

terminal unit is exactly the same as<br />

that of a series or parallel terminal unit,<br />

as are the options for high-efficiency<br />

ECMs, insulation options, etc. As with<br />

the other fan-powered terminal units,<br />

additional local heating can be<br />

provided by remote heat or terminal<br />

reheat.<br />

Series Fan-Powered Unit with<br />

Hot Water Coil<br />

AC 4<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Parallel vs.<br />

Series<br />

Fan-Powered versus Single-<br />

Duct <strong>VAV</strong> Terminal Units<br />

In many climates, fan-powered<br />

systems are a lower operating cost<br />

alternative than single-duct systems.<br />

The energy inefficiencies inherent in<br />

reheating cold primary air can be<br />

eliminated with a key design<br />

characteristic of fan-powered terminal<br />

units, plenum air heating. Heating with<br />

warmer plenum air allows for recovery<br />

of heat from lighting <strong>and</strong> other heat<br />

sources in the building.<br />

Comparison of Parallel <strong>and</strong><br />

Series Models<br />

Once it has been determined that a<br />

fan-powered system is to be specified,<br />

the designer must decide between<br />

parallel <strong>and</strong> series configurations. Each<br />

model carries its own characteristics of<br />

delivered airflow, energy consumption,<br />

<strong>and</strong> acoustics. For the end user, the<br />

designer might consider three goals: a<br />

comfortable <strong>and</strong> productive tenant<br />

environment, acceptable installed cost,<br />

<strong>and</strong> low operating costs.<br />

Parallel <strong>and</strong> series fan-powered<br />

terminal units offer specific advantages<br />

for particular applications. The<br />

following table compares the key<br />

similarities <strong>and</strong> differences between<br />

the models that the designer should<br />

consider in performing an engineering<br />

analysis.<br />

Typical Application of<br />

Parallel Units:<br />

Parallel intermittent fan-powered<br />

terminal units are very common in<br />

perimeter zones or buildings where<br />

loads vary during occupied hours.<br />

Core zones, which maintain a more<br />

constant cooling requirement, are<br />

better suited for variable airflow<br />

(single-duct) units. Typical jobs<br />

combine parallel fan-powered units<br />

(exterior) <strong>and</strong> single-duct units<br />

(interior) to provide an efficient system<br />

with lowest first cost. Although the<br />

overall NC of parallel systems is lower<br />

than an equivalent series system, the<br />

intermittent fan is sometimes noticed<br />

when energized. To minimize the<br />

impact of this NC change, an ECM<br />

(Electrically Commutated Motor) can<br />

be used which has soft-start<br />

technology.<br />

Typical Application of<br />

Series Units:<br />

Applications requiring constant air<br />

movement or blending utilize series<br />

constant fan-powered terminal units.<br />

Conference rooms, laboratories, <strong>and</strong><br />

lobbies are common applications.<br />

Because the series fan also adds to the<br />

system external static pressure, office<br />

buildings take advantage of this design<br />

feature <strong>and</strong> down size main air<br />

h<strong>and</strong>ling equipment. Finally, series<br />

terminals are used in low-temperature<br />

air systems to temper cold primary air<br />

with warm plenum air <strong>and</strong> deliver it to<br />

the zone.<br />

PRIMARY<br />

AIR<br />

AIR<br />

VALVE<br />

PLENUM<br />

AIR<br />

PRIMARY<br />

AIR<br />

AIR<br />

VALVE<br />

FAN<br />

PLENUM<br />

AIR<br />

FAN<br />

AIRFLOW<br />

AIRFLOW<br />

PARALLEL FAN-POWERED TERMINAL<br />

SERIES FAN-POWERED TERMINAL<br />

Parallel<br />

Series<br />

Fan Operation Intermittent operation during occupied Continuous operation during the<br />

<strong>and</strong> unoccupied modes.<br />

occupied modes. Intermittent operation<br />

during unoccupied mode.<br />

Operating Sequence Variable-volume, constant-temperature Constant-volume, variable-temperature<br />

device during cooling. Constant-volume, device at all times. Delivers design<br />

variable-temperature during heating.<br />

airflow regardless of the load.<br />

Fan Energization Based on zone temperature deviation Interlocked with central system fan to<br />

from setpoint. No interlock with<br />

deliver required air to the zone in both<br />

central system fan required.<br />

heating <strong>and</strong> cooling modes<br />

Terminal Fan Fan runs during heating load. Size for Fan runs continually. Fan sizing should<br />

Operating <strong>and</strong> Size design heating load. Typically this is 40 to meet the greater of design cooling or<br />

60% of design primary cooling airflow. heating airflow to the zone.<br />

Air valve Sizing Design cooling airflow. Design cooling airflow.<br />

Minimum Inlet Static Sufficient to overcome unit, heating Sufficient to overcome air valve<br />

Pressure Required for coil, downstream duct <strong>and</strong> diffuser pressure loss only.<br />

Central Fan Sizing pressure losses.<br />

Acoustics When operating under cooling loads Produces slightly higher background<br />

the terminal fan does not run, offering<br />

sound pressure levels in the occupied<br />

superior acoustic performance similar to space. <strong>This</strong> sound level remains<br />

single-duct <strong>VAV</strong>. Under heating loads, the constant <strong>and</strong> is less noticeable than<br />

fan operates intermittently. Impact can be intermittent fan operation with PSC<br />

minimized by use of a ECM.<br />

motors.<br />

<strong>VAV</strong>-PRC008-EN AC 5


Application<br />

Considerations<br />

Low-Temperature<br />

Air<br />

Low-Temperature Air System<br />

Benefits of Low-Temperature Air<br />

The benefits of low-temperature air<br />

systems include reduced first cost,<br />

reduced operating cost <strong>and</strong> increased<br />

revenue potential. Since lowtemperature<br />

air transports more<br />

energy per cubic foot, smaller fans <strong>and</strong><br />

ducts can be used. An EarthWise<br />

system takes that a step farther <strong>and</strong><br />

includes optimizing the waterside of<br />

the HVAC system as well with low flow<br />

rates through the chilled water <strong>and</strong><br />

condenser loops.<br />

Since low-temperature water can<br />

transport more thermal energy per<br />

gallon, smaller pumps, pipes, <strong>and</strong><br />

valves can be used. Smaller HVAC<br />

equipment consumes less energy so<br />

both electrical dem<strong>and</strong> <strong>and</strong><br />

consumption are lowered, reducing<br />

operating costs. The amount of<br />

revenue generated by a commercial<br />

building is related to the amount <strong>and</strong><br />

quality of rental floor space. The<br />

amount of rental floor space is<br />

increased in a low-temperature air<br />

system, since air h<strong>and</strong>lers, riser ducts,<br />

<strong>and</strong> equipment rooms are smaller.<br />

Since smaller ducts reduce the<br />

required ceiling plenum, additional<br />

floors may be included without<br />

increasing building height.<br />

The concept of the EarthWise system<br />

is to deliver superior comfort <strong>and</strong> be<br />

less expensive to install <strong>and</strong> operate.<br />

The method to do this involves both<br />

waterside optimization <strong>and</strong> airside<br />

optimization. The waterside is<br />

optimized using techniques of low<br />

water flow through the evaporator <strong>and</strong><br />

condenser of the chiller as well as<br />

using chiller-tower optimization control<br />

strategies. For more information on the<br />

waterside of the EarthWise system,<br />

contact your local Trane representative<br />

or visit www.trane.com.<br />

Low Temperature Air System Layout<br />

Variable<br />

Volume<br />

Exhaust<br />

Fan<br />

Preheat<br />

Coil<br />

Cooling<br />

Coil<br />

Airside savings are obtained using a<br />

combination of lower air temperature<br />

<strong>and</strong> intelligent control strategies. The<br />

ability of the <strong>VAV</strong> unit to communicate<br />

information is vital to system<br />

coordination.<br />

System Operation<br />

A low-temperature air system could be<br />

done with chilled water or direct<br />

expansion equipment. A chilled water<br />

system includes a chiller plant, <strong>VAV</strong> air<br />

h<strong>and</strong>lers, <strong>and</strong> series or parallel fanpowered<br />

<strong>VAV</strong> terminal units. The <strong>VAV</strong><br />

air h<strong>and</strong>lers use cold water, typically<br />

around 40°F (4.4°C), from the chiller<br />

plant, to cool the supply air to 45–50°F<br />

(7.2–10°C). The volume of supply air is<br />

determined by the airflow needs of the<br />

<strong>VAV</strong> terminal units. A direct-expansion<br />

system would include a <strong>VAV</strong> air<br />

h<strong>and</strong>ler or rooftop with series or<br />

parallel fan-powered <strong>VAV</strong> terminal<br />

units. The supply air would be cooled<br />

to 48–52°F (8.9–11.1°C).<br />

The <strong>VAV</strong> terminal units include a<br />

parallel or series fan with the central air<br />

h<strong>and</strong>ler or rooftop fan. The terminal<br />

unit fan operates continuously, mixing<br />

45-50°F (7.2–10°C) supply air with warm<br />

plenum air, to provide 50–55°F<br />

(10–12.8°C) cooling air to the occupied<br />

space at design conditions. As the<br />

cooling load in the space decreases,<br />

the <strong>VAV</strong> terminal air valve closes to<br />

reduce the flow of cold supply air <strong>and</strong><br />

increase the flow of warm plenum air<br />

in the case of series terminal units. The<br />

temperature of air supplied to the<br />

space rises, but the volume flow rate to<br />

the space is constant for the series<br />

unit.<br />

Variable Volume<br />

Supply Fan<br />

48˚<br />

Heating Coil<br />

Series or Parallel<br />

Fan-powered Unit<br />

55˚<br />

Zone 1<br />

Zone 2<br />

Considerations for <strong>VAV</strong> products<br />

To achieve the maximum benefit from<br />

the low-temperature air system,<br />

several <strong>VAV</strong> considerations must be<br />

addressed.<br />

Insulation<br />

The units must be insulated to ensure<br />

that no condensation occurs on the<br />

units. How much insulation is needed?<br />

Trane has tested its insulation with the<br />

goal of developing a thermal<br />

resistance ratio for each type of<br />

insulation. The thermal resistance (TR)<br />

ratio is discussed on page AC 16. The<br />

TR ratio can be used, along with the<br />

properties of the insulation <strong>and</strong> the<br />

system operating conditions to<br />

determine the necessary insulation<br />

thickness required.<br />

In the low-temperature air system with<br />

fan-powered units, the ducts <strong>and</strong><br />

diffusers downstream from the<br />

terminal unit h<strong>and</strong>le air that is 55°F<br />

(12.8°C) or warmer. Therefore,<br />

condensation considerations are no<br />

different from conventional systems.<br />

Linear slot diffusers are recommended<br />

to take advantage of the Co<strong>and</strong>a effect<br />

described in the Diffusers section later<br />

in the catalog.<br />

Terminal unit surfaces that are<br />

traditionally not insulated—electric <strong>and</strong><br />

hot water reheat coils <strong>and</strong> the primary<br />

air inlet for example—should be<br />

thoroughly field-insulated.<br />

AC 6<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Low-Temperature<br />

Air<br />

Leakage<br />

The fan airflow plus the minimum downstream of the <strong>VAV</strong> terminal unit,<br />

When the terminal unit fan is off, the primary airflow must be checked with the system designer will have some<br />

air valve will close, <strong>and</strong> not leak. Ducts the minimum airflow of the diffusers to concerns related to condensation on<br />

upstream of the terminal unit must insure that dumping doesn’t occur. If diffusers <strong>and</strong> other low-pressure<br />

also be thoroughly insulated <strong>and</strong><br />

that is a concern, the minimum could ductwork accessories. For instance, if<br />

constructed for very low leakage.<br />

be adjusted up or the fan airflow could the occupied space must receive 1000<br />

Duct <strong>and</strong> terminal unit insulation can be adjusted up.<br />

cfm of 55°F (472 L/s at 12.8°C) air to<br />

be internal or external. Keep in mind As the valve closes, the downstream<br />

satisfy to design cooling load, 715 cfm<br />

that internal insulation has hidden static pressure will decrease because<br />

must be 45°F (337 L/s must be at 7.2°C)<br />

thermal leaks at joints <strong>and</strong> seams. the pressure is related to the airflow.<br />

supply air <strong>and</strong> 285 cfm must be 80°F<br />

These areas must be located <strong>and</strong><br />

The fan will supply more air at the<br />

(135 L/s must be 26.7°C) plenum air.<br />

insulated externally to avoid<br />

valve minimum condition than at<br />

Therefore, the series fan-powered<br />

condensation. External Insulation, on design due to the decreased static<br />

terminal must be sized to have the air<br />

the other h<strong>and</strong>, allows a complete, pressure. <strong>This</strong> should be a<br />

valve deliver 715 cfm (337 L/s) of<br />

uniform thermal seal.<br />

consideration when calculating how<br />

supply air at design conditions, but the<br />

Minimum settings <strong>and</strong> IAQ<br />

much airflow would occur at the<br />

fan must be sized to deliver 1000 cfm<br />

Indoor air quality is usually best when minimum valve plus fan airflow<br />

(472 L/s).<br />

a specific quantity of outside<br />

condition. The new fan airflow would Airside System Factors<br />

ventilation air reaches each building be found by looking at a fan curve at A couple of system related factors<br />

occupant. Maintaining a minimum the new SP point. The new SP can should be noted as they apply to<br />

ventilation rate is a challenge in any be calculated:<br />

condensation. The first is the<br />

<strong>VAV</strong> system because the amount of<br />

Fan Airflow + Valve Minimum<br />

supply air that reaches a particular (<br />

Fan Airflow + Valve Design<br />

) x SP = SP advantage the colder primary air has<br />

1 2 from a humidity st<strong>and</strong>point. As noted<br />

space decreases as the cooling load<br />

in the description above, the lowtemperature<br />

system operates at space<br />

decreases. To insure that a minimum The following table can be used to<br />

amount of supply air reaches the space determine what percentage of the total relative humidity of 30–45% while a<br />

at all times, a minimum flow setting on airflow should come from the fan to st<strong>and</strong>ard system operates at space<br />

the terminal unit is used. In lowtemperature<br />

air systems, when the (26.7°C) plenum air.<br />

zone air means that the plenum air<br />

temper the supply air, assuming 80°F relative humidity of 50–60%. The drier<br />

space needs heating, this minimum<br />

returning to the series terminal unit will<br />

Percentage of Airflow from Fan<br />

flow setting results in increased<br />

also be drier <strong>and</strong>, therefore, less of a<br />

Supply Air<br />

heating load. Therefore, it is important Temp.<br />

Primary Air Temperature (deg. F (C))<br />

problem with<br />

to include the additional load imposed (deg. F (C) 45 (7.2) 46 (7.8) 47 (8.3) 48 (8.8) 49 (9.4) 50 (10) condensation.<br />

by the cold supply air when calculating 50 (0) 14% 12% 9% 6% 3% 0% The second<br />

heating loads. Reheat may be required 51 (10.6) 17% 15% 12% 9% 6% 3% condensation factor to<br />

since the ventilation values are<br />

52 (11.1) 20% 18% 15% 13% 10% 7%<br />

note is related to<br />

absolute requirements <strong>and</strong> not<br />

53 (11.7) 23% 21% 18% 16% 13% 10%<br />

54 (12.2) 26% 24% 21% 19% 16% 13% systems that shut down<br />

percentage of total airflow<br />

55 (12.8) 29% 26% 24% 22% 19% 17% in the evening. Many<br />

requirements.<br />

people believe that<br />

EarthWise or Low-Temperature Air If anything other than 80°F (26.7°C), immediately sending low-temperature<br />

Distribution Design Considerations the following equation can be used to primary air to these boxes that have<br />

with Parallel Fan-powered Terminal calculate the percentage:<br />

been off for some time will cause a<br />

Units<br />

shock to the system <strong>and</strong> may cause<br />

The parallel fan-powered unit needs to SupplyTemperature =<br />

condensation problems at startup. The<br />

(%*primarytemperature) + (1-%)*plenumtemperature<br />

be set up to run continuously rather<br />

solution to this has been the advent of<br />

than intermittently. Since it is in<br />

Low-Temperature Air Distribution<br />

gradual pull-down or “soft start”<br />

parallel, the airflow required by the fan Design Considerations with<br />

systems. In this type of system, the<br />

is less than a comparable series unit. Series Fan-powered Terminal<br />

primary air temperature is higher on<br />

<strong>This</strong> results in energy savings. Running Units<br />

initial startup (typically 55°F(12.8°C))<br />

the parallel fan continuously will take The <strong>VAV</strong> terminal unit includes a<br />

<strong>and</strong> then gradually reduced to the<br />

some minor control changes. It will, fan that operates continuously.<br />

normal operating point over the next<br />

however, create a better acoustical The series fan should be large<br />

30 to 60 minutes.<br />

installation.<br />

enough to insure that the mixture<br />

The parallel fan should be large<br />

of cold supply air <strong>and</strong> warm<br />

enough to temper the design cooling plenum air is 50–55°F (10–12.8°C)<br />

airflow at 45–50°F to 50–55°F (7.2–10°C at design cooling flow conditions.<br />

to 10–12.8°C). For instance, if the<br />

In these types of systems, it is a<br />

design cooling airflow is 1000 cfm at good design practice to develop<br />

55°F (472 L/s at 12.8°C), you will need the system based upon 55°F<br />

781 cfm of 48°F (368 L/s of 8.9°C)<br />

(12.8°C) air being provided to the<br />

supply air <strong>and</strong> 219 cfm of 80°F (103 L/s space from the fan-powered<br />

of 26.7°C) plenum air. The parallel fan terminal unit. If a lower<br />

can be sized for the 219 cfm (103 L/s) temperature air is used<br />

rather than the total room airflow.<br />

<strong>VAV</strong>-PRC008-EN AC 7


Application<br />

Considerations<br />

Energy Savings &<br />

System Control<br />

Electrically Commutated<br />

Motor (ECM)<br />

The ECM provides an additional<br />

energy-saving option to the system<br />

designer. Some of the advantages of<br />

the motor include high efficiency, quiet<br />

operation, short payback, <strong>and</strong> easy<br />

installation. There are several<br />

considerations that need to be<br />

addressed when deciding whether to<br />

use these motors or not. The primary<br />

benefit may be seen as increased<br />

efficiency.<br />

Operating Hours—The added cost of<br />

an ECM can be offset more quickly in<br />

applications which require a relatively<br />

high number of hours of operation.<br />

However, if a space does not require<br />

extensive running time for the unit fan,<br />

then it may not be a good c<strong>and</strong>idate<br />

for this type of motor based solely on<br />

payback. Therefore, the decision about<br />

using the ECM may be based on other<br />

benefits, depending on the needs of<br />

the customer.<br />

Airflow Flexibility—The ECM allows a<br />

greater airflow range per fan size. If a<br />

space is going to change uses <strong>and</strong> load<br />

components frequently, the ability to<br />

change supply airflow with the ECM<br />

without changing units will be a<br />

benefit.<br />

Airflow Balancing—The ability of the<br />

ECM motor to self-balance to an<br />

airflow regardless of pressure can be<br />

an asset when trying to air balance a<br />

job. <strong>This</strong> will help eliminate additional<br />

dampers or changes to downstream<br />

ductwork to ensure proper airflow. For<br />

more information, please contact your<br />

local Trane sales engineer.<br />

Fan-Pressure Optimization<br />

With Trane's Integrated Comfort<br />

System, the information from <strong>VAV</strong><br />

terminal units can be used for other<br />

energy-saving strategies. Fan-pressure<br />

optimization is the concept of reducing<br />

the supply fan energy usage based on<br />

the position of the terminal unit<br />

dampers.<br />

The control system allows this<br />

scenario. The system polls the <strong>VAV</strong><br />

units for the damper position on each<br />

unit. The supply fan is modulated until<br />

the most wide-open damper is<br />

between 85% <strong>and</strong> 95% open. The<br />

correct airflow is still being sent to the<br />

zones since the controls of the <strong>VAV</strong><br />

units are pressure-independent, <strong>and</strong><br />

the fan modulates to an optimal speed<br />

<strong>and</strong> duct static pressure which results<br />

in fan energy savings.<br />

Ventilation Reset<br />

The Ventilation Reset control strategy<br />

enables a building ventilation system<br />

to bring in an appropriate amount of<br />

outdoor air per ASHRAE St<strong>and</strong>ard<br />

62.1. The basis for the strategy is<br />

measuring airflow at each zone,<br />

calculating current system ventilation<br />

efficiency using the multiple-zone<br />

system equations of the st<strong>and</strong>ard, <strong>and</strong><br />

communicating a new outdoor airflow<br />

setpoint to the air h<strong>and</strong>ler.<br />

<strong>This</strong> strategy continually monitors the<br />

zone ventilation needs <strong>and</strong> system<br />

outdoor air intake flow, minimizing the<br />

amount of ventilation air <strong>and</strong> increasing<br />

the energy efficiency of the system. <strong>This</strong><br />

insures that the right amount of air is<br />

brought in at all times <strong>and</strong> that proper<br />

ventilation can be documented. Trane<br />

has integrated this control ability into<br />

the <strong>VAV</strong> controls, air-h<strong>and</strong>ler controls,<br />

<strong>and</strong> building controls.<br />

For more detailed information on these<br />

energy-saving strategies, please refer<br />

to the “Additional References” section<br />

on page AC 23 of the catalog for<br />

appropriate material.<br />

AC 8<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Agency<br />

Certifications<br />

Agency Certifications<br />

There are numerous regulations <strong>and</strong><br />

st<strong>and</strong>ards in the industry that determine<br />

the construction <strong>and</strong> performance<br />

parameters for <strong>VAV</strong> terminal units.<br />

Some of the more important of those<br />

st<strong>and</strong>ards <strong>and</strong> regulations are listed<br />

below, along with a brief description of<br />

what each one addresses.<br />

American Society of Heating,<br />

Refrigerating <strong>and</strong> Air-conditioning<br />

Engineers (ASHRAE) - 41.1<br />

ASHRAE - 41.2<br />

ASHRAE - 41.3<br />

These st<strong>and</strong>ards specify methods for<br />

temperature measurement (41.1),<br />

laboratory airflow measurement (41.2),<br />

<strong>and</strong> pressure measurement (41.3). While<br />

none of these st<strong>and</strong>ards specifically<br />

discusses <strong>VAV</strong> air terminals, they<br />

discuss topics that are aspects of<br />

terminal box systems. Therefore, some<br />

engineers will include these st<strong>and</strong>ards<br />

in their specifications as a primer on<br />

accepted measurement techniques.<br />

ASHRAE - 62<br />

<strong>This</strong> st<strong>and</strong>ard specifies the minimum<br />

ventilation rates <strong>and</strong> indoor air quality<br />

that are acceptable for occupied spaces.<br />

ASHRAE - 111<br />

<strong>This</strong> st<strong>and</strong>ard calls out procedures to be<br />

followed for testing <strong>and</strong> balancing<br />

HVAC systems. It includes descriptions<br />

of the equipment used, procedures<br />

followed, <strong>and</strong> field changes that must<br />

be made when a system is balanced.<br />

Air Conditioning <strong>and</strong> Refrigeration<br />

Institute (ARI)<br />

ARI 880 - 1998<br />

<strong>This</strong> st<strong>and</strong>ard sets forth classifications,<br />

performance testing requirements, <strong>and</strong><br />

test results reporting requirements for<br />

air terminal units. The st<strong>and</strong>ard<br />

contains very detailed procedures that<br />

are to be followed for the testing <strong>and</strong><br />

certification program associated with<br />

this st<strong>and</strong>ard. <strong>This</strong> is one of the most<br />

commonly referenced st<strong>and</strong>ards in the<br />

<strong>VAV</strong> terminal unit industry. The ARI-880<br />

certification program is designed to<br />

police the accuracy of documented<br />

performance for terminal units. The<br />

certification program requires a<br />

sampling of at least four units be tested<br />

annually. The tested units are chosen at<br />

r<strong>and</strong>om by ARI <strong>and</strong> sent to an<br />

independent laboratory for the testing.<br />

The performance is tested at one<br />

specific operating condition. The<br />

operating characteristics tested include<br />

discharge <strong>and</strong> radiated sound power<br />

(for the damper <strong>and</strong>, in the case of fanpowered<br />

boxes, the fan), wide-open<br />

damper pressure drop, <strong>and</strong> fan motor<br />

amp draw. <strong>VariTrane</strong> terminal units<br />

are certified according to ARI-880.<br />

ARI 885-98-02<br />

<strong>This</strong> document provides a procedure<br />

to estimate sound pressure levels in an<br />

occupied space. The st<strong>and</strong>ard accounts<br />

for the amount of sound pressure in<br />

the space due to the <strong>VAV</strong> air terminal,<br />

diffusers <strong>and</strong> their connecting low<br />

pressure ductwork. While sound<br />

generated from the central system fan<br />

<strong>and</strong> ductwork may be a significant<br />

factor in determining the sound<br />

pressure level in the room, this<br />

st<strong>and</strong>ard does not address those<br />

factors. It focuses solely on the <strong>VAV</strong><br />

terminal <strong>and</strong> items downstream of it.<br />

<strong>This</strong> st<strong>and</strong>ard is related to ARI-880 by<br />

using sound power determined using<br />

ARI-880 methodology as a starting<br />

point for the ARI-885 procedure.<br />

Underwriter’s Laboratory (UL) 1995<br />

Underwriter’s Laboratory is an<br />

independent testing agency that<br />

examines products <strong>and</strong> determines if<br />

those products meet safety<br />

requirements. Equipment<br />

manufacturers strive to meet UL<br />

guidelines <strong>and</strong> obtain listing <strong>and</strong><br />

classifications for their products<br />

because customers recognize UL<br />

approval as a measure of a safely<br />

designed product. <strong>VariTrane</strong> <strong>VAV</strong> air<br />

terminals are listed per UL-1995,<br />

Heating <strong>and</strong> Cooling Equipment.<br />

The terminals are listed as an<br />

entire assembly.<br />

National Fire Protection Association<br />

(NFPA) 70<br />

<strong>This</strong> st<strong>and</strong>ard is also known as the<br />

National Electrical Code (NEC). The<br />

Code gives st<strong>and</strong>ards for installation of<br />

wiring <strong>and</strong> electrical equipment for<br />

most types of commercial <strong>and</strong><br />

residential buildings. It is often referred<br />

to in <strong>VAV</strong> air terminal specifications<br />

when fan-powered boxes, electric heat<br />

or electric controls are included.<br />

NFPA 90A<br />

<strong>This</strong> st<strong>and</strong>ard does not speak directly<br />

to <strong>VAV</strong> air terminals but does discuss<br />

central system considerations<br />

pertaining to a fire <strong>and</strong>/or smoke<br />

condition. The st<strong>and</strong>ard discusses<br />

safety requirements in design <strong>and</strong><br />

construction that should be followed to<br />

keep the air-h<strong>and</strong>ling system from<br />

spreading a fire or smoke. The<br />

st<strong>and</strong>ard specifies practices that are<br />

intended to stop fire <strong>and</strong> smoke from<br />

spreading through a duct system, keep<br />

the fire-resistive properties of certain<br />

building structures (fire walls, etc.)<br />

intact, <strong>and</strong> minimize fire ignition<br />

sources <strong>and</strong> combustible materials.<br />

<strong>VAV</strong>-PRC008-EN AC 9


Application<br />

Considerations<br />

Control<br />

Types<br />

Control Types<br />

<strong>VAV</strong> terminal units are available with<br />

many different options. These options<br />

fall into three main categories of<br />

controls: direct digital (DDC),<br />

pneumatic, <strong>and</strong> analog electronic. All<br />

of these control types can be used to<br />

perform the same basic unit control<br />

functions, yet differences exist in<br />

accuracy of performance, versatility,<br />

installed cost, operating cost, <strong>and</strong><br />

maintenance cost.<br />

Direct digital control (DDC)<br />

systems became available as<br />

advances in computer technology<br />

made small microprocessors<br />

available <strong>and</strong> affordable. Much of the<br />

hardware in DDC systems is similar<br />

to analog electronic systems. The<br />

primary difference is that DDC<br />

controllers allow system integration,<br />

remote monitoring, <strong>and</strong> adjustment.<br />

The microprocessor is programmed<br />

using software that gives the<br />

controller a higher level of capability<br />

than either the pneumatic or analog<br />

electronic options.<br />

Benefits:<br />

Performance—DDC controls offer PI<br />

control capability. A PI control<br />

scheme is the most accurate <strong>and</strong><br />

repeatable control scheme available<br />

in the <strong>VAV</strong> terminal unit industry.<br />

Versatility—DDC controls accepts<br />

software comm<strong>and</strong>s to determine<br />

how its outputs will be controlled.<br />

When a control sequence must be<br />

modified, making changes to the<br />

software instructions is easier <strong>and</strong><br />

quicker than changing hardware.<br />

Operating <strong>and</strong> Maintenance Costs—<br />

DDC controls can be networked<br />

together to provide system-control<br />

strategies for energy savings.<br />

Multiple controllers can be easily<br />

monitored <strong>and</strong> adjusted from a<br />

remote location. DDC controls also<br />

have system <strong>and</strong> individual<br />

diagnostic capability.<br />

Disadvantages:<br />

Versatility—The communications<br />

protocol between controllers will be<br />

different from one controller<br />

manufacturer to another.<br />

Installed Cost—DDC controls are the<br />

most expensive of the three control<br />

types.<br />

Operating <strong>and</strong> Maintenance Costs—<br />

Building personnel must be trained to<br />

operate <strong>and</strong> maintain the system.<br />

Analog electronic control systems<br />

began to be used in the 1970s <strong>and</strong><br />

1980s. Cost effective <strong>and</strong> reliable<br />

transistors, resistors, relays, <strong>and</strong> triacs<br />

(electronic relays) allowed analog<br />

electronics to become a substitute for<br />

pneumatic controls. Analog electronic<br />

controls use varying voltage signals to<br />

change an output in response to a<br />

monitored variable.<br />

Benefits:<br />

Performance—Analog electronic<br />

controls are a basic technology that<br />

has good repeatability.<br />

Operating <strong>and</strong> Maintenance Costs—<br />

Analog electronics have minimal drift<br />

<strong>and</strong> therefore require much less<br />

recalibration than pneumatics.<br />

Ease of Use—Analog electronic<br />

controls can be modified using tools as<br />

basic as a screwdriver <strong>and</strong> a voltmeter.<br />

Knowledge <strong>and</strong> availability of a<br />

personal computer is not required.<br />

Disadvantages:<br />

Performance—Analog electronics<br />

provide proportional-only control for<br />

<strong>VAV</strong> terminal unit systems. <strong>This</strong> control<br />

scheme is less accurate than the more<br />

advanced control schemes.<br />

Installed Cost—Analog electronics<br />

have a higher installed cost than<br />

pneumatic controls for systems with<br />

basic functions.<br />

Operating <strong>and</strong> Maintenance Costs—<br />

Diagnostic capability for analog<br />

electronics is not available.<br />

Pneumatic control systems use<br />

compressed air through simple<br />

mechanical control devices, such as<br />

diaphragms, springs, <strong>and</strong> levers to<br />

change an output in response to a<br />

change in a monitored variable. With<br />

<strong>VAV</strong> terminal units, the output is<br />

typically a primary airflow <strong>and</strong> the<br />

monitored variable is zone temperature.<br />

Benefits:<br />

Performance—Pneumatic controls are a<br />

proven technology that is effective <strong>and</strong><br />

has a long life cycle.<br />

Installed Cost—When a source of<br />

compressed air exists at the facility,<br />

pneumatics generally have a lower<br />

installed cost than other types of<br />

controls when only a basic functionality<br />

is required.<br />

Operating <strong>and</strong> Maintenance Costs—<br />

Pneumatics are still the most familiar<br />

control technology to many building<br />

designers <strong>and</strong> maintenance people.<br />

Large Installed Base—Pneumatic<br />

systems are very common in existing<br />

buildings. <strong>This</strong> eliminates the need to<br />

purchase the most expensive piece of<br />

equipment in a pneumatic control<br />

system—the control air compressor.<br />

Extensions to existing pneumatic<br />

systems are generally very simple <strong>and</strong><br />

extremely cost-effective.<br />

Disadvantages:<br />

Performance—Pneumatic controls<br />

provide proportional-only control for<br />

<strong>VAV</strong> terminal unit systems. <strong>This</strong> control<br />

scheme is less accurate than the more<br />

advanced control schemes. Improper<br />

calibration of pneumatic controls leads<br />

to poor energy utilization.<br />

Versatility—A central pneumatic control<br />

system, where each of the control zones<br />

can be monitored <strong>and</strong> adjusted from a<br />

remote location, is extremely costly to<br />

configure <strong>and</strong> to modify.<br />

Operating <strong>and</strong> Maintenance Costs—<br />

Pneumatics easily drift <strong>and</strong> require<br />

constant upkeep <strong>and</strong> scheduled<br />

maintenance. Diagnostic capability for<br />

pneumatics is not available. A main<br />

compressor which is not maintained<br />

<strong>and</strong> becomes contaminated with oil or<br />

water can pump those contaminants<br />

into the compressed-air-distribution<br />

system. <strong>This</strong> may require costly cleaning<br />

of the system <strong>and</strong> a possible<br />

replacement of system components.<br />

AC 10<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Control<br />

Types<br />

DDC <strong>Controls</strong> Basic Information<br />

DDC controls have become the<br />

industry st<strong>and</strong>ard for <strong>VAV</strong> terminal unit<br />

control systems. DDC systems use<br />

electronic field devices such as a flow<br />

transducer, a primary air modulating<br />

damper, <strong>and</strong> an electronic thermostat.<br />

These field devices report software<br />

instructions of how the outputs are<br />

positioned in relation to the inputs to a<br />

controller. The <strong>VariTrane</strong> system uses a<br />

primary air valve <strong>and</strong> flow transducer<br />

for both DDC systems <strong>and</strong> analog<br />

electronic systems. However, the DDC<br />

zone sensor is different from the<br />

analog electronic thermostat.<br />

DDC controls provide much flexibility<br />

<strong>and</strong> considerable diagnostic capability.<br />

DDC controllers can be connected<br />

together to form a network of<br />

controllers. Once the controllers are<br />

networked, they can be monitored for<br />

proper operation from a remote<br />

location. Comm<strong>and</strong>s <strong>and</strong> overrides can<br />

be sent for groups of controllers at one<br />

time to make system-wide changes.<br />

Comm<strong>and</strong>s <strong>and</strong> overrides can be sent<br />

to individual units to allow problem<br />

diagnosis, temporary shutdown,<br />

startup schedules or other specialized<br />

changes. When integrated into a<br />

building management system, the<br />

operation of the <strong>VAV</strong> terminal unit<br />

system can be modified to do such<br />

things, as coincide with occupancy<br />

schedules <strong>and</strong> reduce energy charges.<br />

DDC control of <strong>VAV</strong> terminal units is a<br />

key element in providing intelligent<br />

<strong>and</strong> responsive building management.<br />

Precision control, flexible comfort, <strong>and</strong><br />

after hours access are all available with<br />

the <strong>VariTrane</strong> DDC control system for<br />

<strong>VAV</strong> terminal units.<br />

Key features of the system include:<br />

• An advanced unit controller<br />

• Flexible system design<br />

• User-friendly interaction<br />

Analog Electronic <strong>Controls</strong> Basic<br />

Information<br />

Analog electronic controls continue to<br />

be useful in specific applications. The<br />

users of analog electronic controls can<br />

benefit from the analog electronic<br />

product without the necessary air<br />

compressor capacity for pneumatic<br />

applications or computer-literate<br />

personnel for DDC applications.<br />

However, as more <strong>and</strong> more people<br />

become computer literate, DDC<br />

controls have become the st<strong>and</strong>ard for<br />

non-pneumatic <strong>VAV</strong> terminal unit<br />

controls. The analog electronic control<br />

system will control room temperature<br />

by modulating the position of the<br />

electronic air valve in response to zone<br />

temperature changes. <strong>VariTrane</strong> analog<br />

electronic controls are only available in<br />

pressure-independent operation.<br />

Therefore, the flow is proportional to<br />

the deviation from the zone setpoint.<br />

The primary airflow through the air<br />

valve is monitored by means of an<br />

electronic pressure transducer<br />

connected to the st<strong>and</strong>ard <strong>VariTrane</strong><br />

flow ring. The thermostat used with<br />

the <strong>VariTrane</strong> electronic control system<br />

is a thermistor which completes a<br />

voltage divider circuit when wired back<br />

to the analog control board. The<br />

thermostat is designed to operate<br />

specifically with <strong>VariTrane</strong> analog<br />

electronic controls <strong>and</strong> is not<br />

interchangeable with the <strong>VariTrane</strong> DDC<br />

zone sensor.<br />

Pneumatic <strong>Controls</strong> Basic Information<br />

Pneumatic controls modulate air<br />

pressure of a controller to maintain<br />

setpoint. For <strong>VAV</strong> systems, there are<br />

two primary types of pneumatic<br />

controllers—the room thermostat <strong>and</strong><br />

the pneumatic volume regulator (PVR).<br />

Room Thermostats<br />

The most visible controller to the<br />

customer is the room thermostat.<br />

Pneumatic room thermostats can be<br />

classified by two characteristics: the<br />

tubing connection(s) to the thermostat<br />

<strong>and</strong> the action of the thermostat output<br />

in response to a change in the input.<br />

Room thermostats are available in<br />

models that require a one-pipe or a<br />

two-pipe configuration. The name is<br />

derived from the number of tubes that<br />

must run to the thermostat location.<br />

The difference is really in the<br />

construction of the thermostats. The<br />

two-pipe thermostats have a constant<br />

pressure supply connected via an air<br />

tube to the thermostat supply air port.<br />

The supply air travels through the<br />

thermostat’s relays, levers, diaphragm,<br />

<strong>and</strong> bleed port to produce an output.<br />

The output line is connected to the<br />

output port of the thermostat <strong>and</strong><br />

extends to the controlled device. The<br />

one-pipe thermostat has, as its name<br />

suggests, only one air line connection.<br />

The thermostat works by opening <strong>and</strong><br />

closing an air bleed valve. <strong>This</strong> will<br />

either decrease or increase the<br />

pressure on the controlled device,<br />

which is connected to the same line<br />

that runs to the thermostat.<br />

Room thermostats also can be<br />

classified by their reaction to a change<br />

in temperature. Room thermostats<br />

classified this way are denoted as<br />

either direct-acting or reverse-acting.<br />

Direct-acting thermostats will increase<br />

their output pressure as the<br />

temperature the thermostat measures<br />

increases.<br />

Direct-Acting Thermostat Response<br />

Output Pressure<br />

Input Temperature<br />

On the contrary, reverse-acting<br />

thermostats will decrease their output<br />

pressure as the temperature the<br />

thermostat measures increases.<br />

Reverse-Acting Thermostat Response<br />

Output Pressure<br />

Input Temperature<br />

<strong>VAV</strong>-PRC008-EN AC 11


Application<br />

Considerations<br />

Control<br />

Types<br />

Pneumatic Volume Regulators<br />

These controllers accept the room<br />

thermostat signal <strong>and</strong> modulate the<br />

<strong>VAV</strong> terminal unit primary air damper.<br />

The primary air damper is controlled<br />

for an airflow setpoint that is<br />

determined by the room thermostat.<br />

The thermostat increases the PVR’s<br />

airflow setting when the temperature<br />

in the space is warm. On the other<br />

h<strong>and</strong>, the thermostat decreases the<br />

PVR’s airflow setting when the<br />

temperature in the space is cold.<br />

Currently, <strong>VariTrane</strong> offers two models<br />

of pneumatic volume regulators in its<br />

controls offering—the 3011 regulator<br />

(used in most applications) <strong>and</strong> the<br />

3501 model (used in dual-duct<br />

constant- volume applications). The<br />

primary difference is the 3501 PVR’s<br />

ability to change the velocity pressure<br />

linearly with a change in thermostat<br />

pressure, which results in improved<br />

stability at low flows. In contrast, the<br />

3011 PVR resets the velocity pressure<br />

with a change in thermostat pressure.<br />

Reset Control of Minimum <strong>and</strong><br />

Maximum Flow—The 3011 PVR <strong>and</strong><br />

3501 use fixed reset control of<br />

minimum <strong>and</strong> maximum flow settings.<br />

The primary benefit of fixed reset in a<br />

pneumatic volume regulator is stable<br />

flow control without excessive damper<br />

movement.<br />

Fixed Reset—A fixed reset controller<br />

operates over a thermostat signal<br />

change of 5 psi between minimum <strong>and</strong><br />

maximum flow, regardless of the<br />

differential pressure flow sensor signal.<br />

The thermostat is usually set for a gain<br />

of 2.5; i.e. it produces a 2.5 psi output<br />

change per degree of space<br />

temperature change. <strong>This</strong> control<br />

strategy provides stable flow control<br />

with the primary air valve throttling<br />

between minimum <strong>and</strong> maximum<br />

flow over a 2°F space temperature<br />

change.<br />

Example 1: Air valve with a 6" inlet,<br />

Pneumatic thermostat gain = 2.5 psi/<br />

degree:<br />

Minimum Flow = 0 cfm, 0.0 in. wg<br />

flow signal<br />

Maximum Flow = 680 cfm, 2.0 in. wg<br />

flow signal<br />

2.0 in. wg signal range<br />

The damper will modulate from zero to<br />

maximum position over a 2°F<br />

temperature change.<br />

Bleed Port to Atmosphere—<br />

Bleeding air to the atmosphere is a<br />

normal operation for a volume<br />

regulator. The 3011 volume regulator<br />

addresses this function with a<br />

dedicated bleed port. When air is bled<br />

through the flow sensor, the differential<br />

pressure signal from the sensor is<br />

affected. As a result, the flow sensor<br />

signal can be radically altered if the<br />

volume regulator is bleeding air, <strong>and</strong><br />

may cause excessive damper<br />

movement.<br />

Calibration—The minimum <strong>and</strong><br />

maximum settings are independent of<br />

each other <strong>and</strong> need to be set only<br />

once during calibration.<br />

Signal Configuration Flexibility—<br />

Both can be configured to work with<br />

both normally-open <strong>and</strong> normallyclosed<br />

pneumatic air valves, <strong>and</strong> both<br />

direct-acting <strong>and</strong> reverse-acting<br />

thermostats.<br />

Pneumatic Volume<br />

Regulators<br />

PVR 3011<br />

PVR 3501<br />

AC 12<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Flow<br />

Measurement<br />

<strong>and</strong> Control<br />

Flow Measurement <strong>and</strong><br />

Control<br />

One of the most important<br />

characteristics of a <strong>VAV</strong> terminal unit is<br />

its ability to accurately sense <strong>and</strong><br />

control airflow. The <strong>VariTrane</strong> terminal<br />

unit was developed with exactly that<br />

goal in mind. The patented, multiplepoint,<br />

averaging flow ring measures<br />

the velocity of the air at the unit<br />

primary air inlet. The differential<br />

pressure signal output of the flow ring<br />

provides the terminal unit controller a<br />

measurement of the primary airflow<br />

through the inlet. The terminal unit<br />

controller then opens or closes the<br />

inlet damper to maintain the controller<br />

airflow setpoint<br />

Flow Ring<br />

Flow Measurement<br />

Most <strong>VAV</strong> terminal units contain a<br />

differential pressure airflow<br />

measurement device, mounted at the<br />

primary air inlet, to provide a signal to<br />

the terminal unit controller. Numerous<br />

names exist for the differential<br />

pressure measurement device—flow<br />

sensor, flow bar, flow ring. The<br />

differential pressure measured at the<br />

inlet varies according to the volumetric<br />

flow rate of primary air entering<br />

the inlet.<br />

perpendicular to the airflow. The lowpressure<br />

taps on the <strong>VariTrane</strong> flow<br />

ring measure a pressure that is parallel<br />

to the direction of flow but in the<br />

opposite direction of the flow. <strong>This</strong><br />

“wake pressure” that the downstream<br />

ring measures is lower than the actual<br />

duct static pressure. The difference<br />

between the “wake pressure” <strong>and</strong> the<br />

static pressure can be accounted for so<br />

that the above relationship between<br />

flow <strong>and</strong> differential pressure remain<br />

valid. The difference also helps create a<br />

larger pressure differential than the<br />

velocity pressure. Since the pressures<br />

being measured in <strong>VAV</strong> terminal box<br />

applications are small, this larger<br />

differential allows transducers <strong>and</strong><br />

controllers to measure <strong>and</strong> control at<br />

lower flow settings than would<br />

otherwise be possible.<br />

The average velocity of air traveling<br />

through the inlet is expressed in<br />

the equation:<br />

FPM = 1096.5√ VP<br />

DENS<br />

Where:<br />

FPM = Velocity of air in feet per<br />

minute<br />

1096.5 = A constant<br />

VP<br />

= The velocity pressure of the<br />

air expressed in inches of<br />

water<br />

DENS = The density of the air<br />

expressed in pounds per<br />

cubic foot<br />

Often, the density is assumed to be a<br />

constant for dry air at st<strong>and</strong>ard<br />

conditions (68°F (20°C)) <strong>and</strong> sea level<br />

pressure of 14.7 psi (101.4 kPa)). These<br />

conditions yield the following<br />

commonly used equation:<br />

FPM = 4005√ VP<br />

The velocity pressure is defined as the<br />

difference between the total pressure<br />

in the duct <strong>and</strong> the static pressure in<br />

the duct:<br />

VP = TP - SP (All units are expressed in<br />

inches of water)<br />

The amount of air traveling through<br />

the inlet is related to the area of the<br />

inlet <strong>and</strong> the velocity of the air:<br />

AIRFLOW = AREA (square feet) x<br />

AVERAGE VELOCITY (feet per minute)<br />

Accuracy<br />

The multiple, evenly spaced orifices in<br />

the flow ring of the <strong>VariTrane</strong> terminal<br />

unit provide quality measurement<br />

accuracy even if ductwork turns or<br />

variations are present before the unit<br />

inlet. For the most accurate readings, a<br />

minimum of 1½ diameters, <strong>and</strong><br />

preferably 3 diameters, of straight-run<br />

ductwork is recommended prior to the<br />

inlet connection. The straight-run<br />

ductwork should be of the same<br />

diameter as the air valve inlet<br />

connection. If these recommendations<br />

are followed, <strong>and</strong> the air density effects<br />

mentioned below are addressed, the<br />

flow ring will measure primary airflow<br />

within ±5% of unit nominal airflow.<br />

Air Density Effects<br />

Changes in air density due to the<br />

conditions listed below sometimes<br />

create situations where the st<strong>and</strong>ard<br />

flow sensing calibration parameters<br />

must be modified. These factors must<br />

be accounted for to achieve accuracy<br />

with the flow sensing ring. Designers,<br />

installers, <strong>and</strong> air balancers should be<br />

aware of these factors <strong>and</strong> know of the<br />

necessary adjustments to correct for<br />

them.<br />

The total pressure <strong>and</strong> the static<br />

pressure are measurable quantities. Air Pressure Measurement Orientations<br />

The flow measurement device in a <strong>VAV</strong><br />

terminal unit is designed to measure<br />

velocity pressure. Most flow sensors<br />

consist of a hollow piece of tubing with<br />

orifices in it. The <strong>VariTrane</strong> air valve<br />

contains a flow ring as its flow<br />

measuring device. The flow ring is two<br />

Air Flow<br />

round coils of tubing. Evenly spaced<br />

orifices in the upstream coil are the<br />

high-pressure taps that average the<br />

total pressure of air flowing through<br />

the air valve. The orifices in the<br />

Total<br />

“Wake”<br />

downstream ring are low-pressure taps<br />

Pressure<br />

Pressure<br />

Static<br />

that average the air pressure in the<br />

wake of flow around the tube. By<br />

Pressure<br />

definition, the measurement of static<br />

pressure is to occur at a point<br />

<strong>VAV</strong>-PRC008-EN AC 13


Application<br />

Considerations<br />

Flow<br />

Measurement<br />

<strong>and</strong> Control<br />

Elevation—At high elevations the air is<br />

less dense. Therefore, when measuring<br />

the same differential pressure at<br />

elevation versus sea level the actual<br />

flow will be greater at elevation than it<br />

would be at sea level. To calculate the<br />

density at an elevation other than<br />

st<strong>and</strong>ard conditions (most<br />

manufacturers choose sea level as the<br />

point for their st<strong>and</strong>ard conditions),<br />

you must set up a ratio between the<br />

density <strong>and</strong> differential pressure at<br />

st<strong>and</strong>ard conditions <strong>and</strong> the density<br />

<strong>and</strong> differential pressure at the<br />

new elevation.<br />

∆P St<strong>and</strong>ard Conditions ∆P New Conditions<br />

=<br />

DENS St<strong>and</strong>ard Conditions DENS New Conditions<br />

Since the data from the manufacturer<br />

is published at st<strong>and</strong>ard conditions,<br />

this equation should be solved for the<br />

differential pressure at st<strong>and</strong>ard<br />

conditions <strong>and</strong> the other quantities<br />

substituted to determine the ratio for<br />

the differential pressure measured at<br />

the new conditions.<br />

Duct Pressure <strong>and</strong> Air Temperature<br />

Variations—While changes in these<br />

factors certainly affect the density of<br />

air, most operating parameters which<br />

<strong>VAV</strong> systems need keep these effects<br />

very small. The impact on accuracy due<br />

to these changes is less than one half<br />

of one percent except in very extreme<br />

conditions (extreme conditions are<br />

defined as those systems with static<br />

pressures greater than 5 in. wg<br />

(1245 Pa) <strong>and</strong> primary air temperatures<br />

greater than 100°F (37.8°C)). Since<br />

those types of systems occur so<br />

infrequently, we assume the effects of<br />

duct pressure <strong>and</strong> air temperature<br />

variations to be negligible.<br />

Linearity —With the increase in DDC<br />

controls over pneumatic controls, the<br />

issue of linearity is not as great as it<br />

once was. The important aspect of flow<br />

measurement versus valve position is<br />

the accuracy of the controller in<br />

determining <strong>and</strong> controlling the flow.<br />

Our units are tested for linearity <strong>and</strong><br />

that position versus airflow curve is<br />

downloaded <strong>and</strong> commissioned in the<br />

factory to insure proper control of<br />

the unit.<br />

AC 14<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Reheat<br />

Options<br />

Hot Water Reheat<br />

Hot Water Coil<br />

Hot water heating coils are generally<br />

applied on <strong>VAV</strong> terminal units as reheat<br />

devices. When applying these coils it is<br />

important to make sure that they are<br />

operating in the proper air flow <strong>and</strong><br />

water flow range. Either a two-way or a<br />

three-way valve controls the coils.<br />

Hot Water Valves<br />

The most important factor when sizing<br />

valves is the coefficient of velocity or<br />

C V<br />

. The C V<br />

is defined as the flow rate, in<br />

gallons of 60°F (15.56°C) water, that will<br />

pass through the valve in one minute<br />

with a one pound pressure drop. The<br />

coefficient of velocity, which is<br />

commonly called the flow coefficient,<br />

is an industry st<strong>and</strong>ard rating. Valves<br />

having the same flow coefficient rating,<br />

regardless of manufacturer, will have<br />

the same waterside performance<br />

characteristics.<br />

The equation that governs valve<br />

sizing is:<br />

C v<br />

=<br />

GPM<br />

√∆P<br />

Where:<br />

C V<br />

= Flow coefficient<br />

GPM = The maximum water flow rate<br />

through the valve in gallons<br />

per minute<br />

∆ P = The maximum allowable<br />

differential pressure across<br />

the valve in psi<br />

The flow <strong>and</strong> differential pressure are<br />

generally the known quantities. The<br />

equation is solved for the flow<br />

coefficient. The flow coefficient is then<br />

compared to the published C V<br />

values<br />

for the control valves that are available.<br />

The control valve with the C V<br />

that is the<br />

closest, but greater than, the calculated<br />

flow coefficient is the correct choice for<br />

the control valve. <strong>This</strong> choice will keep<br />

the valve pressure drop below the<br />

maximum allowable valve pressure<br />

drop. The valve pressure drop should<br />

then be checked against the coil<br />

pressure drop. If the coil pressure drop<br />

is appreciably larger than the valve<br />

pressure drop, a valve with a smaller<br />

C V<br />

should be selected to produce a<br />

larger control valve pressure drop. If<br />

this new valve has a pressure drop that<br />

is much larger than the maximum<br />

allowable pressure drop for valves, the<br />

system designer should be consulted<br />

to make sure that the system hot water<br />

pumps can deliver the water at the<br />

new conditions.<br />

Electric Reheat<br />

Electric heating coils are applied on<br />

<strong>VAV</strong> terminal units as terminal reheat<br />

devices. Electric heat coil capacity is<br />

rated in kilowatts (kW). Coils are<br />

available with the total capacity divided<br />

into one, two, or three stages.<br />

Electric heat coils are available in<br />

single-phase or three-phase models.<br />

<strong>This</strong> refers to the type of power source<br />

connected to the coil. Single-phase<br />

models have resistance elements<br />

internally connected in parallel. Threephase<br />

models have resistance<br />

elements internally connected in a<br />

delta or a wye configuration.<br />

The current draw for the electric coil<br />

will depend upon whether it is a singlephase<br />

coil or a three-phase coil. The<br />

current draw is necessary for<br />

determining what size wire should be<br />

used to power the electric coils <strong>and</strong><br />

how big the primary power fusing<br />

should be.<br />

The equations for current draw for<br />

these coils are:<br />

1 φ amps =<br />

3 φ amps = kW x 1000<br />

Primary Voltage x √ 3<br />

<strong>VariTrane</strong> three-phase electric heat is<br />

available in balanced configurations.<br />

For example, a 9 kW three-phase coil,<br />

each stage would carry 1/3 or 3 kW of<br />

the load.<br />

It is important to note that these coils<br />

have certain minimum airflow rates for<br />

each amount of kW heat the coil can<br />

supply to operate safely. These airflow<br />

values are based upon a maximum<br />

rise across the electric heat coil of<br />

50°F (28°C).<br />

The equation that relates the airflow<br />

across an electric coil to the<br />

temperature rise <strong>and</strong> the coil change in<br />

temperature is:<br />

CFM =<br />

kW x 1000<br />

Primary Voltage<br />

kW x 3145<br />

∆T<br />

Where:<br />

CFM = Minimum airflow rate across<br />

the coil<br />

kW = The heating capacity of the<br />

electric coil<br />

3145 = A constant<br />

∆T<br />

= The maximum rise in air<br />

temperature across the coil<br />

(usually 50°F (28°C))<br />

Electric heat coils are available with<br />

magnetic or mercury contactors.<br />

Magnetic contactors are less<br />

expensive than mercury contactors.<br />

However, mercury contactors can be<br />

cycled at a more rapid rate without<br />

failing. Mercury contactors are rated<br />

for heavier duty use <strong>and</strong> should be<br />

used in as many applications as<br />

possible. For pneumatic applications<br />

the electric coils are available with<br />

factory-installed pressure-electric<br />

switches.<br />

<strong>VAV</strong>-PRC008-EN AC 15


Application<br />

Considerations<br />

Insulation<br />

Insulation<br />

Insulation in a <strong>VAV</strong> terminal unit is<br />

used to avoid condensation on the<br />

outside of the unit, to reduce the heat<br />

transfer from the cold primary air<br />

entering the unit, <strong>and</strong> to reduce the<br />

unit noise. The <strong>VariTrane</strong> line offers four<br />

types of unit insulation. The type of<br />

facing classifies the types of insulation.<br />

To enhance IAQ effectiveness, edges of<br />

all insulation types have metal<br />

encapsulated edges.<br />

Encapsulated Edges<br />

Matte-Faced<br />

<strong>This</strong> type of insulation is used for<br />

typical applications. It consists of a<br />

fiberglass core covered by a highdensity<br />

skin. The dual-density<br />

construction provides good sound<br />

attenuation <strong>and</strong> thermal performance.<br />

Foil-Faced<br />

<strong>This</strong> type of insulation is used in<br />

applications where there is some<br />

concern regarding airborne<br />

contaminants entering the space, or<br />

dirt being trapped in the fibers of the<br />

insulation. The insulation is composed<br />

of a fiberglass core laminated to a foil<br />

sheet. Foil-faced insulation will provide<br />

the same sound attenuation<br />

performance as matte-faced insulation.<br />

Double-Wall<br />

<strong>This</strong> type of insulation is used in<br />

applications where there is extreme<br />

concern regarding airborne<br />

contaminants entering the space or dirt<br />

being trapped in the fibers of the<br />

insulation. The insulation is the same<br />

as the matte-faced insulation.<br />

However, after the insulation is<br />

installed, a second solid wall of<br />

26-gage steel covers the insulation. All<br />

wire penetrations of this insulation are<br />

covered by a grommet. <strong>This</strong> type of<br />

insulation will result in higher<br />

discharge <strong>and</strong> radiated sound power.<br />

Closed-Cell<br />

<strong>This</strong> type of insulation is used in<br />

applications where IAQ <strong>and</strong> fibers are<br />

of primary concern. The acoustics of<br />

the closed-cell insulation are similar to<br />

double-wall insulation. The thermal<br />

properties are similar to fiberglass<br />

insulation. <strong>This</strong> insulation contains<br />

no fiberglass.<br />

AC 16<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Acoustics<br />

Acoustical best practices:<br />

Acoustics with terminal units is<br />

sometimes more confusing than it<br />

needs to be. As we know, lower<br />

velocities within a unit leads to<br />

improved acoustical performance.<br />

Additionally, if the <strong>VAV</strong> terminal unit<br />

has a fan, a lower RPM provides better<br />

Acoustics performance. It is as simple<br />

as that—there are some catches,<br />

however.<br />

We know that lower velocities <strong>and</strong><br />

lower RPMs in <strong>VAV</strong> terminal units<br />

result in improved acoustical<br />

performance. Additional<br />

considerations will be discussed in<br />

more detail throughout this portion of<br />

Application Considerations that pertain<br />

to unit size <strong>and</strong> type, appurtenance<br />

affects (due to insulation, attenuation,<br />

etc.) certification, <strong>and</strong> computer<br />

modeling. Let’s take a look at the first<br />

consideration, sizing of units.<br />

Sizing of units<br />

Before blindly increasing the size of<br />

units, we must first underst<strong>and</strong> what is<br />

setting the acoustics within the space.<br />

In general, over 95% of acoustics in<br />

<strong>VAV</strong> terminal units, which set the<br />

sound pressure levels <strong>and</strong> ultimately<br />

the NC within the space, is from<br />

radiated sound. <strong>This</strong> is readily known<br />

for fan-powered units, but less<br />

commonly known for single- <strong>and</strong> dualduct<br />

units. Radiated sound emanates<br />

from the unit <strong>and</strong> enters the occupied<br />

space via means other than through<br />

the supply ductwork. The most typical<br />

path is through the plenum space, then<br />

through the ceiling, then into the<br />

occupied space. While discharge<br />

sound should never be ignored,<br />

radiated sound is the most dominant<br />

<strong>and</strong> usually the most critical sound<br />

source.<br />

When increasing air valve sizes, BE<br />

CAREFUL. Oversizing an air valve can<br />

adversely impact the ability to<br />

modulate <strong>and</strong> properly control<br />

temperature in the space. In extremely<br />

oversized situations, the air valve will<br />

operate like a two-position controlled<br />

device, with air either being “on”, or<br />

“off”, <strong>and</strong> not really much in between.<br />

The best way to avoid this is to<br />

underst<strong>and</strong> that the minimum for most<br />

air valves is 300 FPM. <strong>This</strong> is a function<br />

of the flow sensing device (see wake<br />

pressures pp. AC 13) <strong>and</strong> the ability of<br />

the pressure transducer <strong>and</strong> controller<br />

to properly read <strong>and</strong> report flow. <strong>This</strong><br />

is not manufacturer specific, as physics<br />

applies to all. Therefore, when sizing<br />

air valves, regardless of the max<br />

cooling velocity the minimum velocity<br />

for proper pressure independent flow<br />

is 300 FPM.<br />

Modulation capability <strong>and</strong> range is<br />

vital for proper operation of <strong>VAV</strong><br />

systems. With grossly oversized units,<br />

the unit will act as a constant volume<br />

system eliminating the energy saving<br />

<strong>and</strong> individual zone control advantages<br />

of <strong>VAV</strong> systems. A good rule of thumb<br />

is to size cooling airflow for around<br />

2000 FPM. <strong>VAV</strong> systems only operate<br />

at full flow when there is a maximum<br />

call for cooling in the zone. The<br />

greatest portion of the time, an air<br />

valve will be operating at partial flows.<br />

When sizing fan-powered units, the fan<br />

airflow range can be determined by<br />

looking at the fan-curve. Because<br />

parallel <strong>and</strong> series fan-powered units<br />

operate at a constant fan flow,<br />

selections can be made all the way to<br />

the lowest flow ranges of the fan<br />

curve. A good balance of performance<br />

<strong>and</strong> cost is to select fans at 70-80% of<br />

maximum fan flow.<br />

Series vs. Parallel Fan-Powered Units<br />

Acoustical considerations affect<br />

whether a series or parallel fanpowered<br />

terminal unit is selected. Both<br />

units have their advantages.<br />

The parallel unit has the advantage of<br />

the fan being on <strong>and</strong> contributing to<br />

the sound levels only when heating is<br />

needed. The fans are usually smaller<br />

because they are sized for 30–60% of<br />

total unit flow. <strong>This</strong> creates a unit which<br />

is quieter than series units. The<br />

disadvantage of the parallel unit is that<br />

the sound is intermittent. <strong>This</strong> impact<br />

can be minimized by using an ECM,<br />

which has slow fan ramp-up speed.<br />

The primary acoustic benefit to the<br />

series fan-powered unit is that the fan<br />

runs continuously. Sometimes the unit<br />

can be selected at slightly higher<br />

sound levels due to the constant<br />

nature of the sound.<br />

The primary acoustic disadvantage the<br />

series unit has compared to the parallel<br />

unit is the need to size the unit fan for<br />

the total room airflow. Series units<br />

require a larger, louder fan than<br />

parallel configurations.<br />

Note: Operating parallel units with a<br />

continuously operating fan may be<br />

considered for some applications. <strong>This</strong><br />

provides the quietest overall fanpowered<br />

system with the benefit of<br />

continuous fan operation.<br />

Insulation types<br />

Insulation is a factor to consider when<br />

dealing with the acoustics of terminal<br />

units. Most insulation types will provide<br />

similar acoustical results, but there are<br />

exceptions. Double-wall <strong>and</strong> closed-cell<br />

foam insulation will generally increase<br />

your sound levels because of the<br />

increased reflective surface area that the<br />

solid inner-wall <strong>and</strong> closed-cell<br />

construction provides. <strong>This</strong> increase in<br />

sound will have to be balanced with the<br />

IAQ <strong>and</strong> cleanability considerations of the<br />

dual-wall <strong>and</strong> closed-cell construction.<br />

Placement of units<br />

Unit placement in a building can have a<br />

significant impact on the acceptable<br />

sound levels. Locating units above noncritical<br />

spaces (hallways, closets, <strong>and</strong><br />

storerooms) will help to contain radiated<br />

sound from entering the critical occupied<br />

zones.<br />

Unit Attenuation<br />

Terminal unit-installed attenuators are an<br />

option available to provide path sound<br />

attenuation. Manufacturer-provided<br />

attenuators on the discharge of a<br />

terminal unit are targeted at reducing<br />

discharge path noise <strong>and</strong> are typically a<br />

simple lined piece of ductwork. It would<br />

often be easier <strong>and</strong> less expensive to<br />

design the downstream ductwork to be<br />

slightly longer <strong>and</strong> require the installing<br />

contractor to include lining in it.<br />

Attenuators on the plenum inlet of fanpowered<br />

terminals are targeted at<br />

reducing radiated path noise since the<br />

plenum opening on a fan-powered<br />

terminal unit is typically the critical path<br />

sound source. Significant reduction in<br />

radiated path noise can result from a<br />

well-designed inlet attenuator. The<br />

attenuation from these attenuators is due<br />

to simple absorption from the attenuator<br />

lining <strong>and</strong> occupant line of sight sound<br />

path obstruction. Therefore, longer<br />

attenuators <strong>and</strong> attenuators that require<br />

the sound to turn multiple corners before<br />

reaching the occupied space provide<br />

superior results, particularly in the lower<br />

frequency b<strong>and</strong>s.<br />

Octave B<strong>and</strong> Frequencies<br />

Octave Center B<strong>and</strong> Edge<br />

B<strong>and</strong> Frequency Frequencies<br />

1 63 44.6–88.5<br />

2 125 88.5–177<br />

3 250 177–354<br />

4 500 354–707<br />

5 1000 707–1414<br />

6 2000 1414–2830<br />

7 4000 2830–5650<br />

8 8000 5650–11300<br />

<strong>VAV</strong>-PRC008-EN AC 17


Application<br />

Considerations<br />

Acoustics<br />

Attenuators that are simple “cups” at<br />

the plenum inlet(s) have been shown<br />

in Trane’s acoustical mock-up to<br />

provide no measurable reduction in<br />

sound pressure in the critical octave<br />

b<strong>and</strong>s which set the occupied space<br />

noise criteria.<br />

Certification <strong>and</strong> Testing<br />

Terminal units should be submitted<br />

based on the same criteria. There are<br />

several ways to ensure this by<br />

certification <strong>and</strong> testing.<br />

Raw unit sound data can be good<br />

measurement criteria for evaluation. In<br />

using this as a basis for comparison,<br />

the designer needs to make sure that<br />

the information is based on the ARI<br />

St<strong>and</strong>ard 880 that gives the procedure<br />

for testing.<br />

Specifying NC or RC sound levels is a<br />

possible comparison, but the designer<br />

needs to be sure the comparison is fair.<br />

Two options are to specify the<br />

attenuation effect on which you would<br />

like the units to be evaluated or to<br />

specify that ARI St<strong>and</strong>ard 885-98<br />

transfer functions be used. The<br />

importance of ARI St<strong>and</strong>ard 885-98 is<br />

that it is the first ARI St<strong>and</strong>ard that<br />

specifies exact transfer functions to be<br />

used for evaluation. Previous versions<br />

of the st<strong>and</strong>ard gave guidelines, but<br />

the manufacturers could choose their<br />

own set of factors.<br />

By using NC sound levels, it is possible<br />

to express acceptable sound levels for<br />

various types of buildings or<br />

environments. A few examples are:<br />

Concert Hall NC-22<br />

Hospital Room NC-30<br />

School Room NC-35<br />

General Office NC-40<br />

Cafeteria NC-45<br />

Factory NC-65<br />

Path Attenuation<br />

Sound is generated by a terminal unit<br />

can reach the occupied space along<br />

several paths. The terminal unit<br />

generated sound will lose energy—i.e.,<br />

the energy is absorbed by path<br />

obstacles—as it travels to the occupied<br />

space. <strong>This</strong> acoustical energy<br />

dissipation as it travels to the occupied<br />

space is called path attenuation. The<br />

amount of energy lost along a<br />

particular path can be quantified <strong>and</strong><br />

predicted using the procedure outlined<br />

in ARI-885. Each path must be<br />

considered when determining<br />

acceptable sound power generated by<br />

a terminal unit.<br />

The term “transfer function” is often<br />

used to describe the entire path<br />

attenuation value for each octave b<strong>and</strong><br />

(i.e., the sum of all components of a<br />

particular path).<br />

Examples of path attenuation include<br />

locating the terminal unit away from<br />

the occupied space, increasing the STC<br />

(sound transmission classification) of<br />

the ceiling tile used, internally lining<br />

ductwork, drywall lagging the ceiling<br />

tiles or enclosing the terminal unit in<br />

drywall. All of these choices have costs<br />

associated with them that must be<br />

weighed against the benefits. Some of<br />

these alternatives can be acoustically<br />

evaluated from application data<br />

provided in ARI-885. Others may<br />

require professional analysis from an<br />

acoustical consultant.<br />

Computer Modeling<br />

Computer modeling of acoustical<br />

paths is available to help estimate<br />

sound levels <strong>and</strong> determine problem<br />

sources. The software used by Trane for<br />

computer modeling is called Trane<br />

Acoustics Program ( TAP).<br />

TAP can analyze different room<br />

configurations <strong>and</strong> materials to quickly<br />

determine the estimated total sound<br />

levels (radiated <strong>and</strong> discharged) in a<br />

space.<br />

The Trane Official Product Selection<br />

System (TOPSS) can also be used to<br />

determine sound levels of terminal<br />

units. You can base selections on a<br />

maximum sound level <strong>and</strong> enter your<br />

own attenuation factors (defaults<br />

based on ARI-885 are also available).<br />

Other Resources<br />

Please refer to "Additional References"<br />

(page 29) of the Applications section to<br />

see a list of publications to help with<br />

the basics of acoustical theory <strong>and</strong><br />

modeling. You can also contact your<br />

local Trane salesperson to discuss<br />

the issue.<br />

AC 18<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Duct Design<br />

Duct Design<br />

Designing cost-effective <strong>VAV</strong> duct<br />

systems is challenging. Some duct<br />

design methods result in better<br />

pressure balance than others do. Duct<br />

shape <strong>and</strong> duct material can influence<br />

duct system design <strong>and</strong> cost. In<br />

addition, duct layout is properly<br />

designed for optimal duct installation<br />

<strong>and</strong> operation.<br />

Design Methods<br />

The two most widely used supply duct<br />

design methods—equal friction <strong>and</strong><br />

static regain—are discussed below.<br />

Equal Friction – Using this method,<br />

ducts are sized at design flow to have<br />

roughly the same static pressure drop<br />

for every 100 feet of duct. Static<br />

pressures throughout the duct system<br />

can be balanced at design flow using<br />

balancing dampers, but are no longer<br />

balanced at part load flows. For this<br />

reason, equal friction duct designs are<br />

better suited for constant volume<br />

systems than for <strong>VAV</strong> systems. If the<br />

equal friction method is used for the<br />

<strong>VAV</strong> supply duct design, the terminal<br />

units usually require pressureindependent<br />

(PI) control capability to<br />

avoid excessive flow rates when duct<br />

pressures are high.<br />

In <strong>VAV</strong> systems, the ducts located<br />

downstream of the terminal unit are<br />

usually sized for equal friction. The<br />

advantage of this design method is its<br />

simplicity. Often, calculations can be<br />

made using simple tables <strong>and</strong> duct<br />

calculators. Drawbacks include<br />

increased higher total pressure drops<br />

<strong>and</strong> higher operating costs.<br />

Static Regain – In the static regain<br />

method, ducts are sized to maintain<br />

constant static pressure in each<br />

section, which is achieved by balancing<br />

the total <strong>and</strong> velocity pressure drops of<br />

each section. In other words, static<br />

pressure is “regained” by the loss of<br />

velocity pressure. Since the static<br />

pressures throughout the duct system<br />

are roughly balanced at design <strong>and</strong><br />

part load flow, static regain duct<br />

designs can be used successfully for<br />

either constant volume or <strong>VAV</strong><br />

systems. When the static regain<br />

method is used for <strong>VAV</strong> systems, the<br />

system is roughly pressure balanced<br />

at design.<br />

Advantages of the static regain method<br />

include reduced total pressure drops,<br />

lower operating costs, <strong>and</strong> balanced<br />

pressures over a wide range of flows.<br />

The drawback of this design is the<br />

time-consuming, iterative calculation<br />

procedure <strong>and</strong> for large systems, it is<br />

essential to have a duct design<br />

computer program.<br />

Duct Design Program<br />

Trane has developed a computer<br />

program, <strong>VariTrane</strong> Duct Designer,<br />

to aid in the duct design process. <strong>This</strong><br />

program is used to calculate duct sizes,<br />

fitting sizes, terminal unit sizes, <strong>and</strong><br />

pressure drops according to the equal<br />

friction or static regain method.<br />

The duct design program can be easily<br />

incorporated into the selection of <strong>VAV</strong><br />

terminal units. The inputs <strong>and</strong> outputs<br />

for the program enable <strong>VariTrane</strong> units<br />

to be selected based on the conditions<br />

you require. <strong>This</strong> makes selecting <strong>and</strong><br />

scheduling units much easier. Contact<br />

the local sales office or the Trane<br />

C.D.S. department for more details<br />

on this program.<br />

<strong>VAV</strong>-PRC008-EN AC 19


Application<br />

Considerations<br />

Selection<br />

Program<br />

Selection Program<br />

The advent of personal computers has<br />

served to automate many processes<br />

that were previously repetitive <strong>and</strong><br />

time-consuming. One of those tasks is<br />

the proper scheduling, sizing, <strong>and</strong><br />

selection of <strong>VAV</strong> terminal units. Trane<br />

has developed a computer program to<br />

perform these tasks. The software is<br />

called the Trane Official Product<br />

Selection System (TOPSS).<br />

The TOPSS program will take the input<br />

specifications <strong>and</strong> output the properly<br />

sized <strong>VariTrane</strong> <strong>VAV</strong> terminal unit along<br />

with the specific performance for that<br />

size unit.<br />

With TOPSS, the user can integrate<br />

selections of single-duct, dual-duct,<br />

<strong>and</strong> fan-powered <strong>VAV</strong> boxes with other<br />

Trane products allowing you to select<br />

all your Trane equipment with one<br />

software program.<br />

The program has several required<br />

fields, denoted by red shading in the<br />

TOPSS screen, <strong>and</strong> many other<br />

optional fields to meet the given<br />

criteria. Required values for selections<br />

include the maximum <strong>and</strong> minimum<br />

airflows, the control type, <strong>and</strong> unit<br />

model. When selecting models with<br />

reheat, information regarding the<br />

heating coil is needed for selection. In<br />

addition, the user is given the option to<br />

look at all the information for one<br />

selection on one screen or as a<br />

schedule with the other <strong>VAV</strong> units on<br />

the job.<br />

Also, TOPSS will calculate soundpower<br />

data for a selected terminal unit.<br />

The user can enter a maximum<br />

individual sound level for each octave<br />

b<strong>and</strong> or a maximum NC value. The<br />

program will calculate acoustical data<br />

subject to default or user supplied<br />

sound attenuation data.<br />

The program has many time-saving<br />

features such as:<br />

• Copy/Paste from spreadsheets like<br />

Microsoft ® Excel<br />

• Easily arranged fields to match your<br />

schedule<br />

• Time-saving templates to store default<br />

settings<br />

• Several output report options including<br />

schedules<br />

The user can also export the Schedule<br />

View to Excel to modify <strong>and</strong> put into a<br />

CAD drawing as a schedule.<br />

Specific details regarding the program, its operation, <strong>and</strong> how to obtain a copy of it<br />

are available from your local Trane sales office.<br />

Sample screen image from TOPSS Selection Program<br />

<strong>VariTrane</strong> Quick Select<br />

The <strong>VariTrane</strong> Quick Select is a tool used by consulting <strong>and</strong> contracting firms for<br />

specifying <strong>and</strong> choosing <strong>VariTrane</strong> <strong>VAV</strong> terminal units. The tool has basic information<br />

regarding dimensions, pressure drops, acoustics, electric <strong>and</strong> hot water reheat, <strong>and</strong><br />

fan data. For more information, please contact your local Trane sales office.<br />

AC 20<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Best<br />

Practices<br />

Common Mistakes<br />

Some of the most common system or<br />

installation errors are discussed below.<br />

Reducers at Unit Inlet<br />

<strong>This</strong> problem is a very common issue<br />

that is seen in applications of <strong>VariTrane</strong><br />

products. It is often mistaken by those<br />

in the field as an unacceptably large<br />

static pressure drop through the unit. It<br />

is also sometimes mistaken as a<br />

malfunctioning flow ring, pressure<br />

transducer (if DDC or analog electronic<br />

controls are present) or PVR (if<br />

pneumatic controls are present).<br />

<strong>This</strong> problem is sometimes<br />

unknowingly encountered because of<br />

the capability of the <strong>VariTrane</strong> unit to<br />

allow greater airflow for a specific size<br />

duct than other terminal units. For<br />

example, a project engineer specifies<br />

an 8" (203 mm) round take off from the<br />

main duct trunk to the <strong>VAV</strong> terminal<br />

unit. The person supplying the <strong>VAV</strong><br />

terminal unit checks the required<br />

airflow <strong>and</strong> finds that a <strong>VariTrane</strong> unit<br />

with a 6" (152 mm) inlet will provide<br />

the specified terminal unit<br />

performance. The terminal unit<br />

supplier submits, receives approval,<br />

<strong>and</strong> orders the 6" (152 mm) inlet unit.<br />

While this is happening, the installing<br />

contractor has run the connecting duct<br />

from the main trunk to the terminal<br />

unit in the specified 8" (152 mm) round.<br />

The unit arrives at the job site, <strong>and</strong> the<br />

installer notices that the 8" (203 mm)<br />

duct <strong>and</strong> the 6" (152 mm) terminal unit<br />

inlet do not match. To get the unit<br />

installed, an 8- to 6-inch reducer is<br />

placed at the inlet to the terminal unit<br />

air valve.<br />

The reducer will cause a phenomenon<br />

called flow separation at the unit inlet.<br />

Fluid dynamics analysis can present a<br />

detailed technical explanation of flow<br />

separation, but the characteristics<br />

important to this discussion are the<br />

production of pressure loss <strong>and</strong><br />

turbulence. The reducer will have a<br />

significant static pressure drop<br />

associated with it since the air velocity<br />

is increased (i.e., static pressure is<br />

given up for increased velocity<br />

pressure). The pressure loss is<br />

sometimes mistaken as a loss due to<br />

the function of the terminal unit. The<br />

turbulence is at its greatest just<br />

downstream of the reducer.<br />

Unfortunately, this is the location of the<br />

flow ring at the air-valve inlet. The<br />

reducer will cause the flow ring to give<br />

an inaccurate <strong>and</strong> inconsistent reading<br />

because of the turbulent air.<br />

The solutions to this situation are:<br />

• Locate the reducer upstream of the<br />

terminal unit at least three duct<br />

diameters to eliminate flow separation<br />

<strong>and</strong> turbulence at the unit inlet <strong>and</strong> to<br />

improve the airflow measurement<br />

accuracy.<br />

• Consider proper sizing of the terminal<br />

unit in the duct design <strong>and</strong> account for<br />

the pressure loss of the reducer in the<br />

central fan selection if a reducer is<br />

required. Be cautious of “oversizing” a<br />

<strong>VAV</strong> terminal. It is good practice to<br />

make sure that the inlet duct velocity at<br />

the minimum airflow setting is no<br />

lower than 500 feet per minute.<br />

Improper Use of Flexible Ductwork<br />

While flexible ductwork has many<br />

benefits, improper use can cause<br />

numerous problems in a <strong>VAV</strong> system.<br />

Flexible ductwork causes turbulent<br />

airflow <strong>and</strong> relatively large static<br />

pressure drops. Flexible ductwork at a<br />

primary damper inlet (i.e., the flow<br />

sensor location) may cause flow<br />

accuracy <strong>and</strong> repeatability problems<br />

due to turbulence. The use of flexible<br />

ductwork should be primarily limited to<br />

the downstream side of the terminal<br />

units in a <strong>VAV</strong> system. Use of flexible<br />

ductwork upstream of terminal units<br />

should be kept to an absolute<br />

minimum. All runs of flexible ductwork<br />

should be kept as short as possible.<br />

While most know these guidelines, the<br />

ease of installation which flexible<br />

ductwork provides is always an<br />

enticement to push the limits of what<br />

are acceptable practices.<br />

Static Pressure Measurement Errors<br />

Improper measurement techniques for<br />

static pressure can lead many to<br />

mistakenly believe that the terminal<br />

unit is causing a large pressure drop in<br />

the system. The chief error made here<br />

is taking a static pressure<br />

measurement in turbulent locations<br />

such as flexible ductwork or near<br />

transitions. <strong>This</strong> produces invalid static<br />

pressure readings. Another error<br />

commonly made is trying to read the<br />

static pressure at the same point as the<br />

flow sensing device. The inlets to <strong>VAV</strong><br />

terminal units produce turbulence <strong>and</strong><br />

will give poor readings. Flow sensors<br />

with their multiple-point averaging<br />

capability are best equipped to deal<br />

with this type of flow, while a singlepoint<br />

static probe is not. Another<br />

common error is the incorrect<br />

orientation of the static pressure probe.<br />

The static pressure is correctly<br />

measured when the probe is oriented<br />

perpendicular to the direction of<br />

airflow. The probe, or a part of it,<br />

should never be facing the direction of<br />

airflow, because the total pressure will<br />

influence the reading of the probe.<br />

<strong>VAV</strong>-PRC008-EN AC 21


Application<br />

Considerations<br />

Unit<br />

Conversions<br />

Conversions of Length <strong>and</strong> Area<br />

To convert From To Multiply by<br />

Length In. m 0.0254<br />

Length Ft m 0.3048<br />

Length m In. 39.3701<br />

Length m Ft 3.28084<br />

Area In. 2 m 2 0.00064516<br />

Area Ft 2 m 2 0.092903<br />

Area m 2 In. 2 1550<br />

Area m 2 Ft 2 10.7639<br />

Conversions of Velocity, Pressure, <strong>and</strong> Flow Rate<br />

To convert From To Multiply by<br />

Velocity Ft/min M/s 0.00508<br />

Velocity M/s Ft/min 196.850<br />

Pressure Psi Pa 6894.76<br />

Pressure Ft of water Pa 2988.98<br />

Pressure In. of water Pa 249.082<br />

Pressure Pa Psi 0.000145038<br />

Pressure Pa Ft of water 0.000334562<br />

Pressure Pa In. of water 0.00401474<br />

Flow Rate Cfm L/s 0.4719<br />

Flow Rate Cfm m 3 /s 0.000471947<br />

Flow Rate Gpm L/s 0.0630902<br />

Flow Rate m 3 /s Cfm 2118.88<br />

Flow Rate L/s Cfm 2.1191<br />

Flow Rate L/s Gpm 15.8503<br />

AC 22<br />

<strong>VAV</strong>-PRC008-EN


Application<br />

Considerations<br />

Additional<br />

References<br />

<strong>VAV</strong> System <strong>and</strong> Product<br />

References<br />

<strong>VAV</strong> Systems Air Conditioning Clinic—<br />

<strong>This</strong> clinic is designed to explain the<br />

system components, the system<br />

configurations, many of the <strong>VAV</strong><br />

system options <strong>and</strong> applications. A<br />

great resource for <strong>VAV</strong> system<br />

underst<strong>and</strong>ing.<br />

Literature # TRG-TRC014-EN<br />

Indoor Air Quality – A guide to<br />

underst<strong>and</strong>ing ASHRAE St<strong>and</strong>ard<br />

62-2001—<br />

The guide helps to explain the<br />

ASHRAE St<strong>and</strong>ard as well as the<br />

fundamentals of good indoor air<br />

quality. A great resource for<br />

underst<strong>and</strong>ing the st<strong>and</strong>ard <strong>and</strong><br />

ways of designing <strong>VAV</strong> systems<br />

around that st<strong>and</strong>ard.<br />

Literature # ISS-APG001-EN<br />

Managing Outdoor Air – Traq<br />

Comfort Systems—<br />

<strong>This</strong> brochure is a good, quick<br />

reference of the issues of managing<br />

outdoor air for a <strong>VAV</strong> system.<br />

Literature # CLCH-S-26<br />

Ventilation <strong>and</strong> Fan Pressure<br />

Optimization for <strong>VAV</strong> Systems—<br />

An engineering bulletin designed to<br />

how a Trane Integrate Comfort<br />

system can effectively control building<br />

ventilation <strong>and</strong> supply fan pressure<br />

for increased comfort <strong>and</strong> IAQ while<br />

keeping energy costs to the lowest<br />

possible.<br />

Literature # SYS-EB-2<br />

Trane DDC/<strong>VAV</strong> Systems Applications<br />

Engineering Manual—<br />

<strong>This</strong> manual gives detailed<br />

descriptions of the Trane DDC/<strong>VAV</strong><br />

system. Topics include system<br />

components, how the system interacts<br />

<strong>and</strong> specific inputs <strong>and</strong> outputs of<br />

the system.<br />

Literature # ICS-AM-6<br />

Acoustics in Air Conditioning<br />

Applications Engineering Manual—<br />

<strong>This</strong> manual describes the basic<br />

fundamentals, behavior,<br />

measurement, <strong>and</strong> control of sound, all<br />

directed at the design of quiet systems.<br />

Literature # FND-AM-5<br />

VariTrac ® <strong>Catalog</strong>—<br />

The catalog will help explain features<br />

<strong>and</strong> benefits of VariTrac, how the<br />

VariTrac product works, applications for<br />

the product, <strong>and</strong> selection procedures.<br />

Literature # <strong>VAV</strong>-PRC003-EN<br />

ASHRAE H<strong>and</strong>book of Fundamentals<br />

ASHRAE H<strong>and</strong>book of HVAC Systems<br />

<strong>and</strong> Equipment<br />

ASHRAE H<strong>and</strong>book of HVAC<br />

Applications<br />

ASHRAE H<strong>and</strong>book of Refrigeration<br />

Web sites:<br />

www.ashrae.org<br />

www.ari.org<br />

www.trane.com<br />

<strong>VAV</strong>-PRC008-EN AC 23


Single-Duct<br />

Table of<br />

Contents<br />

Service Model Number Description SD 2 – 3<br />

Selection Procedure SD 4 – 5<br />

General Data – Valve/Controller Airflow Guidelines SD 6<br />

Performance Data – Air Pressure Requirements SD 7 – 9<br />

Performance Data – Hot Water Coil SD 10 – 15<br />

Performance Data – Electric Data SD 16 – 17<br />

Performance Data – Acoustics SD 18 – 21<br />

Dimensional Data SD 22 – 27<br />

Mechanical Specifications SD 28 – 30<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 1


Single-Duct <strong>VAV</strong><br />

Terminal Units<br />

The features of the single-duct <strong>VAV</strong><br />

terminal units are described by the<br />

product categories shown in bold.<br />

Within each category the available<br />

options are listed.<br />

VCCF<br />

VCWF<br />

VCEF<br />

Single-Duct<br />

Digit 1, 2—Unit Type<br />

VC <strong>VariTrane</strong> single-duct<br />

Digit 3—Reheat<br />

C Cooling Only<br />

E Electric Heat<br />

W Hot Water Heat<br />

Digit 4—Development Sequence<br />

F Sixth<br />

Digit 5, 6—Primary Air Valve<br />

04 4" inlet (225 cfm)<br />

05 5" inlet (350 cfm)<br />

06 6" inlet (500 cfm)<br />

08 8" inlet (900 cfm)<br />

10 10" inlet (1400 cfm)<br />

12 12" inlet (2000 cfm)<br />

14 14" inlet (3000 cfm)<br />

16 16" inlet (4000 cfm)<br />

24 24" x 16" inlet (8000 cfm)<br />

Digit 7, 8—Not Used<br />

00 N/A<br />

Digit 9—Not Used<br />

0 N/A<br />

Digit 10, 11—Design Sequence<br />

C0 Third (factory assigned)<br />

Digit 12, 13, 14, 15—<strong>Controls</strong><br />

ENON No controls, field-installed DDC/<br />

electric<br />

PNON No controls, field-installed<br />

pneumatic<br />

DD00 Trane elec actuator only<br />

DD01 DDC – Cooling only<br />

DD02 DDC – N.C. on/off water valve<br />

control<br />

DD03 DDC – Prop hot water valve<br />

control<br />

DD04 DDC – On/off electric heat<br />

DD05 DDC – Pulse-width modulation<br />

electric heat<br />

DD07 DDC – N.O. on/off water valve<br />

control<br />

DD11 LonTalk DDC Controller—<br />

Cooling only<br />

DD12 LonTalk DDC Controller w/ N.C.<br />

on/off hot water control<br />

DD13 LonTalk DDC Controller w/<br />

proportional hot water control<br />

DD14 LonTalk DDC Controller–on/off<br />

electric heat control<br />

Service<br />

Model Number<br />

Description<br />

DD15 LonTalk DDC Controller w/<br />

pulse-width modulation electric<br />

heat control<br />

DD17 LonTalk DDC Controller w/ N.O.<br />

on/off hot water control<br />

AT08 FM Automated Logic ZN341v+<br />

AT10 FM Automated Logic ZN141v+<br />

FM00 FM – Customer-supplied<br />

actuator & controller<br />

FM01 FM – Trane actuator w/<br />

customer-supplied control<br />

HNY2 FM Honeywell W7751H<br />

INV3 FM Invensys MNL-V2R<br />

PWR1 FM Siemens 540-100 w/<br />

GDE131.1 actuator<br />

PWR2 FM Siemens 540-103 w/<br />

GDE131.1 actuator<br />

PW12 FM Siemens 550-065<br />

PW13 FM Siemens 550-067<br />

VMA2 FM Johnson VMA-1420<br />

EI05 Analog – With optional on/off<br />

reheat<br />

EI28 Analog – With optional on/off<br />

reheat with dual-minimum cfm<br />

EI29 Analog – With optional on/off<br />

reheat with constant-volume cfm<br />

PC00 PN – N.C. Trane pneumatic<br />

actuator<br />

PC04 PN – N.C. with optional on/off HW,<br />

DA Stat<br />

PC05 PN – N.C. with optional on/off<br />

electric, RA Stat<br />

PN00 PN – N.O. Trane pneumatic<br />

actuator, RA Stat<br />

PN04 PN – N.O. PVR, DA Stat<br />

PN05 PN – N.O. PVR, RA Stat<br />

PN11 PN – N.O. dual-minimum cfm,<br />

DA Stat<br />

PN32 PN – Water Valve, N.O. constant<br />

volume, DA Stat<br />

PN34 PN – Electric heat, N.O. constant<br />

volume, DA Stat<br />

Notes:<br />

N.C. = Normally-closed<br />

N.O. = Normally-opened<br />

DA Stat = Direct-acting pneumatic t-stat (by<br />

others)<br />

RA Stat = Reverse-acting pneumatic<br />

t-stat (by others)<br />

PN =<br />

FM =<br />

PVR =<br />

Pneumatic<br />

Factory installation of customersupplied<br />

controller<br />

Pneumatic Volume Regulator<br />

SD 2<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Service<br />

Model Number<br />

Description<br />

Digit 16—Insulation<br />

A 1/2" Matte-faced<br />

B 1" Matte-faced<br />

C 1/2" Foil-faced<br />

D 1" Foil-faced<br />

F 1" Double-wall<br />

G 3/8" Closed-cell<br />

Digit 17—Not Used<br />

0 N/A<br />

Digit 18—Not Used<br />

0 N/A<br />

Digit 19—Outlet Plenum (Connection<br />

is Slip & Drive)<br />

0 None<br />

A 1 Outlet RH<br />

B 1 Outlet END<br />

C 1 Outlet LH<br />

D 2 Outlets, 1 RH, 1 END<br />

E 2 Outlets, 1 LH, 1 END<br />

F 2 Outlets, 1 RH, 1 LH<br />

H 3 Outlets, 1 LH, 1 RH, 1 END<br />

J 4 Outlets, 1 LH, 1 RH, 2 END<br />

Note: See unit drawings for outlet sizes/<br />

damper information.<br />

Digit 20—Not Used<br />

0 N/A<br />

Digit 21—Water Coil<br />

0 None<br />

1 1-Row<br />

2 2-Row<br />

Digit 22—Electrical Connections (VCCF,<br />

VCWF can be flipped in the field to<br />

achieve opposite-h<strong>and</strong> connection)<br />

L Left (Airflow hitting you in the<br />

R<br />

face)<br />

Right (Airflow hitting you in the<br />

face)<br />

0 Opposite side connection – coil<br />

<strong>and</strong> control<br />

Digit 23—Transformer<br />

0 None<br />

1 120/24 volt (50 VA)<br />

2 208/24 volt (50 VA)<br />

3 240/24 volt (50 VA)<br />

4 277/24 volt (50 VA)<br />

5 480/24 volt (50 VA)<br />

6 347/24 Volt (50 VA)<br />

7 575/24 Volt (50 VA)<br />

8 380/24 Volt (50 VA)<br />

Note: For VCEF units with transformers<br />

the VA depends on the staging, control,<br />

<strong>and</strong> contactor type (ranges are 40 VA<br />

to 75 VA)<br />

Digit 24—Disconnect Switch<br />

0 None<br />

W With<br />

Note:<br />

VCCF, VCWF – Toggle Disconnect<br />

VCEF – Door Interlocking Power<br />

Disconnect<br />

Digit 25—Power Fuse<br />

0 None<br />

W With<br />

Digit 26—Electric Heat Voltage<br />

0 None<br />

A 208/60/1<br />

B 208/60/3<br />

C 240/60/1<br />

D 277/60/1<br />

E 480/60/1<br />

F 480/60/3<br />

G 347/60/1<br />

H 575/60/3<br />

J 380/50/3<br />

K 120/60/1<br />

Digit 27, 28, 29—Electric Heat kW<br />

000 None<br />

050 0.5 kW<br />

010 1.0 kW<br />

015 1.5 kW<br />

460 46.0 kW<br />

Notes:<br />

0.5 to 8.0 kW – ½ kW increments<br />

8.0 to 18.0 kW – 1 kW increments<br />

18.0 to 46.0 kW – 2 kW increments<br />

Digit 30—Electric Heat Stages<br />

0 None<br />

1 1 Stage<br />

2 2 Stages Equal<br />

3 3 Stages Equal<br />

Digit 31—Contactors<br />

0 None<br />

1 24-volt magnetic<br />

2 24-volt mercury<br />

3 PE with magnetic<br />

4 PE with mercury<br />

Digit 32—Not Used<br />

0 N/A<br />

Digit 33—Not Used<br />

0 N/A<br />

Digit 34—Actuator<br />

0 St<strong>and</strong>ard<br />

A<br />

B<br />

Spring Return (Normally Open)<br />

Spring Return (Normally<br />

Closed)<br />

Digit 35—Sensor Options<br />

0 St<strong>and</strong>ard (Wired)<br />

1 Factory Mounted Wireless<br />

Receiver (Sensor Accessory)<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 3


Single-Duct<br />

Selection<br />

Procedure<br />

<strong>This</strong> section describes the catalog<br />

selection of single-duct <strong>VAV</strong> terminal<br />

units with specific examples. A<br />

computer selection program is also<br />

available to aid in selection of <strong>VAV</strong><br />

terminal units.<br />

Selection of single-duct <strong>VAV</strong> terminal<br />

units can involve three elements:<br />

• Air valve selection<br />

• Heating coil selection (if required)<br />

• Acoustics<br />

Air Valve Selection<br />

The wide-open static pressure <strong>and</strong><br />

airflows are found in the performance<br />

data section of the catalog. To select an<br />

air valve, locate the required design<br />

cooling airflow for your terminal unit<br />

type <strong>and</strong> find the smallest air valve size<br />

that has a pressure drop equal to or<br />

lower than the maximum wide-open<br />

static pressure requirement.<br />

Selection Example—<br />

Cooling Only VCCF Terminal Unit<br />

Design cooling airflow: 1700 cfm<br />

Maximum wide open<br />

Air pressure drop: 0.25 in. wg<br />

Minimum cooling airflow: 850 cfm<br />

From the performance data charts,<br />

select a valve size 12, which has a wideopen<br />

static pressure drop of 0.01 in. wg<br />

Check the minimum <strong>and</strong> maximum cfm<br />

desired with the minimum <strong>and</strong><br />

maximum cfm allowed in the table in<br />

the general data section. The maximum<br />

setting of 1700 cfm is within the<br />

acceptable range. The desired minimum<br />

setting of 850 cfm is acceptable for the<br />

cooling only box desired. Note that if an<br />

electric reheat box was selected, the<br />

minimum cfm would be dependent<br />

upon the kW of the electric heater. (See<br />

Electric Heat Unit Selection.)<br />

Heating Coil Selection (If<br />

required)<br />

First, determine the amount of heat<br />

required to meet space <strong>and</strong><br />

downstream duct heat losses from a<br />

load calculation.<br />

Hot Water Heat<br />

Select a hot water coil sufficient to meet<br />

the design heat loss.<br />

Example:<br />

VCWF, Hot Water Unit Heat, Size 12<br />

(See air Valve Selection)<br />

Heating airflow: 850 cfm<br />

Hot water flow:<br />

1.0 gpm<br />

Design Heat Loss: Q =25 MBh<br />

SD 4<br />

Select hot water coil from the coil<br />

performance table in the Performance<br />

Data section of the catalog.<br />

Selection:<br />

A one-row coil is sufficient to meet<br />

design conditions. From the Hot Water<br />

Coil Capacity Data of the Performance<br />

Data Section, a one-row coil for a size<br />

12 air valve will operate at the above<br />

conditions as follows:<br />

Coil Capacity:<br />

25.17 MBh<br />

Water pressure drop: 0.72 ft WPD<br />

Air pressure drop (APD) of the hot<br />

water coil is included in the chart<br />

preceding the hot water coil<br />

performance data section.<br />

APD = 0.35 in. wg<br />

Electric Heat<br />

Determine the kW required to meet<br />

zone design heat loss.<br />

kW = MBh / 3.414<br />

MBh = Design Heat Loss<br />

Select the nearest available kW with<br />

voltage <strong>and</strong> steps desired from the<br />

electric heater kW guideline table in the<br />

Performance Data section of the<br />

catalog.<br />

Example:<br />

VCEF, Electric Unit Heat, Size 12<br />

(See Air Valve Selection)<br />

Heating airflow: 850 cfm<br />

Voltage:<br />

277/60/1 VAC<br />

Design Heat Loss: Q = 25 MBh<br />

kW = Q/3.414<br />

kW = 25/3.414<br />

kW = 7.3<br />

Selection:<br />

Select 7.5 kW from the electric heat<br />

table in the voltage <strong>and</strong> stages<br />

required. The table shows the<br />

minimum cfm allowable for the kW<br />

selected. The static pressure<br />

requirement is shown as 0.06 in. wg<br />

for this example with a design cooling<br />

flow of 1700 cfm.<br />

Check Leaving Air Temperature:<br />

Q<br />

LAT =<br />

T is the primary entering air<br />

temperature 55°F for this example.<br />

LAT =<br />

3414 x 7.5 + 55 = 82.8<br />

1.085 x 850<br />

Decide if leaving air temperature of<br />

82.8°F is satisfactory for your<br />

application.<br />

Acoustics<br />

The acoustical data found in the<br />

"Performance Data" section of the <strong>VAV</strong><br />

catalog is used to make a<br />

determination of the amount of noise<br />

the terminal unit will generate. Locate<br />

the table for the <strong>VAV</strong> terminal unit of<br />

interest. Sound power data <strong>and</strong> an<br />

equivalent NC level for an ARI 885-98<br />

transfer function is listed.<br />

Example:<br />

VCCF, Cooling-Only Terminal Unit, Size<br />

10 (See air Valve Selection)<br />

Cooling Airflow: 1100 cfm<br />

Maximum inlet static<br />

pressure:<br />

1.5 in. wg<br />

Interpolation gives sound power<br />

data of:<br />

Octave 2 3 4 5 6 7 NC<br />

B<strong>and</strong><br />

Disch. 68 68 65 65 60 57 28<br />

Sound<br />

Power<br />

Rad. 63 58 54 47 39 32 29<br />

Sound<br />

Power<br />

The NC level above is determined by<br />

using either the catalog’s ARI 885-98<br />

(mineral fiber for radiated sound)<br />

transfer function for the conditions<br />

shown in the acoustics table. A<br />

different transfer function could be<br />

applied as conditions dictate.<br />

The maximum NC level is NC-37. If the<br />

maximum NC level was exceeded, it<br />

would have been necessary to reselect<br />

the next larger unit size.<br />

Computer Selection<br />

The advent of personal computers has<br />

served to automate many processes<br />

that were previously repetitive <strong>and</strong><br />

time-consuming. One of those tasks is<br />

the proper scheduling, sizing, <strong>and</strong><br />

selection of <strong>VAV</strong> terminal units. Trane<br />

has developed a computer program to<br />

perform these tasks. The software is<br />

called the Trane Official Product<br />

Selection System (TOPSS).<br />

+ T 1.085 x CFM<br />

The TOPSS program will take the input<br />

specifications <strong>and</strong> output the properly<br />

sized <strong>VariTrane</strong> <strong>VAV</strong> terminal unit along<br />

with the specific performance for that<br />

size unit.<br />

The program has several required<br />

fields, denoted by red shading in the<br />

TOPSS screen, <strong>and</strong> many other<br />

optional fields to meet the criteria you<br />

have. Required values include<br />

maximum <strong>and</strong> minimum airflows,<br />

control type, <strong>and</strong> model. If selecting<br />

models with reheat, you will be<br />

required to enter information to make<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Selection<br />

Procedure<br />

that selection also. The user is given<br />

the option to look at all the information<br />

for one selection on one screen or as a<br />

schedule with the other <strong>VAV</strong> units on<br />

the job.<br />

The user can select single-duct, dualduct,<br />

<strong>and</strong> fan-powered <strong>VAV</strong> boxes with<br />

the program, as well as most other<br />

Trane products, allowing you to select<br />

all your Trane equipment with one<br />

software program.<br />

The program will also calculate sound<br />

power data for the selected terminal<br />

unit. The user can enter a maximum<br />

individual sound level for each octave<br />

b<strong>and</strong> or a maximum NC value. The<br />

program will calculate acoustical data<br />

subject to default or user supplied<br />

sound attenuation data.<br />

Schedule View<br />

The program has many time-saving features such as:<br />

• Copy/Paste from spreadsheets like Microsoft ® Excel<br />

• Easily arranged fields to match your schedule<br />

• Time-saving templates to store default settings<br />

The user can also export the Schedule View to Excel to modify <strong>and</strong> put into a CAD<br />

drawing as a schedule.<br />

Specific details regarding the program, its operation, <strong>and</strong> how to obtain a copy of it<br />

are available from your local Trane sales office.<br />

Required entry fields (in Red<br />

on TOPSS screen).<br />

Rearrange what fields you see<br />

<strong>and</strong> in what order with a few<br />

clicks of a button.<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 5


Single-Duct<br />

General Data—<br />

Valve/Controller<br />

Airflow Guidelines<br />

Primary Airflow Control Factory Settings – I-P<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) Cfm Cfm Cfm Cfm<br />

4 225 25–225 0,25–225 25–225<br />

5 350 40–350 0,40–350 40–350<br />

6 500 60–500 0,60–500 60–500<br />

Direct Digital Control/ 8 900 105–900 0,105–900 105–900<br />

UCM 10 1400 165–1400 0,165–1400 165–1400<br />

12 2000 240–2000 0,240–2000 240–2000<br />

14 3000 320–3000 0,320–3000 320–3000<br />

16 4000 420–4000 0,420–4000 420–4000<br />

24 x 16 8000 800–8000 0,800–8000 800–8000<br />

4 225 38–225 0,38–225 38–225<br />

5 350 63–350 0,63–350 63–350<br />

6 500 73–500 0,73–500 73–500<br />

Pneumatic with 8 900 134–900 0,134–900 134–900<br />

Volume Regulator 10 1400 215–1400 0,215–1400 215–1400<br />

12 2000 300–2000 0,300–2000 300–2000<br />

14 2887 408–2887 0,408–2887 408–2887<br />

16 3789 536–3789 0,536–3789 536–3789<br />

24 x 16 7745 1096–7745 0,1096–7745 1096–7745<br />

4 225 52–225 0,52–225 52–225<br />

5 350 82–350 0,82–350 82–350<br />

6 500 120–500 0,120–500 120–500<br />

Analog Electronic 8 900 210–900 0,210–900 210–900<br />

10 1400 328–1400 0,328–1400 328–1400<br />

12 2000 470–2000 0,470–2000 470–2000<br />

14 3000 640–3000 0,640–3000 640–3000<br />

16 4000 840-4000 0,840–4000 840–4000<br />

24 x 16 8000 1600-8000 0,1600–8000 1600–8000<br />

Primary Airflow Control Factory Settings – SI<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) L/s L/s L/s L/s<br />

4 106 12–106 0,12–106 12–106<br />

5 165 19–165 0,19–165 19–165<br />

6 236 28–236 0,28–236 28–236<br />

Direct Digital Control/ 8 425 50–425 0,50–425 50–425<br />

UCM 10 661 77–661 0,77–661 77–661<br />

12 944 111–944 0,111–944 111–944<br />

14 1416 151–1416 0,151–1416 151–1416<br />

16 1888 198–1888 0,198–1888 198–1888<br />

24 x 16 3776 378–3776 0,378–3776 378–3776<br />

4 106 18–106 0,18–106 18–106<br />

5 165 30–165 0,30–165 30–165<br />

6 236 35–236 0,35–236 35–236<br />

Pneumatic with 8 425 63–425 0,63–425 63–425<br />

Volume Regulator 10 661 102–661 0,102–661 102–661<br />

12 944 141–944 0,141–944 141–944<br />

14 1363 193–1363 0,193–1363 193–1363<br />

16 1788 253–1788 0,253–1788 253–1788<br />

24 x 16 3656 517–3656 0,517–3656 517–3656<br />

4 106 25–106 0,25–106 25–106<br />

5 165 39–165 0,39–165 39–165<br />

6 236 57–236 0,57–236 57–236<br />

Analog Electronic 8 425 100–425 0,100–425 100–425<br />

10 661 155–661 0,155–661 155–661<br />

12 944 222–944 0,222–944 222–944<br />

14 1416 303–1416 0,303–1416 303–1416<br />

16 1888 397–1888 0,397–1888 397–1888<br />

24 x 16 3776 756–3776 0,756–3776 756–3776<br />

Note: Maximum airflow must be greater than or equal to minimum airflow.<br />

SD 6<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—Air Pressure<br />

Requirements<br />

Air Pressure Drop – in. wg (I-P)<br />

Inlet Airflow Cooling Hot Water Electric<br />

Size Cfm Only 1-row coil 2-row coil Heat<br />

04 50 0.01 0.01 0.01 0.01<br />

100 0.01 0.02 0.02 0.01<br />

150 0.01 0.03 0.03 0.01<br />

225 0.01 0.06 0.06 0.02<br />

05 100 0.01 0.01 0.03 0.01<br />

200 0.01 0.05 0.08 0.01<br />

300 0.01 0.09 0.17 0.02<br />

350 0.02 0.12 0.22 0.02<br />

06 100 0.01 0.02 0.03 0.01<br />

250 0.05 0.11 0.17 0.05<br />

350 0.10 0.22 0.32 0.11<br />

500 0.22 0.45 0.63 0.23<br />

08 200 0.01 0.03 0.05 0.01<br />

400 0.02 0.10 0.17 0.02<br />

600 0.04 0.20 0.34 0.05<br />

900 0.08 0.40 0.69 0.11<br />

10 500 0.01 0.07 0.12 0.01<br />

800 0.01 0.15 0.26 0.02<br />

1100 0.01 0.27 0.44 0.03<br />

1400 0.01 0.42 0.66 0.05<br />

12 800 0.01 0.10 0.19 0.01<br />

1200 0.01 0.19 0.35 0.03<br />

1600 0.01 0.31 0.55 0.05<br />

2000 0.01 0.45 0.79 0.08<br />

14 1500 0.01 0.10 0.23 0.01<br />

2000 0.01 0.16 0.36 0.01<br />

2500 0.01 0.22 0.51 0.01<br />

3000 0.01 0.30 0.69 0.01<br />

16 2000 0.01 0.11 0.30 0.01<br />

2500 0.01 0.16 0.46 0.02<br />

3000 0.01 0.22 0.65 0.02<br />

4000 0.01 0.35 1.14 0.03<br />

24 x 16 4000 0.01 0.40 0.66 0.15<br />

5500 0.01 0.70 1.12 0.30<br />

6500 0.01 0.95 1.47 0.44<br />

8000 0.01 1.37 2.06 0.69<br />

Air Pressure Drop – Pa (SI)<br />

Inlet Airflow Cooling Hot Water Electric<br />

Size L/s Only 1-row coil 2-row coil Heat<br />

04 25 3 3 3 3<br />

50 3 4 4 3<br />

70 3 7 7 3<br />

105 3 15 15 3<br />

05 45 3 3 6 3<br />

95 3 12 21 3<br />

140 3 22 41 5<br />

165 4 29 54 6<br />

06 45 3 4 7 3<br />

120 13 29 43 14<br />

165 26 55 79 27<br />

235 55 112 155 57<br />

08 95 3 8 13 3<br />

190 4 25 43 6<br />

280 9 49 83 12<br />

420 21 99 169 28<br />

10 235 3 16 29 3<br />

375 3 37 63 5<br />

520 3 67 110 9<br />

660 3 104 165 13<br />

12 375 3 24 47 3<br />

565 3 47 88 7<br />

755 3 76 138 13<br />

940 3 111 195 19<br />

14 700 3 26 55 3<br />

945 3 40 89 3<br />

1180 3 56 127 3<br />

1415 3 74 171 3<br />

16 940 3 28 73 3<br />

1180 3 40 114 4<br />

1415 3 54 162 5<br />

1885 3 87 284 8<br />

24 x 16 1885 3 100 165 38<br />

2600 3 176 279 76<br />

3070 3 236 366 110<br />

3775 3 341 513 172<br />

Note: Hot water pressure drops are for the entire unit, not just the coil. To calculate the hot water coil only pressure drop, subtract the cooling only pressure drop from the<br />

other pressure drop.<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 7


Single-Duct<br />

Performance<br />

Data—Air Pressure<br />

Requirements (I-P)<br />

Integral Outlet Plenum Air Pressure Drop – in. wg (I-P)<br />

Outlet<br />

Inlet Outlet Diameter Airflow (Cfm)<br />

Size Configuration (in.) 50 100 150 200 250 350 400 500 600 800 900 1100 1200 1400 1600 2000<br />

4,5,6 A,C 5 0.02 0.07 0.15 0.26 0.41 0.80 1.04 1.63<br />

4,5,6 6 0.01 0.03 0.07 0.13 0.20 0.37 0.48 0.74<br />

8,10 AC 8 0.04 0.06 0.11 0.14 0.23 0.33 0.58 0.74 1.11 1.33 1.81<br />

10 10 0.01 0.02 0.04 0.05 0.08 0.12 0.21 0.27 0.41 0.48 0.66<br />

12 10 0.03 0.06 0.08 0.12 0.17 0.29 0.37 0.54 0.64 0.86 1.11 1.71<br />

4,5,6 B 5 0.01 0.03 0.08 0.15 0.23 0.48 0.64 1.02<br />

4,5,6 6 0.01 0.01 0.01 0.03 0.04 0.07 0.10 0.15<br />

8 8 0.01 0.01 0.02 0.02 0.03 0.05 0.07 0.09<br />

10 B 8 0.02 0.04 0.07 0.09 0.14 0.20 0.35 0.44 0.65 0.76 1.03<br />

10 10 0.01 0.01 0.01 0.01 0.02 0.02 0.04 0.06 0.08 0.10 0.13<br />

12 10 0.02 0.04 0.05 0.08 0.11 0.19 0.24 0.36 0.43 0.58 0.76 1.17<br />

4,5,6 D,E 5 0.01 0.01 0.02 0.04 0.05 0.09 0.12 0.17<br />

4,5,6 6 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03<br />

8 D, E 5 0.06 0.09 0.18 0.23 0.35 0.49 0.85 1.06<br />

8 6 0.02 0.03 0.05 0.07 0.11 0.15 0.26 0.32<br />

8 8 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01<br />

10 D, E 6 0.02 0.04 0.07 0.10 0.15 0.22 0.38 0.48 0.72 0.85 1.16<br />

10 8 0.01 0.01 0.01 0.02 0.02 0.04 0.06 0.08 0.12 0.14 0.19<br />

10 10 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.04 0.05<br />

12 D, E 8 0.01 0.02 0.03 0.05 0.07 0.12 0.15 0.23 0.28 0.38 0.49 0.77<br />

12 10 0.01 0.01 0.02 0.02 0.04 0.05 0.07 0.08 0.11 0.14 0.21<br />

4,5,6 F 6 0.01 0.01 0.03 0.05 0.08 0.16 0.21 0.32<br />

4,5,6,8 5 0.01 0.03 0.06 0.10 0.16 0.30 0.38 0.58 0.83 1.43 1.78<br />

8,10 F 6 0.05 0.08 0.14 0.18 0.27 0.37 0.61 0.76 1.08 1.26 1.66<br />

8,10 8 0.01 0.02 0.04 0.06 0.09 0.13 0.23 0.29 0.43 0.52 0.71<br />

10 F 10 0.01 0.01 0.02 0.02 0.03 0.04 0.07 0.08 0.12 0.14 0.18<br />

12 8 0.02 0.04 0.05 0.07 0.10 0.17 0.21 0.31 0.37 0.50 0.64 0.98<br />

12 10 0.01 0.02 0.02 0.03 0.04 0.06 0.08 0.11 0.13 0.16 0.21 0.30<br />

4,5,6 H 5 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.06<br />

4 6 0.01 0.01 0.01 0.01<br />

5 6 0.01 0.01 0.01 0.01 0.01 0.01<br />

6 6 0.01 0.01 0.01 0.01 0.01 0.01 0.01<br />

8 H 5 0.03 0.05 0.09 0.11 0.18 0.25 0.43 0.54<br />

8 6 0.01 0.01 0.02 0.03 0.04 0.06 0.10 0.13<br />

8 8 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03<br />

10 H 6 0.01 0.02 0.04 0.05 0.08 0.11 0.18 0.22 0.32 0.38 0.50<br />

10 8 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.03 0.05 0.05 0.07<br />

10 10 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01<br />

12 H 8 0.01 0.01 0.02 0.03 0.04 0.06 0.08 0.11 0.13 0.17 0.21 0.32<br />

12 10 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.05 0.06 0.09<br />

10 J 5 0.02 0.02 0.05 0.06 0.09 0.13 0.23 0.29 0.43 0.51 0.70<br />

12 5 0.03 0.06 0.08 0.12 0.17 0.30 0.38 0.57 0.68 0.92 1.20 1.87<br />

12 6 0.01 0.02 0.03 0.04 0.06 0.11 0.14 0.21 0.25 0.35 0.45 0.71<br />

OUTL CONVERSION CHART<br />

SYMBOL NOMINALØ<br />

I 5" (127 mm)<br />

6" (152 mm)<br />

II<br />

III<br />

IV<br />

8" (203 mm)<br />

10" (254 mm)<br />

OUTLET AVAILABILITY CHART - SEE OUTL CONVERSION FOR NOMINALØ<br />

VALV 4<br />

OUTL<br />

A,B,C<br />

D,E,F<br />

H<br />

J<br />

5 6<br />

8 10 12<br />

I, II I, II I, II III III, IV IV<br />

I, II I, II I, II I, II, III II, III, IV III, IV<br />

I, II I, II I, II I, II, III II, III, IV III, IV<br />

N/A N/A N/A N/A<br />

I<br />

I, II<br />

OUTLET PLENUM<br />

ARRANGEMENTS A B C D<br />

(TOP VIEW)<br />

E<br />

F<br />

H<br />

J<br />

SD 8<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—Air Pressure<br />

Requirements (SI)<br />

Integral Outlet Plenum Air Pressure Drop – Pa (SI)<br />

Outlet<br />

Inlet Outlet Diameter Airflow (L/s)<br />

Size Configuration (mm) 25 50 70 95 120 165 190 235 280 375 420 520 565 660 755 940<br />

4,5,6 A,C 127 4 17 37 66 102 199 260 405<br />

4,5,6 152 3 8 18 32 49 93 120 185<br />

8,10 AC 203 9 14 27 36 56 81 145 185 277 330 451<br />

10 254 3 5 10 13 21 30 53 67 101 120 164<br />

12 254 8 15 19 29 42 73 91 134 159 214 277 427<br />

4,5,6 B 127 3 8 20 36 58 119 158 254<br />

4,5,6 152 3 3 4 6 10 19 24 37<br />

8 203 3 3 5 6 8 11 19 23<br />

10 B 203 6 9 17 22 35 49 86 109 161 190 257<br />

10 254 3 3 3 3 4 6 11 14 20 24 33<br />

12 254 5 10 12 19 28 48 61 90 107 145 188 292<br />

4,5,6 D,E 127 3 3 6 9 13 23 29 42<br />

4,5,6 152 3 3 3 3 3 3 4 6<br />

8 D, E 127 15 23 44 57 87 123 211 264<br />

8 152 5 7 13 17 26 37 64 81<br />

8 203 3 3 3 3 3 3 3 3<br />

10 D, E 152 6 9 18 24 37 54 95 120 179 213 289<br />

10 203 3 3 3 4 6 9 16 20 30 35 48<br />

10 254 3 3 3 3 3 3 4 5 8 9 12<br />

12 D, E 203 3 6 7 12 17 30 38 57 69 94 123 193<br />

12 254 3 3 3 4 6 10 12 17 20 27 34 52<br />

4,5,6 F 152 3 4 8 14 21 40 52 81<br />

4,5,6,8 127 3 7 15 25 39 74 95 145 206 355 444<br />

8,10 F 152 13 19 35 45 66 92 153 189 269 315 414<br />

8,10 203 3 5 10 14 22 31 56 72 108 129 177<br />

10 F 254 3 3 4 5 7 10 17 21 29 34 45<br />

12 203 5 9 11 18 25 43 53 78 92 124 159 244<br />

12 254 3 4 5 7 9 16 19 27 31 41 51 75<br />

4,5,6 H 127 3 3 3 3 3 7 9 15<br />

4 152 3 3 3 3<br />

5 152 3 3 3 3 3 3<br />

6 152 3 3 3 3 3 3 3<br />

8 H 127 8 12 22 29 44 62 108 136<br />

8 152 3 3 6 7 11 15 26 33<br />

8 203 3 3 3 3 3 3 5 6<br />

10 H 152 4 5 10 13 19 27 45 56 81 95 126<br />

10 203 3 3 3 3 3 4 6 8 12 14 18<br />

10 254 3 3 3 3 3 3 3 3 3 3 3<br />

12 H 203 3 3 4 6 9 15 19 27 32 42 53 80<br />

12 254 3 3 3 3 3 4 5 7 9 11 15 22<br />

10 J 127 4 6 11 15 23 33 58 73 108 128 173<br />

12 127 7 14 19 29 42 75 95 142 168 229 299 467<br />

12 152 3 5 7 11 15 28 35 53 63 86 113 178<br />

OUTL CONVERSION CHART<br />

SYMBOL NOMINALØ<br />

I 5" (127 mm)<br />

6" (152 mm)<br />

II<br />

III<br />

IV<br />

8" (203 mm)<br />

10" (254 mm)<br />

OUTLET AVAILABILITY CHART - SEE OUTL CONVERSION FOR NOMINALØ<br />

VALV 4<br />

OUTL<br />

A,B,C<br />

D,E,F<br />

H<br />

J<br />

5 6<br />

8 10 12<br />

I, II I, II I, II III III, IV IV<br />

I, II I, II I, II I, II, III II, III, IV III, IV<br />

I, II I, II I, II I, II, III II, III, IV III, IV<br />

N/A N/A N/A N/A<br />

I<br />

I, II<br />

OUTLET PLENUM<br />

ARRANGEMENTS A B C D<br />

(TOP VIEW)<br />

E<br />

F<br />

H<br />

J<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 9


Single-Duct<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Inlet Size 04, 05, 06 (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 45 60 90 100 150 200 250 300 400 500<br />

1-Row 0.5 0.55 4.16 4.82 5.83 6.10 7.26 8.17 8.94 9.62 10.73 11.60<br />

Capacity 1.0 1.84 4.42 5.20 6.41 6.75 8.22 9.42 10.47 11.40 13.00 14.36<br />

MBH 1.5 3.74 4.52 5.34 6.63 7.00 8.60 9.93 11.11 12.17 14.02 15.62<br />

2.0 6.22 4.57 5.41 6.75 7.13 8.80 10.21 11.46 12.59 14.60 16.34<br />

2.5 9.24 4.61 5.46 6.82 7.22 8.93 10.39 11.68 12.86 14.97 16.81<br />

2-Row 0.5 1.14 5.07 6.36 8.47 9.06 11.41 13.07 14.30 — — —<br />

Capacity 1.0 3.84 5.25 6.68 9.16 9.89 12.97 15.34 17.23 18.77 21.15 22.90<br />

MBH 1.5 7.80 5.31 6.79 9.40 10.18 13.53 16.20 18.39 20.21 23.10 25.30<br />

2.0 12.95 5.34 6.84 9.52 10.32 13.83 16.66 19.01 20.99 24.18 26.65<br />

2.5 19.16 5.36 6.88 9.59 10.41 14.01 16.94 19.39 21.48 24.87 27.51<br />

Applicable Range Size 04<br />

Size 05<br />

Size 06<br />

Inlet Size 08 (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 165 200 300 400 500 600 700 800 900<br />

1-Row 0.5 0.86 8.81 9.51 11.15 12.41 13.41 14.24 14.95 — —<br />

Capacity 1.0 2.90 10.04 10.97 13.19 14.99 16.54 17.92 19.13 20.21 21.18<br />

MBH 1.5 5.96 10.52 11.56 14.06 16.14 17.95 19.56 21.01 22.35 23.58<br />

2.0 9.97 10.78 11.88 14.54 16.79 18.76 20.53 22.14 23.61 24.97<br />

2.5 14.89 10.95 12.08 14.85 17.20 19.29 21.17 22.88 24.46 25.93<br />

2-Row 2.0 0.35 15.01 16.97 21.32 24.48 26.88 28.78 30.32 31.61 32.70<br />

Capacity 4.0 1.22 16.00 18.30 23.68 27.79 31.06 33.75 36.00 37.92 39.58<br />

MBH 6.0 2.57 16.36 18.79 24.57 29.09 32.75 35.79 38.37 40.60 42.55<br />

8.0 4.38 16.55 19.05 25.05 29.79 33.67 36.92 39.69 42.10 44.21<br />

10.0 6.63 16.66 19.21 25.35 30.23 34.25 37.63 40.54 43.06 45.29<br />

12.5 10.05 16.76 19.34 25.59 30.60 34.74 38.24 41.25 43.87 46.20<br />

Inlet Size 10 (I-P)<br />

Water<br />

Rows Gpm Drop (ft) 350 450 550 650 750 850 1000 1100 1300 1400<br />

1-Row 0.7 2.07 15.52 17.18 18.54 19.71 20.72 — — — — —<br />

Capacity 1.0 3.87 16.89 18.79 20.51 22.01 23.34 24.54 26.12 27.07 28.74 29.48<br />

MBH 1.5 7.93 18.16 20.40 22.37 24.13 25.76 27.28 29.33 30.58 32.81 33.83<br />

2.0 13.20 18.87 21.30 23.47 25.42 27.22 28.87 31.18 32.62 35.23 36.42<br />

2.5 19.67 19.31 21.88 24.18 26.26 28.19 29.98 32.45 33.97 36.82 38.14<br />

2-Row 2.0 0.72 27.75 31.74 34.93 37.54 39.72 41.58 43.91 45.22 47.42 48.35<br />

Capacity 4.0 2.62 30.43 35.52 39.76 43.37 46.48 49.21 52.71 54.74 58.23 59.74<br />

MBH 6.0 5.61 31.41 36.93 41.62 45.66 49.19 52.30 56.36 58.73 62.86 64.67<br />

8.0 9.65 31.92 37.68 42.61 46.89 50.65 53.99 58.37 60.94 65.44 67.43<br />

10.0 14.71 32.24 38.15 43.23 47.66 51.57 55.05 59.64 62.35 67.10 69.20<br />

Notes:<br />

1. Fouling Factor = 0.00025<br />

2. Capacity based on 55°F entering air temperature <strong>and</strong> 180°F entering water temperature. Refer to correction factors for different<br />

entering conditions on page 42.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature Difference (WTD).<br />

LAT = EAT +<br />

Pressure<br />

Airflow (Cfm)<br />

MBH x 921.7<br />

(<br />

WTD = EWT - LWT =<br />

Cfm ) 2 x MBH<br />

Gpm<br />

( )<br />

SD 10<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Inlet Size 12 (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 400 600 800 1000 1200 1400 1600 1800 2000<br />

1-Row 1.0 0.68 18.07 21.12 23.48 25.37 26.96 28.30 29.47 30.49 31.39<br />

Capacity 2.0 2.37 20.76 24.83 28.16 31.04 33.61 35.88 37.91 39.74 41.41<br />

MBH 3.0 4.95 21.84 26.41 30.24 33.58 36.55 39.24 41.74 44.03 46.13<br />

4.0 8.38 22.42 27.28 31.40 35.02 38.28 41.26 43.99 46.51 48.88<br />

5.0 12.62 22.78 27.83 32.14 35.95 39.41 42.57 45.49 48.21 50.74<br />

2-Row 2.0 0.25 — — — — — — — — —<br />

Capacity 5.0 1.38 35.55 45.61 53.18 59.13 63.96 67.96 71.36 74.28 76.82<br />

MBH 8.0 3.35 36.91 47.07 56.74 63.72 69.50 74.37 78.57 82.22 85.44<br />

11.0 6.14 37.56 49.28 58.51 66.04 72.33 77.69 82.33 86.40 90.01<br />

14.0 9.72 37.95 50.00 59.58 67.45 74.06 79.73 84.66 88.99 92.85<br />

17.5 14.90 38.24 50.54 60.39 68.53 75.39 81.30 86.46 91.01 95.06<br />

Notes:<br />

1. Fouling Factor = 0.0005 °F ft² h/Btu.<br />

2. Capacity based on 55°F entering air temperature <strong>and</strong> 180°F entering water temperature.<br />

Inlet Size 14 (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 700 900 1100 1300 1500 1700 2000 2300 2600 3000<br />

1-Row 2.0 1.23 31.76 35.18 38.24 40.91 43.27 45.38 48.18 50.62 52.77 55.28<br />

Capacity 3.0 2.56 34.35 38.43 42.00 45.19 48.14 50.86 54.53 57.80 60.73 64.21<br />

MBH 4.0 4.32 35.80 40.28 44.24 47.82 51.09 54.10 58.28 62.10 65.56 69.72<br />

5.0 6.50 36.73 41.47 45.70 49.54 53.07 56.34 60.85 64.96 68.79 73.44<br />

6.0 9.08 37.38 42.31 46.73 50.76 54.48 57.94 62.74 67.12 71.15 76.13<br />

7.0 12.05 37.86 42.93 47.49 51.67 55.53 59.14 64.15 68.75 73.01 78.21<br />

2-Row 5.0 1.09 55.66 63.95 70.65 76.21 80.91 84.94 90.02 94.23 97.79 101.78<br />

Capacity 9.0 3.32 59.72 69.65 77.96 85.04 91.16 96.51 103.42 109.29 114.33 120.09<br />

MBH 13.0 6.71 61.41 72.08 91.13 88.93 95.74 101.76 109.59 116.30 122.14 128.86<br />

17.0 11.24 62.34 73.44 82.92 91.13 98.35 104.76 113.16 120.39 126.71 134.03<br />

21.0 16.89 62.94 74.31 84.06 92.56 100.05 106.72 115.49 123.08 129.73 137.45<br />

22.5 19.29 63.11 74.56 84.40 92.98 100.54 107.29 116.17 123.87 130.62 138.46<br />

Notes:<br />

1. Fouling Factor = 0.0005 °F ft² h/Btu.<br />

2. Capacity based on 55°F entering air temperature <strong>and</strong> 180°F entering water temperature.<br />

Inlet Size 16 (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 900 1200 1500 1800 2000 2400 2800 3200 3600 4000<br />

1-Row 2.0 1.37 38.24 43.01 46.92 50.22 52.17 55.58 58.48 60.99 63.19 65.12<br />

Capacity 3.0 2.84 41.85 47.41 52.24 56.54 59.12 63.73 67.76 71.32 74.49 77.34<br />

MBH 4.0 4.77 43.89 50.10 55.46 60.22 63.20 68.61 73.40 77.69 81.56 85.07<br />

5.0 7.16 45.21 51.85 57.64 62.82 66.00 71.85 77.19 82.01 86.39 90.40<br />

6.0 9.98 46.14 53.08 59.19 64.67 68.06 74.28 79.91 85.13 89.90 94.29<br />

7.5 15.02 47.10 54.38 60.81 66.64 70.24 76.91 82.97 88.52 93.67 98.49<br />

2-Row 5.0 1.15 68.70 79.75 88.29 95.11 98.96 105.40 110.59 114.89 118.51 121.61<br />

Capacity 9.0 3.50 74.51 88.21 99.24 108.35 113.62 122.64 130.12 136.45 141.90 146.64<br />

MBH 13.0 7.05 76.95 91.85 104.07 114.31 120.28 130.63 139.34 146.78 153.23 158.90<br />

17.0 11.78 78.30 93.89 106.80 117.70 124.11 135.27 144.71 152.85 159.94 166.20<br />

21.0 17.67 79.16 95.20 108.56 119.91 126.60 138.31 148.26 156.86 164.39 171.06<br />

22.5 20.18 79.40 95.58 109.07 120.55 127.32 139.19 149.30 158.04 165.70 172.49<br />

Notes:<br />

1. Fouling Factor = 0.0005 °F ft² h/Btu.<br />

2. Capacity based on 55°F entering air temperature <strong>and</strong> 180°F entering water temperature. Refer to correction factors found on page 42<br />

for different entering conditions.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature Difference (WTD).<br />

LAT = EAT + MBH x 921.7<br />

(<br />

WTD = EWT - LWT =<br />

Cfm ) 2 x MBH<br />

Gpm<br />

( )<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 11


Single-Duct<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Inlet Size 16 x 24 (I-P)<br />

Water<br />

LAT = EAT +<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 1000 1700 2400 3100 3800 4500 5200 5900 6600 7300 8000<br />

1-Row 2.0 1.51 42.77 52.52 59.23 64.28 68.27 71.50 74.18 76.44 78.38 80.05<br />

Capacity 3.0 3.11 47.00 58.99 68.05 75.19 81.02 85.90 90.04 93.62 96.75 99.50<br />

MBH 4.0 5.21 49.47 62.79 73.31 81.88 89.04 95.14 100.43 105.05 109.14 112.79<br />

5.0 7.81 51.07 65.46 76.79 86.39 94.52 101.55 107.71 113.15 118.01 122.37<br />

6.0 10.88 52.20 67.37 79.41 89.63 98.51 106.25 113.09 119.18 124.65 129.60<br />

7.5 16.35 53.37 69.38 82.26 93.19 102.80 111.34 118.95 125.79 131.98 137.62<br />

2-Row 5.0 1.26 77.04 99.78 113.85 123.52 130.63 136.11 140.49 144.09 147.10 149.66<br />

Capacity 9.0 3.71 83.86 113.03 132.54 146.70 157.53 166.15 173.21 179.13 184.17 188.53<br />

MBH 13.0 7.34 86.70 118.88 141.13 157.68 170.59 181.01 189.66 196.97 203.26 208.74<br />

17.0 12.13 88.27 122.18 146.09 164.10 178.31 189.88 199.55 207.78 214.89 221.13<br />

21.0 18.02 89.27 124.32 149.31 168.32 183.42 195.79 206.17 215.05 222.75 229.51<br />

22.5 20.52 59.56 124.93 150.25 169.56 184.92 197.53 208.13 217.20 225.07 232.00<br />

Notes:<br />

1. Fouling Factor = 0.0005 °F ft² h/Btu.<br />

2. Capacity based on 55°F entering air temperature <strong>and</strong> 180°F entering water temperature. Refer to correction factors found on page 42<br />

for different entering conditions.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature Difference (WTD).<br />

MBH x 921.7<br />

(<br />

WTD = EWT - LWT =<br />

Cfm ) (<br />

2 x MBH<br />

Gpm<br />

Temperature Correction Factors for Water Pressure Drop (ft)<br />

Average Water Temperature 200 190 180 170 160 150 140 130 120 110<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (MBH)<br />

Entering Water Minus Entering Air 40 50 60 70 80 100 125 140 150 160 180 200<br />

Correction Factor 0.32 0.40 0.48 0.56 0.64 0.80 1.00 1.12 1.20 1.28 1.44 1.60<br />

)<br />

Coil Only–Water Weights<br />

Internal Internal Operating<br />

Inlet Coil Volume Volume Weight<br />

Size Type (in. 3 ) (Gal.) (lbs)<br />

04 1-Row 9.37 0.041 5.3<br />

05 1-Row 9.37 0.041 5.3<br />

06 1-Row 9.37 0.041 5.3<br />

08 1-Row 12.78 0.055 5.5<br />

10 1-Row 19.06 0.083 7.7<br />

12 1-Row 30.05 0.130 10.7<br />

14 1-Row 51.21 0.222 13.9<br />

16 1-Row 58.62 0.254 16.2<br />

24 x 16 1-Row 66.03 0.286 20.4<br />

04 2-Row 23.68 0.102 6.9<br />

05 2-Row 23.68 0.102 6.9<br />

06 2-Row 23.68 0.102 6.9<br />

08 2-Row 35.47 0.154 9.0<br />

10 2-Row 48.83 0.211 11.7<br />

12 2-Row 67.34 0.292 15.5<br />

14 2-Row 94.27 0.408 19.8<br />

16 2-Row 109.09 0.472 23.3<br />

24 x 16 2-Row 123.91 0.536 29.8<br />

SD 12<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Inlet Size 04, 05, 06 (SI)<br />

Water<br />

Pressure<br />

Inlet Size 08 (SI)<br />

Water<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 21 28 42 47 71 94 118 142 189 236<br />

1-Row 0.03 1.57 1.20 1.38 1.66 1.73 2.05 2.30 2.52 2.70 3.01 3.26<br />

Capacity 0.06 5.26 1.27 1.49 1.82 1.91 2.31 2.64 2.93 3.19 3.63 4.01<br />

kW 0.010 10.72 1.30 1.53 1.88 1.98 2.42 2.78 3.10 3.39 3.91 4.35<br />

0.13 17.82 1.32 1.55 1.91 2.02 2.47 2.86 3.20 3.51 4.06 4.54<br />

0.16 26.47 1.32 1.56 1.93 2.04 2.51 2.91 3.26 3.58 4.16 4.67<br />

2-Row 0.06 1.85 1.48 1.88 2.54 2.73 3.53 4.14 4.61 4.99 5.58 6.00<br />

Capacity 0.13 6.39 1.52 1.94 2.68 2.90 3.84 4.60 5.22 5.73 6.56 7.19<br />

kW 0.19 13.28 1.53 1.96 2.72 2.95 3.96 4.77 5.45 6.02 6.96 7.69<br />

0.25 22.39 1.54 1.97 2.75 2.98 4.01 4.86 5.57 6.18 7.18 7.96<br />

0.32 33.61 1.54 1.98 2.76 3.00 4.05 4.92 5.65 6.28 7.32 8.14<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 12°C entering air temperature <strong>and</strong> 82°C entering water temperature.<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 78 94 142 189 236 283 330 378 425<br />

1-Row 0.03 2.12 2.47 2.66 3.12 3.47 3.75 3.99 4.18 4.35 4.50<br />

Capacity 0.06 7.05 2.81 3.06 3.68 4.18 4.61 4.99 5.33 5.63 5.90<br />

kW 0.09 14.35 2.94 3.22 3.92 4.49 4.99 5.44 5.84 6.22 6.56<br />

0.13 23.82 3.01 3.31 4.05 4.67 5.22 5.71 6.15 6.56 6.93<br />

0.16 35.35 3.06 3.37 4.13 4.78 5.36 5.88 6.35 6.79 7.20<br />

2-Row 0.13 0.98 — — — — — — — — —<br />

Capacity 0.25 3.48 4.54 5.18 6.67 7.79 8.69 9.42 10.03 10.55 11.01<br />

kW 0.38 7.37 4.65 5.33 6.92 8.16 9.16 9.99 10.70 11.30 11.83<br />

0.50 12.56 4.70 5.40 7.06 8.36 9.42 10.31 11.07 11.72 12.29<br />

0.63 19.04 4.74 5.45 7.15 8.49 9.59 10.51 11.30 11.99 12.59<br />

0.79 28.90 4.77 5.49 7.22 8.60 9.73 10.68 11.50 12.22 12.84<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 12°C entering air temperature <strong>and</strong> 82°C entering water temperature.<br />

Inlet Size 10 (SI)<br />

Water<br />

Rows L/s Drop (kPa) 165 212 260 307 354 401 472 519 613 661<br />

1-Row 0.04 5.29 4.36 4.83 5.21 5.54 5.83 6.08 6.41 6.61 6.94 7.09<br />

Capacity 0.06 9.81 4.74 5.27 5.75 6.17 6.54 6.88 7.33 7.60 8.07 8.28<br />

kW 0.09 19.90 5.09 5.71 6.26 6.75 7.21 7.63 8.21 8.55 9.18 9.47<br />

0.13 33.00 5.28 5.96 6.56 7.10 7.60 8.07 8.71 9.11 9.84 10.17<br />

0.16 48.93 5.40 6.11 6.75 7.33 7.87 8.37 9.06 9.48 10.28 10.64<br />

2-Row 0.13 2.07 7.87 8.98 9.87 10.59 11.20 11.72 12.36 12.73 13.34 13.60<br />

Capacity 0.25 7.53 8.64 10.06 11.23 12.23 13.10 13.85 14.81 15.37 16.34 16.75<br />

kW 0.38 16.15 8.93 10.46 11.76 12.88 13.86 14.72 15.83 16.49 17.62 18.12<br />

0.50 27.83 9.07 10.68 12.05 13.23 14.27 15.19 16.40 17.10 18.34 18.88<br />

0.63 42.50 9.17 10.81 12.22 13.45 14.53 15.49 16.75 17.50 18.80 19.38<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 12°C entering air temperature <strong>and</strong> 82°C entering water temperature. Refer to correction factors for different<br />

entering conditions on page 45.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature Difference (WTD).<br />

LAT = EAT +<br />

(<br />

Pressure<br />

Airflow (L/s)<br />

( (4.19) L/s )<br />

kW x 0.83<br />

WTD = EWT - LWT =<br />

L/s ) kW<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 13


Single-Duct<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Inlet Size 12 (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 189 283 378 472 566 661 755 849 944<br />

1-Row 0.06 2.04 5.30 6.19 6.88 7.44 7.90 8.29 8.64 8.93 9.20<br />

Capacity 0.13 7.08 6.08 7.28 8.25 9.10 9.85 10.51 11.11 11.65 12.14<br />

kW 0.19 14.79 6.40 7.74 8.86 9.84 10.71 11.50 12.23 12.90 13.52<br />

0.25 25.04 6.57 8.00 9.20 10.26 11.22 12.09 12.89 13.63 14.33<br />

0.32 37.73 6.68 8.16 9.42 10.54 11.55 12.48 13.33 14.13 14.87<br />

2-Row 0.13 0.74 — — — — — — — — —<br />

Capacity 0.32 4.12 10.42 13.37 15.59 17.33 18.74 19.92 20.91 21.77 22.51<br />

kW 0.50 10.01 10.82 14.09 16.63 18.68 20.37 21.80 23.03 24.10 25.04<br />

0.69 18.35 11.01 14.44 17.15 19.35 21.20 22.77 24.13 25.32 26.38<br />

0.88 29.06 11.12 14.65 17.46 19.77 21.71 23.37 24.81 26.08 27.21<br />

1.10 44.53 11.21 14.81 17.70 20.08 22.10 23.83 25.34 26.67 27.86<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 12°C entering air temperature <strong>and</strong> 82°C entering water temperature.<br />

Inlet Size 14 (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 330 425 519 613 708 802 944 1085 1227 1416<br />

1-Row 0.13 3.69 9.31 10.31 11.21 11.99 12.68 13.30 14.12 14.84 15.47 16.20<br />

Capacity 0.19 7.67 10.07 11.26 12.31 13.24 14.11 14.91 15.98 16.94 17.80 18.82<br />

kW 0.25 12.93 10.49 11.80 12.97 14.01 14.97 15.86 17.08 18.20 19.21 20.43<br />

0.32 19.43 10.76 12.15 13.39 14.52 15.55 16.51 17.83 19.04 20.16 21.52<br />

0.38 27.13 10.95 12.40 13.69 14.88 15.97 16.98 18.39 19.67 20.85 22.31<br />

0.44 36.01 11.09 12.58 13.92 15.14 16.28 17.33 18.80 20.15 21.40 22.92<br />

2-Row 0.32 3.24 16.31 18.74 20.71 22.34 23.71 24.89 26.38 27.62 28.66 29.83<br />

Capacity 0.57 9.93 17.50 20.41 22.85 24.92 26.72 28.28 30.31 32.03 33.51 35.20<br />

kW 0.82 20.07 18.00 21.13 23.78 26.06 28.06 29.82 32.12 34.08 35.80 37.76<br />

1.07 33.61 18.27 21.52 24.30 26.71 28.82 30.70 33.16 35.28 37.14 39.28<br />

1.32 50.49 18.45 21.78 24.64 27.13 29.32 31.28 33.85 36.07 38.02 40.28<br />

1.42 57.67 18.50 21.85 24.73 27.25 29.47 31.44 34.05 36.30 38.28 40.58<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 12°C entering air temperature <strong>and</strong> 82°C entering water temperature.<br />

Inlet Size 16 (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 425 566 708 849 944 1133 1321 1510 1699 1888<br />

1-Row 0.13 4.10 11.21 12.61 13.75 14.72 15.29 16.29 17.14 17.87 18.52 19.09<br />

Capacity 0.19 8.48 12.26 13.90 15.31 16.57 17.33 18.68 19.86 20.90 21.83 22.67<br />

kW 0.25 14.26 12.86 14.68 16.25 17.65 18.52 20.11 21.51 22.77 23.90 24.93<br />

0.32 21.39 13.25 15.20 16.89 18.41 19.34 21.06 22.62 24.03 25.32 26.49<br />

0.38 29.83 13.52 15.56 17.35 18.95 19.95 21.77 23.42 24.95 26.35 27.63<br />

0.47 44.89 13.80 15.94 17.82 19.53 20.59 22.54 24.32 25.94 27.45 28.87<br />

2-Row 0.32 3.44 20.13 23.37 25.88 27.88 29.00 30.89 32.41 33.67 34.73 35.64<br />

Capacity 0.57 10.45 21.84 25.85 29.08 31.76 33.30 35.94 38.14 39.99 41.59 42.98<br />

kW 0.82 21.07 22.55 26.92 30.50 33.50 35.25 38.28 40.84 43.02 44.91 46.57<br />

1.07 35.21 22.95 27.52 31.30 34.50 36.37 39.64 42.41 44.79 46.87 48.71<br />

1.32 52.82 23.20 27.90 31.82 35.14 37.10 40.53 43.45 45.97 48.18 50.13<br />

1.42 60.31 23.27 28.01 31.97 35.33 37.31 40.79 43.75 46.32 48.56 50.55<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 12°C entering air temperature <strong>and</strong> 82°C entering water temperature. Refer to correction factors for different<br />

entering conditions on page 45.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature Difference (WTD).<br />

LAT = EAT + kW x 0.83<br />

WTD = EWT - LWT =<br />

( L/s ) ( kW<br />

(4.19) L/s )<br />

SD 14<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Inlet Size 16x24 (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 472 802 1133 1463 1793 2124 2454 2784 3115 3445<br />

1-Row 0.13 4.50 12.54 15.39 17.36 18.84 20.01 20.95 21.74 22.40 22.97 23.46<br />

Capacity 0.19 9.28 13.77 17.29 19.94 22.04 23.74 25.17 26.39 27.44 28.35 29.16<br />

kW 0.25 15.59 14.50 18.40 21.48 24.00 26.09 27.88 29.43 30.79 31.99 33.05<br />

0.32 23.35 14.97 19.19 22.50 25.32 27.70 29.76 31.57 33.16 34.58 35.86<br />

0.38 32.53 15.30 19.74 23.27 26.27 28.87 31.14 33.14 34.93 36.53 37.98<br />

0.47 48.88 15.64 20.33 24.11 27.31 30.13 32.63 34.86 36.87 38.68 40.33<br />

2-Row 0.32 3.75 22.58 29.24 33.37 36.20 38.28 39.89 41.17 42.23 43.11 43.86<br />

Capacity 0.57 11.08 24.58 33.13 38.84 42.99 46.17 48.70 50.76 52.50 53.97 55.25<br />

kW 0.82 21.95 25.41 34.84 41.36 46.21 49.99 53.05 55.58 57.73 59.57 61.18<br />

1.07 36.25 25.87 35.81 42.81 48.09 52.26 55.65 58.48 60.89 62.98 64.81<br />

1.32 53.88 26.16 36.43 43.76 49.33 53.76 57.38 60.42 63.02 65.28 67.26<br />

1.42 61.34 26.25 36.61 44.03 49.69 54.20 57.89 61.00 63.65 65.96 67.99<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 12°C entering air temperature <strong>and</strong> 82°C entering water temperature. Refer to correction factors for different<br />

entering conditions on page 45.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature Difference (WTD).<br />

kW x 0.83<br />

kW<br />

LAT = EAT + WTD = EWT - LWT =<br />

( L/s ) ( (4.19) L/s )<br />

Temperature Correction Factors for Water Pressure Drop (kPa)<br />

Average Water Temperature 93 88 82 77 71 66 60 54 49 43<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (kW)<br />

Entering Water Minus Entering Air 22 28 33 39 44 56 69 78 83 89 100 111<br />

Correction Factor 0.32 0.40 0.48 0.56 0.64 0.80 1.00 1.12 1.20 1.29 1.45 1.61<br />

Coil Only –Water Weights<br />

Internal Internal Operating<br />

Inlet Coil Volume Volume Weight<br />

Size Type (cm 3 ) (liters) (kg)<br />

04 1-Row 153.6 0.154 2.421<br />

05 1-Row 153.6 0.154 2.421<br />

06 1-Row 153.6 0.154 2.421<br />

08 1-Row 209.4 0.209 2.477<br />

10 1-Row 312.4 0.312 3.487<br />

12 1-Row 492.5 0.493 4.853<br />

14 1-Row 839.1 0.839 6.309<br />

16 1-Row 960.6 0.961 7.337<br />

24x16 1-Row 1082.0 1.082 9.273<br />

04 2-Row 388.0 0.388 3.12<br />

05 2-Row 388.0 0.388 3.12<br />

06 2-Row 388.0 0.388 3.12<br />

08 2-Row 581.3 0.580 4.099<br />

10 2-Row 800.1 0.799 5.294<br />

12 2-Row 1103.0 1.101 7.026<br />

14 2-Row 1545.0 1.542 8.965<br />

16 2-Row 1788.0 1.784 10.57<br />

24x16 2-Row 2030.0 2.027 13.53<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 15


Single-Duct<br />

Performance<br />

Data—<br />

Electric Data<br />

VCEF Electric Coil kW Guidelines – Minimum to Maximum<br />

Inlet Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V/240V 277V 347V 480V 208V 480V 575V 380V/50 Hz<br />

04 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 — 1.0<br />

2 1.0 1.0 1.0 1.0 — — — — —<br />

3 1.0 1.0 1.0 1.0 — — — — —<br />

05 1 1.0–2.5 1.0–2.5 1.0–2.5 1.0–2.5 1.0–2.5 1.0–2.5 1.0–2.5 1.5–2.5 1.0–2.5<br />

2 1.0–2.5 1.0–2.5 1.0–2.5 1.0–2.5 1.5–2.5 1.0–2.5 — — —<br />

3 1.0–2.5 1.0–2.5 1.0–2.5 1.5–2.5 — — — — —<br />

06 1 1.0–4.0 1.0–4.0 1.0–4.0 1.0–4.0 1.0–4.0 1.0–4.0 1.0–4.0 1.5–4.0 1.0–4.0<br />

2 1.0–4.0 1.0–4.0 1.0–4.0 1.0–4.0 1.5–4.0 1.0–4.0 — — —<br />

3 1.0–4.0 1.0–4.0 1.0–4.0 1.5–4.0 — — — — —<br />

08 1 1.0–5.0 1.0–7.0 1.0–7.0 1.0–7.0 1.0–7.0 1.0–7.0 1.0–7.0 1.5–7.0 1.0–7.0<br />

2 1.0–5.0 1.0–7.0 1.0–7.0 1.0–7.0 1.5–7.0 2.0–7.0 4.0 — 3.0–7.0<br />

3 1.0–5.0 1.0–7.0 1.0–7.0 1.5–7.0 2.0–7.0 — 6.0 — 4.0–7.0<br />

10 1 1.0–5.0 1.0–9.0 1.0–11.0 1.0–11.0 1.0–11.0 1.0–11.0 1.0–11.0 1.5–11.0 1.0–11.0<br />

2 1.0–5.0 1.0–9.0 1.0–11.0 1.0–11.0 1.0–11.0 1.0–11.0 3.0–11.0 9.0–10.0 2.0–11.0<br />

3 1.0–5.0 1.0–9.0 1.0–11.0 1.5–11.0 1.5–11.0 2.0–11.0 5.0–11.0 — 3.0–11.0<br />

12 1 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–16.0 1.0–16.0 1.0–16.0 1.5–16.0 1.0–16.0<br />

2 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–16.0 1.0–16.0 3.0–16.0 3.5–16.0 1.5–16.0<br />

3 1.0–5.0 1.0–9.0 1.0–13.0 1.5–16.0 1.5–16.0 2.0–16.0 4.0–15.0 5.5–16.0 2.5–16.0<br />

14 1 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–22.0 1.0–16.0 1.0–22.0 1.5–22.0 1.0–22.0<br />

2 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–22.0 1.0–16.0 2.0–22.0 3.0–22.0 1.5–22.0<br />

3 1.0–5.0 1.0–9.0 1.0–13.0 1.5–16.0 1.5–22.0 2.0–16.0 3.0–20.0 4.5–18.0 2.5–22.0<br />

16 1 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–22.0 1.0–16.0 1.0–30.0 1.5–30.0 1.0–30.0<br />

2 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–22.0 1.0–16.0 2.0–30.0 2.5–30.0 1.5–30.0<br />

3 1.0–5.0 1.0–9.0 1.0–13.0 1.5–16.0 1.5–22.0 2.0–16.0 3.0–30.0 4.0–26.0 2.5–30.0<br />

24 x 16 1 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–22.0 1.0–16.0 1.0–38.0 1.5–46.0 1.0–30.0<br />

2 1.0–5.0 1.0–9.0 1.0–13.0 1.0–16.0 1.0–22.0 1.0–16.0 2.0–38.0 2.5–46.0 1.5–30.0<br />

3 1.0–5.0 1.0–9.0 1.0–13.0 1.5–16.0 1.5–22.0 1.5–16.0 3.0–38.0 3.5–40.0* 2.5–30.0<br />

* 36.0 not available<br />

Notes:<br />

1. Coils available with 24-volt magnetic or mercury contactors, load carrying P.E switches, <strong>and</strong> P.E. switch with magnetic or mercury contactors.<br />

2. Available kW increments are by 0.5 kW from 1.0 to 8.0 kW, by 1.0 kW from 9.0 to 18.0 kW, <strong>and</strong> by 2.0 kW from 18.0 to 46.0 kW.<br />

3. Each stage will be equal in kW output.<br />

4. All heaters contain an auto-thermal cutout <strong>and</strong> a manual-reset cutout.<br />

5. The current amp draw for the heater elements is calculated by the formula below.<br />

6. The maximum allowable kW is based on the largest kW possible per a voltage <strong>and</strong> the minimum airflow per an inlet size <strong>and</strong> kW.<br />

Minimum Circuit Ampacity (MCA) Equation<br />

— MCA = heater amps x 1.25<br />

Maximum Overcurrent Protection (MOP) Equation<br />

— MOP = heater amps<br />

— However since MOP ≤ MCA, then choose next fuse greater than MCA.<br />

— Units without electric reheat would use smallest fuse sizing.<br />

— St<strong>and</strong>ard Fuse Sizes: 15, 20, 25, 30, 35, 40, 45, 50, <strong>and</strong> 60.<br />

Example–For MOP of Single-Duct Unit<br />

A model VCEF, electric reheat unit size 14 has 480/3 phase 15 kW electric reheat with 2 stages.<br />

15 kW – 480/3 heater 15 x 1000 = 18.06<br />

480 x 1.73<br />

MCA = 18.06 x 1.25 = 22.58 amps. Since MOP ≤ MCA, then MOP = 25.<br />

Useful formulas:<br />

Cfm x ATD<br />

kW =<br />

3145<br />

kW = 1214 x L/s x ATD<br />

kW x 1000<br />

3φamps =<br />

Primary Voltage x √ 3<br />

1φamps =<br />

kW x 1000<br />

Primary Voltage<br />

kW x 3145<br />

ATD =<br />

Cfm<br />

ATD =<br />

kW<br />

1214 x L/s<br />

SD 16<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—<br />

Electric Data<br />

Minimum <strong>and</strong> Maximum Airflow per Inlet Size <strong>and</strong> kW<br />

√<br />

I-P<br />

SI<br />

I-P<br />

SI<br />

Inlet Min Max Min Max<br />

Inlet Min Max Min Max<br />

Size kW Cfm Cfm L/s L/s<br />

Size kW Cfm Cfm L/s L/s<br />

4 1.0 130 225 61 106<br />

14 1.0–9.0 640 3000 302 1415<br />

5 1.0 125 350 59 165<br />

10.0 720 3000 340 1415<br />

1.5 165 350 78 165<br />

11.0 800 3000 378 1415<br />

2.0 185 350 87 165<br />

12.0 880 3000 415 1415<br />

2.5 205 350 97 165<br />

13.0 960 3000 453 1415<br />

14.0 1040 3000 491 1415<br />

6 1.0 120 500 57 236<br />

15.0 1120 3000 529 1415<br />

1.5 150 500 71 236<br />

16.0 1200 3000 566 1415<br />

2.0 180 500 85 236<br />

17.0 1280 3000 604 1415<br />

2.5 210 500 99 236<br />

18.0 1345 3000 635 1415<br />

3.0 240 500 113 236<br />

20.0 1475 3000 696 1415<br />

3.5 270 500 127 236<br />

22.0 1600 3000 755 1415<br />

4.0 300 500 142 236<br />

16 1.0–12.0 840 4000 396 1886<br />

8 1.0–3.0 210 900 99 425<br />

13.0 910 4000 430 1886<br />

3.5 265 900 125 425<br />

14.0 980 4000 463 1886<br />

4.0 315 900 149 425<br />

15.0 1050 4000 496 1886<br />

4.5 345 900 163 425<br />

16.0 1120 4000 529 1886<br />

5.0 380 900 179 425<br />

17.0 1190 4000 562 1886<br />

5.5 420 900 198 425<br />

18.0 1260 4000 595 1886<br />

6.0 450 900 212 425<br />

20.0 1400 4000 661 1886<br />

6.5 490 900 231 425<br />

22.0 1540 4000 727 1886<br />

7.0 525 900 248 425<br />

24.0 1680 4000 793 1886<br />

10 1.0–4.5 330 1400 156 660<br />

26.0 1820 4000 859 1886<br />

5.0 370 1400 175 660<br />

28.0 1960 4000 925 1886<br />

5.5 410 1400 194 660<br />

30.0 2100 4000 991 1886<br />

6.0 450 1400 212 660<br />

24 x 16 1.0–22.0 1600 8000 755 3772<br />

6.5 495 1400 234 660<br />

24.0 1800 8000 850 3772<br />

7.0 550 1400 260 660<br />

26.0 2000 8000 944 3772<br />

7.5 605 1400 286 660<br />

28.0 2200 8000 1038 3772<br />

8.0 660 1400 312 660<br />

30.0 2400 8000 1133 3772<br />

9.0 710 1400 335 660<br />

32.0 2600 8000 1227 3772<br />

10.0 765 1400 361 660<br />

34.0 2800 8000 1322 3772<br />

11.0 820 1400 387 660<br />

36.0 3000 8000 1416 3772<br />

12 1.0–6.5 470 2000 222 943<br />

38.0 3200 8000 1510 3772<br />

7.0 520 2000 245 943<br />

40.0 3400 8000 1605 3772<br />

7.5 565 2000 267 943<br />

42.0 3600 8000 1699 3772<br />

8.0 615 2000 290 943<br />

44.0 3800 8000 1794 3772<br />

9.0 705 2000 333 943<br />

46.0 4000 8000 1888 3772<br />

10.0 785 2000 371 943<br />

11.0 860 2000 406 943<br />

12.0 940 2000 444 943<br />

13.0 1000 2000 472 943<br />

14.0 1055 2000 498 943<br />

15.0 1115 2000 526 943<br />

16.0 1175 2000 555 943<br />

Note: Minimum <strong>and</strong> maximum airflow is based on UL listing <strong>and</strong> certification.<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 17


Single-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Discharge Sound Power (dB)<br />

Inlet Fan 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0"∆Ps<br />

Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

4 80 38 57 57 45 44 40 37 58 61 52 51 47 46 60 66 60 60 60 56 61 69 66 66 64 61<br />

120 57 60 60 48 48 43 41 64 65 54 53 49 47 64 69 63 60 57 55 65 72 70 68 63 60<br />

150 71 60 60 48 49 45 42 65 66 55 54 51 49 67 72 64 61 58 56 68 72 71 68 64 61<br />

225 106 65 64 53 54 50 49 70 71 60 59 55 54 73 77 67 64 61 59 72 78 72 69 65 63<br />

5 130 61 52 52 44 43 41 38 55 58 51 50 48 47 57 64 60 59 58 55 59 68 68 66 63 60<br />

200 94 55 55 47 47 43 40 59 61 55 53 50 49 62 67 63 61 58 56 61 69 69 67 63 61<br />

250 118 57 57 48 49 44 42 62 63 56 55 52 50 65 69 63 60 58 57 65 71 71 69 63 61<br />

350 165 59 59 53 53 48 47 66 65 58 57 53 53 70 72 66 62 59 58 70 74 72 69 64 63<br />

6 200 94 52 53 45 44 41 38 56 59 54 52 49 47 58 66 63 60 58 55 60 70 71 67 63 60<br />

300 142 56 56 47 48 44 41 59 61 55 53 50 48 63 67 64 61 58 56 64 71 71 69 64 62<br />

400 189 57 56 50 49 44 42 63 63 57 55 51 50 66 69 65 61 58 57 68 72 72 68 63 62<br />

500 236 61 60 54 53 49 47 65 65 60 58 53 53 69 71 68 63 60 59 71 74 72 69 64 63<br />

8 350 165 54 54 47 45 44 40 57 61 53 51 50 53 61 68 61 58 58 60 64 73 70 66 63 61<br />

520 245 56 56 50 48 45 42 59 63 56 53 52 56 64 71 64 61 60 66 66 73 71 66 65 66<br />

700 330 58 57 53 51 48 44 62 64 59 56 53 57 66 71 66 62 61 64 68 74 73 68 66 69<br />

900 425 61 60 56 56 52 49 65 65 61 59 56 57 70 72 68 64 62 65 72 75 73 68 67 68<br />

10 550 260 53 52 52 51 45 40 58 60 57 57 53 48 64 66 64 66 62 58 66 69 69 71 66 62<br />

820 387 56 55 54 51 46 42 61 62 60 60 55 52 66 68 65 66 62 60 69 72 69 70 66 63<br />

1100 519 60 58 57 54 49 46 65 65 63 61 56 53 70 70 67 68 63 60 72 73 72 71 67 64<br />

1400 661 64 61 61 58 53 51 69 66 64 62 57 54 73 72 69 66 63 60 74 75 72 70 67 64<br />

12 800 378 54 52 52 49 47 41 59 59 57 55 55 52 66 67 65 63 63 61 67 69 68 67 67 64<br />

1200 566 56 54 54 50 49 43 62 62 60 57 57 55 68 69 67 63 64 62 72 73 71 68 68 66<br />

1600 755 59 57 58 53 52 46 64 64 62 58 57 56 70 71 69 64 65 63 73 75 73 69 69 66<br />

2000 944 63 60 61 56 56 51 68 67 65 61 60 59 73 73 70 65 65 64 76 75 74 69 69 67<br />

14 1100 519 54 52 51 46 44 39 60 60 57 54 53 51 65 71 66 62 61 59 68 72 71 67 66 63<br />

1600 755 57 55 55 49 46 41 63 61 60 56 54 51 67 70 67 63 62 61 70 75 72 67 67 64<br />

2100 991 60 59 59 52 49 44 65 65 63 57 54 52 69 71 69 64 62 61 72 73 73 68 67 64<br />

3000 1416 66 65 67 57 55 52 71 70 68 61 58 58 76 76 72 66 64 61 77 77 75 70 69 66<br />

16 1400 661 54 52 51 47 46 40 60 60 58 55 55 51 66 71 67 63 63 62 69 75 73 69 67 66<br />

2100 991 57 55 55 51 49 43 63 62 60 57 55 52 68 70 68 64 64 61 70 75 73 70 68 66<br />

2800 1321 61 60 61 54 51 48 66 65 64 58 57 54 69 71 70 65 64 63 72 73 73 70 69 65<br />

4000 1888 68 67 68 63 57 54 71 70 70 63 61 59 75 75 73 68 65 64 77 76 76 72 70 67<br />

24 2700 1274 68 67 61 58 54 50 72 71 67 65 62 58 74 75 73 71 68 65 75 77 76 75 72 69<br />

x 4000 1888 70 70 65 62 58 54 74 75 71 68 65 61 78 79 77 75 72 68 79 81 80 78 76 72<br />

16 5300 2501 69 70 67 64 61 58 75 76 75 71 67 63 78 82 81 78 74 70 81 84 84 81 78 74<br />

6000 2832 68 70 68 65 62 60 75 76 76 72 68 65 79 82 83 79 75 71 81 85 86 82 79 75<br />

7500 3540 67 70 70 67 63 63 76 76 77 73 70 68 80 83 88 81 76 73 82 86 90 84 80 76<br />

8000 3776 67 70 71 68 64 64 76 76 78 74 71 69 80 83 89 82 77 74 82 86 91 85 81 77<br />

Notes:<br />

1. All data are measured in accordance with current Industry St<strong>and</strong>ard ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10-12 watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

SD 18<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Radiated Sound Power (dB)<br />

Radiated Sound Power (dB)<br />

Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0"∆Ps 3.0" ∆Ps<br />

Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

4 80 38 48 45 40 33 31 23 48 47 43 37 34 25 48 51 53 47 43 35 46 52 60 54 48 42<br />

120 57 47 45 40 33 30 23 49 48 45 38 34 27 50 51 54 46 42 36 51 54 60 52 47 42<br />

150 71 47 45 41 35 30 24 51 49 46 39 35 28 52 53 55 47 43 37 51 56 61 53 48 42<br />

225 106 52 49 44 40 35 30 57 54 49 43 39 33 60 59 57 48 45 39 59 61 63 54 49 44<br />

5 130 61 47 44 35 29 24 21 48 45 41 35 30 25 48 48 50 45 39 33 48 51 58 51 45 40<br />

200 94 48 45 38 32 25 22 49 47 43 37 32 26 50 52 52 45 39 35 50 55 58 51 45 40<br />

250 118 48 44 40 34 27 23 50 48 45 38 33 27 52 53 53 44 40 35 53 56 60 52 44 40<br />

350 165 51 47 44 38 31 26 55 51 47 41 35 31 59 56 55 47 41 37 56 58 60 51 44 40<br />

6 200 94 52 46 38 31 25 22 50 47 43 36 31 26 52 51 52 43 38 33 51 55 59 50 44 40<br />

300 142 52 48 41 33 25 22 55 50 46 38 32 27 56 53 53 44 38 35 57 57 60 50 44 39<br />

400 189 55 49 44 36 28 24 56 53 48 40 33 28 59 56 55 46 40 35 59 58 60 50 43 40<br />

500 236 55 49 47 40 32 27 59 54 51 43 36 31 62 59 57 47 41 36 63 60 61 52 44 40<br />

8 350 165 46 42 38 31 27 22 48 45 43 36 35 27 54 52 53 42 41 36 56 58 64 52 46 42<br />

520 245 49 43 41 35 31 24 51 48 47 39 37 29 55 54 54 45 43 38 56 57 63 51 47 44<br />

700 330 50 46 44 38 34 26 54 51 50 42 38 34 58 57 57 48 45 39 60 59 62 52 48 44<br />

900 425 56 49 50 44 37 29 59 53 53 46 41 35 62 59 57 49 46 39 63 61 62 53 49 44<br />

10 550 260 48 44 42 32 25 24 52 49 48 40 31 26 55 55 53 47 39 32 58 58 59 50 44 38<br />

820 387 53 47 43 36 28 25 57 52 49 41 33 27 60 58 55 48 40 33 62 61 60 52 44 38<br />

1100 519 58 50 46 39 30 27 61 55 51 43 35 29 64 61 57 50 42 35 67 63 61 53 45 39<br />

1400 661 62 53 49 42 34 30 66 58 54 46 38 33 69 63 58 51 43 37 71 65 63 55 46 41<br />

12 800 378 49 46 40 33 27 27 54 51 46 39 34 29 58 58 53 46 42 35 59 62 59 51 47 40<br />

1200 566 54 48 43 35 29 27 59 54 48 41 35 30 64 61 55 48 43 37 66 64 60 52 47 42<br />

1600 755 60 53 47 38 32 30 63 58 50 42 37 32 68 64 57 49 43 39 71 66 61 53 48 43<br />

2000 944 63 58 52 42 37 34 67 62 54 45 40 38 72 68 58 50 45 42 75 68 61 54 50 45<br />

14 1100 519 47 46 36 30 24 23 53 53 42 36 32 27 57 61 52 43 40 35 60 64 60 48 43 38<br />

1600 755 52 49 39 32 24 23 56 54 45 38 32 26 60 63 52 44 39 35 63 67 60 49 43 40<br />

2100 991 55 52 43 35 27 25 59 57 48 40 33 28 63 64 55 46 40 36 65 67 61 50 44 40<br />

3000 1416 63 59 51 42 34 31 65 64 54 44 36 34 68 68 57 48 41 37 69 69 60 52 45 41<br />

16 1400 661 50 47 38 32 26 23 54 54 45 40 35 29 60 62 53 47 43 38 63 66 61 52 47 43<br />

2100 991 51 49 41 35 28 24 56 54 47 41 36 30 61 61 55 49 44 39 64 66 60 53 48 43<br />

2800 1321 56 54 45 38 31 27 59 56 49 43 37 32 62 62 56 49 44 39 65 65 61 54 49 44<br />

4000 1888 61 60 55 45 38 32 63 63 56 47 41 36 67 66 59 51 46 41 69 66 62 55 50 45<br />

24 2700 1274 65 63 53 45 38 30 70 65 60 52 45 37 71 69 66 59 51 45 72 71 69 62 54 50<br />

x 4000 1888 67 67 57 48 40 32 71 71 64 55 48 41 74 75 69 61 54 48 76 77 72 65 58 52<br />

16 5300 2501 67 66 58 49 42 35 74 75 69 57 49 42 76 77 74 64 56 50 78 79 76 67 60 53<br />

6000 2832 68 66 59 51 44 37 74 75 69 58 50 43 77 78 75 65 57 51 79 80 77 68 61 54<br />

7500 3540 69 67 61 54 48 42 75 74 70 59 51 45 78 80 78 66 58 52 80 81 79 69 62 55<br />

8000 3776 69 67 62 55 49 44 75 74 70 59 52 46 79 81 79 67 59 52 80 82 80 70 63 56<br />

Notes:<br />

1. All data are measured in accordance with current Industry St<strong>and</strong>ard ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10 -12 watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 19


Single-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Sound Noise Criteria (NC)<br />

Discharge<br />

Radiated<br />

Inlet Pressure (∆Ps)<br />

Inlet Pressure (∆Ps)<br />

Inlet 0.5" 1.0" 2.0" 3.0" 0.5" 1.0" 2.0" 3.0"<br />

Size Cfm L/s (127 Pa) (254 Pa) (508 Pa) (762 Pa) (127 Pa) (254 Pa) (508 Pa) (762 Pa)<br />

4 80 38 15 20 26 30 — 16 27 35<br />

120 57 19 25 30 34 — 19 29 35<br />

150 71 19 26 34 34 — 20 30 36<br />

225 106 24 32 39 40 17 23 32 38<br />

5 130 61 — 16 24 29 — 15 24 33<br />

200 94 — 20 27 30 — 16 26 33<br />

250 118 15 22 30 32 — 19 27 35<br />

350 165 17 25 34 36 17 21 30 35<br />

6 200 94 — 17 26 31 — 16 26 34<br />

300 142 — 20 27 32 15 20 27 35<br />

400 189 — 22 30 34 17 22 30 35<br />

500 236 19 25 32 36 21 25 32 36<br />

8 350 165 — 17 27 34 — 16 27 39<br />

520 245 — 21 31 34 — 21 29 38<br />

700 330 — 22 31 35 17 24 32 37<br />

900 425 17 24 32 36 24 27 32 37<br />

10 550 260 — 16 24 27 15 22 27 34<br />

820 387 — 19 26 31 16 23 30 35<br />

1100 519 — 22 29 32 20 25 32 36<br />

1400 661 17 24 31 35 25 30 34 38<br />

12 800 378 — 16 25 27 — 20 27 34<br />

1200 566 — 19 27 32 16 22 31 35<br />

1600 755 — 21 30 35 22 27 35 37<br />

2000 944 16 25 32 35 27 32 39 41<br />

14 1100 519 — 16 30 31 — 21 31 35<br />

1600 755 — 17 29 35 16 22 34 38<br />

2100 991 15 22 30 32 20 26 35 38<br />

3000 1416 22 29 36 37 29 35 39 40<br />

16 1400 661 — 16 30 35 — 22 32 37<br />

2100 991 — 19 29 35 16 22 31 37<br />

2800 1321 16 22 30 32 22 25 32 36<br />

4000 1888 25 29 35 36 30 34 37 37<br />

24 2700 1274 25 30 35 37 34 36 41 45<br />

x 4000 1888 29 35 39 41 38 42 47 50<br />

16 5500 2501 29 36 42 45 37 47 50 52<br />

6000 2832 29 36 42 46 37 47 51 54<br />

7500 3540 29 36 44 47 38 46 55 56<br />

8000 3776 29 36 44 47 38 46 56 57<br />

Notes:<br />

1. “—” represents NC levels below NC 15.<br />

2. NC Values are calculated using current Industry St<strong>and</strong>ard ARI 885, 2002 addendum to revision 1998. Radiated Transfer Function<br />

obtained from Appendix E, Type 2 Mineral Fiber Insulation.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

ARI 885-98 DISCHARGE TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Small Box (< 300 cfm) -24 -28 -39 -53 -59 -40<br />

Medium Box (300-700 cfm) -27 -29 -40 -51 -53 -39<br />

Large Box (> 700 cfm) -29 -30 -41 -51 -52 -39<br />

Note: Add to terminal unit sound power to determine discharge sound<br />

pressure in the space.<br />

ARI 885-98 RADIATED TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Type 1 – Glass Fiber -19 -19 -21 -25 -29 -35<br />

Type 2 – Mineral Fiber Insulation -18 -19 -20 -26 -31 -36<br />

Type 3 – Solid Gypsum Board -23 -26 -25 -27 -27 -28<br />

Note: Select the ceiling type which most closely represents the<br />

application. Next, add to terminal unit sound power to determine radiated<br />

sound pressure in the space.<br />

SD 20<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

ARI Conditions<br />

Inlet<br />

1.5" Inlet Pressure (381 Pa)<br />

Size Cfm L/s 2 3 4 5 6 7<br />

4 150 71 67 70 60 58 55 53<br />

5 250 118 63 66 60 57 55 54<br />

6 400 189 65 67 62 59 56 55<br />

8 700 330 64 68 62 59 58 60<br />

10 1100 519 69 68 66 66 61 57<br />

12 1600 755 68 69 66 61 62 60<br />

14 2100 991 68 68 66 61 59 58<br />

16 2800 1321 69 68 67 62 61 60<br />

24x16 5300 2501 77 79 78 75 71 68<br />

Radiated Sound Power (dB)<br />

ARI Conditions<br />

Inlet<br />

1.5" Inlet Pressure (381 Pa)<br />

Size Cfm L/s 2 3 4 5 6 7<br />

4 150 71 52 52 50 43 39 33<br />

5 250 118 52 50 49 42 37 31<br />

6 400 189 58 54 51 43 37 32<br />

8 700 330 57 54 53 45 42 36<br />

10 1100 519 63 59 54 47 39 32<br />

12 1600 755 66 62 54 46 40 36<br />

14 2100 991 61 61 51 43 37 32<br />

16 2800 1321 60 60 53 46 41 36<br />

24x16 5300 2501 75 76 72 61 53 46<br />

Notes:<br />

1. All sound data rated in accordance with current Industry St<strong>and</strong>ard<br />

ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10 -12 watts.<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 21


Single-Duct<br />

Dimensional<br />

Data<br />

SINGLE-DUCT COOLING ONLY WITH OPTIONAL OUTLET PLENUM (VCCF)<br />

VALV<br />

04<br />

05<br />

06<br />

08<br />

10<br />

12<br />

14<br />

16<br />

CFM<br />

225<br />

350<br />

500<br />

900<br />

1400<br />

2000<br />

3000<br />

4000<br />

L/s<br />

106<br />

165<br />

236<br />

425<br />

661<br />

994<br />

1416<br />

1888<br />

INLET SIZE<br />

(NOMINAL Ø)<br />

L<br />

H<br />

W<br />

D<br />

C<br />

4" (104 mm) 11.50" (292 mm) 9.50" [241 mm] 11.50" (292 mm) 5.00" (127 mm)<br />

5" (127 mm)<br />

6" (152 mm)<br />

8" (203 mm) 11.00" (279 mm) 11.50" [292 mm] 12.50" (318 mm) 5.50" (140 mm)<br />

10" (254 mm) 12.00" (305 mm) 13.50" [343 mm] 15.50" (394 mm) 5.00" (127 mm)<br />

12" (305 mm) 13.00" (330 mm) 15.50" [394 mm] 18.50" (470 mm) 4.50" (114 mm)<br />

14" (356 mm)<br />

16" (406 mm)<br />

14.00" (356 mm)<br />

15.00" (381 mm)<br />

19.50" [495 mm] 20.50" (521 mm)<br />

24.50" (622 mm) 3.50" (89 mm)<br />

DISCHARGE DIM W/O OUTLET PLENUM<br />

Z<br />

A (h)<br />

B (w)<br />

E<br />

2.75" (70 mm) 8.00" (203 mm) 9.85" (250 mm) 11.50" (292 mm)<br />

2.25" (57 mm) 10.00" (254 mm) 11.00" (279 mm)<br />

2.75" (70 mm) 12.00" (305 mm) 14.00" (356 mm) 14.00" (356 mm)<br />

3.25" (83 mm) 14.00" (356 mm) 17.00" (432 mm) 14.00" (356 mm)<br />

4.25" (108 mm)<br />

18.00" (457 mm) 19.00" (483 mm)<br />

23.00" (584 mm)<br />

NA<br />

NA<br />

WT<br />

LBS<br />

(KGS)<br />

21 (9.5)<br />

22 (10)<br />

30 (14)<br />

38 (17)<br />

46 (21)<br />

51 (23)<br />

24RT 8000<br />

3776<br />

24" x 16" 18.00" (457 mm)<br />

(610 mm x 406 mm)<br />

28.50" (724 mm)<br />

5.55" (141 mm)<br />

2.25" (57 mm)<br />

27.00" (686 mm)<br />

NA<br />

70 (32)<br />

CONTROL BOX<br />

ANALOG OR DDC/UCM<br />

(PNEU. CONTROLS AREA)<br />

6.50"<br />

(165 mm)<br />

ACTUATOR<br />

FLOW RING<br />

TUBING<br />

Z<br />

C<br />

AIRFLOW<br />

AIR<br />

VALVE<br />

4.00"<br />

[102mm]<br />

L<br />

SIZE 04 & 05<br />

5.75" (146 mm)<br />

OUTL CONVERSION CHART<br />

SYMBOL NOMINALØ<br />

I 5" (127 mm)<br />

II 6" (152 mm)<br />

III 8" (203 mm)<br />

IV 10" (254 mm)<br />

OUTLET AVAILABILITY CHART - SEE OUTL CONVERSION FOR NOMINALØ<br />

OUTL<br />

VALV<br />

A,B,C<br />

D,E,F<br />

H<br />

J<br />

4 5<br />

6<br />

8 10 12<br />

I, II I, II I, II III III, IV IV<br />

I, II I, II I, II I, II, III II, III, IV III, IV<br />

I, II I, II I, II I, II, III II, III, IV III, IV<br />

N/A N/A N/A N/A<br />

I<br />

I, II<br />

SLIP & DRIVE<br />

CONNECTION<br />

DISCHARGE<br />

DIMENSIONS (BxA)<br />

TOP VIEW<br />

D<br />

AIRFLOW<br />

ARRANGEMENT "H"<br />

1.50" (38 mm) FLANGE<br />

E<br />

1.00"<br />

(25.4 mm)<br />

5.50"<br />

(140 mm)<br />

W<br />

8.25"<br />

(210 mm)<br />

BACK VIEW<br />

H<br />

<strong>NOTE</strong>S:<br />

1. Air inlet centered in unit front panel.<br />

2. Outlet combinations to remote diffusers have<br />

optional integral balancing dampers. (See<br />

specification sheet.)<br />

3. Outlet connections are centered in plenum panel.<br />

4. Plenum not available with size 14 & 16 units.<br />

5. Minimum of 1.5 duct diamenters of straight duct<br />

required at inlet for proper flow reading.<br />

6. Allow 12" (305 mm) on control side for servicing.<br />

SD 22<br />

A B C D E F H J<br />

OUTLET PLENUM<br />

ARRANGEMENTS<br />

(TOP VIEW)<br />

7. Weights are an estimation <strong>and</strong> will vary based on<br />

selected options, insulation type, etc.<br />

8. Unit is field convertible from a left-h<strong>and</strong> connection<br />

(shown) to right-h<strong>and</strong> by rotating unit.<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Dimensional<br />

Data<br />

SINGLE-DUCT HOT WATER WITH OPTIONAL OUTLET PLENUM (VCWF)<br />

VALV CFM L/s<br />

INLET SIZE<br />

DISCHARGE DIM W/O OUTLET PLENUM<br />

(NOMINAL Ø)<br />

L<br />

H<br />

W<br />

D<br />

Z<br />

C<br />

A (h)<br />

B (w)<br />

E<br />

04 225 106 4" (104 mm) 11.50" (292 mm) 9.50" (241 mm) 11.50" (292 mm) 5.00" (127 mm) 2.75" (70 mm) 8.00" (203 mm) 10.00" (254 mm) 11.50" (292 mm)<br />

05<br />

06<br />

08<br />

350<br />

500<br />

900<br />

165<br />

236<br />

425<br />

5" (127 mm)<br />

6" (152 mm)<br />

8" (203 mm) 11.00" (279 mm) 11.50" (292 mm) 12.50" (318 mm) 5.50" (140 mm) 2.25" (57 mm) 10.00" (254 mm) 11.00" (279 mm)<br />

10 1400 661 10" (254mm) 12.00" (305 mm) 13.50" (343 mm) 15.50" (394 mm) 5.00" (127 mm) 2.75" (70 mm) 12.00" (305 mm) 14.00" (356 mm) 14.00" (356 mm)<br />

12 2000 994 12" (305 mm) 13.00" (330 mm) 15.50" (394 mm) 18.50" (470 mm) 4.50" (114 mm) 3.25" (83 mm) 14.00" (356 mm) 17.00" (432 mm) 14.00" (356 mm)<br />

14 3000 1416 14" (356 mm) 14.00" (356 mm) 19.50" (495 mm) 20.50" (521 mm)<br />

18.00" (457 mm) 19.00" (483 mm) NA<br />

16 4000 1888 16" (406 mm) 15.00" (381 mm)<br />

24.50" (622 mm) 3.50" (89 mm) 4.25" (108 mm)<br />

23.00" (584 mm) NA<br />

24RT 8000 3776<br />

24" x 16"<br />

18.00" (457 mm)<br />

(610 mm x 406 mm)<br />

28.50" (724 mm) 5.55" (141 mm) 2.25" (57 mm)<br />

27.00" (686 mm) NA<br />

WT<br />

LBS<br />

(KGS)<br />

27 (12)<br />

30 (14)<br />

40 (18)<br />

51 (23)<br />

62 (28)<br />

71 (32)<br />

95 (43)<br />

CONTROL BOX<br />

ANALOG OR DDC/UCM<br />

(PNEU. CONTROLS AREA)<br />

6.50"<br />

(165 mm)<br />

ACTUATOR<br />

FLOW RING<br />

TUBING<br />

Z<br />

C<br />

AIRFLOW<br />

AIR<br />

VALVE<br />

4.00"<br />

(102 mm)<br />

L<br />

SIZE 04 & 05<br />

5.75" (146 mm)<br />

OUTL CONVERSION CHART<br />

SYMBOL<br />

I<br />

II<br />

III<br />

IV<br />

NOMINALØ<br />

5" (127 mm)<br />

6" (152 mm)<br />

8" (203 mm)<br />

10" (254 mm)<br />

OUTLET AVAILABILITY CHART - SEE OUTL CONVERSION FOR NOMINALØ<br />

VALV<br />

4 5<br />

6<br />

8 10 12<br />

A,B,C I, II I, II I, II III III, IV IV<br />

D,E,F I, II I, II I, II I, II, III II, III, IV III, IV<br />

OUTL<br />

H I, II I, II I, II I, II, III II, III, IV III, IV<br />

J N/A N/A N/A N/A<br />

I<br />

I, II<br />

D<br />

SLIP & DRIVE<br />

CONNECTION<br />

WATER<br />

COIL<br />

04, 05, 06 – 7.70" (196 mm)<br />

all others – 7.40" (188 mm)<br />

DISCHARGE<br />

DIMENSIONS (BxA)<br />

AIR FLOW<br />

E<br />

TOP VIEW<br />

ARRANGEMENT "H"<br />

1.50" (38 mm) FLANGE<br />

COIL ACCESS<br />

76 mm x 178 mm<br />

(3.00" x 7.00")<br />

5.50"<br />

(140 mm)<br />

W<br />

<strong>NOTE</strong>S:<br />

1. Air inlet is centered in unit front panel.<br />

8.25<br />

(210 mm)<br />

BACK VIEW<br />

H<br />

2. Outlet combinations to remote diffusers have<br />

optional integral balancing dampers (See<br />

specification sheet.)<br />

3. Outlet connections are centerd in plenum panel.<br />

4. Plenum not available with sizes 14 & 16 units.<br />

5. Minimum of 1.5 duct diameters of straight duct<br />

required for proper flow reading.<br />

6. Allow 12" (305 mm) on control side for servicing.<br />

A B C D<br />

E<br />

F<br />

H<br />

J<br />

7. Weights are an estimation <strong>and</strong> will vary based<br />

on selected options, insulation type, etc.<br />

OUTLET PLENUM<br />

ARRANGEMENTS<br />

(TOP VIEW)<br />

8. Coil furnished with stub sweat connections.<br />

H<strong>and</strong>edness of coil connections is determined<br />

by facing air stream.<br />

9. Coils are provided without internal insulation. If<br />

the unit is to be installed in a location with high<br />

humidity, external insulation around the heating<br />

coil should be installed as required.<br />

<strong>VAV</strong>-PRC008-EN<br />

10. Unit is field convertible from a left-h<strong>and</strong> connection<br />

(shown) to right-h<strong>and</strong> by rotating unit.<br />

SD 23


Single-Duct<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR 1-ROW COIL<br />

VALV<br />

04<br />

05<br />

06<br />

08<br />

10<br />

12<br />

14<br />

16<br />

24 x 16<br />

CFM<br />

LITERS<br />

per<br />

SECOND<br />

COIL<br />

CONNECTION<br />

A<br />

225 106 3 / 8 " (10 mm) O.D. SEE 7" (178 mm)<br />

21 / 32"<br />

(17 mm) 1 / 2"<br />

(13 mm) 8" (203 mm)<br />

350 165 / 8 " (10 mm) O.D. (FIG 1) 7" (178 mm) / 32"<br />

(17 mm)<br />

(13 mm) 8" (203 mm)<br />

500 236 8 " (10 mm) O.D.<br />

7" (178 mm)<br />

" (17 mm)<br />

"<br />

900 425 3 / 8 " (10 mm) O.D.<br />

9" (229 mm)<br />

(22 mm) 7 / "<br />

10"<br />

1400 661<br />

3 / 8 " (10 mm) O.D.<br />

11" (279 mm)<br />

7 / 8 (22 mm) 7 / " (11 mm) 12 " (305 mm)<br />

2000 994 7 / 8 " (22 mm) O.D. SEE 9 (248 mm) " (64 mm)<br />

" (53 mm) 14" (356 mm)<br />

3000 1416 8 " (22 mm) O.D. (FIG 2)<br />

(400 mm) "<br />

"<br />

"<br />

4000 1888 7 / " (22 mm) O.D.<br />

15 (400 mm) " (38 mm)<br />

" (27 mm) 18 "<br />

8000 3776 7 / 8 " (22 mm) O.D.<br />

15 / 4" (400 mm) 1 1 / " (38 mm) 1 1 / " (27 mm) 18 " (457 mm)<br />

B<br />

C<br />

D<br />

E<br />

10" (254 mm)<br />

10" (254 mm)<br />

10" (254 mm)<br />

11"<br />

14"<br />

(279 mm)<br />

(356 mm)<br />

17" (432 mm)<br />

19" (482 mm)<br />

23" (584 mm)<br />

27" (686 mm)<br />

E<br />

E<br />

CUSTOMER <strong>NOTE</strong>S:<br />

1.<br />

Location of coil connections is determined by facing air stream.<br />

L.H. <strong>and</strong> R.H. coil connections are available (L.H. shown).<br />

Coils can be field rotated 180˚ for opposite connections.<br />

2. Coil furnished with stub sweat connections.<br />

3. Use port at bottom for inlet <strong>and</strong> port at top for outlet.<br />

4.<br />

Coil height <strong>and</strong> width is dependent upon unit height<br />

<strong>and</strong> width.<br />

5.<br />

6.<br />

Access Panel is st<strong>and</strong>ard <strong>and</strong> found on connection side.<br />

Water coil discharge dimensions located on VCWF<br />

dimension page.<br />

AIR FLOW<br />

(FIG 1)<br />

AIR FLOW<br />

(FIG 2)<br />

13<br />

3 "<br />

/ 32<br />

A<br />

C<br />

13<br />

3 / " 32<br />

(86 mm)<br />

9<br />

1 / "<br />

64<br />

(29 mm)<br />

OUTLET<br />

OUTLET<br />

C<br />

AIR FLOW<br />

D<br />

13<br />

7 / " 16<br />

(198 mm)<br />

AIR FLOW<br />

D<br />

13<br />

7 / "<br />

16<br />

(198 mm)<br />

A<br />

INLET<br />

B<br />

INLET<br />

8 1 / 4 "<br />

(210 mm)<br />

1 3/ 4 "<br />

(44 mm)<br />

8 1 / "<br />

(210 mm)<br />

2 1/ 4 "<br />

(57 mm)<br />

B<br />

SD 24<br />

(FIG 1)<br />

(FIG 2)<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR 2-ROW COIL<br />

VALV<br />

04<br />

05<br />

06<br />

08<br />

10<br />

12<br />

14<br />

16<br />

24 x 16<br />

LITERS<br />

CFM per<br />

SECOND<br />

225 106<br />

350<br />

500<br />

165<br />

236<br />

900 425<br />

1400 661<br />

2000 994<br />

3000 1416<br />

4000 1888<br />

8000 3776<br />

7 / 8 "<br />

/ 8 "<br />

COIL<br />

CONNECTION<br />

(10 mm) O.D.<br />

(10 mm) O.D.<br />

(10 mm) O.D.<br />

(22 mm) O.D.<br />

(22 mm) O.D.<br />

(22 mm) O.D.<br />

(22 mm) O.D.<br />

(22 mm) O.D.<br />

(22 mm) O.D.<br />

SEE<br />

(FIG 1)<br />

SEE<br />

(FIG 2)<br />

A<br />

" (191 mm)<br />

"<br />

" (210 mm)<br />

" (260 mm)<br />

" (311 mm)<br />

"<br />

1/<br />

4 " (413 mm)<br />

16 / 4 " (413 mm)<br />

18 / 8<br />

B<br />

(206 mm)<br />

(257 mm)<br />

(308 mm)<br />

(359 mm)<br />

(460 mm)<br />

(460 mm)<br />

(460 mm)<br />

C<br />

10" (254 mm)<br />

10" (254 mm)<br />

10" (254 mm)<br />

11" (279 mm)<br />

14" (356 mm)<br />

17" (432 mm)<br />

19" (482 mm)<br />

23" (584 mm)<br />

27" (686 mm)<br />

CUSTOMER <strong>NOTE</strong>S:<br />

1.<br />

Location of coil connections is determined by facing air stream.<br />

L.H. <strong>and</strong> R.H. coil connections are available (L.H. shown).<br />

Coils can be field rotated 180˚ for opposite connections.<br />

2. Coil furnished with stub sweat connections.<br />

3. Use port at bottom for inlet <strong>and</strong> port at top for outlet.<br />

4.<br />

5.<br />

6.<br />

Coil height <strong>and</strong> width is dependent upon unit height<br />

<strong>and</strong> width.<br />

Access Panel is st<strong>and</strong>ard <strong>and</strong> found on connection side.<br />

Water coil discharge dimensions located on VCWF<br />

dimension page.<br />

C<br />

C<br />

AIR FLOW<br />

(FIG 1)<br />

AIR FLOW<br />

(FIG 2)<br />

AIR FLOW<br />

B<br />

7 13 / 32"<br />

(198 mm)<br />

3 13 / 32"<br />

(86 mm)<br />

19/ 64<br />

"<br />

23/ 64 "<br />

(9 mm)<br />

3 13 / 32<br />

"<br />

7 / 16 "<br />

(11 mm)<br />

OUTLET<br />

OUTLET<br />

A<br />

7 32<br />

AIR FLOW B<br />

13 / "<br />

(198 mm)<br />

INLET<br />

23 / 64 "<br />

(9 mm)<br />

/ "<br />

2 1 2<br />

A<br />

11/ 16"<br />

(27 mm)<br />

1"<br />

(25 mm)<br />

8 1 / 4 "<br />

(210 mm)<br />

3 7 / 64 "<br />

(79 mm)<br />

8 1 / 4 "<br />

(210 mm)<br />

<strong>VAV</strong>-PRC008-EN<br />

(FIG 1) (FIG 2)<br />

SD 25


Single-Duct<br />

Dimensional<br />

Data<br />

SINGLE-DUCT ELECTRIC HEAT (VCEF)<br />

VALV<br />

04<br />

05<br />

CFM<br />

225<br />

350<br />

LITERS<br />

per<br />

SECOND<br />

106<br />

165<br />

INLET SIZE<br />

(NOMINAL Ø)<br />

C<br />

4" (104 mm)<br />

5" (127 mm)<br />

L<br />

45.50" (1156 mm)<br />

H<br />

9.50" (241 mm)<br />

W<br />

16.00" (406 mm)<br />

D<br />

5.50" (140 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

8.00" (203 mm) 10.00" (254 mm)<br />

WT<br />

LBS/KGS<br />

63 (29)<br />

06<br />

500<br />

236<br />

6" (152 mm)<br />

08<br />

10<br />

12<br />

14<br />

16<br />

900<br />

1400<br />

2000<br />

3000<br />

4000<br />

425<br />

661<br />

994<br />

1416<br />

1888<br />

8" (203 mm)<br />

10" (254 mm)<br />

12" (305 mm)<br />

14" (356 mm)<br />

16" (406 mm)<br />

43.50" (1105 mm)<br />

11.50" (292 mm)<br />

13.50" (343 mm)<br />

15.50" (394 mm)<br />

19.50" (495 mm)<br />

17.00" (432 mm)<br />

20.00" (508 mm)<br />

23.00" (584 mm)<br />

25.00" (635 mm)<br />

29.00" (737 mm)<br />

5.00" (127 mm)<br />

4.50" (114 mm)<br />

3.50" (89 mm)<br />

10.00" (254 mm)<br />

12.00" (305 mm)<br />

14.00" (356 mm)<br />

18.00" (457 mm)<br />

11.00" (279 mm)<br />

14.00" (356 mm)<br />

17.00" (432 mm)<br />

19.00" (483 mm)<br />

23.00" (584 mm)<br />

67 (30)<br />

81 (37)<br />

93 (42)<br />

108 (49)<br />

121 (55)<br />

24RT 8000<br />

3776<br />

24" x 16"<br />

(610 mm x 406 mm)<br />

33.00" (838 mm)<br />

5.55" (141 mm)<br />

27.00" (686 mm)<br />

135 (61)<br />

CONTROL BOX<br />

ELECTRIC OR DDC/UCM<br />

(PNEU. CONTROLS AREA)<br />

C<br />

AIRFLOW<br />

SIZE 04 & 05<br />

5.75" (146 mm)<br />

ELECTRIC HEATER<br />

CONTROL AREA<br />

FLOW RING<br />

TUBING<br />

AIR<br />

VALVE<br />

4.00"<br />

(102 mm)<br />

6.50"<br />

(165 mm")<br />

ACTUATOR<br />

D<br />

L<br />

TOP VIEW<br />

SLIP & DRIVE<br />

CONNECTION<br />

W<br />

AIRFLOW<br />

5.50"<br />

(140 mm)<br />

B<br />

CUSTOMER <strong>NOTE</strong>S:<br />

8.25"<br />

(210 mm)<br />

A<br />

H<br />

1. Air inlet is centered in unit front panel.<br />

2. Slip <strong>and</strong> Drive discharge outlet st<strong>and</strong>ard.<br />

BACK VIEW<br />

3. 1.5 times duct diameter of straight duct at inlet for<br />

proper flow reading.<br />

4. For electric heater access, side hinged door must have<br />

minimum distance per NEC or local code.<br />

5. Allow 48" (1219 mm) of straight duct downstream of<br />

unit before first runout & inside of the duct should be<br />

equal discharge size (A & B).<br />

6. Left-h<strong>and</strong> unit shown. Opposite h<strong>and</strong> available. (Moves<br />

all components to the other side of the unit.)<br />

SD 26<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Dimensional<br />

Data<br />

SINGLE-DUCT ELECTRIC HEAT (VCEF) RIGHT-HAND<br />

VALV<br />

04<br />

05<br />

06<br />

08<br />

10<br />

12<br />

14<br />

16<br />

CFM<br />

225<br />

350<br />

500<br />

900<br />

1400<br />

2000<br />

3000<br />

4000<br />

LITERS<br />

per<br />

SECOND<br />

106<br />

165<br />

236<br />

425<br />

661<br />

994<br />

1416<br />

1888<br />

INLET SIZE<br />

(NOMINAL Ø)<br />

C<br />

4" (104 mm)<br />

5" (127 mm)<br />

6" (152 mm)<br />

8" (203 mm)<br />

10" (254 mm)<br />

12" (305 mm)<br />

14" (356 mm)<br />

16" (406 mm)<br />

L<br />

45.50" (1156 mm)<br />

43.50" (1105 mm)<br />

H<br />

9.50" (241 mm)<br />

11.50" (292 mm)<br />

13.50" (343 mm)<br />

15.50" (394 mm)<br />

19.50" (495 mm)<br />

W<br />

16.00" (406 mm)<br />

17.00" (432 mm)<br />

20.00" (508 mm)<br />

23.00" (584 mm)<br />

25.00" (635 mm)<br />

29.00" (737 mm)<br />

D<br />

5.50" (140 mm)<br />

5.00" (127 mm)<br />

4.50" (114 mm)<br />

3.50" (89 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

8.00" (203 mm) 10.00" (254 mm)<br />

10.00" (254 mm) 11.00" (279 mm)<br />

12.00" (305 mm) 14.00" (356 mm)<br />

14.00" (356 mm) 17.00" (432 mm)<br />

18.00" (457 mm) 19.00" (483 mm)<br />

23.00" (584 mm)<br />

WT<br />

LBS/KGS<br />

63 (29)<br />

67 (30)<br />

81 (37)<br />

93 (42)<br />

108 (49)<br />

121 (55)<br />

24RT 8000<br />

3776<br />

24" x 16"<br />

(610 mm x 406 mm)<br />

33.00" (838 mm)<br />

5.55" (141 mm)<br />

27.00" (686 mm)<br />

135 (61)<br />

SIZE 04 & 05<br />

5.75" (146 mm)<br />

C<br />

AIRFLOW<br />

CONTROL BOX<br />

ELECTRIC OR DDC/UCM<br />

(PNEU. CONTROLS AREA)<br />

ELECTRIC HEATER<br />

CONTROL AREA<br />

4.00"<br />

(102 mm)<br />

AIR<br />

VALVE<br />

FLOW RING<br />

TUBING<br />

6.50"<br />

(165 mm")<br />

ACTUATOR<br />

L<br />

D<br />

TOP VIEW<br />

AIRFLOW<br />

DISCHARGE OUTLET<br />

W<br />

SLIP & DRIVE<br />

CONNECTION<br />

B<br />

5.50"<br />

(140 mm)<br />

CUSTOMER <strong>NOTE</strong>S:<br />

1. Air inlet is centered in unit front panel.<br />

2. Slip & Drive discharge outlet st<strong>and</strong>ard.<br />

3. 1.5 times duct diameter of straight duct at inlet.<br />

H<br />

A<br />

8.25"<br />

(210 mm)<br />

4. For electric heater access, side hinged door must have<br />

minimum distance per NEC or local code for proper<br />

flow reading.<br />

BACK VIEW<br />

5. Allow 48" (1219 mm) of straight duct downstream of<br />

unit before first runout & inside of the duct should be<br />

equal discharge size (A & B)<br />

<strong>VAV</strong>-PRC008-EN<br />

SD 27


Single-Duct<br />

Mechanical<br />

Specifications<br />

MODELS VCCF, VCWF<br />

<strong>and</strong> VCEF<br />

Single-duct terminal units.<br />

VCCF – Cooling Only<br />

VCWF – With Hot Water Coil<br />

VCEF – With Electric Coil<br />

CASING<br />

22-gage galvanized steel.<br />

AGENCY LISTING<br />

The unit is UL <strong>and</strong> Canadian UL Listed<br />

as a room air terminal unit. Control #<br />

9N65.<br />

ARI 880 Certified.<br />

INSULATION<br />

1/2" (12.7 mm) Matte-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 1.9. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There are<br />

no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1" (25.4 mm) Matte-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.0 lb/ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 3.85.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There<br />

are no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1/2" (12.7 mm) Foil-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 2.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Foil-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.5 lb/ft 3<br />

(25.4 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 4.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

SD 28<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Double-wall<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with a 1-inch, 1.0 lb./ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with high-density<br />

facing. The insulation R-value is 3.8. The<br />

insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. The<br />

insulation is covered by an interior<br />

liner made of 26-gage galvanized steel.<br />

All wire penetrations are covered by<br />

grommets. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

3/8" (9.5 mm) Closed-cell<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 3/8-inch, 4.4 lb/ft 3<br />

(9.5 mm, 70.0 kg/m 3 ) closed-cell<br />

insulation. The insulation is UL listed<br />

<strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards. The insulation has an<br />

R-Value of 1.4. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

PRIMARY AIR VALVE<br />

Air Valve Round—The primary air<br />

inlet connection is an 18-gage<br />

galvanized steel cylinder sized to fit<br />

st<strong>and</strong>ard round duct. A multiple-point,<br />

averaging flow sensing ring is<br />

provided with balancing taps for<br />

measuring +/-5% of unit cataloged<br />

airflow. An airflow-versus-pressure<br />

differential calibration chart is provided.<br />

The damper blade is constructed of a<br />

closed-cell foam seal that is<br />

mechanically locked between two<br />

22-gage galvanized steel disks. The<br />

damper blade assembly is connected<br />

to a cast zinc shaft supported by selflubricating<br />

bearings. The shaft is cast<br />

with a damper position indicator. The<br />

valve assembly includes a mechanical<br />

stop to prevent over-stroking. At 4.0 in.<br />

wg, air valve leakage does not exceed<br />

1% of cataloged airflow.<br />

Air Valve Rectangular—Inlet collar is<br />

constructed of 22-gage galvanized steel<br />

sized to fit st<strong>and</strong>ard rectangular duct.<br />

An integral multiple-point, averaging<br />

flow-sensing ring provides primary<br />

airflow measurement within +/-5% of<br />

unit cataloged airflow. Damper is<br />

22-gage galvanized steel. The damper<br />

blade assembly is connected to a cast<br />

zinc shaft supported by self-lubricating<br />

bearings. The shaft is cast with a<br />

damper position indicator. The valve<br />

assembly includes a mechanical stop<br />

to prevent over-stroking. At 3.0 in. wg<br />

air valve leakage does not exceed<br />

6% of maximum airflow.<br />

Air Valve Combinations Available:<br />

Air Valve Size Maximum <strong>Catalog</strong>ed Airflow<br />

in. (mm)<br />

cfm (L/s)<br />

04 (102) 225 (106)<br />

05 (127) 350 (165)<br />

06 (152) 500 (236)<br />

08 (203) 900 (425)<br />

10 (254) 1400 (660)<br />

12 (305) 2000 (943)<br />

14 (356) 3000 (1415)<br />

16 (406) 4000 (1886)<br />

24 RT–24x16 (610x406) 8000 (3773)<br />

OUTLET CONNECTION<br />

Slip & Drive Connection—Terminal<br />

units come st<strong>and</strong>ard with slip & drive<br />

connection.<br />

Outlet Plenum—A sheet metal,<br />

insulated box with circular opening(s)<br />

is attached to the discharge of the<br />

main unit at the factory. The circular<br />

opening(s) are centered on the unit<br />

plenum to accept round ductwork<br />

connections.<br />

Outlet Plenum with Balancing<br />

Dampers—A sheet metal, insulated<br />

box with circular opening(s) is factoryconnected<br />

to the main unit. The<br />

circular opening(s) with balancing<br />

damper(s) are centered on the unit<br />

plenum to accept round ductwork<br />

connections.<br />

HOT WATER COILS<br />

1-Row Hot Water Coils—The 1-row<br />

hot water reheat coil is factory-installed<br />

on the discharge outlet. The coil has<br />

144 aluminum-plated fins per foot. Full<br />

fin collars provided for accurate fin<br />

spacing <strong>and</strong> maximum fin-tube<br />

contact. The 3/8" (9.5 mm) OD<br />

seamless copper tubes are<br />

mechanically exp<strong>and</strong>ed into the fin<br />

collars. Coils are proof tested at<br />

450 psig (3102 kPa) <strong>and</strong> leak tested at<br />

300 psig (2068 kPa) air pressure under<br />

water. Coil connections are left-h<strong>and</strong>.<br />

Right-h<strong>and</strong> connections are optional.<br />

2-Row Hot Water Coils—The 2-row<br />

hot water reheat coil is factory-installed<br />

on the discharge outlet. The coil has<br />

144 aluminum-plated fins per foot. Full<br />

fin collars provided for accurate fin<br />

spacing <strong>and</strong> maximum fin-tube<br />

contact. The 3/8" (9.5 mm) OD seamless<br />

copper tubes are mechanically<br />

exp<strong>and</strong>ed into the fin collars. Coils are<br />

proof tested at 450 psig (3102 kPa) <strong>and</strong><br />

leak tested at 300 psig (2068 kPa) air<br />

pressure under water. Coils are<br />

assembled with headers that provide<br />

<strong>VAV</strong>-PRC008-EN


Single-Duct<br />

Mechanical<br />

Specifications<br />

7/8" (22.2 mm) OD braze connections.<br />

Right-h<strong>and</strong> connections are optional.<br />

ELECTRIC HEAT COIL<br />

The electric heater is a factory-provided<br />

<strong>and</strong> -installed, UL recognized<br />

resistance open-type heater with<br />

airflow switch. It also contains a disctype<br />

automatic pilot duty thermal<br />

primary cutout, <strong>and</strong> manual reset load<br />

carrying thermal secondary device.<br />

Heater element material is nickelchromium.<br />

The heater terminal box is<br />

provided with 7/8" (22 mm) knockouts<br />

for customer power supply. Terminal<br />

connections are plated steel with<br />

ceramic insulators. Heater control<br />

access is on the left-h<strong>and</strong> side.<br />

ELECTRIC HEAT OPTIONS<br />

Electric Heat Transformer—An<br />

optional transformer is an integral<br />

component of the heater control panel<br />

(dependent on unit load requirements)<br />

to provide 24 VAC for controls. There is<br />

19 VA available for controls.<br />

Magnetic Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

Mercury Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

P.E. Switch with Magnetic<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

magnetic contactor is for use with<br />

pneumatic controls.<br />

P.E. Switch with Mercury<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

mercury contactor is for use with<br />

pneumatic controls.<br />

Airflow Switch— An air pressure<br />

device designed to disable the heater<br />

when the system fan is off. <strong>This</strong> is<br />

st<strong>and</strong>ard on single-duct units.<br />

Line Fuse—An optional safety fuse<br />

located in the line of power of the<br />

electric heater to prevent power surge<br />

damage to the electric heater.<br />

Disconnect Switch—A optional<br />

factory-provided door interlocking<br />

disconnect switch on the heater control<br />

panel disengages primary voltage to<br />

the terminal.<br />

UNIT CONTROLS SEQUENCE OF<br />

OPERATION<br />

The unit controller continuously<br />

monitors the zone temperature against<br />

its setpoint <strong>and</strong> varies the primary<br />

airflow as required to meet zone<br />

setpoints. Airflow is limited by<br />

<strong>VAV</strong>-PRC008-EN<br />

minimum <strong>and</strong> maximum position<br />

setpoints. Upon a further call for heat<br />

after the air valve is at minimum, any<br />

hot water or electric heat associated<br />

with the unit is enabled.<br />

DIRECT DIGITAL CONTROLS<br />

DDC Actuator—Trane 3-wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Direct Digital Controller—The<br />

microprocessor based terminal unit<br />

controller provides accurate, pressureindependent<br />

control through the use<br />

of a proportional integral control<br />

algorithm <strong>and</strong> direct digital control<br />

technology. The controller, named the<br />

Unit Control Module (UCM), monitors<br />

zone temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change,<br />

<strong>and</strong> valve airflow using a differential<br />

pressure signal from the pressure<br />

transducer. Additionally, the controller<br />

can monitor either supply duct air<br />

temperature or CO 2<br />

concentration via<br />

appropriate sensors. The controller is<br />

provided in an enclosure with 7/8"<br />

(22 mm) knockouts for remote control<br />

wiring. A Trane DDC zone sensor<br />

is required.<br />

DDC Zone Sensor—The UCM<br />

controller senses zone temperature<br />

through a sensing element located in<br />

the zone sensor. In addition to the<br />

sensing element, zone sensor options<br />

may include an externally-adjustable<br />

setpoint, communications jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the<br />

individual controller from unoccupied<br />

to occupied mode. The override button<br />

has a cancel feature that will return the<br />

system to unoccupied. Wired zone<br />

sensors utilize a thermistor to vary the<br />

voltage output in response to changes<br />

in the zone temperature. Wiring to the<br />

UCM controller must be 18- to 22-awg.<br />

twisted pair wiring. The setpoint<br />

adjustment range is 50–88ºF (10–31°C).<br />

Depending upon the features available<br />

in the model of sensor selected, the<br />

zone sensor may require from a 2-wire<br />

to a 5-wire connection. Wireless zone<br />

sensors report the same zone<br />

information as wired zone sensors, but<br />

do so using radio transmitter<br />

technology. Therefore with wireless,<br />

wiring from the zone sensor to the UCM<br />

is unnecessary.<br />

Digital Display Zone Sensor with<br />

Liquid Crystal Display (LCD)—<br />

The digital display zone sensor contains<br />

a sensing element, which sends a signal<br />

to the UCM. A Liquid Crystal Display<br />

(LCD) displays setpoint or space<br />

temperature. Sensor buttons allow the<br />

user to adjust setpoints, <strong>and</strong> allow space<br />

temperature readings to be turned on or<br />

off. The digital display zone sensor also<br />

includes a communication jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the UCM from<br />

unoccupied to occupied. The override<br />

button has a cancel feature, which<br />

returns the system to unoccupied mode.<br />

System Communications— The<br />

Controller is designed to send <strong>and</strong><br />

receive data from a Tracer Summit <br />

or other Trane controllers. Current unit<br />

status conditions <strong>and</strong> setpoints may be<br />

monitored <strong>and</strong>/or edited via this data<br />

communication feature. The network<br />

type is a twisted wire pair shielded<br />

serial communication.<br />

ANALOG ELECTRONIC CONTROLS<br />

Analog Actuator—A Trane 3- wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Analog Electronic Controller—The<br />

controller consists of a circuit board that<br />

offers basic <strong>VAV</strong> unit operation <strong>and</strong><br />

additional override functions <strong>and</strong><br />

operates using 24 VAC power. The<br />

controller uses a capacitive type<br />

pressure transducer to maintain<br />

consistent air delivery regardless of<br />

system pressure changes. The enclosure<br />

has 7/8" (22 mm) knockouts for remote<br />

control wiring. A Trane electronic zone<br />

sensor is required.<br />

Analog Electronic Thermostat—<strong>This</strong><br />

single-temperature, wall-mounted<br />

electronic device utilizes a thermistor to<br />

vary the voltage output in response to<br />

changes in the zone temperature.<br />

Connections to the <strong>VAV</strong> unit circuit<br />

board are made using st<strong>and</strong>ard threeconductor<br />

thermostat wire. The setpoint<br />

adjustment range is 63–85ºF (17–29°C).<br />

The sensor is available in two models.<br />

One model has a concealed, internallyadjustable<br />

setpoint. The other model<br />

has an externally-adjustable setpoint.<br />

SD 29


Single-Duct<br />

Mechanical<br />

Specifications<br />

PNEUMATIC CONTROLS<br />

Normally Open Actuator —<br />

Pneumatic 3 to 8 psig (20 to 55 kPa)<br />

spring-range pneumatic actuator.<br />

Normally-Closed Actuator —<br />

Pneumatic 8 to 13 psig (55 to 90 kPa)<br />

spring-range pneumatic actuator.<br />

3011 Pneumatic Volume Regulator<br />

(PVR)—The regulator is a thermostat<br />

reset velocity controller, which<br />

provides consistent air delivery within<br />

5% of cataloged flow down to 18% or<br />

less of unit cataloged cfm, independent<br />

of changes in system static pressure.<br />

Factory-calibrated, field-adjustable<br />

setpoints for minimum <strong>and</strong> maximum<br />

flows. Average total unit bleed rate,<br />

excluding thermostat, is 28.8 scim at<br />

20 psig (7.87 ml/min at 138 kPa) supply.<br />

CONTROL OPTIONS<br />

Transformer (VCCF, VCWF)—The<br />

50-VA transformer is factory-installed<br />

in an enclosure with 7/8" (22 mm)<br />

knockouts to provide 24 VAC for<br />

controls.<br />

Disconnect Switch (VCCF, VCWF)—<br />

A toggle disconnect disengages<br />

primary power to the terminal.<br />

Fuse (VCCF, VCWF)—Optional fuse is<br />

factory-installed in the primary voltage<br />

hot leg.<br />

HOT WATER VALVES<br />

Two-Position Valve—The valve is a<br />

field-adaptable, 2-way or 3-way<br />

configuration <strong>and</strong> ships with a cap to<br />

be field-installed when configured as a<br />

2-way valve. All connections are<br />

National Pipe Thread (NPT). The valve<br />

body is forged brass with a stainless<br />

steel stem <strong>and</strong> spring. Upon dem<strong>and</strong>,<br />

the motor strokes the valve. When the<br />

actuator drive stops, a spring returns<br />

the valve to its fail-safe position.<br />

Flow Capacity – 1.17 Cv<br />

Overall Diameter – ½" NPT<br />

Close-off Pressure – 30 psi (207 kPa)<br />

Flow Capacity – 3.0 Cv<br />

Overall Diameter – 3/4" NPT<br />

Close-off Pressure – 14.5 psi (100 kPa)<br />

Flow Capacity – 6.4 Cv<br />

Overall Diameter – 1" NPT<br />

Close-off Pressure – 9 psi (62 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 203ºF (95ºC)<br />

Maximum system pressure – 300 psi<br />

(2067 kPa)<br />

Maximum static pressure – 300 psi<br />

(2067 kPa)<br />

Electrical Rating – 7 VA at 24 VAC,<br />

6.5 Watts, 50/60 Hz<br />

8 feet (2.44 m) of plenum rated wire<br />

lead is provided with each valve.<br />

Proportional Water Valve—The<br />

valve is a field-adaptable, 2-way or<br />

3-way configuration <strong>and</strong> ships with a<br />

cap over the bottom port. <strong>This</strong><br />

configures the valve for 2-way<br />

operation. For 3-way operation,<br />

remove the cap. The valve is designed<br />

with an equal percentage plug. The<br />

intended fluid is water or water <strong>and</strong><br />

glycol (50% maximum glycol). The<br />

actuator is a synchronous motor drive.<br />

The valve is driven to a predetermined<br />

position by the UCM controller using a<br />

proportional plus integral control<br />

algorithm. If power is removed, the<br />

valve stays in its last position. The<br />

actuator is rated for plenum<br />

applications under UL 94-5V <strong>and</strong> UL<br />

873 st<strong>and</strong>ards.<br />

Pressure <strong>and</strong> Temperature Ratings –<br />

The valve is designed <strong>and</strong> tested in full<br />

compliance with ANSI B16.15 Class<br />

250 pressure/temperature ratings,<br />

ANSI B16.104 Class IV control shutoff<br />

leakage, <strong>and</strong> ISA S75.11 flow<br />

characteristic st<strong>and</strong>ards.<br />

Flow Capacity – 3.80 Cv , 6.60 Cv,<br />

0.70 Cv, 2.2 Cv<br />

Overall Diameter – ½" NPT, ¾" NPT<br />

(7.30 Cv)<br />

Maximum Allowable Pressure – 300<br />

psi (2068 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 200ºF (93°C)<br />

Maximum Close-off Pressure – 55 psi<br />

(379 kPa)<br />

Electrical Rating – 6VA at 24 VAC.<br />

10 feet (3.05 m) of plenum rated<br />

22-gage wire for connection.<br />

Terminations are #6 stabs.<br />

SD 30<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

Table of<br />

Contents<br />

Service Model Number Description DD 2<br />

Selection Procedure DD 3 – 4<br />

General Data – Valve/Controller Airflow Guidelines DD 5<br />

Performance Data – Air Pressure Requirements DD 6 – 7<br />

Performance Data – Acoustics DD 8 – 11<br />

Dimensional Data DD 12 – 13<br />

Mechanical Specifications DD 14 – 15<br />

<strong>VAV</strong>-PRC008-EN<br />

DD 1


Dual-Duct <strong>VAV</strong> Terminal Units<br />

The features of the dual-duct <strong>VAV</strong><br />

terminal units are described by the<br />

product categories shown in bold.<br />

Within each category the options<br />

available are listed.<br />

VDDF<br />

Dual-Duct<br />

Digit 1, 2, 3—Unit Type<br />

VDD <strong>VariTrane</strong> dual-duct<br />

Digit 4—Development Sequence<br />

F Sixth<br />

Digit 5, 6—Primary Air Valve<br />

05 5" inlet (350 cfm)<br />

06 6" inlet (500 cfm)<br />

08 6" inlet (900 cfm)<br />

10 10" inlet (1400 cfm)<br />

12 12" inlet (2000 cfm)<br />

14 14" inlet (3000 cfm)<br />

16 16" inlet (4000 cfm)<br />

Digit 7, 8—Secondary Air Valve<br />

05 5" inlet (350 cfm)<br />

06 6" inlet (500 cfm)<br />

08 8" inlet (900 cfm)<br />

10 10" inlet (1400 cfm)<br />

12 12" inlet (2000 cfm)<br />

14 14" inlet (3000 cfm)<br />

16 16" inlet (4000 cfm)<br />

Digit 9—Not Used<br />

0 N/A<br />

Digit 10, 11—Design Sequence<br />

C0 Third (factory assigned)<br />

Digit 12, 13, 14, 15—<strong>Controls</strong><br />

ENON No <strong>Controls</strong>, Field-installed<br />

DDC/Electric<br />

PNON No <strong>Controls</strong>, Field-installed<br />

Pneumatic<br />

DD00 Trane elec actuator only<br />

DD01 DDC – Cooling only<br />

DD08 DDC – Constant-volume<br />

discharge<br />

DD11 LonTalk DDC Controller—<br />

Cooling only<br />

DD18 LonTalk DDC Controller—<br />

Constant Volume Discharge<br />

FM00 FM – Customer-supplied<br />

actuator & controller<br />

FM01 FM – Trane actuator w/<br />

customer supplied controller<br />

PC03 PN – N.C. heating/ N.O. cooling<br />

w/ PVRs, DA stat<br />

PN08 PN – N.O. heating/ N.O. cool<br />

act. only, RA stat<br />

PN09 PN – N.O. htg/clg vlvs w/ PVRs,<br />

DA stat<br />

PN10 PN – N.O. htg/clg w/ PVRs (cv<br />

disch), DA stat.<br />

Notes:<br />

N.C. = Normally-closed<br />

N.O. = Normally-opened<br />

DA Stat = Direct-acting pneumatic t-stat<br />

(by others)<br />

RA Stat = Reverse-acting pneumatic t-<br />

stat (by others)<br />

PN = Pneumatic<br />

FM = Factory installation of cus<br />

tomer-supplied controller<br />

PVR = Pneumatic Volume Regulator<br />

Service<br />

Model Number<br />

Description<br />

Digit 16—Insulation<br />

A 1/2" Matte-faced<br />

B 1" Matte-faced<br />

C 1/2" Foil-faced<br />

D 1" Foil-faced<br />

F 1" Double-wall<br />

G 3/8" Closed-cell<br />

Digit 17—Not Used<br />

0 N/A<br />

Digit 18—Not Used<br />

0 N/A<br />

Digit 19—Outlet Plenum (Connection<br />

is slip & drive)<br />

0 none<br />

A 1 outlet–RH<br />

B 1 outlet–END<br />

C 1 outlet–LH<br />

D 2 outlets–1 RH, 1 END<br />

E 2 outlets–1 LH, 1 END<br />

F 2 outlets–1 RH, 1 LH<br />

G 2 outlets - END<br />

H 3 outlets–1 LH, 1 RH, 1 END<br />

J 4 outlets–1 LH, 1 RH, 2 END<br />

Note: See unit drawings for outlet sizes/<br />

damper information.<br />

Digit 20—Not Used<br />

0 N/A<br />

Digit 21—Not Used<br />

0 N/A<br />

Digit 22—Not Used<br />

0 N/A<br />

Digit 23—Transformer<br />

0 None<br />

1 120/24 volt (50 VA)<br />

2 208/24 volt (50 VA)<br />

3 240/24 volt (50 VA)<br />

4 277/24 volt (50VA)<br />

5 480/24 volt (50 VA)<br />

6 347/24 volt (50 VA)<br />

7 575/24 volt (50 VA)<br />

Digit 24—Disconnect Switch<br />

0 None<br />

W With Toggle<br />

Digit 25—Power Fuse<br />

0 None<br />

W With<br />

DD 2<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

Selection<br />

Procedure<br />

<strong>This</strong> section describes the catalog<br />

selection of dual-duct <strong>VAV</strong> terminal units<br />

with specific examples. A computer<br />

selection program is also available to<br />

aid in selection of <strong>VAV</strong> terminal units.<br />

Selection of dual-duct <strong>VAV</strong> terminal<br />

units can involve two elements:<br />

• Air valve selection<br />

• Acoustics<br />

Air Valve Selection<br />

The wide-open static pressure <strong>and</strong><br />

airflows are found in the performance<br />

data section of the catalog. To select the<br />

air valves, locate the required design<br />

cooling <strong>and</strong> heating airflows for your<br />

terminal unit type <strong>and</strong> find their vertical<br />

intersection, with the smallest air valve<br />

size that has a pressure drop equal to or<br />

lower than the maximum wide-open<br />

static pressure requirement.<br />

Example:<br />

VDDF Terminal Unit<br />

Design cooling airflow: 1000 cfm<br />

Maximum wide-open<br />

Air pressure drop: 0.25 in. wg<br />

Minimum cooling airflow: 500 cfm<br />

Design heating airflow: 1000 cfm<br />

Maximum wide-open<br />

Air pressure drop: 0.25 in. wg<br />

Minimum heating airflow: 400 cfm<br />

From the performance data charts,<br />

select a valve size 10 for cooling, which<br />

has a wide-open static pressure drop of<br />

0.09 in. wg. Select a size 10 for heating,<br />

which has a wide-open static pressure<br />

drop of 0.09 in. wg.<br />

Check the minimum <strong>and</strong> maximum cfm<br />

desired with the minimum <strong>and</strong><br />

maximum cfm allowed in the table in<br />

the general data section. The maximum<br />

setting of 1000 cfm is within the<br />

acceptable range. The desired minimum<br />

setting of 500 cfm is acceptable for the<br />

unit desired.<br />

Acoustics<br />

The acoustical data found in the<br />

"Performance Data" section of the <strong>VAV</strong><br />

catalog is used to make a<br />

determination of the amount of noise<br />

the terminal unit will generate. Locate<br />

the table for the <strong>VAV</strong> terminal unit of<br />

interest. Sound power data <strong>and</strong> an<br />

equivalent NC level for an ARI 885-98<br />

transfer function is listed.<br />

Example:<br />

VDDF, Cooling-Only Terminal Unit, Size<br />

10 cooling, Size 10 heating (See air<br />

Valve Selection)<br />

Cooling Airflow:<br />

1000 cfm<br />

Maximum inlet static<br />

pressure:<br />

1.5 in. wg<br />

Heating Airflow:<br />

1000 cfm<br />

Maximum inlet static<br />

pressure:<br />

1.5 in. wg<br />

Interpolation gives sound power data<br />

of:<br />

Octave 2 3 4 5 6 7 NC<br />

B<strong>and</strong><br />

Disch. 83 72 69 67 66 60 39<br />

Sound<br />

Power<br />

Rad. 69 63 57 54 47 40 34<br />

Sound<br />

Power<br />

The NC level above is determined by<br />

using either the catalog’s ARI 885-98<br />

(mineral fiber for radiated sound)<br />

transfer function for the conditions<br />

shown in the acoustics table. A<br />

different transfer function could be<br />

applied as conditions dictate.<br />

The maximum NC level is NC-40. If the<br />

maximum NC level was exceeded, it<br />

would have been necessary to reselect<br />

the next larger unit size.<br />

Computer Selection<br />

The advent of personal computers has<br />

served to automate many processes<br />

that were previously repetitive <strong>and</strong><br />

time-consuming. One of those tasks is<br />

the proper scheduling, sizing, <strong>and</strong><br />

selection of <strong>VAV</strong> terminal units. Trane<br />

has developed a computer program to<br />

perform these tasks. The software is<br />

called the Trane Official Product<br />

Selection System (TOPSS).<br />

The TOPSS program will take the user’s<br />

input specifications <strong>and</strong> output the<br />

properly sized <strong>VariTrane</strong> <strong>VAV</strong> terminal<br />

unit along with the specific<br />

performance for that size unit.<br />

The program has several required<br />

fields, denoted by red shading in the<br />

TOPSS program, <strong>and</strong> many other<br />

optional fields to meet the criteria you<br />

have. Required values include<br />

maximum <strong>and</strong> minimum airflows,<br />

control type, <strong>and</strong> model. If selecting<br />

models with reheat, you will be<br />

required to enter information to make<br />

that selection also. The user is given<br />

the option to look at all the information<br />

for one selection on one screen or as a<br />

schedule with the other <strong>VAV</strong> units on<br />

the job.<br />

The user can select single-duct, dualduct,<br />

<strong>and</strong> fan-powered <strong>VAV</strong> boxes with<br />

the program, as well as most other<br />

Trane products, allowing you to select<br />

all your Trane equipment with one<br />

software program.<br />

The program will also calculate sound<br />

power data for the selected terminal<br />

unit. The user can enter a maximum<br />

individual sound level for each octave<br />

b<strong>and</strong> or a maximum NC value. The<br />

program will calculate acoustical data<br />

subject to default or user supplied<br />

sound attenuation data.<br />

<strong>VAV</strong>-PRC008-EN<br />

DD 3


Dual-Duct<br />

Selection<br />

Procedure<br />

Schedule View<br />

The program has many time-saving<br />

features such as:<br />

• Copy/Paste from spreadsheets like<br />

Microsoft ® Excel<br />

• Easily arranged fields to match your<br />

schedule<br />

• Time-saving templates to store default<br />

settings<br />

The user can also export the Schedule<br />

View to Excel to modify <strong>and</strong> put into a<br />

CAD drawing as a schedule.<br />

Specific details regarding the program,<br />

its operation, <strong>and</strong> how to obtain a copy<br />

of it are available from your local Trane<br />

sales office.<br />

Required entry fields (in Red<br />

on TOPSS screen).<br />

Rearrange what fields you see<br />

<strong>and</strong> in what order with a few<br />

clicks of a button.<br />

DD 4<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

General Data—<br />

Valve/Controller<br />

Airflow Guidelines<br />

Primary Airflow Control Factory Settings (per valve) – I-P<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) Cfm Cfm Cfm Unit Cfm<br />

5 350 40–350 0,40–350 40–700<br />

6 500 60–500 0,60–500 60–1000<br />

Direct Digital Control/ 8 900 105–900 0,105–900 105–1800<br />

UCM 10 1400 165–1400 0,165–1400 165–2800<br />

12 2000 240–2000 0,240–2000 240–4000<br />

14 3000 320–3000 0,320–3000 320–6000<br />

16 4000 420–4000 0,420–4000 420–8000<br />

5 350 63–350 0,63–350 63–700<br />

6 500 73–500 0,73–500 73–1000<br />

Pneumatic with 8 900 134–900 0,134–900 134–1800<br />

Volume Regulator 10 1400 215–1400 0,215–1400 215–2800<br />

12 2000 300–2000 0,300–2000 300–4000<br />

14 2885 408–2885 0,408–2885 408–5770<br />

16 3785 536–3785 0,536–3785 536–7570<br />

Primary Airflow Control Factory Settings (per valve) – SI<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) L/s L/s L/s Unit L/s<br />

5 165 19–165 0,19–165 19–330<br />

6 236 28–236 0,28–236 28–472<br />

Direct Digital Control/ 8 425 50–425 0,50–425 50–850<br />

UCM 10 661 77–661 0,77–661 77–1321<br />

12 944 111–944 0,111–944 111–1888<br />

14 1416 151–1416 0,151–1416 151–2832<br />

16 1888 198–1888 0,198–1888 198–3776<br />

5 165 30–165 0,30–165 30–330<br />

6 236 35–236 0,35–236 35–472<br />

Pneumatic with 8 425 63–425 0,63–425 63–850<br />

Volume Regulator 10 661 102–661 0,102–661 102–1321<br />

12 944 141–944 0,141–944 141–1888<br />

14 1362 193–1362 0,193–1362 193–2723<br />

16 1787 253–1787 0,253–1787 253–3573<br />

Note: Maximum airflow must be greater than or equal to minimum airflow.<br />

<strong>VAV</strong>-PRC008-EN<br />

DD 5


Dual-Duct<br />

Performance<br />

Data—Air Pressure<br />

Requirements<br />

Air Pressure Drop – in. wg (I-P)<br />

Inlet Airflow<br />

Size Cfm VDDF<br />

05 100 0.01<br />

200 0.02<br />

300 0.04<br />

350 0.06<br />

06 100 0.01<br />

250 0.08<br />

350 0.17<br />

500 0.38<br />

08 200 0.01<br />

400 0.04<br />

600 0.10<br />

900 0.24<br />

10 500 0.02<br />

800 0.05<br />

1100 0.10<br />

1400 0.17<br />

12 800 0.01<br />

1200 0.03<br />

1600 0.06<br />

2000 0.10<br />

14 1500 0.04<br />

2000 0.07<br />

2500 0.12<br />

3000 0.19<br />

16 2000 0.03<br />

2500 0.04<br />

3000 0.06<br />

4000 0.10<br />

Note: Pressure drops are per air valve<br />

Air Pressure Drop – Pa (SI)<br />

Inlet Airflow<br />

Size L/s VDDF<br />

05 45 3<br />

95 5<br />

140 11<br />

165 15<br />

06 45 3<br />

120 21<br />

165 42<br />

235 93<br />

08 95 3<br />

190 11<br />

280 25<br />

420 59<br />

10 235 5<br />

375 13<br />

520 26<br />

660 42<br />

12 375 3<br />

565 8<br />

755 15<br />

940 24<br />

14 700 9<br />

945 18<br />

1180 30<br />

1415 46<br />

16 940 6<br />

1180 10<br />

1415 14<br />

1885 25<br />

DD 6<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

Performance<br />

Data—Air Pressure<br />

Requirements<br />

Integral Outlet Plenum Air Pressure Drop – in. wg (I-P)<br />

Outlet<br />

Diameter Airflow<br />

(in.) (Cfm) Integral Outlet Configurations<br />

A,C B D,E F G H J<br />

5 100 0.06 0.05 0.02 0.03 — 0.01 —<br />

200 0.23 0.19 0.09 0.09 — 0.03 —<br />

300 0.50 0.44 0.19 0.18 — 0.08 —<br />

350 0.67 0.60 0.26 0.24 — 0.12 —<br />

6 100 0.04 0.03 0.01 0.01 — 0.01 —<br />

250 0.20 0.17 0.07 0.06 — 0.04 —<br />

350 0.38 0.32 0.13 0.11 — 0.08 —<br />

500 0.74 0.63 0.25 0.21 — 0.15 —<br />

8 200 0.11 0.02 0.01 0.01 0.01 0.01 0.01<br />

400 0.28 0.10 0.03 0.04 0.02 0.02 0.01<br />

600 0.50 0.25 0.07 0.09 0.05 0.04 0.02<br />

900 0.88 0.59 0.15 0.22 0.11 0.09 0.03<br />

10 500 0.07 0.08 0.02 0.03 — 0.01 —<br />

800 0.19 0.19 0.04 0.08 — 0.02 —<br />

1100 0.35 0.34 0.07 0.15 — 0.04 —<br />

1400 0.56 0.52 0.11 0.24 — 0.07 —<br />

Integral Outlet Plenum Air Pressure Drop – Pa (SI)<br />

Outlet<br />

Diameter Airflow<br />

(mm) (L/s) Integral Outlet Configurations<br />

A,C B D,E F G H J<br />

127 50 16 12 6 7 — 3 —<br />

100 58 48 23 22 — 8 —<br />

140 124 109 49 46 — 21 —<br />

165 166 148 65 60 — 30 —<br />

152 50 9 8 3 3 — 3 —<br />

120 51 43 17 15 — 10 —<br />

165 95 80 32 27 — 19 —<br />

235 185 158 62 51 — 36 —<br />

203 95 27 6 2 3 3 3 3<br />

190 71 26 8 10 6 5 2<br />

280 125 62 18 24 13 10 4<br />

420 219 147 39 54 27 22 8<br />

254 235 18 20 5 7 — 3 —<br />

375 46 47 11 19 — 6 —<br />

520 87 84 18 36 — 11 —<br />

660 140 131 27 59 — 17 —<br />

OUTL CONVERSION CHART<br />

SYMBOL NOMINALØ<br />

I 127 mm (5")<br />

II 152 mm (6")<br />

III 203 mm (8")<br />

IV 254 mm (10")<br />

OUTLET AVAILABILITY CHART-SEE OUTL CONVERSION FOR NOMINALØ<br />

OUTL<br />

VALV<br />

A,B,C<br />

D,E,F<br />

G<br />

H<br />

J<br />

0505 0606 0808 1010<br />

I, II, III II, III<br />

III, IV<br />

N/A<br />

I, II<br />

I, II, III II, III, IV III, IV<br />

N/A<br />

N/A<br />

N/A<br />

III<br />

I, II<br />

I, II, III I, II, III<br />

III, IV<br />

N/A<br />

N/A<br />

N/A<br />

III<br />

OUTLET PLENUM<br />

ARRANGEMENTS<br />

(TOP VIEW)<br />

A B C D E F G H<br />

J<br />

<strong>VAV</strong>-PRC008-EN<br />

DD 7


Dual-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Discharge Sound Power (dB)<br />

Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

5 130 61 50 45 42 41 36 33 55 51 49 48 46 43 57 54 54 55 55 52 57 56 59 61 61 58<br />

200 94 56 49 46 45 42 36 60 55 52 51 47 44 64 60 59 58 56 52 64 61 62 63 62 57<br />

250 118 59 51 49 47 45 39 63 56 54 53 50 45 68 63 61 60 57 53 68 65 65 64 63 57<br />

350 165 66 57 53 51 49 43 69 61 59 56 55 49 74 68 65 63 60 55 76 70 69 68 65 59<br />

6 200 94 55 48 46 45 42 35 60 54 52 50 47 43 64 59 58 58 56 51 63 60 62 62 62 56<br />

300 142 62 53 50 48 46 39 65 59 58 54 52 46 71 65 63 61 58 53 71 67 66 65 63 57<br />

400 189 65 56 53 50 46 40 71 63 61 57 55 49 75 68 66 63 60 55 77 71 70 68 65 59<br />

500 236 63 55 54 50 44 41 73 66 63 58 55 50 81 72 69 66 63 57 82 74 74 71 67 61<br />

8 350 165 60 53 51 50 48 39 66 60 58 57 55 45 69 65 64 64 62 53 69 67 68 68 66 58<br />

520 245 63 55 54 54 52 44 71 63 61 61 58 51 77 71 69 68 65 56 77 72 72 72 69 60<br />

700 330 65 57 56 55 53 46 73 65 63 62 61 54 81 73 72 70 68 60 83 78 76 74 71 62<br />

900 425 67 60 59 56 52 46 74 67 65 64 62 56 82 75 73 72 69 62 87 80 79 76 73 66<br />

10 550 260 62 55 54 53 51 43 70 62 62 60 59 52 74 69 68 67 64 59 74 70 71 69 66 62<br />

820 387 65 56 56 53 51 45 73 65 64 62 60 54 80 73 73 70 68 62 80 75 75 74 71 66<br />

1100 519 68 59 58 55 52 47 75 66 64 63 60 55 83 75 74 71 68 63 85 79 78 76 73 68<br />

1400 661 71 63 62 58 55 50 77 68 67 63 61 56 85 76 74 72 70 65 88 82 79 76 74 68<br />

12 800 378 67 58 55 53 51 46 75 66 64 62 61 57 80 74 71 69 67 64 80 76 73 71 69 68<br />

1200 566 71 60 56 53 51 46 80 70 64 62 60 56 86 78 73 70 68 65 86 81 77 73 72 69<br />

1600 755 71 63 58 55 53 48 81 71 65 62 60 56 89 80 73 71 69 65 91 83 77 75 72 70<br />

2000 944 73 65 61 57 55 50 81 73 67 63 61 56 92 81 74 72 69 65 94 86 78 76 72 69<br />

14 1100 519 67 59 57 57 57 50 76 68 65 65 65 61 81 75 73 71 71 69 81 77 76 73 73 75<br />

1600 755 69 61 57 57 56 50 77 69 65 65 66 60 85 77 74 72 72 70 86 81 77 76 74 74<br />

2100 991 71 64 60 59 58 51 79 71 66 66 66 60 86 78 73 73 72 70 87 82 78 76 75 74<br />

3000 1416 75 67 63 64 63 55 71 64 60 59 58 51 79 71 66 66 66 60 83 75 70 70 70 65<br />

16 1400 661 66 59 57 56 59 54 75 68 67 64 66 63 81 76 73 70 70 72 82 79 77 73 71 76<br />

2100 991 67 60 57 58 60 53 76 69 66 65 66 63 84 77 74 72 72 71 86 81 78 76 73 76<br />

2800 1321 69 63 59 60 62 54 76 70 66 67 67 63 84 77 74 72 72 71 88 82 79 76 75 75<br />

4000 1888 72 66 63 67 67 59 79 73 69 71 71 64 87 80 76 75 75 71 90 84 80 77 76 75<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

DD 8<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Radiated Sound Power (dB)<br />

Radiated Sound Power (dB)<br />

Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

5 130 61 51 44 33 28 24 24 52 46 38 34 29 30 52 48 43 43 39 39 48 49 46 48 47 47<br />

200 94 53 46 36 31 25 23 56 50 42 37 31 29 57 52 48 44 39 39 56 54 51 49 46 46<br />

250 118 55 49 39 33 27 24 58 52 44 39 33 29 59 56 50 45 41 39 59 58 54 51 47 46<br />

350 165 60 53 45 37 31 26 62 57 48 42 36 31 64 60 53 48 42 40 65 63 58 52 47 45<br />

6 200 94 52 45 35 29 24 23 55 48 41 34 28 27 58 51 47 41 36 34 56 53 49 45 42 40<br />

300 142 57 50 40 34 26 23 59 53 45 38 31 27 62 57 50 44 37 34 61 59 55 49 43 39<br />

400 189 58 51 42 34 28 24 63 58 49 42 35 29 65 60 54 47 40 35 66 63 58 51 44 39<br />

500 236 58 52 45 36 31 27 66 60 51 42 37 30 69 65 57 50 43 37 71 67 60 55 46 41<br />

8 300 142 56 49 40 34 28 25 60 55 47 41 33 28 63 59 53 46 39 35 62 61 55 49 44 40<br />

500 236 57 52 44 37 31 26 64 58 51 44 37 30 68 64 57 50 43 36 67 66 60 54 46 41<br />

700 330 60 55 47 40 34 28 66 61 52 46 39 32 71 67 59 53 45 39 73 72 64 58 49 44<br />

900 425 60 56 48 41 37 31 67 64 55 48 43 36 73 70 61 55 48 43 76 74 66 60 52 46<br />

10 500 236 58 49 42 36 29 24 62 55 48 42 34 29 65 60 54 48 39 34 67 64 57 52 44 39<br />

800 378 60 51 43 38 32 25 65 59 51 44 38 30 70 65 58 51 44 37 71 68 61 55 47 41<br />

1100 519 60 53 46 40 35 27 67 60 53 46 40 32 73 67 60 53 46 39 75 71 65 57 50 43<br />

1400 661 61 55 49 42 40 31 70 62 55 47 43 36 76 70 62 54 49 42 79 74 66 58 52 46<br />

12 650 307 61 51 45 39 32 22 66 59 50 45 38 31 70 64 57 50 44 39 71 67 60 52 47 44<br />

1100 519 64 54 48 41 36 25 71 62 52 47 42 34 75 69 59 52 47 42 77 72 64 55 50 47<br />

1550 731 65 57 47 42 40 28 73 64 53 47 46 36 81 72 61 53 49 45 83 75 65 56 52 48<br />

2000 944 66 59 48 44 45 35 75 66 54 48 48 40 85 74 62 53 51 47 88 79 67 57 53 50<br />

14 900 425 58 50 43 39 33 23 67 58 52 45 40 34 72 66 60 51 45 40 72 68 64 53 48 46<br />

1500 708 61 53 44 40 36 24 69 60 53 47 42 32 76 68 61 53 47 41 79 73 66 55 49 46<br />

2100 991 63 55 46 42 40 27 71 62 53 47 44 35 78 69 61 52 48 43 82 73 66 56 51 46<br />

3000 1416 66 60 50 46 49 36 75 66 55 50 50 40 85 73 61 54 52 47 88 77 66 57 53 48<br />

16 1200 566 57 50 46 43 37 25 65 58 52 48 42 34 73 66 60 50 45 42 72 70 64 53 46 47<br />

2000 944 59 53 48 46 42 28 67 60 54 50 47 36 75 68 62 53 49 45 78 73 66 56 49 48<br />

3000 1416 61 56 50 50 48 33 69 62 54 52 52 40 78 69 61 55 53 47 83 74 66 58 53 51<br />

4000 1888 65 61 54 54 59 43 71 65 58 55 60 49 83 72 63 58 59 54 89 76 66 61 58 55<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps inlet static pressure minus discharge static pressure.<br />

<strong>VAV</strong>-PRC008-EN<br />

DD 9


Dual-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Sound Noise Criteria (NC)<br />

Discharge<br />

Radiated<br />

Inlet Pressure (∆Ps) Inlet Pressure (∆Ps)<br />

Inlet 0.5" 1.0" 2.0" 3.0" 0.5" 1.0" 2.0" 3.0"<br />

Size Cfm L/s (127 Pa) (254 Pa) (508 Pa) (762 Pa) (127 Pa) (254 Pa) (508 Pa) (762 Pa)<br />

5 130 61 — — 15 21 — 15 16 20<br />

200 94 — 15 20 20 — 17 22 25<br />

250 118 — 19 25 25 16 20 25 29<br />

350 165 22 26 32 35 22 26 30 34<br />

6 200 94 — 15 20 19 — 16 21 23<br />

300 142 17 21 29 29 19 21 26 30<br />

400 189 21 29 34 36 20 27 30 34<br />

500 236 19 31 41 42 20 30 36 38<br />

8 350 165 15 22 26 27 17 24 29 31<br />

520 245 19 29 36 36 20 27 35 37<br />

700 330 21 31 41 44 24 31 38 44<br />

900 425 24 32 42 49 25 35 41 46<br />

10 550 260 — 24 29 30 20 25 30 35<br />

820 387 17 27 36 36 22 29 36 39<br />

1100 519 21 30 40 42 22 31 39 42<br />

1400 661 25 32 42 46 24 35 42 46<br />

12 800 378 17 27 34 36 24 30 35 38<br />

1200 566 22 34 41 41 27 36 41 44<br />

1600 755 22 35 45 47 29 39 49 52<br />

2000 944 25 35 49 52 30 41 55 59<br />

14 1100 519 17 29 35 38 20 31 37 39<br />

1600 755 20 30 40 41 24 34 42 46<br />

2100 991 22 32 41 42 26 36 45 50<br />

3000 1416 27 22 32 37 30 41 55 59<br />

16 1400 661 18 27 36 39 20 29 39 41<br />

2100 991 17 29 39 41 22 31 41 45<br />

2800 1321 20 29 39 44 25 34 45 52<br />

4000 1888 24 32 42 46 31 36 52 60<br />

1. “—” represents NC levels below NC 15.<br />

2. NC Values are calculated using modeling assumptions based on ARI 885-98-02 Addendum.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

ARI 885-98 RADIATED TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Type 2- Mineral Fiber Insulation -18 -19 -20 -26 -31 -36<br />

Total dB reduction -18 -19 -20 -26 -31 -36<br />

Subtract from terminal unit sound power to determine radiated sound<br />

pressure in the space.<br />

ARI 885-98 DISCHARGE TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Small Box (700 Cfm) -29 -30 -41 -51 -52 -39<br />

Subtract from terminal unit sound power to determine discharge sound<br />

pressure in the space.<br />

DD 10<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

ARI Conditions<br />

Inlet<br />

1.5" Inlet Pressure (381 Pa)<br />

Size Cfm L/s 2 3 4 5 6 7<br />

5 250 118 66 61 58 57 53 50<br />

6 400 189 73 65 63 61 58 53<br />

8 700 330 77 70 69 67 64 58<br />

10 1100 519 80 71 70 68 65 59<br />

12 1600 755 87 76 69 68 65 61<br />

14 2100 991 83 75 70 70 70 65<br />

16 2800 1321 81 75 70 70 71 68<br />

Radiated Sound Power (dB)<br />

ARI Conditions<br />

Inlet<br />

1.5" Inlet Pressure (381 Pa)<br />

Size Cfm L/s 2 3 4 5 6 7<br />

5 250 118 59 55 48 42 37 35<br />

6 400 189 64 60 52 45 37 31<br />

8 700 330 69 64 57 51 43 36<br />

10 1100 519 71 65 57 50 43 36<br />

12 1600 755 78 68 58 50 47 41<br />

14 2100 991 76 66 57 50 47 39<br />

16 2800 1321 74 66 58 53 52 44<br />

Notes:<br />

1. All sound data rated in accordance with current Industry St<strong>and</strong>ard<br />

ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

<strong>VAV</strong>-PRC008-EN<br />

DD 11


Dual-Duct<br />

Dimensional<br />

Data<br />

DUAL-DUCT WITH OUTLET PLENUM/ATTENUATOR (VDDF)<br />

INLET CFM LITERS per<br />

INLET SIZE<br />

SECOND<br />

(NOMINAL Ø)<br />

COOL HEAT COOL HEAT COOL HEAT COOL HEAT<br />

05 05 350 350 165 165 5" (127 mm) 5" (127 mm)<br />

06 05 500 350 236 165 6" (152 mm)<br />

06 06 500 500 236 236<br />

6" (152 mm)<br />

08 06 900 500 425 236 8" (203 mm)<br />

08 08 900 900 425 425<br />

8" (203 mm)<br />

10 08 1400 900 661 425 10" (254 mm)<br />

10 10 1400 1400 661 661<br />

10" (254 mm)<br />

12 08 2000 900 994 425 12" (305 mm) 8" (203 mm)<br />

12 10 2000 1400 994 661<br />

10" (254 mm)<br />

12 12 2000 2000 994 994<br />

12" (305 mm)<br />

14<br />

16<br />

14<br />

16<br />

3000<br />

4000<br />

3000<br />

4000<br />

1416<br />

1888<br />

1416<br />

1888<br />

14" (356 mm)<br />

16" (406 mm)<br />

14" (356 mm)<br />

16" (406 mm)<br />

FLOW RING<br />

TUBING<br />

5.50"<br />

(140 mm)<br />

6.50"<br />

(165 mm)<br />

C<br />

AIR<br />

VALVE<br />

COOLING<br />

4.00"<br />

(104 mm)<br />

AIR<br />

VALVE<br />

D<br />

HEATING<br />

DISCHARGE DIMENSIONS<br />

A<br />

14.00" (356 mm)<br />

20.00" (508 mm)<br />

FLOW RING<br />

TUBING<br />

B<br />

20.00" (508 mm)<br />

C<br />

7.00" (178 mm)<br />

D<br />

7.00" (178 mm)<br />

22.00" (559 mm)<br />

8.00" (203 mm)<br />

8.00" (203 mm)<br />

7.00" (178 mm)<br />

7.00" (178 mm)<br />

10.00" (254 mm) 8.00" (203 mm)<br />

9.00" (229 mm)<br />

24.00" (610 mm)<br />

10.00" (254 mm)<br />

L<br />

W<br />

28.00" (711 mm) 15.50" (394 mm) 54 (24)<br />

54 (24)<br />

54 (24)<br />

55 (25)<br />

56 (25)<br />

57 (26)<br />

61 (28)<br />

40.00" (1016 mm) 21.50" (546 mm) 58 (26)<br />

59 (27)<br />

60 (27)<br />

81 (37)<br />

83 (38)<br />

H<br />

Wt<br />

Lbs<br />

(kg)<br />

L<br />

SLIP & DRIVE<br />

CONNECTION<br />

DISCHARGE<br />

DIMENSIONS (BxA)<br />

AIRFLOW<br />

ARRANGEMENT "H"<br />

1.50" (38 mm) FLANGE<br />

14.00"<br />

(356 mm)<br />

HEATING<br />

CONTROL BOX<br />

ANALOG OR DDC/UCM<br />

TOP VIEW<br />

COOLING<br />

CONTROL BOX<br />

ANALOG OR DDC/UCM<br />

21.50"<br />

(546.1 mm)<br />

W<br />

8.25"<br />

(210 mm)<br />

H<br />

13.50"<br />

(343 mm)<br />

BACK VIEW<br />

SIDE VIEW<br />

OUTL CONVERSION CHART<br />

SYMBOL<br />

I<br />

II<br />

III<br />

IV<br />

NOMINALØ<br />

5" (127 mm)<br />

6" (152 mm)<br />

8" (203 mm)<br />

10" (254 mm)<br />

OUTLET AVAILABILITY CHART-SEE OUTL CONVERSION FOR NOMINALØ<br />

VALV<br />

0505 0606 0808 1010<br />

A,B,C I, II, III II, III<br />

III, IV<br />

N/A<br />

OUTL<br />

D,E,F I, II<br />

I, II, III II, III, IV III, IV<br />

G<br />

H<br />

N/A<br />

I, II<br />

N/A<br />

I, II, III<br />

N/A<br />

I, II, III<br />

III<br />

III, IV<br />

J N/A<br />

N/A<br />

N/A<br />

III<br />

A B C D E F G H<br />

OUTLET PLENUM/ATTENUATOR<br />

ARRANGEMENTS<br />

(TOP VIEW)<br />

J<br />

CUSTOMER <strong>NOTE</strong>S:<br />

1. Outlet combinations to remote diffusers have<br />

optional integral balancing dampers (See<br />

specification sheet.)<br />

2. Outlet connections are centered in plenum panel.<br />

3. Minimum of 1.5 duct diameters of straight<br />

duct required for proper flow reading.<br />

4. Allow 12" (305 mm) on control side for servicing.<br />

5. Weights are an estimation <strong>and</strong> will vary<br />

based on selected options, insulation type, etc.<br />

6. Allow 48" (1219 mm) of straight duct downstream<br />

of unit before first runout & inside of the duct<br />

should be equal discharge size (A x B).<br />

DD 12<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

Dimensional<br />

Data<br />

DUAL-DUCT (VDDF) CONSTANT VOLUME<br />

INLET<br />

COOL<br />

05 05<br />

06 05<br />

06<br />

08 06<br />

08 08<br />

CFM<br />

HEAT<br />

350 350<br />

500 350<br />

500<br />

900 500<br />

900 900<br />

LITERS per<br />

SECOND<br />

HEAT<br />

165 165<br />

236 165<br />

425 236<br />

425 425<br />

INLET SIZE<br />

(NOMINAL Ø)<br />

COOL<br />

HEAT<br />

5" (127 mm) 5" (127 mm)<br />

6" (152 mm)<br />

6" (152 mm)<br />

8" (203 mm)<br />

8" (203 mm)<br />

A<br />

7.00" (178 mm)<br />

8.00" (203 mm)<br />

B<br />

7.00" (178 mm)<br />

8.00" (203 mm)<br />

C<br />

5" (127mm)<br />

6" (152mm)<br />

8" (203 mm)<br />

L<br />

22.00" (559 mm)<br />

Wt<br />

W H Lbs<br />

(kg)<br />

28.00" (711 mm) 15.50" (394 mm) 54 (24)<br />

54 (24)<br />

54 (24)<br />

55 (25)<br />

56 (25)<br />

10<br />

10 10<br />

12 08<br />

12<br />

12 12<br />

14 14<br />

16 16<br />

900<br />

1400 1400<br />

2000 900<br />

1400<br />

2000 2000<br />

3000 3000<br />

4000 4000<br />

661 661<br />

994 425<br />

994 994<br />

1416<br />

1416<br />

1888 1888<br />

10" (254 mm)<br />

10" (254 mm)<br />

12" (305 mm) 8" (203 mm)<br />

10" (254 mm)<br />

12" (305 mm)<br />

14" (356 mm) 14" (356 mm)<br />

16" (406 mm) 16" (406 mm)<br />

7.00" (178 mm)<br />

7.00" (178 mm)<br />

10.00" (254 mm) 8.00" (203 mm)<br />

9.00" (229 mm)<br />

10.00" (254 mm)<br />

10" (254 mm)<br />

12" (305 mm)<br />

14" (356mm)<br />

16" (406mm)<br />

24.00" (610 mm) 40.00" (1016 mm) 21.50" (546 mm)<br />

57 (26)<br />

61 (28)<br />

58 (26)<br />

59 (27)<br />

60 (27)<br />

81 (37)<br />

83 (38)<br />

SEE CHART ABOVE<br />

FLOW RING<br />

TUBING<br />

5.50"<br />

(140 mm)<br />

A<br />

4.00"<br />

B<br />

6.50"<br />

(165 mm)<br />

COOLING<br />

HEATING<br />

HEATING<br />

CONTROL BOX<br />

ANALOG OR DDC/UCM<br />

PNEUMATIC CONTROLS AREA<br />

(SEE <strong>NOTE</strong>S)<br />

FLOW RING TUBING<br />

CONNECTS TO<br />

HEATING SIDE CONTROL<br />

FLOW<br />

RING<br />

C<br />

4.00"<br />

(102 mm)<br />

COOLING<br />

CONTROL BOX<br />

ANALOG OR DDC/UCM<br />

PNEUMATIC CONTROLS AREA<br />

(SEE <strong>NOTE</strong>S)<br />

TOP VIEW<br />

AIRFLOW<br />

DISCHARGE OUTLET<br />

W<br />

L<br />

8.25"<br />

(210 mm)<br />

H<br />

BACK VIEW<br />

DISCHARGE IS CENTERED<br />

ON BACK OF UNIT.<br />

SIDE VIEW<br />

<strong>NOTE</strong>S:<br />

1. See mechanical specifications for general unit clearances.<br />

<strong>VAV</strong>-PRC008-EN<br />

2. No control box provided for the following options:<br />

ENON, PNON, DD00 & Pneumatic controls.<br />

DD 13


Dual-Duct<br />

Mechanical<br />

Specifications<br />

MODEL VDDF<br />

Dual-duct terminal unit.<br />

VDDF<br />

CASING<br />

22-gage galvanized steel.<br />

Hanger brackets provided.<br />

AGENCY LISTING<br />

The unit is UL <strong>and</strong> Canadian UL<br />

Listed as a room air terminal unit.<br />

Control # 9N65.<br />

ARI 880 Certified.<br />

INSULATION<br />

1/2" (12.7 mm) Matte-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg /m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 1.9. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A<br />

<strong>and</strong> UL 181 st<strong>and</strong>ards. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Matte-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.0 lb/ft 3<br />

(25.4 mm, 16.0 kg /m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 3.85.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There<br />

are no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1/2" (12.7 mm) Foil-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 2.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Foil-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.5 lb/ft 3<br />

(25.4 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 4.3. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

DD 14<br />

1" (25.4 mm) Double-wall<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with a 1-inch, 1.0 lb./ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with high-density<br />

facing. The insulation R-value is 3.0.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards.<br />

An interior liner made of 26-gage<br />

galvanized steel covers the insulation.<br />

All wire penetrations are covered by<br />

grommets. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

3/8" (9.5 mm) Closed-cell<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 3/8-inch, 4.4 lb/ft 3<br />

(9.5 mm, 70.0 kg/m 3 ) closed cell<br />

insulation. The insulation is UL listed<br />

<strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards. The insulation has an<br />

R-Value of 1.4. There is complete metal<br />

encapsulation.<br />

Air Valve Combinations Available:<br />

Air Valve <strong>Catalog</strong>ed Air Valve <strong>Catalog</strong><br />

Size Airflow Size Airflow<br />

in. (mm) cfm (L/s) in. (mm) cfm (L/s)<br />

Cooling Cooling Heating Heating<br />

05 (127) 350 (165) 05 (127) 350 (165)<br />

06 (152) 500 (236) 05 (127) 350 (165)<br />

06 (152) 500 (236) 06 (152) 500 (236)<br />

08 (203) 900 (425) 06 (152) 500 (236)<br />

08 (203) 900 (425) 08 (203) 900 (425)<br />

10 (254) 1400 (661) 08 (203) 900 (425)<br />

10 (254) 1400 (661) 10 (254) 1400 (661)<br />

12 (305) 1400 (944) 08 (203) 900 (425)<br />

12 (305) 2000 (944) 10 (254) 1400 (661)<br />

12 (305) 2000 (944) 12 (305) 2000 (944)<br />

14 (356) 3000 (1416) 14 (356) 3000 (1416)<br />

16 (406) 4000 (1888) 16 (406) 4000 (1888)<br />

PRIMARY AIR VALVES<br />

Air Valve Round — The primary air<br />

inlet connection is an 18-gage<br />

galvanized steel cylinder sized to fit<br />

st<strong>and</strong>ard round duct. A multiple-point,<br />

averaging flow sensing ring is<br />

provided with balancing taps for<br />

measuring +/-5% of unit cataloged<br />

airflow. An airflow-versus-pressure<br />

differential calibration chart is provided.<br />

The damper blade is constructed of a<br />

closed-cell foam seal that is<br />

mechanically locked between two<br />

22-gage galvanized steel disks. The<br />

damper blade assembly is connected<br />

to a cast zinc shaft supported by selflubricating<br />

bearings. The shaft is cast<br />

with a damper position indicator. The<br />

valve assembly includes a mechanical<br />

stop to prevent over-stroking. At 4.0 in.<br />

wg, air valve leakage does not exceed<br />

1% of cataloged airflow.<br />

OUTLET CONNECTION<br />

Slip & Drive Connection—Terminal<br />

units come st<strong>and</strong>ard with slip & drive<br />

connection.<br />

Outlet Plenum/Attenuator—A sheet<br />

metal, insulated plenum/attenuator<br />

with circular opening(s) is attached to<br />

the discharge of the main unit at the<br />

factory. The circular opening(s) are<br />

centered on the unit plenum to accept<br />

round ductwork connections.<br />

Outlet Plenum/Attenuator with<br />

Balancing Dampers—A sheet metal,<br />

insulated plenum/attenuator with<br />

circular opening(s) is factoryconnected<br />

to the main unit. The circular<br />

opening(s) with balancing damper(s)<br />

are centered on the unit plenum to<br />

accept round ductwork connections.<br />

UNIT CONTROLS SEQUENCE OF<br />

OPERATION<br />

The unit controller continuously<br />

monitors the zone temperature<br />

against its setpoint <strong>and</strong> varies the<br />

primary airflow as required to meet<br />

zone setpoints. Airflow is limited by<br />

minimum <strong>and</strong> maximum position<br />

setpoints.<br />

DIRECT DIGITAL CONTROLS<br />

DDC Actuator—Trane 3-wire,<br />

24 VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb. minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Direct Digital Controller—The<br />

microprocessor based terminal unit<br />

controller provides accurate, pressureindependent<br />

control through the use of<br />

a proportional integral control<br />

algorithm <strong>and</strong> direct digital control<br />

technology. The controller, named the<br />

Unit Control Module (UCM), monitors<br />

zone temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change, <strong>and</strong><br />

valve airflow using a differential<br />

pressure signal from the pressure<br />

transducer. Additionally, the controller<br />

can monitor either supply duct air<br />

temperature or CO 2<br />

concentration via<br />

appropriate sensors. The controller is<br />

provided in an enclosure with 7/8"<br />

(22 mm) knockouts for remote control<br />

wiring. A Trane UCM zone sensor<br />

is required.<br />

<strong>VAV</strong>-PRC008-EN


Dual-Duct<br />

Mechanical<br />

Specifications<br />

DDC Zone Sensor—The UCM<br />

controller senses zone temperature<br />

through a sensing element located in<br />

the zone sensor. In addition to the<br />

sensing element, zone sensor options<br />

may include an externally-adjustable<br />

setpoint, communications jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the individual<br />

controller from unoccupied to occupied<br />

mode. The override button has a cancel<br />

feature that will return the system to<br />

unoccupied. Wired zone sensors utilize a<br />

thermistor to vary the voltage output in<br />

response to changes in the zone<br />

temperature. Wiring to the UCM<br />

controller must be 18 to 22 awg. twisted<br />

pair wiring. The setpoint adjustment<br />

range is 50–88ºF (10–31°C). Depending<br />

upon the features available in the model<br />

of sensor selected, the zone sensor may<br />

require from a 2-wire to a 5-wire<br />

connection. Wireless zone sensors<br />

report the same zone information as<br />

wired zone sensors, but do so using<br />

radio transmitter technology. Therefore<br />

with wireless, wiring from the zone<br />

sensor to the UCM is unnecessary.<br />

Digital Display Zone Sensor with<br />

Liquid Crystal Display (LCD)—<br />

The digital display zone sensor<br />

contains a sensing element, which<br />

sends a signal to the UCM. A Liquid<br />

Crystal Display (LCD) displays setpoint<br />

or space temperature. Sensor buttons<br />

allow the user to adjust setpoints, <strong>and</strong><br />

allow space temperature readings to<br />

be turned on or off. The digital display<br />

zone sensor also includes a<br />

communication jack, for use with a<br />

portable edit device, <strong>and</strong> an override<br />

button to change the UCM from<br />

unoccupied to occupied. The override<br />

button has a cancel feature, which<br />

returns the system to unoccupied mode.<br />

System Communications—The<br />

Controller is designed to send <strong>and</strong><br />

receive data from a Tracer Summit <br />

or other Trane controllers. Current unit<br />

status conditions <strong>and</strong> setpoints may be<br />

monitored <strong>and</strong>/or edited via this data<br />

communication feature. The network<br />

type is a twisted wire pair shielded serial<br />

communication.<br />

PNEUMATIC CONTROLS<br />

Normally-Open Actuator—<br />

Pneumatic 3 to 8 psig (20 to 55 kPa)<br />

spring-range pneumatic actuator.<br />

Normally-Closed Actuator—<br />

Pneumatic 8 to 13 psig (55 to 90 kPa)<br />

spring-range pneumatic actuator.<br />

3011 Pneumatic Volume Regulator<br />

(PVR)—The regulator is a thermostat<br />

reset velocity controller, which<br />

provides consistent air delivery within<br />

5% of cataloged flow down to 18% or<br />

less of unit cataloged cfm, independent<br />

of changes in system static pressure.<br />

Factory-calibrated, field-adjustable<br />

setpoints for minimum <strong>and</strong> maximum<br />

flows. Average total unit bleed rate,<br />

excluding thermostat, is 28.8 scim at<br />

20 psig (7.87 mL/min at 138 kPa) supply.<br />

3501 Pneumatic Volume Regulator<br />

(PVR)—The 3501 regulator is a linear<br />

reset volume controller. <strong>This</strong> PVR is<br />

used to maintain a constant volume of<br />

airflow from the dual-duct unit when<br />

constant volume control is used.<br />

Average total unit bleed rate, excluding<br />

thermostat, is 43.2 scim at 20 psig<br />

(11.8 mL/min at 138 kPa) supply.<br />

CONTROL OPTIONS<br />

Transformer—The 50-VA transformer<br />

is factory-installed in an enclosure with<br />

7/8" (2 mm) knockouts to provide<br />

24 VAC for controls.<br />

Disconnect Switch – A toggle<br />

disconnect disengages primary power<br />

to the terminal.<br />

Fuse – Optional fuse is factoryinstalled<br />

in the primary voltage hot leg.<br />

<strong>VAV</strong>-PRC008-EN<br />

DD 15


Fan-Powered<br />

Parallel<br />

Table of<br />

Contents<br />

Service Model Number Description FPP 2<br />

Selection Procedure FPP 3 – 5<br />

General Data – Valve/Controller Airflow Guidelines FPP 6<br />

Performance Data – Air Pressure Requirements FPP 7 – 8<br />

Performance Data – Fan Curves FPP 9 – 12<br />

Performance Data – Hot Water Coil FPP 13 – 16<br />

Performance Data – Electrical Data FPP 17 – 19<br />

Performance Data – Acoustics FPP 20 – 25<br />

Dimensional Data FPP 26 – 34<br />

Mechanical Specifications FPP 35 – 37<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 1


Fan-Powered<br />

Parallel<br />

Service<br />

Model Number<br />

Description<br />

Digit 1, 2—Unit Type<br />

VP <strong>VariTrane</strong> fan-powered parallel<br />

Digit 3—Reheat<br />

C Cooling Only<br />

E Electric Heat<br />

W Hot Water Heat<br />

Digit 4—Development Sequence<br />

F Sixth<br />

Digit 5, 6—Primary Air Valve<br />

05 5" inlet (350 max cfm)<br />

06 6" inlet (500 max cfm)<br />

08 8" inlet (900 max cfm)<br />

10 10" inlet (1400 max cfm)<br />

12 12" inlet (2000 max cfm)<br />

14 14" inlet (3000 max cfm)<br />

16 16" inlet (4000 max cfm)<br />

Digit 7, 8—Secondary Air Valve<br />

00 N/A<br />

Digit 9—Fan<br />

P 02SQ fan (500 nominal cfm)<br />

Q 03SQ fan (1100 nominal cfm)<br />

R 04SQ fan (1350 nominal cfm)<br />

S 05SQ fan (1550 nominal cfm)<br />

T 06SQ fan (1850 nominal cfm)<br />

U 07SQ fan (2000 nominal cfm)<br />

Digit 10, 11—Design Sequence<br />

A0 Design Sequence (Factory<br />

assigned)<br />

Digit 12, 13, 14, 15—<strong>Controls</strong><br />

ENON No controls, field-installed<br />

DDC or analog<br />

ENCL ENON with controls enclosure<br />

PNON No controls, field-installed<br />

pneumatic<br />

DD00 Trane elec actuator only<br />

DD01 DDC – cooling only<br />

DD02 DDC – N.C. on/off water control<br />

DD03 DDC – prop hot water control<br />

DD04 DDC – on/off electric heat<br />

control<br />

DD05 DDC – pulse-width modulation<br />

electric heat control<br />

DD07 DDC – N.O. on/off hot water<br />

control<br />

DD11 LonTalk DDC Controller—<br />

Cooling only<br />

DD12 LonTalk DDC Controller w/ N.C.<br />

on/off hot water control<br />

DD13 LonTalk DDC Controller w/<br />

proportional hot water control<br />

DD14 LonTalk DDC Control–on/off<br />

electric heat control<br />

DD15 LonTalk DDC Controller w/<br />

pulse-width modulation<br />

electric heat control<br />

DD17 LonTalk DDC Controller w/ N.O.<br />

on/off hot water control<br />

AT08 FM Automated Logic ZN341v+<br />

AT10<br />

FM00<br />

FM Automated Logic ZN141v+<br />

FM customer actuator &<br />

control<br />

FM01 FM Trane actuator w/ customersupplied<br />

controller<br />

HNY2 FM Honeywell W7751H<br />

INV3 FM Invensys MNL-V2R<br />

VMA2 FM Johnson VMA-1420<br />

PWR1 FM Siemens 540-100 w/<br />

GDE131.1 actuator<br />

PWR2 FM Siemens 540-103 w/<br />

GDE131.1 actuator<br />

PW12 FM Siemens 550-065<br />

PW13 FM Siemens 550-067<br />

EI05 Analog – fan-powered parallel<br />

with optional on/off reheat<br />

PN00 PN – N.O. Trane pneumatic<br />

actuator, R.A. stat<br />

PN05 PN – N.O. PVR, R.A. stat<br />

Notes:<br />

N.C. = Normally-closed<br />

N.O = Normally-opened<br />

DA Stat = Direct-acting pneumatic t-stat<br />

(by others)<br />

RA Stat = Reverse-acting pneumatic<br />

t-stat (by others)<br />

PN = Pneumatic<br />

FM = Factory installation of customersupplied<br />

controller<br />

PVR = Pneumatic Volume Regulator<br />

Digit 16—Insulation<br />

A 1/2" Matte-faced<br />

B 1" Matte-faced<br />

C 1/2" Foil-faced<br />

D 1" Foil-faced<br />

F 1" Double-wall<br />

G 3/8" Closed-cell<br />

Digit 17—Motor Type<br />

D PSC Motor<br />

E High-efficiency motor (ECM)<br />

Digit 18—Motor Voltage<br />

1 115/60/1<br />

2 277/60/1<br />

3 347/60/1<br />

4 208/60/1<br />

5 230/50/1<br />

Digit 19—Outlet Connection<br />

1 Flanged<br />

2 Slip & Drive<br />

Digit 20—Attenuator<br />

0 None<br />

W With<br />

Digit 21—Water Coil<br />

0 None<br />

1 1-Row–Plenum inlet installed RH<br />

2 2-Row–Plenum inlet installed RH<br />

3 1-Row–Discharge installed, LH<br />

4 1-Row–Discharge installed, RH<br />

5 2-Row–Discharge installed, LH<br />

6 2-Row–Discharge installed, RH<br />

Digit 22—Electrical Connections<br />

L Left<br />

R Right<br />

Electrical Connections Note: Airflow<br />

hitting you in the face.<br />

Digit 23—Transformer<br />

0 N/A (provided as st<strong>and</strong>ard)<br />

Digit 24—Disconnect Switch<br />

0 None<br />

W With<br />

Note:<br />

VPCF, VPWF – Toggle Disconnect<br />

VPEF – Door Interlocking Power<br />

Disconnect<br />

Digit 25—Power Fuse<br />

0 None<br />

W With<br />

Digit 26—Electric Heat Voltage<br />

0 None<br />

A 208/60/1<br />

B 208/60/3<br />

C 240/60/1<br />

D 277/60/1<br />

E 480/60/1<br />

F 480/60/3<br />

G 347/60/1<br />

H 575/60/3<br />

J 380/50/3<br />

K 120/60/1<br />

Digit 27, 28, 29—Electric Heat kW<br />

000 None<br />

050 0.5 kW<br />

010 1.0 kW<br />

015 1.5 kW<br />

260 26.0 kW<br />

Electric Heat Voltage Notes:<br />

0.5 to 8.0 kW–½ kW increments<br />

8.0 to 18.0 kW –1 kW increments<br />

18.0 to 46.0 kW–2 kW increments<br />

Digit 30—Electric Heat Stages<br />

0 None<br />

1 1 Stage<br />

2 2 Stages Equal<br />

3 3 Stages Equal<br />

Digit 31—Contactors<br />

0 None<br />

1 24-volt magnetic<br />

2 24-volt mercury<br />

3 PE with magnetic<br />

4 PE with mercury<br />

Digit 32—Airflow Switch<br />

0 None<br />

W With<br />

FPP 2<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Selection<br />

Procedure<br />

<strong>This</strong> section describes the elements<br />

<strong>and</strong> process required to properly select<br />

parallel fan-powered <strong>VAV</strong> terminals,<br />

<strong>and</strong> includes a specific example. The<br />

selection procedure is iterative in<br />

nature which makes computer<br />

selection desirable.<br />

Selection of fan-powered <strong>VAV</strong><br />

terminals involves four elements:<br />

• Air valve selection<br />

• Heating coil selection<br />

• Fan size <strong>and</strong> selection<br />

• Acoustics<br />

Note: Use the same procedures for<br />

selecting Low-Height Parallel Fan-<br />

Powered Units as used for selecting<br />

Parallel Fan-Powered Units.<br />

Air Valve Selection<br />

Provided in the Performance Data—Air<br />

Pressure Requirements section of the<br />

catalog is the unit air pressure drop at<br />

varying airflows. To select an air valve,<br />

determine the airflow required at<br />

design cooling. Next, select an air<br />

valve diameter that will allow proper<br />

airflow modulation, (a velocity of 1600<br />

– 2000 FPM is recommended). Keep in<br />

mind that modulation below 300<br />

FPM is not recommended. Proper<br />

selection requires defining the<br />

minimum valve airflow (in either<br />

heating or cooling) <strong>and</strong> maintaining at<br />

least 300 FPM through the air valve.<br />

The minimum is typically set based on<br />

ventilation requirements. If zone<br />

ventilation does not come through the<br />

<strong>VAV</strong> unit, a minumum valve position<br />

can also be zero.<br />

Heating Coil Selection<br />

Supply Air Temperature<br />

The first step required when selecting a<br />

heating coil is to determine the heating<br />

supply air temperature to the space,<br />

calculated using the heat transfer<br />

equation. A recommended value is<br />

90°F, although values between 85°F<br />

<strong>and</strong> 95°F are common. Discharge air<br />

temperatures that exceed 20 degrees<br />

above space temperature are not<br />

recommended for proper diffuser<br />

operation. Air temperature difference is<br />

defined as the heating supply air<br />

temperature to the space minus the<br />

winter room design temperature. The<br />

zone design heat loss rate is denoted<br />

by the letter Q. Supply air temperature<br />

to the space equals the leaving air<br />

temperature (LAT) for the terminal unit.<br />

<strong>VAV</strong>-PRC008-EN<br />

Coil Leaving Air Temperature<br />

Once the terminal unit LAT is<br />

determined, the heating requirements<br />

for the coil can be calculated. The<br />

leaving air temperature for the coil of a<br />

parallel fan-powered terminal unit<br />

varies based on the type of unit<br />

installed heat being selected.<br />

Electric coil LAT equals terminal unit<br />

LAT because the coil is located on the<br />

unit discharge. Hot water coils can be<br />

located on either the discharge or, for<br />

maximum system efficiency, the<br />

plenum inlet when located on the<br />

entering air side of the fan. Coil LAT is<br />

calculated using a mixing equation.<br />

Given the unit heating airflow <strong>and</strong> LAT,<br />

minimum primary airflow at its supply<br />

air temperature, <strong>and</strong> the volume of<br />

heated plenum air, the leaving air<br />

temperature for the hot water coil can<br />

be determined (see the unit selection<br />

example that follows for more details).<br />

Coil Entering Air Temperature<br />

The entering air temperature (EAT) to<br />

the coil also varies based on the coil<br />

position on the unit.<br />

Electric coils are mounted on the unit<br />

discharge. Hot water coils can be<br />

mounted on the discharge or on the<br />

plenum inlet. Plenum inlet mounting<br />

creates a more efficient <strong>VAV</strong> system.<br />

<strong>This</strong> is because the parallel fan is<br />

energized only when in heating mode,<br />

<strong>and</strong> thus, when in cooling mode, the<br />

water coil is not in the airstream.<br />

The EAT for discharge mounted coils<br />

equals the temperature of blended<br />

primary air <strong>and</strong> plenum air. For<br />

plenum inlet mounted water coils, the<br />

EAT equals the plenum air<br />

temperature.<br />

Capacity Requirement<br />

Once both coil EAT <strong>and</strong> LAT are<br />

determined, the heat transfer (Q) for<br />

the coil must be calculated using the<br />

heat transfer equation. For electric heat<br />

units, the Q value must be converted<br />

from Btu to kW for heater selection.<br />

The required kW should be compared<br />

to availability charts in the performance<br />

data section for the unit selected. For<br />

hot water heat units, reference the<br />

capacity charts in the performance data<br />

section for the required heat transfer Q<br />

<strong>and</strong> airflow to pick the appropriate coil.<br />

Fan Size <strong>and</strong> Selection<br />

Fan Airflow<br />

Fan airflow is determined by<br />

calculating the difference between<br />

the unit design heating airflow <strong>and</strong><br />

minimum primary airflow.<br />

Fan External Static Pressure<br />

Fan external static pressure is the total<br />

resistance experienced by the fan,<br />

which may include downstream<br />

ductwork <strong>and</strong> diffusers, heating coils,<br />

<strong>and</strong> sound attenuators. As total airflow<br />

varies so will static pressure, making<br />

calculation of external static pressure<br />

dependent on unit type.<br />

In many applications of parallel<br />

terminals, a minimum primary airflow<br />

must be maintained to meet<br />

ventilation requirements. <strong>This</strong> primary<br />

airflow contributes to the total<br />

resistance experienced by the fan <strong>and</strong><br />

should be accounted for in all<br />

components downstream of the fan<br />

itself, including electric coils. Hot water<br />

coils positioned on the fan inlet are not<br />

affected by the additional primary<br />

airflow. The static pressure resistance<br />

experienced by the fan due to the hot<br />

water coil is based on fan airflow only,<br />

not the total heating airflow.<br />

Selection<br />

Once fan airflow <strong>and</strong> external static<br />

pressure are determined, reference the<br />

fan curves in the performance data<br />

section. Cross plot both airflow <strong>and</strong><br />

external static pressure on each<br />

applicable graph. A selection between<br />

the minimum <strong>and</strong> maximum airflow<br />

ranges for the fan is required.<br />

It is common to identify more than<br />

one fan that can meet the design<br />

requirements. Typically, selection<br />

begins with the smallest fan available<br />

to meet capacity. If this selection<br />

does not meet acoustical<br />

requirements, upsizing the fan <strong>and</strong><br />

operating it at a slower speed can be<br />

done for quieter operation.<br />

Acoustics<br />

Air Valve Generated Noise<br />

To determine the noise generated by<br />

the air valve, two pieces of information<br />

are required; design airflow <strong>and</strong> design<br />

air pressure drop. The design air<br />

pressure drop is determined by taking<br />

the difference between design inlet<br />

<strong>and</strong> static pressure (the valve’s most<br />

over-pressurized condition) <strong>and</strong><br />

external static pressure at design<br />

cooling flow. <strong>This</strong> represents a worstcase<br />

operating condition for the valve.<br />

Fan Generated Noise<br />

To determine fan noise levels, fan<br />

airflow, external static pressure <strong>and</strong><br />

speed information is required.<br />

FPP 3


Fan-Powered<br />

Parallel<br />

Selection<br />

Procedure<br />

Evaluation Elements<br />

For parallel fan-powered terminal units,<br />

the air valve <strong>and</strong> fan operation must be<br />

evaluated separately because these<br />

operations are not simultaneous.<br />

Access the appropriate acoustics table(s)<br />

of the catalog <strong>and</strong> determine the sound<br />

power <strong>and</strong> NC prediction for both the<br />

discharge <strong>and</strong> radiated paths. It is<br />

important to underst<strong>and</strong> that discharge air<br />

noise is generally not a concern with fanpowered<br />

terminals. Radiated noise from<br />

the unit casing typically dictates the noise<br />

level of<br />

the space.<br />

If the entire unit or any element of it is<br />

generating noise in excess of the Noise<br />

Criteria requirements, the size of the<br />

appropriate portion of the terminal<br />

should be increased. Because the<br />

selection procedure is iterative, care<br />

should be taken by the designer to<br />

confirm that the change in selection<br />

does not affect other elements of the<br />

unit or system design.<br />

Selection Example—<br />

Parallel With Hot Water Heat<br />

Air Valve Selection<br />

Design Cooling Airflow 1000 cfm<br />

Minimum Ventilation Airflow 200 cfm<br />

Maximum Unit APD 0.25 in. wg<br />

Choose 10" air valve<br />

Check – Is minimum airflow above<br />

300 FPM?<br />

Answer – Yes. Minimum cfm allowable =<br />

165 cfm (see General Data—Valve/<br />

Controller Guidelines, FPP 8)<br />

A 10" air valve is selectd with unit<br />

pressure drop = 0.01 in. wg<br />

Heating Coil Selection<br />

Required Information:<br />

Zone design heat loss: 20000 Btu<br />

Unit heating airflow: 600 cfm<br />

Winter room design temp.: 68ºF<br />

Coil entering water temp.: 180ºF<br />

Minimum primary airflow: 200 cfm<br />

Fan Airflow:<br />

400 cfm<br />

Plenum temperature: 70ºF<br />

Coil flow rate:<br />

2 gpm<br />

Primary air temperature: 55ºF<br />

Heat Transfer Equation (Btu)<br />

Q = 1.085 x Cfm x D Temperature<br />

For the heating zone, the temperature<br />

difference is the zone supply air<br />

temperature (SAT) minus the winter<br />

room design temperature.<br />

18000 Btu = 1.085 x 600 x (SAT - 68ºF)<br />

SAT = 95.6ºF<br />

FPP 4<br />

Because the designer chose to maximize<br />

system efficiency by having the hot<br />

water coil on the plenum inlet, the unit<br />

supply air temperature is equal to the<br />

mix of the heated plenum air from the<br />

fan <strong>and</strong> the minimum primary airflow.<br />

600 cfm x 95.6ºF =<br />

200 cfm x 55ºF +<br />

(600 cfm - 200 cfm) x Coil LAT<br />

Coil LAT = 116ºF<br />

For the heating coil, the temperature<br />

difference is the calculated coil LAT<br />

minus the coil EAT (Plenum Air<br />

Temperature).<br />

Coil Q = 1.085 x 400 x (116-70) =<br />

19,964 Btu = 19.96 Mbh<br />

Coil Performance Table<br />

Selection:<br />

Size 02SQ fan, 1-row coil with 2 gpm =<br />

20.53 Mbh (at 400 cfm)<br />

1-row coil with 2 gpm = 2.57 ft WPD<br />

Fan Selection<br />

Required Information:<br />

Design airflow:<br />

400 cfm<br />

Downstream static pressure<br />

at design airflow: 0.25 in. wg<br />

Fan external static pressure equals<br />

downstream static pressure (ductwork<br />

<strong>and</strong> diffusers) plus coil static pressure.<br />

The coil static pressure that the fan<br />

experiences is at the fan airflow<br />

(400 cfm). The downstream static<br />

pressure the fan experiences is at fan<br />

airflow plus minimum primary airflow.<br />

The sum of fan airflow <strong>and</strong> minimum<br />

primary airflow (600 cfm) is less than<br />

design airflow (1000 cfm) <strong>and</strong> therefore<br />

the 0.25 in. wg downstream static<br />

pressure at design airflow must be<br />

adjusted for the lower heating airflow.<br />

Parallel Fan-Powered Unit with<br />

Water Coil (2 Options)<br />

Plenum Inlet Mounted<br />

Discharge Mounted<br />

Using Fan Law Two:<br />

Heating Downstream Static Pressure =<br />

(600/1000) 2 x 0.25 = .09 in. wg<br />

A size 02SQ fan has the capability to<br />

deliver approximately 650 cfm at 0.09<br />

downstream static pressure.<br />

If an attenuator is required, use the<br />

attenuator air pressure drop tables to<br />

define additional fan static pressure.<br />

Acoustics<br />

Required Information:<br />

Design inlet static press.: 1.0 in. wg<br />

NC criteria:<br />

NC-35<br />

The selection is a VPWF Parallel Fanpowered<br />

Terminal Unit, 10" primary,<br />

parallel fan size 02SQ, with a 1-row hot<br />

water coil.<br />

Determine the casing radiated noise<br />

level because it typically dictates the<br />

sound level (NC) of the space. With a<br />

parallel unit, two operating conditions<br />

must be considered, design cooling<br />

<strong>and</strong> design heating.<br />

Design Cooling (1000 cfm). Radiated<br />

valve typically sets the NC for parallel<br />

units in cooling mode. The closest<br />

tabulated condition (1100 cfm at<br />

1.0 in. wg ISP) has an NC=31. (A more<br />

accurate selection can be done via<br />

TOPSS electronic selection program.):<br />

Selection Program Output (Radiated Valve):<br />

Octave 2 3 4 5 6 7 NC<br />

B<strong>and</strong><br />

Sound 65 60 53 48 41 32 30<br />

Power<br />

Design Heating (200 cfm valve,<br />

400 cfm fan, 0.25 in. wg DSP). Radiated<br />

fan typically sets the NC for parallel<br />

units in heating mode. The closest<br />

cataloged condition (430 fan cfm , 0.25<br />

in. wg DSP) has an NC=32. (A more<br />

accurate selection can be done via<br />

TOPSS electronic selection program.)<br />

Selection Program Output (Radiated Fan):<br />

Octave 2 3 4 5 6 7 NC<br />

B<strong>and</strong><br />

Sound 66 58 56 52 48 41 31<br />

Power<br />

The predicted NC level for design<br />

cooling is NC-30 <strong>and</strong> for design<br />

heating is NC-31. If the catalog path<br />

attenuation assumptions are<br />

acceptable, this unit meets all of the<br />

design requirements <strong>and</strong> the selection<br />

process is complete.<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Selection<br />

Procedure<br />

Computer Selection<br />

The advent of personal computers<br />

has served to automate many<br />

processes that were previously<br />

repetitive <strong>and</strong> time-consuming. One<br />

of those tasks is the proper scheduling,<br />

sizing, <strong>and</strong> selection of <strong>VAV</strong> terminal<br />

units. Trane has developed a computer<br />

program to perform these tasks. The<br />

software is called the Trane Official<br />

Product Selection System (TOPSS).<br />

The TOPSS program will take the input<br />

specifications <strong>and</strong> output the properly<br />

sized <strong>VariTrane</strong> <strong>VAV</strong> terminal unit along<br />

with the specific performance for that<br />

size unit.<br />

The program has several required<br />

fields, denoted by red shading in the<br />

TOPSS screen, <strong>and</strong> many other<br />

optional fields to meet the criteria you<br />

have. Required values include<br />

maximum <strong>and</strong> minimum airflows,<br />

control type, <strong>and</strong> model. If selecting<br />

models with reheat, you will be<br />

required to enter information to make<br />

that selection also. The user is given<br />

the option to look at all the information<br />

for one selection on one screen or as a<br />

schedule with the other <strong>VAV</strong> units on<br />

the job.<br />

The user can select single-duct, dualduct,<br />

<strong>and</strong> fan-powered <strong>VAV</strong> boxes with<br />

the program, as well as most other<br />

Trane products, allowing you to select<br />

all your Trane equipment with one<br />

software program.<br />

The program will also calculate sound<br />

power data for the selected terminal<br />

unit. The user can enter a maximum<br />

individual sound level for each octave<br />

b<strong>and</strong> or a maximum NC value. The<br />

program will calculate acoustical data<br />

subject to default or user supplied<br />

sound attenuation data.<br />

Schedule View<br />

The program has many time-saving features such as:<br />

• Copy/Paste from spreadsheets like Microsoft ® Excel<br />

• Easily arranged fields to match your schedule<br />

• Time-saving templates to store default settings<br />

The user can also export the Schedule View to Excel to modify <strong>and</strong> put into a CAD<br />

drawing as a schedule.<br />

Specific details regarding the program, its operation, <strong>and</strong> how to obtain a copy of it<br />

are available from your local Trane sales office.<br />

Required entry fields (in Red<br />

on TOPSS screen).<br />

Rearrange what fields you see<br />

<strong>and</strong> in what order with a few<br />

clicks of a button.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 5


Fan-Powered<br />

Parallel<br />

General Data—<br />

Valve/Controller<br />

Airflow Guidelines<br />

Primary Airflow Control Factory Settings – I-P<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) Cfm Cfm Cfm Cfm<br />

5 350 40–350 0, 40–350 40–350<br />

6 500 60–500 0, 60–500 60–500<br />

8 900 105–900 0, 105–900 105–900<br />

Direct Digital Control/ 10 1400 165–1400 0, 165–1400 165–1400<br />

UCM 12 2000 240–2000 0, 240–2000 240–2000<br />

14 3000 320–3000 0, 320–3000 320–3000<br />

16 4000 420–4000 0, 420–4000 420–4000<br />

5 350 63–350 0, 63–350 63–350<br />

6 500 73–500 0, 73–500 73–500<br />

Pneumatic with 8 900 134–900 0, 134–900 134–900<br />

Volume Regulator 10 1400 215–1400 0, 215–1400 215–1400<br />

12 2000 300–2000 0, 300–2000 300–2000<br />

14 2885 408–2887 0, 408–2887 408–2887<br />

16 3785 536–3789 0, 536–3789 536–3789<br />

5 350 82–350 0, 82–350 82–350<br />

6 500 120–500 0, 120–500 120–500<br />

8 900 210–900 0, 210–900 210–900<br />

Analog Electronic 10 1400 328–1400 0, 328–1400 328–1400<br />

12 2000 470–2000 0, 470–2000 470–2000<br />

14 3000 640–3000 0, 640–3000 640–3000<br />

16 4000 840–4000 0, 840–4000 840–4000<br />

Primary Airflow Control Factory Settings – SI<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) L/s L/s L/s L/s<br />

5 165 19–165 0, 19–350 19–350<br />

6 236 28–236 0, 28–236 28–236<br />

8 425 50–425 0, 50–425 50–425<br />

Direct Digital Control/ 10 661 77–661 0, 77–661 77–661<br />

UCM 12 944 111–944 0, 111–944 111–944<br />

14 1416 151–1416 0, 151–1416 151–1416<br />

16 1888 198–1888 0, 198–1888 198–1888<br />

5 165 30–165 0, 30–165 30–165<br />

6 236 35–236 0, 35–236 35–236<br />

Pneumatic with 8 425 63–425 0, 63–425 63–425<br />

Volume Regulator 10 661 102–661 0, 102–661 102–661<br />

12 944 141–944 0, 141–944 141–944<br />

14 1362 193–1363 0, 193–1363 193–1363<br />

16 1787 253–1788 0, 253–1788 253–1788<br />

5 165 39–165 0, 39–165 39–165<br />

6 236 57–236 0, 57–236 57–236<br />

8 425 100–425 0, 100–425 100–425<br />

Analog Electronic 10 661 155–661 0, 155–661 155–661<br />

12 944 222–944 0, 222–944 222–944<br />

14 1416 303–1416 0, 303–1416 303–1416<br />

16 1888 397–1888 0, 397–1888 397–1888<br />

Note: Maximum airflow must be greater than or equal to minimum airflow.<br />

FPP 6<br />

<strong>VAV</strong>-PRC008-EN


Unit Air Pressure Drop – in. wg (I-P)<br />

Fan/Inlet Airflow Cooling<br />

Size Cfm Only<br />

02SQ–05 40 0.01<br />

150 0.03<br />

250 0.08<br />

350 0.17<br />

02SQ–06 60 0.01<br />

200 0.05<br />

350 0.17<br />

500 0.35<br />

02SQ–08 105 0.01<br />

350 0.03<br />

600 0.09<br />

900 0.21<br />

02SQ–10 165 0.01<br />

550 0.01<br />

950 0.01<br />

1400 0.01<br />

03SQ–06 60 0.01<br />

200 0.06<br />

350 0.19<br />

500 0.40<br />

03SQ–08 105 0.01<br />

350 0.03<br />

600 0.08<br />

900 0.20<br />

03SQ–10 165 0.01<br />

550 0.01<br />

950 0.02<br />

1400 0.05<br />

03SQ–12 240 0.01<br />

750 0.01<br />

1350 0.01<br />

2000 0.01<br />

04SQ–08 105 0.01<br />

350 0.03<br />

600 0.08<br />

900 0.20<br />

04SQ–10 165 0.01<br />

550 0.01<br />

950 0.02<br />

1400 0.05<br />

04SQ–12 240 0.01<br />

750 0.01<br />

1350 0.01<br />

2000 0.01<br />

04SQ–14 320 0.01<br />

1200 0.01<br />

2100 0.01<br />

Fan-Powered<br />

Parallel<br />

Fan/Inlet Airflow Cooling<br />

Size Cfm Only<br />

05SQ–10 165 0.01<br />

550 0.01<br />

950 0.02<br />

1400 0.05<br />

05SQ–12 240 0.01<br />

750 0.01<br />

1350 0.01<br />

2000 0.01<br />

05SQ–14 320 0.01<br />

1200 0.01<br />

2100 0.01<br />

3000 0.01<br />

06SQ–10 165 0.01<br />

550 0.01<br />

950 0.01<br />

1400 0.01<br />

06SQ–12 240 0.01<br />

750 0.01<br />

1350 0.01<br />

2000 0.01<br />

06SQ–14 320 0.01<br />

1200 0.01<br />

2100 0.01<br />

3000 0.01<br />

06SQ–16 420 0.01<br />

1600 0.01<br />

2800 0.01<br />

4000 0.01<br />

07SQ–10 165 0.01<br />

550 0.01<br />

950 0.01<br />

1400 0.01<br />

07SQ–12 240 0.01<br />

750 0.01<br />

1350 0.01<br />

2000 0.01<br />

07SQ–14 320 0.01<br />

1200 0.01<br />

2100 0.01<br />

3000 0.01<br />

07SQ–16 420 0.01<br />

1600 0.01<br />

2800 0.01<br />

4000 0.01<br />

3000 0.01<br />

Note: Unit pressure drops do not include hot water coil or attenuator<br />

pressure drops.<br />

Performance<br />

Data—Air Pressure<br />

Requirements (I-P)<br />

Coil Air Pressure Drop – in. wg (I-P)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size Cfm (in. wg) (in. wg)<br />

02SQ 100 0.00 0.00<br />

200 0.01 0.01<br />

300 0.01 0.02<br />

400 0.02 0.03<br />

500 0.02 0.05<br />

03SQ 250 0.01 0.02<br />

04SQ 500 0.02 0.04<br />

05SQ 750 0.04 0.08<br />

1000 0.07 0.13<br />

1250 0.10 0.19<br />

1400 0.12 0.23<br />

06SQ 600 0.02 0.04<br />

07SQ 900 0.04 0.07<br />

1200 0.06 0.11<br />

1500 0.09 0.16<br />

1800 0.12 0.22<br />

2000 0.15 0.27<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (I-P)<br />

Fan Plenum<br />

Size Cfm Attenuator<br />

02SQ 50 0.00<br />

200 0.00<br />

350 0.01<br />

500 0.02<br />

650 0.04<br />

750 0.06<br />

03SQ 50 0.00<br />

250 0.00<br />

500 0.00<br />

750 0.00<br />

1000 0.01<br />

1200 0.06<br />

04SQ 50 0.00<br />

300 0.01<br />

600 0.02<br />

900 0.03<br />

1200 0.05<br />

1450 0.06<br />

05SQ 50 0.00<br />

300 0.00<br />

600 0.02<br />

900 0.06<br />

1200 0.13<br />

1550 0.24<br />

06SQ 50 0.00<br />

500 0.01<br />

900 0.03<br />

1300 0.06<br />

1650 0.10<br />

1900 0.14<br />

07SQ 50 0.00<br />

500 0.01<br />

1000 0.04<br />

1500 0.08<br />

2000 0.15<br />

2500 0.25<br />

Note: Plenum cfm = (Fan cfm)<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 7


Unit Air Pressure Drop – Pa (SI)<br />

Fan/Inlet Airflow Cooling<br />

Size L/s Only<br />

02SQ–05 19 2<br />

71 7<br />

118 20<br />

165 41<br />

02SQ–06 28 2<br />

94 13<br />

165 41<br />

236 86<br />

02SQ–08 50 2<br />

165 8<br />

283 23<br />

425 51<br />

02SQ–10 78 2<br />

260 2<br />

448 2<br />

661 3<br />

03SQ–06 28 2<br />

94 15<br />

165 48<br />

236 99<br />

03SQ–08 50 2<br />

165 6<br />

283 21<br />

425 49<br />

03SQ–10 78 2<br />

260 2<br />

448 6<br />

661 13<br />

03SQ–12 113 2<br />

354 2<br />

637 2<br />

944 2<br />

04SQ–08 50 2<br />

165 6<br />

283 21<br />

425 49<br />

04SQ–10 78 2<br />

260 2<br />

448 6<br />

661 13<br />

04SQ–12 113 2<br />

354 2<br />

637 2<br />

944 2<br />

04SQ–14 151 2<br />

566 2<br />

991 2<br />

1416 2<br />

Note: Unit pressure drops do not include hot water coil or attenuator<br />

pressure drops.<br />

Fan-Powered<br />

Parallel<br />

Fan/Inlet Airflow Cooling<br />

Size L/s Only<br />

05SQ–10 78 2<br />

260 2<br />

448 6<br />

661 13<br />

05SQ–12 113 2<br />

354 2<br />

637 2<br />

944 2<br />

05SQ–14 151 2<br />

566 2<br />

991 2<br />

1416 2<br />

06SQ–10 78 2<br />

260 2<br />

448 2<br />

661 2<br />

06SQ–12 113 2<br />

354 2<br />

637 2<br />

944 2<br />

06SQ–14 151 2<br />

566 2<br />

991 2<br />

1416 2<br />

06SQ–16 198 2<br />

755 2<br />

1321 2<br />

1888 2<br />

07SQ–10 78 2<br />

260 2<br />

448 2<br />

661 2<br />

07SQ–12 113 2<br />

354 2<br />

637 2<br />

944 2<br />

07SQ–14 151 2<br />

566 2<br />

991 2<br />

1416 2<br />

07SQ–16 198 2<br />

755 2<br />

1321 2<br />

1888 2<br />

Performance<br />

Data—Air Pressure<br />

Requirements (SI)<br />

Coil Air Pressure Drop – Pa (SI)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size L/s (Pa) (Pa)<br />

02SQ 200 0 1<br />

300 1 3<br />

400 2 5<br />

500 4 8<br />

600 6 12<br />

03SQ 118 2 4<br />

04SQ 236 5 11<br />

05SQ 354 10 21<br />

472 17 33<br />

590 25 47<br />

661 31 57<br />

06SQ 900 5 10<br />

07SQ 1200 9 18<br />

1500 15 28<br />

1800 22 41<br />

2150 30 56<br />

2500 36 67<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (SI)<br />

Fan Plenum<br />

Size L/s Attenuator<br />

02SQ 24 0<br />

94 0<br />

165 2<br />

236 5<br />

307 10<br />

354 14<br />

03SQ 24 0<br />

118 0<br />

236 0<br />

354 0<br />

472 2<br />

566 14<br />

04SQ 24 0<br />

142 3<br />

283 5<br />

425 8<br />

566 11<br />

684 14<br />

05SQ 24 0<br />

142 1<br />

283 5<br />

425 15<br />

566 32<br />

731 61<br />

06SQ 24 0<br />

236 2<br />

425 7<br />

613 15<br />

779 26<br />

897 35<br />

07SQ 24 0<br />

236 2<br />

472 9<br />

708 21<br />

944 38<br />

1180 62<br />

Note: Plenum cfm = (Fan cfm)<br />

FPP 8<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Fan Curves<br />

Notes:<br />

1. When attenuator is required,<br />

add inlet attenuator pressure to<br />

discharge static pressure for final<br />

fan performance.<br />

Pa<br />

150<br />

125<br />

In. wg<br />

0.60<br />

0.50<br />

Parallel 02SQ—PSC<br />

Discharge Static Pressure<br />

100<br />

75<br />

50<br />

0.40<br />

0.30<br />

0.20<br />

120 cfm min<br />

(57 L/s)<br />

25<br />

0.10<br />

100<br />

200 300 400 500<br />

600<br />

700<br />

Cfm<br />

47<br />

94 142 189 236<br />

283<br />

330<br />

L/s<br />

Airflow<br />

Pa<br />

199<br />

In. wg<br />

0.80<br />

Parallel Fan Size 03SQ—PSC<br />

174<br />

0.70<br />

150<br />

0.60<br />

VPCF <strong>and</strong> VPEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

Discharge Static Pressure<br />

125<br />

100<br />

75<br />

50<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

250 cfm min<br />

(118 L/s)<br />

25<br />

0.10<br />

200 300 400 500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

1100<br />

1200<br />

1300 Cfm<br />

94 142 189 236<br />

283<br />

330<br />

378<br />

425<br />

472<br />

519<br />

566<br />

614 L/s<br />

Airflow<br />

Pa<br />

199<br />

In. wg<br />

0.80<br />

Parallel 04SQ—PSC<br />

174<br />

0.70<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

50<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

300 cfm min<br />

(142 L/s)<br />

<strong>VAV</strong>-PRC008-EN<br />

25<br />

0.10<br />

200 400 600 800 1000 1200 1400 1600 Cfm<br />

94 189 283 378 472 566 661 755 L/s<br />

Airflow<br />

FPP 9


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Fan Curves<br />

Discharge Static Pressure<br />

Pa<br />

199<br />

174<br />

150<br />

125<br />

100<br />

75<br />

50<br />

In. wg<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

350 cfm min<br />

(165 L/s)<br />

Parallel 05SQ—PSC<br />

Notes:<br />

1. When attenuator is required,<br />

add inlet attenuator pressure to<br />

discharge static pressure for final<br />

fan performance.<br />

25<br />

0.10<br />

300 500 700 900 1100 1300 1500 1700<br />

142 236 330 425 519 614 708 802<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg Parallel 06SQ—PSC<br />

199<br />

0.80<br />

174<br />

0.70<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

530 cfm min<br />

(250 L/s)<br />

VPCF <strong>and</strong> VPEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

50<br />

0.20<br />

25<br />

0.10<br />

400 600 800 1000 1200 1400 1600 1800 2000 2200<br />

189 283 378 472 566 661 755 850 944 1038<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg Parallel 07SQ—PSC<br />

199<br />

0.80<br />

174<br />

0.70<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

585 cfm min<br />

(276 L/s)<br />

50<br />

0.20<br />

25<br />

0.10<br />

500 700 900 1100 1300 1500 1700 1900 2100 2300<br />

236 330 425 519 614 708 802 897 991 1086<br />

Cfm<br />

L/s<br />

FPP 10<br />

Airflow<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

ECM Data—<br />

Fan Curves<br />

Notes:<br />

1. ECMs (Electrically Commutated<br />

Motors) are ideal for systems seeking<br />

maximum motor efficiency.<br />

2. When attenuator is required, add inlet<br />

attenuator pressure to discharge<br />

static pressure for final fan<br />

performance.<br />

Discharge Static Pressure<br />

Pa In. wg VPxF 03SQ—ECM<br />

125<br />

100<br />

75<br />

50<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

160 cfm min<br />

(76 L/s)<br />

25<br />

0.10<br />

100 200 300 400 500 600 700 800 900 1000 1100<br />

47 94 142 189 236 283 330 378 425 472 519<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg VPxF 04SQ—ECM<br />

125<br />

0.50<br />

100<br />

0.40<br />

VPCF <strong>and</strong> VPEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

Discharge Static Pressure<br />

75<br />

50<br />

0.30<br />

0.20<br />

220 cfm min<br />

(104 L/s)<br />

25<br />

0.10<br />

200 400 600 800 1000 1200 1400 1600<br />

94 189 283 378<br />

472 566<br />

661 755<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg VPxF 05SQ—ECM<br />

125<br />

0.50<br />

Discharge Static Pressure<br />

100<br />

75<br />

50<br />

0.40<br />

0.30<br />

0.20<br />

280 cfm min<br />

(132 L/s)<br />

25<br />

0.10<br />

200 400 600 800 1000 1200 1400 1600 1800 2000<br />

94 189 283 378 472 566 661 755 850 944<br />

Cfm<br />

L/s<br />

<strong>VAV</strong>-PRC008-EN<br />

Airflow<br />

FPP 11


Fan-Powered<br />

Parallel<br />

ECM Data—<br />

Fan Curves<br />

Discharge Static Pressure<br />

Pa In. wg VPxF 06SQ—ECM<br />

125<br />

100<br />

75<br />

50<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

530 cfm min<br />

(250 L/s)<br />

Notes:<br />

1. ECMs (Electrically Commutated<br />

Motors) are ideal for systems seeking<br />

maximum motor efficiency.<br />

2. When attenuator is required, add inlet<br />

attenuator pressure to discharge<br />

static pressure for final fan<br />

performance.<br />

25<br />

0.10<br />

400 600 800 1000 1200 1400 1600 1800 2000 2200<br />

189 283 378 472 566 661 755 850 944 1038<br />

Airflow<br />

Cfm<br />

L/s<br />

VPCF <strong>and</strong> VPEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

FPP 12<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Fan Size 02SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 100 150 200 250 300 350 400 450 500 550 600<br />

1-Row 0.5 0.22 — — — — — — — — — — —<br />

Capacity 1.0 0.76 9.20 11.49 13.14 14.45 15.56 16.52 17.38 18.16 18.93 19.64 20.30<br />

MBH 2.0 2.65 9.79 12.50 14.52 16.17 17.60 18.87 20.02 21.09 22.08 23.02 23.90<br />

3.0 5.54 10.01 12.87 15.04 16.84 18.39 19.79 21.07 22.26 23.38 24.44 25.44<br />

4.0 9.39 10.12 13.07 15.32 17.19 18.82 20.29 21.64 22.90 24.09 25.22 26.29<br />

5.0 14.17 10.19 13.19 15.49 17.41 19.09 20.60 22.00 23.30 24.54 25.71 26.83<br />

2-Row 1.0 1.30 9.97 13.83 17.07 19.81 22.13 24.13 25.85 27.35 28.67 29.83 30.86<br />

Capacity 2.0 4.41 10.29 14.58 18.39 21.78 24.82 27.56 30.03 32.27 34.31 36.18 37.90<br />

MBH 3.0 9.08 10.40 14.83 18.83 22.46 25.76 28.77 31.54 34.09 36.45 38.63 40.67<br />

4.0 15.18 10.45 14.95 19.05 22.80 26.23 29.40 32.32 35.04 37.56 39.92 42.13<br />

5.0 22.66 10.48 15.03 19.18 23.00 26.52 29.78 32.80 35.62 38.25 40.72 43.03<br />

Notes:<br />

1. Fouling Factor = 0.0005 °F ft² h/Btu.<br />

2. Capacity based on 70°F entering air temperature <strong>and</strong> 180°F entering water temperature.<br />

Fan Sizes 03SQ–05SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 150 300 450 600 750 900 1050 1200 1350 1500 1650<br />

1-Row 1.0 0.28 — — — — — — — — — — —<br />

Capacity 2.0 1.02 13.14 18.63 22.21 25.01 27.36 29.41 31.30 33.00 34.54 35.94 37.23<br />

MBH 3.0 2.22 13.62 19.69 23.78 27.05 29.86 32.34 34.58 36.63 38.52 40.31 41.99<br />

4.0 3.85 13.88 20.27 24.65 28.20 31.28 34.03 36.54 38.84 40.98 42.99 44.86<br />

5.0 5.92 14.04 20.64 25.21 28.95 32.21 35.14 37.82 40.31 42.62 44.80 46.85<br />

6.0 8.41 14.14 20.89 25.59 29.46 32.85 35.92 38.73 41.35 43.80 46.10 48.28<br />

7.0 11.32 14.22 21.08 25.88 29.85 33.34 36.50 39.41 42.13 44.67 47.08 49.36<br />

8.0 14.65 14.28 21.22 26.10 30.15 33.71 36.95 39.94 42.73 45.36 47.85 50.21<br />

9.0 18.40 14.33 21.33 26.28 30.38 34.01 37.31 40.36 43.22 45.91 48.46 50.89<br />

10.0 22.57 14.37 21.42 26.42 30.57 34.25 37.60 40.71 43.62 46.36 48.97 51.45<br />

2-Row 1.0 0.35 — — — — — — — — — — —<br />

Capacity 2.0 1.28 15.08 25.87 33.70 39.58 44.13 47.77 50.73 53.20 55.29 57.08 58.63<br />

MBH 3.0 2.74 15.36 27.00 35.94 42.99 48.69 53.40 57.36 60.74 63.66 66.21 68.46<br />

4.0 4.72 15.50 27.57 37.11 44.82 51.20 56.57 61.15 65.13 68.60 71.68 74.42<br />

5.0 7.20 15.59 27.92 37.83 45.97 52.78 58.59 63.60 67.99 71.85 75.30 78.39<br />

6.0 10.18 15.64 28.15 38.31 46.74 53.87 59.99 65.32 70.00 74.15 77.87 81.23<br />

7.0 13.64 15.68 28.31 38.66 47.31 54.67 61.02 66.58 71.49 75.86 79.80 83.36<br />

8.0 17.59 15.71 28.44 38.93 47.74 55.28 61.81 67.55 72.64 77.19 81.29 85.01<br />

9.0 22.03 15.74 28.54 39.13 48.08 55.76 62.44 68.32 73.55 78.24 82.48 86.33<br />

10.0 26.94 15.76 28.62 39.30 48.35 56.15 62.95 68.95 74.30 79.10 83.45 87.42<br />

Notes:<br />

1. Fouling Factor = 0.0005 °F ft² h/Btu.<br />

2. Capacity based on 70°F entering air temperature <strong>and</strong> 180°F entering water temperature.<br />

Fan Sizes 06SQ & 07SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900<br />

1-Row 0.5 0.11 — — — — — — — — — — —<br />

Capacity 1.0 0.36 — — — — — — — — — — —<br />

MBH 2.0 1.24 32.17 33.60 34.93 36.17 37.34 38.43 39.47 40.45 41.38 42.27 43.12<br />

3.0 2.57 35.12 36.76 38.31 39.77 41.16 42.50 43.81 45.07 46.27 47.42 48.53<br />

4.0 4.32 36.78 38.60 40.32 41.95 43.51 45.01 46.44 47.82 49.14 50.42 51.68<br />

5.0 6.49 37.86 39.79 41.63 43.38 45.05 46.66 48.21 49.70 51.14 52.53 53.88<br />

6.0 9.04 38.61 40.63 42.55 44.38 46.14 47.83 49.46 51.04 52.56 54.04 55.47<br />

7.0 11.99 39.17 41.25 43.23 45.13 46.95 48.70 50.40 52.04 53.62 55.16 56.66<br />

2-Row 1.0 0.68 — — — — — — — — — — —<br />

Capacity 2.0 2.24 51.03 53.38 55.46 57.32 58.98 60.47 61.83 63.07 64.20 65.24 66.20<br />

MBH 3.0 4.57 56.65 59.74 62.53 65.06 67.37 69.48 71.42 73.20 74.86 76.40 77.83<br />

4.0 7.59 59.73 63.27 66.50 69.46 72.18 74.69 77.02 79.18 81.19 83.08 84.84<br />

5.0 11.29 61.67 65.51 69.04 72.28 75.29 78.08 80.67 83.09 85.36 87.50 89.50<br />

6.0 15.64 63.00 67.05 70.79 74.24 77.45 80.44 83.24 85.86 88.31 90.63 92.81<br />

7.0 20.61 63.97 68.18 72.07 75.69 79.05 82.19 85.14 87.90 90.51 92.96 95.28<br />

Notes:<br />

1. Fouling Factor = 0.0005 °F ft² h/Btu.<br />

2. Capacity based on 70°F entering air temperature <strong>and</strong> 180°F entering water temperature.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 13


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Water Coil Notes (I-P)<br />

1. Fouling Factor = 0.0005.<br />

2. The off-coil temperature of the hot water coil on parallel fan-powered units must not exceed 140°F when mounted on<br />

plenum inlet.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

( ) ( )<br />

LAT = EAT +<br />

MBH x 921.7<br />

WTD = EWT - LWT =<br />

Cfm<br />

Gpm<br />

4. Capacity based on 70°F entering air temperature <strong>and</strong> 180°F entering water temperature. Refer to correction factors for<br />

different entering conditions.<br />

Temperature Correction Factors for Water Pressure Drop (ft)<br />

Average Water Temperature 200 190 180 170 160 150 140 130 120 110<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (MBH)<br />

Entering Water Minus Entering Air 40 50 60 70 80 90 100 110 120 130<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

FPP 14<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Fan Size 02SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 47 71 94 118 142 165 189 212 236 260 283<br />

1-Row 0.03 0.66 — — — — — — — — — — —<br />

Capacity 0.06 2.26 2.69 3.37 3.85 4.24 4.56 4.84 5.09 5.32 5.55 5.76 5.76<br />

kW 0.13 7.91 2.87 3.66 4.26 4.74 5.16 5.53 5.87 6.18 6.47 6.75 6.75<br />

0.19 16.57 2.93 3.77 4.41 4.93 5.39 5.80 6.18 6.52 6.85 7.16 7.16<br />

0.25 28.08 2.97 3.83 4.49 5.04 5.52 5.95 6.34 6.71 7.06 7.39 7.39<br />

0.32 42.34 2.99 3.87 4.54 5.10 5.59 6.04 6.45 6.83 7.19 7.53 7.53<br />

2-Row 0.06 3.89 2.92 4.05 5.00 5.80 6.49 7.07 7.58 8.02 8.40 8.74 8.74<br />

Capacity 0.13 13.19 3.02 4.27 5.39 6.38 7.27 8.08 8.80 9.46 10.06 10.60 10.60<br />

kW 0.19 27.13 3.05 4.35 5.52 6.58 7.55 8.43 9.24 9.99 10.68 11.32 11.32<br />

0.25 45.38 3.06 4.38 5.58 6.68 7.69 8.62 9.47 10.27 11.01 11.70 11.70<br />

0.32 67.73 3.07 4.40 5.62 6.74 7.77 8.73 9.61 10.44 11.21 11.93 11.93<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 21°C entering air temperature <strong>and</strong> 82°C entering water temperature.<br />

Fan Sizes 03SQ–05SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 71 142 212 283 354 425 495 566 637 708 779<br />

1-Row 0.06 0.82 — — — — — — — — — — —<br />

Capacity 0.13 3.06 3.85 5.46 6.51 7.33 8.02 8.62 9.17 9.67 10.12 10.53 10.53<br />

kW 0.19 6.63 3.99 5.77 6.97 7.93 8.75 9.48 10.14 10.74 11.29 11.81 11.81<br />

0.25 11.51 4.07 5.94 7.22 8.27 9.17 9.97 10.71 11.38 12.01 12.60 12.60<br />

0.32 17.68 4.11 6.05 7.39 8.48 9.44 10.30 11.08 11.81 12.49 13.13 13.13<br />

0.38 25.13 4.15 6.12 7.50 8.64 9.63 10.53 11.35 12.12 12.84 13.51 13.51<br />

0.44 33.83 4.17 6.18 7.58 8.75 9.77 10.70 11.55 12.35 13.09 13.80 13.80<br />

0.50 43.79 4.19 6.22 7.65 8.83 9.88 10.83 11.71 12.52 13.29 14.02 14.02<br />

0.57 55.00 4.20 6.25 7.70 8.90 9.97 10.93 11.83 12.67 13.46 14.20 14.20<br />

0.63 67.45 4.21 6.28 7.74 8.96 10.04 11.02 11.93 12.78 13.59 14.35 14.35<br />

2-Row 0.06 1.06 — — — — — — — — — — —<br />

Capacity 0.13 3.83 4.42 7.58 9.88 11.60 12.93 14.00 14.87 15.59 16.20 16.73 16.73<br />

kW 0.19 8.20 4.50 7.91 10.53 12.60 14.27 15.65 16.81 17.80 18.66 19.40 19.40<br />

0.25 14.11 4.54 8.08 10.88 13.14 15.01 16.58 17.92 19.09 20.11 21.01 21.01<br />

0.32 21.52 4.57 8.18 11.09 13.47 15.47 17.17 18.64 19.92 21.06 22.07 22.07<br />

0.38 30.42 4.58 8.25 11.23 13.70 15.79 17.58 19.14 20.51 21.73 22.82 22.82<br />

0.44 40.78 4.60 8.30 11.33 13.87 16.02 17.88 19.51 20.95 22.23 23.39 23.39<br />

0.50 52.59 4.61 8.33 11.41 13.99 16.20 18.12 19.80 21.29 22.62 23.82 23.82<br />

0.57 65.84 4.61 8.36 11.47 14.09 16.34 18.30 20.02 21.56 22.93 24.17 24.17<br />

0.63 80.52 4.62 8.39 11.52 14.17 16.45 18.45 20.21 21.77 23.18 24.46 24.46<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 21°C entering air temperature <strong>and</strong> 82°C entering water temperature.<br />

Fan Sizes 06SQ & 07SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 425 472 519 566 613 661 708 755 802 849 897<br />

1-Row 0.03 0.33 — — — — — — — — — — —<br />

Capacity 0.06 1.09 — — — — — — — — — — —<br />

kW 0.13 3.71 9.43 9.85 10.24 10.60 10.94 11.26 11.57 11.86 12.13 12.39 12.39<br />

0.19 7.68 10.29 10.77 11.23 11.66 12.06 12.46 12.84 13.21 13.56 13.90 13.90<br />

0.25 12.92 10.78 11.31 11.82 12.30 12.75 13.19 13.61 14.01 14.40 14.78 14.78<br />

0.32 19.39 11.10 11.66 12.20 12.71 13.20 13.67 14.13 14.57 14.99 15.40 15.40<br />

0.38 27.04 11.32 11.91 12.47 13.01 13.52 14.02 14.50 14.96 15.40 15.84 15.84<br />

0.44 35.84 11.48 12.09 12.67 13.23 13.76 14.27 14.77 15.25 15.72 16.17 16.17<br />

2-Row 0.06 2.02 — — — — — — — — — — —<br />

Capacity 0.13 6.70 14.96 15.64 16.25 16.80 17.28 17.72 18.12 18.48 18.82 19.12 19.12<br />

kW 0.19 13.65 16.60 17.51 18.33 19.07 19.74 20.36 20.93 21.45 21.94 22.39 22.39<br />

0.25 22.70 17.51 18.54 19.49 20.36 21.15 21.89 22.57 23.20 23.80 24.35 24.35<br />

0.32 33.76 18.07 19.20 20.23 21.18 22.06 22.88 23.64 24.35 25.02 25.64 25.64<br />

0.38 46.74 18.46 19.65 20.75 21.76 22.70 23.58 24.39 25.16 25.88 26.56 26.56<br />

0.44 61.61 18.75 19.98 21.12 22.18 23.17 24.09 24.95 25.76 26.52 27.24 27.24<br />

Notes:<br />

1. Fouling Factor = 0.0005.<br />

2. Capacity based on 21°C entering air temperature <strong>and</strong> 82°C entering water temperature.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 15


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Water Coil Notes (SI)<br />

1. Fouling Factor = 0.0005.<br />

2. The off-coil temperature of the hot water coil on parallel fan-powered units must not exceed 60°C when mounted on<br />

plenum inlet.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

LAT = EAT kW x 0.83<br />

+( L/s )<br />

WTD = EWT - LWT =( (4.19)L/s<br />

kW<br />

)<br />

4. Capacity based on 21°C entering air temperature <strong>and</strong> 82°C entering water temperature. Refer to correction factors for<br />

different entering conditions.<br />

Temperature Correction Factors for Water Pressure Drop (kPa)<br />

Average Water Temperature 93 88 82 77 71 66 60 54 49 43<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (kW)<br />

Entering Water Minus Entering Air 22 27 33 38 44 50 55 61 67 72<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

FPP 16<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Electrical Data<br />

PSC Motor Units—Electric Coil kW Guidelines – Minimum to Maximum (VPEF)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V 240V 277V 347V 480V 208V 480V 600V<br />

02SQ 1 0.5–5.0 0.5–6.0 0.5–6.0 0.5–6.0 0.5–6.0 0.5–6.0 0.5–6.0 1.0–6.0 1.5–6.0<br />

2 0.5–5.0 0.5–6.0 0.5–6.0 1.0–6.0 1.0–6.0 1.0–6.0 1.0–6.0 2.0–6.0 3.0–6.0<br />

3* 1.0–5.0 1.0–6.0 1.0–6.0 1.0–6.0 1.5–6.0 1.5–6.0 1.5–6.0 3.0–6.0 4.5–6.0<br />

03SQ 1 0.5–5.0 0.5–9.0 0.5–10.0 0.5–11.0 0.5–11.0 0.5–11.0 0.5–11.0 1.0–11.0 1.5–11.0<br />

2 0.5–5.0 0.5–9.0 0.5–10.0 1.0–11.0 1.0–11.0 1.0–11.0 1.0–11.0 2.0–11.0 3.0–11.0<br />

3* 1.0–5.0 1.0–9.0 1.0–10.0 1.0–11.0 1.5–11.0 1.5–11.0 1.5–11.0 3.0–11.0 4.5–11.0<br />

04SQ 1 0.5–4.5 0.5–8.0 0.5–10.0 0.5–12.0 0.5–14.0 0.5–14.0 0.5–14.0 1.0–14.0 1.5–14.0<br />

2 0.5–4.5 0.5–8.0 0.5–10.0 1.0–12.0 1.0–14.0 1.0–14.0 1.0–14.0 2.0–14.0 3.0–14.0<br />

3* 1.0–4.5 1.0–8.0 1.0–10.0 1.0–12.0 1.5–14.0 1.5–14.0 1.5–14.0 3.0–14.0 4.5–14.0<br />

05SQ 1 0.5–4.5 0.5–8.0 0.5–9.0 0.5–12.0 0.5–15.0 0.5–18.0 0.5–14.0 1.0–18.0 1.5–18.0<br />

2 0.5–4.5 0.5–8.0 0.5–9.0 1.0–12.0 1.0–15.0 1.0–18.0 1.0–14.0 2.0–18.0 3.0–18.0<br />

3* 1.0–4.5 1.0–8.0 1.0–9.0 1.0–12.0 1.5–15.0 1.5–18.0 1.5–14.0 3.0–18.0 4.5–18.0<br />

06SQ 1 — 0.5–9.0 — 0.5–12.0 0.5–15.0 0.5–16.0 0.5–15.0 1.0–16.0 1.5–16.0<br />

2 — 0.5–9.0 — 1.0–12.0 1.0–15.0 1.0–16.0 1.0–15.0 2.0–16.0 3.0–16.0<br />

3* — 1.0–9.0 — 1.0–12.0 1.5–15.0 1.5–16.0 1.5–15.0 3.0–16.0 4.5–16.0<br />

07SQ 1 — 0.5–8.0 — 0.5–11.0 0.5–15.0 0.5–20.0 0.5–14.0 1.0–20.0 1.5–20.0<br />

2 — 0.5–8.0 — 1.0–11.0 1.0–15.0 1.0–20.0 1.0–14.0 2.0–20.0 3.0–20.0<br />

3* — 1.0–8.0 — 1.0–11.0 1.5–15.0 1.5–20.0 1.5–14.0 3.0–20.0 4.5–18.0<br />

*Three stages of electric heat available only with pneumatic controls.<br />

ECM Units—Electric Coil kW Guidelines – Minimum to Maximum (VPEF)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V 240V 277V 347V 480V 208V 480V 600V<br />

03SQ 1 0.5–4.5 0.5–8.0 0.5–10.0 0.5–11.0 — 0.5–11.0 0.5–11.0 1.0–11.0 —<br />

2 0.5–4.5 0.5–8.0 0.5–10.0 1.0–11.0 — 1.0–11.0 1.0–11.0 2.0–11.0 —<br />

3 1.0–4.5 1.0–8.0 1.0–10.0 1.0–11.0 — 1.5–11.0 1.5–11.0 3.0–11.0 —<br />

04SQ 1 0.5–4.5 0.5–8.0 0.5–9.0 0.5–12.0 — 0.5–14.0 0.5–14.0 1.0–14.0 —<br />

2 0.5–4.5 0.5–8.0 0.5–9.0 1.0–12.0 — 1.0–14.0 1.0–14.0 2.0–14.0 —<br />

3 1.0–4.5 1.0–8.0 1.0–9.0 1.0–12.0 — 1.5–14.0 1.5–14.0 3.0–14.0 —<br />

05SQ 1 0.5–4.0 0.5–7.0 0.5–8.0 0.5–11.0 — 0.5–18.0 0.5–12.0 1.0–18.0 —<br />

2 0.5–4.0 0.5–7.0 0.5–8.0 1.0–11.0 — 1.0–18.0 1.0–12.0 2.0–18.0 —<br />

3 1.0–4.0 1.0–7.0 1.0–8.0 1.0–11.0 — 1.5–18.0 1.5–12.0 3.0–18.0 —<br />

06SQ 1 0.5–4.0 0.5–7.0 0.5–8.0 0.5–11.0 — 0.5–16.0 0.5–12.0 1.0–16.0 —<br />

2 0.5–4.0 0.5–7.0 0.5–8.0 1.0–11.0 — 1.0–16.0 1.0–12.0 2.0–16.0 —<br />

3 1.0–4.0 1.0–7.0 1.0–8.0 1.0–11.0 — 1.5–16.0 1.5–12.0 3.0–16.0 —<br />

Notes:<br />

1. Coils available with 24-VAC magnetic or mercury contactors, load carrying P.E. switches, <strong>and</strong> P.E. switch with magnetic or mercury contactors.<br />

2. Available kW increments are by 0.5 from 0.5 kW to 8.0 kW, by 1.0 kW from 9.0 to 18.0 kW, <strong>and</strong> by 2.0 kW from 18.0 to 20.0 kW.<br />

3. Each stage will be equal in kW output.<br />

4. All heaters contain an auto reset thermal cutout <strong>and</strong> a manual reset cutout .<br />

5. The current amp draw for the heater elements is calculated by the formula on the next page.<br />

6. Recommended coil temperature rise = 20° to 30°F (-7° to -1°C). Maximum temperature rise = 55°F (12°C).<br />

7. Heaters should not operate at cfms below the nameplate minimum.<br />

8. Only two stages of electric reheat available with Trane controls (ECM only).<br />

Fan Electrical Performance (PSC)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 115 VAC 208 VAC 277 VAC<br />

02SQ 1/8 1.6 — 0.7<br />

03SQ 1/3 4.3 — 1.6<br />

04SQ 1/3 5.5 — 2.0<br />

05SQ 1/2 6.7 — 2.4<br />

06SQ 1/2 — 4.6 3.8<br />

07SQ 1 — 6.6 4.7<br />

Notes:<br />

1. Electric Heat Units - Units with fan sizes 02SQ to 05SQ<br />

<strong>and</strong> a primary voltage of 208/60/1, 208/60/3, or 240/60/1<br />

have 115/60/1 VAC fan motors. Fan sizes 06SQ <strong>and</strong><br />

07SQ with the same voltages, have 208/60/1 VAC motors.<br />

2. Electric Heat Units - Units with primary voltage of<br />

277/60/1, 480/60/1 or 480/60/3 use 277 VAC fan motors.<br />

3. Electric Heat Units - Units with primary voltage of<br />

347/60/1 or 575/60/3 use 347 VAC fan motors.<br />

4. With 380/50/3 <strong>and</strong> 230/50/1, use 230/50 motors.<br />

Fan Electrical Performance (ECM)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 115 VAC 277 VAC<br />

03SQ 1/3 4.5 2.4<br />

04SQ 1/2 6.5 3.5<br />

05SQ 1 10.1 5.4<br />

06SQ 1 9.5 5.1<br />

Notes:<br />

1. Electric heat units—units with primary voltages of<br />

208/60/1, 208/60/3, or 240/60/1 have 115-VAC fan motors.<br />

2. Electric heat units—units with primary voltages of<br />

277/60/1, 480/60/1, or 480/60/3 have 277-VAC fan motors.<br />

3. 347/60/1 <strong>and</strong> 230/50/1 voltage motors not available with<br />

ECMs.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 17


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Electrical Data<br />

Formulas<br />

Minimum Circuit Ampacity (MCA) Equation<br />

• MCA = 1.25 x (Σ motor amps + heater amps)<br />

Motor amps is the sum of all motor current draws if more<br />

than one is used in the unit.<br />

Maximum Overcurrent Protection (MOP) Equation<br />

• MOP = (2.25 x motor1 amps) + motor2 amps + heater amps<br />

motor1 amps = current draw of largest motor<br />

motor2 amps = sum of current of all other motors used in<br />

unit<br />

General Sizing Rules:<br />

• If MOP = 15, then fuse size = 15<br />

• If MOP = 19, then fuse size = 15 with one exception. If heater<br />

amps x 1.25 > 15, then fuse size = 20.<br />

• If MOP ≤ MCA, then choose next fuse size greater than MCA.<br />

• Control fusing not applicable.<br />

• St<strong>and</strong>ard Fuse Sizes: 15, 20, 25, 30, 35, 40, 45, 50, <strong>and</strong> 60.<br />

Example:<br />

A model VPEF, electric reheat unit size 10-05SQ has 480/3 phase, 12 kW<br />

electric reheat with 2 stages <strong>and</strong> 277-Volt motor.<br />

For MOP of fan-powered unit:<br />

12 kW - 480/3 heater 12 x 1000 = 14.45 amps<br />

480 x 1.73<br />

MCA = (2.4 + 14.45) x 1.25 = 21.06, MOP = (2.25 x 2.4) + 14.45 = 19.9.<br />

Since MOP ≤ MCA, then MOP = 25.<br />

For total current draw of unit:<br />

12 kW—480/3 heater 12 x 1000 = 14.45<br />

480 x 1.73<br />

Two heat outputs (2 stages) @0.5 amps max each = 1.00<br />

Motor amps: 277 V (Fan size 0517) = 2.4<br />

18.35 amps max<br />

Useful formulas:<br />

Cfm x ATD<br />

kW =<br />

3145<br />

kW = 1214 x L/s x ATD<br />

kW x 1000<br />

3φamps =<br />

Primary Voltage x √ 3<br />

1φamps =<br />

kW x 1000<br />

Primary Voltage<br />

ATD =<br />

kW x 3145<br />

Cfm<br />

ATD =<br />

kW<br />

1214 x L/s<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (PSC)<br />

Unit<br />

Cfm<br />

kW 02SQ 03SQ 04SQ 05SQ 06SQ 07SQ<br />

0.5 118 200 315 350 533 585<br />

1 118 200 315 350 533 585<br />

1.5 118 200 315 350 533 585<br />

2 118 200 315 350 533 585<br />

2.5 146 200 315 350 533 585<br />

3 174 200 315 350 533 585<br />

3.5 201 200 315 350 533 585<br />

4 229 230 315 350 533 585<br />

4.5 257 260 315 350 533 585<br />

5 285 290 315 350 533 585<br />

5.5 312 315 315 350 533 585<br />

6 340 350 350 350 533 585<br />

6.5 — 375 375 375 533 585<br />

7 — 400 400 400 533 585<br />

7.5 — 430 430 430 533 585<br />

8 — 460 460 460 533 585<br />

9 — 515 515 515 589 633<br />

10 — 575 575 575 645 682<br />

11 — 630 630 630 701 730<br />

12 — — 690 690 758 779<br />

13 — — 745 745 814 827<br />

14 — — 810 810 870 876<br />

15 — — — 860 926 924<br />

16 — — — 920 982 972<br />

17 — — — 973 — 1021<br />

18 — — — 1030 — 1069<br />

20 — — — — — 1166<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (PSC)<br />

Unit<br />

L/s<br />

kW 02SQ 03SQ 04SQ 05SQ 06SQ 07SQ<br />

0.5 56 94 149 165 252 276<br />

1 56 94 149 165 252 276<br />

1.5 56 94 149 165 252 276<br />

2 56 94 149 165 252 276<br />

2.5 69 94 149 165 252 276<br />

3 82 94 149 165 252 276<br />

3.5 95 94 149 165 252 276<br />

4 108 109 149 165 252 276<br />

4.5 121 123 149 165 252 276<br />

5 134 137 149 165 252 276<br />

5.5 147 149 149 165 252 276<br />

6 160 165 165 165 252 276<br />

6.5 — 177 177 177 252 276<br />

7 — 189 189 189 252 276<br />

7.5 — 203 203 203 252 276<br />

8 — 217 217 217 252 276<br />

9 — 243 243 243 278 299<br />

10 — 271 271 271 305 322<br />

11 — 297 297 297 331 345<br />

12 — — 326 326 358 367<br />

13 — — 352 352 384 390<br />

14 — — 382 382 410 413<br />

15 — — — 406 437 436<br />

16 — — — 434 463 459<br />

17 — — — 459 — 482<br />

18 — — — 486 — 505<br />

20 — — — — — 550<br />

FPP 18<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Electrical Data<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (ECM)<br />

Unit<br />

Cfm<br />

kW 03SQ 04SQ 05SQ 06SQ<br />

0.5 200 315 350 560<br />

1 200 315 350 560<br />

1.5 200 315 350 560<br />

2 200 315 350 560<br />

2.5 200 315 350 560<br />

3 200 315 350 560<br />

3.5 200 315 350 560<br />

4 230 315 350 560<br />

4.5 260 315 350 560<br />

5 290 315 350 560<br />

5.5 315 315 350 560<br />

6 350 350 350 560<br />

6.5 375 375 375 560<br />

7 400 400 400 560<br />

7.5 430 430 430 560<br />

8 460 460 460 560<br />

9 515 515 515 604<br />

10 575 575 575 649<br />

11 630 630 630 693<br />

12 — 690 690 738<br />

13 — 745 745 782<br />

14 — 810 810 826<br />

15 — — 860 871<br />

16 — — 920 915<br />

17 — — 973 —<br />

18 — — 1030 —<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (ECM)<br />

Unit<br />

L/s<br />

kW 03SQ 04SQ 05SQ 06SQ<br />

0.5 94 149 165 264<br />

1 94 149 165 264<br />

1.5 94 149 165 264<br />

2 94 149 165 264<br />

2.5 94 149 165 264<br />

3 94 149 165 264<br />

3.5 94 149 165 264<br />

4 109 149 165 264<br />

4.5 123 149 165 264<br />

5 137 149 165 264<br />

5.5 149 149 165 264<br />

6 165 165 165 264<br />

6.5 177 177 177 264<br />

7 189 189 189 264<br />

7.5 203 203 203 264<br />

8 217 217 217 264<br />

9 243 243 243 285<br />

10 271 271 271 306<br />

11 297 297 297 327<br />

12 — 326 326 348<br />

13 — 352 352 369<br />

14 — 382 382 390<br />

15 — — 406 411<br />

16 — — 434 432<br />

17 — — 459 —<br />

18 — — 486 —<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 19


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Valve Only<br />

Discharge Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

02SQ 6 200 94 51 50 44 43 38 30 53 51 48 47 43 39 56 53 54 53 51 50 59 55 57 57 56 56<br />

300 142 56 52 49 48 44 35 58 55 54 53 50 43 60 57 57 56 54 50 62 59 61 59 57 55<br />

400 189 58 53 49 47 42 36 63 59 58 57 54 46 64 61 60 61 58 52 65 63 63 63 60 56<br />

500 236 60 56 53 51 47 41 66 62 60 59 55 47 67 64 64 65 62 55 69 67 66 68 65 58<br />

02SQ 8 350 165 52 48 46 45 40 33 56 53 51 48 46 45 59 57 56 53 52 51 61 59 59 56 55 55<br />

520 245 57 53 50 49 44 37 60 57 55 52 50 47 62 61 60 57 55 52 64 63 63 60 58 56<br />

700 330 62 59 55 53 49 42 64 62 60 57 54 49 66 66 65 62 59 54 68 68 67 65 62 57<br />

900 425 66 63 59 57 52 45 69 66 64 61 57 52 70 69 69 66 62 57 72 71 71 68 65 60<br />

02SQ 10 550 260 59 54 52 52 49 39 63 59 57 57 55 47 67 64 62 62 59 54 69 66 65 65 62 58<br />

820 387 62 57 56 56 54 44 67 63 61 61 59 51 72 69 67 67 65 58 74 71 70 70 67 61<br />

1100 519 65 60 59 59 58 48 69 66 64 65 63 55 75 71 70 70 68 60 78 74 73 74 71 64<br />

1400 661 67 64 62 62 60 51 72 69 67 67 65 57 78 74 72 73 71 63 81 77 76 76 74 67<br />

03SQ 6 100 47 44 44 41 37 33 30 45 45 44 39 37 39 46 47 47 43 45 47 47 47 47 45 49 53<br />

200 94 48 47 43 40 35 29 51 50 47 44 41 40 53 52 52 48 47 48 54 54 54 50 51 54<br />

300 142 53 50 46 43 36 32 56 55 51 47 44 40 58 58 56 52 50 49 59 59 59 55 54 54<br />

400 189 55 52 48 44 38 34 60 58 54 50 46 42 62 62 59 55 52 49 64 63 62 58 56 54<br />

600 283 59 58 56 50 46 44 61 60 57 53 48 46 69 67 64 61 56 52 71 69 68 64 60 56<br />

03SQ 8 175 83 44 44 42 39 34 30 46 46 44 41 41 42 49 48 47 45 47 49 51 49 49 48 51 53<br />

04SQ 350 165 48 47 44 41 35 31 52 51 49 46 43 41 56 56 55 52 51 51 58 57 58 54 54 55<br />

525 248 53 52 49 47 42 34 57 56 54 51 47 42 61 60 59 56 53 51 62 62 62 58 56 56<br />

700 330 58 56 53 51 47 40 60 59 57 55 51 45 64 64 63 60 56 52 66 66 66 62 59 57<br />

1050 496 64 63 60 59 51 46 68 67 65 63 59 53 69 69 68 67 63 57 71 71 71 69 65 60<br />

03SQ 10 275 130 48 47 46 44 38 32 50 50 49 47 46 47 52 53 53 51 50 49 54 55 56 54 54 53<br />

04SQ 550 260 53 51 50 47 42 35 56 56 54 51 48 43 59 61 60 57 55 54 61 63 63 60 58 56<br />

05SQ 825 389 57 55 53 50 46 39 60 60 58 56 52 46 63 65 64 60 58 53 66 68 68 64 62 59<br />

1100 519 60 59 57 54 50 43 63 63 62 59 55 49 68 68 67 64 61 56 70 70 70 67 64 60<br />

1640 774 65 65 63 59 54 48 69 69 68 64 61 55 72 73 72 69 66 60 75 76 75 73 70 64<br />

03SQ 12 385 182 48 47 47 41 38 34 52 51 51 46 43 41 55 56 57 52 50 48 55 58 60 55 54 53<br />

04SQ 775 366 54 52 52 49 43 37 59 58 57 54 50 47 63 64 63 59 55 52 65 66 66 61 58 55<br />

05SQ 1160 547 58 56 55 51 47 41 63 61 60 57 54 49 69 67 67 64 61 55 72 70 70 67 64 59<br />

1550 732 61 59 58 54 50 44 66 64 63 60 57 51 73 70 69 67 64 58 76 74 73 71 68 62<br />

2350 1105 66 65 65 60 56 50 71 70 69 65 61 55 77 74 73 71 68 62 80 78 77 75 72 66<br />

05SQ 14 525 248 51 49 48 45 41 35 55 53 53 50 48 44 59 58 59 55 53 52 60 61 62 58 56 55<br />

1050 496 57 55 54 51 51 40 63 61 60 57 54 49 66 67 66 62 59 56 68 69 69 65 62 58<br />

1575 743 60 58 57 54 52 44 67 64 63 60 57 52 71 71 70 67 63 59 73 74 73 70 67 62<br />

2100 991 63 61 60 57 53 47 68 67 66 62 59 56 75 73 72 70 66 61 78 77 76 73 70 65<br />

3200 1510 68 67 67 63 59 55 73 71 71 67 64 59 79 77 76 73 70 65 83 81 79 77 74 69<br />

06SQ 10 550 260 50 48 46 43 38 31 53 53 51 49 45 41 57 59 58 54 52 54 59 62 62 58 56 54<br />

07SQ 800 378 54 52 50 46 41 34 57 57 55 52 48 42 61 62 61 57 54 53 63 65 65 61 59 56<br />

1000 472 57 55 53 49 44 36 60 60 58 54 50 43 64 64 63 60 56 52 66 67 67 64 61 57<br />

1200 566 59 58 56 52 46 39 63 63 61 57 52 46 67 67 66 62 58 53 69 69 69 66 62 58<br />

1350 637 61 60 58 54 48 42 65 65 63 59 54 48 69 69 68 64 60 54 71 71 71 67 63 59<br />

06SQ 12 800 378 60 55 55 54 51 42 65 61 61 61 59 51 68 66 65 66 64 57 70 69 68 69 67 60<br />

07SQ 1100 519 62 56 56 54 52 43 69 64 63 63 60 53 72 70 69 70 67 60 74 73 72 73 71 64<br />

1400 661 63 58 58 54 52 44 71 66 64 64 62 54 76 72 71 72 70 62 78 76 74 76 74 66<br />

1700 802 64 60 60 55 52 44 72 68 66 65 62 55 79 74 72 73 71 63 81 78 76 77 76 68<br />

2000 944 66 62 61 55 52 46 73 69 67 65 63 55 81 76 74 74 71 64 83 80 78 78 77 69<br />

06SQ 14 1100 519 57 53 53 51 48 41 62 59 58 57 54 48 66 65 64 61 60 55 70 70 69 64 62 59<br />

07SQ 1600 755 61 57 56 55 52 45 66 63 62 61 58 52 71 69 68 66 64 59 74 72 71 69 67 62<br />

2100 991 64 60 60 57 55 47 69 66 66 64 61 55 74 71 71 69 67 61 77 75 74 72 70 65<br />

2500 1180 67 63 63 60 57 50 71 68 67 66 63 56 77 73 72 71 69 63 80 76 76 74 72 66<br />

3000 1416 70 66 66 63 60 53 74 70 69 68 65 58 80 75 74 73 71 65 84 78 78 76 74 68<br />

06SQ 16 1400 661 59 56 54 54 51 43 64 62 61 60 57 52 69 69 67 65 62 57 72 74 72 67 65 61<br />

07SQ 2100 991 61 59 58 56 54 46 68 65 63 62 60 55 73 72 71 69 67 62 75 75 74 72 70 65<br />

2700 1274 64 62 61 59 56 49 70 67 66 65 62 57 76 73 72 71 69 64 79 77 76 75 73 68<br />

3400 1605 67 64 64 62 58 52 72 69 68 66 64 58 79 74 74 72 70 65 83 78 77 76 74 69<br />

4000 1888 70 67 67 64 61 55 74 71 70 68 65 60 81 76 75 74 71 66 86 79 78 77 75 70<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

FPP 20<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Radiated Sound Power (dB)<br />

Valve Only<br />

Radiated Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

02SQ 6 200 94 48 40 38 35 31 25 48 44 42 37 33 26 53 48 47 43 38 33 54 50 47 44 41 37<br />

300 142 51 45 42 35 29 24 54 49 46 39 33 26 57 51 50 44 38 32 60 55 53 48 42 37<br />

400 189 54 48 46 38 32 25 58 53 49 42 35 26 61 55 52 47 40 33 63 57 55 49 43 37<br />

500 236 52 50 48 40 33 27 62 56 52 45 37 29 65 59 56 50 42 34 65 60 57 52 45 38<br />

02SQ 8 350 165 53 45 40 37 31 23 55 49 44 39 35 30 60 53 50 45 41 36 62 55 52 48 45 40<br />

520 245 57 49 44 40 34 26 59 53 48 42 37 31 64 57 53 47 43 38 66 59 56 51 46 41<br />

700 330 61 53 48 43 37 29 63 57 52 46 40 33 68 61 57 50 45 40 70 63 60 54 48 42<br />

900 425 66 58 53 47 41 33 68 62 56 50 44 37 72 65 61 53 48 42 73 67 63 56 50 44<br />

02SQ 10 550 260 57 50 44 39 32 25 61 54 48 42 36 28 65 58 52 46 40 34 67 60 56 50 43 38<br />

820 387 59 52 46 41 34 25 64 58 52 46 40 31 69 63 56 51 44 37 71 66 60 54 47 40<br />

1100 519 62 56 50 44 41 26 66 61 54 49 42 33 72 66 60 54 48 39 75 68 63 57 51 42<br />

1400 661 65 60 53 47 44 30 68 64 57 52 45 36 74 69 63 57 50 41 77 71 66 60 53 44<br />

03SQ 6 100 47 49 44 38 37 31 24 50 46 41 41 35 29 52 47 44 46 41 36 53 48 45 48 45 40<br />

200 94 50 44 39 37 31 24 53 48 43 41 36 29 56 51 47 46 42 36 59 53 49 49 45 40<br />

300 142 52 45 40 38 31 25 54 50 45 42 36 30 59 53 50 47 42 37 60 55 53 49 45 40<br />

400 189 54 47 42 39 33 26 57 53 48 44 38 31 61 55 52 48 43 38 62 57 55 50 46 41<br />

600 283 58 53 50 45 40 34 58 56 54 48 42 35 64 61 58 51 45 39 67 62 60 53 48 42<br />

03SQ 8 175 83 52 45 39 36 33 26 54 47 42 41 36 30 57 50 45 46 42 36 59 52 46 49 45 39<br />

04SQ 350 165 57 50 43 38 33 26 59 52 46 42 37 30 61 54 50 47 43 37 63 55 52 50 46 40<br />

525 248 58 51 45 39 34 27 61 55 48 43 38 31 64 57 53 48 44 37 66 58 56 51 47 41<br />

700 330 60 53 47 42 36 30 63 56 51 45 39 33 66 60 55 49 44 37 68 62 58 52 48 41<br />

1050 496 63 59 55 49 42 35 68 62 57 51 45 38 72 65 60 54 48 41 74 67 63 56 50 43<br />

03SQ 10 275 130 55 49 43 38 34 27 57 51 45 42 37 30 58 53 48 47 43 36 59 54 50 50 46 40<br />

04SQ 550 260 59 54 47 40 34 28 61 56 50 45 39 34 63 58 53 51 45 41 64 60 56 54 51 44<br />

05SQ 825 389 61 55 49 42 36 29 63 58 53 46 40 35 66 61 57 51 46 41 69 64 60 54 50 44<br />

1100 519 62 56 50 44 38 32 66 60 54 49 43 37 70 64 59 53 48 43 72 66 62 56 51 46<br />

1640 774 65 61 55 50 43 37 70 65 58 53 46 40 76 69 64 58 51 45 79 72 67 61 55 49<br />

03SQ 12 385 182 52 47 42 40 36 30 55 50 45 43 40 35 59 53 48 47 44 39 61 55 50 50 47 42<br />

04SQ 775 366 59 51 45 40 35 28 63 55 48 43 38 33 66 59 52 48 44 39 69 62 56 52 48 42<br />

05SQ 1160 547 63 54 47 41 35 30 67 58 51 46 39 35 72 63 56 51 45 40 75 67 60 54 49 43<br />

1550 732 66 58 50 43 37 31 71 62 54 48 42 36 75 66 59 53 46 41 78 70 63 56 50 44<br />

2350 1105 69 64 55 49 42 36 74 68 59 52 45 40 79 72 64 57 50 44 82 75 67 60 54 47<br />

05SQ 14 525 248 58 51 45 40 34 27 61 53 48 44 38 31 64 56 51 49 44 37 66 59 54 51 47 40<br />

1050 496 62 56 49 42 37 30 66 59 52 46 42 34 71 63 57 51 46 39 74 66 60 54 49 42<br />

1575 743 65 59 52 44 37 31 70 62 55 48 42 35 75 67 61 54 48 40 78 70 64 57 51 43<br />

2100 991 67 60 54 45 38 33 72 64 58 50 43 36 78 69 63 56 49 43 83 74 68 61 54 46<br />

3200 1510 72 66 59 51 44 38 77 70 63 55 48 42 83 75 68 60 53 47 86 78 71 63 56 50<br />

06SQ 10 550 550 51 44 42 40 37 32 54 49 45 44 42 38 58 55 49 49 48 45 61 58 52 52 52 49<br />

07SQ 800 378 53 48 43 41 37 32 57 52 47 45 42 38 62 58 52 50 48 45 65 61 55 53 52 49<br />

1000 472 55 51 44 42 38 33 59 55 48 46 42 38 65 61 54 51 48 45 68 63 57 54 52 49<br />

1200 566 58 53 47 43 38 33 62 58 51 47 42 38 67 63 56 52 48 45 70 65 59 56 52 49<br />

1350 637 60 55 49 44 39 34 64 60 53 48 43 39 69 65 58 53 49 45 72 67 61 57 53 49<br />

06SQ 12 800 378 58 50 44 40 33 26 62 55 49 45 38 31 66 60 54 50 43 36 68 63 56 52 46 39<br />

07SQ 1100 519 60 52 46 40 33 27 65 58 51 47 40 33 70 64 58 53 46 39 72 66 60 56 50 42<br />

1400 661 62 54 46 40 34 27 67 60 53 48 41 34 73 66 60 55 48 41 75 69 64 58 52 44<br />

1700 802 64 56 48 42 34 28 68 62 54 48 41 35 76 68 61 56 49 42 78 72 66 60 54 46<br />

2000 944 65 58 49 47 36 31 70 63 55 50 42 35 77 70 62 57 50 43 79 73 67 61 55 48<br />

06SQ 14 1100 519 56 49 44 40 32 25 61 55 48 44 38 30 66 61 54 49 43 36 69 66 57 51 45 40<br />

07SQ 1600 755 59 53 47 42 35 27 65 59 52 48 41 33 70 64 58 53 46 39 74 68 61 55 49 42<br />

2100 991 64 57 51 46 38 29 68 61 55 50 43 35 74 67 61 55 49 41 77 70 64 59 52 45<br />

2500 1180 67 59 53 48 40 31 71 63 57 52 44 36 76 68 62 56 50 42 79 72 66 60 54 46<br />

3000 1416 71 62 56 50 42 33 74 66 59 54 46 38 78 70 64 58 51 44 82 74 68 62 56 48<br />

06SQ 16 1400 661 63 54 48 41 36 29 67 59 53 46 42 35 70 66 58 52 48 40 72 70 61 54 50 43<br />

07SQ 2100 991 66 57 51 44 39 32 71 63 56 49 45 38 75 69 63 56 52 44 77 72 66 59 55 47<br />

2700 1274 68 60 54 46 41 34 73 65 59 51 47 40 78 72 66 59 54 47 80 75 69 62 58 50<br />

3400 1605 70 63 57 51 46 42 76 68 61 54 48 42 81 74 68 60 56 48 83 76 70 64 59 52<br />

4000 1888 73 66 60 56 52 50 78 70 63 56 50 45 83 75 70 62 57 50 85 78 72 65 60 53<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 21


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Sound Noise Criteria (NC)<br />

Fan Only<br />

Radiated<br />

Fan Fan Outlet Discharge NC/NC with<br />

Size Cfm L/s Static NC Level Attenuator<br />

02SQ 200 94 — 27/ *<br />

280 132 0.25 — 29/ *<br />

350 165 (63 Pa) — 30/ *<br />

430 203 — 32/ *<br />

500 236 — 34/ *<br />

03SQ 250 118 — 27/24<br />

400 189 0.25 — 30/27<br />

610 288 (63 Pa) — 35/ *<br />

850 401 15 37/ *<br />

04SQ 300 142 — 29/24<br />

530 250 0.25 — 31/26<br />

790 373 (63 Pa) — 35/34<br />

1100 519 19 39/37<br />

05SQ 350 165 — 29/26<br />

650 307 0.25 — 32/29<br />

970 458 (63 Pa) 16 37/32<br />

1300 614 21 40/37<br />

06SQ 920 434 16 37/ *<br />

1200 566 0.25 20 39/ *<br />

1400 661 (63 Pa) 21 41/ *<br />

1700 802 25 44/ *<br />

07SQ 1050 496 16 37/32<br />

1300 614 0.25 21 41/35<br />

1500 708 (63 Pa) 24 44/36<br />

1800 850 25 44/40<br />

* Attenuator not recommended<br />

Notes:<br />

1. “–“ represents NC levels below NC 15.<br />

2. NC Values are calculated using current Industry<br />

St<strong>and</strong>ard ARI 885, 2002 addendum to revision 1998.<br />

Radiated Transfer Function obtained from Appendix<br />

E, Type 2 Mineral Fiber Insulation.<br />

Fan Only Sound Power<br />

Discharge Sound Power (dB) Radiated Sound Power (dB)<br />

Fan Outlet Fan Octave B<strong>and</strong>s Octave B<strong>and</strong>s<br />

Size Static Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7<br />

02SQ 200 94 55 50 50 46 42 35 63 55 53 50 44 37<br />

0.25 280 132 57 52 51 48 44 38 65 57 54 52 46 40<br />

(63 Pa) 350 165 58 53 52 50 46 40 66 58 55 52 48 42<br />

430 203 61 55 54 52 49 43 68 60 57 54 50 45<br />

500 236 62 56 55 53 50 46 69 61 58 56 52 48<br />

03SQ 250 118 53 49 51 45 40 39 61 55 53 49 42 35<br />

0.25 400 189 56 51 53 46 42 41 64 56 55 51 45 40<br />

(63 Pa) 610 288 63 58 57 53 48 47 70 62 60 56 51 48<br />

850 401 65 59 60 56 52 51 72 63 62 59 55 53<br />

04SQ 300 142 55 51 52 47 41 38 61 56 54 49 43 34<br />

0.25 530 250 56 53 55 50 45 42 63 57 56 51 47 41<br />

(63 Pa) 790 373 62 58 59 55 50 48 69 62 60 56 52 49<br />

1100 519 65 62 64 60 56 55 72 66 64 60 57 55<br />

1350 637 68 65 66 65 60 59 75 69 67 64 61 60<br />

05SQ 350 165 56 52 54 46 40 37 63 57 54 48 42 35<br />

0.25 650 307 58 55 57 50 45 42 65 60 57 51 47 43<br />

(63 Pa) 970 458 61 60 62 57 51 50 68 63 62 57 53 51<br />

1300 614 64 63 66 63 58 57 71 67 65 62 59 57<br />

06SQ 920 434 63 60 60 56 51 48 71 64 62 56 51 47<br />

0.25 1200 566 66 63 61 59 54 51 73 65 63 59 53 51<br />

(63 Pa) 1400 661 68 64 63 61 56 54 75 67 64 60 55 53<br />

1700 802 70 67 65 63 58 57 77 69 66 63 58 56<br />

07SQ 1050 496 59 60 61 55 49 46 67 61 62 56 50 46<br />

0.25 1300 614 62 64 62 58 53 50 69 64 66 58 54 50<br />

(63 Pa) 1500 708 64 66 64 61 56 53 70 65 68 60 56 52<br />

1800 850 66 67 68 65 60 57 73 68 68 63 59 56<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

ARI 885-98 DISCHARGE TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Small Box (700 Cfm) -29 -30 -41 -51 -52 -39<br />

Subtract from terminal unit sound power to determine discharge sound<br />

pressure in the space.<br />

ARI 885-98 RADIATED TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Type 2- Mineral Fiber Insulation -18 -19 -20 -26 -31 -36<br />

Total dB reduction -18 -19 -20 -26 -31 -36<br />

Subtract from terminal unit sound power o determine radiated sound<br />

pressure in the space.<br />

FPP 22<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Sound Noise Criteria (NC)<br />

Valve Only<br />

Discharge<br />

Radiated<br />

NC Level ∆Ps<br />

NC Level ∆Ps<br />

Fan Inlet 0.5" 1.0" 2.0" 3.0" 0.5" 1.0" 2.0" 3.0"<br />

Size Size Cfm L/s (127 Pa) (254 Pa) (508 Pa) (762 Pa) (127 Pa) (254 Pa) (508 Pa) (762 Pa)<br />

02SQ 6 200 94 — — — 20 — 15 21 21<br />

300 142 — — — 19 15 20 24 27<br />

400 189 — 16 19 21 20 23 26 30<br />

500 236 — 20 22 26 22 26 31 32<br />

02SQ 8 350 165 — — 15 19 — 17 24 26<br />

520 245 — — 19 21 19 22 27 31<br />

700 330 16 20 25 27 24 26 32 35<br />

900 425 21 25 29 31 30 32 37 39<br />

02SQ 10 550 260 — 16 22 25 19 24 29 31<br />

820 387 — 21 29 31 21 27 34 37<br />

1100 519 17 25 31 35 25 31 37 41<br />

1400 661 22 29 35 38 30 35 40 *<br />

03SQ 6 100 47 — — — 16 — — 18 20<br />

200 94 — — — 17 — 16 21 23<br />

300 142 — — 16 17 — 19 24 27<br />

400 189 — 16 21 22 15 22 26 30<br />

600 283 16 19 27 30 24 29 33 35<br />

03SQ 8 175 83 — — — 17 — 15 19 21<br />

04SQ 350 165 — — 15 19 19 21 24 26<br />

525 248 — — 17 20 20 24 27 31<br />

700 330 — 16 22 25 22 26 30 33<br />

1050 496 21 26 29 31 30 32 37 40<br />

03SQ 10 275 128 — — — 17 16 19 22 24<br />

04SQ 550 260 — — 18 20 22 25 27 31<br />

05SQ 825 389 — 16 22 26 24 27 32 35<br />

1100 519 15 20 26 29 25 30 35 37<br />

1640 774 22 27 32 36 31 36 42 *<br />

03SQ 12 385 182 — — — 17 15 19 22 24<br />

04SQ 775 366 — — 21 24 21 26 30 34<br />

05SQ 1160 547 — 17 25 29 26 31 37 41<br />

1550 732 15 21 29 34 30 36 41 45<br />

2350 1105 22 29 34 38 35 40 * *<br />

05SQ 14 525 248 — — 16 19 20 24 27 30<br />

1050 496 — 17 25 27 25 30 36 40<br />

1575 743 — 21 30 34 29 35 41 45<br />

2100 991 17 25 32 37 31 37 45 52<br />

3200 1510 25 30 37 41 37 44 52 56<br />

06SQ 10 550 260 — — 18 19 15 19 24 27<br />

07SQ 800 378 — — 19 22 16 21 27 31<br />

1000 472 — 16 21 25 19 24 31 34<br />

1200 566 — 20 25 27 21 27 34 36<br />

1350 637 16 22 27 30 24 30 36 38<br />

06SQ 12 800 260 — 17 24 27 20 25 30 34<br />

07SQ 1100 519 — 21 29 32 22 29 35 37<br />

1400 661 — 24 31 36 25 31 39 41<br />

1700 802 16 26 34 38 27 32 42 *<br />

2000 944 19 27 36 40 29 35 * *<br />

06SQ 14 1100 519 — 15 22 29 17 24 31 37<br />

07SQ 1600 755 — 20 27 31 21 29 35 40<br />

2100 991 16 24 30 35 27 32 40 44<br />

2500 1180 20 26 32 36 31 36 42 46<br />

3000 1416 24 29 35 39 36 40 45 50<br />

06SQ 16 1400 661 — 19 27 34 26 31 37 41<br />

07SQ 2100 991 15 22 31 35 30 36 41 44<br />

2700 1274 19 25 32 37 32 39 45 *<br />

3400 1605 21 27 34 38 35 42 * *<br />

4000 1888 25 30 36 41 39 45 52 55<br />

*Not a recommended selection<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 23


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Valve Only<br />

ARI Conditions<br />

Fan Inlet 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

02SQ 5 250 118 61 56 54 53 50 47<br />

02SQ 6 400 189 63 60 59 60 57 49<br />

02SQ 8 700 330 65 64 63 60 57 52<br />

02SQ 10 1100 519 73 69 68 68 66 58<br />

03SQ 6 400 189 61 60 57 53 50 46<br />

03SQ 8 700 330 62 62 60 57 54 49<br />

04SQ<br />

03SQ 10 1100 519 66 66 65 62 59 53<br />

04SQ<br />

05SQ<br />

03SQ 12 1600 755 70 67 66 64 61 55<br />

04SQ<br />

05SQ<br />

04SQ 14 2100 991 72 71 69 66 63 59<br />

05SQ<br />

06SQ 10 1100 519 63 64 62 58 54 49<br />

07SQ<br />

06SQ 12 1600 755 75 71 69 69 67 60<br />

07SQ<br />

06SQ 14 2100 991 72 69 68 67 64 58<br />

07SQ<br />

06SQ 16 2800 1321 74 70 69 68 66 61<br />

07SQ<br />

Radiated Sound Power (dB)<br />

Valve Only<br />

ARI Conditions<br />

Fan Inlet 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

02SQ 5 250 118 50 48 46 42 38 30<br />

02SQ 6 400 189 60 54 51 44 37 29<br />

02SQ 8 700 330 66 59 55 48 43 39<br />

02SQ 10 1100 519 70 64 58 52 45 36<br />

03SQ 6 400 189 59 55 51 46 41 35<br />

03SQ 8 700 330 64 58 53 47 42 35<br />

04SQ<br />

03SQ 10 1100 519 68 62 57 51 46 40<br />

04SQ<br />

05SQ<br />

03SQ 12 1600 755 73 64 57 51 44 39<br />

04SQ<br />

05SQ<br />

04SQ 14 2100 991 75 66 60 53 46 40<br />

05SQ<br />

06SQ 10 1100 519 63 59 53 49 46 42<br />

07SQ<br />

06SQ 12 1600 755 73 65 58 53 46 40<br />

07SQ<br />

06SQ 14 2100 991 72 64 58 53 46 38<br />

07SQ<br />

06SQ 16 2800 1321 76 69 62 55 51 44<br />

07SQ<br />

Note: Oversizing primary valves to achieve lower sound levels will increase the minimum operable cfm. (See "Valve/Controller<br />

Airflow Guidelines".) <strong>This</strong> will increase energy consumption at minimum airflows when local reheat is energized.<br />

Discharge Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

02SQ 6, 8, 10 500 236 62 56 55 53 50 46<br />

03SQ 6, 8, 10, 12 1090 514 70 64 65 63 58 58<br />

04SQ 8, 10, 12, 14 1300 614 67 64 66 64 59 58<br />

05SQ 10, 12, 14 1550 732 66 65 67 66 61 60<br />

06SQ 10, 12, 14, 16 1960 925 72 69 68 66 62 60<br />

07SQ 10, 12, 14, 16 2020 953 67 68 69 66 62 59<br />

Notes:<br />

1. All sound data rated in accordance with current Industry St<strong>and</strong>ard<br />

ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

Radiated Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

02SQ 6, 8, 10 500 236 69 61 58 56 52 48<br />

03SQ 6, 8, 10, 12 1090 514 77 68 66 64 60 59<br />

04SQ 8, 10, 12, 14 1300 614 74 68 66 63 60 59<br />

05SQ 10, 12, 14 1550 732 74 69 68 65 62 61<br />

06SQ 10, 12, 14, 16 1960 925 79 71 67 64 61 59<br />

07SQ 10, 12, 14, 16 2020 953 74 69 69 65 61 58<br />

FPP 24<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Parallel Inlet Attenuator Appurtenance Effects<br />

(Fan Noise Only)<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Matte-faced <strong>and</strong> foil-faced insulation, solid double-wall**<br />

02SQ 2 1 1 2 1 2 1 -2 -8 -13 -15 -16<br />

03SQ, 04SQ, 05SQ 2 1 1 2 1 2 0 -1 -8 -12 -16 -17<br />

06SQ, 07SQ 2 1 1 2 1 2 1 0 -8 -12 -15 -18<br />

Closed-cell insulation<br />

02SQ 1 1 1 1 1 1 1 -1 -3 -2 -4 -4<br />

03SQ, 04SQ, 05SQ 1 1 1 1 1 1 0 -1 -3 -2 -4 -4<br />

06SQ, 07SQ 1 1 1 1 1 1 1 -1 -3 -2 -4 -4<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect<br />

represents a sound increase.<br />

** Note- Attenuators on double-wall units contain foil-faced insulation.<br />

Parallel Cabinet Lining Appurtenance Effects<br />

(Fan Noise <strong>and</strong> Valve Noise)<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Solid double-wall<br />

02SQ 3 1 1 -1 1 3 1 0 0 1 4 7<br />

03SQ, 04SQ, 05SQ 1 -1 1 3 4 5 1 0 2 5 8 8<br />

06SQ, 07SQ 3 1 1 1 3 5 -1 -1 -1 2 4 5<br />

Closed-cell insulation<br />

02SQ 1 1 1 0 1 4 0 0 2 2 5 7<br />

03SQ, 04SQ, 05SQ 1 1 2 2 2 3 1 2 4 4 4 5<br />

06SQ, 07SQ 1 1 2 1 2 4 1 0 3 4 5 6<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect<br />

represents a sound increase<br />

Parallel Heating Coil Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Hot Water Coil**<br />

02SQ -1 0 -1 -1 0 -1 -1 -1 0 -1 -1 -3<br />

03SQ, 04SQ, 05SQ 2 2 2 2 2 1 1 1 1 1 0 0<br />

06SQ, 07SQ 2 1 0 -1 0 0 0 0 0 -1 0 -1<br />

Electric Heat***<br />

02SQ 0 0 0 -1 -2 -1 0 0 0 0 0 0<br />

03SQ, 04SQ, 05SQ 0 0 0 0 0 1 0 0 0 0 0 0<br />

06SQ, 07SQ 3 4 3 2 4 4 1 0 0 0 0 0<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect<br />

represents a sound increase.<br />

** Add to fan sound only, not valve sound.<br />

*** Add to both fan sound <strong>and</strong> valve sound.<br />

Apply fan only data, not valve sound.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 25


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

PARALLEL COOLING ONLY (VPCF)<br />

FAN<br />

SIZE<br />

02SQ<br />

03SQ<br />

04SQ<br />

06SQ<br />

07SQ<br />

INLET SIZE<br />

INLET SIZE<br />

AVAILABILITY<br />

(NOMINAL Ø")<br />

(NOMINAL Ømm)<br />

127 mm, 152 mm, 203 mm, 254 mm<br />

6", 8", 10", 12" 152 mm, 203 mm, 254 mm, 305 mm<br />

203 mm, 254 mm, 305 mm, 356 mm<br />

10", 12", 14" 254 mm, 305 mm, 356 mm<br />

254 mm, 305 mm, 356 mm, 406 mm<br />

10", 12", 14", 16" 254 mm, 305 mm, 356 mm, 406 mm<br />

H<br />

15.50" (394 mm)<br />

17.50" (445 mm)<br />

21.50" (546 mm)<br />

W<br />

40.00" (1016 mm)<br />

L<br />

30.00" (762 mm)<br />

32.50" (826 mm)<br />

40.00" (1016 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

19.25" (489 mm)<br />

20.00" (508 mm)<br />

UNIT WT<br />

WT LBS<br />

(kg)<br />

78 (35)<br />

97 (44)<br />

117 (53)<br />

125 (57)<br />

4.<br />

Optional Attenuator<br />

Field Installed<br />

9.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

2.<br />

9.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

40.00"<br />

(1016 mm)<br />

Airflow<br />

Plenum Inlet<br />

(Valves 5"-14")<br />

(Valve 16")<br />

18.875" Max.<br />

(479 mm)<br />

4.00"<br />

(102 mm)<br />

2.00"<br />

(51 mm)<br />

Flow Ring<br />

tubing<br />

20.00"<br />

(508 mm)<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Air 4.00"<br />

Valve<br />

Optional Attenuator<br />

Field Installed<br />

5.<br />

30.00"<br />

(762 mm)<br />

Fan Size<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

Filter Size<br />

14" x 20" x 1"<br />

(356 mm x 508 mm x 25 mm)<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

Attn. Weight<br />

Wt Lbs<br />

(kg)<br />

46 (21)<br />

48 (22)<br />

L<br />

06SQ<br />

07SQ<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

54 (25)<br />

9.<br />

<strong>NOTE</strong>S:<br />

TOP VIEW<br />

1. Allow a minimum 6" (152 mm) plenum inlet<br />

clearance for unducted installations.<br />

5.<br />

2. Filter location with optional Attenuator.<br />

Airflow<br />

Discharge Outlet<br />

Panel slides<br />

for Motor access<br />

3. Attenuator-factory assembled, field installed.<br />

4. See Installation Documents for exact hanger bracket location.<br />

5.50" Max.<br />

(140 mm)<br />

W<br />

20.00"<br />

(508 mm)<br />

5. For Motor access, remove bottom screw on hanger brackets<br />

to slide panel as shown in drawing.<br />

6. When Attenuator option selected, water coil ships mounted<br />

to attenuator.<br />

7. Air valve centered between top <strong>and</strong> bottom panel.<br />

B<br />

FPP 26<br />

(287 mm)<br />

9.<br />

A<br />

DISCHARGE VIEW<br />

H<br />

8. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror<br />

image optional.)<br />

9. Maximum dimensions for controls area shown. Configurations<br />

<strong>and</strong> types of control boxes vary according to control type<br />

selected. See "Enclosure Details" for specific layout.<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

PARALLEL HOT WATER (VPWF)<br />

FAN INLET SIZE<br />

INLET SIZE<br />

DISCHARGE DIMENSIONS UNIT WT<br />

SIZE<br />

AVAILABILITY<br />

H<br />

W<br />

L<br />

WT LBS<br />

(NOMINAL Ø")<br />

(NOMINAL Ømm)<br />

A<br />

B<br />

(kg)<br />

02SQ 5", 6", 8", 10" 127 mm, 152 mm, 203 mm, 254 mm 15.50" (394 mm) 40.00" (1016 mm) 30.00" (762 mm) 19.25" (489 mm) 14.00" (356 mm) 78 (35)<br />

17.50" (445 mm)<br />

32.50" (826 mm)<br />

16.00" (406 mm)<br />

04SQ<br />

10", 12", 14"<br />

203 mm, 254 mm, 305 mm, 356 mm<br />

254 mm, 305 mm, 356 mm<br />

97 (44)<br />

06SQ<br />

254 mm, 305 mm, 356 mm, 406 mm 21.50" (546 mm) 40.00" (1016 mm) 20.00" (508 mm) 117 (53)<br />

07SQ 10", 12", 14", 16" 254 mm, 305 mm, 356 mm, 406 mm<br />

125 (57)<br />

4.<br />

Optional Attenuator<br />

Field Installed<br />

9.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

2.<br />

9.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

40.00"<br />

(1016 mm)<br />

20.00"<br />

(508 mm)<br />

Coil<br />

Connection<br />

Water<br />

Coil<br />

6.30"<br />

(160 mm)<br />

Airflow<br />

Plenum Inlet<br />

(Valves 6"-14")<br />

(Valve 16")<br />

4.00"<br />

(102 mm)<br />

2.00"<br />

(51 mm)<br />

Flow Ring<br />

tubing<br />

20.00"<br />

(508 mm)<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Optional Attenuator<br />

Field Installed<br />

30.00"<br />

(762 mm)<br />

Fan Size<br />

Filter Size<br />

Attn. Weight<br />

Wt Lbs<br />

(kg)<br />

Air<br />

Valve<br />

4.00"<br />

02SQ<br />

14" x 20" x 1"<br />

(356 mm x 508 mm x 25 mm)<br />

46 (21)<br />

18.875" Max.<br />

(479 mm)<br />

5.<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

48 (22)<br />

54 (25)<br />

L<br />

9.<br />

<strong>NOTE</strong>S:<br />

TOP VIEW<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance<br />

for unducted installations.<br />

2. Filter location with optional Attenuator.<br />

5.<br />

3. Attenuator-factory assembled, field installed.<br />

Airflow<br />

Discharge Outlet<br />

Panel slides<br />

for Motor access<br />

4. See Installation Documents for exact hanger bracket location.<br />

5. For Motor access, remove bottom screw on hanger<br />

brackets to slide panel as shown in drawing.<br />

5.50" Max.<br />

(140 mm)<br />

W<br />

20.00"<br />

(508 mm)<br />

6. When Attenuator option selected, water coil ships<br />

mounted to attenuator.<br />

7. Air valve centered between top <strong>and</strong> bottom panel.<br />

B<br />

11.30" Max.<br />

(287 mm)<br />

H<br />

8. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror<br />

image optional.)<br />

9. Maximum dimensions for controls area shown.<br />

Configurations <strong>and</strong> types of control boxes vary according to<br />

control type selected. See "Enclosure Details" for specific layout.<br />

9.<br />

<strong>VAV</strong>-PRC008-EN<br />

A<br />

DISCHARGE VIEW<br />

FPP 27


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

PARALLEL WITH HOT WATER ON DISCHARGE (VPWF)<br />

FAN INLET SIZE<br />

SIZE<br />

(NOMINAL Ø")<br />

02SQ<br />

03SQ 6", 8", 10", 12"<br />

04SQ 8", 10", 12", 14"<br />

05SQ 10", 12", 14"<br />

06SQ 10", 12", 14", 16"<br />

07SQ 10", 12", 14", 16"<br />

INLET SIZE<br />

AVAILABILITY<br />

(NOMINAL Ømm)<br />

203 mm, 254 mm, 305 mm, 356 mm<br />

254 mm, 305 mm, 356 mm<br />

254 mm, 305 mm, 356 mm, 406 mm<br />

254 mm, 305 mm, 356 mm, 406 mm<br />

H<br />

21.50" (546 mm)<br />

W<br />

40.00" (1016 mm)<br />

L<br />

30.00" (762 mm)<br />

32.50" (826 mm)<br />

40.00" (1016 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

14.00" (356 mm)<br />

16.00" (406 mm)<br />

20.00" (508 mm)<br />

UNIT WT<br />

WT LBS<br />

(kg)<br />

78 (35)<br />

96 (43)<br />

97 (44)<br />

111 (50)<br />

117 (53)<br />

125 (57)<br />

4.<br />

Optional Attenuator<br />

Field Installed<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

2.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

40.00"<br />

(1016 mm)<br />

Airflow<br />

Plenum Inlet<br />

(Valves 5"-14")<br />

4.00"<br />

(102 mm)<br />

20.00"<br />

(508 mm)<br />

(Valve 16")<br />

2.00"<br />

(51 mm)<br />

Flow Ring<br />

tubing<br />

Primary<br />

Airflow<br />

Air<br />

alve<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

4.00"<br />

Optional Attenuator<br />

Field Installed<br />

30.00"<br />

(762 mm)<br />

Fan Size<br />

Filter Size<br />

Attn. Weight<br />

Wt. Lbs.<br />

(kg)<br />

18.875" Max.<br />

(479 mm)<br />

5.<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

14" x 20" x 1"<br />

(356 mm x 508 mm x 25 mm)<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

46 (21)<br />

48 (22)<br />

L<br />

06SQ<br />

07SQ<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

54 (25)<br />

8.<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

<strong>NOTE</strong>S:<br />

6.30"<br />

(160 mm)<br />

Water<br />

Coil<br />

Panel slides<br />

for Motor access<br />

5.<br />

1. Allow a minimum 6" (152 mm) plenum inlet<br />

clearance for unducted installations.<br />

2. Filter location with optional Attenuator.<br />

20.00"<br />

(508 mm)<br />

3. Attenuator-factory assembled, field installed.<br />

4. See Installation Documents for exact hanger bracket location.<br />

5.50" Max.<br />

(140 mm)<br />

W<br />

20.00"<br />

(508 mm)<br />

5. For Motor access, remove bottom screw on hanger brackets<br />

to slide panel as shown in drawing.<br />

6. Air valve centered between top <strong>and</strong> bottom panel.<br />

B<br />

11.30" Max.<br />

(287 mm)<br />

H<br />

7. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror<br />

image optional.)<br />

8. Maximum dimensions for controls area shown. Configurations<br />

<strong>and</strong> types of control boxes vary according to type selected. See<br />

"Enclosure Details" for specific layout.<br />

FPP 28<br />

8.<br />

A<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR PARALLEL PLENUM INLET 1-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

C<br />

D<br />

L<br />

H<br />

W<br />

02SQ<br />

03SQ<br />

.875" (22 mm) O.D.<br />

9.75" (248 mm)<br />

13.75" (349 mm)<br />

1.30" (33 mm)<br />

1.00" (25 mm)<br />

2.00" (51 mm)<br />

1.00" (25 mm)<br />

2.50" (64 mm)<br />

1.50" (38 mm)<br />

20.20" (513 mm)<br />

20.00" (508 mm)<br />

14.20" (359 mm)<br />

16.00" (406 mm)<br />

6.75" (171 mm)<br />

6.30" (160 mm)<br />

04SQ<br />

05SQ<br />

06SQ<br />

15.75" (400 mm) 1.25" (32 mm) 2.00" (51 mm) 2.50" (64 mm) 20.20" (513 mm) 20.20" (513 mm)<br />

6.75" (171 mm)<br />

07SQ<br />

L<br />

W<br />

.75"<br />

(19 mm)<br />

C<br />

B<br />

H<br />

A<br />

AIR FLOW<br />

D<br />

FAN SIZE<br />

02SQ<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

0.14 (.53) 12.3 (5.6)<br />

1.125"<br />

(29 mm)<br />

B<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

0.21 (.80) 21.9 (9.9)<br />

0.22 (.84) 14.5 (6.6)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. R.H. coil<br />

connection shown, L.H. not available.<br />

2. Coil furnished with stub sweat connections.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 29


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

INFORMATION FOR PARALLEL PLENUM INLET 2-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

C<br />

L<br />

H<br />

W<br />

02SQ<br />

03SQ<br />

.875" (22 mm) O.D.<br />

10.25" (260 mm) 1.25" (32 mm)<br />

13.75" (349 mm) 1.00" (25 mm)<br />

6.80" (173 mm)<br />

6.70" (170 mm)<br />

20.20" (513 mm)<br />

20.00" (508 mm)<br />

14.20" (359 mm)<br />

16.00" (406 mm)<br />

6.75" (171 mm)<br />

6.30" (160 mm)<br />

04SQ<br />

05SQ<br />

06SQ<br />

15.75" (400 mm)<br />

1.12" (28 mm)<br />

6.80" (173 mm) 20.20" (513 mm) 20.20" (513 mm) 6.75" (171 mm)<br />

07SQ<br />

L<br />

W<br />

.75"<br />

(19 mm)<br />

OUTLET<br />

B<br />

H<br />

A<br />

AIR FLOW<br />

FAN SIZE<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

INLET<br />

A<br />

1.94"<br />

(50 mm)<br />

B<br />

C<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

0.25<br />

0.36<br />

0.38<br />

(.95) 16.8 (7.6)<br />

(1.38) 24.8 (11.2)<br />

(1.46) 20.1 (9.1)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. R.H. coil<br />

connections shown, L.H. not available.<br />

2. Coil furnished with stub sweat connections.<br />

FPP 30<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR PARALLEL DISCHARGE 1-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

L<br />

H<br />

W<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

.875" (22 mm) O.D.<br />

9.75" (248 mm)<br />

13.75" (349 mm)<br />

1.60" (41 mm)<br />

20.20" (513 mm)<br />

20.00" (508 mm)<br />

14.20" (359 mm)<br />

16.00" (406 mm)<br />

6.75" (171 mm)<br />

6.30" (160 mm)<br />

06SQ<br />

15.75" (400 mm)<br />

20.20" (513 mm)<br />

20.20" (513 mm)<br />

6.75" (171 mm)<br />

07SQ<br />

W<br />

L<br />

2.00"<br />

(51 mm)<br />

B<br />

H<br />

7.82"<br />

(198 mm)<br />

A<br />

AIR FLOW<br />

ACCESS PANEL<br />

A<br />

2.50"<br />

(64 mm)<br />

FAN SIZE<br />

02SQ<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

0.14<br />

(.53)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

12.3<br />

(5.6)<br />

3.40"<br />

(86 mm)<br />

B<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

0.21<br />

0.22<br />

(.79)<br />

(.83)<br />

21.9<br />

14.5<br />

(9.9)<br />

(6.6)<br />

1.125"<br />

(29 mm)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. L.H. coil<br />

connections shown, R.H. opposite.<br />

2. Coil furnished with stub sweat connections.<br />

3. Coils can be field-rotated for opposite connections. Note: Water inlet is always<br />

the bottom connection.<br />

4. Flanged water coil shown. Slip <strong>and</strong> Drive available.<br />

<strong>VAV</strong>-PRC008-EN<br />

5. Access panel is st<strong>and</strong>ard.<br />

FPP 31


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR PARALLEL DISCHARGE 2-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

C<br />

D<br />

L<br />

H<br />

W<br />

02SQ<br />

.875" (22 mm) O.D.<br />

9.75" (248 mm)<br />

1.60" (41 mm)<br />

6.80" (173 mm)<br />

2.00" (51 mm)<br />

20.20" (513 mm)<br />

14.20" (359 mm)<br />

6.75" (171 mm)<br />

03SQ<br />

13.75" (349 mm)<br />

1.00" (25 mm)<br />

6.70" (170 mm)<br />

1.00" (25 mm)<br />

20.00" (508 mm)<br />

16.00" (406 mm)<br />

6.30" (160 mm)<br />

04SQ<br />

05SQ<br />

06SQ<br />

15.75" (400 mm)<br />

1.25" (32 mm)<br />

6.80" (173 mm)<br />

2.00" (51 mm)<br />

20.20" (513 mm)<br />

20.20" (513 mm)<br />

6.75" (171 mm)<br />

07SQ<br />

L<br />

W<br />

H<br />

OUTLET<br />

B<br />

7.82"<br />

(198 mm)<br />

A<br />

AIR FLOW<br />

FAN SIZE<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

02SQ<br />

0.25<br />

(.95)<br />

16.8<br />

(7.6)<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

0.36 (1.36) 24.8 (11.2)<br />

0.38 (1.44) 20.1 (9.1)<br />

ACCESS PANEL<br />

INLET<br />

A<br />

<strong>NOTE</strong>S:<br />

B<br />

C<br />

1. Location of coil connections is determined by facing air stream. L.H. coil<br />

connections shown, R.H. opposite.<br />

3.40"<br />

(86 mm)<br />

1.94"<br />

(50 mm)<br />

2. Coil furnished with stub sweat connections.<br />

3. Coils can be field-rotated for opposite connections. Note: Water inlet is<br />

always the bottom connection.<br />

4. Flanged water coil shown. Slip <strong>and</strong> Drive available.<br />

5. Access panel is st<strong>and</strong>ard.<br />

FPP 32<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

PARALLEL ELECTRIC HEAT (VPEF)<br />

FAN INLET SIZE<br />

SIZE<br />

AVAILABILITY<br />

(NOMINAL Ø")<br />

02SQ 5", 6", 8", 10"<br />

03SQ 6", 8", 10", 12"<br />

04SQ 8", 10", 12", 14"<br />

05SQ 10", 12", 14"<br />

06SQ 10", 12", 14", 16"<br />

07SQ 10", 12", 14", 16"<br />

INLET SIZE<br />

AVAILABILITY<br />

(NOMINAL Ømm)<br />

H<br />

W<br />

127 mm, 152 mm, 203 mm, 254 mm<br />

152 mm, 203 mm, 254 mm, 305 mm<br />

203 mm, 254 mm, 305 mm, 356 mm<br />

15.50" (394 mm)<br />

17.50" (445 mm)<br />

40.00" (1016 mm)<br />

254 mm, 305 mm, 356 mm<br />

254 mm, 305 mm, 356 mm, 406 mm<br />

254 mm, 305 mm, 356 mm, 406 mm<br />

21.50" (546 mm)<br />

L<br />

30.00" (762 mm)<br />

32.50" (826 mm)<br />

40.00" (1016 mm)<br />

DISCHARGE DIMENSIONS UNIT WT<br />

WT LBS<br />

A<br />

20.00" (508 mm)<br />

B<br />

14.00" (356 mm)<br />

16.00" (406 mm)<br />

(kg)<br />

120 (54)<br />

96 (43)<br />

138 (63)<br />

141 (64)<br />

20.00" (508 mm)<br />

178 (80)<br />

186 (84)<br />

5.<br />

Optional Attenuator<br />

Field Installed<br />

9.<br />

2.<br />

Actuator, Controller <strong>and</strong><br />

9. Fan <strong>Controls</strong> located in this area<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

40.00"<br />

(1016 mm)<br />

Airflow<br />

Plenum Inlet<br />

4.00"<br />

(102 mm)<br />

Flow Ring<br />

tubing<br />

20.00"<br />

(508 mm)<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

4.00"<br />

Optional Attenuator<br />

Field Installed<br />

30.00"<br />

(762 mm)<br />

Fan Size<br />

Filter Size<br />

Attn. Weight<br />

Wt. Lbs.<br />

(kg)<br />

02SQ<br />

14" x 20" x 1"<br />

(356 mm x 508 mm x 25 mm)<br />

46 (21)<br />

18.875" Max.<br />

(479 mm)<br />

4.<br />

03SQ<br />

04SQ<br />

05SQ<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

48 (22)<br />

9.<br />

L<br />

06SQ<br />

07SQ<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

54 (25)<br />

22.00"<br />

(559 mm)<br />

Terminal Box<br />

Heater<br />

6.00"<br />

(152 mm)<br />

Panel slides<br />

for Motor access<br />

4.<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. Filter location with optional Attenuator.<br />

3. Attenuatory factory assembled, field installed.<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

4. For motor access, remove bottom screws on hanger brackets<br />

to slide panel as shown in drawing.<br />

5.50" Max.<br />

(140 mm)<br />

W<br />

20.00"<br />

(508 mm)<br />

5. See Installation Documents for exact hanger bracket location.<br />

6. Air valve centered between top <strong>and</strong> bottom panel.<br />

7. Heating coil uninsulated. External insulation may be field<br />

supplied <strong>and</strong> installed as required.<br />

8. All high & low voltage controls have same side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

B<br />

11.30" Max.<br />

(287 mm)<br />

H<br />

9. Maximum dimensions for controls area shown. Configurations<br />

<strong>and</strong> types of control boxes vary according to control type<br />

selected. See "Enclosure Details" for specific layout.<br />

9.<br />

<strong>VAV</strong>-PRC008-EN<br />

A<br />

DISCHARGE VIEW<br />

FPP 33


Fan-Powered<br />

Parallel<br />

Dimensional<br />

Data<br />

ENCLOSURE DETAILS (Parallel Units)<br />

AIRFLOW<br />

AIRFLOW<br />

AIR<br />

VALVE<br />

AIR<br />

VALVE<br />

ACTUATOR<br />

6.50"<br />

(165 mm)<br />

6.50"<br />

(165 mm)<br />

5.50"<br />

(140 mm)<br />

Detail A<br />

5.50"<br />

(140 mm)<br />

Detail B<br />

AIRFLOW<br />

AIRFLOW<br />

AIR<br />

VALVE<br />

AIR<br />

VALVE<br />

ACTUATOR<br />

16.50"<br />

(419 mm)<br />

6.50"<br />

(165 mm)<br />

5.50"<br />

(140 mm)<br />

Detail C<br />

5.00"<br />

(127 mm)<br />

Detail D<br />

AIRFLOW<br />

6.50"<br />

(165 mm)<br />

ACTUATOR<br />

AIR<br />

VALVE<br />

<strong>NOTE</strong>S:<br />

1. All high & low voltage controls have same-side jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong> available.<br />

6.50"<br />

(165 mm)<br />

Detail E<br />

5.50"<br />

(140 mm)<br />

Control Type<br />

Enclosure Detail Summary<br />

DD01 DD11<br />

ENON PNON DD00 PNOO PNO5 EI05 thru thru ENCL<br />

DD07 DD17<br />

FM00<br />

02SQ<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

Fan Size<br />

03SQ<br />

04SQ<br />

05SQ<br />

D D D D D D D D D<br />

D<br />

06SQ<br />

07SQ<br />

A<br />

A<br />

B<br />

C<br />

C<br />

E<br />

E<br />

D<br />

D<br />

D<br />

FPP 34<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Mechanical<br />

Specifications<br />

MODELS VPCF, VPWF<br />

<strong>and</strong> VPEF<br />

Parallel fan-powered<br />

terminal units.<br />

VPCF – Cooling Only<br />

VPWF – With Hot Water Coil<br />

VPEF – With Electric Coil<br />

CASING<br />

22-gage galvanized steel. Hanger<br />

brackets, side access, <strong>and</strong> plenum filter<br />

are provided as st<strong>and</strong>ard.<br />

AGENCY LISTING<br />

The unit is UL <strong>and</strong> Canadian UL<br />

Listed as a room air terminal unit.<br />

Control # 9N65.<br />

ARI 880 Certified.<br />

INSULATION<br />

1/2" (12.7 mm) Matte-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 1.9. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There are<br />

no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1" (25.4 mm) Matte-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 1 inch, 1.0 lb/ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 3.85.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There<br />

are no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1/2" (12.7 mm) Foil-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 2.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Foil-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.5 lb/ft 3<br />

(25.4 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation R-<br />

Value is 4.1. The insulation is UL listed<br />

<strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

<strong>VAV</strong>-PRC008-EN<br />

Fan–Inlet Combinations:<br />

VPXF<br />

Inlet 02SQ 03SQ 04SQ 05SQ 06SQ 07SQ<br />

5" X<br />

6" X X<br />

8" X X X<br />

10" X X X X X X<br />

12" X X X X X<br />

14" X X X X<br />

16" X X<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Double-wall<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with a 1-inch, 1.0 lb./ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with high-density<br />

facing. The insulation R-value is 3.8. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A <strong>and</strong> UL 181 st<strong>and</strong>ards. The<br />

insulation is covered by an interior<br />

liner made of 26-gage galvanized steel.<br />

All wire penetrations are covered by<br />

grommets. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

3/8" (9.5 mm) Closed-cell<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 3/8-inch, 4.4 lb/ft 3<br />

(9.5 mm, 70.0 kg/m 3 ) closed-cell<br />

insulation. The insulation is UL listed<br />

<strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards. The insulation has an<br />

R-Value of 1.4. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

PRIMARY AIR VALVE<br />

Air Valve Round—The primary air<br />

inlet connection is an 18-gage<br />

galvanized steel cylinder sized to fit<br />

st<strong>and</strong>ard round duct. A multiple-point,<br />

averaging flow sensing ring is<br />

provided with balancing taps for<br />

measuring +/-5% of unit cataloged<br />

airflow. An airflow-versus-pressure<br />

differential calibration chart is provided.<br />

The damper blade is constructed of a<br />

closed-cell foam seal that is<br />

mechanically locked between two 22-<br />

gage galvanized steel disks. The<br />

damper blade assembly is connected<br />

to a cast zinc shaft supported by selflubricating<br />

bearings. The shaft is cast<br />

with a damper position indicator. The<br />

valve assembly includes a mechanical<br />

stop to prevent over-stroking. At 4 in.<br />

wg, air valve leakage does not exceed<br />

1% of cataloged airflow.<br />

ATTENUATORS<br />

The attenuator is 22-gage galvanized<br />

steel with an internal acoustical liner.<br />

Attenuators have been tested in<br />

accordance with ARI 880 st<strong>and</strong>ards.<br />

FAN MOTOR<br />

PSC—Single-speed, direct-drive,<br />

permanent split capacitor type.<br />

Thermal overload protection provided.<br />

Motors will be designed specifically for<br />

use with an open SCR. Motors will<br />

accommodate anti-backward rotation<br />

at start up. Motor <strong>and</strong> fan assembly<br />

are isolated from terminal unit.<br />

ECM—Electrically Commutated Motor<br />

is designed for high-efficient operation<br />

with over 70% efficiency throughout<br />

the operating range.<br />

FAN SPEED CONTROL<br />

Variable Speed Control Switch<br />

(SCR)—The SCR speed control device<br />

is provided as st<strong>and</strong>ard <strong>and</strong> allows the<br />

operator infinite fan speed adjustment.<br />

TRANSFORMER<br />

The 50-VA transformer is factoryinstalled<br />

in the fan control box to<br />

provide 24 VAC for controls.<br />

DISCONNECT SWITCH<br />

A toggle disconnect is provided as<br />

st<strong>and</strong>ard <strong>and</strong> allows the operator to<br />

turn the unit on or off by toggling to<br />

the appropriate setting. <strong>This</strong> switch<br />

breaks both legs of power to the fan<br />

<strong>and</strong> the electronic controls (if<br />

applicable)<br />

OUTLET CONNECTION<br />

Flanged Connection—A rectangular<br />

opening on the unit discharge to<br />

accept a 90° flanged ductwork<br />

connection.<br />

FILTER<br />

A 1" (25 mm) filter is provided on the<br />

plenum inlet <strong>and</strong> attaches to the unit<br />

with a filter frame.<br />

FPP 35


Fan-Powered<br />

Parallel<br />

Mechanical<br />

Specifications<br />

HOT WATER COIL<br />

Parallel Water Coils—factoryinstalled<br />

on the plenum inlet.<br />

The coil has 1-row with 144 aluminumplated<br />

fins per foot (.305 m), <strong>and</strong> if<br />

needed 2-row with 144 aluminumplated<br />

fins per foot (.305 m). Full fin<br />

collars provided for accurate fin<br />

spacing <strong>and</strong> maximum fin-tube<br />

contact. The 3/8" (9.5 mm) OD<br />

seamless copper tubes are<br />

mechanically exp<strong>and</strong>ed into the fin<br />

collars. Coils are proof tested at 450<br />

psig (3102 kPa) <strong>and</strong> leak tested at 300<br />

psig (2068 kPa) air pressure under<br />

water. Coil connections are brazed.<br />

ELECTRIC HEAT COIL<br />

The electric heater is a factory-provided<br />

<strong>and</strong> installed, UL recognized resistance<br />

open-type heater. It also contains a<br />

disc-type automatic pilot duty thermal<br />

primary cutout, <strong>and</strong> manual reset load<br />

carrying thermal secondary device.<br />

Heater element material is nickelchromium.<br />

The heater terminal box is<br />

provided with 7/8" (22 mm) knockouts<br />

for customer power supply. Terminal<br />

connections are plated steel with<br />

ceramic insulators. All fan-powered<br />

units with electric reheat are singlepoint<br />

power connections.<br />

ELECTRIC HEAT OPTIONS<br />

Magnetic Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

Mercury Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

P.E. Switch with Magnetic<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

magnetic contactor is for use with<br />

pneumatic controls.<br />

P.E. Switch with Mercury<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

mercury contactor is for use with<br />

pneumatic controls.<br />

Airflow Switch—An optional air<br />

pressure device designed to disable<br />

the heater when the system fan is off.<br />

Power Fuse—If a power fuse is<br />

chosen with a unit containing electric<br />

heat, then a safety fuse is located in the<br />

electric heater’s line of power to<br />

prevent power surge damage to the<br />

electric heater.<br />

Any electric heat unit with a calculated<br />

MCA greater than or equal to 30 will<br />

have a fuse provided.<br />

FPP 36<br />

Disconnect Switch—An optional<br />

factory-provided door interlocking<br />

disconnect switch on the heater control<br />

panel disengages primary voltage to<br />

the terminal.<br />

UNIT CONTROLS SEQUENCE OF<br />

OPERATION<br />

The unit controller continuously<br />

monitors the zone temperature against<br />

its setpoint <strong>and</strong> varies the primary<br />

airflow as required to meet zone<br />

setpoints. Airflow is limited by<br />

minimum <strong>and</strong> maximum position set<br />

points. For a parallel unit, the controller<br />

will intermittently start the fan upon a<br />

call for heat. Upon a further call for<br />

heat, reheat is enabled.<br />

1. Primary Airflow—The fan energizes<br />

when primary airflow drops below<br />

the fan setpoint airflow. The fan<br />

automatically starts when the zone<br />

temperature drops to the heating<br />

temperature setpoint.<br />

2. Zone Temperature—The fan<br />

energizes when the zone temperature<br />

drops to a selectable number of<br />

degrees above the heating<br />

temperature setpoint.<br />

DIRECT DIGITAL CONTROLS<br />

DDC Actuator—Trane 3-wire, 24-<br />

VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Direct Digital Controller—The<br />

microprocessor-based terminal unit<br />

controller provides accurate, pressureindependent<br />

control through the use<br />

of a proportional integral control<br />

algorithm <strong>and</strong> direct digital control<br />

technology. The controller, named the<br />

Unit Control Module (UCM), monitors<br />

zone temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change,<br />

<strong>and</strong> valve airflow using a differential<br />

pressure signal from the pressure<br />

transducer. Additionally, the controller<br />

can monitor either supply duct air<br />

temperature or CO 2<br />

concentration via<br />

appropriate sensors. The controller is<br />

provided in an enclosure with 7/8"<br />

(22 mm) knockouts for remote control<br />

wiring. A Trane UCM zone sensor<br />

is required.<br />

DDC Zone Sensor—The UCM<br />

controller senses zone temperature<br />

through a sensing element located in<br />

the zone sensor. In addition to the<br />

sensing element, zone sensor options<br />

may include an externally-adjustable<br />

setpoint, communications jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the<br />

individual controller from unoccupied<br />

to occupied mode. The override button<br />

has a cancel feature that will return the<br />

system to unoccupied. Wired zone<br />

sensors utilize a thermistor to vary the<br />

voltage output in response to changes<br />

in the zone temperature. Wiring to the<br />

UCM controller must be 18- to 22-awg.<br />

twisted pair wiring. The setpoint<br />

adjustment range is 50–88ºF (10–31°C).<br />

Depending upon the features available<br />

in the model of sensor selected, the<br />

zone sensor may require from a 2-wire<br />

to a 5-wire connection. Wireless zone<br />

sensors report the same zone<br />

information as wired zone sensors,<br />

but do so using radio transmitter<br />

technology. Therefore with wireless,<br />

wiring from the zone sensor to the<br />

UCM is unnecessary.<br />

Digital Display Zone Sensor with<br />

Liquid Crystal Display (LCD)—<br />

The digital display zone sensor contains<br />

a sensing element, which sends a signal<br />

to the UCM. A Liquid Crystal Display<br />

(LCD) displays setpoint or space<br />

temperature. Sensor buttons allow the<br />

user to adjust setpoints, <strong>and</strong> allow space<br />

temperature readings to be turned on or<br />

off. The digital display zone sensor also<br />

includes a communication jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the UCM<br />

from unoccupied to occupied. The<br />

override button has a cancel feature,<br />

which returns the system to unoccupied<br />

mode.<br />

Trane LonTalk—The Controller is<br />

designed to send <strong>and</strong> receive data using<br />

SCC LonTalk profile. Current unit status<br />

conditions <strong>and</strong> setpoints may be<br />

monitored <strong>and</strong>/or edited from any of<br />

several LonTalk-compatible systemlevel<br />

controllers.<br />

ANALOG ELECTRONIC CONTROLS<br />

Analog Actuator—A Trane 3-wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Analog Electronic Controller—<br />

The controller consists of a circuit<br />

board that offers basic <strong>VAV</strong> unit<br />

operation <strong>and</strong> additional override<br />

functions <strong>and</strong> operates using 24 VAC<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Parallel<br />

Mechanical<br />

Specifications<br />

power. The controller uses a capacitive<br />

type pressure transducer to maintain<br />

consistent air delivery regardless of<br />

system pressure changes. The enclosure<br />

has 7/8" (22 mm) knockouts for remote<br />

control wiring. A Trane electronic zone<br />

sensor is required.<br />

Analog Electronic Thermostat—<br />

<strong>This</strong> single-temperature, wall-mounted<br />

electronic device utilizes a thermistor<br />

to vary the voltage output in response<br />

to changes in the zone temperature.<br />

Connections to the <strong>VAV</strong> unit circuit<br />

board are made using st<strong>and</strong>ard threeconductor<br />

thermostat wire. The setpoint<br />

adjustment range is 63–85ºF (17–29°C).<br />

The sensor is available in two models.<br />

One model has a concealed, internallyadjustable<br />

setpoint. The other model<br />

has an externally-adjustable setpoint.<br />

PNEUMATIC CONTROLS<br />

Normally Open Actuator—Pneumatic<br />

3 to 8 psig (20 to 55 kPa) spring-range<br />

pneumatic actuator.<br />

3011 Pneumatic Volume Regulator<br />

(PVR)—The regulator is a thermostat<br />

reset velocity controller, which provides<br />

consistent air delivery within 5% of<br />

cataloged flow down to 18% of unit<br />

cataloged cfm, independent of changes<br />

in system static pressure. Factorycalibrated,<br />

field-adjustable setpoints for<br />

minimum <strong>and</strong> maximum flows. Average<br />

total unit bleed rate, excluding<br />

thermostat, is 28.8 scim at<br />

20 psig (7.87 ml/min at 138 kPa) supply.<br />

UNIT OPTIONS<br />

Power Fuse (VPCF, VPWF)—Optional<br />

fuse is factory-installed in the primary<br />

voltage hot leg.<br />

HOT WATER VALVES<br />

Two-Position Valve—The valve is a<br />

field-adaptable, 2-way or 3-way<br />

configuration <strong>and</strong> ships with a cap to<br />

be field-installed when configured as a<br />

2-way valve. All connections are<br />

National Pipe Thread (NPT). The valve<br />

body is forged brass with a stainless<br />

steel stem <strong>and</strong> spring. Upon dem<strong>and</strong>,<br />

the motor strokes the valve. When the<br />

actuator drive stops, a spring returns<br />

the valve to its fail-safe position.<br />

Flow Capacity – 1.17 Cv<br />

Overall Diameter – ½" NPT<br />

Close-off Pressure – 30 psi (207 kPa)<br />

Flow Capacity – 3.0 Cv<br />

Overall Diameter – 3/4" NPT<br />

Close-off Pressure – 14.5 psi (100 kPa)<br />

Flow Capacity – 6.4 Cv<br />

Overall Diameter – 1" NPT<br />

Close-off Pressure – 9 psi (62 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 203ºF (95ºC)<br />

Maximum system pressure – 300 psi<br />

(2067 kPa)<br />

Maximum static pressure – 300 psi<br />

(2067 kPa)<br />

Electrical Rating – 7 VA at 24 VAC,<br />

6.5 Watts, 50/60 Hz<br />

8 feet (2.44 m) of plenum rated wire<br />

lead is provided with each valve.<br />

Proportional Water Valve—The<br />

valve is a field-adaptable, 2-way or<br />

3-way configuration <strong>and</strong> ships with a<br />

cap over the bottom port. <strong>This</strong><br />

configures the valve for 2-way<br />

operation. For 3-way operation,<br />

remove the cap. The valve is linear<br />

equal percentage design. The intended<br />

fluid is water or water <strong>and</strong> glycol (50%<br />

maximum glycol). The actuator is a<br />

synchronous motor drive. The valve is<br />

driven to a predetermined position by<br />

the UCM controller using a<br />

proportional plus integral control<br />

algorithm. If power is removed, the<br />

valve stays in its last position. The<br />

actuator is rated for plenum<br />

applications under UL 94-5V <strong>and</strong> UL<br />

873 st<strong>and</strong>ards.<br />

Pressure <strong>and</strong> Temperature Ratings –<br />

The valve is designed <strong>and</strong> tested in full<br />

compliance with ANSI B16.15 Class<br />

250 pressure/temperature ratings,<br />

ANSI B16.104 Class IV control shutoff<br />

leakage, <strong>and</strong> ISA S75.11 flow<br />

characteristic st<strong>and</strong>ards.<br />

Flow Capacity – 0.7 Cv, 2.2 Cv, 3.8 Cv,<br />

6.6 Cv<br />

Overall Diameter – ½" NPT, ¾" NPT<br />

(6.6 Cv)<br />

Maximum Allowable Pressure –<br />

300 psi (2068 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 200ºF (93°C)<br />

Maximum Close-off Pressure – 55 psi<br />

(379 kPa)<br />

Electrical Rating – 6 VA at 24 VAC.<br />

10 feet (3.05 m) of plenum rated<br />

22-gage wire for connection.<br />

Terminations are #6 stabs.<br />

<strong>VAV</strong>-PRC008-EN<br />

FPP 37


Fan-Powered<br />

Series<br />

Table of<br />

Contents<br />

Service Model Number Description FPS 2<br />

Selection Procedure FPS 3 – 5<br />

General Data – Valve/Controller Airflow Guidelines FPS 6<br />

Performance Data – Air Pressure Requirements FPS 7 – 8<br />

Performance Data – Fan Curves FPS 9 – 12<br />

Performance Data – Hot Water Coil FPS 13 – 16<br />

Performance Data – Electrical Data FPS 17 – 19<br />

Performance Data – Acoustics FPS 20 – 25<br />

Dimensional Data FPS 26 – 37<br />

Mechanical Specifications FPS 38 – 40<br />

<strong>VAV</strong>-PRC008-EN FPS 1


Fan-Powered<br />

Series<br />

Service<br />

Model Number<br />

Description<br />

Digit 1, 2—Unit Type<br />

VS <strong>VariTrane</strong> fan-powered series<br />

Digit 3—Reheat<br />

C Cooling Only<br />

E Electric Heat<br />

W Hot Water Heat<br />

Digit 4—Development Sequence<br />

F Sixth<br />

Digit 5, 6—Primary Air Valve<br />

04 4" inlet (225 max cfm)<br />

05 5" inlet (350 max cfm)<br />

06 6" inlet (500 max cfm)<br />

08 8" inlet (900 max cfm)<br />

10 10" inlet (1400 max cfm)<br />

12 12" inlet (2000 max cfm)<br />

14 14" inlet (3000 max cfm)<br />

16 16" inlet (4000 max cfm)<br />

Digit 7, 8—Secondary Air Valve<br />

00 N/A<br />

Digit 9—Fan<br />

P 02SQ fan (700 nominal cfm)<br />

Q 03SQ fan (1200 nominal cfm)<br />

R 04SQ fan (1550 nominal cfm)<br />

S 05SQ fan (1900 nominal cfm)<br />

T 06SQ fan (2600 nominal cfm)<br />

U 07SQ fan (3000 nominal cfm)<br />

Fan Note: See fan curves for specific<br />

airflows<br />

Digit 10, 11—Design Sequence<br />

A0 Design Sequence (Factory<br />

assigned)<br />

Digit 12, 13, 14, 15—<strong>Controls</strong><br />

ENON No controls, field-installed<br />

DDC or analog<br />

ENCL ENON with control enclosure<br />

PNON No controls, field-installed<br />

pneumatic<br />

DD00 Trane elec actuator only<br />

DD01 DDC – cooling only<br />

DD02 DDC – N.C. on/off water control<br />

DD03 DDC – prop hot water control<br />

DD04 DDC – on/off electric heat<br />

control<br />

DD05 DDC – pulse-width modulation<br />

electric heat control<br />

DD07 DDC N.O. on/off hot water<br />

control<br />

DD11 LonTalk DDC Controller—<br />

Cooling only<br />

DD12 LonTalk DDC Controller w/ N.C.<br />

on/off hot water control<br />

DD13 LonTalk DDC Controller w/<br />

proportional hot water control<br />

DD14 LonTalk DDC Controller–on/off<br />

electric heat control<br />

DD15 LonTalk DDC Controller w/<br />

pulse-width modulation<br />

electric heat control<br />

DD17 LonTalk DDC Controller w/ N.O.<br />

on/off hot water control<br />

FPS 2<br />

AT08 FM Automated Logic ZN341v+<br />

AT10 FM Automated Logic ZN141v+<br />

FM00 FM customer actuator &<br />

control<br />

FM01 FM Trane actuator w/<br />

customer-supplied controller<br />

HNY2 FM Honeywell W7751H<br />

INV3 FM Invensys MNL-V2R<br />

PWR1 FM Siemens 540-100 w/<br />

GDE131.1 actuator<br />

PWR2 FM Siemens 540-103 w/<br />

GDE131.1 actuator<br />

PW12 FM Siemens 550-065<br />

PW13 FM Siemens 550-067<br />

VMA2 FM Johnson VMA-1420<br />

EI71 Analog fan-powered series<br />

with optional on/off reheat<br />

PN00 PN – N.O. Trane pneumatic<br />

actuator, R.A. stat<br />

PN51 PN – N.O. PVR, duct pressure<br />

switch, R.A. stat<br />

PN52 PN – N.O. PVR, dual pressure<br />

main, R.A. stat<br />

Notes:<br />

N.C. = Normally-closed<br />

N.O. = Normally-opened<br />

DA Stat = Direct-acting pneumatic t-stat (by<br />

others)<br />

RA Stat = Reverse-acting pneumatic t-stat<br />

(by others)<br />

PN = Pneumatic<br />

FM = Factory installation of customersupplied<br />

controller<br />

PVR = Pneumatic Volume Regulator<br />

Digit 16—Insulation<br />

A 1/2" Matte-faced<br />

B 1" Matte-faced<br />

C 1/2" Foil-faced<br />

D 1" Foil-faced<br />

F 1" Double-wall<br />

G 3/8" Closed-cell<br />

Digit 17—Motor Type<br />

D PSC Motor<br />

E High-efficiency motor (ECM)<br />

Digit 18—Motor Voltage<br />

1 115/60/1<br />

2 277/60/1<br />

3 347/60/1<br />

4 208/60/1<br />

5 230/50/1<br />

Digit 19—Outlet Connection<br />

1 Flanged<br />

2 Slip & Drive<br />

Digit 20—Attenuator<br />

0 None<br />

W With<br />

Digit 21—Water Coil<br />

0 None<br />

3 1-Row–Discharge installed, LH<br />

4 1-Row–Discharge installed, RH<br />

5 2-Row–Discharge installed, LH<br />

6 2-Row–Discharge installed, RH<br />

Digit 22—Electrical Connections<br />

L Left<br />

R Right<br />

W Narrow Corridor LH, Hi-Volt<br />

Inlet Facing<br />

X Narrow Corridor RH, Hi-Volt<br />

Inlet Facing<br />

Y Narrow Corridor LH, Hi-Volt<br />

Discharge Facing<br />

X Narrow Corridor RH, Hi-Volt,<br />

Discharge Facing<br />

Water Coil <strong>and</strong> Electrical Connections<br />

Note: Airflow hitting you in the face.<br />

Digit 23—Transformer<br />

0 N/A (provided as st<strong>and</strong>ard)<br />

Digit 24—Disconnect Switch<br />

0 None<br />

W With<br />

Note:<br />

VSCF, VSWF – Toggle Disconnect<br />

VSEF – Door Interlocking Power<br />

Disconnect<br />

Digit 25—Power Fuse<br />

0 None<br />

W With<br />

Digit 26—Electric Heat Voltage<br />

0 None<br />

A 208/60/1<br />

B 208/60/3<br />

C 240/60/1<br />

D 277/60/1<br />

E 480/60/1<br />

F 480/60/3<br />

G 347/60/1<br />

H 575/60/3<br />

J 380/50/3<br />

K 120/60/1<br />

Digit 27, 28, 29—Electric Heat kW<br />

000 None<br />

050 0.5 kW<br />

010 1.0 kW<br />

015 1.5 kW<br />

240 24.0 kW<br />

Digit 30—Electric Heat Stages<br />

0 None<br />

1 1 Stage<br />

2 2 Stages Equal<br />

3 3 Stages Equal<br />

Digit 31—Contactors<br />

0 None<br />

1 24-volt magnetic<br />

2 24-volt mercury<br />

3 PE with magnetic<br />

4 PE with mercury<br />

Digit 32—Airflow Switch<br />

0 None<br />

W With<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Selection<br />

Procedure<br />

<strong>This</strong> section describes the elements<br />

<strong>and</strong> process required to properly select<br />

series fan-powered <strong>VAV</strong> terminals, <strong>and</strong><br />

includes a specific example. The<br />

selection procedure is iterative in<br />

nature, which makes computer<br />

selection desirable.<br />

Selection of fan-powered <strong>VAV</strong><br />

terminals involves four elements:<br />

• Air valve selection<br />

• Heating coil selection<br />

• Fan size <strong>and</strong> speed selection<br />

• Acoustics<br />

<strong>NOTE</strong>: Use the same procedures for<br />

selecting Low-Height Series Fan-<br />

Powered Units as used for selecting<br />

Series Fan-Powered Units.<br />

Air Valve Selection<br />

Provided in the Performance Data—Air<br />

Pressure Requirements section of the<br />

catalog is the unit air pressure drop at<br />

varying airflows. To select an air valve,<br />

determine the airflow required at<br />

design cooling. Next, select an air<br />

valve diameter that will allow proper<br />

airflow modulation, (a velocity of 1600<br />

– 2000 FPM is recommended). Keep in<br />

mind that modulation below 300<br />

FPM is not recommended. Proper<br />

selection requires defining the<br />

minimum valve airflow (in either<br />

heating or cooling) <strong>and</strong> maintaining at<br />

least 300 FPM through the air valve.<br />

The minimum is typically set based on<br />

ventilation requirements. If zone<br />

ventilation does not come through the<br />

<strong>VAV</strong> unit, a minumum valve position<br />

can also be zero.<br />

Heating Coil Selection<br />

Supply Air Temperature<br />

The first step required when selecting a<br />

heating coil is to determine the heating<br />

supply air temperature to the space,<br />

calculated using the heat transfer<br />

equation. Air temperature difference is<br />

defined as the heating supply air<br />

temperature to the space minus the<br />

winter room design temperature. The<br />

zone design heat loss rate is denoted<br />

by the letter Q. Supply air temperature<br />

to the space equals the leaving air<br />

temperature (LAT) for the terminal unit.<br />

Coil Leaving Air Temperature<br />

Once the terminal unit LAT is<br />

determined, the heating requirements<br />

for the coil can be calculated. Electric<br />

<strong>and</strong> hot water coil LAT equals the LAT<br />

for the unit because, in each case, the<br />

coil is located on the unit discharge.<br />

Coil Entering Air Temperature<br />

Unit heat is mounted on the discharge<br />

of the unit. Therefore, electric <strong>and</strong> hot<br />

water coil EAT equals the temperature<br />

of blended primary air <strong>and</strong> plenum air.<br />

Capacity Requirement<br />

Once both coil EAT <strong>and</strong> LAT are<br />

determined, the heat transfer (Q) for the<br />

coil must be calculated using the heat<br />

transfer equation. For electric heat units,<br />

the Q value must be converted from Btu<br />

to kW for heater selection. The required<br />

kW should be compared to availability<br />

charts in the performance data section<br />

for the unit selected. For hot water heat<br />

units, reference the capacity charts in<br />

the performance data section for the<br />

required heat transfer Q <strong>and</strong> airflow to<br />

pick the appropriate coil.<br />

Fan Size <strong>and</strong> Motor Selection<br />

Fan Airflow<br />

Fan airflow is equal to the unit design<br />

flow in both heating <strong>and</strong> cooling modes.<br />

Fan External Static Pressure<br />

Fan external static pressure is the total<br />

resistance experienced by the fan,<br />

which may include downstream<br />

ductwork <strong>and</strong> diffusers, heating coils,<br />

<strong>and</strong> sound attenuators. As total airflow<br />

varies, so will static pressure, making<br />

calculation of external static pressure<br />

dependent on unit type.<br />

With series fan-powered terminal units,<br />

all airflow passes through the fan.<br />

External static pressure requirements<br />

are the sum of the individual<br />

component pressure requirements at<br />

the design airflow of the unit.<br />

Fan Motor Type<br />

The fan motor type that will be used for<br />

the unit will need to be known before<br />

fan selection can begin. The ECM motor<br />

offers more efficient operation than<br />

the st<strong>and</strong>ard single-speed PSC motor<br />

<strong>and</strong> will use different fan curves.<br />

Because series fans operate in both<br />

heating <strong>and</strong> cooling mode, payback is<br />

typically 2–3 years for the premium<br />

ECM option.<br />

Refer to the Features <strong>and</strong> Benefits<br />

section to determine which motor is<br />

more appropriate for the unit<br />

Selection<br />

Once fan airflow <strong>and</strong> external static<br />

pressure is determined, reference the<br />

fan curves in the performance data<br />

section. Cross plot both airflow <strong>and</strong><br />

external static pressure on each<br />

applicable graph. If selecting with an<br />

ECM motor, make sure you use the<br />

ECM fan curves. If the point is in<br />

between the high <strong>and</strong> low limits of the<br />

graph, that fan will work.<br />

It is common to identify more than one<br />

fan that can meet the design<br />

requirements. Typically selection<br />

begins with the smallest fan available<br />

to meet capacity. If this selection does<br />

not meet acoustical requirements,<br />

upsizing the fan <strong>and</strong> operating it at a<br />

slower speed can be done for quieter<br />

operation.<br />

Acoustics<br />

Air Valve Generated Noise<br />

To determine the noise generated by<br />

the air valve, two pieces of information<br />

are required; design airflow <strong>and</strong> design<br />

air pressure drop. The design air<br />

pressure drop is determined by taking<br />

the difference between design inlet<br />

<strong>and</strong> static pressure (the valve’s most<br />

over-pressurized condition) <strong>and</strong><br />

external static pressure at design<br />

cooling flow. <strong>This</strong> represents a worstcase<br />

operating condition for the valve.<br />

In summary, fan + 100% valve radiated<br />

sound is the dominant acoustical<br />

impact on the series <strong>VAV</strong> system.<br />

Fan Generated Noise<br />

To determine fan noise levels, fan<br />

airflow, external static pressure <strong>and</strong><br />

speed information is required.<br />

Evaluation Elements<br />

Air valve <strong>and</strong> fan are evaluated<br />

together because they have<br />

simultaneous operation.<br />

Access the appropriate acoustics<br />

table(s) of the catalog <strong>and</strong> determine<br />

the sound power <strong>and</strong> NC prediction for<br />

both the discharge <strong>and</strong> radiated paths.<br />

It is important to underst<strong>and</strong> that<br />

discharge air noise is generally not a<br />

concern with fan-powered terminals.<br />

Radiated noise from the unit<br />

casing typically dictates the noise<br />

level of the space (radiated fan +<br />

100% valve).<br />

If the entire unit or any element of it is<br />

generating noise in excess of the Noise<br />

Criteria requirements, the size of the<br />

appropriate portion of the terminal<br />

should be increased. Because the<br />

selection procedure is iterative, care<br />

should be taken by the designer to<br />

confirm that the change in selection<br />

does not affect other elements of the<br />

unit or system design.<br />

<strong>VAV</strong>-PRC008-EN FPS 3


Fan-Powered<br />

Series<br />

Selection<br />

Procedure<br />

Selection Example—<br />

Series With Hot Water Heat <strong>and</strong> ECM<br />

Air Valve Selection<br />

Required Information:<br />

Design cooling airflow 1000 cfm<br />

Minimum ventilation airflow 200 cfm<br />

Maximum unit APD 0.40 in. wg<br />

A 10" air valve is selected.<br />

Check–is minimum airflow above<br />

300 FPM?<br />

Answer–Yes. Minimum cfm allowable =<br />

165 cfm. (See General Data—Valve/<br />

Controller Guidelines pp FPS 8).<br />

The 03SQ fan will be used in this<br />

instance. By interpolating, you can<br />

choose a 10" air valve with wide-open<br />

air pressure drop of 0.32 in. wg.<br />

Heating Coil Selection<br />

Required Information:<br />

Zone design heat loss 30000 Btu<br />

Design heating airflow 1000 cfm<br />

Winter room design temp. 68ºF<br />

Coil entering water temp. 180ºF<br />

Minimum primary airflow 200 cfm<br />

Plenum temperature 70ºF<br />

Primary air temperature 55ºF<br />

Coil flow rate:<br />

2 gpm<br />

Heat Transfer Equation (Btu)<br />

Q = 1.085 x Cfm x ∆ Temperature<br />

For the heating zone, the temperature<br />

difference is the zone supply air<br />

temperature (SAT) minus the winter<br />

room design temperature.<br />

30000 Btu = 1.085 x 1000 x (SAT-68°F)<br />

SAT = 96ºF<br />

Because the hot water coil is on the<br />

unit discharge of a series fan-powered<br />

unit, the unit supply air temperature is<br />

equal to the coil LAT. Coil entering air<br />

temperature (EAT) is a mix of plenum<br />

air <strong>and</strong> the minimum primary airflow.<br />

1000 cfm x Coil EAT =<br />

200 cfm x 55ºF +<br />

(1000 cfm - 200 cfm) x 70ºF<br />

Coil EAT = 67ºF<br />

For the heating coil, the temperature<br />

difference is the calculated coil LAT<br />

minus the coil EAT (Plenum Air<br />

Temperature).<br />

Coil Q = 1.085 x 1000 x (96-70) =<br />

31,465 Btu<br />

On a series unit the hot water coil is<br />

located on the discharge, so the total<br />

heating airflow, 1000 cfm, passes<br />

through the coil.<br />

Coil Performance Table<br />

Selection:<br />

Performance:<br />

Size 03SQ fan, 1-row coil at 2 gpm =<br />

32.23 MBh<br />

1-row Coil at 2 gpm= 0.83 ft WPD<br />

Fan Selection<br />

Required Information:<br />

Fan airflow:<br />

1000 cfm<br />

Downstream static pressure<br />

at design airflow: 0.25 in. wg<br />

A size 03SQ fan can operate at up to<br />

1150 cfm with a 1-row coil or 1100 with<br />

a 2-row coil <strong>and</strong> 0.25" downstream<br />

static pressure. Inlet <strong>and</strong> coil selections<br />

should be verified with TOPSS<br />

electronic selections.<br />

If an attenuator is required, use the<br />

attenuator air pressure drop tables to<br />

define additional fan static pressure.<br />

Acoustics<br />

Required Information:<br />

Design inlet static press: 0.75 in. wg<br />

NC criteria<br />

(general office space): NC-40<br />

The selection is a VSWF Series Fan-<br />

Powered Terminal Unit, 10" primary,<br />

series fan size 03SQ, with a 1-row hot<br />

water coil.<br />

Determine the casing radiated<br />

noise level because it typically<br />

dictates the sound level (NC) of<br />

the space. With a series unit, the air<br />

valve <strong>and</strong> fan operate simultaneously,<br />

so the chart for air valve <strong>and</strong> fan sound<br />

data must be consulted.<br />

The acoustics value of a size 10" air<br />

valve with a size 03SQ fan has the<br />

following tabulated results:<br />

Octave 2 3 4 5 6 7 NC<br />

B<strong>and</strong><br />

Sound 70 65 63 61 59 59 38<br />

Power<br />

The predicted NC level for design<br />

conditions is NC-38.<br />

Note: Make sure the water coil<br />

acoustical impact is considered. For<br />

this example, the appurtenance effect<br />

adds one (1) NC to fan-only radiated<br />

sound. Because this does not set NC<br />

for this selection, it can be overlooked.<br />

The addition of an attenuator (see<br />

same appurtenance effect tables<br />

reduces the NC four (4) points,<br />

resulting in a final selection NC = 30 (if<br />

required).<br />

Caution: Do not overlook the water coil<br />

impact on acoustics. A good rule of<br />

thumb is that it will add 1 to 2 NC to<br />

"fan only" radiated sound for most<br />

applications.<br />

Series Fan-Powered Unit with<br />

Hot Water Coil<br />

FPS 4<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Selection<br />

Procedure<br />

Computer Selection<br />

The advent of personal computers has<br />

served to automate many processes<br />

that were previously repetitive <strong>and</strong><br />

time-consuming. One of those tasks is<br />

the proper scheduling, sizing, <strong>and</strong><br />

selection of <strong>VAV</strong> terminal units. Trane<br />

has developed a computer program to<br />

perform these tasks. The software is<br />

called the Trane Official Product<br />

Selection System (TOPSS).<br />

The TOPSS program will take the input<br />

specifications <strong>and</strong> output the properly<br />

sized <strong>VariTrane</strong> <strong>VAV</strong> terminal unit along<br />

with the specific performance for that<br />

size unit.<br />

The program has several required<br />

fields, denoted by red shading in the<br />

TOPSS screen, <strong>and</strong> many other<br />

optional fields to meet the criteria you<br />

have. Required values include<br />

maximum <strong>and</strong> minimum airflows,<br />

control type, <strong>and</strong> model. If selecting<br />

models with reheat, you will be<br />

required to enter information to make<br />

that selection also. The user is given<br />

the option to look at all the information<br />

for one selection on one screen or as a<br />

schedule with the other <strong>VAV</strong> units on<br />

the job.<br />

The user can select single-duct, dualduct,<br />

<strong>and</strong> fan-powered <strong>VAV</strong> boxes with<br />

the program, as well as most other<br />

Trane products, allowing you to select<br />

all your Trane equipment with one<br />

software program.<br />

The program will also calculate sound<br />

power data for the selected terminal<br />

unit. The user can enter a maximum<br />

individual sound level for each octave<br />

b<strong>and</strong> or a maximum NC value. The<br />

program will calculate acoustical data<br />

subject to default or user supplied<br />

sound attenuation data.<br />

Schedule View<br />

The program has many time-saving<br />

features such as:<br />

• Copy/Paste from spreadsheets like<br />

Microsoft ® Excel<br />

• Easily arranged fields to match your<br />

schedule<br />

• Time-saving templates to store default<br />

settings<br />

The user can also export the Schedule<br />

View to Excel to modify <strong>and</strong> put into a<br />

CAD drawing as a schedule.<br />

Specific details regarding the program,<br />

its operation, <strong>and</strong> how to obtain a copy<br />

of it are available from your local Trane<br />

sales office.<br />

Required entry fields (in Red<br />

on TOPSS screen).<br />

Rearrange what fields you see<br />

<strong>and</strong> in what order with a few<br />

clicks of a button.<br />

<strong>VAV</strong>-PRC008-EN FPS 5


Fan-Powered<br />

Series<br />

General Data—<br />

Valve/Controller<br />

Airflow Guidelines<br />

Primary Airflow Control Factory Settings – I-P<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) Cfm Cfm Cfm Cfm<br />

4 225 25–225 0, 25–225 25–225<br />

5 350 40–350 0, 40–350 40–350<br />

6 500 60–500 0, 60–500 60–500<br />

Direct Digital Control/ 8 900 105–900 0, 105–900 105–900<br />

UCM 10 1400 165–1400 0, 165–1400 165–1400<br />

12 2000 240–2000 0, 240–2000 240–2000<br />

14 3000 320–3000 0, 320–3000 320–3000<br />

16 4000 420–4000 0, 420–4000 420–4000<br />

4 225 38–225 0, 38–225 38–225<br />

5 350 63–350 0, 63–350 63–350<br />

6 500 73–500 0, 73–500 73–500<br />

Pneumatic with 8 900 134–900 0, 134–900 134–900<br />

Volume Regulator 10 1400 215–1400 0, 215–1400 215–1400<br />

12 2000 300–2000 0, 300–2000 300–2000<br />

14 2885 408–2887 0, 408–2887 408–2887<br />

16 3785 536–3789 0, 536–3789 536–3789<br />

4 225 52–225 0, 52–225 52–225<br />

5 350 82–350 0, 82–350 82–350<br />

6 500 120–500 0, 120–500 120–500<br />

8 900 210–900 0, 210–900 210–900<br />

Analog Electronic 10 1400 328–1400 0, 328–1400 328–1400<br />

12 2000 470–2000 0, 470–2000 470–2000<br />

14 3000 640–3000 0, 640–3000 640–3000<br />

16 4000 840–4000 0, 840–4000 840–4000<br />

Primary Airflow Control Factory Settings – SI<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) L/s L/s L/s L/s<br />

4 106 12–106 0, 12–106 12–106<br />

5 165 19–165 0, 19–165 19–165<br />

6 236 28–236 0, 28–236 28–236<br />

Direct Digital Control/ 8 425 50–425 0, 50–425 50–425<br />

UCM 10 661 77–661 0, 77–661 77–661<br />

12 944 111–944 0, 111–944 111–944<br />

14 1416 151–1416 0, 151–1416 151–1416<br />

16 1888 198–1888 0, 198–1888 198–1888<br />

4 106 18–106 0, 18–106 18–106<br />

5 165 30–165 0, 30–165 30–165<br />

6 236 35–236 0, 35–236 35–236<br />

Pneumatic with 8 425 63–425 0, 63–425 63–425<br />

Volume Regulator 10 661 102–661 0, 102–661 102–661<br />

12 944 141–944 0, 141–944 141–944<br />

14 1362 193–1363 0, 193–1363 193–1363<br />

16 1787 253–1788 0, 253–1788 253–1788<br />

4 106 25–106 0, 25–106 25–106<br />

5 165 39–165 0, 39–165 39–165<br />

6 236 57–236 0, 57–236 57–236<br />

8 425 100–425 0, 100–425 100–425<br />

Analog Electronic 10 661 156–661 0, 156–661 156–661<br />

12 944 222–944 0, 222–944 222–944<br />

14 1416 303–1416 0, 303–1416 303–1416<br />

16 1888 397–1888 0, 397–1888 397–1888<br />

Note: Maximum airflow must be greater than or equal to minimum airflow.<br />

FPS 6<br />

<strong>VAV</strong>-PRC008-EN


Unit Air Pressure Drop – in. wg (I-P)<br />

Fan/Inlet Airflow<br />

Size Cfm Unit<br />

2SQ–04 200 0.03<br />

225 0.03<br />

2SQ–05 200 0.03<br />

250 0.04<br />

300 0.06<br />

350 0.09<br />

2SQ–06 200 0.03<br />

300 0.06<br />

400 0.12<br />

500 0.19<br />

2SQ–08 200 0.01<br />

400 0.05<br />

550 0.10<br />

700 0.16<br />

2SQ–10 200 0.01<br />

400 0.02<br />

550 0.06<br />

700 0.11<br />

03SQ–06 250 0.10<br />

300 0.15<br />

400 0.34<br />

500 0.45<br />

03SQ–08 250 0.05<br />

500 0.16<br />

700 0.31<br />

900 0.49<br />

03SQ–10 250 0.03<br />

550 0.11<br />

850 0.24<br />

1200 0.44<br />

03SQ–12 250 0.01<br />

550 0.07<br />

850 0.16<br />

1200 0.32<br />

04SQ–06 330 0.16<br />

400 0.29<br />

450 0.35<br />

500 0.48<br />

04SQ–08 330 0.04<br />

500 0.12<br />

700 0.25<br />

900 0.44<br />

04SQ–10 330 0.02<br />

700 0.12<br />

1050 0.29<br />

1400 0.54<br />

04SQ–12 330 0.02<br />

750 0.11<br />

1150 0.28<br />

1550 0.51<br />

04SQ–14 330 0.02<br />

750 0.11<br />

1150 0.26<br />

1550 0.48<br />

Note: Unit pressure drops do not include hot water coil or attenuator<br />

pressure drops.<br />

Fan-Powered<br />

Series<br />

Fan/Inlet Airflow<br />

Size Cfm Unit<br />

05SQ–10 400 0.01<br />

750 0.08<br />

1100 0.22<br />

1400 0.39<br />

05SQ–12 400 0.01<br />

900 0.09<br />

1400 0.28<br />

1900 0.58<br />

05SQ–14 400 0.01<br />

900 0.09<br />

1400 0.26<br />

1900 0.53<br />

6SQ–10 700 0.01<br />

950 0.03<br />

1200 0.12<br />

1400 0.22<br />

6SQ–12 700 0.01<br />

1150 0.01<br />

1600 0.12<br />

2000 0.27<br />

6SQ–14 700 0.01<br />

1350 0.04<br />

2000 0.19<br />

2600 0.41<br />

6SQ–16 700 0.01<br />

1350 0.04<br />

2000 0.19<br />

2600 0.41<br />

7SQ–10 850 0.01<br />

1000 0.05<br />

1200 0.12<br />

1400 0.22<br />

7SQ–12 850 0.01<br />

1200 0.02<br />

1600 0.12<br />

2000 0.27<br />

7SQ–14 850 0.01<br />

1550 0.07<br />

2250 0.27<br />

3000 0.59<br />

7SQ–16 850 0.01<br />

1550 0.07<br />

2250 0.27<br />

3000 0.59<br />

Performance<br />

Data—Air Pressure<br />

Requirements (I-P)<br />

Coil Air Pressure Drop – in. wg (I-P)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size Cfm (in. wg) (in. wg)<br />

02SQ 200 0.01 0.03<br />

300 0.02 0.05<br />

400 0.04 0.08<br />

500 0.06 0.11<br />

600 0.08 0.15<br />

03SQ 250 0.01 0.02<br />

04SQ 500 0.02 0.05<br />

750 0.05 0.10<br />

1000 0.08 0.15<br />

1250 0.12 0.22<br />

1500 0.16 0.30<br />

05SQ 400 0.01 0.03<br />

700 0.04 0.08<br />

1000 0.07 0.13<br />

1250 0.10 0.19<br />

1500 0.14 0.26<br />

1750 0.19 0.34<br />

06SQ 600 0.02 0.04<br />

07SQ 1000 0.04 0.08<br />

1500 0.08 0.15<br />

2000 0.13 0.23<br />

2500 0.19 0.34<br />

3000 0.27 0.47<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (I-P)<br />

Fan Plenum<br />

Size Cfm Attenuator<br />

02SQ 50 0.00<br />

150 0.00<br />

350 0.02<br />

550 0.05<br />

750 0.10<br />

950 0.16<br />

03SQ 50 0.00<br />

250 0.00<br />

500 0.02<br />

750 0.06<br />

1000 0.13<br />

1200 0.21<br />

04SQ 50 0.00<br />

300 0.02<br />

600 0.07<br />

900 0.14<br />

1200 0.24<br />

1500 0.35<br />

05SQ 50 0.00<br />

300 0.01<br />

650 0.05<br />

1000 0.14<br />

1300 0.28<br />

1650 0.52<br />

06SQ 50 0.00<br />

500 0.00<br />

900 0.02<br />

1300 0.07<br />

1700 0.17<br />

2100 0.36<br />

07SQ 50 0.00<br />

800 0.01<br />

1200 0.05<br />

1600 0.14<br />

2000 0.30<br />

2400 0.58<br />

Note: Plenum cfm = (Fan cfm) – (Min.<br />

valve cfm)<br />

<strong>VAV</strong>-PRC008-EN FPS 7


Fan-Powered<br />

Series<br />

Performance<br />

Data—Air Pressure<br />

Requirements (SI)<br />

Unit Air Pressure Drop – Pa (SI)<br />

Fan/Inlet Airflow<br />

Size L/s Unit<br />

2SQ–04 94 7<br />

106 9<br />

2SQ–05 94 7<br />

118 11<br />

142 16<br />

165 22<br />

2SQ–06 94 7<br />

142 16<br />

189 29<br />

236 46<br />

2SQ–08 94 2<br />

189 12<br />

260 24<br />

330 39<br />

2SQ–10 94 2<br />

189 5<br />

260 14<br />

330 28<br />

03SQ–06 118 25<br />

142 38<br />

189 85<br />

236 112<br />

03SQ–08 118 12<br />

236 41<br />

330 76<br />

425 123<br />

03SQ–10 118 8<br />

260 28<br />

401 59<br />

566 110<br />

03SQ–12 118 4<br />

260 17<br />

401 40<br />

566 79<br />

04SQ–06 156 40<br />

189 73<br />

212 88<br />

236 119<br />

04SQ–08 156 10<br />

236 29<br />

330 63<br />

425 109<br />

04SQ–10 156 5<br />

330 30<br />

495 73<br />

661 135<br />

04SQ–12 156 5<br />

354 28<br />

543 69<br />

731 127<br />

04SQ–14 156 5<br />

354 27<br />

543 65<br />

731 120<br />

Fan/Inlet Airflow<br />

Size L/s Unit<br />

05SQ–10 189 1<br />

354 20<br />

519 55<br />

661 98<br />

05SQ–12 189 2<br />

425 23<br />

661 71<br />

897 144<br />

05SQ–14 189 2<br />

425 21<br />

661 65<br />

897 131<br />

6SQ–10 330 2<br />

448 8<br />

566 31<br />

661 55<br />

6SQ–12 330 2<br />

543 3<br />

755 31<br />

944 68<br />

6SQ–14 330 2<br />

637 9<br />

944 47<br />

1227 101<br />

6SQ–16 330 2<br />

637 9<br />

944 47<br />

1227 101<br />

7SQ–10 401 2<br />

472 12<br />

566<br />

661 55<br />

7SQ–12 401 2<br />

566 5<br />

755 31<br />

944 68<br />

7SQ–14 401 2<br />

731 18<br />

1062 67<br />

1416 147<br />

7SQ–16 401 2<br />

731 18<br />

1062 67<br />

1416 147<br />

Note: Unit pressure drops do not include hot water coil or attenuator<br />

pressure drops.<br />

Coil Air Pressure Drop – Pa (SI)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size L/s (Pa) (Pa)<br />

02SQ 250 3 7<br />

400 6 12<br />

500 10 19<br />

600 14 28<br />

700 20 38<br />

03SQ 118 2 5<br />

04SQ 236 6 13<br />

354 12 24<br />

472 19 38<br />

590 29 55<br />

708 40 75<br />

05SQ 189 4 8<br />

330 9 19<br />

472 17 33<br />

590 25 48<br />

708 35 65<br />

826 47 85<br />

06SQ 850 4 9<br />

07SQ 1300 9 19<br />

1700 19 36<br />

2150 31 58<br />

2550 47 85<br />

3000 66 117<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (SI)<br />

Fan Plenum Attenuator<br />

Size L/s<br />

02SQ 24 0<br />

71 1<br />

165 4<br />

260 12<br />

354 24<br />

448 40<br />

03SQ 24 0<br />

118 1<br />

236 5<br />

354 15<br />

472 32<br />

566 52<br />

04SQ 24 0<br />

142 5<br />

283 18<br />

425 36<br />

566 59<br />

708 88<br />

05SQ 24 0<br />

142 2<br />

307 12<br />

472 36<br />

613 70<br />

779 129<br />

06SQ 24 0<br />

236 1<br />

425 4<br />

613 16<br />

802 42<br />

991 90<br />

07SQ 24 0<br />

378 3<br />

566 12<br />

755 34<br />

944 75<br />

1133 144<br />

Note: Plenum cfm = (Fan cfm) – (Min.<br />

valve cfm)<br />

FPS 8<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Fan Curves<br />

Notes:<br />

1. When attenuator is required,<br />

add inlet attenuator pressure to<br />

discharge static pressure for final<br />

fan performance.<br />

Discharge Static Pressure<br />

Pa In. wg Series 02SQ—PSC<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

190 cfm min<br />

(90 L/s)<br />

0<br />

0.00<br />

100 200 300 400 500 600 700 800<br />

47 94 142 189 236<br />

283<br />

330 378<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa<br />

199<br />

In. wg<br />

0.80<br />

Series 03SQ—PSC<br />

174<br />

0.70<br />

VSCF <strong>and</strong> VSEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

50<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

250 cfm min<br />

(118 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 Cfm<br />

94 142 189 236 283 330 378 425 472 519 566 614 661 L/s<br />

Airflow<br />

Pa<br />

199<br />

In. wg<br />

0.80<br />

Series 04SQ—PSC<br />

174<br />

0.70<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

50<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

330 cfm min<br />

(156 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 Cfm<br />

142 189 236 283 330 378 425 472 519 566 614 661 708 755 802 L/s<br />

<strong>VAV</strong>-PRC008-EN FPS 9<br />

Airflow


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Fan Curves<br />

Discharge Static Pressure<br />

Pa<br />

199<br />

174<br />

150<br />

125<br />

100<br />

75<br />

50<br />

In. wg<br />

0.80<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

400 cfm min<br />

(189 L/s)<br />

Series 05SQ—PSC<br />

Notes:<br />

1. When attenuator is required,<br />

add inlet attenuator pressure to<br />

discharge static pressure for final<br />

fan performance.<br />

25<br />

0.10<br />

0<br />

0.00<br />

300 500 700 900 1100 1300 1500 1700 1900 2100 Cfm<br />

142 236 330 425 519 614 708 802 897 991 L/s<br />

Airflow<br />

Pa In. wg Series 06SQ—PSC<br />

199<br />

0.80<br />

174<br />

0.70<br />

150<br />

0.60<br />

Discharge Static Pressure<br />

125<br />

100<br />

75<br />

50<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

700 cfm min<br />

(330 L/s)<br />

VSCF <strong>and</strong> VSEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

25<br />

0.10<br />

0<br />

0.00<br />

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800<br />

189 283 378 472 566 661 755 850 944 1038 1133 1227 1322<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg Series 07SQ—PSC<br />

199 0.80<br />

174<br />

0.70<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

50<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

850 cfm min<br />

(401 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400<br />

378 472 566 661 755 850 944 1038 1133 1227 1322 1416 1510 1605<br />

Cfm<br />

L/s<br />

FPS 10<br />

Airflow<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

ECM Data—<br />

Fan Curves<br />

Notes:<br />

1. ECMs (Electrically Commutated<br />

Motors) are ideal for systems seeking<br />

maximum motor efficiency.<br />

2. When attenuator is required, add inlet<br />

attenuator pressure to discharge<br />

static pressure for final fan<br />

performance.<br />

Discharge Static Pressure<br />

Pa In. wg<br />

VSxF Size 03SQ—ECM<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

200 cfm min<br />

(94 L/s)<br />

0<br />

0.00<br />

100 200 300 400 500 600 700 800 900 1000 1100 1200<br />

47 94 142 189 236 283 330 378 425 472 519 566<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa<br />

125<br />

In. wg<br />

0.50<br />

VSxF 04SQ—ECM<br />

100<br />

0.40<br />

VSCF <strong>and</strong> VSEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

Discharge Static Pressure<br />

75<br />

50<br />

0.30<br />

0.20<br />

240 cfm min<br />

(113 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

200 400 600 800 1000 1200 1400 1600 Cfm<br />

94 189<br />

283 378<br />

472<br />

566<br />

661 755 L/s<br />

Airflow<br />

Pa<br />

125<br />

In. wg<br />

0.50<br />

VSxF 05SQ—ECM<br />

100<br />

0.40<br />

Discharge Static Pressure<br />

75<br />

50<br />

0.30<br />

0.20<br />

350 cfm min<br />

(165 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

300 500 700 900 1100 1300 1500 1700 1900 2100 Cfm<br />

142 236 330 425 519 614 708 802 897 991 L/s<br />

Airflow<br />

<strong>VAV</strong>-PRC008-EN FPS 11


Fan-Powered<br />

Series<br />

ECM Data—<br />

Fan Curves<br />

Discharge Static Pressure<br />

Pa In. wg VSxF 06SQ—ECM<br />

125 0.50<br />

100<br />

75<br />

50<br />

25<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

700 cfm min<br />

(330 L/s)<br />

Notes:<br />

1. ECMs (Electrically Commutated<br />

Motors) are ideal for systems seeking<br />

maximum motor efficiency.<br />

2. When attenuator is required, add inlet<br />

attenuator pressure to discharge<br />

static pressure for final fan<br />

performance.<br />

0<br />

0.00<br />

600 800 1,000 1,200 1,400 1,600 1,800 2,000 2,200 2,400 2,600<br />

283 378 472 566 661 755 850 944 1038 1133 1227<br />

Airflow<br />

Cfm<br />

L/s<br />

VSCF <strong>and</strong> VSEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

FPS 12<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Fan Size 02SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 150 200 250 300 350 400 450 500 550 600 700<br />

1-Row 0.50 0.16 — — — — — — — — — — —<br />

Capacity 1.0 0.53 9.14 10.34 11.34 12.20 12.97 13.67 14.32 14.93 15.51 16.05 17.02<br />

MBH 2.0 1.85 9.94 11.40 12.63 13.73 14.73 15.66 16.52 17.33 18.10 18.82 20.18<br />

3.0 3.85 10.25 11.80 13.14 14.34 15.43 16.45 17.41 18.32 19.18 20.01 21.56<br />

4.0 6.51 10.41 12.02 13.41 14.66 15.81 16.89 17.90 18.87 19.78 20.66 22.32<br />

5.0 9.79 10.51 12.15 13.58 14.87 16.05 17.17 18.21 19.21 20.17 21.08 22.81<br />

2-Row 1.0 1.00 12.59 15.23 17.40 19.21 20.74 22.06 23.19 24.19 25.07 25.85 27.19<br />

Capacity 2.0 3.42 13.42 16.60 19.34 21.73 23.84 25.71 27.39 28.90 30.27 31.52 33.72<br />

MBH 3.0 7.05 13.71 17.08 20.04 22.66 25.00 27.12 29.03 30.77 32.37 33.84 36.46<br />

4.0 11.82 13.86 17.33 20.40 23.14 25.62 27.86 29.90 31.77 33.50 35.10 37.96<br />

5.0 17.68 13.94 17.48 20.62 23.44 25.99 28.32 30.44 32.40 34.21 35.89 38.92<br />

Fan Sizes 03SQ 04SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 200 300 400 550 700 850 1000 1150 1300 1450 1600<br />

1-Row 1.0 0.27 — — — — — — — — — — —<br />

Capacity 2.0 1.01 15.03 18.19 20.63 23.57 26.00 28.09 29.99 31.71 33.27 34.68 35.97<br />

MBH 3.0 2.19 15.70 19.23 22.00 25.41 28.29 30.81 33.08 35.15 37.05 38.83 40.51<br />

4.0 3.81 16.06 19.80 22.76 26.44 29.59 32.38 34.91 37.23 39.38 41.38 43.26<br />

5.0 5.85 16.29 20.16 23.24 27.11 30.43 33.40 36.11 38.60 40.93 43.10 45.15<br />

6.0 8.32 16.45 20.41 23.58 27.57 31.02 34.12 36.96 39.58 42.03 44.34 46.51<br />

7.0 11.20 16.56 20.59 23.82 27.91 31.46 34.66 37.59 40.31 42.86 45.26 47.54<br />

8.0 14.50 16.65 20.73 24.01 28.18 31.80 35.07 38.08 40.88 43.51 45.99 48.34<br />

9.0 18.22 16.72 20.84 24.17 28.39 32.08 35.41 38.48 41.34 44.03 46.57 48.99<br />

10.0 22.35 16.78 20.93 24.29 28.56 32.30 35.68 38.80 41.71 44.46 47.05 49.52<br />

2-Row 1.0 0.39 — — — — — — — — — — —<br />

Capacity 2.0 1.41 18.93 25.58 30.93 37.20 41.99 45.78 48.85 51.38 53.52 55.34 56.92<br />

MBH 3.0 3.01 19.46 26.72 32.79 40.20 46.12 50.97 55.02 58.45 61.41 63.98 66.24<br />

4.0 5.16 19.72 27.30 33.75 41.80 48.38 53.88 58.54 62.56 66.05 69.14 71.88<br />

5.0 7.84 19.88 27.65 34.34 42.79 49.81 55.73 60.81 65.23 69.11 72.55 75.63<br />

6.0 11.06 19.98 27.88 34.74 43.47 50.79 57.01 62.40 67.10 71.26 74.98 78.31<br />

7.0 14.81 20.06 28.05 35.02 43.96 51.50 57.96 63.57 68.49 72.87 76.79 80.32<br />

8.0 19.07 20.12 28.18 35.24 44.34 52.05 58.68 64.46 69.57 74.11 78.19 81.88<br />

Fan Size 05SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 350 500 650 800 1000 1200 1400 1600 1800 2000 2150<br />

1-Row 1.0 0.29 — — — — — — — — — — —<br />

Capacity 2.0 1.08 21.67 25.25 28.09 30.49 33.30 35.79 37.96 39.88 41.61 43.17 44.25<br />

MBH 3.0 2.33 23.02 27.14 30.49 33.38 36.75 39.71 42.39 44.89 47.17 49.26 50.73<br />

4.0 4.03 23.76 28.20 31.85 35.03 38.78 42.12 45.14 47.92 50.48 52.91 54.64<br />

5.0 6.18 24.23 28.87 32.72 36.10 40.11 43.71 46.98 50.01 52.81 55.44 57.30<br />

6.0 8.76 24.55 29.34 33.34 36.86 41.05 44.83 48.29 51.50 54.50 57.30 59.30<br />

7.0 11.79 24.79 29.69 33.79 37.42 41.75 45.67 49.28 52.63 55.76 58.71 60.82<br />

8.0 15.24 24.97 29.95 34.14 37.85 42.29 46.33 50.05 53.51 56.76 59.82 62.01<br />

2-Row 1.0 0.39 — — — — — — — — — — —<br />

Capacity 2.0 1.39 29.95 37.69 43.62 48.30 53.17 56.95 59.97 62.43 64.49 66.24 67.38<br />

MBH 3.0 2.96 31.40 40.36 47.58 53.51 59.95 65.16 69.45 73.07 76.15 78.82 80.59<br />

4.0 5.08 32.14 41.74 49.69 56.37 63.77 69.90 75.05 79.45 83.26 86.60 88.84<br />

5.0 7.72 32.58 42.59 51.00 58.16 66.21 72.97 78.72 83.68 88.02 91.85 94.45<br />

6.0 10.90 32.87 43.16 51.88 59.39 67.90 75.11 81.30 86.69 91.42 95.63 98.49<br />

7.0 14.59 33.08 43.57 52.53 60.28 69.14 76.69 83.22 88.93 93.97 98.47 101.54<br />

8.0 18.79 33.24 43.88 53.02 60.96 70.09 77.91 84.70 90.66 95.95 100.69 103.93<br />

Fan Size 06SQ & 07SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 700 900 1100 1300 1500 1700 1900 2100 2300 2500 2700<br />

1-Row 0.5 0.12 — — — — — — — — — — —<br />

Capacity 1.0 0.40 — — — — — — — — — — —<br />

MBH 2.0 1.37 31.21 34.50 37.47 40.06 42.33 44.37 46.21 47.89 49.43 50.85 52.16<br />

3.0 2.83 33.81 37.76 41.19 44.25 47.10 49.74 52.17 54.40 56.49 58.43 60.24<br />

4.0 4.76 35.27 39.61 43.42 46.86 50.00 52.91 55.63 58.24 60.68 62.97 65.14<br />

5.0 7.13 36.20 40.80 44.87 48.57 51.97 55.12 58.07 60.84 63.46 66.00 68.41<br />

6.0 9.93 36.85 41.64 45.90 49.78 53.36 56.70 59.83 62.79 65.59 68.24 70.77<br />

2-Row 1.0 0.77 — — — — — — — — — — —<br />

Capacity 2.0 2.58 47.79 54.01 58.79 62.56 65.61 68.13 70.25 72.05 73.60 74.95 76.14<br />

MBH 3.0 5.27 52.10 60.08 66.51 71.79 76.21 79.96 83.19 86.00 88.47 90.65 92.61<br />

4.0 8.78 54.37 63.38 70.82 77.06 82.39 86.98 91.00 94.54 97.69 100.51 103.06<br />

5.0 13.07 55.77 65.44 73.55 80.45 86.40 91.60 96.18 100.26 103.91 107.20 110.19<br />

6.0 18.13 56.71 66.85 75.43 82.80 89.22 94.86 99.86 104.34 108.37 112.03 115.36<br />

<strong>VAV</strong>-PRC008-EN FPS 13


Fan-Powered<br />

Series<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Water Coil Notes (I-P)<br />

1. Fouling Factor = 0.0005.<br />

2. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

( ) ( )<br />

LAT = EAT +<br />

MBH x 921.7<br />

WTD = EWT - LWT =<br />

Cfm<br />

2 x MBH<br />

Gpm<br />

3. Capacity based on 70°F entering air temperature <strong>and</strong> 180°F entering water temperature. Refer to correction factors for<br />

different entering conditions.<br />

Temperature Correction Factors for Water Pressure Drop (ft)<br />

Average Water Temperature 200 190 180 170 160 150 140 130 120 110<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (MBH)<br />

Entering Water Minus Entering Air 40 50 60 70 80 90 100 110 120 130<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

FPS 14<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Fan Size 02SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 71 94 118 142 165 189 212 236 260 283 330<br />

1-Row 0.03 0.47 — — — — — — — — — — —<br />

Capacity 0.06 1.59 2.68 3.03 3.32 3.58 3.80 4.01 4.20 4.38 4.55 4.70 4.70<br />

kW 0.13 5.52 2.91 3.34 3.70 4.02 4.32 4.59 4.84 5.08 5.30 5.52 5.52<br />

0.19 11.51 3.00 3.46 3.85 4.20 4.52 4.82 5.10 5.37 5.62 5.86 5.86<br />

0.25 19.45 3.05 3.52 3.93 4.30 4.63 4.95 5.25 5.53 5.80 6.06 6.06<br />

0.32 29.27 3.08 3.56 3.98 4.36 4.71 5.03 5.34 5.63 5.91 6.18 6.18<br />

2-Row 0.06 3.00 3.69 4.46 5.10 5.63 6.08 6.46 6.80 7.09 7.35 7.58 7.58<br />

Capacity 0.13 10.21 3.93 4.86 5.67 6.37 6.99 7.54 8.03 8.47 8.87 9.24 9.24<br />

kW 0.19 21.07 4.02 5.01 5.87 6.64 7.33 7.95 8.51 9.02 9.49 9.92 9.92<br />

0.25 35.33 4.06 5.08 5.98 6.78 7.51 8.16 8.76 9.31 9.82 10.29 10.29<br />

0.32 52.84 4.09 5.12 6.04 6.87 7.62 8.30 8.92 9.50 10.03 10.52 10.52<br />

Fan Sizes 03SQ 04SQ(SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 94 142 189 260 330 401 472 543 613 684 755<br />

1-Row 0.06 0.81 — — — — — — — — — — —<br />

Capacity 0.13 3.02 4.40 5.33 6.04 6.91 7.62 8.23 8.79 9.29 9.75 10.16 10.16<br />

kW 0.19 6.56 4.60 5.64 6.45 7.45 8.29 9.03 9.70 10.30 10.86 11.38 11.38<br />

0.25 11.39 4.71 5.80 6.67 7.75 8.67 9.49 10.23 10.91 11.54 12.13 12.13<br />

0.32 17.49 4.77 5.91 6.81 7.94 8.92 9.79 10.58 11.31 11.99 12.63 12.63<br />

0.38 24.86 4.82 5.98 6.91 8.08 9.09 10.00 10.83 11.60 12.32 12.99 12.99<br />

0.44 33.49 4.85 6.03 6.98 8.18 9.22 10.16 11.02 11.81 12.56 13.27 13.27<br />

0.50 43.36 4.88 6.08 7.04 8.26 9.32 10.28 11.16 11.98 12.75 13.48 13.48<br />

0.57 54.46 4.90 6.11 7.08 8.32 9.40 10.38 11.28 12.12 12.90 13.65 13.65<br />

0.63 66.80 4.92 6.13 7.12 8.37 9.47 10.46 11.37 12.22 13.03 13.79 13.79<br />

2-Row 0.06 1.18 — — — — — — — — — — —<br />

Capacity 0.13 4.22 5.55 7.50 9.07 10.90 12.31 13.42 14.32 15.06 15.68 16.22 16.22<br />

kW 0.19 8.99 5.70 7.83 9.61 11.78 13.52 14.94 16.12 17.13 18.00 18.75 18.75<br />

0.25 15.41 5.78 8.00 9.89 12.25 14.18 15.79 17.16 18.33 19.36 20.26 20.26<br />

0.32 23.45 5.83 8.10 10.06 12.54 14.60 16.33 17.82 19.12 20.25 21.26 21.26<br />

0.38 33.07 5.86 8.17 10.18 12.74 14.88 16.71 18.29 19.67 20.89 21.97 21.97<br />

0.44 44.26 5.88 8.22 10.26 12.88 15.09 16.99 18.63 20.07 21.36 22.50 22.50<br />

0.50 57.00 5.90 8.26 10.33 12.99 15.25 17.20 18.89 20.39 21.72 22.92 22.92<br />

Fan Size 05SQ(SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 165 236 307 378 472 566 661 755 849 944 1015<br />

1-Row 0.06 0.87 — — — — — — — — — — —<br />

Capacity 0.13 3.22 6.35 7.40 8.23 8.94 9.76 10.49 11.12 11.69 12.19 12.65 12.65<br />

kW 0.19 6.95 6.75 7.95 8.94 9.78 10.77 11.64 12.42 13.16 13.82 14.44 14.44<br />

0.25 12.04 6.96 8.26 9.33 10.27 11.37 12.34 13.23 14.04 14.79 15.51 15.51<br />

0.32 18.46 7.10 8.46 9.59 10.58 11.76 12.81 13.77 14.66 15.48 16.25 16.25<br />

0.38 26.20 7.19 8.60 9.77 10.80 12.03 13.14 14.15 15.09 15.97 16.79 16.79<br />

0.44 35.23 7.26 8.70 9.90 10.97 12.24 13.39 14.44 15.42 16.34 17.21 17.21<br />

0.50 45.57 7.32 8.78 10.01 11.09 12.40 13.58 14.67 15.68 16.63 17.53 17.53<br />

2-Row 0.06 1.16 — — — — — — — — — — —<br />

Capacity 0.13 4.16 8.78 11.05 12.78 14.16 15.58 16.69 17.57 18.30 18.90 19.41 19.41<br />

kW 0.19 8.85 9.20 11.83 13.94 15.68 17.57 19.10 20.35 21.41 22.32 23.10 23.10<br />

0.25 15.17 9.42 12.23 14.56 16.52 18.69 20.48 21.99 23.28 24.40 25.38 25.38<br />

0.32 23.09 9.55 12.48 14.95 17.04 19.41 21.38 23.07 24.52 25.80 26.92 26.92<br />

0.38 32.57 9.63 12.65 15.21 17.40 19.90 22.01 23.83 25.41 26.79 28.03 28.03<br />

0.44 43.60 9.70 12.77 15.39 17.67 20.26 22.48 24.39 26.06 27.54 28.86 28.86<br />

0.50 56.16 9.74 12.86 15.54 17.87 20.54 22.83 24.82 26.57 28.12 29.51 29.51<br />

Fan Sizes 06SQ & 07SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 330 425 519 613 708 802 897 991 1085 1180 1274<br />

1-Row 0.03 0.36 — — — — — — — — — — —<br />

Capacity 0.06 1.20 — — — — — — — — — — —<br />

kW 0.13 4.10 9.15 10.11 10.98 11.74 12.41 13.00 13.54 14.03 14.49 14.90 14.90<br />

0.19 8.46 9.91 11.07 12.07 12.97 13.80 14.58 15.29 15.94 16.55 17.12 17.12<br />

0.25 14.22 10.34 11.61 12.73 13.73 14.66 15.51 16.30 17.07 17.78 18.46 18.46<br />

0.32 21.30 10.61 11.96 13.15 14.23 15.23 16.15 17.02 17.83 18.60 19.34 19.34<br />

0.38 29.68 10.80 12.20 13.45 14.59 15.64 16.62 17.54 18.40 19.22 20.00 20.00<br />

2-Row 0.06 2.31 — — — — — — — — — — —<br />

Capacity 0.13 7.71 14.01 15.83 17.23 18.33 19.23 19.97 20.59 21.11 21.57 21.97 21.97<br />

kW 0.19 15.74 15.27 17.61 19.49 21.04 22.33 23.43 24.38 25.20 25.93 26.57 26.57<br />

0.25 26.24 15.94 18.58 20.75 22.58 24.14 25.49 26.67 27.71 28.63 29.46 29.46<br />

0.32 39.08 16.34 19.18 21.55 23.58 25.32 26.85 28.19 29.38 30.45 31.42 31.42<br />

0.38 54.19 16.62 19.59 22.11 24.27 26.15 27.80 29.27 30.58 31.76 32.83 32.83<br />

<strong>VAV</strong>-PRC008-EN FPS 15


Fan-Powered<br />

Series<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Water Coil Notes (SI)<br />

1. Fouling Factor = 0.0005.<br />

2. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

LAT = EAT kW x 0.83<br />

+( L/s )<br />

WTD = EWT - LWT =( (4.19)L/s<br />

kW<br />

)<br />

3. Capacity based on 21°C entering air temperature <strong>and</strong> 82°Centering water temperature. Refer to correction factors for<br />

different entering conditions.<br />

Temperature Correction Factors for Water Pressure Drop (kPa)<br />

Average Water Temperature 93 88 82 77 71 66 60 54 49 43<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (kW)<br />

Entering Water Minus Entering Air 22 27 33 38 44 50 55 61 67 72<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

FPS 16<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Electrical Data<br />

VSEF—Electric Coil kW Guidelines – Minimum to Maximum (PSC Motor Units)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V 240V 277V 347V 480V 208V 480V 600V<br />

02SQ 1 0.5–5.0 0.5–7.0 0.5–7.0 0.5–7.0 0.5–7.0 1.0–7.0 0.5–7.0 1.0–7.0 1.5–7.0<br />

2 0.5–5.0 0.5–7.0 0.5–7.0 1.0–7.0 1.0–7.0 1.5–7.0 1.0–7.0 3.5–7.0 —<br />

3* 1.0–5.0 1.0–7.0 1.0–7.0 1.0–7.0 1.5–7.0 2.0–7.0 1.5–7.0 5.5–6.0 —<br />

03SQ 1 0.5–5.0 0.5–9.0 0.5–10.0 0.5–12.0 0.5–14.0 1.0–13.0 0.5–14.0 1.0–14.0 1.5–14.0<br />

2 0.5–5.0 0.5–9.0 0.5–10.0 1.0–12.0 1.0–14.0 1.5–13.0 1.0–14.0 3.5–14.0 —<br />

3* 1.0–5.0 1.0–9.0 1.0–10.0 1.0–12.0 1.5–14.0 2.0–12.0 1.5–14.0 5.5–9.0 —<br />

04SQ 1 0.5–4.5 0.5–8.0 0.5–10.0 0.5–12.0 0.5–16.0 0.5–18.0 0.5–15.0 1.0–18.0 1.5–18.0<br />

2 0.5–4.5 0.5–8.0 0.5–10.0 1.0–12.0 1.0–16.0 1.0–18.0 1.0–15.0 2.5–18.0 4.0–17.0<br />

3* 1.0–4.5 1.0–8.0 1.0–10.0 1.0–12.0 1.5–16.0 1.5–18.0 1.5–15.0 4.0–18.0 6.0–16.0<br />

05SQ 1 0.5–4.5 0.5–8.0 0.5–9.0 0.5–12.0 0.5–15.0 0.5–20.0 0.5–14.0 1.0–22.0 1.5–22.0<br />

2 0.5–4.5 0.5–8.0 0.5–9.0 1.0–12.0 1.0–15.0 1.0–20.0 1.0–14.0 2.5–20.0 4.0–20.0<br />

3* 1.0–4.5 1.0–8.0 1.0–9.0 1.0–12.0 1.5–15.0 1.5–20.0 1.5–14.0 4.0–18.0 6.0–16.0<br />

06SQ 1 — 0.5–9.0 — 0.5–12.0 0.5–15.0 0.5–22.0 0.5–15.0 1.0–22.0 1.5–22.0<br />

2 — 0.5–9.0 — 1.0–12.0 1.0–15.0 1.0–22.0 1.0–15.0 2.0–22.0 3.0–22.0<br />

3* — 1.0–9.0 — 1.0–12.0 1.5–15.0 1.5–20.0 1.5–15.0 3.0–20.0 4.5–18.0<br />

07SQ 1 — 0.5–8.0 — 0.5–11.0 0.5–15.0 0.5–24.0 0.5–14.0 1.0–24.0 1.5–24.0<br />

2 — 0.5–8.0 — 1.0–11.0 1.0–15.0 1.0–24.0 1.0–14.0 2.0–24.0 3.0–24.0<br />

3* — 1.0–8.0 — 1.0–11.0 1.5–15.0 1.5–20.0 1.5–14.0 3.0–20.0 4.5–18.0<br />

*Three stages of electric heat available only with pneumatic controls.<br />

VSEF—Electric Coil kW Guidelines – Minimum to Maximum (ECM Units)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V 240V 277V 347V 480V 208V 480V 600V<br />

03SQ 1 0.5–4.5 0.5–8.0 0.5–10.0 0.5–12.0 — 1.0–13.0 0.5–14.0 1.0–14.0 —<br />

2 0.5–4.5 0.5–8.0 0.5–10.0 1.0–12.0 — 1.5–13.0 1.0–14.0 3.5–14.0 —<br />

3 1.0–4.5 1.0–8.0 1.0–10.0 1.0–12.0 — 2.0–12.0 1.5–14.0 5.5–9.0 —<br />

04SQ 1 0.5–4.5 0.5–8.0 0.5–9.0 0.5–12.0 — 0.5–18.0 0.5–14.0 1.0–18.0 —<br />

2 0.5–4.5 0.5–8.0 0.5–9.0 1.0–12.0 — 1.0–18.0 1.0–14.0 2.5–18.0 —<br />

3 1.0–4.5 1.0–8.0 1.0–9.0 1.0–12.0 — 1.5–18.0 1.5–14.0 4.0–18.0 —<br />

05SQ 1 0.5–4.0 0.5–7.0 0.5–8.0 0.5–11.0 — 0.5–18.0 0.5–12.0 1.0–22.0 —<br />

2 0.5–4.0 0.5–7.0 0.5–8.0 1.0–11.0 — 1.0–18.0 1.0–12.0 2.5–20.0 —<br />

3 1.0–4.0 1.0–7.0 1.0–8.0 1.0–11.0 — 1.5–18.0 1.5–12.0 4.0–18.0 —<br />

06SQ 1 0.5–4.0 0.5–7.0 0.5–8.0 0.5–11.0 — 0.5–22.0 0.5–12.0 1.0–22.0 —<br />

2 0.5–4.0 0.5–7.0 0.5–8.0 1.0–11.0 — 1.0–22.0 1.0–12.0 2.0–22.0 —<br />

3 1.0–4.0 1.0–7.0 1.0–8.0 1.0–11.0 — 1.5–20.0 1.5–12.0 3.0–20.0 —<br />

Notes:<br />

1. Coils available with electric, 24-VAC magnetic or contactors, load carrying P.E. switches, <strong>and</strong> P.E. switches with magnetic or mercury contactors.<br />

2. Available kW increments are by 0.5 from 0.5 kW to 8.0 kW, by 1.0 kW from 9.0 to 17.0 kW, <strong>and</strong> by 2.0 kW from 18.0 to 24.0 kW.<br />

3. Each stage will be equal in kW output.<br />

4. All heaters contain an auto reset thermal cutout <strong>and</strong> a manual reset cutout.<br />

5. The current amp draw for the heater elements is calculated by the formula below.<br />

6. Recommended coil temperature rise = 20°–30°F (-7°–-1°C). Maximum temperature rise = 55°F (12°C).<br />

7. Heaters should not operate at cfms below the namplate minimum.<br />

8. Only two stages of electric reheat available with Trane controls (ECM only).<br />

Fan Electrical Performance (PSC)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 115 VAC 208 VAC 277 VAC<br />

02SQ 1/8 1.6 — 0.7<br />

03SQ 1/3 4.3 — 1.6<br />

04SQ 1/3 5.5 — 2.0<br />

05SQ 1/2 6.7 — 2.4<br />

06SQ 1/2 — 4.6 3.8<br />

07SQ 1 — 6.6 4.7<br />

Notes:<br />

1. Electric Heat Units—Units with fan sizes 02SQ to<br />

05SQ <strong>and</strong> a primary voltage of 208/60/1, 208/60/3 or<br />

0/60/1 use 115/60/1 VAC fan motors. Fan sizes 06SQ<br />

<strong>and</strong> 07SQ in these same voltages, have 208/60/1 VAC<br />

fan motors.<br />

2. Electric Heat Units—Units with primary voltage of<br />

277/60/1, 480/60/1 or 480/60/3 use 277 VAC fan<br />

motors.<br />

3. Electric Heat Units—Units with primary voltage of<br />

347/60/1 or 575/60/3 use 347 VAC fan motors.<br />

4. With 380/50/3 <strong>and</strong> 230/50/1 use 230/50 motors.<br />

Fan Electrical Performance (ECM)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 120 VAC 277 VAC<br />

03SQ 1/3 4.5 2.4<br />

04SQ ½ 6.5 3.5<br />

05SQ 1 10.1 5.4<br />

06SQ 1 9.5 5.1<br />

Notes:<br />

1. Acceptable selections are any point<br />

within the shaded area. The ECM will<br />

operate on a vertical performance line<br />

using the solid state speed controller<br />

provided.<br />

2. The ECM motor provides constant<br />

volume with changing static pressure<br />

conditions. Therefore, the fan curves<br />

for the ECM are different compared to<br />

fan curves with PSC motors.<br />

3. By using an ECM motor, less fan sizes<br />

are used because of the wider turndown<br />

ratios.<br />

<strong>VAV</strong>-PRC008-EN FPS 17


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Electrical Data<br />

Formulas<br />

Minimum Circuit Ampacity (MCA) Equation<br />

• MCA = 1.25 x (Σmotor amps + heater amps)<br />

Here motor amps is the sum of all motor current draws if more<br />

than one is used in the unit.<br />

Maximum Overcurrent Protection (MOP) Equation<br />

• MOP = (2.25 x motor 1amps) + motor2 amps + heater amps<br />

motor1 amps = current draw of largest motor<br />

motor2 amps = sum of current draw of all other motors used in units<br />

General Sizing Rules:<br />

• If MOP = 15, then fuse size = 15<br />

• If MOP = 19, then fuse size = 15 with one exception. If heater<br />

amps x 1.25 > 15, then fuse size = 20.<br />

• If MOP ≤ MCA, then choose next fuse size greater than MCA.<br />

• Control fusing not applicable.<br />

• St<strong>and</strong>ard Fuse Sizes: 15, 20, 25, 30, 35, 40, 45, 50, <strong>and</strong> 60.<br />

Example:<br />

A model VSEF, electric reheat unit size 10-0517 has 480/3 phase, 12 kW<br />

electric reheat with 2 stages <strong>and</strong> 277-Volt motor.<br />

For MOP of fan-powered unit:<br />

12 kW - 480/3 heater 12 x 1000 = 14.45 amps<br />

480 x 1.73<br />

MCA = (2.4 + 14.45) x 1.25 = 21.06, MOP = (2.25 x 2.4) + 14.45 = 19.9.<br />

Since MOP ≤ MCA, then MOP = 25.<br />

For total current draw of unit:<br />

12 kW—480/3 heater 12 x 1000 = 14.45<br />

480 x 1.73<br />

Two heat outputs (2 stages) @0.5 amps max each = 1.00<br />

Motor amps: 277 V (Fan size 0517) = 2.4<br />

18.35 amps max<br />

Useful formulas:<br />

Cfm x ATD<br />

kW =<br />

3145<br />

kW = 1214 x L/s x ATD<br />

kW x 1000<br />

3φamps =<br />

Primary Voltage x √ 3<br />

1φamps =<br />

kW x 1000<br />

Primary Voltage<br />

ATD =<br />

kW x 3145<br />

Cfm<br />

ATD =<br />

kW<br />

1214 x L/s<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (PSC)<br />

Unit<br />

Cfm<br />

kW 02SQ 03SQ 04SQ 05SQ 06SQ 07SQ<br />

0.5 191 260 315 400 700 850<br />

1 191 260 315 400 700 850<br />

1.5 191 260 315 400 700 850<br />

2 191 260 315 400 700 850<br />

2.5 191 260 315 400 700 850<br />

3 214 260 315 400 700 850<br />

3.5 236 260 315 400 700 850<br />

4 259 260 315 400 700 850<br />

4.5 282 260 315 400 700 850<br />

5 304 290 315 400 700 850<br />

5.5 327 315 315 400 700 850<br />

6 350 350 350 400 700 850<br />

6.5 372 375 375 400 700 850<br />

7 395 400 400 400 700 850<br />

7.5 — 430 430 430 700 850<br />

8 — 460 460 460 700 850<br />

9 — 515 515 515 700 850<br />

10 — 575 575 575 700 850<br />

11 — 630 630 630 713 850<br />

12 — 690 690 690 792 902<br />

13 — 745 745 745 872 954<br />

14 — 810 810 810 951 1006<br />

15 — — 860 860 1031 1057<br />

16 — — 920 920 1110 1109<br />

17 — — 973 973 1190 1161<br />

18 — — 1030 1030 1269 1213<br />

20 — — — 1150 1428 1317<br />

22 — — — 1260 1587 1420<br />

24 — — — — — 1524<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (PSC)<br />

Unit<br />

L/s<br />

kW 02SQ 03SQ 04SQ 05SQ 06SQ 07SQ<br />

0.5 90 123 149 189 330 401<br />

1 90 123 149 189 330 401<br />

1.5 90 123 149 189 330 401<br />

2 90 123 149 189 330 401<br />

2.5 90 123 149 189 330 401<br />

3 101 123 149 189 330 401<br />

3.5 112 123 149 189 330 401<br />

4 122 123 149 189 330 401<br />

4.5 133 123 149 189 330 401<br />

5 144 137 149 189 330 401<br />

5.5 154 149 149 189 330 401<br />

6 165 165 165 189 330 401<br />

6.5 176 177 177 189 330 401<br />

7 186 189 189 189 330 401<br />

7.5 — 203 203 203 330 401<br />

8 — 217 217 217 330 401<br />

9 — 243 243 243 330 401<br />

10 — 271 271 271 330 401<br />

11 — 297 297 297 336 401<br />

12 — 326 326 326 374 426<br />

13 — 352 352 352 411 450<br />

14 — 382 382 382 449 475<br />

15 — — 406 406 486 499<br />

16 — — 434 434 524 524<br />

17 — — 459 459 562 548<br />

18 — — 486 486 599 572<br />

20 — — — 543 674 621<br />

22 — — — 595 749 670<br />

24 — — — — — 719<br />

FPS 18<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (ECM)<br />

Unit<br />

Cfm<br />

kW 03SQ 04SQ 05SQ 06SQ<br />

0.5 260 315 400 943<br />

1 260 315 400 943<br />

1.5 260 315 400 943<br />

2 260 315 400 943<br />

2.5 260 315 400 943<br />

3 260 315 400 943<br />

3.5 260 315 400 943<br />

4 260 315 400 943<br />

4.5 260 315 400 943<br />

5 290 315 400 943<br />

5.5 315 315 400 943<br />

6 350 350 400 943<br />

6.5 375 375 400 943<br />

7 400 400 400 943<br />

7.5 430 430 430 943<br />

8 460 460 460 943<br />

9 515 515 515 943<br />

10 575 575 575 975<br />

11 630 630 630 1006<br />

12 690 690 690 1038<br />

13 745 745 745 1069<br />

14 810 810 810 1101<br />

15 — 860 860 1133<br />

16 — 920 920 1164<br />

17 — 973 973 1196<br />

18 — 1030 1030 1228<br />

20 — — 1150 1291<br />

22 — — 1260 1354<br />

Performance<br />

Data—<br />

Electrical Data<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (ECM)<br />

Unit<br />

L/s<br />

kW 03SQ 04SQ 05SQ 06SQ<br />

0.5 123 149 189 445<br />

1 123 149 189 445<br />

1.5 123 149 189 445<br />

2 123 149 189 445<br />

2.5 123 149 189 445<br />

3 123 149 189 445<br />

3.5 123 149 189 445<br />

4 123 149 189 445<br />

4.5 123 149 189 445<br />

5 137 149 189 445<br />

5.5 149 149 189 445<br />

6 165 165 189 445<br />

6.5 177 177 189 445<br />

7 189 189 189 445<br />

7.5 203 203 203 445<br />

8 217 217 217 445<br />

9 243 243 243 445<br />

10 271 271 271 460<br />

11 297 297 297 475<br />

12 326 326 326 490<br />

13 352 352 352 505<br />

14 382 382 382 520<br />

15 — 406 406 535<br />

16 — 434 434 549<br />

17 — 459 459 564<br />

18 — 486 486 579<br />

20 — — 543 609<br />

22 — — 595 639<br />

<strong>VAV</strong>-PRC008-EN FPS 19


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Fan <strong>and</strong> 100% Primary<br />

Discharge Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

02SQ 10 200 94 65 53 53 52 49 45 66 59 55 54 52 51 68 68 65 62 59 55 68 62 62 61 59 59<br />

300 142 65 54 54 52 49 46 66 59 56 54 52 52 68 67 64 61 58 56 69 65 65 63 60 60<br />

500 236 65 55 55 52 49 47 66 59 57 54 52 53 68 66 63 60 57 59 70 72 72 67 63 63<br />

600 283 66 58 58 55 52 50 68 61 59 56 54 55 69 65 63 60 58 59 70 70 68 64 61 62<br />

700 330 67 60 60 57 55 53 69 62 60 58 56 56 69 64 62 59 58 58 70 67 63 61 59 60<br />

03SQ 10 250 118 53 48 47 43 38 34 53 49 48 43 39 34 54 51 48 44 40 36 55 52 48 45 41 39<br />

480 227 57 52 52 49 45 43 58 54 53 49 46 43 59 56 53 49 46 44 60 58 53 50 47 45<br />

720 340 62 57 58 55 53 52 64 59 59 56 54 52 64 62 58 55 53 52 66 64 59 55 53 52<br />

960 453 67 62 63 61 59 59 68 63 63 62 59 59 70 66 64 62 60 60 70 67 64 62 60 59<br />

1200 566 72 66 67 66 64 65 73 67 67 66 64 64 75 70 68 67 65 65 75 71 68 68 65 65<br />

04SQ 12 330 156 54 51 49 45 39 34 55 52 49 45 40 35 58 56 50 46 40 38 59 58 51 46 42 40<br />

620 293 58 54 54 51 46 43 59 56 54 51 47 44 63 61 55 52 47 46 64 63 55 52 48 47<br />

930 439 62 58 59 57 54 53 64 60 59 57 55 53 68 66 60 58 55 54 69 68 60 58 55 54<br />

1250 590 68 63 64 63 60 60 70 65 65 64 61 61 72 68 65 65 62 62 74 71 66 65 63 62<br />

1550 732 73 68 68 68 66 66 73 69 68 69 66 66 76 71 69 70 67 67 77 74 70 70 68 67<br />

05SQ 12 400 189 53 51 52 46 40 38 54 52 52 47 41 39 56 53 52 47 42 40 57 55 53 48 43 41<br />

760 359 58 57 58 54 49 48 59 57 57 54 49 48 62 59 57 53 49 48 63 61 58 54 50 48<br />

1140 538 64 63 64 62 59 58 64 62 63 61 58 57 68 65 63 60 57 56 70 68 64 61 58 56<br />

1500 708 70 68 69 68 65 64 70 68 69 67 65 64 72 69 69 68 65 64 74 71 69 68 65 64<br />

1900 897 74 73 73 74 71 71 75 73 73 74 71 70 76 73 73 73 70 70 76 74 73 73 70 70<br />

06SQ 16 700 330 54 52 53 49 46 41 67 58 55 52 51 50 72 70 65 62 56 56 75 70 69 65 60 58<br />

1200 566 60 58 58 55 52 48 69 62 60 57 55 54 74 71 67 64 60 60 77 74 71 67 64 62<br />

1600 755 66 62 62 59 56 54 71 66 64 61 59 58 76 73 69 66 62 62 79 76 73 69 66 64<br />

2100 991 72 68 67 65 62 61 74 70 69 66 63 62 78 75 72 69 66 66 81 79 75 72 70 68<br />

2500 1180 74 71 69 67 65 64 76 73 71 69 66 65 80 77 74 71 69 68 83 81 77 74 72 70<br />

07SQ 16 850 401 59 57 51 53 47 51 63 59 53 54 47 52 66 62 56 56 52 58 72 68 62 59 54 63<br />

1400 661 62 60 59 56 52 53 66 62 61 57 55 57 71 67 64 59 57 61 74 71 67 62 59 63<br />

1900 897 66 65 65 61 58 57 70 66 66 61 59 60 74 70 68 63 61 63 77 74 70 65 63 64<br />

2500 1180 71 70 71 67 65 63 73 71 71 67 65 65 76 73 73 67 66 67 80 76 73 69 67 67<br />

3000 1416 74 74 75 71 69 68 76 74 75 71 69 69 78 76 76 71 70 70 82 78 76 72 70 70<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

FPS 20<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Radiated Sound Power (dB)<br />

Fan <strong>and</strong> 100% Primary<br />

Radiated Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

02SQ 10 200 94 65 53 53 52 49 45 66 59 55 54 52 51 68 68 65 62 59 55 68 62 62 61 59 59<br />

300 142 65 54 54 52 49 46 66 59 56 54 52 52 68 67 64 61 58 56 69 65 65 63 60 60<br />

500 236 65 55 55 52 49 47 66 59 57 54 52 53 68 66 63 60 57 59 70 72 72 67 63 63<br />

600 283 66 58 58 54 52 50 68 60 58 56 54 54 69 66 63 60 58 60 71 72 70 66 62 63<br />

700 330 67 60 60 57 55 53 69 62 60 58 56 56 70 67 63 61 59 60 72 71 68 66 62 63<br />

03SQ 10 250 118 53 49 47 44 40 35 56 51 49 47 44 42 58 54 53 52 49 48 59 56 56 55 52 52<br />

480 227 58 54 52 49 45 42 61 56 53 51 48 48 63 59 57 55 52 53 65 62 60 58 55 56<br />

720 340 63 59 57 54 51 50 66 61 58 55 53 54 69 65 61 58 56 59 71 68 64 61 58 61<br />

960 453 68 63 61 59 57 57 71 65 63 60 58 59 73 69 65 62 59 62 74 71 68 64 61 63<br />

1200 566 72 67 65 63 61 62 75 69 66 64 62 63 77 72 68 66 63 65 78 74 70 67 64 66<br />

04SQ 12 330 156 56 51 49 44 41 37 58 54 52 47 46 47 62 58 56 53 51 53 64 60 59 57 54 56<br />

620 293 60 55 54 49 46 44 62 58 55 51 50 51 67 63 60 56 54 57 69 65 63 60 57 60<br />

930 439 64 60 59 54 52 51 67 62 59 55 54 56 73 68 64 59 58 62 74 71 67 63 60 65<br />

1250 590 69 65 63 59 58 57 72 66 64 60 59 60 76 71 66 62 61 65 78 74 69 65 63 67<br />

1550 732 74 69 67 65 63 63 76 71 68 65 64 64 79 73 69 66 65 67 80 76 72 68 66 68<br />

05SQ 12 400 189 57 54 50 45 44 40 60 56 53 49 50 50 63 60 57 53 52 55 65 62 60 57 54 57<br />

760 359 61 58 55 51 50 47 64 60 57 53 54 54 68 64 60 56 55 59 70 67 64 60 57 61<br />

1140 538 65 63 60 57 56 54 68 65 61 58 58 58 73 69 64 60 59 63 75 73 68 63 61 65<br />

1500 708 69 67 65 63 62 60 72 69 65 63 62 62 76 72 68 64 63 65 78 75 70 66 65 67<br />

1900 897 74 72 69 68 67 66 76 73 70 69 67 67 79 75 71 68 67 68 81 77 72 69 68 69<br />

06SQ 16 700 330 54 52 53 49 46 41 67 58 55 52 51 50 72 70 65 62 56 56 75 70 69 65 60 58<br />

1200 566 60 58 58 55 52 48 69 62 60 57 55 54 74 71 67 64 60 60 77 74 71 67 64 62<br />

1600 755 66 62 62 59 56 54 71 66 64 61 59 58 76 73 69 66 62 62 79 76 73 69 66 64<br />

2100 991 72 68 67 65 62 61 74 70 68 66 63 62 78 74 72 69 66 66 81 79 75 72 70 68<br />

2500 1180 74 71 69 67 65 64 76 73 70 69 66 65 80 76 74 71 69 68 83 81 77 74 72 70<br />

07SQ 16 850 401 59 57 51 53 47 51 63 59 53 54 47 52 66 62 56 56 52 58 72 68 62 59 54 63<br />

1400 661 62 60 59 56 52 53 66 62 61 57 55 57 71 67 64 59 57 61 74 71 67 62 59 63<br />

1900 897 66 65 65 61 58 57 70 66 66 61 59 60 74 70 68 63 61 63 77 74 70 65 63 64<br />

2500 1180 71 70 71 67 65 63 73 71 71 67 65 65 76 73 73 67 66 67 80 76 73 69 67 67<br />

3000 1416 74 74 75 71 69 68 76 74 75 71 69 69 78 76 76 71 70 70 82 78 76 72 70 70<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

<strong>VAV</strong>-PRC008-EN FPS 21


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Fan Only Sound Power (dB)<br />

Outlet Discharge Sound Power (dB) Radiated Sound Power (dB)<br />

Fan Static Octave B<strong>and</strong>s Octave B<strong>and</strong>s<br />

Size (in. wg) Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7<br />

02SQ 200 94 58 51 51 46 41 33 56 49 47 43 36 28<br />

0.25 300 142 59 50 50 47 42 34 57 48 48 44 39 32<br />

(63 Pa) 500 236 64 56 55 54 50 47 61 56 54 50 47 43<br />

600 283 67 59 58 57 53 52 64 59 57 53 50 48<br />

700 330 70 62 60 60 56 55 66 62 60 56 53 51<br />

03SQ 250 118 53 49 48 45 40 34 52 49 47 43 37 28<br />

0.25 480 227 56 51 54 49 45 41 55 52 51 47 42 39<br />

(63 Pa) 720 340 60 55 58 54 52 51 60 57 56 53 50 49<br />

960 453 67 61 63 61 59 58 67 63 61 59 56 56<br />

1200 566 72 66 67 67 64 64 73 67 65 63 61 62<br />

04SQ 330 156 54 50 48 45 40 34 56 51 48 42 37 30<br />

0.25 620 293 57 53 53 51 47 44 59 54 53 47 44 40<br />

(63 Pa) 930 439 62 58 59 58 54 53 63 58 58 53 51 49<br />

1250 590 70 65 65 65 62 61 69 64 63 59 58 56<br />

1550 732 74 70 68 69 66 66 75 69 66 64 63 62<br />

05SQ 400 189 55 53 52 48 42 39 54 52 51 44 40 33<br />

0.25 760 359 59 56 56 54 50 48 58 56 53 49 47 43<br />

(63 Pa) 1140 538 65 62 64 62 59 58 63 62 60 57 55 52<br />

1500 708 70 68 69 68 65 65 69 67 64 62 60 59<br />

1900 897 75 72 73 73 70 70 73 71 68 67 66 65<br />

06SQ 700 330 54 55 52 50 44 39 58 55 52 47 41 34<br />

0.25 1200 566 56 57 57 55 51 49 60 58 58 51 47 44<br />

(63 Pa) 1600 755 61 61 62 61 57 56 63 62 62 57 53 51<br />

2100 991 66 66 67 67 64 64 68 67 66 62 60 59<br />

2500 1180 70 70 71 71 69 69 72 71 69 66 64 63<br />

07SQ 850 401 54 60 53 50 45 41 55 56 52 48 41 36<br />

0.25 1400 661 60 66 59 56 54 54 59 62 58 54 50 48<br />

(63 Pa) 1900 897 65 68 65 62 60 61 63 64 64 60 56 55<br />

2500 1180 70 73 72 69 67 68 69 69 70 66 64 62<br />

3000 1416 73 75 76 73 71 72 71 72 72 70 68 67<br />

FPS 22<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Sound Noise Criteria (NC)<br />

Fan <strong>and</strong> 100% Primary<br />

Discharge<br />

Radiated<br />

NC Level (∆Ps)<br />

NC Level (∆Ps)<br />

Fan Inlet Fan 0.5" 1.0" 2.0" 3.0" Fan 0.5" 1.0" 2.0" 3.0"<br />

Size Size Cfm L/s Only (127 Pa) (254 Pa) (508 Pa) (762 Pa) Only (127 Pa) (254 Pa) (508 Pa) (762 Pa)<br />

02SQ 10 200 94 — 17 19 27 23 21/19 29/25 30/26 40/36 37/29<br />

10 300 142 — 17 19 26 24 22/20 29/25 31/26 39/35 40/32<br />

10 500 236 16 17 19 25 32 29/25 30/25 32/26 38/34 48/40<br />

10 600 283 20 19 21 24 30 32/29 33/26 33/29 38/34 46/40<br />

10 700 330 24 20 22 22 26 35/ * 35/ * 35/ * 38/ * 44/ *<br />

03SQ 10 250 118 — — — — — 21/— 21/— 23/16 27/19 31/21<br />

10 480 227 — — — — — 25/17 26/19 27/22 32/25 35/29<br />

10 720 340 15 16 16 19 21 31/24 32/25 33/29 36/32 39/36<br />

10 960 453 22 23 23 24 25 36/32 36/31 38/35 40/37 44/39<br />

10 1250 590 27 28 27 29 30 40/ * 40/ * 41/ * 44/ * 46/ *<br />

04SQ 12 330 156 — — — — — 22/19 23/16 26/19 31/24 34/26<br />

12 620 293 — — — 17 20 27/22 29/21 30/24 35/30 38/32<br />

12 930 439 17 17 17 24 26 33/27 34/26 34/30 39/37 42/39<br />

12 1250 590 25 24 25 26 30 38/35 38/32 39/36 42/41 46/44<br />

12 1550 732 29 29 29 30 34 41/ * 42/ * 44/ * 46/ * 49/ *<br />

05SQ 12 400 189 — — — — — 25/17 24/19 27/21 32/26 35/29<br />

12 760 359 — — — 15 17 27/22 30/24 32/26 35/31 39/35<br />

12 1140 538 22 22 21 22 26 35/30 35/30 36/32 40/37 45/41<br />

12 1500 708 28 27 27 27 30 39/36 40/35 40/37 44/41 47/44<br />

12 1900 897 33 34 33 33 34 44/ * 45/ * 46/ * 47/ * 50/ *<br />

06SQ 16 700 330 — — 17 29 29 26/24 27/19 31/ * 41/39 45/42<br />

16 1200 566 — — 20 30 34 33/26 33/24 35/ * 42/41 47/45<br />

16 1600 755 20 19 24 32 36 37/31 37/31 39/37 45/44 49/47<br />

16 2100 991 27 26 29 35 39 41/37 42/39 44/41 48/46 52/50<br />

16 2500 1180 32 30 32 37 41 45/ * 45/ * 46/ * 50/ * 55/ *<br />

07SQ 16 850 401 16 15 16 22 27 26/24 26/22 29/27 32/31 39/ *<br />

16 1400 661 24 17 21 25 30 33/31 34/26 36/31 39/37 42/41<br />

16 1900 897 26 22 24 29 34 39/34 40/32 41/36 44/41 46/45<br />

16 2250 1062 30 26 27 31 36 44/37 44/36 45/36 47/39 48/42<br />

16 2500 1180 32 29 30 32 36 46/ * 47/ * 47/ * 49/ * 49/ *<br />

*Not Applicable<br />

1. "—” represents NC levels below NC 15.<br />

2. NC Values are calculated using modeling assumptions based on ARI 885-98-02 Addendum.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

ARI 885-98 DISCHARGE TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Small Box (700 Cfm) -29 -30 -41 -51 -52 -39<br />

Note: Subtract from terminal unit sound power to determine discharge<br />

sound pressure in the space.<br />

ARI 885-98 RADIATED TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Type 2- Mineral Fiber Insulation -18 -19 -20 -26 -31 -36<br />

Total dB reduction -18 -19 -20 -26 -31 -36<br />

Note: Subtract from terminal unit sound power to determine radiated<br />

sound pressure in the space.<br />

<strong>VAV</strong>-PRC008-EN FPS 23


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Radiated Sound Power (dB)<br />

Fan <strong>and</strong> 100% Primary<br />

ARI Conditions<br />

Fan Inlet Fan Fan Prim. Prim. 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s Cfm L/s 2 3 4 5 6 7<br />

02SQ 4 690 326 150 71 67 62 60 57 54 53<br />

5 250 118 67 63 60 58 55 54<br />

6 400 189 73 67 63 60 57 59<br />

8 690 326 70 67 64 60 59 59<br />

10 690 326 69 64 61 59 57 58<br />

03SQ 6 1100 519 400 189 72 67 65 62 60 60<br />

8 700 330 73 68 64 63 60 63<br />

10 1100 519 74 69 66 63 61 63<br />

12 1100 519 74 68 65 62 60 62<br />

04SQ 6 1500 708 400 189 74 70 67 64 63 63<br />

8 700 330 74 71 68 66 64 64<br />

10 1100 519 75 71 68 65 64 66<br />

12 1500 708 77 71 68 65 64 65<br />

14 1500 708 74 70 67 65 63 65<br />

05SQ 10 1900 897 1100 519 75 72 69 68 67 67<br />

12 1600 755 76 73 70 68 67 67<br />

14 1900 897 75 72 69 68 66 67<br />

06SQ 10 2500 1180 1100 519 76 70 69 66 64 65<br />

12 1600 755 78 75 72 68 66 66<br />

14 2100 991 78 75 72 69 67 67<br />

16 2500 1180 78 75 72 70 68 67<br />

07SQ 10 2800 1321 1100 519 77 73 73 69 67 68<br />

12 1600 755 77 73 74 71 68 67<br />

14 2100 991 77 74 74 70 68 67<br />

16 2800 1321 76 74 74 69 68 68<br />

Note: Oversizing primary valves to achieve lower sound levels will increase the<br />

minimum operable cfm. <strong>This</strong> will increase energy consumption at minimum airflows<br />

when local reheat is energized. See "Valve/Controller Airflow Guidelines".<br />

Discharge Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

02SQ 5, 6, 8, 10 690 326 70 62 60 59 56 55<br />

03SQ 8, 10 1100 519 70 64 65 64 62 62<br />

04SQ 8, 10, 12 1500 708 73 69 68 68 65 65<br />

05SQ 10, 12 1900 897 75 72 73 73 70 70<br />

06SQ 10, 12, 14, 16 2500 1180 70 70 71 71 69 69<br />

07SQ 10, 12, 14, 16 2800 1321 72 74 74 72 69 70<br />

Radiated Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

02SQ 5,6, 8, 10 690 326 66 61 59 56 53 51<br />

03SQ 8, 10 1100 519 70 65 64 61 59 60<br />

04SQ 8, 10, 12 1500 708 74 68 66 63 62 61<br />

05SQ 10, 12 1900 897 73 71 68 67 66 65<br />

06SQ 10, 12, 14, 16 2500 1180 72 71 69 66 64 63<br />

07SQ 10, 12, 14, 16 2800 1321 70 71 71 68 66 65<br />

Notes:<br />

1. All sound data rated in accordance with current Industry St<strong>and</strong>ard<br />

ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10 -12 watts.<br />

FPS 24<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Series Inlet Attenuator Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Matte-faced <strong>and</strong> foil-faced insulation, solid double-wall**<br />

02SQ 2 2 2 3 3 2 -3 -3 -9 -10 -12 -17<br />

03SQ, 04SQ, 05SQ 2 2 2 3 3 2 -1 -3 -10 -14 -17 -20<br />

06SQ, 07SQ 2 2 2 3 3 2 1 -3 -8 -9 -8 -10<br />

Closed-cell insulation<br />

02SQ 2 2 2 3 3 2 1 -2 -5 -4 -6 -6<br />

03SQ, 04SQ, 05SQ 2 2 2 3 3 2 1 -2 -5 -4 -6 -6<br />

06SQ, 07SQ 2 2 2 3 3 2 1 -2 -5 -4 -6 -6<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect<br />

represents a sound increase.<br />

** Note – Attenuators on double-wall units contain foil-faced insulation.<br />

Series Cabinet Lining Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Solid double-wall<br />

02SQ 0 0 0 0 0 0 0 0 0 2 3 3<br />

03SQ, 04SQ, 05SQ 0 0 0 0 0 0 0 0 1 2 3 4<br />

06SQ, 07SQ 0 0 0 0 0 0 1 3 2 5 8 8<br />

Closed-cell insulation<br />

02SQ 0 0 0 0 0 0 -1 -1 0 1 1 2<br />

03SQ, 04SQ, 05SQ 0 0 0 0 0 0 1 1 2 2 2 2<br />

06SQ, 07SQ 0 0 0 0 0 0 1 5 3 4 6 6<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect<br />

represents a sound increase.<br />

Series Heating Coil Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)**<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Hot Water Coil<br />

02SQ 1 2 2 1 2 2 2 2 2 2 2 2<br />

03SQ, 04SQ, 05SQ 1 3 1 2 2 1 0 2 1 2 2 2<br />

06SQ, 07SQ 2 6 4 4 4 3 6 5 2 2 2 3<br />

Electric Heat<br />

02SQ -4 -1 0 0 1 0 -1 0 -1 0 0 0<br />

03SQ, 04SQ, 05SQ 2 1 2 1 -1 -1 0 1 1 1 1 1<br />

06SQ, 07SQ 4 4 2 2 3 1 2 3 3 4 3 2<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect<br />

represents a sound increase.<br />

** Radiated effect applies to “fan only” sound only. Do not apply to fan + valve sound.<br />

<strong>VAV</strong>-PRC008-EN FPS 25


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

SERIES COOLING ONLY (VSCF) WITHOUT ATTENUATOR<br />

FAN<br />

SIZE<br />

02SQ<br />

03SQ<br />

05SQ<br />

07SQ<br />

INLET SIZE<br />

NOMINAL Ø<br />

INCHES<br />

6, 8, 10, 12<br />

10, 12, 14<br />

10, 12, 14, 16<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø<br />

(mm)<br />

152, 203, 254, 305<br />

254, 305, 356<br />

254, 305, 356, 406<br />

254, 305, 356, 406<br />

H W L<br />

30.00" (762 mm)<br />

DISCHARGE DIMENSIONS<br />

Unit Wt<br />

A<br />

B<br />

C<br />

D Lbs<br />

(kg)<br />

14.00" (356 mm) 5.00" (127 mm) .65" (17 mm) 78 (35)<br />

16.00" (406 mm) 2.50" (64 mm) .75" (19 mm) 85 (39)<br />

86 (39)<br />

24.00" (610 mm)<br />

3.00" (76 mm)<br />

100 (45)<br />

18.00" (457 mm)<br />

1.66" (42 mm) 117 (53)<br />

125 (57)<br />

2.<br />

(Valves 4"-14")<br />

(Valve 16")<br />

4.00"<br />

(102 mm)<br />

2.00"<br />

(51 mm)<br />

Flow Ring<br />

Tubing<br />

Primary<br />

Airflow<br />

W<br />

Valves 4" & 5"<br />

6.50"<br />

(165 mm)<br />

Air<br />

Valve<br />

4.00"<br />

(102 mm)<br />

18.875" Max.<br />

(479 mm)<br />

7.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

L<br />

7.<br />

Airflow<br />

Plenum Inlet<br />

4.<br />

Fan Size<br />

Filter Size<br />

02SQ<br />

14" x14" x1"<br />

(356 mm x 356 mm x 25 mm)<br />

TOP VIEW<br />

03SQ<br />

04SQ<br />

05SQ<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

Filter<br />

Airflow<br />

Discharge Outlet<br />

Panel slides<br />

for Motor access<br />

06SQ<br />

07SQ<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

5.50" Max.<br />

(140 mm)<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. See Installation Documents for exact hanger bracket location.<br />

11.30" Max.<br />

(287 mm)<br />

B<br />

H<br />

3. Air valve centered between top <strong>and</strong> bottom panel.<br />

4. For motor access, remove bottom screw on hanger brackets<br />

to slide panel as shown in drawing.<br />

5. Attenuator option not available with this unit layout.<br />

7.<br />

D<br />

6. All high & low voltage controls have same-side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

7. Maximum dimensions for controls area shown. Configurations <strong>and</strong><br />

types of control boxes vary according to control types selected. See<br />

"Enclosure Details" for specific layout.<br />

A<br />

C<br />

DISCHARGE VIEW<br />

FPS 26<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

SERIES COOLING ONLY (VSCF) WITH OPTIONAL ATTENUATOR<br />

FAN<br />

SIZE<br />

02SQ<br />

03SQ<br />

INLET SIZE<br />

NOMINAL Ø<br />

INCHES<br />

6, 8, 10, 12<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø<br />

(mm)<br />

152, 203, 254, 305<br />

H W L<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

14.00" (356 mm)<br />

16.00" (406 mm)<br />

C<br />

5.00" (127 mm)<br />

2.50" (64 mm)<br />

D<br />

.65" (17 mm)<br />

.75" (19 mm)<br />

Unit Wt<br />

Lbs<br />

(kg)<br />

78 (35)<br />

85 (39)<br />

05SQ<br />

07SQ<br />

10, 12, 14<br />

10, 12, 14, 16<br />

254, 305, 356<br />

254, 305, 356, 406<br />

254, 305, 356, 406<br />

30.00" (762 mm)<br />

24.00" (610 mm)<br />

3.00" (76 mm)<br />

100 (45)<br />

1.66" (42 mm) 117 (53)<br />

125 (57)<br />

2.<br />

4.<br />

Optional Attenuator<br />

Field Installed<br />

(Valves 4"-14")<br />

(Valve 16")<br />

4.00"<br />

(102 mm)<br />

2.00"<br />

(51 mm)<br />

W<br />

Flow Ring<br />

Tubing<br />

Primary<br />

Airflow<br />

Air<br />

Valve<br />

4.00"<br />

(102 mm)<br />

Valves 4" & 5"<br />

6.50"<br />

(165 mm)<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

18.875" Max.<br />

(479 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

Filter<br />

Fan Size<br />

Filter Size<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

8.<br />

L<br />

40.00"<br />

(1016 mm)<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

14" x14" x1"<br />

(356 mm x 356 mm x 25 mm)<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

46 (21)<br />

48 (22)<br />

06SQ<br />

07SQ<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

54 (25)<br />

TOP VIEW<br />

6.<br />

Panel slides<br />

for Motor Access<br />

5.50" Max.<br />

(140 mm)<br />

Airflow<br />

Discharge Outlet<br />

30.00"<br />

(762 mm)<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet<br />

clearance for unducted installations.<br />

2. Filter location with optional Attenuator.<br />

3. Attenuator-factory assembled, field installed.<br />

H<br />

11.30" Max.<br />

(287 mm)<br />

B<br />

4. See Installation Documents for exact hanger<br />

bracket location.<br />

5. Air valve centered between top <strong>and</strong> bottom panel.<br />

8.<br />

D<br />

6. For motor access, remove bottom screw on<br />

hanger brackets to slide panel as shown in drawing.<br />

7. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/<br />

mirror image optional.)<br />

DISCHARGE VIEW<br />

A<br />

C<br />

8. Maximum dimensions for controls area shown.<br />

Configurations <strong>and</strong> types of control boxes vary<br />

according to control type selected. See "Enclosure<br />

Details" for specific layout.<br />

<strong>VAV</strong>-PRC008-EN FPS 27


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

NARROW CORRIDOR DESIGN SERIES COOLING (VSCF) WITHOUT ATTENUATOR<br />

FPS 28<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

NARROW CORRIDOR DESIGN SERIES COOLING ONLY (VSCF) W/OPTIONAL ATTENUATOR<br />

<strong>VAV</strong>-PRC008-EN FPS 29


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

SERIES HOT WATER (VSWF) WITHOUT ATTENUATOR<br />

FAN<br />

SIZE<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

INLET SIZE INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

AVAILABILITY AVAILABILITY<br />

H<br />

W<br />

L<br />

NOMINAL Ø NOMINAL Ø<br />

C<br />

A<br />

B<br />

INCHES<br />

(mm)<br />

4, 5, 6, 8, 10 104, 127, 152, 203, 254 15.50" (394 mm) 22.00" (559 mm) 34.00" (864 mm) 12.00" (305 mm) 14.00" (356 mm) 5.00" (127 mm)<br />

6, 8, 10, 12 152, 203, 254, 305 17.50" (445 mm)<br />

24.00" (610 mm) 40.00" (1016 mm) 19.00" (483 mm) 16.00" (406 mm) 2.50" (64 mm)<br />

10, 12, 14<br />

10, 12, 14, 16<br />

10, 12, 14, 16<br />

254, 305, 356<br />

254, 305, 356, 406<br />

254, 305, 356, 406<br />

30.00" (762 mm)<br />

24.00" (610 mm)<br />

3.00" (76 mm)<br />

D<br />

.65" (17 mm)<br />

.75" (19 mm)<br />

Unit Wt<br />

E Lbs<br />

(kg)<br />

78 (35)<br />

10.75" (273 mm)<br />

85 (39)<br />

100 (45)<br />

117 (53)<br />

125 (57)<br />

2.<br />

(Valves 4"-14")<br />

(Valve 16")<br />

4.00"<br />

(102 mm)<br />

2.00"<br />

(51 mm)<br />

Primary<br />

Airflow<br />

W<br />

Flow Ring<br />

Tubing<br />

Valves 4" & 5"<br />

6.50"<br />

(165 mm)<br />

Air<br />

Valve<br />

4.00"<br />

(102 mm)<br />

18.875" Max.<br />

(479 mm)<br />

9.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

L<br />

9.<br />

Airflow<br />

Plenum Inlet<br />

4.<br />

Fan Size<br />

Filter Size<br />

02SQ<br />

14" x14" x1"<br />

(356 mm x 356 mm x 25 mm)<br />

Filter<br />

3.00" x 7.00"<br />

(76 mm x 178 mm)<br />

Coil Access<br />

Water Coil<br />

Panel slides<br />

for Motor access<br />

E<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

Coil Connection<br />

TOP VIEW<br />

Airflow<br />

Discharge Outlet<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. See Installation Documents for exact hanger bracket location.<br />

5.50" Max.<br />

(140 mm)<br />

3. Air valve centered between top <strong>and</strong> bottom panel.<br />

4. For motor access, remove bottom screw on hanger brackets<br />

to slide panel as shown in drawing.<br />

5. Attenuator option not available with this unit layout.<br />

11.30" Max.<br />

(287 mm)<br />

B<br />

H<br />

6. Heating coil uninsulated. External insulation may be fieldsupplied<br />

<strong>and</strong> installed as required.<br />

7. Rotate coil 180˚ for right-h<strong>and</strong> coil connection.<br />

8. All high & low voltage controls have same-side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

9.<br />

D<br />

9. Maximum dimensions for controls area shown. Configurations <strong>and</strong><br />

types of control boxes vary according to control types selected. See<br />

"Enclosure Details" for specific layout.<br />

A<br />

C<br />

FPS 30<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

INLET SIZE INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

FAN AVAILABILITY AVAILABILITY<br />

H<br />

W<br />

L<br />

SIZE NOMINAL Ø NOMINAL Ø<br />

A<br />

B<br />

INCHES<br />

(mm)<br />

C<br />

02SQ<br />

15.50" (394 mm)<br />

34.00" (864 mm)<br />

14.00" (356 mm) 5.00" (127 mm)<br />

03SQ 6, 8, 10, 12 152, 203, 254, 305 17.50" (445 mm)<br />

40.00" (1016 mm) 19.00" (483 mm) 16.00" (406 mm) 2.50" (64 mm)<br />

152, 203, 254, 305, 356<br />

05SQ 10, 12, 14 254, 305, 356<br />

30.00" (762 mm)<br />

24.00" (610 mm)<br />

3.00" (76 mm)<br />

10, 12, 14, 16 254, 305, 356, 406 21.50" (546 mm)<br />

18.00" (457 mm)<br />

07SQ 10, 12, 14, 16 254, 305, 356, 406<br />

D<br />

E<br />

Unit Wt<br />

Lbs<br />

(kg)<br />

100 (45)<br />

125 (57)<br />

Attn Wt<br />

Lbs<br />

(kg)<br />

48 (22)<br />

2.<br />

4.<br />

Optional Attenuator<br />

Field Installed<br />

4.00"<br />

(Valves 4"-14")<br />

(102 mm)<br />

2.00"<br />

(Valve 16")<br />

(51 mm)<br />

Flow Ring<br />

Tubing<br />

Primary<br />

Airflow<br />

W<br />

Valves 4" & 5"<br />

6.50"<br />

(165 mm)<br />

Air<br />

Valve<br />

4.00"<br />

(102 mm)<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

10.<br />

Optional Attenuator<br />

Field Installed<br />

18.875" Max.<br />

(479 mm)<br />

Airflow<br />

Plenum Inlet<br />

Filter<br />

Fan Size<br />

Filter Size<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

10.<br />

L<br />

40.00"<br />

(1016 mm)<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

14" x14" x1"<br />

(356 mm x 356 mm x 25 mm)<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

46 (21)<br />

48 (22)<br />

06SQ<br />

07SQ<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

54 (25)<br />

TOP VIEW<br />

6.<br />

H<br />

3.00" x 7.00"<br />

(76 mm x 178 mm)<br />

Coil Access<br />

Coil Connection<br />

5.50" Max.<br />

(140 mm)<br />

11.30" Max.<br />

(287 mm)<br />

10.<br />

Water Coil<br />

Airflow<br />

Discharge Outlet<br />

E<br />

B<br />

30.00"<br />

(762 mm)<br />

Panel slides<br />

for Motor Access<br />

D<br />

10. Maximum dimensions for controls area shown.<br />

Configurations <strong>and</strong> types of control boxes vary<br />

DISCHARGE VIEW<br />

A<br />

C<br />

according to control type selected. See "Enclosure<br />

Details" for specific layout.<br />

<strong>VAV</strong>-PRC008-EN FPS 31<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet<br />

clearance for unducted installations.<br />

2. Filter location with optional Attenuator.<br />

3. Attenuator-factory assembled, field installed.<br />

4. See Installation Documents for exact hanger<br />

bracket location.<br />

5. Air valve centered between top <strong>and</strong> bottom panel.<br />

6. For motor access, remove bottom screw on<br />

hanger brackets to slide panel as shown in drawing.<br />

7. Heating coil uninsulated. External insulation may be<br />

field supplied <strong>and</strong> installed as required.<br />

8. Rotate coil 180˚ for right-h<strong>and</strong> coil connection.<br />

9. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/<br />

mirror image optional.)


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

NARROW CORRIDOR DESIGN SERIES HOT WATER (VSWF) WITHOUT ATTENUATOR<br />

FPS 32<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

NARROW CORRIDOR DESIGN SERIES HOT WATER (VSWF) W/OPTIONAL ATTENUATOR<br />

<strong>VAV</strong>-PRC008-EN FPS 33


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR SERIES 1-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

L<br />

H<br />

W<br />

02SQ<br />

03SQ<br />

04SQ<br />

.875" (22 mm) O.D.<br />

9.75" (248 mm)<br />

13.75" (349 mm)<br />

2.00" (51 mm)<br />

12.20" (310 mm)<br />

19.00" (533 mm)<br />

14.00" (356 mm)<br />

16.00" (406 mm)<br />

6.75" (171 mm)<br />

10.75" (273 mm)<br />

05SQ<br />

24.00" (610 mm)<br />

06SQ<br />

15.75" (400 mm)<br />

1.00" (25 mm)<br />

18.00" (457 mm)<br />

6.75" (171 mm)<br />

07SQ<br />

L<br />

H<br />

W<br />

INLET<br />

B<br />

FAN SIZE<br />

INTERNAL<br />

VOLUME<br />

GAL (IN)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

02SQ<br />

0.10<br />

(.38)<br />

7.8<br />

(3.5)<br />

7.81"<br />

(198 mm)<br />

A<br />

AIR FLOW<br />

03SQ<br />

04SQ<br />

05SQ<br />

0.21<br />

(.79)<br />

22.9<br />

(10.4)<br />

0.26 (.98) 27.2 (12.3)<br />

06SQ<br />

07SQ<br />

0.26<br />

(.98) 16.8<br />

(7.6)<br />

<strong>NOTE</strong>S:<br />

ACCESS<br />

PANEL<br />

INLET<br />

A<br />

B<br />

1. Location of coil connections is determined by facing air stream.<br />

L.H. Coil connections shown, R.H. opposite.<br />

2. Coil furnished with stub sweat connections.<br />

3.40"<br />

(86 mm)<br />

1.125"<br />

(29 mm)<br />

3. Coils can be field rotated for opposite connections. Note: Water<br />

inlet is always the bottom connection.<br />

4. Access Panel is st<strong>and</strong>ard.<br />

1.125"<br />

(29 mm)<br />

5. Flanged Coil shown, Slip <strong>and</strong> Drive available.<br />

FPS 34<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR SERIES 2-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

L<br />

H<br />

W<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

.875" (22 mm) O.D.<br />

10.25" (260 mm)<br />

13.75" (349 mm)<br />

15.75" (400 mm)<br />

2.00" (51 mm)<br />

1.00" (25 mm)<br />

12.20" (310 mm)<br />

19.00" (533 mm)<br />

24.00" (610 mm)<br />

14.00" (356 mm)<br />

16.00" (406 mm)<br />

18.00" (457 mm)<br />

6.75" (171 mm)<br />

10.75" (273 mm)<br />

6.75" (171 mm)<br />

W<br />

L<br />

B<br />

INLET<br />

B<br />

H<br />

7.82"<br />

(198 mm)<br />

A<br />

AIR FLOW<br />

ACCESS PANEL<br />

INLET<br />

A<br />

FAN SIZE<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

02SQ<br />

0.17 (.64) 7.8<br />

(3.5)<br />

3.40"<br />

(86 mm)<br />

1.12"<br />

(29 mm)<br />

03SQ<br />

04SQ<br />

0.37 (1.40) 22.9 (10.4)<br />

1.94"<br />

(51 mm)<br />

05SQ<br />

0.46 (1.74) 31.2 (14.2)<br />

06SQ<br />

07SQ<br />

0.46 (1.74) 23.7 (10.8)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. L.H. coil<br />

connections shown, R.H. opposite.<br />

2. Coil furnished with stub sweat connections.<br />

3. Coils can be field-rotated for opposite connections. Note: Water<br />

inlet is always the bottom connection.<br />

4. Access panel is st<strong>and</strong>ard.<br />

5. Flanged coil shown. Slip <strong>and</strong> Drive available.<br />

<strong>VAV</strong>-PRC008-EN FPS 35


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

SERIES ELECTRIC (VSEF) WITHOUT ATTENUATOR<br />

FAN<br />

SIZE<br />

AVAILABILITY<br />

NOMINAL Ø<br />

02SQ<br />

03SQ<br />

05SQ<br />

INCHES<br />

4, 5, 6, 8, 10<br />

6, 8, 10, 12<br />

10, 12, 14<br />

07SQ 10, 12, 14, 16<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø<br />

(mm)<br />

104, 127, 152, 203, 254<br />

152, 203, 254, 305<br />

254, 305, 356<br />

254, 305, 356, 406<br />

254, 305, 356, 406<br />

H<br />

15.50" (394 mm)<br />

17.50" (445 mm)<br />

W<br />

30.00" (762 mm)<br />

21.50" (546 mm)<br />

L<br />

34.00" (864 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

C<br />

D<br />

E<br />

18.50" (470 mm)<br />

17.00" (432 mm)<br />

Unit Wt<br />

Lbs<br />

(kg)<br />

78 (35)<br />

85 (39)<br />

86 (39)<br />

100 (45)<br />

117 (53)<br />

125 (57)<br />

2.<br />

(Valves 4"-14")<br />

4.00"<br />

(102 mm)<br />

W<br />

(Valve 16")<br />

2.00"<br />

(51 mm)<br />

Flow Ring<br />

Tubing<br />

Primary<br />

Airflow<br />

Valves 4" & 5"<br />

6.50"<br />

(165 mm)<br />

Air<br />

Valve<br />

4.00"<br />

(102 mm)<br />

18.875" Max.<br />

(479 mm)<br />

8.<br />

Airflow<br />

Plenum Inlet<br />

L<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

Filter<br />

4.<br />

Fans<br />

02SQ<br />

Fans<br />

03SQ–05SQ<br />

Fans<br />

06SQ–07SQ<br />

1.00"<br />

(25 mm)<br />

2.00"<br />

(51 mm)<br />

0.60"<br />

(15 mm)<br />

Fan Size<br />

Filter Size<br />

TOP VIEW<br />

E<br />

Electric<br />

Heater<br />

Panel slides<br />

for Motor access<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

14" x14" x1"<br />

(356 mm x 356 mm x 25 mm)<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

06SQ<br />

07SQ<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

6.20"<br />

(157 mm)<br />

5.50" Max.<br />

(140 mm)<br />

Airflow<br />

Discharge Outlet<br />

D<br />

A<br />

C<br />

Fans<br />

02SQ<br />

Fans<br />

–<br />

Fans<br />

–<br />

1.50"<br />

(38 mm)<br />

1.50"<br />

3.00"<br />

(76 mm)<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. See Installation Documents for exact hanger bracket location.<br />

3. Air valve centered between top <strong>and</strong> bottom panel.<br />

4. For motor access, remove bottom screw on hanger brackets<br />

to slide panel as shown in drawing.<br />

11.30" Max.<br />

(287 mm)<br />

B<br />

H<br />

5. Attenuator option not available with this unit layout.<br />

6. Heating coil uninsulated. External insulation may be fieldsupplied<br />

<strong>and</strong> installed as required.<br />

7. All high & low voltage controls have same-side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

8.<br />

8. Maximum dimensions for controls area shown. Configurations <strong>and</strong><br />

types of control boxes vary according to control types selected. See<br />

"Enclosure Details" for specific layout.<br />

DISCHARGE VIEW<br />

FPS 36<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Dimensional<br />

Data<br />

SERIES ELECTRIC (VSEF) WITH OPTIONAL ATTENUATOR<br />

INLET SIZE INLET SIZE<br />

FAN<br />

AVAILABILITY<br />

SIZE NOMINAL Ø NOMINAL Ø<br />

H<br />

(mm)<br />

02SQ 4, 5, 6, 8, 10 104, 127, 152, 203, 254 15.50" (394 mm)<br />

6, 8, 10, 12 152, 203, 254, 305<br />

04SQ<br />

10, 12, 14<br />

152, 203, 254, 305, 356<br />

254, 305, 356<br />

06SQ<br />

07SQ<br />

10, 12, 14, 16<br />

10, 12, 14, 16<br />

254, 305, 356, 406<br />

254, 305, 356, 406<br />

21.50" (546 mm)<br />

W<br />

DISCHARGE DIMENSIONS<br />

Unit Wt<br />

L<br />

C<br />

D<br />

E Lbs<br />

A<br />

B<br />

(kg)<br />

34.00" (864 mm) 12.00" (305 mm) 10.00" (254 mm) 5.00" (127 mm) 18.00" (457 mm) 18.50" (470 mm) 78 (35)<br />

85 (39)<br />

16.00" (406 mm)<br />

86 (39)<br />

22.00" (559 mm)<br />

100 (45)<br />

19.00" (483 mm) 14.00" (356 mm) 5.50" (140 mm) 25.00" (635 mm)<br />

117 (53)<br />

125 (57)<br />

2.<br />

4.<br />

Optional Attenuator<br />

Field Installed<br />

(Valves 4"-14")<br />

4.00"<br />

(102 mm)<br />

W<br />

(Valve 16")<br />

2.00"<br />

(51 mm)<br />

Flow Ring<br />

Tubing<br />

Primary<br />

Airflow<br />

Air<br />

Valve<br />

4.00"<br />

(102 mm)<br />

Valves 4" & 5"<br />

6.50"<br />

(165 mm)<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

9.<br />

Optional Attenuator<br />

Field Installed<br />

18.875" Max.<br />

(479 mm)<br />

Airflow<br />

Plenum Inlet<br />

Fan Size<br />

Filter Size<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

9.<br />

TOP VIEW<br />

L<br />

40.00"<br />

(1016 mm)<br />

Filter<br />

02SQ<br />

03SQ<br />

04SQ<br />

05SQ<br />

06SQ<br />

07SQ<br />

14" x14" x1"<br />

(356 mm x 356 mm x 25 mm)<br />

16" x 20" x 1"<br />

(406 mm x 508 mm x 25 mm)<br />

20" x 20" x 1"<br />

(508 mm x 508 mm x 25 mm)<br />

46 (21)<br />

48 (22)<br />

54 (25)<br />

Fans<br />

02SQ<br />

Fans<br />

–<br />

Fans<br />

06SQ–<br />

E<br />

1.00"<br />

(25 mm)<br />

2.00"<br />

0.60"<br />

Electric<br />

Heater<br />

30.00"<br />

(762 mm)<br />

6.<br />

Panel slides<br />

for Motor Access<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum of 6" (152 mm) plenum inlet<br />

clearance for unducted installations.<br />

2. Filter location with optional Attenuator.<br />

3. Attenuator-factory assembled, field installed.<br />

5.50" Max.<br />

(140 mm)<br />

6.20"<br />

(157 mm)<br />

Airflow<br />

Discharge Outlet<br />

D<br />

A<br />

C<br />

Fans<br />

02SQ<br />

Fans<br />

03SQ–05SQ<br />

Fans<br />

06SQ–07SQ<br />

1.50"<br />

(38 mm)<br />

1.50"<br />

(38 mm)<br />

3.00"<br />

(76 mm)<br />

4. See Installation Documents for exact hanger<br />

bracket location.<br />

5. Air valve centered between top <strong>and</strong> bottom panel.<br />

6. For motor access, remove bottom screw on hanger<br />

brackets to slide panel as shown in drawing.<br />

7. Heating coil uninsulated. External insulation may be<br />

field suppled <strong>and</strong> installed as required.<br />

11.30" Max.<br />

(287 mm)<br />

B<br />

H<br />

8. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/<br />

mirror image optional.)<br />

9. Maximum dimensions for controls area shown.<br />

Configurations <strong>and</strong> types of control boxes vary<br />

according to control type selected. See "Enclosure<br />

Details" for specific layout.<br />

9.<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN FPS 37


Fan-Powered<br />

Series<br />

Mechanical<br />

Specifications<br />

MODELS VSCF, VSWF,<br />

<strong>and</strong> VSEF<br />

Series fan-powered terminal<br />

units.<br />

VSCF – Cooling Only<br />

VSWF – With Hot Water Coil<br />

VSEF – With Electric Coil<br />

CASING<br />

22-gage galvanized steel. Hanger<br />

brackets, side access, <strong>and</strong> filter which<br />

is on the plenum inlet are provided<br />

as st<strong>and</strong>ard.<br />

AGENCY LISTING<br />

The unit is UL <strong>and</strong> Canadian UL<br />

Listed as a room air terminal unit.<br />

Control # 9N65.<br />

ARI 880 Certified.<br />

INSULATION<br />

1/2" (12.7 mm) Matte-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 1.9. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A <strong>and</strong><br />

UL 181 st<strong>and</strong>ards. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Matte-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.0 lb/ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 3.85<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There<br />

are no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1/2" (12.7 mm) Foil-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 2.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Foil-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.5 lb/ft 3<br />

(25.4 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

FPS 38<br />

Fan–Inlet Combinations:<br />

VSXF<br />

Inlet 02SQ 03SQ 04SQ 05SQ 06SQ 07SQ<br />

4" X<br />

5" X<br />

6" X X X<br />

8" X X X<br />

10" X X X X X X<br />

12" X X X X X<br />

14" X X X X<br />

16" X X<br />

R-Value is 4.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Double-wall<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with a 1-inch, 1.0 lb./ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with high-density<br />

facing. The insulation R-value is 3.8.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. The<br />

insulation is covered by an interior<br />

liner made of 26-gage galvanized steel.<br />

All wire penetrations are covered by<br />

grommets. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

3/8" (9.5 mm) Closed-cell<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with 3/8-inch, 4.4 lb/ft 3<br />

(9.5 mm, 70.0 kg/m 3 ) closed-cell<br />

insulation. The insulation is UL listed<br />

<strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards. The insulation has an<br />

R-Value of 1.4. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

PRIMARY AIR VALVE<br />

Air Valve Round—The primary air<br />

inlet connection is an 18-gage<br />

galvanized steel cylinder sized to fit<br />

st<strong>and</strong>ard round duct. A multiple-point,<br />

averaging flow sensing ring is<br />

provided with balancing taps for<br />

measuring +/-5% of unit cataloged<br />

airflow. An airflow-versus- pressure<br />

differential calibration chart is<br />

provided. The damper blade is<br />

constructed of a closed-cell foam seal<br />

that is mechanically locked between<br />

two 22-gage galvanized steel disks.<br />

The damper blade assembly is<br />

connected to a cast zinc shaft<br />

supported by self-lubricating bearings.<br />

The shaft is cast with a damper<br />

position indicator. The valve assembly<br />

includes a mechanical stop to prevent<br />

over-stroking. At 4.0 in. wg, air valve<br />

leakage does not exceed 1% of<br />

cataloged airflow.<br />

ATTENUATOR<br />

The attenuator is 22-gage galvanized<br />

steel with an internal acoustical liner.<br />

Attenuators have been tested in<br />

accordance with ARI 880 st<strong>and</strong>ards.<br />

FAN MOTOR<br />

PSC—Single-speed, direct-drive,<br />

permanent split capacitor type.<br />

Thermal overload protection provided.<br />

Motors will be designed specifically for<br />

use with an open SCR. Motors will be<br />

single-speed with st<strong>and</strong>ard SCR for<br />

speed control. Motors will<br />

accommodate anti-backward rotation<br />

at start up. Motor <strong>and</strong> fan assembly is<br />

isolated from terminal unit.<br />

ECM—Electrically Commutated Motor<br />

is designed for high-efficient operation<br />

with over 70% efficiency throughout<br />

the operating range.<br />

FAN SPEED CONTROL<br />

Variable Speed Control Switch<br />

(SCR)—The SCR speed control device<br />

is provided as st<strong>and</strong>ard <strong>and</strong> allows the<br />

operator infinite fan speed adjustment.<br />

TRANSFORMER<br />

The 50-VA transformer is factoryinstalled<br />

in the fan control box to<br />

provide 24 VAC for controls.<br />

DISCONNECT SWITCH<br />

A toggle disconnect is provided as<br />

st<strong>and</strong>ard <strong>and</strong> allows the operator to<br />

turn the unit on or off by toggling to<br />

the appropriate setting. <strong>This</strong> switch<br />

breaks both legs of power to the fan<br />

<strong>and</strong> the electronic controls (if<br />

applicable).<br />

OUTLET CONNECTION<br />

Flanged Connection—A<br />

rectangular opening on the unit<br />

discharge to accept a 90° flanged<br />

ductwork connection.<br />

FILTER<br />

A 1" (25 mm) filter is provided on the<br />

plenum inlet <strong>and</strong> attaches to the unit<br />

with a filter frame.<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Series<br />

Mechanical<br />

Specifications<br />

ACCESS PANEL<br />

Internal access is provided through<br />

side panel.<br />

HOT WATER COIL<br />

Series Water Coils—factory-installed<br />

on the fan discharge. The coil has<br />

1-row with 144 aluminum-plated fins<br />

per foot (.305 m) <strong>and</strong>, if needed, 2-row<br />

with 144 aluminum-plated fins per foot<br />

(.305 m). Full fin collars provided for<br />

accurate fin spacing <strong>and</strong> maximum<br />

fin-tube contact. The 3/8" (9.5 mm)<br />

OD seamless copper tubes are<br />

mechanically exp<strong>and</strong>ed into the fin<br />

collars. Coils are proof tested at<br />

450 psig (3102 kPa) <strong>and</strong> leak tested at<br />

300 psig (2068 kPa) air pressure under<br />

water. Coil connections are brazed.<br />

Gasketed access panels, which are<br />

st<strong>and</strong>ard, are attached with screws.<br />

ELECTRIC HEAT COIL<br />

The electric heater is factory-provided<br />

<strong>and</strong> -installed, UL recognized<br />

resistance open-type heater. It also<br />

contains a disc-type automatic pilot<br />

duty thermal primary cutout, <strong>and</strong><br />

manual reset load carrying thermal<br />

secondary device. Heater element<br />

material is nickel-chromium. The heater<br />

terminal box is provided with 7/8" (22<br />

mm) knockouts for customer power<br />

supply. Terminal connections are plated<br />

steel with ceramic insulators. Heater<br />

control access is on the discharge side<br />

of the unit. All fan-powered units with<br />

electric reheat are single-point<br />

power connections.<br />

ELECTRIC HEAT OPTIONS<br />

Magnetic Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

Mercury Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

P.E. Switch with Magnetic<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

magnetic contactor is for use with<br />

pneumatic controls.<br />

P.E. Switch with Mercury<br />

Contactor—<strong>This</strong> optional switch<br />

optional <strong>and</strong> mercury contactor is for<br />

use with pneumatic controls.<br />

Airflow Switch—An optional air<br />

pressure device designed to disable<br />

the heater when the system fan is off.<br />

prevent power surge damage to the<br />

electric heater.<br />

Any electric heat unit with a calculated<br />

MCA greater than or equal to 30 will<br />

have a fuse provided.<br />

Disconnect Switch—An optional<br />

factory-provided door interlocking<br />

disconnect switch on the heater control<br />

panel disengages primary voltage to<br />

the terminal.<br />

UNIT CONTROLS SEQUENCE<br />

OF OPERATION<br />

The controller will start <strong>and</strong> run the fan<br />

continuously during the occupied<br />

mode <strong>and</strong> intermittently during the<br />

unoccupied mode. Upon a further call<br />

for heat, any hot water or electric heat<br />

associated with the unit is enabled.<br />

DIRECT DIGITAL CONTROLS<br />

DDC Actuator—Trane 3-wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully opened <strong>and</strong> closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Direct Digital Controller—The<br />

microprocessor based terminal unit<br />

controller provides accurate, pressureindependent<br />

control through the use<br />

of a proportional integral control<br />

algorithm <strong>and</strong> direct digital control<br />

technology. The controller, named the<br />

Unit Control Module (UCM), monitors<br />

zone temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change,<br />

<strong>and</strong> valve airflow using a differential<br />

pressure signal from the pressure<br />

transducer. Additionally, the controller<br />

can monitor either supply duct air<br />

temperature or CO 2<br />

concentration via<br />

appropriate sensors. The controller is<br />

provided in an enclosure with 7/8"<br />

(22 mm) knockouts for remote control<br />

wiring. A Trane UCM zone sensor is<br />

required.<br />

DDC Zone Sensor—The UCM<br />

controller senses zone temperature<br />

through a sensing element located in<br />

the zone sensor. In addition to the<br />

sensing element, zone sensor options<br />

may include an externally-adjustable<br />

setpoint, communications jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the<br />

individual controller from unoccupied<br />

to occupied mode. The override button<br />

has a cancel feature that will return the<br />

system to unoccupied. Wired zone<br />

sensors utilize a thermistor to vary the<br />

in the zone temperature. Wiring to the<br />

UCM controller must be 18- to 22-awg.<br />

twisted pair wiring. The setpoint<br />

adjustment range is 50–88ºF (10–31°C).<br />

Depending upon the features available<br />

in the model of sensor selected, the<br />

zone sensor may require from a 2-wire<br />

to a 5-wire connection. Wireless zone<br />

sensors report the same zone<br />

information as wired zone sensors, but<br />

do so using radio transmitter<br />

technology. Therefore with wireless,<br />

wiring from the zone sensor to the<br />

UCM is unnecessary.<br />

Digital Display Zone Sensor with<br />

Liquid Crystal Display (LCD)—<br />

The digital display zone sensor<br />

contains a sensing element, which<br />

sends a signal to the UCM. A Liquid<br />

Crystal Display (LCD) displays setpoint<br />

or space temperature. Sensor buttons<br />

allow the user to adjust setpoints, <strong>and</strong><br />

allow space temperature readings to<br />

be turned on or off. The digital display<br />

zone sensor also includes a<br />

communication jack for use with a<br />

portable edit device, <strong>and</strong> an override<br />

button to change the UCM from<br />

unoccupied to occupied. The<br />

override button has a cancel feature,<br />

which returns the system to<br />

unoccupied mode.<br />

Trane LonTalk—The controller is<br />

designed to send <strong>and</strong> receive data<br />

using SCC LonTalk profile. Current unit<br />

status conditions <strong>and</strong> setpoints may be<br />

monitored <strong>and</strong>/or edited from any of<br />

several LonTalk-compatible systemlevel<br />

controllers.<br />

ANALOG ELECTRONIC CONTROLS<br />

Analog Actuator—A Trane 3- wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Analog Electronic Controller—<br />

The controller consists of a circuit<br />

board that offers basic <strong>VAV</strong> unit<br />

operation <strong>and</strong> additional override<br />

functions <strong>and</strong> operates using 24 VAC<br />

power. The controller uses a capacitive<br />

type pressure transducer to maintain<br />

consistent air delivery regardless of<br />

system pressure changes. The<br />

enclosure has 7/8" (22 mm) knockouts<br />

for remote control wiring. A Trane<br />

electronic zone sensor is required.<br />

Power Fuse—If a power fuse is<br />

chosen with a unit containing electric<br />

heat, then a safety fuse is located in the<br />

electric heater’s line of power to<br />

voltage output in response to changes<br />

<strong>VAV</strong>-PRC008-EN FPS 39


Fan-Powered<br />

Series<br />

Mechanical<br />

Specifications<br />

Analog Electronic Thermostat—<br />

<strong>This</strong> single-temperature, wall-mounted<br />

electronic device utilizes a thermistor<br />

to vary the voltage output in response<br />

to changes in the zone temperature.<br />

Connections to the <strong>VAV</strong> unit circuit<br />

board are made using st<strong>and</strong>ard threeconductor<br />

thermostat wire. The<br />

setpoint adjustment range is 63–85ºF<br />

(17–29°C). The sensor is available in<br />

two models. One model has a<br />

concealed, internally-adjustable<br />

setpoint. The other model has an<br />

externally-adjustable setpoint.<br />

PNEUMATIC CONTROLS<br />

Normally Open Actuator—<br />

Pneumatic 3 to 8 psig (20 to 55 kPa)<br />

spring-range pneumatic actuator.<br />

3011 Pneumatic Volume Regulator<br />

(PVR)—The regulator is a thermostat<br />

reset velocity controller, which<br />

provides consistent air delivery within<br />

5% of cataloged flow down to 18% of<br />

unit cataloged cfm, independent of<br />

changes in system static pressure.<br />

Factory-calibrated, field-adjustable<br />

setpoints for minimum <strong>and</strong> maximum<br />

flows. Average total unit bleed rate,<br />

excluding thermostat, is 28.8 scim at<br />

20 psig (7.87 ml/min at 138 kPa) supply.<br />

UNIT OPTIONS<br />

Power Fuse (VSCF, VSWF)—<br />

Optional fuse is factory-installed in the<br />

primary voltage hot leg.<br />

Hot Water Valves<br />

Two-Position Valve—The valve is a<br />

field-adaptable, 2-way or 3-way<br />

configuration <strong>and</strong> ships with a cap to<br />

be field-installed when configured as a<br />

2-way valve. All connections are<br />

National Pipe Thread (NPT). The valve<br />

body is forged brass with a stainless<br />

steel stem <strong>and</strong> spring. Upon dem<strong>and</strong>,<br />

the motor strokes the valve. When the<br />

actuator drive stops, a spring returns<br />

the valve to its fail-safe position.<br />

Flow Capacity – 1.17 Cv<br />

Overall Diameter – ½" NPT<br />

Close-off Pressure – 30 psi (207 kPa)<br />

Flow Capacity – 3.0 Cv<br />

Overall Diameter – 3/4" NPT<br />

Close-off Pressure – 14.5 psi (100 kPa)<br />

Flow Capacity – 6.4 Cv<br />

Overall Diameter – 1" NPT<br />

Close-off Pressure – 9 psi (62 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 203ºF (95ºC)<br />

Maximum System Pressure – 300 psi<br />

(2067 kPa).<br />

Maximum Static Pressure – 300 psi<br />

(2067 kPa)<br />

Electrical Rating – 7 VA at 24 VAC,<br />

6.5 Watts, 50/60 Hz<br />

8 feet (2.44 m) of plenum rated wire<br />

lead is provided with each valve.<br />

Proportional Water Valve—The<br />

valve is a field-adaptable, 2-way or 3-<br />

way configuration <strong>and</strong> ships with a cap<br />

over the bottom port. <strong>This</strong> configures<br />

the valve for 2-way operation. For 3-<br />

way operation, remove the cap. The<br />

valve is linear equal percentage<br />

design. The intended fluid is water or<br />

water <strong>and</strong> glycol (50% maximum<br />

glycol). The actuator is a synchronous<br />

motor drive. The valve is driven to a<br />

predetermined position by the UCM<br />

controller using a proportional plus<br />

integral control algorithm. If power is<br />

removed, the valve stays in its last<br />

position. The actuator is rated for<br />

plenum applications under UL 94-5V<br />

<strong>and</strong> UL 873 st<strong>and</strong>ards.<br />

Pressure <strong>and</strong> Temperature Ratings –<br />

The valve is designed <strong>and</strong> tested in full<br />

compliance with ANSI B16.15 Class<br />

250 pressure/temperature ratings,<br />

ANSI B16.104 Class IV control shutoff<br />

leakage, <strong>and</strong> ISA S75.11 flow<br />

characteristic st<strong>and</strong>ards.<br />

Flow Capacity – 0.7 Cv, 2.2 Cv,<br />

3.8 Cv, <strong>and</strong> 6.6 Cv<br />

Overall Diameter – ½" NPT, ¾" NPT<br />

(6.6 Cv)<br />

Maximum Allowable Pressure – 300<br />

psi (2068kPa)<br />

Maximum Operating Fluid<br />

Temperature – 200ºF (93°C)<br />

Maximum Close-off Pressure – 55 psi<br />

(379 kPa)<br />

Electrical Rating – 6VA at 24 VAC.<br />

10 feet (3.05 m) of plenum rated<br />

22-gage wire for connection.<br />

Terminations are #6 stabs.<br />

FPS 40<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Table of<br />

Contents<br />

Service Model Number Description LHP 2 – 3<br />

General Data – Valve/Controller Airflow Guidelines LHP 4<br />

Performance Data – Air Pressure Requirements LHP 5 – 6<br />

Performance Data – Fan Curves LHP 7 –8<br />

Performance Data – Hot Water Coil LHP 9 – 10<br />

Performance Data – Electrical Data LHP 11 – 12<br />

Performance Data – Acoustics LHP 13 – 16<br />

Dimensional Data LHP 17 – 26<br />

Mechanical Specifications LHP 27 – 29<br />

<strong>VAV</strong>-PRC008-EN LHP 1


LHP 2<br />

Low-Height Parallel Fan-<br />

Powered Terminal Units<br />

The features of the low-height parallel<br />

fan-powered terminal units are<br />

described by the product categories<br />

shown in bold. Within each category<br />

the options available are listed.<br />

LPCF<br />

LPWF<br />

LPEF<br />

Fan-Powered<br />

Low-Height<br />

Parallel<br />

Digit 1, 2—Unit Type<br />

LP <strong>VariTrane</strong> fan-powered lowheight<br />

parallel<br />

Digit 3—Reheat<br />

C Cooling Only<br />

E Electric Heat<br />

W Hot Water Heat<br />

Digit 4—Development Sequence<br />

F Sixth<br />

Digit 5, 6—Primary Air Valve<br />

05 5” inlet (350 maximum cfm)<br />

06 6" inlet (500 maximum cfm)<br />

08 8" inlet (900 maximum cfm)<br />

RT 8" x 14" inlet (1800 maximum<br />

cfm)<br />

Digit 7, 8—Secondary Air Valve<br />

00 N/A<br />

Digit 9—Fan<br />

V 08SQ 500 nominal cfm<br />

W 09SQ 900 nominal cfm<br />

X 10SQ 1800 nominal cfm<br />

Digit 10, 11—Design Sequence<br />

E0 Fifth (factory assigned)<br />

Digit 12, 13, 14, 15—<strong>Controls</strong><br />

ENON No controls, field-installed<br />

DDC/electric<br />

PNON No controls, field-installed<br />

pneumatic<br />

DD00 Trane elec actuator only<br />

DD01 DDC – cooling only<br />

DD02 DDC – N.C. on/off water valve<br />

control<br />

DD03 DDC – prop hot water valve<br />

control<br />

DD04 DDC – on/off electric heat<br />

control<br />

DD05 DDC – pulse-width modulation<br />

control<br />

DD07 DDC – N.O. on/off water valve<br />

control<br />

DD11 LonTalk DDC Controller—<br />

Cooling only<br />

DD12 LonTalk DDC Controller w/ N.C.<br />

on/off hot water control<br />

DD13 LonTalk DDC Controller w/<br />

proportional hot water control<br />

DD14 LonTalk DDC Controller–on/off<br />

electric heat control<br />

DD15 LonTalk DDC Controller w/<br />

pulse-width modulation<br />

electric heat control<br />

DD17 LonTalk DDC Controller w/ N.O.<br />

on/off hot water control<br />

FM00 FM customer actuator &<br />

control<br />

FM01 FM Trane actuator w/<br />

customer-supplied controller<br />

HNY2 FM Honeywell W7751H<br />

INV3 FM Invensys MNL-V2R<br />

PWR1 FM Siemens 540-100 w/<br />

GDE131.1 actuator<br />

Service<br />

Model Number<br />

Description<br />

PWR2 FM Siemens 540-103 w/<br />

GDE131/1 actuator<br />

PW12 FM Siemens 550-065<br />

PW13 FM Siemens 550-067<br />

VMA2 FM Johnson VMA-1420<br />

EI05 Analog – fan-powered parallel<br />

with optional on/off reheat<br />

PN00 PN – N.O. Trane pneumatic<br />

actuator, R.A. stat<br />

PN05 PN – N.O. PVR, R.A. stat<br />

Notes:<br />

N.C. = Normally-closed<br />

N.O. = Normally-opened<br />

DA Stat = Direct-acting pneumatic t-stat<br />

(by others)<br />

RA Stat = Reverse-acting pneumatic t-stat<br />

(by others)<br />

PN = Pneumatic<br />

FM = Factory installation of customersupplied<br />

controller<br />

PVR = Pneumatic Volume Regulator<br />

Digit 16—Insulation<br />

A 1/2" Matte-faced<br />

B 1" Matte-faced<br />

C 1/2" Foil-faced<br />

D 1" Foil-faced<br />

F 1" Double-wall<br />

G 3/8" Closed-cell<br />

Digit 17—Motor Type<br />

D PSC Motor<br />

E High-efficiency motor (ECM)<br />

Digit 18—Motor Voltage<br />

1 115/60/1<br />

2 277/60/1<br />

3 347/60/1<br />

5 230/50/1<br />

Digit 19—Outlet Connection<br />

1 Flanged<br />

2 Slip & Drive<br />

Digit 20—Not Used<br />

0 N/A<br />

Digit 21—Water Coil<br />

0 None<br />

1 1-Row–Plenum inlet installed<br />

2 2-Row–Plenum inlet installed<br />

3 1-Row–Discharge installed, LH<br />

4 1-Row–Discharge installed, RH<br />

5 2-Row–Discharge installed, LH<br />

6 2-Row–Discharge installed, RH<br />

Digit 22—Electrical Connections<br />

L Left (airflow hitting you in the<br />

face)<br />

Digit 23—Transformer<br />

0 N/A (provided as st<strong>and</strong>ard)<br />

Digit 24—Disconnect Switch<br />

0 None<br />

W With<br />

Note:<br />

LPCF, LPWF – Toggle Disconnect<br />

LPEF – Door Interlocking Power<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Service<br />

Model Number<br />

Description<br />

Digit 25—Power Fuse<br />

0 None<br />

W With<br />

Digit 26—Electric Heat Voltage<br />

0 None<br />

A 208/60/1<br />

B 208/60/3<br />

C 240/60/1<br />

D 277/60/1<br />

E 480/60/1<br />

F 480/60/3<br />

G 347/60/1<br />

H 575/60/3<br />

J 380/50/3<br />

Digit 27, 28, 29—Electric Heat kW<br />

000 None<br />

005 0.5 kW<br />

010 1.0 kW<br />

015 1.5 kW<br />

020 2.0 kW<br />

025 2.5 kW<br />

030 3.0 kW<br />

035 3.5 kW<br />

040 4.0 kW<br />

045 4.5 kW<br />

050 5.0 kW<br />

055 5.5 kW<br />

060 6.0 kW<br />

065 6.5 kW<br />

070 7.0 kW<br />

075 7.5 kW<br />

080 8.0 kW<br />

090 9.0 kW<br />

100 10.0 kW<br />

110 11.0 kW<br />

120 12.0 kW<br />

130 13.0 kW<br />

140 14.0 kW<br />

Digit 30—Electric Heat Stages<br />

0 None<br />

1 1 Stage<br />

2 2 Stages Equal<br />

Digit 31—Contactors<br />

0 None<br />

1 24-volt magnetic<br />

2 24-volt mercury<br />

3 PE with magnetic<br />

4 PE with mercury<br />

Digit 32—Airflow Switch<br />

0 None<br />

W With<br />

<strong>VAV</strong>-PRC008-EN LHP 3


Fan-Powered<br />

Low-Height<br />

Parallel<br />

General Data—<br />

Valve/Controller<br />

Airflow Guidelines<br />

Primary Airflow Control Factory Settings – I-P<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) Cfm Cfm Cfm Cfm<br />

5 350 40–350 0, 40–350 40–350<br />

Direct Digital Control/ 6 500 60–500 0, 60–500 60–500<br />

UCM 8 900 105–900 0, 105–900 105–900<br />

8x14 2200 200–2200 0, 220–2200 220–2200<br />

5 350 63–350 0, 63–350 63–350<br />

Pneumatic with 6 500 73–500 0, 73–500 73–500<br />

Volume Regulator 8 900 134–900 0, 134–900 134–900<br />

8x14 2100 297–2100 0, 297–2100 297–2100<br />

5 350 82–350 0, 82–350 82–350<br />

Analog Electronic 6 500 120–500 0, 120–500 120–500<br />

8 900 210–900 0, 210–900 210–900<br />

8x14 2200 440–2200 0, 440–2200 440–2200<br />

Primary Airflow Control Factory Settings – SI<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) L/s L/s L/s L/s<br />

5 165 19–165 0, 19–165 19–165<br />

Direct Digital Control/ 6 236 28–236 0, 28–236 28–236<br />

UCM 8 425 50–425 0, 50–425 50–425<br />

8x14 1038 104–1038 0, 104–1038 104–1038<br />

5 165 30–165 0, 30–165 30–165<br />

Pneumatic with 6 236 35–236 0, 35–236 35–236<br />

Volume Regulator 8 425 63–425 0, 63–425 63–425<br />

8x14 991 140–991 0, 140–991 140–991<br />

5 165 39–165 0, 39–165 39–165<br />

Analog Electronic 6 236 57–236 0, 57–236 57–236<br />

8 425 100–425 0, 100–425 100–425<br />

8x14 1038 208–1038 0, 208–1038 208–1038<br />

Note: Maximum airflow must be greater than or equal to minimum airflow.<br />

LHP 4<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—Air Pressure<br />

Requirements (I-P)<br />

Unit Air Pressure Drop – in. wg (I-P)<br />

Fan/Inlet Airflow Cooling Only Unit<br />

Size Cfm (in. wg)<br />

08SQ–05 150 0.01<br />

200 0.02<br />

250 0.03<br />

350 0.05<br />

08SQ–06 200 0.01<br />

300 0.04<br />

400 0.06<br />

500 0.09<br />

08SQ–08 400 0.01<br />

600 0.09<br />

800 0.16<br />

900 0.20<br />

09SQ–06 200 0.01<br />

300 0.04<br />

400 0.06<br />

500 0.09<br />

09SQ–08 400 0.01<br />

600 0.09<br />

800 0.16<br />

900 0.20<br />

09SQ–8x14 700 0.10<br />

1100 0.25<br />

1500 0.47<br />

1900 0.75<br />

10SQ–08 400 0.01<br />

600 0.09<br />

800 0.18<br />

900 0.24<br />

10SQ–8x14 725 0.18<br />

1000 0.36<br />

1200 0.53<br />

1450 0.78<br />

Notes:<br />

1. Units with Electric Coils per fan size add 0.01" (3 Pa) to cooling<br />

only value.<br />

2. HW Coil only pressure drops are just for the heating coil.<br />

Coil Air Pressure Drop – in. wg (I-P)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size Cfm (in. wg) (in. wg)<br />

08SQ 100 0.00 0.01<br />

200 0.01 0.02<br />

300 0.02 0.04<br />

400 0.03 0.06<br />

450 0.04 0.07<br />

09SQ 250 0.01 0.03<br />

400 0.03 0.06<br />

550 0.05 0.10<br />

700 0.08 0.15<br />

850 0.11 0.20<br />

10SQ 725 0.09 0.17<br />

800 0.11 0.20<br />

900 0.13 0.24<br />

1000 0.16 0.29<br />

1100 0.19 0.33<br />

1150 0.20 0.35<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (I-P)<br />

Fan Plenum<br />

Size Cfm Attenuator<br />

08SQ 150 0.01<br />

250 0.03<br />

350 0.05<br />

450 0.07<br />

09SQ 350 0.05<br />

500 0.08<br />

650 0.13<br />

800 0.18<br />

10SQ not available<br />

<strong>VAV</strong>-PRC008-EN LHP 5


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—Air Pressure<br />

Requirements (SI)<br />

Unit Air Pressure Drop – Pa (SI)<br />

Inlet/Fan Airflow Cooling Only Unit<br />

Size L/s (Pa)<br />

08SQ–05 71 2<br />

94 5<br />

118 7<br />

165 13<br />

08SQ–06 200 0.01<br />

142 10<br />

189 16<br />

236 24<br />

08SQ–08 189 2<br />

283 21<br />

378 40<br />

425 51<br />

09SQ–06 94 2<br />

142 10<br />

189 16<br />

236 24<br />

09SQ–08 189 2<br />

283 21<br />

378 40<br />

425 51<br />

09SQ–8x14 330 26<br />

519 63<br />

708 116<br />

897 185<br />

10SQ–08 189 2<br />

283 23<br />

378 45<br />

425 59<br />

10SQ–8x14 345 47<br />

475 91<br />

565 131<br />

685 195<br />

Notes:<br />

1. Units with Electric Coils per fan size add 0.01" (3 Pa) to cooling<br />

only value.<br />

2. HW Coil only pressure drops are just for the heating coil.<br />

Coil Air Pressure Drop – Pa (SI)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size L/s (Pa) (Pa)<br />

08SQ 47 1 2<br />

94 2 5<br />

142 4 10<br />

189 7 15<br />

212 9 18<br />

09SQ 118 3 7<br />

189 7 15<br />

260 12 25<br />

330 19 36<br />

401 27 51<br />

10SQ 342 22 43<br />

375 26 49<br />

425 33 60<br />

475 40 72<br />

520 46 82<br />

543 49 87<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (SI)<br />

Fan Plenum<br />

Size L/s Attenuator<br />

08SQ 71 0.01<br />

118 0.01<br />

165 0.02<br />

212 0.02<br />

09SQ 165 0.02<br />

236 0.03<br />

307 0.04<br />

378 0.05<br />

10SQ not available<br />

LHP 6<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—<br />

Fan Curves<br />

Notes:<br />

1. When attenuator is required, add<br />

inlet attenuator pressure to discharge<br />

static pressure for final fan performance.<br />

Discharge Static Pressure<br />

Pa In. wg Low-Height Parallel 08SQ—PSC<br />

150<br />

125<br />

100<br />

75<br />

50<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

175 cfm min<br />

(83 L/s)<br />

25<br />

0.10<br />

150 200 250 300 350 400 450 500 550<br />

71 94 118 142 165 189 212 236 260<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg Low-Height Parallel 09SQ—PSC<br />

199<br />

0.80<br />

174<br />

0.70<br />

LPCF <strong>and</strong> LPEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

410 cfm min<br />

(193 L/s)<br />

50<br />

0.20<br />

25<br />

0.10<br />

400 500 600 700 800 900 1000<br />

189 236 273 330 378<br />

425<br />

472<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa<br />

199<br />

In. wg<br />

0.80<br />

Low-Height Parallel 10SQ—PSC<br />

174<br />

0.70<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

50<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

25<br />

0.10<br />

300 500 700 900 1100<br />

1300<br />

1500<br />

Cfm<br />

142 236 330 425 519<br />

614<br />

708<br />

L/s<br />

Airflow<br />

<strong>VAV</strong>-PRC008-EN LHP 7


Fan-Powered<br />

Low-Height<br />

Parallel<br />

ECM Data—<br />

Fan Curves<br />

Discharge Static Pressure<br />

Pa In. wg LPxF 08SQ—ECM<br />

125<br />

100<br />

75<br />

50<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

100 cfm min<br />

(47 L/s)<br />

Notes:<br />

1. ECMs (Electrically Commutated<br />

Motors) are ideal for systems seeking<br />

maximum motor efficiency.<br />

2. When attenuator is required, add inlet<br />

attenuator pressure to discharge<br />

static pressure for final fan performance.<br />

25<br />

0.10<br />

50 150 250 350 450<br />

24 71 118 165 212<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg LPxF 09SQ—ECM<br />

125<br />

0.50<br />

Discharge Static Pressure<br />

100<br />

75<br />

50<br />

0.40<br />

0.30<br />

0.20<br />

250 cfm min<br />

(118 L/s)<br />

LPCF <strong>and</strong> LPEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

25<br />

0.10<br />

200 300 400 500 600 700 800 900 1000 1100 Cfm<br />

94 142 189 236 283 330 378 425 472 519 L/s<br />

Airflow<br />

LHP 8<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Fan Sizes 08SQ & 09SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 100 200 300 400 500 600 700 800 900<br />

1-Row 0.5 0.80 7.73 10.43 12.20 13.50 14.51 15.33 16.03 16.63 17.15<br />

Capacity 1.0 2.67 8.58 12.15 14.51 16.37 17.98 19.42 20.69 21.82 22.85<br />

MBH 1.5 5.43 8.90 12.83 15.52 17.69 19.56 21.21 22.72 24.15 25.46<br />

2.0 9.02 9.06 13.20 16.07 18.42 20.47 22.30 23.97 25.51 26.95<br />

2.5 13.39 9.17 13.43 16.43 18.89 21.06 23.00 24.79 26.45 28.00<br />

2-Row 1.0 0.89 9.36 15.49 19.69 22.72 25.00 26.79 28.23 29.41 30.41<br />

Capacity 2.0 3.02 9.74 16.83 22.20 26.42 29.83 32.65 35.03 37.06 38.83<br />

MBH 3.0 6.24 9.86 17.29 23.11 27.82 31.72 35.02 37.85 40.32 42.49<br />

4.0 10.47 9.92 17.53 23.59 28.56 32.73 36.29 39.39 42.11 44.52<br />

5.0 15.66 9.96 17.67 23.88 29.01 33.36 37.10 40.36 43.24 45.81<br />

Fan Size 10SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 700 800 900 1000 1100 1200 1240<br />

1-Row 0.7 1.51 18.46 19.31 20.07 20.75 21.37 21.93 22.14<br />

Capacity 1.0 2.80 20.69 21.82 22.85 23.78 24.64 25.43 25.72<br />

MBH 1.5 5.69 22.72 24.15 25.46 26.67 27.79 28.84 29.24<br />

2.0 9.45 23.97 25.51 26.95 28.32 29.62 30.84 31.30<br />

2.5 14.03 24.79 26.45 28.00 29.46 30.83 32.14 32.66<br />

2-Row 1.5 1.85 32.51 34.20 35.65 36.90 38.01 38.98 39.34<br />

Capacity 2.0 3.07 35.03 37.06 38.83 40.38 41.76 42.99 43.44<br />

MBH 3.0 6.32 37.85 40.32 42.49 44.42 46.15 47.71 48.29<br />

4.0 10.58 39.39 42.11 44.52 46.68 48.62 50.39 51.06<br />

5.0 15.80 40.36 43.24 45.81 48.13 50.22 52.13 52.84<br />

Water Coil Notes (I-P)<br />

1. Fouling Factor = 0.0005.<br />

2. The off-coil temperature of the hot water coil on parallel fan-powered units must not exceed 140°F when mounted<br />

on plenum inlet.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

LAT = EAT +<br />

MBH x 921.7<br />

( Cfm ) WTD = EWT - LWT = ( 2 x MBH<br />

Gpm )<br />

4. Capacity based on 70°F entering air temperature <strong>and</strong> 180°F entering water temperature. Refer to correction factors<br />

for different entering conditions.<br />

Temperature Correction Factors for Water Pressure Drop (WPD)<br />

Average Water Temperature 200 190 180 170 160 150 140 130 120 110<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (MBH)<br />

Entering Water Minus Entering Air 40 50 60 70 80 90 100 110 120 130<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

<strong>VAV</strong>-PRC008-EN LHP 9


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—Hot Water<br />

Coil (SI)<br />

Fan Sizes 08SQ & 09SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 47 94 142 189 236 283 330 378 425<br />

1-Row 0.03 2.39 2.27 3.06 3.58 3.96 4.25 4.49 4.70 4.87 5.03<br />

Capacity 0.06 7.98 2.51 3.56 4.25 4.80 5.27 5.69 6.06 6.40 6.70<br />

kW 0.09 16.24 2.61 3.76 4.55 5.18 5.73 6.22 6.66 7.08 7.46<br />

0.13 26.97 2.66 3.87 4.71 5.40 6.00 6.54 7.03 7.48 7.90<br />

0.16 40.04 2.69 3.94 4.81 5.54 6.17 6.74 7.27 7.75 8.21<br />

2-Row 0.06 2.65 2.74 4.54 5.77 6.66 7.33 7.85 8.27 8.62 8.91<br />

Capacity 0.13 9.03 2.85 4.93 6.51 7.74 8.74 9.57 10.27 10.86 11.38<br />

kW 0.19 18.65 2.89 5.07 6.77 8.15 9.30 10.26 11.09 11.82 12.45<br />

0.25 31.29 2.91 5.14 6.91 8.37 9.59 10.64 11.54 12.34 13.05<br />

0.32 46.82 2.92 5.18 7.00 8.50 9.78 10.87 11.83 12.67 13.43<br />

Fan Size 10SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 330 378 425 472 519 566 585<br />

1-Row 0.04 4.51 5.41 5.66 5.88 6.08 6.26 6.43 6.49<br />

Capacity 0.06 8.37 6.06 6.40 6.70 6.97 7.22 7.45 7.54<br />

kW 0.09 17.02 6.66 7.08 7.46 7.81 8.14 8.45 8.57<br />

0.13 28.25 7.03 7.48 7.90 8.30 8.68 9.04 9.17<br />

0.16 41.94 7.27 7.75 8.21 8.63 9.03 9.42 9.57<br />

2-Row 0.09 5.53 9.53 10.02 10.45 10.82 11.14 11.42 11.53<br />

Capacity 0.13 9.19 10.27 10.86 11.38 11.84 12.24 12.60 12.73<br />

kW 0.19 18.89 11.09 11.82 12.45 13.02 13.52 13.98 14.15<br />

0.25 31.61 11.54 12.34 13.05 13.68 14.25 14.77 14.96<br />

0.32 47.22 11.83 12.67 13.43 14.10 14.72 15.28 15.49<br />

Water Coil Notes (SI)<br />

1. Fouling Factor = 0.0005.<br />

2. The off-coil temperature of the hot water coil on parallel fan-powered units must not exceed 60°C when mounted<br />

on plenum inlet.<br />

3. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

kW x 0.83<br />

kW<br />

LAT = EAT + ( L/s )<br />

WTD = EWT - LWT = ( (4.19)L/s)<br />

4. Capacity based on 21°C entering air temperature <strong>and</strong> 82°C entering water temperature. Refer to correction factors<br />

for different entering conditions.<br />

Temperature Correction Factors for Water Pressure Drop (kPa)<br />

Average Water Temperature 93 88 82 77 71 66 60 54 49 43<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (kW)<br />

Entering Water Minus Entering Air 22 27 33 38 44 50 55 61 67 72<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

LHP 10<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—<br />

Electrical Data<br />

LPEF—Electric Coil kW Guidelines – Minimum to Maximum (PSC Motor Units)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V 240V 277V 347V 480V 208V 480V 600V<br />

08SQ 1 0.5*–4.5* 0.5–7.0 0.5–7.0 0.5–7.0 0.5–7.0 0.5–7.0 0.5–7.0 1.0–7.0 1.5–7.0<br />

2 0.5*–4.5* 0.5–7.0 0.5–7.0 1.0–7.0 1.0–7.0 1.0–7.0 1.0–7.0 2.0–7.0 3.0–7.0<br />

3** — — — — — — — — —<br />

09SQ 1 0.5*–4.5* 0.5–8.0 0.5–10.0 0.5–12.0 0.5–14.0 0.5–14.0 0.5–14.0 1.0–14.0 1.5–14.0<br />

2 0.5*–4.5* 0.5–8.0 0.5–10.0 1.0–12.0 1.0–14.0 1.0–14.0 1.0–14.0 2.0–14.0 3.0–14.0<br />

3** — — — — — — — — —<br />

10SQ 1 0.5*–4.0* 0.5–8.0 0.5–9.0 0.5–12.0 0.5–14.0 0.5–14.0 1.0–13.0 1.0–14.0 1.5–12.0<br />

2 0.5*–4.0* 0.5–8.0 0.5–9.0 1.0–12.0 1.0–14.0 1.0–14.0 1.0–13.0 2.0–14.0 3.0–12.0<br />

3** — — — — — — — — —<br />

*Special heater offering<br />

** Three stages of electric heat available only with pneumatic controls.<br />

LPEF–Electric Coil kW Guidelines – Minimum to Maximum (ECM Units)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V * 208V 240V 277V 347V 480V 208V 480V 600V<br />

08SQ 1 0.5*–5.0* 0.5–7.0 0.5–7.0 0.5–7.0 — 0.5–7.0 0.5–7.0 1.0–7.0 —<br />

2 0.5*–5.0* 0.5–7.0 0.5–7.0 1.0–7.0 — 1.0–7.0 1.0–7.0 2.0–7.0 —<br />

3 — — — — — — — — —<br />

09SQ 1 0.5*–4.5* 0.5–8.0 0.5–9.0 0.5–12.0 — 0.5–14.0 0.5–14.0 1.0–14.0 —<br />

2 0.5*–4.5* 0.5–8.0 0.5–9.0 1.0–12.0 — 1.0–14.0 1.0–14.0 2.0–14.0 —<br />

3 — — — — — — — — —<br />

*Special heater offering<br />

Notes:<br />

1. Coils available with 24 VAC magnetic or mercury contactors, load carrying P.E. switches, <strong>and</strong> P.E. switch with magnetic or mercury contractors.<br />

2. Available kW increments are by 0.5 from 0.5 kW to 8.0 kW <strong>and</strong> by 1.0 kW from 9.0 to 14.0 kW.<br />

3. Each stage will be equal in kW output.<br />

4. All heaters contain an auto thermal cutout <strong>and</strong> a manual reset cutout.<br />

5. The current amp draw for the heater elements is calculated by the formula below.<br />

6. Only two stages of electric reheat available with Trane controls.<br />

Fan Electrical Performance (PSC)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 115 VAC 277 VAC 347 VAC<br />

08SQ 1/3 5.5 2.5 1.8<br />

09SQ 1/3 5.5 2.5 1.8<br />

10SQ* 2 x 1/8 9.4 3.5 3.0<br />

Notes:<br />

1. Electric Heat Units - Units with Primary Voltage of 208/60/1, 208/<br />

60/3 or 240/60/1 use 115 VAC fan motors.<br />

2. Electric Heat Units - Units with Primary Voltage of 277/60/1,<br />

480/60/1 or 480/60/3 use 277 VAC fan motors.<br />

3. Electric Heat Units - Units with Primary Voltage of 347/60/1 or<br />

575/60/3 use 347 VAC fan motors.<br />

4. Values are for st<strong>and</strong>ard, single-speed, permanent split capacitor<br />

type motors. Consult factory for non-st<strong>and</strong>ard motor<br />

performance.<br />

5. Motor amps for 10SQ are total amps for two motors.<br />

Fan Electrical Performance (ECM)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 115 VAC 277 VAC<br />

08SQ 1/2 2.0 1.1<br />

09SQ 1/2 6.7 3.6<br />

Formulas<br />

Minimum Circuit Ampacity (MCA) Equation<br />

• MCA = (motor amps + heater amps) x 1.25<br />

Maximum Overcurrent Protection (MOP) Equation<br />

• MOP = (2.25 x motor amps) + heater amps<br />

General Sizing Rules:<br />

• If MOP = 15, then fuse size = 15<br />

• If MOP = 19, then fuse size = 15 with one exception. If heater<br />

amps x 1.25 > 15, then fuse size = 20.<br />

• If MOP ≤ MCA, then choose next fuse size greater than MCA.<br />

• Control fusing not applicable.<br />

• St<strong>and</strong>ard Fuse Sizes: 15, 20, 25, 30, 35, 40, 45, 50, <strong>and</strong> 60.<br />

Useful formulas:<br />

Cfm x ATD<br />

kW =<br />

3145<br />

kW x 1000<br />

3φamps =<br />

Primary Voltage x √ 3<br />

ATD =<br />

kW x 3145<br />

Cfm<br />

kW = 1214 x L/s x ATD<br />

1φamps =<br />

ATD =<br />

kW<br />

1214 x L/s<br />

kW x 1000<br />

Primary Voltage<br />

<strong>VAV</strong>-PRC008-EN LHP 11


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—<br />

Electrical Data<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (PSC)<br />

Unit<br />

Cfm<br />

kW 08SQ 09SQ 10SQ<br />

0.5 173 440 720<br />

1 173 440 720<br />

1.5 173 440 720<br />

2 173 440 720<br />

2.5 173 440 720<br />

3 173 440 720<br />

3.5 202 440 720<br />

4 232 440 720<br />

4.5 261 440 720<br />

5 290 440 720<br />

5.5 319 440 720<br />

6 349 440 720<br />

6.5 378 440 720<br />

7 407 440 720<br />

7.5 — 468 720<br />

8 — 496 720<br />

9 — 552 720<br />

10 — 608 720<br />

11 — 664 720<br />

12 — 720 720<br />

13 — 776 720<br />

14 — 832 —<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (PSC)<br />

Unit<br />

L/s<br />

kW 08SQ 09SQ 10SQ<br />

0.5 82 208 340<br />

1 82 208 340<br />

1.5 82 208 340<br />

2 82 208 340<br />

2.5 82 208 340<br />

3 82 208 340<br />

3.5 95 208 340<br />

4 109 208 340<br />

4.5 123 208 340<br />

5 137 208 340<br />

5.5 151 208 340<br />

6 164 208 340<br />

6.5 178 208 340<br />

7 192 208 340<br />

7.5 — 221 340<br />

8 — 234 340<br />

9 — 261 340<br />

10 — 287 340<br />

11 — 313 340<br />

12 — 340 340<br />

13 — 366 340<br />

14 — 393 —<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (ECM)<br />

Unit Cfm<br />

kW 08SQ 09SQ<br />

0.5 188 490<br />

1 188 490<br />

1.5 188 490<br />

2 188 490<br />

2.5 188 490<br />

3 188 490<br />

3.5 220 490<br />

4 251 490<br />

4.5 283 490<br />

5 314 490<br />

5.5 346 490<br />

6 377 490<br />

6.5 409 490<br />

7 440 490<br />

7.5 — 514<br />

8 — 539<br />

9 — 588<br />

10 — 637<br />

11 — 685<br />

12 — 734<br />

13 — 783<br />

14 — 832<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (ECM)<br />

Unit L/s<br />

kW 08SQ 09SQ<br />

0.5 89 231<br />

1 89 231<br />

1.5 89 231<br />

2 89 231<br />

2.5 89 231<br />

3 89 231<br />

3.5 104 231<br />

4 118 231<br />

4.5 133 231<br />

5 148 231<br />

5.5 163 231<br />

6 178 231<br />

6.5 193 231<br />

7 208 231<br />

7.5 — 243<br />

8 — 254<br />

9 — 277<br />

10 — 300<br />

11 — 323<br />

12 — 347<br />

13 — 370<br />

14 — 393<br />

LHP 12<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Discharge Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

08SQ 5 150 71 50 46 43 39 32 29 53 49 48 45 38 38 53 50 49 47 44 46 55 52 51 49 47 50<br />

200 94 53 49 46 42 36 31 56 52 50 47 40 39 57 54 52 50 46 47 58 55 54 52 49 51<br />

250 118 57 52 48 45 40 33 58 55 52 48 42 40 60 58 55 53 48 48 61 59 57 54 51 52<br />

300 142 60 54 50 48 43 37 61 58 54 50 45 42 64 60 58 55 50 48 64 62 60 57 54 54<br />

350 165 62 57 53 50 46 41 64 60 56 53 49 44 66 63 60 57 51 49 68 66 63 61 58 55<br />

08SQ 6 200 94 51 47 44 40 34 29 53 50 49 44 38 37 56 53 51 50 47 48 58 55 53 51 49 52<br />

08SQ 280 132 55 51 48 44 40 33 57 54 53 48 44 40 60 57 55 53 50 48 62 59 57 55 52 52<br />

350 165 58 55 52 48 44 37 60 58 56 52 48 42 63 60 58 56 53 49 65 62 60 58 55 53<br />

430 203 62 60 56 52 50 42 63 62 59 56 54 46 66 64 62 59 56 50 68 66 64 61 58 54<br />

500 236 66 63 60 56 53 45 66 65 62 59 57 49 68 67 65 62 60 53 70 69 67 64 62 56<br />

08SQ 8 350 165 53 49 47 44 39 31 56 53 52 48 44 40 60 58 56 53 50 49 62 60 59 55 53 52<br />

09SQ 500 236 56 53 51 48 44 36 60 57 55 52 48 43 64 62 60 57 54 51 66 64 63 59 57 54<br />

600 283 59 56 53 50 47 39 62 59 58 54 51 45 66 65 63 60 57 53 68 67 65 62 59 56<br />

800 378 63 61 58 56 52 44 66 64 62 59 56 49 70 69 67 64 62 56 73 72 70 68 64 59<br />

900 425 65 63 60 58 55 47 68 66 63 61 58 51 72 70 68 66 63 57 75 73 72 70 67 61<br />

09SQ 8x14 780 368 59 61 57 52 48 45 64 67 61 56 52 54 68 68 71 61 56 55 72 72 77 66 59 56<br />

1100 519 61 62 60 54 52 48 65 67 65 59 56 55 71 70 74 64 61 58 74 74 79 68 63 59<br />

1500 708 64 65 64 58 56 51 68 67 70 62 61 57 74 73 78 69 66 62 78 76 81 72 68 63<br />

1800 850 66 67 67 61 59 53 70 69 73 65 63 58 76 74 79 71 68 63 78 76 81 73 70 65<br />

10SQ 8x14 780 368 60 58 51 48 41 34 63 64 59 57 45 42 65 66 65 65 51 50 67 67 68 69 56 54<br />

1170 552 — — — — — — 67 67 61 58 51 46 70 72 69 68 56 52 71 74 74 73 59 56<br />

1560 736 — — — — — — — — — — — — 73 74 71 68 60 55 74 77 75 74 63 59<br />

1800 850 — — — — — — — — — — — — 74 75 74 70 63 57 76 78 76 74 65 60<br />

2000 944 — — — — — — — — — — — — 75 76 77 71 65 59 77 78 77 74 67 61<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

Radiated Sound Power (dB)<br />

Radiated Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

08SQ 5 150 71 53 44 38 33 28 21 54 45 40 36 31 25 54 47 42 40 38 34 56 49 45 46 42 38<br />

200 94 55 46 41 35 29 21 56 48 42 37 32 25 57 50 45 42 38 34 58 51 47 46 42 38<br />

250 118 56 49 44 36 30 22 59 50 44 38 33 26 60 52 48 43 39 34 61 53 48 47 43 38<br />

300 142 59 50 45 38 31 24 62 52 47 40 34 28 62 54 50 45 40 34 63 55 50 48 44 38<br />

350 165 62 51 46 39 33 26 65 55 50 43 36 30 65 56 51 47 41 35 65 57 53 50 45 39<br />

08SQ 6 200 94 53 45 40 33 27 21 56 48 43 35 29 22 57 48 44 40 37 32 58 50 45 45 42 37<br />

09SQ 280 132 54 46 40 33 27 22 57 50 45 37 30 24 59 51 47 42 37 33 61 53 48 46 42 37<br />

350 165 54 46 41 34 28 22 58 51 46 38 31 25 62 54 49 44 38 34 63 55 50 47 43 38<br />

430 203 56 49 43 36 30 25 60 53 48 40 33 27 64 57 52 46 39 35 66 58 53 49 43 38<br />

500 236 59 53 47 40 34 29 62 55 50 42 35 30 66 58 53 47 41 36 68 60 55 51 44 39<br />

08SQ 8 350 165 57 50 45 38 34 23 59 54 46 40 34 26 61 55 48 43 39 35 63 56 50 47 44 37<br />

09SQ 500 236 60 53 47 40 34 24 62 56 49 42 36 28 65 58 51 46 41 35 67 60 54 50 45 38<br />

600 283 62 54 49 41 34 24 65 58 51 44 37 29 68 60 54 47 42 35 70 62 56 51 46 38<br />

800 378 65 57 52 44 36 26 69 61 54 46 40 32 73 64 58 50 44 36 74 66 60 54 48 40<br />

900 425 66 58 53 45 37 28 71 63 56 48 41 33 75 66 60 52 45 37 76 67 62 55 48 40<br />

09SQ 8x14 780 368 62 59 55 48 40 31 66 61 57 51 44 38 70 63 61 53 48 43 72 66 63 55 51 46<br />

1100 519 64 60 56 47 40 32 68 63 60 52 45 38 72 66 65 57 52 45 74 68 66 59 54 48<br />

1500 708 68 62 58 47 39 32 71 65 64 53 46 39 75 69 70 62 56 47 77 72 70 63 58 50<br />

1800 850 71 63 59 47 39 32 73 67 68 54 47 39 77 71 72 62 56 47 79 73 73 64 59 50<br />

10SQ 8x14 780 368 60 55 47 41 32 28 63 61 55 48 38 34 66 63 60 55 45 41 69 66 64 59 50 45<br />

1170 552 — — — — — — 68 65 57 50 41 39 71 69 66 59 48 45 74 74 69 64 53 48<br />

1560 736 — — — — — — — — — — — — 74 72 66 59 49 47 76 74 71 65 54 50<br />

1800 850 — — — — — — — — — — — — 75 74 68 61 51 49 77 76 72 65 55 51<br />

2000 944 — — — — — — — — — — — — 76 75 70 62 52 50 78 77 72 65 55 52<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10-12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

<strong>VAV</strong>-PRC008-EN LHP 13


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Fan Only Sound Power<br />

Outlet Discharge Sound Power (dB) Radiated Sound Power (dB)<br />

Fan Static Octave B<strong>and</strong>s Octave B<strong>and</strong>s<br />

Size (in. wg) Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7<br />

08SQ 175 83 56 51 50 47 41 34 65 56 57 50 41 35<br />

0.25 250 118 59 54 54 50 44 40 68 58 60 53 44 38<br />

(63 Pa) 320 151 62 56 57 53 48 45 72 61 63 56 48 42<br />

400 189 66 60 60 58 54 51 75 64 65 61 52 47<br />

470 222 69 63 64 62 58 56 77 67 69 64 56 50<br />

09SQ 400 189 65 59 57 54 48 44 69 65 62 56 46 38<br />

0.25 500 236 66 60 58 56 49 46 70 66 64 58 48 40<br />

(63 Pa) 700 330 69 63 62 61 54 53 72 69 68 64 54 46<br />

800 378 71 65 64 64 57 56 74 71 70 67 57 49<br />

900 425 73 68 68 67 61 61 77 74 72 69 60 53<br />

10SQ 700 330 62 57 55 51 45 40 67 61 57 54 49 44<br />

0.25 840 396 64 58 57 53 48 43 68 63 58 55 50 46<br />

(63 Pa) 980 463 65 61 58 56 51 47 70 65 60 57 53 50<br />

1200 566 69 65 63 61 56 54 73 69 64 61 57 55<br />

1400 661 72 69 66 65 60 57 76 72 67 64 60 58<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

Sound Noise Criteria (NC)<br />

Valve Only<br />

Discharge<br />

Radiated<br />

NC Level (∆Ps) NC Level (∆Ps)<br />

Fan Inlet 0.5" 1.0" 2.0" 3.0" 0.5" 1.0" 2.0" 3.0"<br />

Size Size Cfm L/s (127 Pa) (254 Pa) (508 Pa) (762 Pa) (127 Pa) (254 Pa) (508 Pa) (762 Pa)<br />

08SQ 5 150 71 — — — — — 15 15 19<br />

200 94 — — — 15 16 17 19 21<br />

250 118 — — 15 16 17 21 22 24<br />

300 142 — 15 17 20 21 25 25 26<br />

350 165 — 17 21 25 25 29 29 29<br />

08SQ 6 200 94 — — — 16 — 17 19 20<br />

09SQ 280 132 — — — 16 15 19 21 24<br />

350 165 — 15 17 20 15 20 25 26<br />

430 203 17 20 22 25 17 22 27 30<br />

500 236 21 24 26 29 21 25 30 32<br />

08SQ 8 350 165 — — 15 17 19 22 24 26<br />

09SQ 500 236 — — 20 22 22 25 29 31<br />

600 283 — 16 24 26 25 29 32 35<br />

800 378 19 22 29 32 29 34 39 40<br />

900 425 21 25 30 34 30 36 41 42<br />

09SQ 8x14 780 368 17 25 26 31 30 32 36 38<br />

1100 519 19 25 29 34 31 35 40 41<br />

1500 708 22 25 32 36 33 39 46 46<br />

1800 850 25 27 34 36 36 44 48 49<br />

10SQ 8x14 780 368 21 24 25 24 31 35 39<br />

1170 552 25 31 34 36 41 46<br />

1560 736 34 37 44 47<br />

1800 850 35 38 46 49<br />

2000 944 36 38 47 50<br />

1. "—" represents NC Values below NC15.<br />

2. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

ARI 885-98-02add DISCHARGE TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Medium Box (300-700 CFM) -27 -29 -40 -51 -53 -39<br />

Large Box (> 700 CFM) -29 -30 -41 -51 -52 -39<br />

Subtract from terminal unit sound power to determine discharge sound<br />

pressure in the space.<br />

ARI 885-98 RADIATED TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Type 2- Mineral Fiber Insulation -18 -19 -20 -26 -31 -36<br />

Total dB reduction -18 -19 -20 -26 -31 -36<br />

Subtract from terminal unit sound power to determine radiated sound<br />

pressure in the space.<br />

LHP 14<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Sound Noise Criteria (NC)<br />

Fan Only<br />

Radiated<br />

Fan Outlet Discharge NC/NC with<br />

Size Cfm L/s Static NC Level Attenuator<br />

08SQ 175 83 0.25 — 32/31<br />

250 118 0.25 — 35/ *<br />

320 151 0.25 — 38/ *<br />

400 189 0.25 19 41/ *<br />

470 222 0.25 22 45/ *<br />

09SQ 400 189 0.25 15 37/36<br />

500 236 0.25 16 39/37<br />

700 330 0.25 20 44/40<br />

800 378 0.25 22 46/42<br />

900 425 0.25 26 48/46<br />

10SQ 700 330 0.25 — 32/ *<br />

840 396 0.25 — 34/ *<br />

980 463 0.25 17 36/ *<br />

1200 566 0.25 22 40/ *<br />

1400 661 0.25 27 44/ *<br />

*Attenuator not recommended<br />

Notes:<br />

1. “–“ represents NC levels below NC 15.<br />

2. NC Values are calculated using current Industry St<strong>and</strong>ard ARI<br />

885, 2002 addendum to revision 1998. Radiated Transfer Function<br />

obtained from Appendix E, Type 2Mineral Fiber Insulation.<br />

ARI 885-98-02add DISCHARGE TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Small Box (< 300 CFM) -24 -28 -39 -53 -59 -40<br />

Medium Box (300-700 CFM) -27 -29 -40 -51 -53 -39<br />

Large Box (> 700 CFM) -29 -30 -41 -51 -52 -39<br />

Subtract from terminal unit sound power to determine discharge sound<br />

pressure in the space.<br />

ARI 885-98 RADIATED TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Type 2- Mineral Fiber Insulation -18 -19 -20 -26 -31 -36<br />

Total dB reduction -18 -19 -20 -26 -31 -36<br />

Subtract from terminal unit sound power to determine radiated sound<br />

pressure in the space.<br />

Discharge Sound Power (dB)<br />

Valve Only<br />

ARI Conditions<br />

Fan Inlet 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

08SQ 5 250 118 60 57 55 51 45 44<br />

08SQ 6 400 189 64 62 59 56 54 47<br />

09SQ<br />

08SQ 8 700 330 67 65 63 60 57 51<br />

09SQ<br />

09SQ 8x14 1560 736 70 71 73 66 63 60<br />

10SQ 8x14 1560 736 71 72 69 65 59 53<br />

Discharge Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

08SQ 5, 6, 8 460 217 68 62 63 62 58 56<br />

09SQ 6, 8, 8x14 900 425 73 68 68 67 61 61<br />

10SQ 8, 8x14 1420 670 72 69 66 65 60 57<br />

Notes:<br />

1. All sound data rated in accordance with current Industry<br />

St<strong>and</strong>ard ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10-12 Watts.<br />

Radiated Sound Power (dB)<br />

Valve Only<br />

ARI Conditions<br />

Fan Inlet 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

08SQ 5 250 118 59 50 46 41 36 32<br />

08SQ 6 400 189 62 55 50 42 36 31<br />

09SQ<br />

08SQ 8 700 330 69 61 55 47 40 33<br />

09SQ<br />

09SQ 8x14 1560 736 73 68 67 58 51 43<br />

10SQ 8x14 1560 736 73 71 64 56 47 46<br />

Radiated Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

08SQ 5, 6, 8 460 217 76 66 69 63 55 50<br />

09SQ 6, 8, 8x14 900 425 77 74 72 69 60 53<br />

10SQ 8, 8x14 1420 670 76 72 67 64 60 58<br />

<strong>VAV</strong>-PRC008-EN LHP 15


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Performance<br />

Data—<br />

Acoustics<br />

Inlet Attenuator Appurtenance Effects<br />

(Fan Noise Only)<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Matte-faced <strong>and</strong> foil-faced insulation**<br />

08SQ, 09SQ 2 3 4 5 5 6 2 0 -4 -8 -7 -7<br />

Closed-cell insulation<br />

08SQ, 09SQ 2 3 4 5 4 5 2 1 2 -3 -4 -4<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect represents a<br />

sound increase<br />

** Note: Attenuators on double-wall units contain foil-faced insulation.<br />

Cabinet Lining Appurtenance Effects<br />

(Fan Noise <strong>and</strong> Valve Noise)<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Solid double-wall<br />

08SQ, 09SQ 1 0 2 3 4 6 2 1 2 5 9 13<br />

Closed-cell insulation<br />

08SQ, 09SQ 2 1 3 2 2 2 2 2 4 5 5 8<br />

*Add to sound power, a negative effect represents a sound reduction, a positive effect represents a<br />

sound increase<br />

Heating Coil Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Hot Water Coil (Fan Noise)<br />

08SQ, 09SQ 3 3 4 5 4 5 2 2 3 3 3 4<br />

Electric Heat<br />

08SQ, 09SQ 0 -1 0 1 1 3 1 1 1 2 2 3<br />

*Add to sound power, a negative effect represents a sound reduction, a positive effect represents a<br />

sound increase.<br />

LHP 16<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

LOW-HEIGHT PARALLEL COOLING (LPCF) FAN SIZES 08SQ & 09SQ<br />

INLET SIZE<br />

FAN<br />

INLET SIZE<br />

AVAILABILITY AVAILABILITY<br />

SIZE NOMINAL Ø (INCHES) NOMINAL Ø (mm)<br />

H<br />

W<br />

L<br />

08SQ<br />

09SQ<br />

09SQ<br />

5, 6, 8<br />

6, 8<br />

8 x 14<br />

127, 152, 203<br />

152, 203<br />

203 x 356<br />

11.00" (279 mm) 40.00" (1016 mm) 30.00" (762 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

19.25" (489 mm) 9.5" (241 mm)<br />

D<br />

4.00" (102 mm)<br />

3.25" (83 mm)<br />

UNIT WT<br />

WT LBS<br />

(kg)<br />

69 (31.3)<br />

74 (33.6)<br />

83 (37.7)<br />

nal Attenuator<br />

eld Installed<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

32.00"<br />

(813 mm)<br />

17.50"<br />

(445 mm)<br />

D<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Primary<br />

Airflow<br />

4.00<br />

(102 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

18.00"<br />

(457 mm)<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm X 356 mm)<br />

Rectangular Damper Detail<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

5.00"<br />

(127 mm)<br />

7.<br />

L<br />

Fan Size<br />

Filter Size<br />

Attn Wt<br />

Wt. Lbs.<br />

(kg)<br />

08SQ<br />

09SQ<br />

10" x 20" x 1"<br />

(254 mm x 508 mm x 25 mm)<br />

10 (4.5)<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

<strong>NOTE</strong>S:<br />

W<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for unducted<br />

installations.<br />

2. Flanged discharge outlet accepts up to 1" (25 mm) duct flange.<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

H<br />

10.50"<br />

(267 mm)<br />

B<br />

4. Air valve centered between top <strong>and</strong> bottom panel.<br />

5. Control box enclosure provided with all control types.<br />

6. All high & low voltage controls have same-side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

A<br />

7. Flange adds 2" to width <strong>and</strong> length of unit.<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN LHP 17


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

LOW-HEIGHT PARALLEL COOLING (LPCF) FAN SIZE 10SQ<br />

FAN<br />

SIZE<br />

10SQ<br />

10SQ<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (INCHES)<br />

8<br />

8 x 14<br />

INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

AVAILABILITY H<br />

W<br />

L<br />

NOMINAL Ø (mm)<br />

A<br />

B<br />

203 11.50" (292 mm) 40.00" (1016 mm) 50.00" (1270 mm) 19.25" (489 mm) 10.00" (254 mm)<br />

203 x 356<br />

UNIT WT<br />

D WT LBS<br />

(kg)<br />

4.00" (102 mm) 90 (41)<br />

3.25" (83 mm) 92 (42)<br />

4.<br />

6.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

20.00"<br />

20.00"<br />

(508 mm) (508 mm)<br />

Flow Ring<br />

tubing<br />

D<br />

Primary<br />

Airflow<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm X 356 mm)<br />

Air<br />

4.00<br />

(102 mm)<br />

Rectangular Damper Detail<br />

18.875" Max.<br />

(479 mm)<br />

4.<br />

6.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

L<br />

6.<br />

Fan Size<br />

Filter Size<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

10SQ<br />

10" x 20" x 1"<br />

(254 mm x 508 mm x 25 mm)<br />

5.50" Max.<br />

(140 mm)<br />

W<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for unducted installations.<br />

2. Flanged discharge outlet accepts up to a 1" (25 mm) duct flange.<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

4. See Installation Documents for exact hanger bracket location.<br />

5. Air valve centered between top <strong>and</strong> bottom panel.<br />

6. Maximum dimensions for controls area shown. Configurations <strong>and</strong> types of<br />

control boxes vary according to control type selected. See "Enclosure Details"<br />

for specific layout ỵ<br />

B<br />

11.30" Max.<br />

(287 mm)<br />

H<br />

6.<br />

A<br />

DISCHARGE VIEW<br />

LHP 18<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

LOW-HEIGHT PARALLEL HOT WATER (LPWF) FAN SIZES 08SQ & 09SQ<br />

INLET SIZE<br />

FAN<br />

INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

AVAILABILITY<br />

SIZE<br />

H<br />

W<br />

L<br />

NOMINAL Ø (INCHES) NOMINAL Ø (mm)<br />

A<br />

B<br />

08SQ 5, 6, 8<br />

127, 152, 203 11.00" (279 mm) 40.00" (1016 mm) 30.00" (762 mm) 19.25" (483 mm) 9.50" (241 mm)<br />

09SQ 6, 8 152, 203<br />

09SQ 8 x 14<br />

203 x 356<br />

UNIT WT<br />

D WT LBS<br />

(kg)<br />

98 (44.5)<br />

103 (46.7)<br />

3.25" (83 mm) 112 (50.8)<br />

Optional Attenuator<br />

Field Installed<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

32.00"<br />

(813 mm)<br />

20.00"<br />

(508 mm)<br />

6.80"<br />

(173 mm)<br />

D<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Primary<br />

Airflow<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

18.00"<br />

(457 mm)<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm x 356 mm)<br />

Rectangular Damper Detail<br />

17.50"<br />

(445 mm)<br />

4.00<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

5.00"<br />

(127 mm)<br />

L<br />

Fan Size<br />

08SQ<br />

09SQ<br />

Filter Size<br />

10" x 20" x 1"<br />

(254 mm x 508 mm x 25 mm)<br />

Attn Wt<br />

Wt Lbs<br />

(kg)<br />

10 (4.5)<br />

7.<br />

Airflow<br />

Discharge Outlet<br />

W<br />

TOP VIEW<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. Flanged discharge outlet accepts up to a 1" (25 mm) duct flange.<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

4. Air valve centered between top <strong>and</strong> bottom panel.<br />

5. Control box enclosure provided with all control types.<br />

6. All high & low voltage controls have same-side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

H<br />

10.50"<br />

B<br />

7. Flange adds 2" to width <strong>and</strong> length of unit.<br />

A<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN LHP 19


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

LOW-HEIGHT PARALLEL HOT WATER (LPWF) FAN SIZE 10SQ<br />

FAN<br />

SIZE<br />

10SQ<br />

10SQ<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (INCHES)<br />

8<br />

8 X 14<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (mm)<br />

203<br />

203 X 356<br />

H<br />

11.50" (292 mm)<br />

W<br />

40.00" (1016 mm)<br />

L<br />

50.00" (1270 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

19.25" (489 mm) 10.00" (254 mm)<br />

C<br />

4.00" (102mm)<br />

D<br />

4.00" (102mm)<br />

3.25" (83mm)<br />

UNIT WT<br />

WT LBS<br />

(kg)<br />

99 (45)<br />

101 (46)<br />

5.<br />

20.00"<br />

(508 mm)<br />

20.00"<br />

(508 mm)<br />

7.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

Flow Ring<br />

tubing<br />

D<br />

Primary<br />

Airflow<br />

Air<br />

Valve<br />

C<br />

Water<br />

Coil<br />

6.30"<br />

(160 mm)<br />

Coil<br />

Connection<br />

18.875" Max.<br />

(479 mm)<br />

5.<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm X 356 mm)<br />

Rectangular Damper Detail<br />

7.<br />

L<br />

7.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

Fan Size<br />

Filter Size<br />

10SQ<br />

10" x 20" x 1"<br />

(254 mm x 508 mm x 25 mm)<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

<strong>NOTE</strong>S:<br />

5.50" Max.<br />

(140 mm)<br />

W<br />

1. Coil furnished with female sweat connections.<br />

2. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

3. Flanged discharge outlet accepts up to a 1" (25 mm)<br />

duct flange.<br />

4. Bottom Access panel st<strong>and</strong>ard.<br />

B<br />

11.30" Max.<br />

(287 mm)<br />

H<br />

5. See Installation Documents for exact hanger bracket location.<br />

6. Air valve centered between top <strong>and</strong> bottom panel.<br />

9.<br />

A<br />

7. Maximum dimensions for controls area shown. Configurations<br />

<strong>and</strong> types of control boxes vary according to control type<br />

selected. See "Enclosure Details" for specific layout.<br />

DISCHARGE VIEW<br />

LHP 20<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

PARALLEL LOW-HEIGHT HOT WATER (LPWF) COIL ON DISCHARGE<br />

FAN SIZES 08SQ & 09SQ<br />

FAN<br />

SIZE<br />

08SQ<br />

09SQ<br />

09SQ<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (INCHES)<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (mm)<br />

5, 6, 8<br />

127, 152, 203<br />

6, 8 152, 203<br />

8 X 14<br />

203 X 356<br />

H<br />

11.00" (279 mm)<br />

W<br />

40.00" (1016 mm)<br />

L<br />

30.00" (762 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

20.00" (508 mm)<br />

B<br />

10.00" (254 mm)<br />

UNIT WT<br />

D WT LBS<br />

(kg)<br />

4.00" (102 mm) 98 (44.5)<br />

103 (46.7)<br />

3.25" (83 mm) 112 (50.8)<br />

ptional Attenuator<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

32.00"<br />

(813 mm)<br />

D<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

18.00"<br />

(457 mm)<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm X 356 mm)<br />

Rectangular Damper Detail<br />

17.50"<br />

(445 mm)<br />

4.00<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

L<br />

Fan Size<br />

Filter Size<br />

Attn Wt<br />

Wt Lbs<br />

(kg)<br />

5.00"<br />

(127 mm)<br />

7.<br />

08SQ<br />

09SQ<br />

10" x 20" x 1"<br />

(254 mm x 508 mm x 25 mm)<br />

10 (4.5)<br />

6.80"<br />

(173 mm)<br />

<strong>NOTE</strong>S:<br />

20.00"<br />

(508 mm)<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. Flanged discharge outlet accepts up to a 1" (25 mm) duct flange.<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

W<br />

4. Air valve centered between top <strong>and</strong> bottom panel.<br />

5. Control box enclosure provided with all control types.<br />

H<br />

10.50"<br />

B<br />

6. All high & low voltage controls have same-side NEC jumpback clearance.<br />

(Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

7. Flange adds 2" to width <strong>and</strong> length of unit.<br />

A<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN LHP 21


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

PARALLEL LOW HEIGHT HOT WATER (LPWF) COIL ON DISCHARGE FAN SIZE 10SQ<br />

FAN<br />

SIZE<br />

10SQ<br />

10SQ<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (INCHES)<br />

8<br />

8 X 14<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (mm)<br />

203<br />

203 X 356<br />

H<br />

11.50" (292 mm)<br />

W<br />

40.00" (1016 mm)<br />

L<br />

50.00" (1270 mm)<br />

DISCHARGE DIMENSIONS<br />

A<br />

B<br />

20.00" (508 mm) 10.00" (254 mm)<br />

C<br />

4.00" (102 mm)<br />

D<br />

4.00" (102 mm)<br />

3.25" (83 mm)<br />

UNIT WT<br />

WT LBS<br />

(kg)<br />

99 (45)<br />

101 (46)<br />

5.<br />

D<br />

20.00"<br />

(508 mm)<br />

20.00"<br />

(508 mm)<br />

7.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

Flow Ring<br />

tubing<br />

Primary<br />

Airflow<br />

Air<br />

Valve<br />

C<br />

18.875" Max.<br />

(479 mm)<br />

5.<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm X 356 mm)<br />

Rectangular Damper Detail<br />

7.<br />

L<br />

7.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in this area<br />

Fan Size<br />

Filter Size<br />

6.30"<br />

(160 mm)<br />

Coil<br />

Water<br />

10SQ<br />

10" x 20" x 1"<br />

(254 mm x 508 mm x 25 mm)<br />

20.00"<br />

(508 mm)<br />

Connection<br />

Coil<br />

TOP VIEW<br />

<strong>NOTE</strong>S:<br />

5.50" Max.<br />

(140 mm)<br />

Airflow<br />

Discharge Outlet<br />

W<br />

1. Coil furnished with female sweat connections.<br />

2. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

3. Flanged discharge outlet accepts up to a 1" (25 mm) duct flange.<br />

4. Bottom Access panel st<strong>and</strong>ard.<br />

B<br />

11.30" Max.<br />

(287 mm)<br />

H<br />

5. See Installation Documents for exact hanger bracket location.<br />

6. Air valve centered between top <strong>and</strong> bottom panel.<br />

9.<br />

A<br />

7. Maximum dimensions for controls area shown. Configurations<br />

<strong>and</strong> types of control boxes vary according to control type selected.<br />

See "Enclosure Details" for specific layout.<br />

DISCHARGE VIEW<br />

LHP 22<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR LOW-HEIGHT PARALLEL 1-ROW COIL<br />

SIZE<br />

INLET/FAN<br />

10SQ<br />

COIL<br />

CONNECTION<br />

1-ROW<br />

.375" (10 mm) O.D.<br />

A<br />

B<br />

L<br />

H<br />

9.00" (229 mm) 2.80" (71 mm) 20.00" (508 mm) 10.00" (254 mm)<br />

L<br />

7.40"<br />

(188 mm)<br />

H<br />

OUTLET<br />

A<br />

AIR FLOW<br />

INLET<br />

B<br />

.40"<br />

(10 mm)<br />

FAN SIZE<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

10SQ<br />

0.07 (.27) 9.7 (4.4)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. R.H. Coil connections shown,<br />

L.H. not available.<br />

2. Coil furnished with stub sweat connections.<br />

<strong>VAV</strong>-PRC008-EN LHP 23


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR LOW-HEIGHT PARALLEL 2-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

2 ROW<br />

A<br />

B<br />

L<br />

H<br />

10SQ<br />

.875" (22 mm) O.D.<br />

6.20" (157 mm) 2.18" (55 mm)<br />

20.00" (508 mm)<br />

10.00" (254 mm)<br />

L<br />

7.40"<br />

(188 mm)<br />

.85"<br />

(22 mm)<br />

H<br />

OUTLET<br />

A<br />

AIR FLOW<br />

INLET<br />

1.97"<br />

(50 mm)<br />

B<br />

2.00"<br />

(51 mm)<br />

FAN SIZE<br />

10SQ<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

0.16 (.61) 13.7 (6.2)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. R.H. Coil connections shown.<br />

L.H. not available.<br />

2. Coil furnished with female sweat connections.<br />

LHP 24<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

LOW-HEIGHT PARALLEL ELECTRIC HEAT (LPEF) FAN SIZES 08SQ & 09SQ<br />

INLET SIZE<br />

FAN<br />

INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

UNIT WT<br />

AVAILABILITY AVAILABILITY<br />

SIZE<br />

H<br />

W<br />

L<br />

D WT LBS<br />

NOMINAL Ø (INCHES) NOMINAL Ø (mm)<br />

A<br />

B<br />

(kg)<br />

08SQ<br />

09SQ<br />

09SQ<br />

5, 6, 8<br />

6, 8<br />

8 x 14<br />

127, 152, 203<br />

152, 203<br />

203 x 356<br />

11.00" (279 mm) 40.00" (1016 mm) 30.00" (762 mm) 19.00" (483 mm) 9.50" (241 mm) 4.00" (102 mm) 104 (47.2)<br />

109 (49.4)<br />

3.25" (83 mm) 118 (53.5)<br />

al Attenuator<br />

Installed<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

32.00"<br />

(813 mm)<br />

D<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

18.00"<br />

(457 mm)<br />

4.00<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm X 356 mm)<br />

17.50"<br />

(445 mm)<br />

Rectangular Damper Detail<br />

5.00"<br />

(127 mm)<br />

L<br />

5.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

20.00"<br />

(508 mm)<br />

Terminal Box<br />

Heater<br />

Airflow<br />

Discharge Outlet<br />

6.00"<br />

(152 mm)<br />

7.<br />

TOP VIEW<br />

Fan Size<br />

08SQ<br />

09SQ<br />

Filter Size<br />

10" x 20 " x 1"<br />

(254 mm x 508 mm x 25 mm)<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

10 (4.5)<br />

H<br />

10.50"<br />

(267 mm)<br />

W<br />

B<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for unducted installations.<br />

2. Flanged discharge outlet accepts up to a 1" (25 mm) duct flange.<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

4. Air valve centered between top <strong>and</strong> bottom panel.<br />

5. Control box enclosure provided with all control types.<br />

6. All high & low voltage controls have same-side NEC jumpback clearance. (Left-h<strong>and</strong><br />

shown, right-h<strong>and</strong>/mirror image optional.)<br />

7. Flange adds 2" to width <strong>and</strong> length of unit.<br />

A<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN LHP 25


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Dimensional<br />

Data<br />

LOW-HEIGHT PARALLEL ELECTRIC (LPEF) FAN SIZE 10SQ<br />

LHP 26<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Mechanical<br />

Specifications<br />

MODELS LPCF, LPWF,<br />

<strong>and</strong> LPEF<br />

Low-height parallel fan-powered<br />

terminal units.<br />

LPCF – Cooling Only<br />

LPWF – With Hot Water Coil<br />

LPEF – With Electric Coil<br />

CASING<br />

22-gage galvanized steel. Hanger<br />

brackets, bottom access, <strong>and</strong> plenum<br />

inlet filter are provided as st<strong>and</strong>ard.<br />

AGENCY LISTING<br />

The unit is UL <strong>and</strong> Canadian UL<br />

Listed as a room air terminal unit.<br />

ARI 880 Certified.<br />

INSULATION<br />

1/2" (12.7 mm) Matte-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 1.9. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A <strong>and</strong><br />

UL 181 st<strong>and</strong>ards. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Matte-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.0 lb/ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 3.85.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There<br />

are no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1/2" (12.7 mm) Foil-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 2.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Foil-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.5 lb/ft 3<br />

(25.4 mm, 24.0 kg/m 3 ) density glass<br />

fiber with foil facing. The insulation<br />

R-Value is 4.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Double-wall<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with a 1-inch, 1.0 lb./ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with high-density<br />

facing. The insulation R-value is 3.8.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. The<br />

insulation is covered by an interior<br />

liner made of 26-gage galvanized<br />

steel. All wire penetrations are covered<br />

by grommets. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

3/8" (9.5 mm) Closed-cell<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 3/8-inch, 4.4 lb/ft 3<br />

(9.5 mm, 70.0 kg/m 3 ) closed-cell<br />

insulation. The insulation is UL<br />

recognized <strong>and</strong> meets NFPA-90A <strong>and</strong><br />

UL 181 st<strong>and</strong>ards. The insulation has<br />

an R-Value of 1.4. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

PRIMARY AIR VALVE<br />

Air Valve Round—The primary air<br />

inlet connection is an 18-gage<br />

galvanized steel cylinder sized to fit<br />

st<strong>and</strong>ard round duct. A multiple-point,<br />

averaging flow sensing ring is<br />

provided with balancing taps for<br />

measuring +/-5% of unit cataloged<br />

airflow. An airflow-versus-pressure<br />

differential calibration chart is provided.<br />

The damper blade is constructed of a<br />

closed-cell foam seal that is<br />

mechanically locked between two<br />

22-gage galvanized steel disks. The<br />

damper blade assembly is connected<br />

to a cast zinc shaft supported by selflubricating<br />

bearings. The shaft is cast<br />

with a damper position indicator. The<br />

valve assembly includes a mechanical<br />

stop to prevent over-stroking. At 4 in.<br />

wg, air valve leakage does not exceed<br />

1% of cataloged airflow.<br />

Air Valve Rectangular—Inlet collar is<br />

constructed of 22-gage galvanized steel<br />

sized to fit st<strong>and</strong>ard rectangular duct.<br />

An integral multiple-point, averaging<br />

flow-sensing ring provides primary<br />

airflow measurement within +/-5% of<br />

unit cataloged airflow. Damper is<br />

22-gage galvanized steel. The damper<br />

blade assembly is connected to a solid<br />

metal shaft supported by selflubricating<br />

bearings. The shaft is cast<br />

with a damper position indicator. The<br />

valve assembly includes a mechanical<br />

stop to prevent over-stroking. At 3.0 in.<br />

wg, air valve leakage does not exceed<br />

44 cfm (21 L/s).<br />

Fan–Inlet Combinations:<br />

LSXF<br />

Inlet 08SQ 09SQ 10SQ<br />

5" X<br />

6" X X<br />

8" X X<br />

8x14" X X<br />

FAN MOTOR<br />

PSC—Single-speed, direct-drive,<br />

permanent split capacitor type.<br />

Thermal overload protection provided.<br />

Motors will be designed specifically for<br />

use with an open SCR. Motors will be<br />

single-speed with st<strong>and</strong>ard SCR for<br />

speed control. Motors will<br />

accommodate anti-backward rotation<br />

at start up. Motor <strong>and</strong> fan assembly is<br />

isolated from terminal unit.<br />

ECM—Electrically Commutated Motor<br />

is designed for high-efficient operation<br />

with over 70% efficiency throughout<br />

the operating range<br />

FAN SPEED CONTROL<br />

Variable Speed Control Switch<br />

(SCR)—The SCR speed control device<br />

is provided as st<strong>and</strong>ard <strong>and</strong> allows the<br />

operator infinite fan speed adjustment<br />

so the fan output may be modified to<br />

achieve exact cfm requirements.<br />

TRANSFORMER<br />

The 50-VA transformer is factoryinstalled<br />

in the fan control box to<br />

provide 24 VAC for controls.<br />

DISCONNECT SWITCH<br />

A toggle disconnect is provided as<br />

st<strong>and</strong>ard <strong>and</strong> allows the operator to<br />

turn the unit on or off by toggling to<br />

the appropriate setting. <strong>This</strong> switch<br />

breaks both legs of power to the fan<br />

<strong>and</strong> the electronic controls (if<br />

applicable). Not provided on LPEF<br />

pneumatic controls.<br />

<strong>VAV</strong>-PRC008-EN LHP 27


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Mechanical<br />

Specifications<br />

OUTLET CONNECTION<br />

Flanged Connection—A<br />

rectangular opening on the unit<br />

discharge to accept a 90° flanged<br />

ductwork connection.<br />

FILTER<br />

A 1" (25 mm) filter is provided on the<br />

plenum inlet <strong>and</strong> attaches to the unit<br />

with a filter frame.<br />

ACCESS PANEL<br />

Internal access to unit is achieved<br />

through the removable bottom access<br />

panel.<br />

HOT WATER COIL<br />

Parallel Water Coils—factoryinstalled<br />

on the plenum inlet.<br />

The coil has 1-row with 144 aluminum<br />

fins per foot (.305 m) <strong>and</strong>, if needed, 2-<br />

row with 144 aluminum fins per foot<br />

(.305 m). Full fin collars provided for<br />

accurate fin spacing <strong>and</strong> maximum fintube<br />

contact. The 3/8" (9.5 mm) OD<br />

seamless copper tubes are<br />

mechanically exp<strong>and</strong>ed into the fin<br />

collars. Coils are proof tested at<br />

450 psig (3102 kPa) <strong>and</strong> leak tested at<br />

300 psig (2068 kPa) air pressure under<br />

water. Coil connections are brazed<br />

with right-h<strong>and</strong> configuration.<br />

ELECTRIC HEAT COIL<br />

The electric heater is factory-provided<br />

<strong>and</strong> -installed, UL recognized<br />

resistance open-type heater. It also<br />

contains a disc-type automatic pilot<br />

duty thermal primary cutout, <strong>and</strong><br />

manual reset load carrying thermal<br />

secondary device. Heater element<br />

material is nickel-chromium. The heater<br />

terminal box is provided with 7/8"<br />

(22 mm) knockouts for customer<br />

power supply. Terminal connections<br />

are plated steel with ceramic<br />

insulators. Heater control access is<br />

on the same side as fan control units.<br />

All fan-powered units with electric<br />

reheat are single-point power<br />

connections.<br />

ELECTRIC HEAT OPTIONS<br />

Magnetic Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

Mercury Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog electronic controls.<br />

P.E. Switch with Magnetic<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

magnetic contactor is for use with<br />

pneumatic controls.<br />

P.E. Switch with Mercury<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

mercury contactor is for use with<br />

pneumatic controls.<br />

Airflow Switch—An optional air<br />

pressure device designed to disable<br />

the heater when the system fan is off.<br />

Power Fuse—If power fuse is chosen<br />

with a unit with electric heat, then a<br />

safety fuse located in the line of power<br />

of the electric heater to prevent power<br />

surge damage to the electric heater.<br />

Any electric heat unit with a calculated<br />

MCA greater than or equal to 30 will<br />

have a fuse provided.<br />

Disconnect Switch—An optional<br />

factory-provided door interlocking<br />

disconnect switch on the heater<br />

control panel disengages primary<br />

voltage to the terminal.<br />

UNIT CONTROLS SEQUENCE OF<br />

OPERATION<br />

The controller continuously monitors<br />

the zone temperature against its<br />

setpoint <strong>and</strong> varies the primary airflow<br />

as required to meet zone setpoints.<br />

Airflow is limited by minimum <strong>and</strong><br />

maximum setpoints. For a low-height<br />

parallel unit, the controller will<br />

intermittently start the fan upon a call<br />

for heat. Upon a further call for heat,<br />

any hot water or electric heat<br />

associated with the unit is enabled.<br />

1. Primary Airflow—The fan energizes<br />

when primary airflow drops below<br />

the fan setpoint airflow. The fan<br />

automatically starts when the zone<br />

temperature drops to the heating<br />

temperature setpoint.<br />

2. Zone Temperature—The fan<br />

energizes when the zone temperature<br />

drops to a selectable number of<br />

degrees above the heating<br />

temperature setpoint.<br />

DIRECT DIGITAL CONTROLS<br />

DDC Actuator—Trane 3-wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Direct Digital Controller—The<br />

microprocessor based terminal unit<br />

controller provides accurate, pressureindependent<br />

control through the use<br />

of a proportional integral control<br />

algorithm <strong>and</strong> direct digital control<br />

technology. The controller, named the<br />

Unit Control Module (UCM), monitors<br />

zone temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change,<br />

<strong>and</strong> valve airflow using a differential<br />

pressure signal from the pressure<br />

transducer. Additionally, the controller<br />

can monitor either supply duct air<br />

temperature or CO 2<br />

concentration via<br />

appropriate sensors. The controller is<br />

provided in an enclosure with 7/8"<br />

(22 mm) knockouts for remote control<br />

wiring. A Trane UCM zone sensor<br />

is required.<br />

DDC Zone Sensor—The UCM<br />

controller senses zone temperature<br />

through a sensing element located in<br />

the zone sensor. In addition to the<br />

sensing element, zone sensor options<br />

may include an externally-adjustable<br />

setpoint, communications jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the<br />

individual controller from unoccupied<br />

to occupied mode. The override button<br />

has a cancel feature that will return the<br />

system to unoccupied. Wired zone<br />

sensors utilize a thermistor to vary the<br />

voltage output in response to changes<br />

in the zone temperature. Wiring to the<br />

UCM controller must be 18- to 22-awg.<br />

twisted pair wiring. The setpoint<br />

adjustment range is 50–88ºF (10–31°C).<br />

Depending upon the features available<br />

in the model of sensor selected, the<br />

zone sensor may require from a 2-wire<br />

to a 5-wire connection. Wireless zone<br />

sensors report the same zone<br />

information as wired zone sensors,<br />

but do so using radio transmitter<br />

technology. Therefore with wireless,<br />

wiring from the zone sensor to the<br />

UCM is unnecessary.<br />

Digital Display Zone Sensor with<br />

Liquid Crystal Display (LCD)—<br />

The digital display zone sensor<br />

contains a sensing element, which<br />

sends a signal to the UCM. A Liquid<br />

Crystal Display (LCD) displays setpoint<br />

or space temperature. Sensor buttons<br />

allow the user to adjust setpoints, <strong>and</strong><br />

allow space temperature readings to<br />

be turned on or off. The digital display<br />

zone sensor also includes a<br />

LHP 28<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Parallel<br />

Mechanical<br />

Specifications<br />

communication jack for use with a<br />

portable edit device, <strong>and</strong> an override<br />

button to change the UCM from<br />

unoccupied to occupied. The override<br />

button has a cancel feature, which<br />

returns the system to<br />

unoccupied mode.<br />

Trane LonTalk—The controller is<br />

designed to send <strong>and</strong> receive data<br />

using SCC LonTalk profile. Current unit<br />

status conditions <strong>and</strong> setpoints may<br />

be monitored <strong>and</strong>/or edited from any of<br />

several LonTalk-compatible systemlevel<br />

controllers.<br />

ANALOG ELECTRONIC CONTROLS<br />

Analog Actuator—A Trane 3- wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Analog Electronic Controller—The<br />

controller consists of a circuit board<br />

that offers basic <strong>VAV</strong> unit operation<br />

<strong>and</strong> additional override functions <strong>and</strong><br />

operates using 24 VAC power. The<br />

controller uses a capacitive type<br />

pressure transducer to maintain<br />

consistent air delivery regardless of<br />

system pressure changes. The<br />

enclosure with 7/8" (22 mm) knockouts<br />

for remote control wiring. A Trane<br />

electronic zone sensor is required.<br />

Analog-Electronic Thermostat—<br />

<strong>This</strong> single-temperature, wall-mounted<br />

electronic device utilizes a thermistor to<br />

vary the voltage output in response to<br />

changes in the zone temperature.<br />

Connections to the <strong>VAV</strong> unit circuit<br />

board are made using st<strong>and</strong>ard threeconductor<br />

thermostat wire. The setpoint<br />

adjustment range is 63–85ºF (17–29°C).<br />

The sensor is available in two models.<br />

One model has a concealed, internallyadjustable<br />

setpoint. The other model<br />

has an externally-adjustable setpoint.<br />

PNEUMATIC CONTROLS<br />

Normally Open Actuator—<br />

Pneumatic 3 to 8 psig (20 to 55 kPa)<br />

spring-range pneumatic actuator.<br />

3011 Pneumatic Volume Regulator<br />

(PVR)—The regulator is a thermostat<br />

reset velocity controller, which<br />

provides consistent air delivery within<br />

5% of cataloged flow down to 18% of<br />

unit cataloged cfm, independent of<br />

changes in system static pressure.<br />

Factory-calibrated, field-adjustable set<br />

points for minimum <strong>and</strong> maximum<br />

flows. Average total unit bleed rate,<br />

excluding thermostat, is 28.8 scim at<br />

20 psig (7.87 ml/min at 138 kPa) supply.<br />

UNIT OPTIONS<br />

Power Fuse (LPCF, LPWF)—<br />

Optional fuse is factory-installed in the<br />

primary voltage hot leg.<br />

HOT WATER VALVES<br />

Two-Position Valve—The valve is a<br />

field-adaptable, 2-way or 3-way<br />

configuration <strong>and</strong> ships with a cap to<br />

be field-installed when configured as a<br />

2-way valve. All connections are<br />

National Pipe Thread (NPT). The valve<br />

body is forged brass with a stainless<br />

steel stem <strong>and</strong> spring. Upon dem<strong>and</strong>,<br />

the motor strokes the valve. When the<br />

actuator drive stops, a spring returns<br />

the valve to its fail-safe position.<br />

Flow Capacity – 1.17 Cv<br />

Overall Diameter – ½" NPT<br />

Close-off Pressure – 30 psi (207 kPa)<br />

Flow Capacity – 3.0 Cv<br />

Overall Diameter – 3/4" NPT<br />

Close-off Pressure – 14.5 psi (100 kPa)<br />

Flow Capacity – 6.4 Cv<br />

Overall Diameter – 1" NPT<br />

Close-off Pressure – 9 psi (62 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 203ºF (95ºC)<br />

Maximum system pressure – 300 psi<br />

(2067 kPa). Maximum static pressure –<br />

300 psi (2067 kPa)<br />

Electrical Rating – 7 VA at 24 VAC,<br />

6.5 Watts, 50/60 Hz<br />

8 feet (2.44 m) of plenum rated wire<br />

lead is provided with each valve.<br />

Proportional Water Valve—The valve<br />

is a field-adaptable, 2-way or 3-way<br />

configuration <strong>and</strong> ships with a cap over<br />

the bottom port. <strong>This</strong> configures the<br />

valve for 2-way operation. For 3-way<br />

operation, remove the cap. The valve is<br />

linear equal percentage design. The<br />

intended fluid is water or water <strong>and</strong><br />

glycol (50% maximum glycol). The<br />

actuator is a synchronous motor drive.<br />

The valve is driven to a predetermined<br />

position by the UCM controller using a<br />

proportional plus integral control<br />

algorithm. If power is removed, the<br />

valve stays in its last position. The<br />

actuator is rated for plenum applications<br />

under UL 94-5V <strong>and</strong> UL 873 st<strong>and</strong>ards.<br />

Pressure <strong>and</strong> Temperature Ratings –<br />

The valve is designed <strong>and</strong> tested in full<br />

compliance with ANSI B16.15 Class 250<br />

pressure/temperature ratings, ANSI<br />

B16.104 Class IV control shutoff<br />

leakage, <strong>and</strong> ISA S75.11 flow<br />

characteristic st<strong>and</strong>ards.<br />

Flow Capacity – 0.7 Cv, 2.2 Cv, 3.8 Cv,<br />

<strong>and</strong> 6.6 Cv<br />

Overall Diameter – ½" NPT, ¾" NPT<br />

(6.6 Cv)<br />

Maximum Allowable Pressure – 300 psi<br />

(2068 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 200ºF (93°C)<br />

Maximum Close-off Pressure – 55 psi<br />

(379 kPaP<br />

Electrical Rating – 6 VA at 24 VAC.<br />

10 feet (3.05 m) of plenum rated<br />

22-gage wire for connection.<br />

Terminations are #6 stabs.<br />

<strong>VAV</strong>-PRC008-EN LHP 29


Fan-Powered<br />

Low-Height<br />

Series<br />

Table of<br />

Contents<br />

Service Model Number Description LHS 2 – 3<br />

General Data – Valve/Controller Airflow Guidelines LHS 4<br />

Performance Data – Pressure Requirements LHS 5 – 6<br />

Performance Data – Fan Curves LHS 7 – 8<br />

Performance Data – Hot Water Coil LHS 9 – 10<br />

Performance Data – Electrical Data LHS 11 - 12<br />

Performance Data – Acoustics LHS 13 - 16<br />

Dimensional Data LHS 17 - 24<br />

Mechanical Specifications LHS 25 - 27<br />

<strong>VAV</strong>-PRC008-EN LHS 1


Low-Height Series Fan-<br />

Powered Terminal Units<br />

The features of the low-height series<br />

fan-powered terminal units are<br />

described by the product categories<br />

shown below in bold. Within each<br />

category the options available are<br />

listed.<br />

LSCF<br />

LSWF<br />

LSEF<br />

Fan-Powered<br />

Low-Height<br />

Series<br />

Digit 1, 2—Unit Type<br />

LS <strong>VariTrane</strong> low-height series fanpowered<br />

Digit 3—Reheat<br />

C Cooling Only<br />

E Electric Heat<br />

W Hot Water Heat<br />

Digit 4—Development Sequence<br />

F Sixth<br />

Digit 5, 6—Primary Air Valve<br />

05 5” inlet (350 cfm)<br />

06 6" inlet (500 cfm)<br />

08 8" inlet (900 cfm)<br />

RT (8" x 14" inlet (1800 cfm)<br />

Digit 7, 8—Secondary Air Valve<br />

00 N/A<br />

Digit 9—Fan<br />

V 08SQ 500 nominal cfm<br />

W 09SQ 900 nominal cfm<br />

X 10SQ 1800 nominal cfm<br />

Digit 10, 11—Design Sequence<br />

E0 Fifth (factory assigned)<br />

Digit 12, 13, 14, 15—<strong>Controls</strong><br />

ENON No controls, field-installed DDC/<br />

electric<br />

PNON No controls, field-installed<br />

pneumatic<br />

DD00 Trane elec actuator only<br />

DD01 DDC – cooling only<br />

DD02 DDC – N.C. on/off water valve<br />

control<br />

DD03 DDC – prop hot water valve<br />

control<br />

DD04 DDC – on/off electric heat<br />

control<br />

DD05 DDC – pulse-width modulation<br />

control<br />

DD07 DDC – N.O. on/off water valve<br />

control<br />

DD11 LonTalk DDC Controller—<br />

Cooling only<br />

DD12 LonTalk DDC Controller w/ N.C.<br />

on/off hot water control<br />

DD13 LonTalk DDC Controller w/<br />

DD14<br />

proportional hot water control<br />

LonTalk DDC Controller–on/off<br />

electric heat control<br />

DD15 LonTalk DDC Controller w/<br />

pulse-width modulation electric<br />

heat control<br />

DD17<br />

FM00<br />

FM01<br />

HNY2<br />

INV3<br />

LonTalk DDC Controller w/ N.O.<br />

on/off hot water control<br />

FM customer actuator & control<br />

FM Trane actuator w/ customersupplied<br />

controller<br />

FM Honeywell W7751H<br />

FM Invensys MNL-V2R<br />

Service<br />

Model Number<br />

Description<br />

PWR1 FM Siemens 540-100 w/<br />

GDE131.1 actuator<br />

PWR2 FM Siemens 540-103 w/<br />

GDE131/1 actuator<br />

PW12 FM Siemens 550-065<br />

PW13 FM Siemens 550-067<br />

VMA2 FM Johnson VMA-1420<br />

EI71 Analog – Series fan-powered<br />

on/off reheat<br />

PN00 PN – N.O. Trane pneumatic<br />

actuator, R.A. stat<br />

PN51 PN – N.O. PVR, duct pressure<br />

switch, R.A. stat<br />

PN52 PN – N.O. PVR, dual pressure<br />

main, R.A. stat<br />

Notes:<br />

N.C. = Normally-closed<br />

N.O. = Normally-opened<br />

DA Stat = Direct-acting pneumatic t-stat<br />

(by others)<br />

RA Stat = Reverse-acting pneumatic<br />

t-stat (by others)<br />

PN = Pneumatic<br />

FM = Factory installation of customersupplied<br />

controller<br />

PVR = Pneumatic Volume Regulator<br />

Digit 16—Insulation<br />

A 1/2" Matte-faced<br />

B 1" Matte-faced<br />

C 1/2" Foil-faced<br />

D 1" Foil-faced<br />

F 1" Double-wall<br />

G 3/8" Closed-cell<br />

Digit 17—Motor Type<br />

D PSC Motor<br />

E High-efficiency motor (ECM)<br />

Digit 18—Motor Voltage<br />

1 115/60/1<br />

2 277/60/1<br />

3 347/60/1<br />

5 230/50/1<br />

Digit 19—Outlet Connection<br />

1 Flanged<br />

2 Slip & Drive<br />

Digit 20—Not Used<br />

0 N/A<br />

Digit 21—Water Coil<br />

0 None<br />

3 1-Row–Discharge installed, LH<br />

4 1-Row–Discharge installed, RH<br />

5 2-Row–DIscharge installed, LH<br />

6 2-Row–Discharge installed, RH<br />

Digit 22—Electrical Connections<br />

L Left (airflow hitting you in the<br />

face)<br />

R Right (airflow hitting you in the<br />

face)<br />

LHS 2<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Service<br />

Model Number<br />

Description<br />

Digit 23—Transformer<br />

0 N/A (provided as st<strong>and</strong>ard)<br />

Digit 24—Disconnect Switch<br />

0 None<br />

W With<br />

Note:<br />

LSCF, LSWF – Toggle Disconnect<br />

LSEF – Door Interlocking Power<br />

Disconnect<br />

Digit 25—Power Fuse<br />

0 None<br />

W With<br />

Digit 26—Electric Heat Voltage<br />

0 None<br />

A 208/60/1<br />

B 208/60/3<br />

C 240/60/1<br />

D 277/60/1<br />

E 480/60/1<br />

F 480/60/3<br />

G 347/60/1<br />

H 575/60/3<br />

J 380/50/3<br />

Digit 27, 28, 29—Electric Heat kW<br />

000 None<br />

005 0.5 kW<br />

010 1.0 kW<br />

015 1.5 kW<br />

020 2.0 kW<br />

025 2.5 kW<br />

030 3.0 kW<br />

035 3.5 kW<br />

040 4.0 kW<br />

045 4.5 kW<br />

050 5.0 kW<br />

055 5.5 kW<br />

060 6.0 kW<br />

065 6.5 kW<br />

070 7.0 kW<br />

075 7.5 kW<br />

080 8.0 kW<br />

090 9.0 kW<br />

100 10.0 kW<br />

110 11.0 kW<br />

120 12.0 kW<br />

130 13.0 kW<br />

140 14.0 kW<br />

150 15.0 kW<br />

160 16.0 kW<br />

170 17.0 kW<br />

180 18.0 kW<br />

Digit 30—Electric Heat Stages<br />

0 None<br />

1 1 Stage<br />

2 2 Stages Equal<br />

Digit 31—Contactors<br />

0 None<br />

1 24-Volt magnetic<br />

2 24-Volt mercury<br />

3 PE with magnetic<br />

4 PE with mercury<br />

Digit 32—Air Flow Switch<br />

0 None<br />

W With<br />

<strong>VAV</strong>-PRC008-EN LHS 3


Fan-Powered<br />

Low-Height<br />

Series<br />

General Data—<br />

Valve/Controller<br />

Airflow Guidelines<br />

Primary Airflow Control Factory Settings – I-P<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller Constant Volume<br />

Type Size (in.) Cfm Cfm Cfm Cfm<br />

5 350 40–350 0, 40–350 40–350<br />

Direct Digital Control/ 6 500 60–500 0, 60–500 60–500<br />

UCM 8 900 105–900 0, 105–900 105–900<br />

8x14 2200 200–2200 0, 220–2200 220–2200<br />

5 350 63–350 0, 63–350 63–350<br />

Pneumatic with 6 500 73–500 0, 73–500 73–500<br />

Volume Regulator 8 900 134–900 0, 134–900 134–900<br />

8x14 2100 297–2100 0, 297–2100 297–2100<br />

5 350 82–350 0, 82–350 82–350<br />

Analog Electronic 6 500 120–500 0, 120–500 120–500<br />

8 900 210–900 0, 210–900 210–900<br />

8x14 2200 440–2200 0, 440–2200 440–2200<br />

Primary Airflow Control Factory Settings – SI<br />

Control Air Valve Maximum Valve Maximum Controller Minimum Controller<br />

Type Size (in.) L/s L/s L/s<br />

5 165 19–165 0, 19–165 19–165<br />

Direct Digital Control/ 6 236 28–236 0, 28–236 28–236<br />

UCM 8 425 50–425 0, 50–425 50–425<br />

8x14 1038 104–1038 0, 104–1038 104–1038<br />

5 165 30–165 0, 30–165 30–165<br />

Pneumatic with 6 236 35–236 0, 35–236 35–236<br />

Volume Regulator 8 425 63–425 0, 63–425 63–425<br />

8x14 991 140–991 0, 140–991 140–991<br />

5 165 39–165 0, 39–165 39–165<br />

Analog Electronic 6 236 57–236 0, 57–236 57–236<br />

8 425 100–425 0, 100–425 100–425<br />

8x14 1038 208–1038 0, 208–1038 208–1038<br />

Note: Maximum airflow must be greater than or equal to minimum airflow.<br />

LHS 4<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Unit Air Pressure Drop – in. wg (I-P)<br />

Fan/Inlet Airflow Cooling<br />

Size Cfm Only<br />

08SQ–05 150 0.01<br />

250 0.03<br />

350 0.11<br />

08SQ–06 150 0.02<br />

275 0.14<br />

400 0.35<br />

500 0.58<br />

08SQ–08 150 0.01<br />

275 0.05<br />

400 0.13<br />

500 0.21<br />

09SQ–06 350 0.17<br />

400 0.26<br />

450 0.37<br />

500 0.50<br />

09SQ–08 400 0.08<br />

600 0.24<br />

750 0.40<br />

900 0.61<br />

09SQ–8x14 600 0.18<br />

700 0.27<br />

900 0.51<br />

1050 0.73<br />

10SQ–08 400 0.08<br />

600 0.38<br />

800 0.84<br />

10SQ–8x14 600 0.21<br />

900 0.50<br />

1100 0.77<br />

1500 1.47<br />

Performance<br />

Data—Air Pressure<br />

Requirements<br />

Coil Air Pressure Drop – in. wg (I-P)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size Cfm (in. wg) (in. wg)<br />

08SQ 100 0.00 0.01<br />

200 0.01 0.03<br />

300 0.02 0.05<br />

400 0.03 0.07<br />

500 0.05 0.10<br />

09SQ 400 0.03 0.07<br />

550 0.06 0.12<br />

700 0.09 0.17<br />

850 0.13 0.24<br />

1000 0.18 0.32<br />

10SQ 400 0.01 0.02<br />

800 0.03 0.07<br />

1200 0.06 0.12<br />

1600 0.11 0.20<br />

2000 0.16 0.29<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (I-P)<br />

Fan Plenum<br />

Size Cfm Attenuator<br />

08SQ 150 0.02<br />

250 0.04<br />

350 0.06<br />

450 0.09<br />

09SQ 350 0.06<br />

500 0.10<br />

650 0.15<br />

800 0.22<br />

10SQ 400 0.02<br />

700 0.05<br />

1000 0.09<br />

1300 0.14<br />

1600 0.20<br />

<strong>VAV</strong>-PRC008-EN LHS 5


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—Air Pressure<br />

Requirements<br />

Unit Air Pressure Drop – Pa (SI)<br />

Fan/Inlet Airflow Cooling<br />

Size L/s Only<br />

08SQ–05 71 2<br />

118 9<br />

165 28<br />

08SQ–06 71 5<br />

130 34<br />

189 86<br />

236 143<br />

08SQ–08 71 3<br />

130 14<br />

189 32<br />

236 52<br />

09SQ–06 165 43<br />

189 66<br />

212 93<br />

236 124<br />

09SQ–08 189 21<br />

283 59<br />

354 100<br />

425 151<br />

8x14–09SQ 283 44<br />

330 66<br />

425 126<br />

495 182<br />

10SQ–08 189 20<br />

283 94<br />

378 209<br />

10SQ–8x14 283 51<br />

425 124<br />

519 191<br />

708 367<br />

Coil Air Pressure Drop – Pa (SI)<br />

Fan Airflow 1-Row HW 2-Row HW<br />

Size L/s (Pa) (Pa)<br />

08SQ 47 1 3<br />

94 3 6<br />

142 5 11<br />

189 9 18<br />

236 13 25<br />

09SQ 189 9 18<br />

260 15 29<br />

330 23 43<br />

401 33 0<br />

472 44 80<br />

10SQ 189 3 6<br />

378 8 16<br />

566 16 31<br />

755 27 50<br />

944 40 72<br />

Note: HW Coil Only pressure drops do not include unit<br />

pressure drop.<br />

Attenuator Air<br />

Pressure Drop (SI)<br />

Fan Plenum<br />

Size L/s Attenuator<br />

08SQ 71 0.01<br />

118 0.01<br />

165 0.02<br />

212 0.03<br />

09SQ 165 0.02<br />

236 0.03<br />

307 0.05<br />

378 0.06<br />

10SQ 189 0.01<br />

330 0.02<br />

472 0.03<br />

614 0.04<br />

755 0.06<br />

LHS 6<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—<br />

Fan Curves<br />

Notes:<br />

1. When attenuator is required, add<br />

inlet attenuator pressure to discharge<br />

static pressure for final fan performance.<br />

Pa<br />

199<br />

174<br />

In. wg<br />

0.80<br />

0.70<br />

Low-Height Series 08SQ—PSC<br />

150<br />

0.60<br />

Discharge Static Pressure<br />

125<br />

100<br />

75<br />

50<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

170 cfm min<br />

(80 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

150 200 250 300 350 400 450 500 550 600 Cfm<br />

71 94 118 142 165 189 212 236 260 283 L/s<br />

Airflow<br />

Pa<br />

199<br />

In. wg<br />

0.80<br />

Low-Height Series 09SQ—PSC<br />

174<br />

0.70<br />

150<br />

0.60<br />

LSCF <strong>and</strong> LSEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

Discharge Static Pressure<br />

125<br />

100<br />

75<br />

50<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

350 cfm min<br />

(165 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

300 400 500 600 700 800 900 1000 1100 Cfm<br />

142 189 236 283 330 378 425 472 519 L/s<br />

Airflow<br />

Pa<br />

199<br />

In. wg<br />

0.80<br />

Low-Height Series 10SQ—PSC<br />

174<br />

0.70<br />

Discharge Static Pressure<br />

150<br />

125<br />

100<br />

75<br />

50<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

405 cfm min<br />

(191 L/s)<br />

25<br />

0.10<br />

0<br />

0.00<br />

300 500 700 900 1100 1300 1500 1700 1900 2100 2300 Cfm<br />

142 236 330 425 519 614 708 802 897 991 1086 L/s<br />

Airflow<br />

<strong>VAV</strong>-PRC008-EN LHS 7


Fan-Powered<br />

Low-Height<br />

Series<br />

ECM Data—<br />

Fan Curves<br />

Discharge Static Pressure<br />

Pa In. wg LSxF 08SQ—ECM<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

100 cfm min<br />

(47 L/s)<br />

Notes:<br />

1. ECMs (Electrically Commutated Motors)<br />

are ideal for systems seeking maximum<br />

motor efficiency.<br />

2. When attenuator is required, add inlet<br />

attenuator pressure to discharge<br />

static pressure for final fan performance.<br />

0<br />

0.00<br />

50 100 150 200 250 300 350 400 450 500<br />

24 47 71 94 118 142 165 189 212 236<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg LSxF 09SQ—ECM<br />

125<br />

0.50<br />

100<br />

0.40<br />

Discharge Static Pressure<br />

75<br />

50<br />

0.30<br />

0.20<br />

240 cfm min<br />

(113 L/s)<br />

LSCF <strong>and</strong> LSEF maximum<br />

Minimum<br />

1-row coil maximum<br />

2-row coil maximum<br />

25<br />

0.10<br />

0<br />

0.00<br />

200 300 400 500 600 700 800 900 1000<br />

94 142 189 236 283 330 378 425 472<br />

Airflow<br />

Cfm<br />

L/s<br />

Pa In. wg LSxF 10SQ—ECM<br />

125<br />

0.50<br />

100<br />

0.40<br />

Discharge Static Pressure<br />

75<br />

50<br />

25<br />

0.30<br />

0.20<br />

0.10<br />

400 cfm min<br />

(189 L/s)<br />

0<br />

0.00<br />

300 500 700 900 1100 1300 1500 1700 1900 Cfm<br />

142 236 330 425 519 614 708 802 897 L/s<br />

LHS 8<br />

Airflow<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—Hot Water<br />

Coil (I-P)<br />

Fan Sizes 08SQ & 09SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 100 200 300 400 500 600 700 800 900 1000<br />

1-Row 1.0 0.15 — — — — — — — — — —<br />

Capacity 2.0 0.58 — — — — — — — — — —<br />

MBH 3.0 1.27 7.92 11.16 13.45 15.34 16.97 18.42 19.73 20.92 22.01 23.02<br />

4.0 2.24 8.08 11.48 13.94 15.98 17.76 19.36 20.82 22.16 23.39 24.54<br />

5.0 3.48 8.17 11.69 14.25 16.39 18.28 19.99 21.54 22.98 24.32 25.57<br />

6.0 4.98 8.24 11.83 14.47 16.69 18.65 20.43 22.06 23.58 24.99 26.31<br />

2-Row 1.0 0.76 9.04 14.59 18.26 20.87 22.83 24.35 25.57 26.58 27.42 28.14<br />

Capacity 2.0 2.60 9.45 15.95 20.70 24.34 27.24 29.61 31.59 33.28 34.74 36.02<br />

MBH 3.0 5.39 9.59 16.43 21.60 25.68 29.01 31.78 34.14 36.17 37.95 39.53<br />

4.0 9.06 9.66 16.68 22.08 26.40 29.96 32.96 35.54 37.78 39.75 41.51<br />

5.0 13.57 9.70 16.83 22.37 26.85 30.56 33.71 36.43 38.80 40.90 42.78<br />

Fan Size 10SQ (I-P)<br />

Water<br />

Pressure<br />

Airflow (Cfm)<br />

Rows Gpm Drop (ft) 450 600 750 900 1050 1200 1350 1500 1650 1800 1950<br />

1-Row 1.0 0.16 — — — — — — — — — — —<br />

Capacity 2.0 0.61 — — — — — — — — — — —<br />

MBH 4.0 2.32 25.05 28.61 31.67 34.39 36.86 39.12 41.23 43.18 45.02 46.75 48.41<br />

6.0 5.09 26.10 30.00 33.40 36.45 39.26 41.85 44.28 46.57 48.73 50.77 52.71<br />

8.0 8.91 26.66 30.76 34.34 37.59 40.59 43.38 46.00 48.48 50.83 53.07 55.20<br />

10.0 13.77 27.02 31.23 34.95 38.32 41.44 44.36 47.11 49.72 52.20 54.56 56.83<br />

2-Row 1.0 1.29 28.40 32.18 34.87 36.88 38.43 39.66 40.66 41.49 42.19 42.79 43.30<br />

Capacity 2.0 4.31 33.46 39.56 44.37 48.27 51.49 54.19 56.50 58.49 60.23 61.76 63.13<br />

MBH 3.0 8.84 35.30 42.41 48.23 53.10 57.23 60.78 63.88 66.61 69.03 71.20 73.16<br />

4.0 14.77 36.25 43.91 50.30 55.72 60.40 64.48 68.08 71.28 74.15 76.74 79.09<br />

5.0 22.03 36.83 44.83 51.58 57.37 62.41 66.84 70.78 74.30 77.48 80.36 82.99<br />

Water Coil Notes<br />

1. Fouling Factor = 0.0005.<br />

2. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

LAT = EAT + (<br />

MBH x 921.7<br />

Cfm<br />

WTD = EWT - LWT =<br />

( )<br />

2 x MBH<br />

Gpm<br />

3. Capacity based on 70°F entering air temperature <strong>and</strong> 180°F entering water temperature. Refer to correction<br />

factors for different entering conditions.<br />

)<br />

Temperature Correction Factors for Water Pressure Drop (ft)<br />

Average Water Temperature 200 190 180 170 160 150 140 130 120 110<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (MBH)<br />

Entering Water Minus Entering Air 40 50 60 70 80 90 100 110 120 130<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

<strong>VAV</strong>-PRC008-EN LHS 9


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—Hot<br />

Water Coil (SI)<br />

Fan Size 08SQ & 09SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 47 94 142 189 236 283 330 378 425 472<br />

1-Row 0.06 0.44 — — — — — — — — — —<br />

Capacity 0.13 1.72 — — — — — — — — — —<br />

kW 0.19 3.81 2.32 3.27 3.94 4.50 4.97 5.40 5.78 6.13 6.45 6.75<br />

0.25 6.71 2.37 3.36 4.08 4.68 5.21 5.67 6.10 6.49 6.86 7.19<br />

0.32 10.40 2.39 3.42 4.18 4.80 5.36 5.86 6.31 6.74 7.13 7.49<br />

0.38 14.90 2.41 3.47 4.24 4.89 5.47 5.99 6.47 6.91 7.32 7.71<br />

2-Row 0.06 2.27 2.65 4.28 5.35 6.12 6.69 7.14 7.49 7.79 8.04 8.25<br />

Capacity 0.13 7.78 2.77 4.67 6.07 7.13 7.98 8.68 9.26 9.75 10.18 10.56<br />

kW 0.19 16.11 2.81 4.82 6.33 7.53 8.50 9.31 10.00 10.60 11.12 11.58<br />

0.25 27.08 2.83 4.89 6.47 7.74 8.78 9.66 10.41 11.07 11.65 12.16<br />

0.32 40.58 2.84 4.93 6.56 7.87 8.96 9.88 10.68 11.37 11.99 12.54<br />

Fan Size 10SQ (SI)<br />

Water<br />

Pressure<br />

Airflow (L/s)<br />

Rows L/s Drop (kPa) 212 283 354 425 495 566 637 708 779 849 920<br />

1-Row 0.06 0.48 — — — — — — — — — — —<br />

Capacity 0.13 1.82 — — — — — — — — — — —<br />

kW 0.25 6.93 7.34 8.38 9.28 10.08 10.80 11.47 12.08 12.66 13.19 13.70 13.70<br />

0.38 15.22 7.65 8.79 9.79 10.68 11.50 12.27 12.98 13.65 14.28 14.88 14.88<br />

0.50 26.64 7.81 9.01 10.07 11.02 11.90 12.71 13.48 14.21 14.90 15.55 15.55<br />

0.63 41.16 7.92 9.15 10.24 11.23 12.15 13.00 13.81 14.57 15.30 15.99 15.99<br />

2-Row 0.06 3.84 8.32 9.43 10.22 10.81 11.26 11.62 11.92 12.16 12.36 12.54 12.54<br />

Capacity 0.13 12.90 9.81 11.59 13.00 14.15 15.09 15.88 16.56 17.14 17.65 18.10 18.10<br />

kW 0.19 26.43 10.35 12.43 14.14 15.56 16.77 17.81 18.72 19.52 20.23 20.87 20.87<br />

0.25 44.15 10.62 12.87 14.74 16.33 17.70 18.90 19.95 20.89 21.73 22.49 22.49<br />

0.32 65.84 10.79 13.14 15.12 16.81 18.29 19.59 20.74 21.78 22.71 23.55 23.55<br />

Water Coil Notes<br />

1. Fouling Factor = 0.0005.<br />

2. The following equations may be used in calculating Leaving Air Temperature (LAT) <strong>and</strong> Water Temperature<br />

Difference (WTD).<br />

LAT = EAT + kW x 0.83 kW<br />

( )<br />

WTD = EWT - LWT =<br />

L/s<br />

( (4.19)L/s)<br />

3. Capacity based on 21°C entering air temperature <strong>and</strong> 82°C entering water temperature. Refer to correction<br />

factors for different entering conditions.<br />

Temperature Correction Factors for Water Pressure Drop (kPa)<br />

Average Water Temperature 93 88 82 77 71 66 60 54 49 43<br />

Correction Factor 0.970 0.985 1.000 1.020 1.030 1.050 1.080 1.100 1.130 1.150<br />

Temperature Correction Factors for Coil Capacity (kW)<br />

Entering Water Minus Entering Air 22 27 33 38 44 50 55 61 67 72<br />

Correction Factor 0.355 0.446 0.537 0.629 0.722 0.814 0.907 1.000 1.093 1.187<br />

LHS 10<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—<br />

Electrical Data<br />

LSEF—Electric Coil kW Guidelines – Minimum to Maximum (PSC Motor Units)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V 240V 277V 347V 480V 208V 480V 600V<br />

08SQ 1 0.5*–4.5* 0.5–6.0 0.5–6.0 0.5–6.0 0.5–6.0 0.5–6.0 0.5–6.0 1.0–6.0 1.5–6.0<br />

2 0.5*–4.5 0.5–6.0 0.5–6.0 1.0–6.0 1.0–6.0 1.0–6.0 1.0–6.0 3.0–6.0 5.0–5.0<br />

3** — — — — — — — — —<br />

09SQ 1 0.5*–4.5* 0.5–8.0 0.5–10.0 0.5–12.0 0.5–12.0 0.5–12.0 0.5–12.0 1.0–12.0 1.5–12.0<br />

2 0.5*–4.5 0.5–8.0 0.5–10.0 1.0–12.0 1.0–12.0 1.0–12.0 1.0–12.0 3.0–12.0 4.5–10.0<br />

3** — — — — — — — — —<br />

10SQ 1 0.5*–4.0* 0.5–7.5 0.5–8.0 0.5–11.0 0.5–15.0 0.5–18.0 0.5–13.0 1.0–18.0 1.5–18.0<br />

2 0.5*–4.0* 0.5–7.5 0.5–8.0 1.0–11.0 1.0–15 1.0–18.0 1.0–13.0 2.0–18.0 3.0–18.0<br />

3** — — — — — — — — —<br />

*Special heater offering.<br />

**Three stages of electric heat available only with pneumatic controls.<br />

LSEF—Electric Coil kW Guidelines – Minimum to Maximum (ECM Units)<br />

Fan Single-Phase Voltage Three-Phase Voltage<br />

Size Stages 120V 208V 240V 277V 347V 480V 208V 480V 600V<br />

08SQ 1 0.5*–5.0* 0.5–6.0 0.5–6.0 0.5–6.0 — 0.5–6.0 0.5–6.0 1.0–6.0 —<br />

2 0.5*–5.0* 0.5–6.0 0.5–6.0 1.0–6.0 — 1.0–6.0 1.0–6.0 3.0–6.0 —<br />

3 — — — — — — — — —<br />

09SQ 1 0.5*–4.5* 0.5–8.0 0.5–10.0 0.5–12.0 — 0.5–12.0 0.5–12.0 1.0–12.0 —<br />

2 0.5*–4.5* 0.5–8.0 0.5–10.0 1.0–12.0 — 1.0–12.0 1.0–12.0 3.0–12.0 —<br />

3 — — — — — — — — —<br />

10SQ 1 0.5*–4.5* 0.5–8.0 0.5–9.0 0.5–12.0 — 0.5–18.0 0.5–14.0 1.0–18.0 —<br />

2 0.5*–4.5* 0.5–8.0 0.5–9.0 1.0–12.0 — 1.0–18.0 1.0–14.0 2.0–18.0 —<br />

3 — — — — — — — — —<br />

*Special heater offering<br />

Notes:<br />

1. Coils available with 24 VAC magnetic or mercury contactors, load carrying P.E. switches, <strong>and</strong> P.E. switch with magnetic or mercury contactors.<br />

2. Available kW increments are by 0.5 from 0.5 kW to 8.0 kW <strong>and</strong> by 1.0 kW from 9.0 to 18.0 kW.<br />

3. Each stage will be equal in kW output.<br />

4. All heaters contain an auto thermal cutout <strong>and</strong> a manual reset cutout.<br />

5. The current amp draw for the heater elements is calculated by the formula below.<br />

6. Only two stages of electric reheat available with Trane controls.<br />

Fan Electrical Performance (PSC)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 115 VAC 277 VAC 347 VAC<br />

08SQ 1/3 5.5 2.5 1.8<br />

09SQ 1/3 5.5 2.5 1.8<br />

10SQ* 2 x 1/3 11.0 5.0 3.5<br />

Notes:<br />

1. Electric Heat Units - Units with Primary Voltage of 208/60/1,<br />

208/60/3 or 240/60/1 use 115 VAC fan motors.<br />

2. Electric Heat Units - Units with Primary Voltage of 277/60/1,<br />

480/60/1 or 480/60/3 use 277 VAC fan motors.<br />

3. Electric Heat Units - Units with Primary Voltage of 347/60/1 or<br />

575/60/3 use 347 VAC fan motors.<br />

4. Values are for st<strong>and</strong>ard, single-speed, permanent split capacitor<br />

type motors. Consult factory for non-st<strong>and</strong>ard motor<br />

performance.<br />

5. Motor amps for 10SQ are total amps for two motors.<br />

Fan Electrical Performance (ECM)<br />

Maximum Fan Motor Amperage (FLA)<br />

Fan Size HP 115 VAC 277 VAC<br />

08SQ 1/2 1.3 .7<br />

09SQ 1/2 5.0 2.7<br />

10SQ 2 x 1/2 7.5 4.0<br />

Formulas<br />

Minimum Circuit Ampacity (MCA) Equation<br />

• MCA = (motor amps + heater amps) x 1.25<br />

Maximum Overcurrent Protection (MOP) Equation<br />

• MOP = (2.25 x motor amps) + heater amps<br />

General Sizing Rules:<br />

• If MOP = 15, then fuse size = 15<br />

• If MOP = 19, then fuse size = 15 with one exception. If heater<br />

amps x 1.25 > 15, then fuse size = 20.<br />

• If MOP ≤ MCA, then choose next fuse size greater than MCA.<br />

• Control fusing not applicable.<br />

• St<strong>and</strong>ard Fuse Sizes: 15, 20, 25, 30, 35, 40, 45, 50, <strong>and</strong> 60.<br />

Useful formulas:<br />

Cfm x ATD<br />

kW =<br />

3145<br />

kW x 1000<br />

3φamps =<br />

Primary Voltage x √ 3<br />

ATD =<br />

kW x 3145<br />

Cfm<br />

kW = 1214 x L/s x ATD<br />

1φamps =<br />

ATD =<br />

kW<br />

1214 x L/s<br />

kW x 1000<br />

Primary Voltage<br />

<strong>VAV</strong>-PRC008-EN LHS 11


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—<br />

Electrical Data<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (PSC)<br />

Unit<br />

Cfm<br />

kW 08SQ 09SQ 10SQ<br />

0.5 228 377 440<br />

1 228 377 440<br />

1.5 228 377 440<br />

2 228 377 440<br />

2.5 244 377 440<br />

3 260 377 440<br />

3.5 276 377 440<br />

4 293 377 440<br />

4.5 309 377 440<br />

5 325 377 440<br />

5.5 341 377 440<br />

6 357 377 440<br />

6.5 — 403 440<br />

7 — 429 440<br />

7.5 — 455 467<br />

8 — 480 494<br />

9 — 532 547<br />

10 — 584 601<br />

11 — 635 655<br />

12 — 687 708<br />

13 — — 762<br />

14 — — 815<br />

15 — — 869<br />

16 — — 923<br />

17 — — 976<br />

18 — — 1030<br />

Minimum Unit Electric<br />

Heat Cfm Guidelines (ECM)<br />

Unit<br />

Cfm<br />

kW 08SQ 09SQ 10SQ<br />

0.5 128 377 480<br />

1 128 377 480<br />

1.5 128 377 480<br />

2 128 377 480<br />

2.5 159 377 480<br />

3 190 377 480<br />

3.5 221 377 480<br />

4 253 377 480<br />

4.5 284 377 480<br />

5 315 377 480<br />

5.5 346 377 480<br />

6 377 377 480<br />

6.5 — 403 480<br />

7 — 429 480<br />

7.5 — 455 505<br />

8 — 480 530<br />

9 — 532 580<br />

10 — 584 630<br />

11 — 635 680<br />

12 — 687 730<br />

13 — — 779<br />

14 — — 829<br />

15 — — 879<br />

16 — — 929<br />

17 — — 979<br />

18 — — 1029<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (PSC)<br />

Unit<br />

L/s<br />

kW 08SQ 09SQ 10SQ<br />

0.5 108 178 208<br />

1 108 178 208<br />

1.5 108 178 208<br />

2 108 178 208<br />

2.5 115 178 208<br />

3 123 178 208<br />

3.5 130 178 208<br />

4 138 178 208<br />

4.5 146 178 208<br />

5 153 178 208<br />

5.5 161 178 208<br />

6 168 178 208<br />

6.5 — 190 208<br />

7 — 202 208<br />

7.5 — 215 220<br />

8 — 227 233<br />

9 — 251 258<br />

10 — 275 284<br />

11 — 300 309<br />

12 — 324 334<br />

13 — — 360<br />

14 — — 385<br />

15 — — 410<br />

16 — — 435<br />

17 — — 461<br />

18 — — 486<br />

Minimum Unit Electric<br />

Heat L/s Guidelines (ECM)<br />

Unit<br />

L/s<br />

kW 08SQ 09SQ 10SQ<br />

0.5 60 178 227<br />

1 60 178 227<br />

1.5 60 178 227<br />

2 60 178 227<br />

2.5 75 178 227<br />

3 90 178 227<br />

3.5 104 178 227<br />

4 119 178 227<br />

4.5 134 178 227<br />

5 149 178 227<br />

5.5 163 178 227<br />

6 178 178 227<br />

6.5 — 190 227<br />

7 — 202 227<br />

7.5 — 215 238<br />

8 — 227 250<br />

9 — 251 274<br />

10 — 276 297<br />

11 — 300 321<br />

12 — 324 345<br />

13 — — 368<br />

14 — — 391<br />

15 — — 415<br />

16 — — 438<br />

17 — — 462<br />

18 — — 486<br />

LHS 12<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Discharge Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

08SQ 8 170 80 54 49 45 37 28 22 55 53 47 40 33 31 58 62 55 45 41 37 58 63 58 49 46 40<br />

250 118 57 52 48 42 33 27 58 56 50 43 36 33 60 63 56 47 42 38 60 64 59 50 46 41<br />

330 156 60 56 52 46 37 31 61 59 54 47 39 36 63 64 58 50 43 39 63 65 60 52 46 42<br />

410 193 63 60 56 50 41 36 64 62 57 50 42 38 65 65 59 52 44 41 65 67 62 53 46 43<br />

480 227 66 64 60 53 44 40 67 65 60 54 45 41 68 66 61 54 45 42 68 68 63 55 46 44<br />

09SQ 8x14 350 165 58 57 54 51 45 41 59 58 58 52 45 41 60 60 58 53 47 42 61 61 58 54 48 44<br />

500 236 62 62 59 57 51 49 62 63 62 57 51 49 64 65 62 58 53 49 66 66 62 59 54 51<br />

700 330 66 68 65 64 59 59 67 69 66 64 59 59 70 71 66 65 60 59 72 73 68 66 61 61<br />

800 378 70 71 67 67 62 62 70 71 68 67 62 62 71 72 68 67 63 62 73 74 70 68 64 64<br />

890 420 72 73 69 69 65 64 72 73 70 69 65 64 73 74 70 69 65 64 74 75 71 70 66 66<br />

10SQ 8x14 440 208 57 57 54 50 43 37 59 58 54 51 44 39 61 59 57 51 46 40 63 62 58 53 47 41<br />

700 330 60 59 57 53 47 43 61 60 57 54 48 44 63 62 59 55 49 45 66 63 65 56 51 46<br />

900 425 62 63 60 56 50 47 64 64 61 58 53 50 66 65 62 59 53 51 68 66 66 60 55 51<br />

1100 519 66 67 64 62 57 55 68 68 65 62 57 56 69 69 66 63 58 56<br />

1300 613 70 71 68 65 61 60 71 71 68 66 61 60<br />

1500 708 72 73 70 68 64 63 73 73 70 69 64 63<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

Radiated Sound Power (dB)<br />

Radiated Sound Power (dB)<br />

Fan Inlet 0.5" ∆Ps 1.0" ∆Ps 2.0" ∆Ps 3.0" ∆Ps<br />

Size Size Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7<br />

08SQ 8 170 80 54 49 45 37 28 22 55 53 47 40 33 31 58 62 55 45 41 37 58 63 58 49 46 40<br />

250 118 57 52 48 42 33 27 58 56 50 43 36 33 60 63 56 47 42 38 60 64 59 50 46 41<br />

330 156 60 56 52 46 37 31 61 59 54 47 39 36 63 64 58 50 43 39 63 65 60 52 46 42<br />

410 193 63 60 56 50 41 36 64 62 57 50 42 38 65 65 59 52 44 41 65 67 62 53 46 43<br />

480 227 66 64 60 53 44 40 67 65 60 54 45 41 68 66 61 54 45 42 68 68 63 55 46 44<br />

09SQ 8x14 350 165 58 53 47 39 32 27 59 56 56 43 37 34 62 63 61 52 45 42 64 65 62 54 49 45<br />

500 236 62 57 51 44 36 30 63 59 57 46 39 36 65 64 62 53 46 44 67 66 63 55 50 47<br />

700 330 68 63 56 50 40 33 68 64 58 50 42 39 69 65 62 53 47 46 71 67 64 56 51 50<br />

800 378 70 66 58 52 44 38 70 66 59 52 44 41 71 67 63 55 48 47 72 69 65 57 52 51<br />

890 420 72 67 59 54 46 40 72 67 60 54 46 42 73 69 64 56 49 48 74 71 67 59 53 51<br />

10SQ 8x14 440 208 61 56 49 42 33 27 62 59 52 45 40 38 65 60 60 50 46 46 66 63 61 58 50 49<br />

700 330 62 58 51 45 37 31 64 61 55 48 43 41 68 64 62 53 48 48 70 66 67 57 52 51<br />

900 425 66 62 55 48 41 34 68 63 56 50 44 42 70 66 64 55 50 50 72 68 68 58 54 52<br />

1100 519 71 65 58 53 46 42 72 68 65 57 52 52 73 70 69 60 55 54<br />

1300 613 74 69 65 58 53 52 76 72 69 61 56 55<br />

1500 708 76 71 64 60 54 52 78 74 70 63 58 57<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ard ARI 880-98.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

Fan Only Sound Power (dB)<br />

Outlet Discharge Sound Power (dB) Radiated Sound Power (dB)<br />

Fan Static Octave B<strong>and</strong> Octave B<strong>and</strong>s<br />

Size (in. wg) Cfm L/s 2 3 4 5 6 7 2 3 4 5 6 7<br />

08SQ 170 80 56 49 51 46 42 38 53 47 44 36 26 21<br />

0.25 250 118 58 52 54 50 46 43 56 51 48 41 30 23<br />

(63 Pa) 330 156 62 56 58 54 50 49 59 56 52 46 36 27<br />

410 193 65 59 63 58 56 56 60 59 55 49 40 34<br />

480 227 68 62 65 62 60 59 63 62 58 53 44 37<br />

09SQ 350 165 60 56 54 51 46 41 57 51 44 38 24 20<br />

0.25 500 236 64 60 59 57 52 49 61 55 48 42 30 23<br />

(63 Pa) 700 330 69 66 65 64 59 58 66 61 55 49 38 29<br />

800 378 72 68 68 67 62 61 68 64 58 52 42 32<br />

890 420 74 71 70 70 65 64 70 67 60 55 45 39<br />

10SQ 440 208 58 57 54 51 44 38 62 57 48 41 29 22<br />

700 330 60 60 58 56 49 45 64 60 51 45 33 24<br />

0.25 900 425 62 63 61 59 53 51 66 62 54 48 36 26<br />

(63 Pa) 1100 519 65 66 64 62 57 55 68 64 57 52 40 30<br />

1300 613 68 69 66 66 61 59 71 66 60 55 44 33<br />

1500 708 70 72 69 69 64 63 74 69 62 58 48 36<br />

1. All data are measured in accordance with Industry St<strong>and</strong>ad ARI 880-98.<br />

2. All sound power levels. dB re: 10 -12 Watts.<br />

<strong>VAV</strong>-PRC008-EN LHS 13


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Sound Noise Criteria (NC)<br />

Fan <strong>and</strong> 100% Primary<br />

Radiated<br />

Discharge<br />

NC/NC with<br />

NC Level (∆Ps) Attenuator (∆Ps)<br />

Fan Inlet Fan 0.5" 1.0" 2.0" 3.0" Fan 0.5" 1.0" 2.0" 3.0"<br />

Size Size Cfm L/s Only (127 Pa) (254 Pa) (508 Pa) (762 Pa) Only (127 Pa) (254 Pa) (508 Pa) (762 Pa)<br />

08SQ 8 170 80 — — — 19 20 17/— 19/— 21/19 32/30 34/31<br />

250 118 — — — 20 21 22/19 22/19 25/22 34/31 35/32<br />

330 156 — — 15 21 22 26/23 26/23 29/26 35/32 36/34<br />

410 193 20 16 19 22 25 30/26 31/27 32/30 36/34 38/36<br />

480 227 23 21 22 24 26 34/30 35/32 36/34 37/35 39/37<br />

09SQ 8x14 350 165 — — — 16 17 19/17 21/20 31/27 3633 37/34<br />

500 236 16 19 20 22 24 24/22 26/25 32/29 37/34 38/35<br />

700 330 24 26 27 30 32 31/29 34/32 35/32 37/34 39/36<br />

800 378 26 30 30 31 34 35/31 37/35 37/35 38/36 40/38<br />

890 420 30 32 32 34 35 38/35 38/37 38/37 40/39 42/40<br />

10SQ 8x14 440 208 — — — 15 19 26/24 25/21 29/25 35/29 36/30<br />

700 330 16 15 16 19 20 30/27 27/24 31/27 37/31 42/36<br />

900 425 20 20 21 22 24 32/30 32/28 34/30 39/34 44/37<br />

1100 519 24 25 26 27 35/32 36/34 40/37 45/39<br />

1300 613 27 30 30 37/40 40/37 45/40<br />

1500 708 31 32 32 40/39 42/40 46/42<br />

1. “—” represents NC levels below NC 15.<br />

2. NC Values are calculated using modeling assumptions based on ARI 885-98-02 Addendum.<br />

3. Where ∆Ps is inlet static pressure minus discharge static pressure.<br />

ARI 885-98-02add DISCHARGE TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Small Box (< 300 CFM) -24 -28 -39 -53 -59 -40<br />

Medium Box (300-700 CFM) -27 -29 -40 -51 -53 -39<br />

Large Box (> 700 CFM) -29 -30 -41 -51 -52 -39<br />

Subtract from terminal unit sound power to determine discharge sound<br />

pressure in the space.<br />

ARI 885-98 RADIATED TRANSFER FUNCTION ASSUMPTIONS:<br />

Octave B<strong>and</strong><br />

2 3 4 5 6 7<br />

Type 2- Mineral Fiber Insulation -18 -19 -20 -26 -31 -36<br />

Total dB reduction -18 -19 -20 -26 -31 -36<br />

Subtract from terminal unit sound power to determine radiated sound<br />

pressure in the space.<br />

LHS 14<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Discharge Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet 1.5 Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

08SQ 5, 6, 8 500 236 68 63 66 63 60 60<br />

09SQ 6, 8, 8x14 800 378 72 68 68 67 62 61<br />

10SQ 8, 8x14 1400 661 69 70 68 68 62 61<br />

Radiated Sound Power (dB)<br />

Fan Only<br />

ARI Conditions<br />

Fan Inlet 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s 2 3 4 5 6 7<br />

08SQ 5, 6, 8 500 236 64 62 59 54 45 38<br />

09SQ 6, 8, 8x14 800 378 68 64 58 52 42 32<br />

10SQ 8, 8x14 1400 661 72 68 61 56 46 35<br />

Radiated Sound Power (dB)<br />

Fan <strong>and</strong> Valve<br />

ARI Conditions<br />

Fan Inlet Fan Fan Prim. Prim. 1.5" Inlet Pressure (381 Pa)<br />

Size Size Cfm L/s Cfm L/s 2 3 4 5 6 7<br />

08SQ 5 500 236 250 118 67 64 58 53 44 40<br />

6 500 236 400 189 70 65 60 54 44 41<br />

8 500 236 500 236 68 66 61 54 46 42<br />

09SQ 6 800 448 400 189 71 68 61 54 45 42<br />

8 800 448 700 330 71 67 60 53 45 44<br />

8x14 800 448 800 378 70 66 61 53 46 44<br />

10SQ 8 1400 661 700 330 72 69 63 57 49 49<br />

8x14 1400 661 1400 661 76 70 63 59 52 48<br />

Notes:<br />

1. All sound data rated in accordance with current Industry St<strong>and</strong>ard<br />

ARI 880, version 1998.<br />

2. All sound power levels, dB re: 10 -12 Watts.<br />

<strong>VAV</strong>-PRC008-EN LHS 15


Fan-Powered<br />

Low-Height<br />

Series<br />

Performance<br />

Data—<br />

Acoustics<br />

Inlet Attenuator Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Matte-faced <strong>and</strong> foil-faced insulation, solid double-wall**<br />

08SQ, 09SQ 0 0 0 1 0 0 -1 -3 -3 -7 -7 -6<br />

10SQ 2 2 2 2 2 2 -2 -3 -5 -10 -12 -12<br />

Closed-cell insulation<br />

08SQ, 09SQ 0 1 0 0 0 0 -1 -1 -1 -4 -6 -4<br />

10SQ 2 2 2 2 2 2 -1 -1 -2 -5 -9 -9<br />

*Add to sound power, a negative effect represents a sound reduction, a positive effect represents a<br />

sound increase<br />

**Note: Attenuators on double-wall units have 1" foil-faced insulation. All edges are encapsulated<br />

with metal.<br />

Cabinet Lining Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Solid double-wall<br />

08SQ, 09SQ 0 0 0 0 0 0 -1 -2 2 11 17 19<br />

10SQ 0 0 0 0 0 0 1 0 2 9 14 16<br />

Closed-cell insulation<br />

08SQ, 09SQ 0 0 0 0 0 0 2 3 6 7 8 12<br />

10SQ 0 0 0 0 0 0 2 3 4 7 6 11<br />

*Add to sound power, a negative effect represents a sound reduction, a positive effect represents a<br />

sound increase<br />

Heating Coil Appurtenance Effects<br />

Discharge Sound Effect* (dB) Radiated Sound Effect* (dB)<br />

Fan 2 3 4 5 6 7 2 3 4 5 6 7<br />

Hot Water Coil**<br />

08SQ, 09SQ 1 1 1 1 2 1 1 2 2 3 7 12<br />

10SQ 1 2 2 1 2 1 1 1 1 2 4 8<br />

Electric Heat**<br />

08SQ, 09SQ -1 -2 -1 -1 -1 -1 -3 -1 1 1 7 7<br />

10SQ 1 0 -1 -1 -1 0 2 4 3 4 6 9<br />

* Add to sound power, a negative effect represents a sound reduction, a positive effect represents<br />

a sound increase<br />

**Radiated effect applies to “fan only” sound only. Do not apply to fan + valve sound.<br />

LHS 16<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

LOW-HEIGHT SERIES COOLING ONLY (LSCF) FAN SIZES 08SQ & 09SQ<br />

FAN<br />

SIZE<br />

08SQ<br />

09SQ<br />

09SQ<br />

INLET SIZE INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

Unit Wt<br />

AVAILABILITY H<br />

W<br />

L<br />

D Lbs<br />

NOMINAL Ø (inches) NOMINAL Ø (mm)<br />

A<br />

B<br />

(kg)<br />

127, 152, 203 11.00" (279 mm) 26.00" (660 mm) 40.00" (1016 mm)<br />

18.00" (457 mm) 10.00" (254 mm) 4.00" (102 mm) 86 (39)<br />

6, 8<br />

152, 203<br />

96 (44)<br />

8 x 14<br />

203 x 355<br />

4.50" (114 mm) 105 (47)<br />

Optional Attenuator<br />

Field Installed<br />

4.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

D<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm) m<br />

32.00"<br />

(813 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

18.00"<br />

(457 mm)<br />

4.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

Air<br />

Valve<br />

4.00<br />

17.50"<br />

(445 mm)<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm x 356 mm)<br />

Rectangular Damper Detail<br />

5.00"<br />

(127 mm)<br />

L<br />

4.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

Fan Size<br />

Filter Size<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

08SQ 10" x 10" x 1"<br />

09SQ (254 mm x 254 mm x 25 mm)<br />

10 (4.5)<br />

7.<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. Flanged discharge outlet accepts up to a 1" (25 mm) duct flange.<br />

Airflow<br />

Discharge Outlet<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

TOP VIEW<br />

4. Control box enclosure provided with all control types.<br />

W<br />

5. Air valve centered between top <strong>and</strong> bottom panel.<br />

6. All high & low voltage controls have same-side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

7. Flange adds 2" to width <strong>and</strong> length of unit.<br />

10.50"<br />

(267 mm)<br />

B<br />

H<br />

DISCHARGE VIEW<br />

A<br />

1.00"<br />

(25 mm)<br />

<strong>VAV</strong>-PRC008-EN LHS 17


Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

LOW-HEIGHT SERIES COOLING (LSCF) FAN SIZE 10SQ<br />

FAN INLET SIZE INLET SIZE<br />

SIZE<br />

AVAILABILITY<br />

NOMINAL Ø (INCHES) NOMINAL Ø (mm)<br />

10SQ<br />

10SQ<br />

8<br />

8 x 14<br />

203<br />

203 x 356<br />

DISCHARGE DIMENSIONS<br />

UNIT WT<br />

H W L<br />

C<br />

D WT LBS<br />

A<br />

B<br />

(kg)<br />

48.00" (1219 mm) 36.00" (914 mm) 38.00" (965 mm) 10.00" (254 mm) 4.00" (102 mm) 20.00" (508 mm) 120 (54)<br />

17.50" (445 mm) 130 (59)<br />

Optional Attenuator<br />

Field Installed<br />

2.<br />

Optional Attenuator<br />

ed<br />

8.<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

Fan <strong>Controls</strong> located in Enclosure<br />

32.00"<br />

32.00"<br />

(813 mm) (813 mm)<br />

18.00"<br />

(457 mm)<br />

Optional Attenuator<br />

Field Installed<br />

D<br />

Airflow<br />

Plenum Inlet<br />

Primary<br />

Airflow<br />

Airflow<br />

Plenum Inlet<br />

Optional Attenuator<br />

Field Installed<br />

Rectangular Damper Detail<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm x 356 mm)<br />

17.50"<br />

(445 mm)<br />

5.00"<br />

(127 mm)<br />

L<br />

9.<br />

Fan Size<br />

10SQ<br />

Filter Size<br />

10" x 16" x 1"<br />

(254 mm x 406 mm x 25 mm)<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

20 (9)<br />

W<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

Airflow<br />

Discharge Outlet<br />

2. Filter location with optional Attenuator.<br />

3. Attenuator-factory assembled, field installed.<br />

4. Air valve centered between top <strong>and</strong> bottom panel.<br />

TOP VIEW<br />

5. Heating coil uninsulated. External insulation may be field<br />

supplied <strong>and</strong> installed as required.<br />

6. All high & low voltage controls have same-side NEC jumback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

7. Bottom Access panel st<strong>and</strong>ard.<br />

H<br />

B<br />

10.50"<br />

(267 mm)<br />

8. Control box enclosure provided with all control types.<br />

9. Flange adds 2" to width <strong>and</strong> length of unit.<br />

A<br />

LHS 18<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

LOW-HEIGHT SERIES HOT WATER (LSWF) FAN SIZES 08SQ & 09SQ<br />

FAN<br />

SIZE<br />

08SQ<br />

09SQ<br />

09SQ<br />

INLET SIZE<br />

AVAILABILITY<br />

NOMINAL Ø<br />

INLET SIZE<br />

NOMINAL Ø (mm)<br />

6, 8 152, 203<br />

8 x 14 203 x 355<br />

H<br />

DISCHARGE DIMENSIONS<br />

W<br />

L<br />

A<br />

B<br />

26.00" (660 mm) 40.00" (1016 mm)<br />

18.00" (457 mm)<br />

Unit Wt<br />

D Lbs<br />

(kg)<br />

4.00" (102 mm) 95 (43)<br />

105 (48)<br />

4.50" (114 mm) 114 (52)<br />

Optional Attenuator<br />

Field Installed<br />

4.<br />

Actuator, Controller an<br />

Fan <strong>Controls</strong> located in Enc<br />

32.00"<br />

(813 mm)<br />

4.<br />

D<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

18.00"<br />

(457 mm)<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

Air<br />

Valve<br />

4.00<br />

(102 mm)<br />

17.50"<br />

(445 mm)<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm x 356 mm)<br />

Rectangular Damper Detail<br />

5.00"<br />

(127 mm)<br />

L<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

Fan Size<br />

08SQ<br />

09SQ<br />

Filter Size<br />

10" x 10" x 1"<br />

(254 mm x 254 mm x 25 mm)<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

10 (4.5)<br />

8.<br />

TOP VIEW<br />

Water<br />

Coil<br />

6.80"<br />

(173 mm)<br />

<strong>NOTE</strong>S:<br />

10.50"<br />

(267 mm)<br />

Airflow<br />

Discharge Outlet<br />

A<br />

DISCHARGE VIEW<br />

W<br />

B<br />

1.00"<br />

(25 mm)<br />

<strong>VAV</strong>-PRC008-EN LHS 19<br />

H<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. Flanged discharge outlet accepts up to a 1" (25 mm)<br />

duct flange.<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

4. Control box enclosure provided with all control types.<br />

5. Air valve centered between top <strong>and</strong> bottom panel.<br />

6. Heating coil uninsulated. External insulation may be field<br />

supplied <strong>and</strong> installed as required.<br />

7. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror<br />

image optional.)<br />

8. Flange adds 2" to width <strong>and</strong> length of unit.


Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

LOW-HEIGHT SERIES HOT WATER (LSWF) FAN SIZE 10SQ<br />

FAN<br />

INLET SIZE<br />

INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

UNIT WT<br />

SIZE<br />

AVAILABILITY AVAILABILITY H<br />

W<br />

L<br />

C<br />

D WT LBS<br />

NOMINAL Ø (INCHES) NOMINAL Ø (mm)<br />

A<br />

B<br />

(kg)<br />

10SQ<br />

10SQ<br />

8<br />

8 x 14<br />

203<br />

203 x 356<br />

11.00" (279 mm) 48.00" (1219 mm) 36.00" (914 mm) 38.00" (965 mm) 10.00" (254 mm) 4.00" (102 mm) 20.00" (508 mm) 136 (62)<br />

17.50" (445 mm) 146 (66)<br />

lled<br />

uator<br />

alled<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

32.00"<br />

32.00"<br />

(813 mm) (813 mm)<br />

2.<br />

18.00"<br />

(457 mm)<br />

Optional Attenuator<br />

Field Installed<br />

D<br />

Airflow<br />

Plenum Inlet<br />

Primary<br />

Airflow<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

Rectangular Damper Detail<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm x 356 mm)<br />

17.50"<br />

(445 mm)<br />

9.<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

L<br />

5.00"<br />

(127 mm)<br />

Fan Size<br />

Filter Size<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

10SQ<br />

10" x 16" x 1"<br />

(254 mm x 406 mm x 25 mm)<br />

20 (9)<br />

6.80"<br />

(173 mm)<br />

<strong>NOTE</strong>S:<br />

W<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. Filter location with optional Attenuator.<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

3. Attenuator-factory assembled, field installed.<br />

4. Air valve centered between top <strong>and</strong> bottom panel.<br />

5. Heating coil uninsulated. External insulation may be field<br />

supplied <strong>and</strong> installed as required.<br />

6. All high & low voltage controls have same-side NEC<br />

jumpback clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror<br />

image optional.)<br />

7. Bottom Access panel st<strong>and</strong>ard.<br />

8. Control box enclosure provided with all control types.<br />

10.50"<br />

(267 mm)<br />

B<br />

H<br />

9. Flange adds 2" to width <strong>and</strong> length of unit.<br />

A<br />

DISCHARGE VIEW<br />

LHS 20<br />

<strong>VAV</strong>-PRC008-EN


H<br />

Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR LOW-HEIGHT SERIES 1-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

L<br />

H<br />

W<br />

08SQ .875" (22 mm) O.D. 7.75" (197 mm)<br />

1.50" (38 mm)<br />

18.00" (457 mm)<br />

10.00" (254 mm)<br />

6.80" (173 mm)<br />

09SQ<br />

10SQ<br />

38.00" (965 mm)<br />

W<br />

3.40"<br />

(86 mm)<br />

INLET<br />

B<br />

AIR FLOW<br />

7.81"<br />

(198 mm)<br />

A<br />

AIR FLOW<br />

ACCESS PANEL<br />

A<br />

B<br />

Fan Size<br />

08SQ<br />

09SQ<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

0.07 (.28) 10.4 (4.7)<br />

1.00"<br />

(25 mm)<br />

10SQ<br />

0.15 (.59) 16.4 (7.4)<br />

2.00"<br />

(51 mm)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. L.H. coil<br />

connections shown, R.H. opposite.<br />

2. Coil furnished with stub sweat connections.<br />

3. Coils can be field-rotated for opposite connections. Note: Water inlet is always<br />

the bottom connection.<br />

4. Access panel is st<strong>and</strong>ard.<br />

<strong>VAV</strong>-PRC008-EN LHS 21


H<br />

Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

COIL INFORMATION FOR LOW-HEIGHT SERIES 2-ROW COIL<br />

FAN<br />

SIZE<br />

COIL<br />

CONNECTION<br />

A<br />

B<br />

L<br />

H<br />

W<br />

08SQ<br />

.875" (22 mm) O.D.<br />

6.25" (159 mm)<br />

2.00 (51 mm)<br />

18.00" (457 mm)<br />

10.00" (254 mm)<br />

6.75" (171 mm)<br />

09SQ<br />

10SQ<br />

38.00" (965 mm)<br />

L<br />

W<br />

3.40"<br />

(86 mm)<br />

INLET<br />

B<br />

7.81"<br />

(198 mm)<br />

A<br />

AIR FLOW<br />

AIR FLOW<br />

INLET<br />

A<br />

B<br />

ACCESS PANEL<br />

Fan Size<br />

INTERNAL<br />

VOLUME<br />

GAL (L)<br />

OPERATING<br />

WEIGHT<br />

LBS (KG)<br />

1.00"<br />

(25 mm)<br />

08SQ<br />

09SQ<br />

0.11<br />

(.45)<br />

11.1<br />

(5.0)<br />

2.00"<br />

(51 mm)<br />

10SQ<br />

0.24<br />

(.94)<br />

23.0<br />

(10.4)<br />

<strong>NOTE</strong>S:<br />

1. Location of coil connections is determined by facing air stream. L.H. coil<br />

connections shown, R.H. opposite.<br />

2. Coil furnished with stub sweat connections.<br />

3. Coils can be field-rotated for opposite connections. Note: Water inlet is<br />

always the bottom connection.<br />

4. Access panel is st<strong>and</strong>ard.<br />

LHS 22<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

LOW-HEIGHT SERIES ELECTRIC HEAT (LSEF) FAN SIZES 08SQ & 09SQ<br />

FAN INLET SIZE INLET SIZE<br />

DISCHARGE DIMENSIONS<br />

Unit Wt<br />

SIZE AVAILABILITY AVAILABILITY H<br />

W<br />

L<br />

D<br />

Lbs<br />

NOMINAL Ø (INCHES) NOMINAL Ø (mm)<br />

A<br />

B<br />

(kg)<br />

08SQ 5, 6, 8 127, 152, 203 11.00" (279 mm) 26.00" (660 mm) 40.00" (1016 mm) 14.00" (356 mm) 9.00" (229 mm) 4.00" (102 mm) 101 (45.8)<br />

09SQ 6, 8 152, 203<br />

09SQ 8 x 14 203 x 355<br />

4.50" (114 mm) 120 (54.4)<br />

tional Attenuator<br />

Field Installed<br />

4.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

32.00"<br />

(813 mm)<br />

4.<br />

D<br />

Primary<br />

Airflow<br />

Valve 5"<br />

6.50"<br />

(165 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Airflow<br />

Plenum Inlet<br />

18.00"<br />

(457 mm)<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

Air<br />

Valve<br />

4.00<br />

17.50"<br />

(445 mm)<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm x 356 mm)<br />

Rectangular Damper Detail<br />

5.00"<br />

(127 mm)<br />

L<br />

4.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

8.<br />

Fan Size<br />

08SQ<br />

09SQ<br />

Filter Size<br />

10" x 10" x 1"<br />

(254 mm x 254 mm x 25 mm)<br />

Atten Wt<br />

Lbs<br />

(kg)<br />

10 (4.5)<br />

20.00"<br />

(508 mm)<br />

Electric<br />

Heater<br />

TOP VIEW<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for unducted installations.<br />

2. Flanged discharge outlet accepts up to 1" (25 mm) duct flange.<br />

3. Bottom Access panel st<strong>and</strong>ard.<br />

4. Control box enclosure provided with all control types.<br />

Airflow<br />

Discharge Outlet<br />

5. Air valve centered between top <strong>and</strong> bottom panel.<br />

6. Heating coil uninsulated. External insulation may be field supplied <strong>and</strong><br />

installed as required.<br />

7. All hight & low voltage controls have same-side NEC jumpback clearance.<br />

(Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

10.50"<br />

(267 mm)<br />

B<br />

H<br />

8. Flange adds 2" to width <strong>and</strong> length of unit.<br />

A<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN LHS 23


Fan-Powered<br />

Low-Height<br />

Series<br />

Dimensional<br />

Data<br />

LOW-HEIGHT SERIES ELECTRIC (LSEF) FAN SIZE 10SQ<br />

FAN INLET SIZE INLET SIZE<br />

SIZE AVAILABILITY AVAILABILITY<br />

NOMINAL Ø (INCHES) NOMINAL Ø (mm)<br />

10SQ 8<br />

203<br />

10SQ 8 x14<br />

203 x 356<br />

H<br />

W<br />

11.00" (279 mm) 48.00" (1219 mm)<br />

DISCHARGE DIMENSIONS<br />

L<br />

A<br />

B<br />

36.00" (914 mm) 19.00" (483 mm) 9.50" (241 mm)<br />

UNIT WT<br />

C D WT LBS<br />

(kg)<br />

17.50" (445 mm) 155 (70.3)<br />

Optional Attenuator<br />

Field Installed<br />

Field Installed<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

8.<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

32.00"<br />

32.00"<br />

(813 mm) (813 mm)<br />

Optional Attenuator<br />

Field Installed<br />

Optional Attenuator<br />

Field Installed<br />

18.00"<br />

(457 mm)<br />

D<br />

Airflow<br />

Plenum Inlet<br />

Primary<br />

Airflow<br />

C<br />

Airflow<br />

Plenum Inlet<br />

Rectangular Dam<br />

Rectangular Damper<br />

8" x 14"<br />

(203 mm x 356 mm)<br />

8.<br />

17.50"<br />

(445 mm)<br />

Actuator, Controller <strong>and</strong><br />

Fan <strong>Controls</strong> located in Enclosure<br />

W<br />

L<br />

5.00"<br />

(127 mm)<br />

9.<br />

Fan Size<br />

10SQ<br />

Filter Size<br />

10" x 16" x 1"<br />

(254 mm x 406 mm x 25 mm)<br />

Atten Wt (Qty 2)<br />

Lbs<br />

(kg)<br />

20 (9.1)<br />

24.00"<br />

(610 mm)<br />

Terminal Box<br />

Heater<br />

Plenum Area<br />

11.00"<br />

(279 mm)<br />

8.00"<br />

(203 mm)<br />

<strong>NOTE</strong>S:<br />

1. Allow a minimum 6" (152 mm) plenum inlet clearance for<br />

unducted installations.<br />

2. Filter location with optional Attenuator.<br />

3. Attenuator-factory assembled, field installed.<br />

Airflow<br />

Discharge Outlet<br />

TOP VIEW<br />

4. Air valve centered between top <strong>and</strong> bottom panel.<br />

5. Heating coil uninsulated. External insulation may be field supplied<br />

<strong>and</strong> installed as required.<br />

6. All high & low voltage controls have same-side NEC jumpback<br />

clearance. (Left-h<strong>and</strong> shown, right-h<strong>and</strong>/mirror image optional.)<br />

7. Bottom Access panel st<strong>and</strong>ard.<br />

8. Control box enclosure provided with all control types.<br />

H<br />

B<br />

10<br />

(267<br />

9. Flange adds 2" to width <strong>and</strong> length of unit.<br />

LHS 24<br />

A<br />

DISCHARGE VIEW<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Mechanical<br />

Specifications<br />

MODELS LSCF, LSWF,<br />

<strong>and</strong> LSEF<br />

Low-height series fan-powered<br />

terminal units.<br />

LSCF – Cooling Only<br />

LSWF – With Hot Water Coil<br />

LSEF – With Electric Coil<br />

CASING<br />

22-gage galvanized steel. Hanger<br />

brackets, bottom access, <strong>and</strong> plenum<br />

inlet filter are provided as st<strong>and</strong>ard.<br />

AGENCY LISTING<br />

The unit is UL <strong>and</strong> Canadian UL<br />

Listed as a room air terminal unit.<br />

Control # 9N65.<br />

ARI 880 Certified.<br />

INSULATION<br />

1/2" (12.7 mm) Matte-faced<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 1.9. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There are<br />

no exposed edges of insulation<br />

(complete metal encapsulation).<br />

st<strong>and</strong>ards as well as bacteriological<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

metal encapsulation).<br />

1" (25.4 mm) Double-wall<br />

Insulation—The interior surface of the<br />

unit casing is acoustically <strong>and</strong><br />

thermally lined with a 1-inch, 1.0 lb./ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with high-density<br />

facing. The insulation R-value is 3.8. The<br />

insulation is UL listed <strong>and</strong> meets NFPA-<br />

90A <strong>and</strong> UL 181 st<strong>and</strong>ards. The<br />

insulation is covered by an interior<br />

liner made of 26-gage galvanized steel.<br />

All wire penetrations are covered by<br />

grommets. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

3/8" (9.5 mm) Closed-cell<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 3/8-inch, 4.4 lb/ft 3<br />

(9.5 mm, 70.0 kg/m 3 ) closed-cell<br />

insulation. The insulation is UL listed<br />

<strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

st<strong>and</strong>ards. The insulation has an<br />

R-value of 1.4. There are no exposed<br />

edges of insulation (complete metal<br />

encapsulation).<br />

PRIMARY AIR VALVE<br />

Air Valve Round—The primary air<br />

inlet connection is an 18-gage<br />

galvanized steel cylinder sized to fit<br />

st<strong>and</strong>ard round duct. A multiple-point,<br />

averaging flow sensing ring is<br />

provided with balancing taps for<br />

measuring +/-5% of unit cataloged<br />

airflow. An airflow-versus-pressure<br />

differential calibration chart is<br />

provided. The damper blade is<br />

constructed of a closed-cell foam seal<br />

that is mechanically locked between<br />

two 22-gage galvanized steel disks. The<br />

damper blade assembly is connected<br />

to a cast zinc shaft supported by selflubricating<br />

bearings. The shaft is cast<br />

with a damper position indicator. The<br />

valve assembly includes a mechanical<br />

stop to prevent over-stroking. At 4.0 in.<br />

wg, air valve leakage does not exceed<br />

1% of cataloged airflow.<br />

Air Valve Rectangular—Inlet collar is<br />

constructed of 22-gage galvanized<br />

steel sized to fit st<strong>and</strong>ard rectangular<br />

duct. An integral multiple-point,<br />

averaging flow-sensing ring provides<br />

primary airflow measurement within +/<br />

-5% of unit cataloged airflow. Typical<br />

inlet conditions: flex duct <strong>and</strong> 90° inlets<br />

to the damper. Damper is 22-gage<br />

galvanized steel with polyolefin foam<br />

seal. The damper blade assembly is<br />

supported by self-lubricating bearings.<br />

The shaft is cast with a damper<br />

position indicator. The valve assembly<br />

includes a mechanical stop to prevent<br />

over-stroking. At 3.0 in. wg, air valve<br />

leakage does not exceed 44 cfm<br />

(21 L/s).<br />

Fan–Inlet Combinations:<br />

LSXF<br />

Inlet 08Q 09SQ 10SQ<br />

5" X<br />

6" X X<br />

8" X X X<br />

8x14" X X<br />

FAN MOTOR<br />

PSC—Single-speed, direct-drive,<br />

permanent split capacitor type.<br />

Thermal overload protection provided.<br />

Motors will be designed specifically for<br />

use with an open SCR. Motors will be<br />

single-speed with st<strong>and</strong>ard SCR for<br />

speed control. Motors will<br />

accommodate anti-backward rotation<br />

at start up. Motor <strong>and</strong> fan assembly is<br />

isolated from terminal unit.<br />

ECM—Electrically Commutated Motor<br />

is desinged for high-efficient operation<br />

with over 70% efficiency throughout<br />

the operating range.<br />

FAN SPEED CONTROL<br />

Variable Speed Control Switch<br />

(SCR)—The SCR speed control device<br />

is provided as st<strong>and</strong>ard <strong>and</strong> allows the<br />

operator infinite fan speed adjustment<br />

so the fan output may be modified to<br />

achieve exact cfm requirements.<br />

TRANSFORMER<br />

The 50 VA transformer is factoryinstalled<br />

in the fan control box to<br />

provide 24 VAC for controls.<br />

DISCONNECT SWITCH<br />

1" (25.4 mm) Matte-faced<br />

Insulation—The interior surface of<br />

the unit casing is acoustically <strong>and</strong><br />

thermally lined with 1-inch, 1.0 lb/ft 3<br />

(25.4 mm, 16.0 kg/m 3 ) composite<br />

density glass fiber with a high-density<br />

facing. The insulation R-Value is 3.85.<br />

The insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards. There<br />

are no exposed edges of insulation<br />

(complete metal encapsulation).<br />

1/2" (12.7 mm) Foil-faced<br />

Insulation—The interior surface of<br />

A toggle disconnect is provided as<br />

the unit casing is acoustically <strong>and</strong><br />

st<strong>and</strong>ard <strong>and</strong> allows the operator to<br />

thermally lined with ½-inch, 1.5 lb/ft 3<br />

(12.7 mm, 24.0 kg/m 3 ) density glass<br />

turn the unit on or off by toggling to<br />

the appropriate setting. <strong>This</strong> switch<br />

fiber with foil facing. The insulation<br />

breaks both legs of power to the fan<br />

R-Value is 2.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

<strong>and</strong> the electronic controls (if<br />

applicable). Not provided on LSEF with<br />

st<strong>and</strong>ards as well as bacteriological<br />

pneumatic controls<br />

st<strong>and</strong>ard ASTM C 665. There are no<br />

exposed edges of insulation (complete<br />

OUTLET CONNECTION<br />

metal encapsulation).<br />

Flanged Connection—A<br />

1" (25.4 mm) Foil-faced<br />

rectangular opening on the unit<br />

Insulation—The interior surface of<br />

discharge to accept a 90° flanged<br />

the unit casing is acoustically <strong>and</strong><br />

ductwork connection.<br />

thermally lined with 1-inch, 1.5 lb/ft 3<br />

FILTER<br />

(25.4 mm, 24.0 kg/m 3 ) density glass<br />

A 1" (25 mm) filter is provided on the<br />

fiber with foil facing. The insulation<br />

plenum inlet <strong>and</strong> attaches to the unit<br />

R-Value is 4.1. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong> UL 181<br />

with a filter frame.<br />

connected to a solid metal shaft<br />

<strong>VAV</strong>-PRC008-EN LHS 25


Fan-Powered<br />

Low-Height<br />

Series<br />

Mechanical<br />

Specifications<br />

ACCESS PANEL<br />

Internal access to unit is achieved<br />

through the removable bottom access<br />

panel.<br />

HOT WATER COIL<br />

Series Water Coils—factory-installed<br />

on the plenum inlet.<br />

The coil has 1-row with 144 aluminumplated<br />

fins per foot (.305 m) <strong>and</strong>, if<br />

needed, 2-row with 144 aluminumplated<br />

fins per foot (.305 m). Full fin<br />

collars provided for accurate fin<br />

spacing <strong>and</strong> maximum fin-tube<br />

contact. The 3/8" (9.5 mm) OD seamless<br />

copper tubes are mechanically<br />

exp<strong>and</strong>ed into the fin collars. Coils are<br />

proof tested at 450 psig (3102 kPa) <strong>and</strong><br />

leak tested at 300 psig (2068 kPa) air<br />

pressure under water. Coil connections<br />

are brazed with left-h<strong>and</strong> configuration.<br />

ELECTRIC HEAT COIL<br />

The electric heater is a factory-provided<br />

<strong>and</strong> -installed, UL recognized<br />

resistance open-type heater. It also<br />

contains a disc-type automatic pilot<br />

duty thermal primary cutout, <strong>and</strong><br />

manual reset load carrying thermal<br />

secondary device. Heater element<br />

material is nickel-chromium. The heater<br />

terminal box is provided with 7/8"<br />

(22 mm) knockouts for customer power<br />

supply. Terminal connections are<br />

plated steel with ceramic insulators.<br />

Heater control access is on the<br />

discharge side of the unit. All fanpowered<br />

units with electric reheat are<br />

single-point power connections.<br />

ELECTRIC HEAT OPTIONS<br />

Magnetic Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog-electronic controls.<br />

Mercury Contactor—An optional<br />

electric heater 24-volt contactor for use<br />

with direct digital control (DDC) or<br />

analog-electronic controls.<br />

P.E. Switch with Magnetic<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

magnetic contactor is for use with<br />

pneumatic controls.<br />

P.E. Switch with Mercury<br />

Contactor—<strong>This</strong> optional switch <strong>and</strong><br />

mercury contactor is for use with<br />

pneumatic controls.<br />

Airflow Switch—An optional air<br />

pressure device designed to disable<br />

the heater when the system fan is off.<br />

Power Fuse—If power fuse is chosen<br />

with a unit with electric heat, then a<br />

safety fuse located in the line of power<br />

of the electric heater to prevent power<br />

surge damage to the electric heater.<br />

Any electric heat unit with a calculated<br />

MCA greater than or equal to 30 will<br />

have a fuse provided<br />

Disconnect Switch—An optional<br />

factory-provided door interlocking<br />

disconnect switch on the heater control<br />

panel disengages primary voltage to<br />

the terminal.<br />

UNIT CONTROLS SEQUENCE OF<br />

OPERATION<br />

The controller will start <strong>and</strong> run the fan<br />

continuously during the occupied<br />

mode <strong>and</strong> intermittently during the<br />

unoccupied mode. Upon a further call<br />

for heat, any hot water or electric heat<br />

associated with the unit is enabled.<br />

DIRECT DIGITAL CONTROLS<br />

DDC Actuator—Trane 3-wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Direct Digital Controller—The<br />

microprocessor based terminal unit<br />

controller provides accurate, pressureindependent<br />

control through the use<br />

of a proportional integral control<br />

algorithm <strong>and</strong> direct digital control<br />

technology. The controller, named the<br />

Unit Control Module (UCM), monitors<br />

zone temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change,<br />

<strong>and</strong> valve airflow using a differential<br />

pressure signal from the pressure<br />

transducer. Additionally, the controller<br />

can monitor either supply duct air<br />

temperature or CO 2<br />

concentration via<br />

appropriate sensors. The controller is<br />

provided in an enclosure with 7/8"<br />

(22 mm) knockouts for remote control<br />

wiring. A Trane UCM zone sensor is<br />

required.<br />

DDC Zone Sensor—The UCM<br />

controller senses zone temperature<br />

through a sensing element located in<br />

the zone sensor. In addition to the<br />

sensing element, zone sensor options<br />

may include an externally-adjustable<br />

setpoint, communications jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the individual<br />

controller from unoccupied to occupied<br />

mode. The override button has a cancel<br />

feature that will return the system to<br />

unoccupied. Wired zone sensors utilize<br />

a thermistor to vary the voltage output<br />

in response to changes in the zone<br />

temperature. Wiring to the UCM<br />

controller must be 18- to 22-awg.<br />

twisted pair wiring. The setpoint<br />

adjustment range is 50–88ºF (10–31°C).<br />

Depending upon the features available<br />

in the model of sensor selected, the<br />

zone sensor may require from a 2-wire<br />

to a 5-wire connection. Wireless zone<br />

sensors report the same zone<br />

information as wired zone sensors, but<br />

do so using radio transmitter<br />

technology. Therefore with wireless,<br />

wiring from the zone sensor to the UCM<br />

is unnecessary.<br />

Digital Display Zone Sensor with<br />

Liquid Crystal Display (LCD)—The<br />

digital display zone sensor contains a<br />

sensing element, which sends a signal<br />

to the UCM. A Liquid Crystal Display<br />

(LCD) displays setpoint or space<br />

temperature. Sensor buttons allow the<br />

user to adjust setpoints, <strong>and</strong> allow space<br />

temperature readings to be turned on or<br />

off. The digital display zone sensor also<br />

includes a communication jack for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the UCM<br />

from unoccupied to occupied. The<br />

override button has a cancel feature,<br />

which returns the system to<br />

unoccupied mode.<br />

Trane LonTalk—The controller is<br />

designed to send <strong>and</strong> receive data using<br />

SCC LonTalk profile. Current unit status<br />

conditions <strong>and</strong> setpoints may be<br />

monitored <strong>and</strong>/or edited from any of<br />

several LonTalk-compatible systemlevel<br />

controllers<br />

ANALOG ELECTRONIC CONTROLS<br />

Analog Actuator—A Trane 3-wire,<br />

24-VAC, floating-point control actuator<br />

with linkage release button. Torque is<br />

35 in-lb minimum <strong>and</strong> is non-spring<br />

return with a 90-second drive time.<br />

Travel is terminated by end stops at<br />

fully-opened <strong>and</strong> -closed positions. An<br />

integral magnetic clutch eliminates<br />

motor stall.<br />

Analog Electronic Controller—<br />

The controller consists of a circuit board<br />

that offers basic <strong>VAV</strong> unit operation <strong>and</strong><br />

additional override functions <strong>and</strong><br />

operates using 24 VAC power. The<br />

LHS 26<br />

<strong>VAV</strong>-PRC008-EN


Fan-Powered<br />

Low-Height<br />

Series<br />

Mechanical<br />

Specifications<br />

controller uses a capacitive type<br />

pressure transducer to maintain<br />

consistent air delivery regardless of<br />

system pressure changes. The<br />

enclosure with 7/8" (22 mm) knockouts<br />

for remote control wiring. A Trane<br />

electronic zone sensor is required.<br />

Analog Electronic Thermostat—<br />

<strong>This</strong> single-temperature, wall-mounted<br />

electronic device utilizes a thermistor<br />

to vary the voltage output in response<br />

to changes in the zone temperature.<br />

Connections to the <strong>VAV</strong> unit circuit<br />

board are made using st<strong>and</strong>ard threeconductor<br />

thermostat wire. The<br />

setpoint adjustment range is 63–85ºF<br />

(17–29°C). The sensor is available in<br />

two models. One model has a<br />

concealed, internally-adjustable<br />

setpoint. The other model has an<br />

externally-adjustable setpoint.<br />

PNEUMATIC CONTROLS<br />

Normally Open Actuator—<br />

Pneumatic 3 to 8 psig (20 to 55 kPa)<br />

spring-range pneumatic actuator.<br />

3011 Pneumatic Volume Regulator<br />

(PVR)—The regulator is a thermostat<br />

reset velocity controller, which<br />

provides consistent air delivery within<br />

5% of cataloged flow down to 18% of<br />

unit cataloged cfm, independent of<br />

changes in system static pressure.<br />

Factory-calibrated, field-adjustable<br />

setpoints for minimum <strong>and</strong> maximum<br />

flows. Average total unit bleed rate,<br />

excluding thermostat, is 28.8 scim at<br />

20 psig (7.87 ml/min at 138 kPa) supply.<br />

UNIT OPTIONS<br />

Power Fuse (LSCF, LSWF)—<br />

Optional fuse is factory-installed in the<br />

primary voltage hot leg.<br />

HOT WATER VALVES<br />

Two-Position Valve—The valve is a<br />

field-adaptable, 2-way or 3-way<br />

configuration <strong>and</strong> ships with a cap to<br />

be field-installed when configured as a<br />

2-way valve. All connections are<br />

National Pipe Thread (NPT). The valve<br />

body is forged brass with a stainless<br />

steel stem <strong>and</strong> spring. Upon dem<strong>and</strong>,<br />

the motor strokes the valve. When the<br />

actuator drive stops, a spring returns<br />

the valve to its fail-safe position.<br />

Flow Capacity – 1.17 Cv<br />

Overall Diameter – ½" NPT<br />

Close-off Pressure – 30 psi (207 kPa)<br />

Flow Capacity – 3.0 Cv<br />

Overall Diameter – 3/4" NPT<br />

Close-off Pressure – 14.5 psi (100 kPa)<br />

Flow Capacity – 6.4 Cv<br />

Overall Diameter – 1" NPT<br />

Close-off Pressure – 9 psi (62 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 203ºF (95ºC)<br />

Maximum system pressure – 300 psi<br />

(2067 kPa). Maximum static pressure –<br />

300 psi (2067 kPa)<br />

Electrical Rating – 7 VA at 24 VAC,<br />

6.5 Watts, 50/60 Hz<br />

8 feet (2.44 m) of plenum rated wire<br />

lead is provided with each valve.<br />

Proportional Water Valve—The<br />

valve is a field-adaptable, 2-way or 3-<br />

way configuration <strong>and</strong> ships with a cap<br />

over the bottom port. <strong>This</strong> configures<br />

the valve for 2-way operation. For<br />

3-way operation, remove the cap. The<br />

valve is linear equal percentage<br />

design. The intended fluid is water or<br />

water <strong>and</strong> glycol (50% maximum<br />

glycol). The actuator is a synchronous<br />

motor drive. The valve is driven to a<br />

predetermined position by the UCM<br />

controller using a proportional plus<br />

integral control algorithm. If power is<br />

removed, the valve stays in its last<br />

position. The actuator is rated for<br />

plenum applications under UL 94-5V<br />

<strong>and</strong> UL 873 st<strong>and</strong>ards.<br />

Pressure <strong>and</strong> Temperature Ratings –<br />

The valve is designed <strong>and</strong> tested in full<br />

compliance with ANSI B16.15 Class<br />

250 pressure/temperature ratings,<br />

ANSI B16.104 Class IV control shutoff<br />

leakage, <strong>and</strong> ISA S75.11 flow<br />

characteristic st<strong>and</strong>ards.<br />

Flow Capacity – 0.7 Cv, 2.2 Cv, 3.8 Cv,<br />

<strong>and</strong> 6.6 Cv<br />

Overall Diameter – ½" NPT, ¾" NPT<br />

(6.6 Cv)<br />

Maximum Allowable Pressure – 300<br />

psi (2068 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 200ºF (93°C)<br />

Maximum Close-off Pressure – 55 psi<br />

(379 kPa)<br />

Electrical Rating – 6 VA at 24 VAC.<br />

10 feet (3.05 m) of plenum rated<br />

22-gage wire for connection.<br />

Terminations are #6 stabs.<br />

<strong>VAV</strong>-PRC008-EN LHS 27


<strong>Controls</strong><br />

Table of<br />

Contents<br />

Trane DDC<br />

Control Options C 3<br />

General Logic C 4<br />

Reheat Control C 5 – 7<br />

Control Drawings C 8 – 17<br />

Accessories C 18 – 25<br />

Trane LonMark DDC <strong>VAV</strong> Controller<br />

Introduction C 26<br />

Control Options C 27<br />

Features <strong>and</strong> Benefits C 28 – 29<br />

Controller Logic C 30 – 32<br />

Ventilation Control C 33<br />

Flow Tracking Control C 34<br />

Control Drawings C 35 – 38<br />

Accessories C 39<br />

Data List C 40<br />

Analog<br />

Control Options C 41<br />

Control Drawings C 42 – 45<br />

Accessories C 46 – 47<br />

C 1


<strong>Controls</strong><br />

Table of<br />

Contents<br />

Pneumatic<br />

Control Options C 48<br />

Control Drawings C 49 – 61<br />

Accessories C 62 – 63<br />

<strong>Controls</strong> Specifications<br />

Specifications 64 – 67<br />

C 2


<strong>Controls</strong>—<br />

DDC<br />

Options<br />

<strong>Controls</strong> By Others (All Unit Types)<br />

Unit Heat Control Description Page #<br />

DD00 Trane Actuator for Field-Installed DDC <strong>Controls</strong> C 8<br />

FM00 Factory Installation of Customer Supplied Actuators <strong>and</strong> DDC <strong>Controls</strong> C 9<br />

FM01 Trane Actuator w/ Factory Installation of Customer-Supplied DDC <strong>Controls</strong> C 9<br />

ENON No <strong>Controls</strong> or Actuator—Field-Installed DDC or Analog <strong>Controls</strong> —<br />

Single-Duct Terminal Unit (VCCF, VCWF, <strong>and</strong> VCEF)<br />

Unit Heat Control Description Page #<br />

DD01 Cooling Only C 10<br />

DD02 Cooling With Remote Normally-Closed On/Off Hot Water Valve (Normally-Open Outputs) C 10<br />

Cooling Only DD03 Cooling With Remote Proportional Hot Water Valve with Optional Spare On/Off Output C 10<br />

(VCCF) DD04 Cooling With Remote Staged On/Off Electric Heat C 10<br />

DD05 Cooling With Remote Pulse-Width Modulation Electric Heat C 10<br />

DD07 Cooling With Remote Normally-Open On/Off Hot Water Valve (Normally-Closed Output) C 10<br />

Hot Water DD02 Cooling With Normally-Closed On/Off Hot Water Valve (Normally-Open Outputs) C 11<br />

(VCWF) DD03 Cooling With Proportional Hot Water Valve with Optional Spare On/Off Output C 11<br />

DD07 Cooling With Normally-Open On/Off Hot Water Valve (Normally-Closed Output) C 11<br />

Electric DD04 Cooling With Staged On/Off Electric Heat C 12<br />

(VCEF) DD05 Cooling WIth Pulse-Width Modulation Electric Heat C 12<br />

Dual-Duct Terminal Unit (VDDF)<br />

Unit Heat Control Description Page #<br />

None DD00 Trane Actuator for Field-Installed DDC <strong>Controls</strong> C 8<br />

(VDDF) DD01 Cooling (No Remote Heat) <strong>and</strong> Heating Control C 13<br />

DD08 Cooling (No Remote Heat) <strong>and</strong> Heating—Constant-Volume Control C 14<br />

Fan-Powered Terminal Units with PSC Motor (VPCF, VPWF, VPEF, VSCF, VSWF, <strong>and</strong> VSEF)<br />

Low-Height Fan-Powered Terminal Units with PSC Motor (LPCF, LPWF, LPEF, LSCF, LSWF, <strong>and</strong> LSEF)<br />

Unit Heat Control Description Page #<br />

DD01 Cooling Only C 15<br />

DD02 Cooling With Remote Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 16<br />

Cooling Only DD03 Cooling With Remote Proportional Hot Water Valve C 16<br />

(VPCF, VSCF, DD04 Cooling With Remote Staged On/Off Electric Heat C 15<br />

LPCF, LSCF) DD05 Cooling With Remote Pulse-Width Modulation Electric Heat C 15<br />

DD07 Cooling With Remote Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 16<br />

Hot Water DD02 Cooling With Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 16<br />

(VPWF, VSWF DD03 Cooling With Proportional Hot Water Valve C 16<br />

LPWF, LSWF) DD07 Cooling With Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 16<br />

Electric DD04 Cooling With Staged On/Off Electric Heat C 15<br />

(VPEF, VSEF DD05 Cooling With Pulse-Width Modulation Electric Heat C 15<br />

LPEF, LSEF)<br />

Fan-Powered Terminal Units with ECM (VPCF, VPWF, VPEF, VSCF, VSWF, <strong>and</strong> VSEF)<br />

Unit Heat Control Description Page #<br />

DD01 Cooling Only C 17<br />

DD02 Cooling With Remote Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 17<br />

Cooling Only DD03 Cooling With Remote Proportional Hot Water Valve C 17<br />

(VPCF, VSCF) DD04 Cooling With Remote Staged On/Off Electric Heat C 17<br />

DD05 Cooling With Remote Pulse-Width Modulation Electric Heat C 17<br />

DD07 Cooling With Remote Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 17<br />

Hot Water DD02 Cooling With Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 17<br />

(VPWF, VSWF) DD03 Cooling With Proportional Hot Water Valve C 17<br />

DD07 Cooling With Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 17<br />

Electric DD04 Cooling With Staged On/Off Electric Heat C 17<br />

(VPEF, VSEF) DD05 Cooling With Pulse-Width Modulation Electric Heat C 17<br />

<strong>VAV</strong>-PRC008-EN C 3


<strong>Controls</strong>—<br />

DDC<br />

General<br />

Logic<br />

Trane DDC–UCM<br />

Control Logic—<br />

DDC controllers are today’s industry<br />

st<strong>and</strong>ard. DDC controllers provide<br />

system-level data used to optimize<br />

system performance. Variables such as<br />

occupied/unoccupied status, minimum<br />

<strong>and</strong> maximum airflow setpoints,<br />

temperature <strong>and</strong> temperature<br />

setpoints, valve position, fan status (on<br />

or off, <strong>and</strong> mode of operation: series or<br />

parallel), reheat status (on or off), box<br />

type <strong>and</strong> air valve size, temperature<br />

correction offsets, flow correction<br />

values, ventilation fraction, etc. are<br />

available on a simple twisted-shielded<br />

wire pair.<br />

Trane DDC controllers provide Tranedesigned,<br />

solid-state electronics<br />

intended specifically for <strong>VAV</strong><br />

temperature control in space comfort<br />

applications. DDC control capabilities<br />

include:<br />

• Proportional plus integral control loop<br />

algorithm for determining required<br />

airflow needed to control room<br />

temperature. Airflow is limited by<br />

active minimum <strong>and</strong> maximum<br />

airflow setpoints.<br />

• Pressure-independent (PI) operation,<br />

which automatically adjusts valve<br />

position to maintain required airflow.<br />

In certain low-flow situations or in<br />

cases where the flow measurement<br />

has failed, the DDC controller will<br />

Flow Sensor Signal vs. Airflow Delivery<br />

5<br />

operate in a pressure-dependent (PD)<br />

mode of operation.<br />

• Cooling <strong>and</strong> heating control action of<br />

air valve. In cooling control action, the<br />

DDC controller matches cooling airflow<br />

to cooling load. In heating control<br />

action, the DDC controller matches the<br />

heating airflow to control heating load.<br />

The DDC controller will automatically<br />

change over to cooling control action if<br />

the supply air temperature is below the<br />

room temperature <strong>and</strong> will<br />

automatically change over to heating<br />

control action if the supply air<br />

temperature is 10°F or more above the<br />

room temperature. If the supply air<br />

temperature is between the room<br />

temperature <strong>and</strong> the room<br />

temperature plus 10°F, then the DDC<br />

controller will provide the active<br />

minimum airflow. The DDC controller<br />

first chooses the Tracer Summitsupplied<br />

supply air temperature value<br />

to use for auto changeover. If this is not<br />

available, it uses the temperature<br />

provided by the optional auxiliary<br />

temperature sensor. If this is also not<br />

available, it uses the heating/cooling<br />

mode assigned by Tracer Summit or<br />

the DDC controller’s service tool<br />

(Everyware TM or Rover TM V4).<br />

• Multiple reheat control options<br />

including staged electric, staged hotwater<br />

(normally on or normally off),<br />

proportional hot-water, <strong>and</strong> slow<br />

pulsed width modulation. Modulating<br />

reheat options utilize a separate reheat<br />

proportional-plus-integral control loop<br />

from that controlling airflow into the<br />

room. Staged reheat options utilize a<br />

control algorithm based on heating<br />

setpoint <strong>and</strong> room temperature.<br />

• 24 VAC binary input that can be<br />

configured as a generic input or as<br />

occupancy input. When the DDC<br />

controller is operation with Tracer<br />

Summit, the status of the input is<br />

provided to Tracer Summit for its<br />

action. In st<strong>and</strong>-alone operation <strong>and</strong><br />

when configured for an occupancy<br />

input, the input will control occupancy<br />

status of the DDC controller.<br />

• Auxiliary temperature analog input<br />

that can be configured for an auxiliary<br />

temperature sensor or a 2-to-10 VDC<br />

CO 2<br />

sensor. When configured for<br />

temperature, the value of the input is<br />

used as status-only by Tracer Summit if<br />

Tracer Summit is providing a supply air<br />

temperature to the DDC controller.<br />

Otherwise, the input will be used for<br />

determining control action of the DDC<br />

controller. When configured for a CO 2<br />

sensor, the value of the input is used as<br />

a status-only input by Tracer Summit.<br />

• Dual-duct support with two DDC<br />

controllers. One DDC controller<br />

controls the cooling air valve <strong>and</strong> the<br />

other controller controls the heating air<br />

valve. With constant-volume<br />

sequences, the discharge air volume is<br />

held constant by controlling discharge<br />

air volume with the heating UCM.<br />

1<br />

4" 5" 6" 8" 10" 12" 14" 16"<br />

Flow Sensor DP (In. wg)<br />

0.1<br />

C 4<br />

0.01<br />

10 100 1,000 10,000<br />

Cfm<br />

Note: Flow sensor DP (in. wg) is measured at the flow ring to aid in system balancing <strong>and</strong> commissioning. See "Valve/Controller Airflow<br />

Guidelines" in each section for unit performance.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

DDC<br />

Reheat<br />

Control<br />

DDC Remote Heat<br />

Control Options<br />

When heat is added to the primary air<br />

at the <strong>VAV</strong> unit before it enters the<br />

zone, the air is said to be reheated. The<br />

operating characteristics of the four<br />

basic types of <strong>VariTrane</strong> DDC terminal<br />

reheat are discussed.<br />

Single-Duct: On/Off Hot Water<br />

Reheat—Three stages of on/off hot<br />

water reheat are available. The water<br />

valves used are 2-position <strong>and</strong> are<br />

either fully-opened or fully-closed. The<br />

heating minimum airflow setpoint is<br />

enabled during reheat.<br />

Stage 1 energizes when the space<br />

temperature is at or below the heating<br />

setpoint. When the zone temperature<br />

rises above the active heating setpoint<br />

by 0.5°F (0.28°C), stage 1 is deenergized.<br />

Stage 2 energizes when the<br />

space temperature is 1°F (0.56°C) or<br />

more below the active heating<br />

setpoint, <strong>and</strong> is de-energized when the<br />

space temperature is 0.5°F (0.28°C)<br />

below the active heating setpoint.<br />

Stage 3 energizes when the zone<br />

temperature is 2°F (1.11°C) or more<br />

below the active heating setpoint, <strong>and</strong><br />

de-energizes when the space<br />

temperature is 1.5°F (0.83°C) below the<br />

active heating setpoint. When reheat is<br />

de-energized, the cooling minimum<br />

airflow setpoint is activated.<br />

VCEF<br />

Single-Duct: Proportional Hot<br />

Water Reheat—Proportional hot<br />

water reheat uses 3-wire floating-pointactuator<br />

technology. The heating<br />

minimum airflow setpoint is enabled<br />

during reheat.<br />

The water valve opens as space<br />

temperature drops below the heating<br />

setpoint. Water valve position is<br />

dependent on both the degree that<br />

space temperature is below the active<br />

heating setpoint <strong>and</strong> the time that the<br />

space temperature has been below the<br />

active heating setpoint. If not already<br />

closed, the water valve fully closes<br />

when the zone temperature rises<br />

above the active heating setpoint by<br />

0.5 °F (0.28 °C). An additional on/off<br />

remote heat output is available <strong>and</strong><br />

energized when the proportional valve<br />

is driven 100% open <strong>and</strong> de-energized<br />

when the proportional valve reaches<br />

50% open. When reheat is deenergized,<br />

the cooling minimum<br />

airflow setpoint is activated.<br />

Single-Duct: On/Off Electric<br />

Reheat—Three stages of staged<br />

electric reheat are available. The<br />

heating minimum airflow setpoint is<br />

enabled during reheat.<br />

Stage 1 is energized when the space<br />

temperature falls below the active<br />

heating setpoint <strong>and</strong> minimum airflow<br />

requirements are met. When the zone<br />

temperature rises above the active<br />

heating setpoint by 0.5°F (0.28°C),<br />

stage 1 is de-energized. Stage 2<br />

energizes when the space temperature<br />

is 1°F (0.56°C) or more below the active<br />

heating setpoint, <strong>and</strong> is de-energized<br />

when the space temperature is 0.5°F<br />

(0.28°C) below the active heating<br />

setpoint. Stage 3 energizes when the<br />

zone temperature is 2°F (1.11°C) or<br />

more below the active heating<br />

setpoint, <strong>and</strong> de-energizes when the<br />

space temperature is 1.5°F (0.83°C)<br />

below the active heating setpoint.<br />

When reheat is de-energized, the<br />

cooling minimum airflow setpoint is<br />

activated.<br />

Single-Duct: Pulse-Width<br />

Modulation of Electric Heat—<br />

Electric heat is modulated by<br />

energizing for a portion of a threeminute<br />

time period. The heating<br />

minimum airflow setpoint is enabled<br />

during reheat. <strong>This</strong> allows exact load<br />

matching for energy efficient<br />

operation, <strong>and</strong> optimum zone<br />

temperature control. One or two<br />

stages can be used.<br />

The amount of reheat supplied is<br />

dependent on both the degree that<br />

space temperature is below the active<br />

heating setpoint <strong>and</strong> the time that the<br />

space temperature has been below the<br />

active heating setpoint. If not already<br />

off, reheat de-energizes when the zone<br />

temperature rises more than 0.5°F<br />

(0.28°C) above the heating setpoint.<br />

The Stage 1 “on” time is proportional<br />

to the amount of reheat required. For<br />

example, when 50% of stage 1<br />

capacity is required, reheat is on for 90<br />

seconds <strong>and</strong> off for 90 seconds. When<br />

75% of stage 1 capacity is required,<br />

reheat is on for 135 seconds <strong>and</strong> off for<br />

45 seconds. When 100% of stage 1<br />

capacity is required, reheat is on<br />

continuously.<br />

Stage 2 uses the same “on” time logic<br />

as stage 1 listed above, except stage 1<br />

is always energized. For example,<br />

when 75% of unit capacity is required,<br />

stage 1 is energized continuously, <strong>and</strong><br />

stage 2 is on for 90 seconds <strong>and</strong> off for<br />

90 seconds. When reheat is deenergized,<br />

the cooling minimum<br />

airflow setpoint is activated.<br />

<strong>VAV</strong>-PRC008-EN C 5


<strong>Controls</strong>—<br />

DDC<br />

DDC<br />

Reheat<br />

Control<br />

Fan-Powered Terminal Units:<br />

On/Off Hot Water Reheat—Two<br />

stages of on/off hot water reheat are<br />

available. The water valves used are<br />

2-position <strong>and</strong> are either fully-opened<br />

or fully-closed. The heating minimum<br />

airflow setpoint is enabled during<br />

reheat.<br />

On parallel-configured fan-powered<br />

units, the fan is energized when the<br />

space temperature falls below the<br />

active fan on/off point (active heating<br />

setpoint plus fan offset). The parallel<br />

fan is turned off when the space<br />

temperature rises above the active fan<br />

on/off point (active heating setpoint<br />

plus fan offset) plus 0.5°F (0.28°C).<br />

Series configured fan-powered<br />

terminal units utilize continuous fan<br />

operation during all occupied settings<br />

<strong>and</strong> while unoccupied when minimum<br />

airflows are being enforced.<br />

When the zone temperature falls below<br />

the active heating setpoint, the UCM<br />

modulates the primary airflow to the<br />

minimum heating airflow setpoint.<br />

Stage 1 energizes when the space<br />

temperature is below the active<br />

heating setpoint, <strong>and</strong> is de-energized<br />

when the space temperature is 0.5°F<br />

(0.28°C) above the active heating<br />

setpoint. Stage 2 energizes when the<br />

zone temperature is 1°F (0.56°C) or<br />

more below the active heating<br />

setpoint, <strong>and</strong> de-energizes when the<br />

space temperature is 0.5°F (0.28°C)<br />

below the active heating setpoint.<br />

When reheat is de-energized, the<br />

cooling minimum airflow setpoint is<br />

activated.<br />

Fan-Powered Terminal Units:<br />

Proportional Hot Water Reheat—<br />

Proportional hot water reheat uses<br />

3-wire floating-point-actuator<br />

technology. The heating minimum<br />

airflow setpoint is enabled during<br />

reheat.<br />

On parallel-configured fan-powered<br />

units, the fan is energized when the<br />

space temperature falls below the<br />

active fan on/off point (active heating<br />

setpoint plus fan offset). The parallel<br />

fan is turned off when the space<br />

temperature rises above the active fan<br />

on/off point (active heating setpoint<br />

plus fan offset) plus 0.5°F (0.28°C).<br />

Series-configured fan-powered<br />

terminal units utilize continuous fan<br />

operation during all occupied settings<br />

<strong>and</strong> while unoccupied when minimum<br />

airflows are being enforced.<br />

VPEF<br />

VSEF<br />

When the zone temperature falls below<br />

the active heating setpoint, the UCM<br />

modulates the primary airflow to the<br />

minimum heating airflow setpoint.<br />

The water valve opens as space<br />

temperature drops below the heating<br />

setpoint. The degree to which the hot<br />

water valve opens is dependent on<br />

both the degree that space<br />

temperature is below the active<br />

heating setpoint <strong>and</strong> the time that the<br />

space temperature has been below the<br />

active heating setpoint. If not already<br />

closed, the water valve fully closes<br />

when the zone temperature rises<br />

above the active heating setpoint by<br />

0.5 °F (0.28 °C). When reheat is deenergized,<br />

the cooling minimum<br />

airflow setpoint is activated.<br />

Fan-powered Terminal Units:<br />

On/Off Electric Reheat—Two stages<br />

of staged electric reheat are available.<br />

The heating minimum airflow setpoint<br />

is enabled during reheat.<br />

On parallel-configured fan-powered<br />

units, the fan is energized when the<br />

space temperature falls below the<br />

active fan on/off point (active heating<br />

setpoint plus fan offset). The parallel<br />

fan is turned off when the space<br />

temperature rises above the active fan<br />

on/off point (active heating setpoint<br />

plus fan offset).<br />

Series-configured fan-powered<br />

terminal units utilize the continuous fan<br />

operation during all occupied settings<br />

<strong>and</strong> while unoccupied when minimum<br />

airflows are being enforced.<br />

When the zone temperature falls below<br />

the active heating setpoint, the UCM<br />

modulates the primary airflow to the<br />

minimum heating airflow setpoint.<br />

Stage 1 energizes when the space<br />

temperature is below the active<br />

heating setpoint, <strong>and</strong> is de-energized<br />

when the space temperature rises<br />

0.5°F (0.28°C) above the active heating<br />

setpoint. Stage 2 energizes when the<br />

space temperature is 1.0°F (0.56°C) or<br />

more below the active heating<br />

setpoint, <strong>and</strong> is de-energized when the<br />

space temperature is 0.5°F (0.28°C)<br />

below the active heating setpoint.<br />

When reheat is de-energized, the<br />

cooling minimum airflow setpoint is<br />

activated.<br />

Fan-powered Terminal Units:<br />

Pulse-Width Modulation of<br />

Electric Heat—Electric heat is<br />

modulated by energizing for a portion<br />

of a three-minute time period. The<br />

heating minimum airflow setpoint is<br />

enabled during reheat. <strong>This</strong> allows<br />

exact load matching for energy<br />

efficient operation, <strong>and</strong> optimum zone<br />

temperature control. One or two stages<br />

can be used.<br />

On parallel-configured fan-powered<br />

units, the fan is energized when the<br />

space temperature falls below the<br />

active fan on/off point (active heating<br />

setpoint plus fan offset). The parallel<br />

fan is turned off when the space<br />

temperature rises above the active fan<br />

on/off point (active heating setpoint<br />

plus fan offset) plus 0.5°F (0.28°C).<br />

C 6<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

DDC<br />

Reheat<br />

Control<br />

Series-configured fan-powered<br />

terminal units utilize the continuous fan<br />

operation during all occupied settings<br />

<strong>and</strong> while unoccupied when minimum<br />

airflows are being enforced.<br />

When the zone temperature falls below<br />

the active heating setpoint, the UCM<br />

modulates the primary airflow to the<br />

minimum heating airflow setpoint.<br />

The amount of reheat supplied is<br />

dependent on both the degree that<br />

space temperature is below the active<br />

heating setpoint <strong>and</strong> the time that the<br />

space temperature has been below the<br />

active heating setpoint. If not already<br />

off, reheat de-energizes when the<br />

space temperature rises 0.5°F (0.28°C)<br />

above the active heating setpoint. The<br />

Stage 1 “on” time is proportional to the<br />

amount of reheat required. For<br />

example, when 50% of stage 1<br />

capacity is required, reheat is on for 90<br />

seconds <strong>and</strong> off for 90 seconds. When<br />

75% of stage 1 capacity is required,<br />

reheat is on for 135 seconds <strong>and</strong> off<br />

for 45 seconds. When 100% of stage 1<br />

capacity is required, reheat is on<br />

continuously.<br />

Stage 2 uses the same “on” time logic<br />

as stage 1 listed above, except stage 1<br />

is always energized. For example,<br />

when 75% of unit capacity is required,<br />

stage 1 is energized continuously, <strong>and</strong><br />

stage 2 is on for 90 seconds <strong>and</strong> off for<br />

90 seconds. When reheat is deenergized,<br />

the cooling minimum<br />

airflow setpoint is activated. When<br />

reheat is de-energized, the cooling<br />

minimum airflow setpoint it activated.<br />

<strong>VAV</strong>-PRC008-EN C 7


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

DD00—Available for all <strong>VariTrane</strong> Units<br />

(Trane actuator for field-installed DDC controls)<br />

A unit controller is not provided. The air damper actuator is provided with an integral screw terminal block.<br />

The fan contactor (fan-powered units), 24-VAC control power transformer (optional for single- <strong>and</strong> dual-duct<br />

units), <strong>and</strong> factory-installed electric heater contactor wires are attached to the outside of the unit for field<br />

connection of controls. A second actuator is provided with an integral screw terminal for dual-duct units.<br />

CCW<br />

24-VAC<br />

Damper <strong>Controls</strong><br />

By Others<br />

COM<br />

CW<br />

M<br />

Damper<br />

Actuator<br />

Load: 4 VA<br />

24-VAC to<br />

Customer<br />

<strong>Controls</strong><br />

Y<br />

BL<br />

Line Voltage<br />

FAN RELAY<br />

Transformer<br />

24 VAC, 50 VA<br />

2<br />

1<br />

2<br />

Fan<br />

3<br />

Load: 6.5 VA<br />

24-VAC Fan/Staged<br />

Heat <strong>Controls</strong><br />

HEATER CONTROL BOX<br />

1<br />

2<br />

3<br />

4<br />

5<br />

C<br />

1st<br />

2nd<br />

3rd<br />

4<br />

Load: 10 VA (MAGN)<br />

Load: 12 VA (MERC)<br />

CCW<br />

5.<br />

24-VAC<br />

Damper <strong>Controls</strong><br />

By Others<br />

COM<br />

CW<br />

M<br />

Damper<br />

Actuator<br />

Load: 4 VA<br />

<strong>NOTE</strong>S:<br />

1. Factory-installed<br />

Field Wiring<br />

Optional or installed by others<br />

2.<br />

Located in Heater Terminal Box for electric heat on single-duct units.<br />

Located in Control Box for cooling only <strong>and</strong> hot water heat on single-duct units.<br />

Located in Control Box on all fan-powered units.<br />

3.<br />

Only available with fan-powered units.<br />

4. Located in Heater Terminal box.<br />

C 8<br />

5.<br />

Only available with dual-duct units.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

Available on all <strong>VariTrane</strong> Units<br />

FM00 – Customer-supplied actuator <strong>and</strong> DDC controller factory-installed.<br />

FM01 – Trane actuator <strong>and</strong> customer-supplied DDC controller factory-installed<br />

All customer furnished controllers <strong>and</strong> actuators are installed <strong>and</strong> wired per control manufacturer's specifications. Metal control<br />

enclosure is st<strong>and</strong>ard.<br />

CCW<br />

COM<br />

Actuator<br />

Customer-furnished<br />

or Trane-supplied<br />

CW<br />

Fan<br />

Relay<br />

Trane-supplied<br />

(Fan-powered only)<br />

24 VAC<br />

BL<br />

Com<br />

Transformer<br />

Y<br />

Customer-furnished<br />

Controller<br />

1st stage - 24 VAC<br />

2nd stage - 24 VAC<br />

3rd stage - 24 VAC<br />

Electric<br />

Reheat<br />

Contactors<br />

Trane-supplied<br />

24 VAC, 50va<br />

St<strong>and</strong>ard – (Fan-powered)<br />

Optional –<br />

LO<br />

Airflow<br />

Sensor<br />

HI<br />

Trane-supplied<br />

Hot Water<br />

Reheat<br />

Optional<br />

Trane-supplied<br />

water valve<br />

field-wired<br />

to controller<br />

<strong>NOTE</strong>S:<br />

1. Factory-installed<br />

Field Wiring<br />

Optional or installed by others<br />

2. NEMA-1 Enclosure provided.<br />

<strong>VAV</strong>-PRC008-EN C 9


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

VCCF—Single-Duct Terminal Units<br />

(Normal Operation: Cooling Only with Reheat Capabilities)<br />

DD01 – Cooling Only<br />

DD02 – Cooling with Remote Normally-Closed On/Off Hot Water Valve (Normally-Open Outputs)<br />

DD03 – Cooling with Remote Proportional Hot Water Valve with Optional Spare On/Off Output<br />

DD04 – Cooling with Remote Staged On/Off Electric Heat<br />

DD05 – Cooling with Remote Pulse-Width Modulation Electric Heat<br />

DD07 – Cooling with Remote Normally-Open On/Off Hot Water Valve (Normally-Closed Outputs)<br />

See "General Logic" <strong>and</strong> "DDC Reheat Control" sections for Sequence of Operation.<br />

Damper<br />

Actuator<br />

Wiring<br />

24 VAC 60HZ<br />

NEC CLASS-2<br />

Control Circuit<br />

Load= 12 VA<br />

(Without heat)<br />

8.<br />

TB2-6 TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

5 4 3 2 1<br />

Zone Sensor<br />

w/ Comm. Jack<br />

Remote MTD.<br />

3. 4.<br />

W-HOT<br />

W-HOT<br />

G-OPEN<br />

R-CLOSE<br />

Optional Field-Installed<br />

Zone Sensor<br />

Optional<br />

Transformer<br />

50 VA<br />

TB3-2<br />

TB3-1<br />

TB1-2<br />

Y<br />

BL<br />

TB1-1<br />

J11<br />

J10<br />

J9<br />

Address<br />

Switch<br />

J7<br />

J8<br />

J1<br />

ACT<br />

1<br />

TB4-1<br />

TB1-2<br />

TB1-1<br />

BIP GND 24V<br />

D.D.C.\U.C.M.<br />

CONTROL BOARD<br />

PRESS<br />

J3<br />

1<br />

R<br />

BK<br />

G<br />

Pressure<br />

Transducer<br />

+<br />

VOUT<br />

-<br />

2 1<br />

Zone Sensor<br />

Remote MTD.<br />

4.<br />

Optional Field-Installed<br />

Zone Sensor<br />

+ -<br />

+<br />

- + -<br />

TB2-1<br />

TB2-2<br />

TB2-3<br />

TB2-4<br />

TB2-5<br />

TB2-6<br />

9.<br />

YEL<br />

GRN<br />

TB3-1<br />

ZONE<br />

TB3-2<br />

GND<br />

TB3-3<br />

TB3-5<br />

SET A/CO2<br />

TB3-6<br />

GND<br />

S<br />

7.<br />

TO J10<br />

TO J9<br />

TO J8<br />

2ND STG.<br />

1ST STG.<br />

HOT<br />

HEATER STAGE<br />

CONTACTOR(S)<br />

24 VAC, 12 VA<br />

MAX/COIL<br />

IN<br />

IN<br />

OUT<br />

OUT<br />

D.D.C.\U.C.M.<br />

Control Box<br />

Optional Field-Installed<br />

Electric Heater<br />

Shielded Twisted Pair<br />

Communications Wiring<br />

W (HOT)<br />

TO J8<br />

BK (CLOSE)<br />

TO J9<br />

R (OPEN)<br />

TO J10<br />

PROP.<br />

WATER<br />

VALVE<br />

24 VAC<br />

12 VA MAX<br />

C 10<br />

<strong>NOTE</strong>S:<br />

1.<br />

5. R (HOT)<br />

(TB1-1) 24VAC<br />

O (COMMON)<br />

(TB4-1) BIP<br />

GR (NC CONTACT)<br />

(TB1-1) 24VAC<br />

BK (RETURN)<br />

Y<br />

NOT CONNECTED<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

TB3-5<br />

6.<br />

Optional Field-Installed<br />

Auxillary Temperature Sensor<br />

Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

2. 1/4" quick connect required for all field connections.<br />

3. Zone sensor terminals 4 <strong>and</strong> 5 require shielded twisted pair wiring for zone sensor<br />

equipped with communications jack. Zone sensor with LCD requires a sixth wire<br />

with 24 V from a transformer.<br />

4. No additional wiring required for night setback override (On/Cancel).<br />

5. The optional binary input connects between TB4-1 (BIP) <strong>and</strong> 24 VAC (Hot) from the<br />

transformer. The binary input can be reconfigured as an occupancy input via the<br />

communications interface.<br />

6. As shipped, the AUX input is configured as an Auxiliary Temperature Input. The AUX<br />

input can be reconfigured as a CO2 Sensor Input via the communications interface.<br />

7. S-terminal is not to be used with <strong>VariTrane</strong>.<br />

8. If unit-installed transformer is not provided, polarity from unit to unit must be<br />

maintained to prevent permanent damage to control board. If one leg of 24 VAC<br />

supply is grounded, then ground leg must be connected to TB1-2.<br />

9. Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

TB3-6<br />

6.<br />

(TB1-1) 24V<br />

24V<br />

CO2 (TB3-6) GND<br />

SENSOR GND<br />

OUT (TB3-5) A/CO2<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

TO J9<br />

TO J8<br />

Optional Field-Installed<br />

Proportional Water Valve<br />

ON–OFF<br />

WATER VALVE<br />

24 VAC<br />

12 VA MAX<br />

Optional Field-Installed<br />

On-Off Water Valve<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

VCWF—Single-Duct Terminal Units<br />

(Normal Operation: Cooling with Hot Water Reheat)<br />

DD02 – Cooling with Normally-Closed On/Off Hot Water Valve (Normally-Open Outputs)<br />

DD03 – Cooling with Proportional Hot Water Valve with Optional Spare On/Off Output<br />

DD07 – Cooling with Normally-Open On/Off Hot Water Valve (Normally-Closed Outputs)<br />

See "General Logic" <strong>and</strong> "DDC Reheat Control" sections for Sequence of Operation.<br />

ON–OFF<br />

Water Valve<br />

24 VAC<br />

12 VA Max.<br />

Damper<br />

Actuator<br />

Wiring<br />

24 VAC 60HZ<br />

NEC CLASS-2<br />

Control Circuit<br />

Load= 12 VA<br />

(Without heat)<br />

8.<br />

TB2-6<br />

TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

5<br />

4 3 2<br />

1<br />

Zone Sensor<br />

w/ Communication Jack<br />

Remote MTD.<br />

3. 4.<br />

W-HOT<br />

W-HOT<br />

G-OPEN<br />

R-CLOSE<br />

Optional Field-Installed<br />

Zone Sensor<br />

Optional<br />

Transformer<br />

50 VA<br />

TB3-2<br />

TB3-1<br />

2 1<br />

Y<br />

TB1-2<br />

BL<br />

TB1-1<br />

J11<br />

J10<br />

J9<br />

Address<br />

Switch<br />

+ -<br />

TB2-1<br />

TB2-2<br />

J7<br />

+<br />

J8<br />

TB2-3<br />

TB2-4<br />

TB2-5<br />

J1<br />

- + -<br />

9.<br />

ACT<br />

1<br />

TB4-1<br />

D.D.C.\U.C.M.<br />

Control Board<br />

TB2-6<br />

YEL<br />

BIP<br />

GRN<br />

TB3-1<br />

TB1-2<br />

TB1-1<br />

GND 24V<br />

TB3-2<br />

TB3-3<br />

TB3-5<br />

TB3-6<br />

PRESS<br />

J3<br />

ZONE GND SET A/CO2 GND<br />

1<br />

S<br />

R<br />

BK<br />

G<br />

7.<br />

PRESSURE<br />

TRANSDUCER<br />

+<br />

VOUT<br />

-<br />

TO J8<br />

TO J9<br />

TO J10<br />

ZONE SENSOR<br />

REMOTE MTD.<br />

W (HOT)<br />

BK (CLOSE)<br />

4.<br />

Optional Field-Installed<br />

Zone Sensor<br />

R (OPEN)<br />

Optional Field-Installed<br />

Zone Sensor<br />

Prop.<br />

Water<br />

Valve<br />

24 VAC<br />

12 VA Max.<br />

IN<br />

IN<br />

OUT<br />

OUT<br />

D.D.C.\U.C.M.<br />

Control Box<br />

Optional Field-Installed<br />

Proportional Water Valve<br />

<strong>NOTE</strong>S:<br />

1.<br />

2.<br />

Shielded Twisted Pair<br />

Communications Wiring<br />

Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

1/4" quick connect required for all field connections.<br />

5.<br />

R (HOT)<br />

O (COMMON)<br />

BK (RETURN)<br />

Y<br />

(TB1-1) 24VAC<br />

(TB4-1) BIP<br />

(TB1-1) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

TB3-5<br />

TB3-6<br />

6.<br />

OPTIONAL FIELD INSTALLED<br />

AUX. TEMPERATURE SENSOR<br />

6.<br />

(TB1-1) 24V<br />

24V<br />

CO2<br />

SENSOR<br />

OUT (TB3-5) A/CO2<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

Zone sensor terminals 4 & 5 require shielded twisted pair wiring for communications jack equipped zone sensor options.<br />

Zone sensor with LCD requires a sixth wire with 24 V from a transformer.<br />

No additional wiring required for night setback override (ON/CANCEL).<br />

The optional binary input connects between TB4-1 (BIP) <strong>and</strong> 24-VAC (HOT) from transformer. The binary input can be<br />

reconfigured as an occupancy input via the communications interface.<br />

As shipped, the Aux. Input is configured as an Auxillary Temperature Input. The Aux. Input can be reonconfigured as a<br />

CO2 sensor input via the communications interface.<br />

S Terminal not to be used with <strong>VariTrane</strong>.<br />

If unit-installed transformer is not provided, polarity from unit to unit must be maintained to prevent permanent damage<br />

to control board. If one leg of 24-VAC supply is grounded, the ground leg must be connected to TB1-2.<br />

9. Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

<strong>VAV</strong>-PRC008-EN C 11


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

VCEF—Single-Duct Terminal Units<br />

(Normal Operation: Cooling with Electric Reheat)<br />

DD04 – Cooling with Staged On/Off Electric Heat<br />

DD05 – Cooling with Pulse-Width Modulation Electric Heat<br />

See "General Logic" <strong>and</strong> "DDC Reheat Control" sections for Sequence of Operation.<br />

Heater Stage<br />

Contactor(s)<br />

9.<br />

3RD 2ND 1ST<br />

Optional<br />

Transformer<br />

Damper<br />

Actuator<br />

Wiring<br />

24-VAC 60 HZ<br />

NEC Class–2<br />

Control Circuit<br />

Load = 12 VA<br />

(Without heat)<br />

8.<br />

TB2-6 TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

3RD STG.<br />

R<br />

2ND STG.<br />

V<br />

1ST STG.<br />

O<br />

HOT<br />

BR<br />

Y<br />

TB1-2<br />

BL<br />

TB1-1<br />

W-HOT<br />

W-HOT<br />

G-OPEN<br />

R-CLOSE<br />

5 4 3 2 1<br />

Zone Sensor<br />

w/ Comm. Jack<br />

Remote MTD.<br />

3. 4.<br />

Optional Field-Installed<br />

Zone Sensor<br />

TB3-2<br />

TB3-1<br />

J11<br />

J10<br />

J9<br />

Address<br />

Switch<br />

J7<br />

J8<br />

J1<br />

ACT<br />

D.D.C.\U.C.M.<br />

Control Board<br />

1<br />

TB4-1<br />

TB1-2<br />

TB1-1<br />

BIP GND 24V<br />

PRESS<br />

J3<br />

1<br />

R<br />

BK<br />

G<br />

Pressure<br />

Transducer<br />

+<br />

VOLT<br />

-<br />

2 1<br />

Zone Sensor<br />

Remote MTD.<br />

4.<br />

Optional Field-Installed<br />

Zone Sensor<br />

TB2-1<br />

+ -<br />

TB2-2<br />

TB2-3<br />

+<br />

TB2-4<br />

- + -<br />

TB2-5<br />

TB2-6<br />

YEL<br />

GRN<br />

TB3-1<br />

TB3-2<br />

TB3-3<br />

TB3-5<br />

TB3-6<br />

S<br />

7.<br />

ZONE<br />

GND<br />

SET<br />

A/CO2<br />

GND<br />

10.<br />

IN<br />

IN<br />

OUT<br />

OUT<br />

D.D.C.\U.C.M.<br />

Control Box<br />

Shielded Twisted Pair<br />

Communications Wiring<br />

5.<br />

R (HOT)<br />

O (COMMON)<br />

GR (NC CONTACT)<br />

BK (RETURN)<br />

Y<br />

(TB1-1) 24VAC<br />

(TB4-1) BIP<br />

(TB1-1) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

TB3-5 TB3-6 TB3-6 TB3-5<br />

6.<br />

6.<br />

1.0–10.0<br />

VDC OUT<br />

COM<br />

C 12<br />

<strong>NOTE</strong>S:<br />

1.<br />

Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

FIELD INSTALLED<br />

AUX. TEMPERATURE SENSOR<br />

2. 1/4" quick connect required for all field connections.<br />

3. Zone sensor terminals 4 <strong>and</strong> 5 require shielded twisted pair wiring for zone sensor equipped with<br />

communications jack. Zone sensor with LCD requires a sixth wire with 24 V from a transformer.<br />

4. No additional wiring required for night setback override (On/Cancel).<br />

5. The optional binary input connects between TB4-1 (BIP) <strong>and</strong> 24 VAC (Hot) from the transformer.<br />

The Binary input can be reconfigured as an occupancy input via the communications interface.<br />

6. As shipped, the AUX input is configured as an Auxiliary Temperature Input. The AUX input can be<br />

reconfigured as a CO2 Sensor Input via the communications interface.<br />

7. S-terminal is not to be used with <strong>VariTrane</strong>.<br />

8. If unit-installed transformer is not provided, polarity from unit to unit must be maintained to prevent<br />

permanent damage to control board. If one leg of 24 VAC supply is grounded, the the ground leg<br />

must be connected to TB1-2.<br />

9. Contactors are 24 VAC: 12 VA max./coil (mercury contactors) <strong>and</strong> 10 VA max./coil (magnetic coils).<br />

10. Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

VDDF – Dual-Duct Terminal Units<br />

(Normal Operation: Cooling <strong>and</strong> Heating)<br />

DD01 – Cooling (No Remote Heat) <strong>and</strong> Heating Control<br />

See "General Logic" <strong>and</strong> DDC Reheat Control" sections for Sequence of Operation.<br />

COOLING VALVE<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

24VAC<br />

FROM TB4 ON<br />

HEATING VALVE UCM<br />

W-HOT<br />

W-HOT<br />

G-OPEN<br />

R-CLOSE<br />

OPTIONAL<br />

TRANSFORMER<br />

50VA<br />

TB2-6<br />

TB3-2 TB3-1<br />

TB2-5<br />

TB3-3<br />

TB3-2<br />

TB3-1<br />

24VAC<br />

Y<br />

BL<br />

Y<br />

BL<br />

5 4 3 2 1<br />

ZONE SENSOR<br />

W/ COMM. JACK<br />

REMOTE MTD.<br />

3. 4.<br />

2 1<br />

ZONE SENSOR<br />

REMOTE MTD.<br />

4.<br />

J11<br />

J10<br />

J9<br />

J7<br />

ADDRESS<br />

SWITCH<br />

J8<br />

J1<br />

ACT<br />

1<br />

TB4-1<br />

BIP<br />

TB1-2<br />

GND<br />

D.D.C.\U.C.M.<br />

CONTROL BOARD<br />

TB1-1<br />

24V<br />

PRESS<br />

J3<br />

1<br />

PRESSURE<br />

TRANSDUCER<br />

R<br />

BK<br />

G<br />

+<br />

VOUT<br />

-<br />

TB1-2<br />

TB1-1<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

+<br />

TB2-1<br />

TB2-2<br />

IN<br />

IN<br />

-<br />

+<br />

TB2-3<br />

TB2-4<br />

OUT<br />

OUT<br />

-<br />

TB2-5<br />

+ -<br />

TB2-6<br />

YEL<br />

GRN<br />

ZONE GND SET A/CO2 GND<br />

SHIELDED TWISTED PAIR<br />

COMMUNICATIONS WIRING<br />

FROM TB3 ON<br />

HEATING VALVE UCM<br />

TB3-1<br />

BL BK R<br />

TB3-2<br />

TB3-3<br />

TB3-5<br />

TB3-6<br />

S<br />

7.<br />

D.D.C.\U.C.M.<br />

CONTROL BOX<br />

5.<br />

R (HOT)<br />

O (COMMON)<br />

GR (NC CONTACT)<br />

BK (RETURN)<br />

Y<br />

(TB1-1) 24VAC<br />

(TB4-1) BIP<br />

(TB1-1) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

TB3-5 TB3-6<br />

6.<br />

OPTIONAL FIELD I LED<br />

AUX TEMP S<br />

6.<br />

(TB1-1) 24V<br />

CO2 (TB3-6) GND<br />

SENSOR GND<br />

OUT (TB3-5) A/CO2<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

HEATING VALVE<br />

J11<br />

J10<br />

J9<br />

J7<br />

J8<br />

ADDRESS<br />

SWITCH<br />

TB2-1<br />

IN<br />

+<br />

TB2-2<br />

TB2-3<br />

TB2-4<br />

J1<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

W-HOT<br />

W-HOT<br />

ACT<br />

BK-OPEN<br />

R-CLOSE<br />

24VAC 50/60 HZ<br />

NEC CLASS-2<br />

CONTROL CIRCUIT<br />

LOAD = 24VA<br />

TB4 1 2 3<br />

Y<br />

BL<br />

D.D.C.\U.C.M.<br />

CONTROL BOARD<br />

- + - + -<br />

IN<br />

OUT<br />

OUT<br />

TB2-5<br />

TB2-6<br />

9.<br />

YEL<br />

TB3-3<br />

TB3-5<br />

FROM TB3 ON<br />

COOLING VALVE UCM<br />

SHIELDED TWISTED PAIR<br />

COMMUNICATIONS WIRING<br />

1<br />

TB4-1<br />

BIP<br />

TB3-1<br />

TB1-2<br />

TB1-1<br />

GND<br />

REMOVED<br />

AT<br />

FACTORY<br />

GRN<br />

ZONE<br />

BL BK R<br />

8.<br />

TB3-2<br />

24V<br />

GND SET<br />

4<br />

TB3-6<br />

PRESS<br />

5<br />

J3<br />

W4<br />

W2<br />

W1 1<br />

A/CO2 GND<br />

S<br />

Y<br />

BL<br />

24VAC<br />

TO TB1 ON<br />

COOLING<br />

VALVE UCM<br />

PRESSURE<br />

TRANSDUCER<br />

R<br />

+<br />

BK<br />

VOUT<br />

G<br />

-<br />

7.<br />

D.D.C.\U.C.M.<br />

CONTROL BOX<br />

<strong>NOTE</strong>S:<br />

1.<br />

2.<br />

3.<br />

FACTORY WIRING<br />

FIELD WIRING<br />

1/4" quick connect required for all field connections.<br />

Zone sensor terminals 4 <strong>and</strong> 5 require shielded twisted pair wiring for<br />

zone sensor equipped with communications jack. Zone sensor with LCD<br />

requires a sixth wire with 24 V from a transfomer.<br />

4. No additional wiring required for night setback override (On/Cancel).<br />

5. The optional binary input connects between TB4-1 (BIP) <strong>and</strong> 24 VAC<br />

(Hot) from the transformer. The binary input can be reconfigured as an<br />

occupancy input via the communications interface. Occupancy sensor<br />

is connected to both UCM's.<br />

6. As shipped, the AUX input is configured as an Auxiliary Temperature<br />

Input. The AUX input can be reconfigured as a CO2 Sensor Input via<br />

the communications interface.<br />

7.<br />

S-terminal is not to be used with <strong>VariTrane</strong>.<br />

8. If unit-installed transformer is not provided, polarity from unit to unit<br />

must be maintained to prevent permanent damage to control board. If<br />

one leg of 24 VAC supply is grounded, then ground leg must be<br />

connected to TB1-2.<br />

9. Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

<strong>VAV</strong>-PRC008-EN C 13


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

VDDF – Dual-Duct Terminal Units<br />

(Normal Operation: Cooling <strong>and</strong> Heating)<br />

DD08 – Cooling (no Remote Heat) <strong>and</strong> Heating - Constant Volume Control<br />

See "General Logic" <strong>and</strong> "DDC Reheat Control" sections for Sequence of Operation.<br />

COOLING VALVE<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

24VAC<br />

FROM TB4 ON<br />

HEATING VALVE UCM<br />

W-HOT<br />

W-HOT<br />

G-OPEN<br />

R-CLOSE<br />

OPTIONAL<br />

TRANSFORMER<br />

50VA<br />

TB2-6<br />

TB3-2 TB3-1<br />

TB2-5<br />

TB3-3<br />

TB3-2<br />

TB3-1<br />

24VAC<br />

Y<br />

BL<br />

Y<br />

BL<br />

5 4 3 2 1<br />

ZONE SENSOR<br />

W/ COMM. JACK<br />

REMOTE MTD.<br />

3. 4.<br />

2 1<br />

ZONE SENSOR<br />

REMOTE MTD.<br />

4.<br />

J11<br />

J10<br />

J9<br />

J7<br />

ADDRESS<br />

SWITCH<br />

J8<br />

J1<br />

ACT<br />

1<br />

TB4-1<br />

BIP<br />

TB1-2<br />

GND<br />

D.D.C.\U.C.M.<br />

CONTROL BOARD<br />

TB1-1<br />

24V<br />

PRESS<br />

J3<br />

1<br />

PRESSURE<br />

TRANSDUCER<br />

R<br />

BK<br />

G<br />

+<br />

VOUT<br />

-<br />

TB1-2<br />

TB1-1<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

+<br />

TB2-1<br />

TB2-2<br />

IN<br />

IN<br />

-<br />

+<br />

TB2-3<br />

TB2-4<br />

OUT<br />

OUT<br />

-<br />

TB2-5<br />

+ -<br />

TB2-6<br />

SHIELDED TWISTED PAIR<br />

COMMUNICATIONS WIRING<br />

YEL<br />

GRN<br />

ZONE GND SET A/CO2 GND<br />

TB3-1<br />

BL BK R<br />

TB3-2<br />

TB3-3<br />

TB3-5<br />

3. 4.<br />

FIELD INSTALLED<br />

ZONE SENSOR<br />

TB3-6<br />

S<br />

7.<br />

D.D.C.\U.C.M.<br />

CONTROL BOX<br />

5.<br />

R (HOT)<br />

O (COMMON)<br />

GR (NC CONTACT)<br />

BK (RETURN)<br />

Y<br />

(TB1-1) 24VAC<br />

(TB4-1) BIP<br />

(TB1-1) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

TB3-5 TB3-6<br />

6.<br />

OPTIONAL FIELD I LED<br />

AUX TEMP SE<br />

6.<br />

(TB1-1) 24V<br />

24V<br />

CO2 (TB3-6) GND<br />

SENSOR GND<br />

OUT (TB3-5) A/CO2<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

C 14<br />

HEATING VALVE<br />

J11<br />

J10<br />

J9<br />

J7<br />

J8<br />

ADDRESS<br />

SWITCH<br />

TB2-1<br />

IN<br />

+<br />

TB2-2<br />

IN<br />

TB2-3<br />

TB2-4<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

W-HOT<br />

W-HOT<br />

ACT<br />

SHIELDED TWISTED PAIR<br />

COMMUNICATIONS WIRING<br />

J1<br />

BK-OPEN<br />

R-CLOSE<br />

24VAC 50/60 HZ<br />

NEC CLASS-2<br />

CONTROL CIRCUIT<br />

LOAD = 24VA<br />

TB4 1 2 3<br />

Y<br />

BL<br />

D.D.C.\U.C.M.<br />

CONTROL BOARD<br />

- + - + -<br />

OUT<br />

OUT<br />

TB2-5<br />

TB2-6<br />

10.<br />

YEL<br />

1<br />

TB4-1<br />

BIP<br />

GRN<br />

TB3-1<br />

TB1-2<br />

TB1-1<br />

GND<br />

ZONE<br />

8.<br />

TB3-2<br />

24V<br />

GND SET<br />

TB3-3<br />

TB3-5<br />

4<br />

A/CO2<br />

TB3-6<br />

PRESS<br />

5<br />

J3<br />

1<br />

GND<br />

S<br />

Y<br />

BL<br />

24VAC<br />

TO TB1 ON<br />

COOLING<br />

VALVE UCM<br />

9.<br />

PRESSURE<br />

TRANSDUCER<br />

R<br />

+<br />

BK<br />

VOUT<br />

G<br />

-<br />

7.<br />

D.D.C.\U.C.M.<br />

CONTROL BOX<br />

<strong>NOTE</strong>S:<br />

1.<br />

2.<br />

3.<br />

4.<br />

7.<br />

8.<br />

FACTORY WIRING<br />

FIELD WIRING<br />

1/4" quick connect required for all field connections.<br />

Zone sensor terminals 4 <strong>and</strong> 5 require shielded twisted pair wiring for<br />

zone sensor equipped with communications jack. Zone sensor with LCD<br />

requires a sixth wire with 24 V from a transformer.<br />

No additional wiring required for night setback override (On/Cancel).<br />

5. The optional binary input connects between TB4-1 (BIP) <strong>and</strong> 24 VAC<br />

(Hot) from the transformer. The binary input can be reconfigured as an<br />

occupancy input via the communications interface. Occupancy sensor<br />

is connected to both UCMs.<br />

6. As shipped, the AUX input is configured as an Auxiliary Temperature<br />

Input. The AUX input can be reconfigured as a CO2 Sensor Input via<br />

the communications interface.<br />

9.<br />

S-terminal is not to be used with <strong>VariTrane</strong>.<br />

If unit-installed transformer is not provided, polarity from unit to unit<br />

must be maintained to prevent permanent damage to control board. If<br />

one leg of 24 VAC supply is grounded, then ground leg must be<br />

connected to TB1-2.<br />

The flow ring, normally used for sensing heating airflow, is placed at the<br />

discharge of the unit <strong>and</strong> is used to control constant volume.<br />

10. Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

For Use With <strong>VariTrane</strong> Fan-Powered Terminals<br />

(Normal Operation: Cooling with Electric Reheat Capability)<br />

DD01 – Cooling Only<br />

DD04 – Cooling With Staged On/Off Electric Heat<br />

DD05 – Cooling With Pulse-Width Modulation Electric Heat<br />

See "General Logic" <strong>and</strong> "DDC Reheat Control" sections for Sequence of Operation.<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

FAN CONTROL<br />

BOX WIRING<br />

TB2-6<br />

TB2-5<br />

TB3-3<br />

TB3-1<br />

TB3-2<br />

WH-HOT<br />

WH-HOT<br />

G-OPEN<br />

R-CLOSE<br />

5 4 3 2 1<br />

ZONE SENSOR<br />

W/ COMM. JACK<br />

REMOTE MTD.<br />

3. 4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

STANDARD<br />

TRANSFORMER<br />

PROVIDED<br />

50VA<br />

R-FAN<br />

24 VAC<br />

BR<br />

Y<br />

BL<br />

TB3-2<br />

TB3-1<br />

Y<br />

TB1-2<br />

BL<br />

TB1-1<br />

J11<br />

J10<br />

J9<br />

ADDRESS<br />

SWITCH<br />

J7<br />

J8<br />

J1<br />

ACT<br />

TB4-1<br />

D.D.C.\U.C.M.<br />

CONTROL BOARD<br />

1<br />

BIP<br />

TB1-2<br />

TB1-1<br />

GND 24V<br />

PRESS<br />

J3<br />

R<br />

BK<br />

PRESSURE<br />

TRANSDUCER<br />

G -<br />

+<br />

VOUT<br />

2<br />

1<br />

ZONE SENSOR<br />

REMOTE MTD.<br />

4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

1<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

TB2-1<br />

TB2-2<br />

TB2-3<br />

TB2-4<br />

TB2-5<br />

TB2-6<br />

YEL<br />

GRN<br />

TB3-1<br />

TB3-2<br />

TB3-3<br />

TB3-5<br />

TB3-6<br />

S<br />

7.<br />

ZONE GND SET A/CO2<br />

GND<br />

IN<br />

IN<br />

OUT<br />

OUT<br />

8.<br />

D.D.C.\U.C.M.<br />

CONTROL BOX<br />

TO J10<br />

TO J9<br />

TO J8<br />

2ND STG.<br />

1ST STG.<br />

HOT<br />

HEATER STAGE<br />

CONTACTOR(S)<br />

24VAC, 12VA<br />

MAX/COIL<br />

OPTIONAL FIELD INSTALLED<br />

ELECTRIC HEATER<br />

SHIELDED<br />

TWISTED PAIR<br />

COMMUNICATIONS<br />

WI ING<br />

5.<br />

R (HOT)<br />

O (COMMON)<br />

GR (NC CONTACT)<br />

BK (RETURN)<br />

Y<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

(TB1-1) 24VAC<br />

(TB4-1) BIP<br />

(TB1-1) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

TB3-5<br />

OPTI<br />

6.<br />

NAL FIELD INST<br />

UX TEMP SENSO<br />

TB3-6<br />

6.<br />

(TB1-1) 24V<br />

24V<br />

CO2<br />

SENSOR<br />

OUT (TB3-5) A/CO2<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

TO J8<br />

TO J9<br />

TO J10<br />

TO J8<br />

W (HOT)<br />

BK (CLOSE)<br />

R (OPEN)<br />

PROP.<br />

WATER<br />

VALVE<br />

24VAC<br />

12VA MAX<br />

OPTIONAL FIELD INSTALLED<br />

PROPORTIONAL WATER VALVE<br />

TO J9<br />

ON - OFF<br />

WATER VALVE<br />

24 VAC<br />

12VA MAX<br />

<strong>NOTE</strong>S:<br />

OPTIONAL FIELD INSTALLED<br />

ON-OFF WATER VALVE<br />

1.<br />

2.<br />

3.<br />

FACTORY WIRING<br />

FIELD WIRING<br />

OPTIONAL OR ALTERNATE WIRING<br />

1/4" quick connect required for all field connections<br />

Zone sensor terminals 4 <strong>and</strong> 5 require shielded twisted pair wiring for communications jack equipped zone sensor<br />

option. Zone sensor with LCD requires a sixth wire with 24 V from a transformer.<br />

4.<br />

No additional wiring required for night setback override (on/cancel).<br />

5.<br />

The optional binary input connects between TB4-1 (BIP <strong>and</strong> 24 VAC (hot) from transformer. the binary input can be<br />

reconfigured as an occupancy input via the communications interface.<br />

6.<br />

7.<br />

As shipped, the aux input is configured as an aux temp input. The aux input can be reconfigured<br />

as a CO2 sensor input via the communications interface.<br />

S terminal not to be used with <strong>VariTrane</strong>.<br />

8. Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

<strong>VAV</strong>-PRC008-EN C 15


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

For Use With <strong>VariTrane</strong> Fan-Powered Terminals<br />

(Normal Operation: Cooling with Hot Water Reheat)<br />

DD02 – Cooling with Normally-Closed On/Off Hot Water Valve (Normally-Open Outputs)<br />

DD03 – Cooling with Proportional Hot Water Valve<br />

DD07 – Cooling with Normally-Open On/Off Hot Water Valve (Normally-Closed Outputs)<br />

See "General Logic" <strong>and</strong> "DDC Reheat Control" sections for Sequence of Operation.<br />

ON – OFF<br />

WATER VALVE<br />

24 VAC<br />

12VA MAX<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

FAN CONTROL<br />

BOX WIRING<br />

TB3–6<br />

TB3–5<br />

TB3–3<br />

TB3–1<br />

TB3–2<br />

STANDARD<br />

TRANSFORMER<br />

PROVIDED<br />

50VA<br />

W–HOT<br />

W–HOT<br />

G–OPEN<br />

R–CLOSE<br />

5 4 3<br />

ZONE SENSOR<br />

W/ COMM. JACK<br />

REMOTE MTD.<br />

3.<br />

4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

2<br />

1<br />

R–FAN<br />

TB3–2<br />

TB3–1<br />

BR<br />

Y<br />

Y<br />

BL<br />

TB1-2<br />

TB1-1<br />

J11<br />

J10<br />

J9<br />

J7<br />

ADDRESS<br />

SWITCH<br />

J8<br />

J1<br />

ACT<br />

BIP<br />

D.D.C. \ U.C.M.<br />

CONTROL BOARD<br />

1<br />

TB4–1<br />

TB1–2<br />

GND<br />

TB1–1<br />

24V<br />

J11<br />

PRESS<br />

24 VAC<br />

J3<br />

R<br />

BK<br />

G<br />

PRESSURE<br />

TRANSDUCER<br />

+<br />

VOUT<br />

_<br />

2<br />

ZONE SENSOR<br />

REMOTE MTD.<br />

4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

1<br />

1<br />

TB2–1<br />

IN<br />

+<br />

TB2–2<br />

IN<br />

– + – +<br />

TB2–3<br />

OUT<br />

TB2–4<br />

OUT<br />

TB2–5<br />

TB2–6<br />

8.<br />

–<br />

YEL<br />

GRN<br />

TB3–1<br />

TB3–2<br />

TB3–3<br />

J11<br />

J11<br />

TB3–5<br />

J11<br />

TB3–6<br />

ZONE GND SET A/CO2 GND<br />

S<br />

7.<br />

DDC\UCM<br />

CONTROL BOX<br />

TO J8<br />

TO J9<br />

TO J10<br />

W (HOT)<br />

BK (CLOSE)<br />

R (OPEN)<br />

PROP.<br />

WATER<br />

VALVE<br />

24VAC<br />

12VA MAX<br />

OPTIONAL FIELD INSTALLED<br />

PROPORTIONAL WATER VALVE<br />

SHIELDED TWISTED PAIR<br />

COMMUNICATIONS WIRING<br />

5.<br />

R (HOT)<br />

O (COMMON)<br />

GR (NC CONTACT)<br />

BK (RETURN)<br />

Y<br />

(TB1-1) 24VAC<br />

(TB4-1) BIP<br />

(TB1-1) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

TB3–5<br />

TB3–6<br />

6.<br />

24V<br />

CO2<br />

SENSOR<br />

(TB1-1) 24V<br />

(TB3-5) A/CO2<br />

<strong>NOTE</strong>S:<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

OPTIONAL FIELD INSTALLED<br />

AUX TEMP SENSOR<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

1.4" quick connect required for all field connections.<br />

Zone sensor terminals 4 & 5 require shielded twisted pair wiring for communications jack equipped zone sensor options.<br />

Zone sensor with LCD requires a sixth wire with 24 V from a transformer.<br />

No additional wiring required for night setback override (ON/CANCEL).<br />

The optional binary input connects between TB–1 (BIP) AND 24 VAC (HOT) from transformer. The binary input can be<br />

reconfigured as an occupancy input via the communications interface.<br />

As shipped, the Aux Input is configured as an Auxillary Temporary Input. The Aux. Input can be reconfigured as a<br />

CO2 sensor input via the communications interface.<br />

S Terminal not to be used with <strong>VariTrane</strong>.<br />

C 16<br />

8.<br />

Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Control<br />

Drawings<br />

For Use With ECM <strong>VariTrane</strong> Fan-Powered Terminals<br />

(Normal Operation: Cooling with Reheat Capability)<br />

DD01 – Cooling Only<br />

DD02 – Cooling with Normally-Closed On/Off Hot Water Vavle (Normally-Open Outputs)<br />

DD03 – Cooling with Proportional Hot Water Valve<br />

DD04 – Cooling with Staged On/Off Electric Heat<br />

DD05 – Cooling with Pulse-Width Modulation Electric Heat<br />

DD07 – Cooling with Normally-Closed On/Off Hot Water Valve (Normally-Closed Outputs)<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

FAN CONTROL<br />

BOX WIRING<br />

TO<br />

ECM<br />

MOTOR<br />

W-HOT<br />

G-OPEN<br />

Y<br />

BL<br />

BK<br />

Y<br />

O<br />

TB2-6<br />

TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

J11<br />

J10<br />

ADDRESS<br />

SWITCH<br />

TB2-1<br />

+<br />

IN<br />

IN TB2-2<br />

J9<br />

R<br />

J7<br />

J8<br />

- + -<br />

TB2-3<br />

OUT<br />

TB2-4<br />

OUT<br />

J1<br />

D.D.C.\U.C.M.<br />

CONTROL BOARD<br />

+<br />

TB2-5<br />

TB2-6<br />

SHIELDED<br />

TWISTED PAIR<br />

COMMUNICATIONS<br />

WIRING<br />

9.<br />

W-HOT<br />

-<br />

R-CLOSE<br />

ACT<br />

YEL<br />

1<br />

TB4-1<br />

BIP<br />

GRN<br />

TB3-1<br />

Y<br />

TB1-2<br />

TB1-1<br />

GND<br />

TB3-2<br />

24V<br />

BL<br />

TB3-3<br />

TB3-5<br />

TB3-6<br />

COOL<br />

ZONE GND SET A/CO2 GND<br />

1<br />

Y<br />

J3<br />

BL<br />

S<br />

BL<br />

R<br />

2<br />

1<br />

24V<br />

4<br />

3<br />

MOTOR<br />

RELAY<br />

R<br />

+<br />

BK<br />

VOUT<br />

G -<br />

7.<br />

D.D.C.\U.C.M.<br />

CONTROL BOX<br />

NEUT.<br />

RED<br />

ECM<br />

BOARD<br />

PRESSURE<br />

TRANSDUCER<br />

RED<br />

24V<br />

8.<br />

W<br />

BK<br />

G<br />

R<br />

TO J10<br />

TO J9<br />

TO J8<br />

5 4 3 2 1<br />

ZONE SENSOR<br />

W/ COMM. JACK<br />

REMOTE MTD.<br />

3.<br />

4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

TB3-2<br />

2<br />

TB3-1<br />

1<br />

ZONE SENSOR<br />

REMOTE MTD.<br />

4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

2ND STG.<br />

1ST STG.<br />

HOT<br />

HEATER STAGE<br />

CONTACTOR(S)<br />

24VAC, 12VA<br />

MAX/COIL<br />

OPTIONAL FIELD INSTALLED<br />

ELECTRIC HEATER<br />

STANDARD<br />

TRANSFORMER<br />

PROVIDED<br />

50VA<br />

5.<br />

R (HOT)<br />

O (COMMON)<br />

BK (RETURN)<br />

Y<br />

(TB1-1) 24VAC<br />

(TB4-1) BIP<br />

(TB1-1) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

TB3-5<br />

6.<br />

TB3-6<br />

6.<br />

CO2<br />

SENSOR<br />

OUT<br />

(TB1-1) 24V<br />

(TB3-6) GND<br />

(TB3-5) A/CO2<br />

TO J8<br />

TO J9<br />

TO J10<br />

W (HOT)<br />

BK (CLOSE)<br />

R (OPEN)<br />

PROP.<br />

WATER<br />

VALVE<br />

24VAC<br />

12VA MAX<br />

OPTIONAL FIELD INSTALLED<br />

PROPORTIONAL WATER VALVE<br />

Y<br />

TB1-2<br />

BL<br />

TB1-1<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

OPTI<br />

OPTIONAL FIELD INSTALLED<br />

CO2 SENSOR<br />

TO J9<br />

TO J8<br />

ON - OFF<br />

WATER VALVE<br />

24 VAC<br />

12VA MAX<br />

<strong>NOTE</strong>S:<br />

1.<br />

FACTORY WIRING<br />

FIELD WIRING<br />

OPTIONAL OR ALTERNATE WIRING<br />

OPTIONAL FIELD INSTALLED<br />

ON-OFF WATER VALVE<br />

2. 1/4" quick connect required for all field connections<br />

3. Zone sensor terminals 4 <strong>and</strong> 5 require shielded twisted pair wiring for communications jack equipped zone sensor<br />

option. Zone sensor with LCD requires a sixth wire with 24 V from a transformer.<br />

4.<br />

No additional wiring required for night setback override (on/cancel).<br />

5.<br />

6.<br />

The optional binary input connects between TB4-1 (BIP <strong>and</strong> 24 VAC (hot) from transformer. the binary input can be<br />

reconfigured as an occupancy input via the communications interface.<br />

As shipped, the aux input is configured as an aux temp input. The aux input can be reconfigured<br />

as a CO2 sensor input via the communications interface.<br />

7. S terminal not to be used with <strong>VariTrane</strong>.<br />

8. Fan cfm can be adjusted from its min. cfm to its max. cfm via the ECM control board dial<br />

switches. The switches set the percentage flow.<br />

9. Connect shielding from each communication cable together <strong>and</strong> insulate.<br />

<strong>VAV</strong>-PRC008-EN C 17


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

Direct Digital Controller—<br />

Unit Control Module<br />

The Trane direct digital controller Unit<br />

Control Module (DDC-UCM) is a<br />

microprocessor-based terminal unit<br />

with non-volatile memory which<br />

provides accurate airflow <strong>and</strong> room<br />

temperature control of Trane <strong>VAV</strong> air<br />

terminal units. The UCM can operate in<br />

a pressure-independent or a pressuredependent<br />

mode <strong>and</strong> uses a<br />

proportional plus integral control<br />

algorithm. The controller monitors zone<br />

temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change <strong>and</strong><br />

valve airflow (via flow ring differential<br />

pressure). The controller also accepts<br />

an auxiliary duct temperature sensor<br />

input or a suupply air temperature<br />

value from Tracer Summit. Staged<br />

electric heat, pulse width modulated<br />

electric heat, proportional hot water<br />

heat or on/off hot water heat control<br />

are provided when required. The<br />

control board operates using<br />

24-VAC power. The Trane DDC-UCM is<br />

a member of the Trane Integrated<br />

Comfort systems (ICS) family of<br />

products. When used with a Trane<br />

Tracer Summit building management<br />

controller or other Trane controllers,<br />

zone grouping <strong>and</strong> unit diagnostic<br />

information can be obtained. Also part<br />

of ICS is the factory-commissioning of<br />

parameters specified by the engineer<br />

(see "Factory-Installed vs. Factory-<br />

Commissioned" in the Features <strong>and</strong><br />

Benefits section for more details).<br />

SPECIFICATIONS<br />

Supply voltage:<br />

24 VAC, 50/60 Hz<br />

Maximum VA load:<br />

No heat or fan:<br />

12 VA (Board, Transducer, Zone Sensor,<br />

<strong>and</strong> Actuator)<br />

Note: If using field-installed heat,<br />

24 VAC transformer should be sized<br />

for additional load.<br />

Output ratings:<br />

Actuator Output: 24 VAC at 12 VA<br />

1st Stage Reheat: 24 VAC at 12 VA<br />

2nd Stage Reheat: 24 VAC at 12 VA<br />

3rd Stage Reheat: 24 VAC at 12 VA<br />

Binary input:<br />

24 VAC<br />

Auxiliary input:<br />

Can be configured for an optional 2–10<br />

VDC CO 2<br />

sensor, or auxiliary<br />

temperature sensor.<br />

Operating environment:<br />

32 to 140°F, (0 to 60°C)<br />

5% to 95% RH, Non-condensing<br />

Storage environment:<br />

-40 to 180°F (-40 to 82.2°C),<br />

5% to 95%RH, Non-Condensing<br />

Physical dimensions:<br />

Width:<br />

5.5" (139.7 mm)<br />

Length:<br />

2.8" (69.85 mm)<br />

Height:<br />

1.8" (44.45 mm)<br />

Connections:<br />

1/4" (6.35 mm) Stab Connections<br />

Communications:<br />

RS-485; Str<strong>and</strong>ed wire, twisted pair,<br />

shielded, copper conductor only,<br />

18–20 awg<br />

Fan control:<br />

Series fan:<br />

Parallel fan:<br />

On unless unoccupied<br />

<strong>and</strong> min. flow has been<br />

released.<br />

On when zone<br />

temperature is less than<br />

heating setpoint plus fan<br />

offset. Off when zone<br />

temperature is more than<br />

heating setpoint plus fan<br />

offset plus 0.5°F (0.28°C).<br />

Heat staging:<br />

Staged electric or hot water<br />

proportional or pulse-width<br />

modulation<br />

C 18<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

Wireless Receiver/Wireless Zone Sensor<br />

DDC Zone Sensor<br />

The wireless zone sensor system<br />

eliminates the wiring problems<br />

associated with <strong>VAV</strong> temperature<br />

sensors. It provides the flexibility to<br />

move zone sensors after the occupants<br />

have revised the space floor plan<br />

layout. The zone sensor houses the<br />

space temperature sensor, local<br />

setpoint adjustment thumbwheel,<br />

OCCUPIED/UNOCCUPIED button,<br />

battery life, signal strength indicators,<br />

<strong>and</strong> spread spectrum transmitter. The<br />

spread spectrum receiver/translator<br />

can be field or factory installed <strong>and</strong><br />

functions as a communication<br />

translator between spread spectrum<br />

radio communications <strong>and</strong> the <strong>VAV</strong><br />

communications link. For further<br />

information, refer to the wireless zone<br />

sensor product catalog at http://<br />

www.trane.com/commercial/<br />

equipment/PDF/42/<br />

BASPRC023_032306.pdf.<br />

SPECIFICATIONS<br />

Power requirements:<br />

Receiver:<br />

24 V nominal AC/DC ± 10% < 1VA<br />

Zone Sensor:<br />

(2) AA lithium batteries<br />

Sensor Operating environments:<br />

32 to 122°F, (0 to 50°C)<br />

5 to 95%RH, Non-condensing<br />

Receiver Operating environments:<br />

-40 to 158°F, (-40 to 70°C)<br />

5 to 95%RH, Non-condensing<br />

Storage environment—sensor/<br />

receiver:<br />

-40 to 185°F, (-40 to 85°C)<br />

5 to 95%RH, Non-condensing<br />

Mounting:<br />

Receiver:<br />

Suitable for mounting above or below<br />

ceiling grid. Requires 24 V power.<br />

Factory installed receiver comes<br />

mounted to the <strong>VAV</strong> unit with power<br />

provided by associated unit controller<br />

transformer. Field installed option<br />

provided with associated wireharness<br />

for similar power <strong>and</strong> communication<br />

connection.<br />

Sensor:<br />

Mounts to a 2x4 h<strong>and</strong>i-box or directly<br />

to the wall by attaching the backplate<br />

<strong>and</strong> then snapping the sensor body<br />

into place.<br />

Dimensions:<br />

Receiver/Translator<br />

Enclosure: Plastic<br />

Height: 4.75" (120.6 mm)<br />

Width: 2.90" (73.5 mm)<br />

Depth: 1.08" (27.5 mm)<br />

Sensor/Transmitter<br />

Enclosure: Plastic<br />

Height: 4.78" (121.4 mm)<br />

Width: 2.90" (73.5 mm)<br />

Depth: 1.08" (27.5 mm)<br />

The DDC zone sensor is used in<br />

conjunction with the Trane direct digital<br />

controller to sense the space<br />

temperature <strong>and</strong> to allow for user<br />

adjustment of the zone setpoint.<br />

Models with external zone setpoint<br />

adjustments, plug-in communications<br />

jack <strong>and</strong> occupied mode override<br />

pushbuttons are available.<br />

SPECIFICATIONS<br />

Thermistor resistance rating:<br />

10,000 Ohms at 77°F (25°C)<br />

Setpoint resistance rating:<br />

Setpoint potentiometer is calibrated to<br />

produce 500 Ohms at a setting of 70°F<br />

(21.11°C)<br />

Electrical connections:<br />

Terminal Block – Pressure Connections<br />

Communications Jack – WE-616<br />

Physical dimensions:<br />

Width:<br />

2.75" (69.85 mm)<br />

Length:<br />

4.5" (114.3 mm)<br />

Height:<br />

1.0" (25.4 mm)<br />

<strong>VAV</strong>-PRC008-EN C 19


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

CO 2<br />

Wall Sensor<br />

Duct CO 2<br />

Sensor<br />

DDC Zone Sensor with LCD<br />

The wall- <strong>and</strong> duct-mounted carbon dioxide (CO 2<br />

) sensors are designed for use with<br />

Trane DDC/UCM control systems. Installation is made simple by attachment directly<br />

to the DDC/ UCM controller. <strong>This</strong> allows the existing communication link to be used<br />

to send CO 2<br />

data to the higher-level Trane control system.<br />

Wall-mounted sensors can monitor individual zones, <strong>and</strong> the duct-mounted sensor<br />

is ideal for monitoring return air of a given unit. Long-term stability <strong>and</strong> reliability<br />

are assured with advanced silicon based Non-Dispersive Infrared<br />

(NDIR) technology.<br />

When connected to a building automation system with the appropriate ventilation<br />

equipment, the Trane CO 2<br />

sensors measure <strong>and</strong> record carbon dioxide in parts-permillion<br />

(ppm) in occupied building spaces. These carbon dioxide measurements are<br />

typically used to identify under-ventilated building zones <strong>and</strong> to override outdoor<br />

airflow beyond design ventilation rates if the CO 2<br />

exceeds acceptable levels.<br />

SPECIFICATIONS<br />

Measuring Range<br />

0–2000 parts per million (ppm)<br />

Accuracy at 77°F (25°C)<br />

< ± (40 ppm CO 2<br />

+ 3% of reading)<br />

(Wall only)<br />

< ± (30 ppm CO 2<br />

+ 3% of reading)<br />

Recommended calibration interval<br />

5 years<br />

Response time<br />

1 minute (0–63%)<br />

Operating Temperature<br />

59 to 95°F (15 to 35°C) (Wall only)<br />

23 to 113°F (-5 to 45°C)<br />

Storage Temperature<br />

-4 to 158°F (-20 to 70°C)<br />

Humidity Range<br />

0–85% relative humidity (RH)<br />

Output Signal (jumper selectable)<br />

4-20 mA, 0–20 mA,<br />

0–10 VDC<br />

Resolution of analog outputs<br />

10 ppm CO 2<br />

Power Supply<br />

Nominal 24 VAC<br />

Power Consumption<br />


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

Zone Occupancy Sensor<br />

Auxiliary Temperature Sensor<br />

Control Relay<br />

The zone occupancy sensor is ideal for<br />

spaces with intermittent occupancy. It<br />

is connected to the Trane DDC UCM<br />

<strong>and</strong> allows the zone to shift to<br />

unoccupied setpoints for energy<br />

savings when movement is not<br />

detected in the space.<br />

The zone occupancy sensor has a<br />

multi-cell, multi-tier lens with a<br />

maximum field of view of 360°. The<br />

maximum coverage area of the sensor<br />

is 1200 square feet with a maximum<br />

radius of 22 feet from the sensor when<br />

mounted at 8 feet above the floor.<br />

Sensor ships with 30-minute time<br />

delay pre-set from the factory. Time<br />

delay <strong>and</strong> sensitivity can be fieldadjusted.<br />

SPECIFICATIONS<br />

Power Supply<br />

24 VAC or 24 VDC, ± 10%<br />

Maximum VA Load<br />

0.88 VA @ 24 VAC,<br />

0.72 VA @ 24 VDC<br />

Isolated Relay Rating<br />

1 A @ 24 VAC or 24 VDC<br />

Operating Temperature<br />

32 to 131°F (0 to 55°C)<br />

The auxiliary temperature sensor is used<br />

in conjunction with the Trane DDC<br />

controller to sense duct temperature.<br />

When the DDC controller is used with<br />

a Building Automation System, the<br />

sensor temperature is reported as status<br />

only. When the DDC controller is used in<br />

a st<strong>and</strong>-alone configuration, the sensor<br />

determines the control action of the UCM<br />

in a heat/cool changeover system.<br />

SPECIFICATIONS<br />

Sensing Element:<br />

Thermistor 10,000 Ohms @ 77°F (25°C)<br />

Operating environment:<br />

-4 to 221°F (-20 to 105°C), 5%-95%RH<br />

Non-Condensing<br />

Wiring Connection:<br />

8 ft 18 awg<br />

Sleeving for wire leads is acyrlic #5 awg<br />

grade C rated @ 155 C<br />

Probe Dimensions:<br />

3.4" long x 5/16" diameter<br />

(86 mm x 7.9 mm diameter)<br />

Mounting:<br />

In any position on duct.<br />

Mount the sensor to the duct using<br />

#10 x ¾" (19.05 mm) sheet metal screws.<br />

The control relay is an output device<br />

used to provide on/off control of<br />

electrical loads. The SPST relay also<br />

will isolate the electrical load from the<br />

direct digital controller.<br />

SPECIFICATIONS<br />

Coil rating:<br />

24 VAC, 50/60 Hz, pull in at 85%,<br />

4 VA inrush, 3 VA sealed, Class B<br />

insulation<br />

Contact rating:<br />

120 VAC, 12 FLA , 60 LRA, 18A<br />

Resistive Pilot Duty – 125 VA/3A<br />

277 VAC, 7 FLA, 42 LRA, 18A Resistive<br />

Pilot Duty – 277 VA/3A<br />

347 VAC, 25 FLA, 50 LRA, 30A Resistive<br />

Storage Temperature<br />

-22 to 176°F (-30 to 80°C)<br />

Humidity Range<br />

0 to 95% non-condensing<br />

Effective Coverage Area<br />

1200 sq ft<br />

Effective Coverage Radius<br />

22 feet<br />

Housing Material<br />

ABS Plastic<br />

Dimensions<br />

3.3" dia. x 2.2" deep (85 mm x 56 mm).<br />

Protrudes 0.36" (9 mm) from ceiling<br />

when installed.<br />

<strong>VAV</strong>-PRC008-EN C 21


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

Two-Position Water Valve<br />

Proportional Water Valve<br />

Two-position hot water valves are used<br />

with Trane DDC/UCM controls <strong>and</strong><br />

analog electronic controls. Valve<br />

actuation is by a hysteresis<br />

synchronous motor.<br />

All valves are field-installed <strong>and</strong><br />

convertible from three-way to two-way<br />

by means of an included cap.<br />

SPECIFICATIONS<br />

Valve design<br />

Body:<br />

Brass<br />

Cover:<br />

Aluminum<br />

Case:<br />

Stainless Steel<br />

Stem:<br />

Brass, Hard<br />

Chrome Plate<br />

“O” Ring Seals: Viton<br />

Operating Paddle: Buna N<br />

Valve body ratings:<br />

UL 873 Listed File E27743<br />

Plenum Rated CSA C22.2 No. 139<br />

Certified, File LR85083, Class 3221 01<br />

Temperature limits:<br />

200°F (93.33°C) Fluid<br />

104°F (40°C) Ambient<br />

Maximum Operating Pressure:<br />

300 psi (2069 kPa)<br />

Electrical rating:<br />

Motor Voltage – 24 VAC, 50/60 Hz<br />

Power Consumption – 7.0 VA of 24 VAC<br />

Valve offerings:<br />

All valves are spring returned.<br />

1.17 Cv – ½" (12.7 mm) O.D. NPT<br />

3.0 Cv – ¾" (19.1 mm) O.D. NPT<br />

6.4 Cv – 1" (25.4 mm) O.D. NPT<br />

Cv offered (Close-off Pressure):<br />

1.17 30 psi (207 kPa)<br />

3.0 14.5 psi (100 kPa)<br />

6.4 9 psi (62 kPa)<br />

The proportional water valve is used to<br />

provide accurate control of a hot water<br />

heating coil to help maintain a zone<br />

temperature setpoint. The valve plug<br />

is an equal percentage design <strong>and</strong><br />

comes available in four different flow<br />

capacities for proper controllability. The<br />

valves are field-adjustable for use as a<br />

two- or three-way configuration. The<br />

valves ship in a two-way configuration<br />

with a cap over the bottom port.<br />

Conversion to three-way operation is<br />

accomplished by removing the plug<br />

from the "B" port. The valve actuator<br />

contains a three-wire synchronous<br />

motor. The direct digital controller uses<br />

a time-based signal to drive the motor<br />

to its proper position. When power is<br />

removed from the valve, it remains in<br />

its last controlled position.<br />

SPECIFICATIONS<br />

Valve design:<br />

Equal percentage plug designed for<br />

water or water with up to 50% glycol<br />

or ethylene<br />

Valve body ratings:<br />

ANSI B16.15, Class 250 pressure/<br />

temperature<br />

ANSI B16.104, Class IV control valve shut<br />

off leakage st<strong>and</strong>ard<br />

ISA S75.11 flow characteristic st<strong>and</strong>ard<br />

Temperature limits:<br />

34–203°F (1–95°C) Fluid<br />

32–150°F (0–66°C) Ambient<br />

Maximum operating pressure:<br />

345 psi at 281°F (2379 kPa at 138°C)<br />

Maximum actuator close-off pressure:<br />

55 psi (379 kPa)<br />

Electrical rating:<br />

Motor Voltage – 24 VAC, 50/60 Hz<br />

Power Consumption – 6.0 VA at 24 VAC<br />

Valve offerings:<br />

All valves are proportional Tri-state<br />

Control with ½" (12.7 mm) O.D. NPT<br />

connections with the exception of<br />

7.3 Cv, which is ¾" (19.1 mm).<br />

Cv offered:<br />

0.7<br />

2.2<br />

3.8<br />

6.6<br />

C 22<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

Differential Pressure<br />

Transducer<br />

Transformers<br />

The differential pressure transducer is<br />

used in conjunction with the Trane<br />

direct digital controller <strong>and</strong> analog<br />

electronic controller. The pressure<br />

transducer measures the difference<br />

between the high-pressure <strong>and</strong> lowpressure<br />

ports of the Trane flow ring.<br />

The transducer is self-adjusting to<br />

changes in environmental temperature<br />

<strong>and</strong> humidity.<br />

SPECIFICATIONS<br />

Input pressure range:<br />

0.0 to 5.0 in. wg<br />

(Maximum input pressure 5 psig )<br />

Operating environment:<br />

32 to 140° F, (0 to 60°C)<br />

5% to 95% RH, Non-Condensing<br />

Storage environment:<br />

-40 to 180° F, (-40 to 82.2°C)<br />

5% to 95%RH, Non-condensing<br />

Electrical connections:<br />

V in<br />

= 5.0 VDC nominal<br />

(4.75 to 5.25 VDC acceptable)<br />

Current Draw = 5 mA maximum<br />

Null Voltage = 0.250 VDC ± 0.06 VDC<br />

Span = 3.75 VDC ± 0.08 VDC<br />

Note:<br />

Null <strong>and</strong> Span are ratiometric with V in<br />

Physical dimensions:<br />

Width:<br />

2.5" (63.5 mm)<br />

Length:<br />

3.0" (76.2 mm)<br />

Height:<br />

1.5" (38.1 mm)<br />

Pressure connections:<br />

1<br />

/ 8<br />

" (3.175 mm) barbed tubing<br />

connections<br />

The transformer converts primary<br />

power supply voltages to the voltage<br />

required by the direct digital controller<br />

<strong>and</strong> analog. The transformer also<br />

serves to isolate the controller from<br />

other controllers which may be<br />

connected to the same power source.<br />

SPECIFICATIONS<br />

Primary voltage:<br />

120 VAC<br />

208 VAC<br />

240 VAC<br />

277 VAC<br />

347 VAC<br />

480 VAC<br />

575 VAC<br />

Secondary voltage:<br />

24 VAC<br />

Power rating:<br />

50 VA<br />

Physical dimensions:<br />

For all voltages:<br />

The transformers will be no larger<br />

than the following dimensions:<br />

Width: 2.63" (66.7 mm)<br />

Length: 2.50" (63.5 mm)<br />

Height: 2.30" (58.4 mm)<br />

<strong>VAV</strong>-PRC008-EN C 23


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

Trane Actuator – 90 Second Drive Time<br />

Trane Spring Return Actuator<br />

<strong>This</strong> actuator is used with DDC controls<br />

<strong>and</strong> retrofit kits. It is available with a 3-<br />

wire floating-point control device. It is a<br />

direct-coupled over the shaft<br />

(minimum shaft length of 2.1"),<br />

enabling it to be mounted directly to<br />

the damper shaft without the need for<br />

connecting linkage. The actuator has an<br />

external manual gear release to allow<br />

manual positioning of the damper<br />

when the actuator is not powered. The<br />

actuator<br />

is Underwriters Laboratories St<strong>and</strong>ard<br />

873 <strong>and</strong> Canadian St<strong>and</strong>ards<br />

Association Class 3221 02 certified as<br />

meeting correct safety requirements<br />

<strong>and</strong> recognized industry st<strong>and</strong>ards.<br />

SPECIFICATIONS<br />

Actuator design:<br />

3-wire, 24-AC floating-point control.<br />

Non-spring return.<br />

Actuator housing:<br />

Housing type-NEMA 1<br />

Rotation range:<br />

90° clockwise or counterclockwise<br />

C 24<br />

Electrical rating:<br />

Power Supply –24 VAC (20 to 30 VAC)<br />

at 50/60 Hz<br />

Power Consumption – 1.8 VA<br />

maximum, Class 2<br />

Electrical connection:<br />

No. 6-32 screw terminals (For DD00<br />

<strong>and</strong> FM01 control options <strong>and</strong> retrofit<br />

kits).<br />

6-pin female connector harness for<br />

Trane UCM (for Trane DDC controls<br />

except retrofit kits)<br />

Manual override:<br />

External clutch release lever<br />

Shaft requirement:<br />

½" round<br />

2.1" length<br />

Humidity:<br />

5% to 95% RH, Non-Condensing<br />

Temperature rating:<br />

Ambient operating: 32 to 125°F<br />

(0 to 52°C)<br />

Shipping <strong>and</strong> storage: -20 to 130°F<br />

(-29 to 66°C)<br />

Torque:<br />

Running: 35 in.-lb (4 N-m)<br />

Breakaway: 35 in.-lb (4 N-m) minimum<br />

Stall: 60 in.-lb (4.5 N-m) minimum<br />

<strong>This</strong> actuator is used with DDC controls<br />

<strong>and</strong> is a floating-point control device. It is<br />

direct-coupled over the shaft (minimum<br />

shaft length of 2.1"), enabling it to be<br />

mounted directly to the damper shaft<br />

without the need for connecting linkage.<br />

The actuator is Underwriters<br />

Laboratories St<strong>and</strong>ard 60730 <strong>and</strong><br />

Canadian St<strong>and</strong>ards Association C22.2<br />

No. 24-93 certified as meeting correct<br />

safety requirements <strong>and</strong> recognized<br />

industry st<strong>and</strong>ards.<br />

SPECIFICATIONS<br />

Actuator design:<br />

24-VAC, floating-point control. Spring<br />

return<br />

Actuator housing:<br />

Housing Type-NEMA IP54<br />

Rotation range:<br />

Adjustable from 0° to 90° at 5° intervals,<br />

clockwise or counterclockwise<br />

Electrical rating:<br />

Power Supply – 24 VAC (19.2 to 28.8 VAC)<br />

at 50/60 Hz<br />

Power Consumption – 4VA holding, 5VA<br />

running maximum, Class 2<br />

Electrical connection:<br />

6-pin female connector for Trane UCM<br />

(for Trane DDC controls)<br />

Manual override:<br />

Manual override key provided<br />

Shaft requirement:<br />

¼" to ¾" round<br />

2.1" length<br />

Humidity:<br />

95% RH, Non-Condensing<br />

Temperature rating:<br />

Ambient operating: 32 to 130°F<br />

(0 to 54°C)<br />

Shipping <strong>and</strong> storage: -40 to 158°F<br />

(-40 to 70°C)<br />

Torque:<br />

62 in.-lbs (7N-m)<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

DDC<br />

Accessories<br />

<strong>VariTrane</strong> DDC Retrofit Kit<br />

Retrofit Kit Actuator<br />

The retrofit kit provides the system<br />

advantages of <strong>VariTrane</strong> DDC controls<br />

to building owners for existing<br />

systems. The kit can be applied when<br />

converting from pneumatic or analog<br />

controlled systems to a DDC controlled<br />

system. The kit may be used on<br />

existing single-duct units with hot<br />

water <strong>and</strong> electric reheat (three stages),<br />

dual-duct units, <strong>and</strong> all fan-powered<br />

units (both series <strong>and</strong> parallel) with hot<br />

water <strong>and</strong> electric reheat (two stages).<br />

A <strong>VariTrane</strong> DDC-UCM, an electronic<br />

differential pressure transducer, <strong>and</strong> a<br />

six-pin connector with wiring for an<br />

actuator, make up the assembly of the<br />

retrofit kit. All are housed inside a<br />

metal enclosure. For maximum<br />

flexibility, the kit is available with one<br />

of two actuators or without an actuator.<br />

If a kit is ordered without an actuator,<br />

ensure the actuator used has 24VAC<br />

three-wire floating control. Other<br />

accessories are available with the<br />

retrofit kit which include zone sensors,<br />

flow bars (used with units without a<br />

flow sensor), power transformers,<br />

control relays, <strong>and</strong> E/P solenoid valves.<br />

<strong>This</strong> actuator is available with the DDC<br />

Retrofit Kit <strong>and</strong> is a 3-terminal, floatingpoint<br />

control device. It is direct-coupled<br />

over the damper shaft so there is no<br />

need for connecting linkage. The<br />

actuator has an external manual gear<br />

release to allow manual positioning of<br />

the damper when the actuator is not<br />

powered. A three-foot plenum-rated<br />

cable with bare ends will be sent<br />

separately. The actuator is listed under<br />

Underwriters Laboratories St<strong>and</strong>ard<br />

873, CSA 22.2 No. 24 certified, <strong>and</strong> CE<br />

manufactured per Quality St<strong>and</strong>ard<br />

SO9001.<br />

SPECIFICATIONS<br />

Actuator design:<br />

on-off/floating-point<br />

Actuator housing:<br />

Housing Type-NEMA type 1<br />

Housing Material Rating- UL 94-5V<br />

Direction of rotation:<br />

Reverse wires terminals 2 <strong>and</strong> 3<br />

Angle of rotation:<br />

Max 95º, adjustable with mechanical<br />

stops<br />

Electrical rating:<br />

Power Supply – 24 VAC ± 20% 50/60 Hz<br />

24 VDC ± 10%<br />

Power Consumption – 2 W<br />

Transformer Sizing – 3 VA (Class 2<br />

power source)<br />

Manual override:<br />

External push button<br />

Humidity:<br />

5% to 95% RH, Non-Condensing<br />

Ambient temperature:<br />

-22 to 122°F (-30C to 50°C)<br />

Storage environment:<br />

-40 to 176°F (-40 to 80°C)<br />

Torque:<br />

Min 35 in.-lb (4Nm), Independent<br />

of load<br />

Running time:<br />

95 sec. for 0 to 35 in-lb<br />

Noise rating:<br />

Less than 35 dB (A)<br />

Weight:<br />

1.2 lbs (0.55 kg)<br />

<strong>VAV</strong>-PRC008-EN C 25


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Introduction<br />

<strong>This</strong> LonMark certified controller<br />

uses the Space Comfort Controller<br />

(SCC) profile to exchange information<br />

over a LonTalk network. Networks<br />

with LonMark certified controllers<br />

provide the latest open protocol<br />

technology. Being LonMark certified<br />

guarantees that owners <strong>and</strong> end-users<br />

have the capability of adding Trane<br />

products to other “open” systems <strong>and</strong><br />

relieves owners of the pressure <strong>and</strong><br />

expense of being locked into a single<br />

DDC supplier. The Trane VV550 <strong>VAV</strong><br />

controller with <strong>VariTrane</strong> <strong>VAV</strong> units can<br />

be applied to more than just Trane<br />

systems. When a customer buys a<br />

Trane <strong>VAV</strong> unit with Trane DDC<br />

controller, they take advantage of:<br />

• Factory-commissioned quality<br />

• Knowing they have selected the most<br />

reliable <strong>VAV</strong> controllers in the industry<br />

• Trane as a single source to solve any<br />

<strong>VAV</strong> equipment, or system-related<br />

issues<br />

• The most educated <strong>and</strong> thorough<br />

factory service technicians in the<br />

controls industry<br />

• Over 150 local parts centers<br />

throughout North America that can<br />

provide what you need, when you<br />

need it.<br />

Don’t let your existing controls supplier<br />

lock you out of the most recognized<br />

name in <strong>VAV</strong> system control in the<br />

industry. Specify Trane open-protocol<br />

systems.<br />

What are the new features of this<br />

controller? Read on to find out more.<br />

Don’t let your existing controls<br />

supplier lock you out of the most<br />

recognized name in <strong>VAV</strong> system<br />

control in the industry. Specify<br />

Trane open-protocol systems.<br />

C 26<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Options<br />

VV550—Trane DDC LonMark Controller<br />

Single-Duct Terminal Unit (VCCF, VCWF, <strong>and</strong> VCEF)<br />

Unit Heat Control Description Page #<br />

DD11 Space Temp Control without Reheat C 35<br />

DD12 Space Temp Control with Remote Normally-Closed On/Off Hot Water Valve (Normally-Open Outputs) C 35<br />

Cooling Only DD13 Space Temp Control with Remote Proportional Hot Water Valve with Optional Spare On/Off Output C 35<br />

(VCCF model) DD14 Space Temp Control with Remote Staged Electric Heat C 35<br />

DD15 Space Temp Control with Remote Pulse-Width Modulation Electric Heat C 35<br />

DD17 Space Temp Control with Remote Normally-Open On/Off Hot Water Valve (Normally-Closed Output) C 35<br />

Hot Water DD12 Space Temp Control with Normally-Closed On/Off Hot Water Valve (Normally-Open Outputs) C 35<br />

(VCWF model) DD13 Space Temp Control with Proportional Hot Water Valve with Optional Spare On/Off Output C 35<br />

DD17 Space Temp Control with Normally-Open On/Off Hot Water Valve (Normally-Closed Output) C 35<br />

Electric DD14 Space Temp Control with Staged Electric Heat C 35<br />

(VCEF model) DD15 Space Temp Control with Pulse-Width Modulation Electric Heat C 35<br />

Dual-Duct Terminal Unit (VDDF)<br />

Unit Heat Control Description Page #<br />

(VDDF model) DD11 Space Temp Control (No Remote Heat) <strong>and</strong> Heating Control C 36<br />

DD18 Space Temp Control (No Remote Heat) <strong>and</strong> Heating—Constant-Volume Control C 36<br />

Fan-Powered Terminal Units with PSC Motor (VPCF, VPWF, VPEF, VSCF, VSWF, <strong>and</strong> VSEF)<br />

Low-Height Fan-Powered Terminal Units with PSC Motor (LPCF, LPWF, LPEF, LSCF, LSWF, <strong>and</strong> LSEF)<br />

Unit Heat Control Description Page #<br />

DD11 Space Temp Control without Reheat C 37<br />

Cooling Only DD12 Space Temp Control with Remote Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 37<br />

(VPCF, VSCF, DD13 Space Temp Control with Remote Proportional Hot Water Valve C 37<br />

LPCF, LSCF DD14 Space Temp Control with Remote Staged On/Off Electric Heat C 37<br />

models) DD15 Space Temp Control with Remote Pulse-Width Modulation Electric Heat C 37<br />

DD17 Space Temp Control with Remote Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 37<br />

Hot Water DD12 Space Temp Control with Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 37<br />

(VPWF, VSWF DD13 Space Temp Control with Proportional Hot Water Valve C 37<br />

LPWF, LSWF) DD17 Space Temp Control with Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 37<br />

Electric DD14 Space Temp Control with Staged On/Off Electric Heat C 37<br />

(VPEF, VSEF DD15 Space Temp Control with Pulse-Width Modulation Electric Heat C 37<br />

LPEF, LSEF)<br />

Fan-Powered Terminal Units with ECM (VPCF, VPWF, VPEF, VSCF, VSWF, <strong>and</strong> VSEF)<br />

Unit Heat Control Description Page #<br />

DD11 Space Temp Control without Reheat C 38<br />

DD12 Space Temp Control with Remote Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 38<br />

Cooling Only DD13 Space Temp Control with Remote Proportional Hot Water Valve C 38<br />

(VPCF, VSCF DD14 Space Temp Control with Remote Staged On/Off Electric Heat C 38<br />

models) DD15 Space Temp Control with Remote Pulse-Width Modulation Electric Heat C 38<br />

DD17 Space Temp Control with Remote Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 38<br />

Hot Water DD12 Space Temp Control with Normally-Closed On/Off Hot Water Valve with Normally-Open Outputs C 38<br />

(VPWF, VSWF DD13 Space Temp Control with Proportional Hot Water Valve C 38<br />

models) DD17 Space Temp Control with Normally-Open On/Off Hot Water Valve with Normally-Closed Outputs C 38<br />

Electric DD14 Space Temp Control with Staged On/Off Electric Heat C 38<br />

(VPEF, VSEF DD15 Space Temp Control with Pulse-Width Modulation Electric Heat C 38<br />

models) C 38<br />

<strong>VAV</strong>-PRC008-EN C 27


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Features<br />

&<br />

Benefits<br />

General Features <strong>and</strong><br />

Benefits<br />

Assured Accuracy<br />

• Proportional-plus-integral control loop<br />

algorithm for determining required<br />

airflow needed to control room<br />

temperature. Airflow is limited by<br />

active minimum <strong>and</strong> maximum<br />

airflow setpoints.<br />

• Pressure-independent (PI) operation<br />

that automatically adjusts valve<br />

position to maintain required airflow.<br />

In certain low-flow situations or in<br />

cases where the flow measurement<br />

has failed, the DDC controller will<br />

operate in a pressure-dependent (PD)<br />

mode of operation.<br />

• When combined with the patented<br />

Trane Flow ring <strong>and</strong> pressure<br />

transducer, flow is repeatable to +/- 5%<br />

accuracy across the Pressure<br />

Independent (PI) flow range. (See<br />

Valve/Controller Airflow Guidelines<br />

section).<br />

• Improved 2-Point Air Balancing is<br />

available – Assures optimized flowsensing<br />

accuracy across the operating<br />

range. <strong>This</strong> provides a more accurate<br />

airflow balancing method when<br />

compared to typical single-point flow<br />

correction air balancing.<br />

• Analog input resolution of +/- 1/8°F<br />

within the comfort range maximizes<br />

zone temperature control yielding<br />

excellent comfort control.<br />

Reliable Operation<br />

• Built for life – Trane products are<br />

designed to st<strong>and</strong> the test of time, with<br />

a proven design life that exceeds 20<br />

years.<br />

• Fully factory tested – fully screened<br />

<strong>and</strong> configured at the factory. All<br />

features are tested including fan <strong>and</strong><br />

reheat stage energization, air valve<br />

modulation, <strong>and</strong> controller inputs <strong>and</strong><br />

outputs.<br />

Safe Operation<br />

• All components, including the<br />

controller, pressure transducer,<br />

transformer, etc. are mounted in a<br />

NEMA 1 sheet metal enclosure <strong>and</strong> are<br />

tested as an assembly to UL1995<br />

st<strong>and</strong>ards. The result is a rugged <strong>and</strong><br />

safe <strong>VAV</strong>, controller, <strong>and</strong> thus, overall<br />

unit.<br />

• When in PI-mode, EH is disabled when<br />

the sensed flow is below the minimum<br />

required.<br />

• HW coil <strong>VAV</strong> units in ventilation flow<br />

control (VFC) have a Freeze protection<br />

algorithm to protect the water coil <strong>and</strong><br />

the internal space from water damage.<br />

<strong>This</strong> is accomplished by driving the<br />

water valve to maximum position on<br />

alarm conditions.<br />

Factory-commissioning of unit<br />

System-Level Optimization<br />

Trane controllers are designed to<br />

integrate into Trane Tracer Summit<br />

Systems <strong>and</strong> leverage clear <strong>and</strong> clean<br />

unit-controller related data for system<br />

level control decisions. Integrating a<br />

Trane VV550 controller into a Tracer<br />

Summit Control System provides the<br />

next step in building system control.<br />

Specifically, system-level decisions on<br />

how to operate all components can be<br />

made. Energy efficient optimization<br />

strategies like Static Pressure<br />

Optimization, Ventilation Reset, <strong>and</strong><br />

CO 2<br />

Dem<strong>and</strong>-controlled Ventilation can<br />

be employed with the simple press of a<br />

button. The end-result is the most<br />

efficient <strong>and</strong> reliable building control<br />

system available.<br />

Simplified Installation<br />

Factory Commissioned Quality – All<br />

Trane DDC <strong>VAV</strong> controllers are factorycommissioned.<br />

<strong>This</strong> means that the<br />

DDC boards are powered <strong>and</strong> runtested<br />

with your specific sequence<br />

parameters. They are connected to a<br />

communication link to make sure that<br />

information <strong>and</strong> diagnostic data<br />

function properly. Before any <strong>VariTrane</strong><br />

<strong>VAV</strong> unit ships they must pass a<br />

rigorous quality control procedure. You<br />

can be assured that a Trane <strong>VAV</strong> unit<br />

with Trane DDC <strong>VAV</strong> controls will work<br />

right out of the crate.<br />

LonMark VV550 DDC <strong>VAV</strong> Controller<br />

C 28<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Features<br />

&<br />

Benefits<br />

Zone sensor air balance – When<br />

applied to a Trane zone sensor with<br />

thumbwheel <strong>and</strong> on/cancel buttons, a<br />

balancing contractor can drive the<br />

primary air valve to maximum or<br />

minimum airflow from the sensor to<br />

determine the point of calibration to be<br />

used (maximum will result in optimum<br />

performance). The flow reading can<br />

then be calibrated from the sensor,<br />

without the use of additional service<br />

tools. (Non-LCD versions)<br />

DDC Sensor with Thumbwheel & NSB<br />

Tenant-Finish Heat Mode – In some<br />

office projects, the building is being<br />

constructed as tenants are being<br />

identified. Tenant-finish heat mode is<br />

designed for applications when a<br />

given floor has not been occupied. The<br />

main AHU system is used for heat <strong>and</strong><br />

because the internal furnishings are<br />

not complete, the sensors have not<br />

been installed. In this case, the primary<br />

valve drives open using the heat of the<br />

main AHU to keep plumbing lines<br />

from freezing. When available, the<br />

operation of the <strong>VAV</strong> unit fan (series or<br />

parallel) remains unaffected.<br />

Controller Flexibility<br />

• 24 VAC binary input that can be<br />

configured as a generic input or as<br />

occupancy input. When the DDC<br />

controller is operating with Tracer<br />

Summit, the status of the input is<br />

provided to Tracer Summit for its<br />

action. In st<strong>and</strong>-alone operation <strong>and</strong><br />

when configured for an occupancy<br />

input, the input will control occupancy<br />

status of the DDC controller.<br />

• Auxiliary temperature analog input<br />

configured for an auxiliary<br />

temperature sensor. The value of the<br />

input is used as status-only by Tracer<br />

Summit if Tracer Summit is providing a<br />

supply air temperature to the DDC<br />

controller. Otherwise, the input will be<br />

used for determining heating/cooling<br />

control action of the <strong>VAV</strong> unit. When<br />

the auxiliary temperature sensor is<br />

located in the discharge of the unit,<br />

<strong>and</strong> attached to a Trane Tracer Summit<br />

BAS, additional test sequencing <strong>and</strong><br />

reporting is available to maximize <strong>VAV</strong><br />

system capabilities <strong>and</strong> simplify<br />

system commissioning.<br />

• Dual-duct support with two DDC<br />

controllers. One DDC controller<br />

controls the cooling air valve <strong>and</strong> the<br />

other controller controls the heating air<br />

valve. With constant-volume<br />

sequences, the discharge air volume is<br />

held constant by controlling discharge<br />

air volume with the heating Controller.<br />

• LonMark certified performance<br />

ensures that a Trane <strong>VAV</strong> with<br />

controller will provide state-of-the-art,<br />

consistent open communication<br />

protocol for integration with the<br />

industry’s latest (Non-Trane) building<br />

automation control systems, including<br />

Johnson Control, Andover, Siemans,<br />

Honeywell, etc.<br />

• CO2 dem<strong>and</strong> controlled ventilation<br />

enables a HVAC system to adjust<br />

ventilation flow based on critical zone,<br />

average CO 2<br />

of specified zones, etc.<br />

Trane dem<strong>and</strong> controlled ventilation<br />

strategies are pre-defined for simplifed<br />

application <strong>and</strong> can be easily<br />

customized to meet the needs of a<br />

specific system.<br />

<strong>VAV</strong>-PRC008-EN C 29


Trane DDC <strong>VAV</strong><br />

Controller Logic<br />

Control Logic<br />

Direct Digital Control (DDC) controllers<br />

are today’s industry st<strong>and</strong>ard. DDC<br />

controllers share system-level data to<br />

optimize system performance<br />

(including changing ventilation<br />

requirements, system static pressures,<br />

supply air temperatures, etc.). Variables<br />

available via a simple twisted-shielded<br />

wire pair include occupied/unoccupied<br />

status, minimum <strong>and</strong> maximum<br />

airflow setpoints, zone temperature<br />

<strong>and</strong> temperature setpoints, air valve<br />

position, airflow cfm, fan status (on or<br />

off), fan operation mode (parallel or<br />

series), reheat status (on or off), <strong>VAV</strong><br />

unit type, air valve size, temperature<br />

correction offsets, flow correction<br />

values, ventilation fraction, etc.<br />

With the advent of LonMark open<br />

protocol, the most reliable <strong>VAV</strong><br />

controller is now available for ANY<br />

system. Gone are the days of being<br />

locked into a single supplier. Trane DDC<br />

controllers provide Trane-designed<br />

solid-state electronics intended<br />

specifically for <strong>VAV</strong> applications<br />

including:<br />

1. Space Temperature Control<br />

2. Ventilation Flow Control (100%<br />

outside air applications)<br />

3. Flow Tracking Space Pressurization<br />

Control (New feature)<br />

Flow Sensor Signal vs. Airflow Delivery<br />

5<br />

<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Space Temperature Control<br />

Space temperature control<br />

applications are where Trane emerged<br />

as an industry leader in quality <strong>and</strong><br />

reliability. <strong>This</strong> did not occur overnight<br />

<strong>and</strong> has continued to improve as our<br />

controller <strong>and</strong> control logic has<br />

improved over time. STC employs<br />

controller logic designed to modulate<br />

the supply airstream <strong>and</strong> associated<br />

reheat (either local or remote) to<br />

exactly match the load requirements of<br />

the space.<br />

Additionally, minimum <strong>and</strong> maximum<br />

airflow <strong>and</strong> specific controller<br />

sequence requirements are preprogrammed<br />

to ensure that<br />

appropriate ventilation st<strong>and</strong>ards are<br />

consistently maintained. When<br />

connected to a Trane Tracer Summit<br />

control system, trend logging, remote<br />

alarming, etc. are available to fully<br />

utilize the power <strong>and</strong> capabilities of<br />

your systems.<br />

General Operation-Cooling<br />

In cooling control action, the DDC<br />

controller matches primary airflow to<br />

cooling load. The DDC controller will<br />

automatically change over to heating<br />

control action if the supply air<br />

temperature is above a configured/<br />

editable setpoint. When the supply air<br />

temperature is less than 10 degrees<br />

below this setpoint, the controller will<br />

automatically switch to cooling control<br />

action. The DDC controller first chooses<br />

the Tracer Summit-provided supply air<br />

Controller<br />

Logic<br />

temperature value to use for auto<br />

changeover. If this is not available, it<br />

uses the temperature provided by the<br />

optional auxiliary temperature sensor<br />

(must be installed for inlet temperature<br />

monitoring). If this is also not available,<br />

it uses the heating/cooling mode<br />

assigned by Tracer Summit or the DDC<br />

controller’s service tool.<br />

General Operation-Reheat<br />

In heating control action, the DDC<br />

controller matches primary airflow to<br />

heating load. The DDC controller will<br />

automatically change over to heating<br />

control action if the supply air<br />

temperature is above a configured/<br />

editable setpoint. When the supply air<br />

temperature is less than 10 degrees<br />

below this setpoint, the controller will<br />

automatically switch to cooling control<br />

action. The DDC controller first<br />

chooses the Tracer Summit-provided<br />

supply air temperature value to use for<br />

auto changeover. If this is not available,<br />

it uses the temperature provided by<br />

the optional auxiliary temperature<br />

sensor (must be installed for inlet<br />

temperature monitoring). If this is also<br />

not available, it uses the heating/<br />

cooling mode assigned by Tracer<br />

Summit or the DDC controller’s service<br />

tool.<br />

When heat is added to the primary air,<br />

the air is considered reheated. Reheat<br />

can be either local (integral to the <strong>VAV</strong><br />

unit in the form of an electric coil or hot<br />

water coil) or remote (typically<br />

existing wall fin radiation, convector,<br />

etc.) or any combination of local <strong>and</strong><br />

remote. The operating characteristics of<br />

the four basic types of <strong>VariTrane</strong> DDC<br />

terminal reheat are discussed.<br />

1<br />

4" 5" 6" 8" 10" 12" 14" 16"<br />

Flow Sensor DP (In. wg)<br />

0.1<br />

0.01<br />

10 100 1,000 10,000<br />

Cfm<br />

Note: Flow sensor DP (in. wg) is measured at the flow ring to aid in system balancing <strong>and</strong> commissioning. See<br />

"Valve/Controller Airflow Guidelines" in each section for unit performance.<br />

C 30<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Controller<br />

Logic<br />

Single-Duct: On/Off Hot Water Reheat –<br />

Three stages of on/off hot water reheat<br />

are available. Two-position water valves<br />

complete the HW reheat system <strong>and</strong> are<br />

either fully opened or fully closed. The<br />

heating minimum airflow setpoint is<br />

enforced during reheat.<br />

Stage 1 energizes when the space<br />

temperature is at or below the heating<br />

setpoint. When the zone temperature<br />

rises above the active heating setpoint<br />

by 0.5°F (0.28°C), stage 1 is de-energized.<br />

Stage 2 energizes when the space<br />

temperature is 1°F (0.56°C) or more<br />

below the active heating setpoint, <strong>and</strong> is<br />

de-energized when the space<br />

temperature is 0.5°F (0.28°C) below the<br />

active heating setpoint. Stage 3<br />

energizes when the zone temperature is<br />

2°F (1.11°C) or more below the active<br />

heating setpoint, <strong>and</strong> de-energizes when<br />

the space temperature is 1.5°F (0.83°C)<br />

below the active heating setpoint. When<br />

reheat is de-energized, the cooling<br />

minimum airflow setpoint is activated.<br />

Single-Duct: Proportional Hot<br />

Water Reheat –<br />

Proportional hot water reheat uses 3-<br />

wire floating-point-actuator technology.<br />

The heating minimum airflow setpoint is<br />

enforced during reheat.<br />

The water valve opens as space<br />

temperature drops below the heating<br />

setpoint. A separate reheat proportionalplus-integral<br />

control loop from that<br />

controlling airflow into the room is<br />

enforced. Water valve position is<br />

dependent on the degree that the space<br />

temperature is below the active heating<br />

setpoint <strong>and</strong> the time that the space<br />

temperature has been below the active<br />

VCEF<br />

heating setpoint. If not already closed,<br />

the water valve fully closes when the<br />

zone temperature rises above the<br />

active heating setpoint by 0.5 °F (0.28<br />

°C). An additional on/off remote heat<br />

output is available <strong>and</strong> energized when<br />

the proportional valve is driven 100%<br />

open <strong>and</strong> de-energized when the<br />

proportional valve reaches 50% open.<br />

When reheat is de-energized, the<br />

cooling minimum airflow setpoint is<br />

activated. Again, these reheat devices<br />

can be either local or remote.<br />

Single-Duct: On/Off Electric Reheat –<br />

One, two, or three stages of staged<br />

electric reheat are available. The<br />

heating minimum airflow setpoint is<br />

enforced during reheat.<br />

Stage 1 is energized when the space<br />

temperature falls below the active<br />

heating setpoint <strong>and</strong> minimum airflow<br />

requirements are met. When the zone<br />

temperature rises above the active<br />

heating setpoint by 0.5°F (0.28°C),<br />

stage 1 is de-energized. Stage 2<br />

energizes when the space temperature<br />

is 1°F (0.56°C) or more below the active<br />

heating setpoint, <strong>and</strong> is de-energized<br />

when the space temperature is 0.5°F<br />

(0.28°C) below the active heating<br />

setpoint. Stage 3 energizes when the<br />

zone temperature is 2°F (1.11°C) or<br />

more below the active heating<br />

setpoint, <strong>and</strong> de-energizes when the<br />

space temperature is 1.5°F (0.83°C)<br />

below the active heating setpoint.<br />

When reheat is de-energized, the<br />

cooling minimum airflow setpoint is<br />

activated.<br />

Single-Duct: Pulse-Width Modulation<br />

of Electric Heat –<br />

One to three stages of pulse-width<br />

modulation of electric heat are<br />

available. Energizing for a portion of a<br />

three-minute time period modulates<br />

the electric heater. <strong>This</strong> allows exact<br />

load matching for energy efficient<br />

operation, <strong>and</strong> optimum zone<br />

temperature control. The heating<br />

minimum airflow setpoint is enforced<br />

during reheat.<br />

The amount of reheat supplied is<br />

dependent on both the degree that the<br />

space temperature is below the active<br />

heating setpoint <strong>and</strong> the time that the<br />

space temperature has been below the<br />

active heating setpoint. If not already<br />

off, reheat de-energizes when the zone<br />

temperature rises more than 0.5°F<br />

(0.28°C) above the heating setpoint.<br />

The Stage 1 “on” time is proportional<br />

to the amount of reheat required. For<br />

example, when 50% of stage 1<br />

capacity is required, reheat is on for 90<br />

seconds <strong>and</strong> off for 90 seconds. When<br />

75% of stage 1 capacity is required,<br />

reheat is on for 135 seconds <strong>and</strong> off for<br />

45 seconds. When 100% of stage 1<br />

capacity is required, reheat is on<br />

continuously.<br />

Stage 2 uses the same “on” time logic<br />

as stage 1 listed above, except stage 1<br />

is always energized. For example,<br />

when 75% of unit capacity is required,<br />

stage 1 is energized continuously, <strong>and</strong><br />

stage 2 is on for 90 seconds <strong>and</strong> off for<br />

90 seconds. When reheat is deenergized,<br />

the cooling minimum<br />

airflow setpoint is activated. Caution:<br />

Care should be taken when sizing<br />

electric heaters. Leaving air<br />

temperatures (LAT) should not exceed<br />

100°–110°F, with 95°F being the optimal<br />

for zone temperature <strong>and</strong> comfort<br />

control. At elevated LATs, room<br />

stratification may result in uneven air<br />

distribution <strong>and</strong> zone temperature<br />

complaints. To prevent stratification,<br />

the warm air temperature should not<br />

be more than 20°F (6.7°C) above zone<br />

air temperature. (See Diffuser, “D”,<br />

section for additional application<br />

details)<br />

<strong>VAV</strong>-PRC008-EN C 31


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Controller<br />

Logic<br />

Fan-Powered Terminal Units:<br />

On/Off Hot Water Reheat –<br />

One or two stages of on/off hot water<br />

reheat are available. Two position<br />

water valves complete the HW reheat<br />

system <strong>and</strong> are either fully opened or<br />

fully closed. The heating minimum<br />

airflow setpoint is enforced during<br />

reheat.<br />

On parallel fan-powered units, the fan<br />

is energized upon a call for heating. The<br />

parallel fan is turned off when the<br />

space temperature rises above the fan<br />

on/off point (active heating setpoint<br />

plus fan offset) plus 0.5°F (0.28°C).<br />

Series fan-powered terminal unit fans<br />

are continuously energized during<br />

occupied mode. When unoccupied, the<br />

fan is energized upon a call for heating<br />

or cooling <strong>and</strong> de-energized when<br />

unoccupied zone set point is satisfied.<br />

When the zone temperature falls below<br />

the active heating setpoint, the UCM<br />

modulates the primary airflow to the<br />

minimum heating airflow setpoint.<br />

Stage 1 energizes when the space<br />

temperature is below the active<br />

heating setpoint, <strong>and</strong> is de-energized<br />

when the space temperature is 0.5°F<br />

(0.28°C) above the active heating<br />

setpoint. Stage 2 energizes when the<br />

zone temperature is 1°F (0.56°C) or<br />

more below the active heating<br />

setpoint, <strong>and</strong> de-energizes when the<br />

space temperature is 0.5°F (0.28°C)<br />

below the active heating setpoint.<br />

When reheat is de-energized, the<br />

cooling minimum airflow setpoint is<br />

activated.<br />

Fan-Powered Terminal Units:<br />

Proportional Hot Water Reheat –<br />

Proportional hot water reheat uses<br />

3-wire floating-point-actuator<br />

technology. The heating minimum<br />

airflow setpoint is enforced during<br />

reheat.<br />

On parallel fan-powered units, the fan<br />

is energized upon a call for heating. The<br />

parallel fan is turned off when the<br />

space temperature rises above the fan<br />

on/off point (active heating setpoint<br />

plus fan offset) plus 0.5ºF (0.28ºC).<br />

Series fan-powered terminal unit fans<br />

are continuously energized during<br />

occupied mode. When unoccupied, the<br />

fan is energized upon a call for heating<br />

or cooling <strong>and</strong> de-energized when<br />

unoccupied zone setpoint is satisfied.<br />

The water valve opens as space<br />

temperature drops below the heating<br />

setpoint. A separate reheat<br />

C 32<br />

VPEF<br />

proportional-plus-integral control loop<br />

from that controlling airflow into the<br />

room is enforced. The degree to which<br />

the hot water valve opens is<br />

dependent on both the degree that the<br />

space temperature is below the active<br />

heating setpoint <strong>and</strong> the time that the<br />

space temperature has been below the<br />

active heating setpoint. If not already<br />

closed, the water valve fully closes<br />

when the zone temperature rises<br />

above the active heating setpoint by<br />

0.5 °F (0.28 °C). When reheat is deenergized,<br />

the cooling minimum<br />

airflow setpoint is activated.<br />

Fan-powered Terminal Units:<br />

On/Off Electric Reheat –<br />

One or two stages of staged electric<br />

reheat are available. The heating<br />

minimum airflow setpoint is enforced<br />

during reheat.<br />

On parallel fan-powered units, the fan<br />

is energized upon a call for heating. The<br />

parallel fan is turned off when the<br />

space temperature rises above the fan<br />

on/off point (active heating setpoint<br />

plus fan offset) plus 0.5°F (0.28°C).<br />

Series fan-powered terminal unit fans<br />

are continuously energized during<br />

occupied mode. When unoccupied, the<br />

fan is energized upon a call for heating<br />

or cooling <strong>and</strong> de-energized when<br />

unoccupied zone set point is satisfied.<br />

Stage 1 energizes when the space<br />

temperature is below the active<br />

heating setpoint, <strong>and</strong> is de-energized<br />

when the space temperature rises<br />

0.5°F (0.28°C) above the active heating<br />

setpoint. Stage 2 energizes when the<br />

space temperature is 1.0°F (0.56°C) or<br />

more below the active heating<br />

setpoint, <strong>and</strong> is de-energized when the<br />

space temperature is 0.5°F (0.28°C)<br />

below the active heating setpoint.<br />

When reheat is de-energized, the<br />

cooling minimum airflow setpoint is<br />

activated.<br />

Fan-powered Terminal Units:<br />

Pulse-Width Modulation of Electric<br />

Heat –<br />

One or two stages of pulse-width<br />

modulation of electric heat are<br />

available. Energizing for a portion of a<br />

three-minute time period modulates<br />

VSEF<br />

the electric heater. <strong>This</strong> allows exact<br />

load matching for energy efficient<br />

operation <strong>and</strong> optimum zone<br />

temperature control. The heating<br />

minimum airflow setpoint is enforced<br />

during reheat.<br />

On parallel fan-powered units, the fan<br />

is energized upon a call for heating. The<br />

parallel fan is turned off when the<br />

space temperature rises above the fan<br />

on/off point (active heating setpoint<br />

plus fan offset) plus 0.5°F (0.28°C).<br />

Series fan-powered terminal unit fans<br />

are continuously energized during<br />

occupied mode. When unoccupied, fan<br />

is energized upon a call for heating or<br />

cooling <strong>and</strong> de-energized when<br />

unoccupied zone set point is satisfied.<br />

The amount of reheat supplied is<br />

dependent on both the degree that the<br />

space temperature is below the active<br />

heating setpoint <strong>and</strong> the time that the<br />

space temperature has been below the<br />

active heating setpoint. If not already<br />

off, reheat de-energizes when the<br />

space temperature rises 0.5°F (0.28°C)<br />

above the active heating setpoint. The<br />

Stage 1 “on” time is proportional to the<br />

amount of reheat required. For<br />

example, when 50% of stage 1<br />

capacity is required, reheat is on for 90<br />

seconds <strong>and</strong> off for 90 seconds. When<br />

75% of stage 1 capacity is required,<br />

reheat is on for 135 seconds <strong>and</strong> off for<br />

45 seconds. When 100% of stage 1<br />

capacity is required, reheat is on<br />

continuously.<br />

Stage 2 uses the same “on” time logic<br />

as stage 1 listed above, except stage 1<br />

is always energized. For example,<br />

when 75% of unit capacity is required,<br />

stage 1 is energized continuously, <strong>and</strong><br />

stage 2 is on for 90 seconds <strong>and</strong> off for<br />

90 seconds. When reheat is deenergized,<br />

the cooling minimum<br />

airflow setpoint is activated. When<br />

reheat is de-energized, the cooling<br />

minimum airflow setpoint it activated.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Ventilation<br />

Control<br />

Ventilation Control<br />

Ventilation control enhances the<br />

usability of Trane DDC controllers in<br />

more select applications that require<br />

measurement of outside air<br />

(ventilation). Ventilation control is<br />

designed for use with constant volume<br />

single-duct <strong>VAV</strong> units which modulate<br />

the primary damper <strong>and</strong> associated<br />

reheat to maintain an average constant<br />

discharge air temperature. The reheat<br />

is modulated to provide discharge air<br />

temperature consistent with AHU<br />

supply air temperature (typically 50º–<br />

60ºF). <strong>This</strong> is critical to ensure that<br />

ASHRAE St<strong>and</strong>ard 62 Ventilation<br />

st<strong>and</strong>ards are attained, consistently<br />

maintained, <strong>and</strong> monitored. When<br />

connected to a Trane Summit control<br />

system, trend logging, remote<br />

alarming, etc. is available. In fact, the<br />

Trane Tracer Control System can<br />

provide unmatched “peace of mind”<br />

by calling/paging the appropriate<br />

person(s) when specific alarms occur.<br />

<strong>VAV</strong>-PRC008-EN C 33


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Flow<br />

Tracking<br />

Flow Tracking Control<br />

<strong>This</strong> enhanced <strong>VAV</strong> DDC controller<br />

feature allows two Trane VV550<br />

controllers to coordinate modulation<br />

simultaneously. <strong>This</strong> allows a specific<br />

CFM offset to be maintained. The CFM<br />

offset provides pressurization control<br />

of an occupied space, while<br />

maintaining the comfort <strong>and</strong> energy<br />

savings of a <strong>VAV</strong> system. A flow<br />

tracking system in a given zone<br />

consists of a st<strong>and</strong>ard Space Comfort<br />

Control <strong>VAV</strong> (see B )unit plus a singleduct,<br />

cooling-only, exhaust <strong>VAV</strong> unit<br />

(see C ). As the supply <strong>VAV</strong> unit<br />

modulates the supply airflow through<br />

the air valve to maintain space<br />

comfort, the exhaust box modulates a<br />

similar amount to maintain the<br />

required CFM differential. <strong>This</strong> is a<br />

simple, reliable means of<br />

pressurization control, which meets the<br />

requirements of the majority of zone<br />

pressurization control applications.<br />

Typical applications include:<br />

• School <strong>and</strong> University laboratories<br />

• Industrial laboratories<br />

• Hospital operating rooms<br />

• Hospital patient rooms<br />

• Research <strong>and</strong> Development facilities<br />

• And many more…<br />

The CFM offset is assured <strong>and</strong> can be<br />

monitored <strong>and</strong> documented when<br />

connected to a Trane Tracer Summit<br />

Building Automation System. Flow<br />

Tracking Control is designed to meet<br />

most pressurization control projects. If<br />

an application calls for pressure control<br />

other than flow tracking, contact your<br />

local Trane Sales Office for technical<br />

support.<br />

How Does It Operate?<br />

Exhaust<br />

Supply <strong>VAV</strong><br />

B<br />

To other <strong>VAV</strong>s or<br />

Main Control Panel<br />

Communication link<br />

A<br />

Primary Air<br />

from Main<br />

AHU<br />

C<br />

T<br />

Occupied Space<br />

C 34<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Control<br />

Drawings<br />

VV550—DDC LonMark Controller for Single-Duct Terminals<br />

DD11–Space Temp Control Cooling Only<br />

DD12–Space Temp Control w/ N.C. Hot Water Valve<br />

DD13–Space Temp Control w/ Modulating Hot Water Valve<br />

DD14 Space Temp Control w/ Stage Electric Heat<br />

DD15–Space Temp Control w/ Pulse-width Modulation<br />

DD17–Space Temp Control w/ N.O. Hot Water Valve<br />

8.<br />

10.<br />

OPTIONAL<br />

TRANSFORMER<br />

HEATER STAGE<br />

CONTACTOR(S)<br />

7.<br />

1ST 2ND 3RD<br />

TO<br />

DAMPER<br />

ACTUATOR<br />

24VAC 60HZ<br />

NEC CLASS - 2<br />

CONTROL CIRCUIT<br />

LOAD = 8 VA<br />

(WITHOUT HEAT)<br />

6.<br />

Y<br />

Y<br />

Y<br />

BL<br />

BL<br />

BR<br />

WH-HOT<br />

O<br />

WH-HOT<br />

V<br />

G-OPEN<br />

R-CLOSE<br />

BL<br />

R<br />

OPTIONAL<br />

FUSE, DISCONNECT<br />

& TRANSFORMER<br />

Y or (W)<br />

(BK)<br />

or<br />

BL<br />

GREEN<br />

SCREW<br />

8.<br />

OPTIONAL<br />

DISCONNECT<br />

SWITCH<br />

TB1-1<br />

J8<br />

10.<br />

OPTIONAL POWER<br />

(50VA)<br />

9.<br />

BK<br />

BL<br />

Y<br />

OPTIONAL<br />

FUSE<br />

VV550<br />

TB1-2<br />

TB1-1<br />

GND 24V<br />

Tracer VV550<br />

TB2-2<br />

TWISTED PAIR<br />

COMMUNICATIONS<br />

WIRING<br />

FIELD INSTALLED<br />

<strong>NOTE</strong>S:<br />

1. Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

2. 1/4" Quick connect required for all field connections.<br />

TB3-5<br />

R<br />

G<br />

PRESSURE<br />

TRANSDUCER<br />

+<br />

VOUT<br />

-<br />

VV550<br />

CONTROL BOX<br />

TB3-6<br />

OPTIONAL FIELD INSTALLED<br />

AUX TEMP SENSOR<br />

5.<br />

TO J8<br />

TO J9<br />

TO J10<br />

R (HOT)<br />

O (COMMON)<br />

BK (RETURN)<br />

Y<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

W (HOT)<br />

BK (CLOSE)<br />

R (OPEN)<br />

(TB4-2) 24VAC<br />

(TB4-1) BIP<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

(TB4-2) 24VAC<br />

(TB1-2) GND<br />

TB2-6<br />

TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

5 4 3 2 1<br />

ZONE SENSOR<br />

W/ COMM. JACK<br />

REMOTE MTD.<br />

3. 4.<br />

NOT CONNECTED<br />

PROP.<br />

WATER<br />

VALVE<br />

24VAC<br />

12VA MAX<br />

OPTIONAL FIELD INSTALLED<br />

PROPORTIONAL WATER VALVE<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

8.<br />

Zone sensor terminals 4 <strong>and</strong> 5 required twisted pair wiring for communications jack equipped zone sensor option.<br />

No additional wiring required for night setback override (ON/CANCEL).<br />

The optional binary input connects between TB4–1 (BIP) <strong>and</strong> 24VAC (HOT) from transformer. The binary input<br />

can be reconfigured as an occupancy input via the communications interface.<br />

If unit mounted transformer is not provided, polarity from unit to unit must be maintained to prevent permanent<br />

damage to control board. If one leg of 24VAC supply is grounded, then ground leg must be connected to TB1–2.<br />

Contactors are 24 VAC: 12VA max/coil (Mercury contactors). 10VA max/coil (Magnetic contactors).<br />

Optional fuse, disconnect switch <strong>and</strong> transformer wiring (cooling only or hot water units). Wiring goes through<br />

TO J9<br />

TO J8<br />

ON - OFF<br />

WATER VALVE<br />

24 VAC<br />

12VA MAX<br />

OPTIONAL FIELD INSTALLED<br />

0N-OFF WATER VALVE<br />

9.<br />

10.<br />

Transformer wire colors: 120V– – –O, 277V–BR, 480V–R/BK, 575V–R, 190V–R, 220V–R, 347V–R.<br />

11.<br />

Three-stage not available with pulse-width modulation.<br />

<strong>VAV</strong>-PRC008-EN C 35


Y<br />

Y<br />

<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Control<br />

Drawings<br />

VV550—DDC LonMark Controller for Dual-Duct Terminals<br />

DD11–Space Temp Control (No Remote Heat) <strong>and</strong> Heating Control<br />

DD18–Space Temp Control (No Remote Heat) <strong>and</strong> Heating Control—Constant-Volume Control<br />

COOLING VALVE<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

6.<br />

24VAC 50/60 HZ<br />

NEC CLASS-2<br />

CONTROL CIRCUIT<br />

LOAD = 16VA<br />

24VAC<br />

TO TB1 ON<br />

HEATING<br />

VALVE UCM<br />

Y<br />

TB4<br />

1<br />

2<br />

HOT<br />

HOT<br />

OPEN<br />

CLOSE<br />

BL<br />

OPTIONAL<br />

FUSE, DISCONNECT<br />

& TRANSFORMER<br />

(BK)<br />

or<br />

GROUND<br />

SCREW<br />

OPTIONAL<br />

DISCONNECT<br />

BL<br />

OPTIONAL POWER<br />

TRANSFORMER<br />

(50VA)<br />

OPTIONAL<br />

BL FUSE<br />

Y<br />

TB4<br />

1<br />

2<br />

Tracer VV550<br />

PRESSURE<br />

TRANSDUCER<br />

R +<br />

G VOUT<br />

-<br />

TB3-5<br />

TB3-6<br />

OPTIONAL FIELD INSTALLED<br />

AUX TEMP SENSOR<br />

5.<br />

R (HOT)<br />

(TB4-2) 24VAC<br />

VV550<br />

CONTROL BOX<br />

Y<br />

(TB4-1) BIP<br />

(TB4-2) 24VAC<br />

NOT CONNECTED<br />

TWISTED PAIR<br />

COMMUNICATIONS<br />

WIRING<br />

FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

TB2-6<br />

TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

HEATING VALVE<br />

24VAC<br />

TO TB4 IN<br />

COOLING<br />

5 4 3 2 1<br />

DAMPER<br />

ACTUATOR<br />

WIRING<br />

4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

Y<br />

BL<br />

BL<br />

HOT<br />

HOT<br />

OPEN<br />

CLOSE<br />

<strong>NOTE</strong>:<br />

1.<br />

Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

2. 1/4" quick connect required for all field connections.<br />

Tracer VV550<br />

PRESSURE<br />

TRANSDUCER<br />

R +<br />

BK<br />

G VOUT<br />

-<br />

3. Zone sensor terminals 4 <strong>and</strong> 5 require twisted pair wiring for communications<br />

jack equipped zone sensor option.<br />

4. No additional wiring required for night setback override (ON/CANCEL).<br />

5. The optional binary input connects between TB4-1 (BIP) <strong>and</strong> 24VAC (HOT) from transformer. The binary<br />

input can be reconfigured as an occupancy input via the communications interface.<br />

6. If unit mounted transformer is not provided, polarity from unit to unit must be maintained to prevent permanent<br />

damage to control board. If one leg of 24VAC supply is grounded, then ground leg must be connected to TB1-2.<br />

7. Optional fuse, disconnect switch <strong>and</strong> transformer wiring.<br />

8. Cooling controller space temperature <strong>and</strong> space setpoint network variables should be bound heating controller.<br />

VV550<br />

CONTROL BOX<br />

C 36<br />

TWISTED PAIR<br />

COMMUNICATIONS<br />

WIRING<br />

FIELD INSTALLED<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Control<br />

Drawings<br />

VV550—DDC LonMark Controller for Fan-Powered Terminals<br />

DD11–Space Temp Control Cooling Only<br />

DD12–Space Temp Control w/ N.C. Hot Water Valve<br />

DD13–Space Temp Control w/ Modulating Hot Water Valve<br />

DD14–Space Temp Control w/ Stage Electric Heat<br />

DD15–Space Temp Control w/ Pulse-width Modulation<br />

DD17–Space Temp Control w/ N.O. Hot Water Valve<br />

6.<br />

TO TRANSFORMER<br />

OPTIONAL FIELD INSTALLED<br />

ELECTRIC HEATER<br />

7. 8.<br />

HEATER STAGE<br />

CONTACTOR(S)<br />

TO<br />

DAMPER<br />

ACTUATOR<br />

TO FAN RELAY<br />

5. R (HOT)<br />

O (COMMON)<br />

GR (NC CONTACT)<br />

BK (RETURN)<br />

Y<br />

(TB4-2) 24VAC<br />

(TB4-1) BIP<br />

(TB4-2) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

1ST<br />

2ND<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

BR<br />

R (FAN)<br />

BR<br />

Y<br />

O<br />

V<br />

BL<br />

TB2-6<br />

TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

Y<br />

BL<br />

BR<br />

BR<br />

O<br />

V<br />

R (FAN)<br />

WH-HOT<br />

WH-HOT<br />

G-OPEN<br />

R-CLOSE<br />

5<br />

4 3 2 1<br />

ZONE SENSOR<br />

REMOTE MTD.<br />

4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

TB3-5<br />

TB3-6<br />

OPTIONAL FIELD INSTALLED<br />

AUX TEMP SENSOR<br />

Tracer VV550<br />

R<br />

BK<br />

G<br />

PRESSURE<br />

TRANSDUCER<br />

+<br />

VOUT<br />

-<br />

TO J8<br />

TO J9<br />

TO J10<br />

TO J9<br />

TO J8<br />

W (HOT)<br />

BK (CLOSE)<br />

R (OPEN)<br />

PROP.<br />

WATER<br />

VALVE<br />

24VAC<br />

12VA MAX<br />

PROPORTIONAL WATER VALVE<br />

OPTIONAL FIELD INSTALLED<br />

0N-OFF WATER VALVE<br />

ON - OFF<br />

WATER VALVE<br />

24 VAC<br />

12VA MAX<br />

VV550<br />

CONTROL BOX<br />

TWISTED PAIR<br />

COMMUNICATIONS<br />

WIRING<br />

FIELD INSTALLED<br />

<strong>NOTE</strong>S:<br />

1. Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

2.<br />

1/4" Quick connect required for all field connections.<br />

3.<br />

4.<br />

5.<br />

No additional wiring required for night setback override (ON/CANCEL).<br />

The optional binary input connects between TB4–1 (BIP) <strong>and</strong> 24VAC (HOT from transformer. The binary input can be<br />

Transformer provided in all units.<br />

8.<br />

Contactors are 24 VAC: 12 VA max/coil (Mercury contactors). 10VA max/coil (Magnetic contactors).<br />

<strong>VAV</strong>-PRC008-EN C 37


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Control<br />

Drawings<br />

VV550—DDC LonMark Controller for ECM Fan-Powered Terminals<br />

DD11—Space Temp Control Cooling Only<br />

DD12—Space Temp Control w/ N.C. Hot Water Valve<br />

DD13—Space Temp Control w/ Modulating Hot Water Valve<br />

DD14—Space Temp Control w/ Stage Electric Heat<br />

DD15—Space Temp Control w/ Pulse-width Modulation<br />

DD17—Space Temp Control w/ N.O. Hot Water Valve<br />

HEATER STAGE<br />

CONTACTOR(S)<br />

OPTIONAL OR FIELD INSTALLED 7.<br />

ELECTRIC HEATER<br />

TO<br />

DAMPER<br />

ACTUATOR<br />

8.<br />

TO TRANSFORMER<br />

TO<br />

ECM<br />

MOTOR<br />

1ST<br />

2ND<br />

Y<br />

BL<br />

WH-HOT<br />

WH-HOT<br />

G-OPEN<br />

R-CLOSE<br />

Y Y<br />

BL BL<br />

BL<br />

Y<br />

R<br />

BR<br />

O<br />

BK<br />

V<br />

TB3-5<br />

TB3-6<br />

NEUT.<br />

24V<br />

BK<br />

BL<br />

RED<br />

RED<br />

2 4<br />

6.<br />

OPTIONAL FIELD INSTALLED<br />

AUX TEMP SENSOR<br />

Tracer VV550<br />

TB4-2<br />

R<br />

BK<br />

G<br />

BL<br />

1<br />

24V<br />

3<br />

+<br />

VOUT<br />

-<br />

MOTOR<br />

RELAY<br />

PRESSURE<br />

TRANSDUCER<br />

R<br />

ECM<br />

BOARD<br />

W<br />

BK<br />

G<br />

R<br />

TB2-6<br />

TB3-1<br />

TB2-5 TB3-2<br />

TB3-3<br />

5 4 3 2 1<br />

ZONE SENSOR<br />

W/ COMM. JACK<br />

REMOTE MTD.<br />

3. 4.<br />

OPTIONAL FIELD<br />

INSTALLED ZONE SENSOR<br />

VV550<br />

CONTROL BOX<br />

TWISTED PAIR<br />

COMMUNICATIONS<br />

WIRING<br />

FIELD INSTALLED<br />

5. R (HOT)<br />

O (COMMON)<br />

GR (NC CONTACT)<br />

BK (RETURN)<br />

Y<br />

(TB4-2) 24VAC<br />

(TB4-1) BIP<br />

(TB4-2) 24VAC<br />

(TB1-2) GND<br />

NOT CONNECTED<br />

OPTIONAL FIELD INSTALLED<br />

OCCUPANCY SENSOR<br />

TO J8<br />

TO J9<br />

TO J10<br />

W (HOT)<br />

BK (CLOSE)<br />

R (OPEN)<br />

PROP.<br />

WATER<br />

VALVE<br />

24VAC<br />

12VA MAX<br />

TO J9<br />

TO J8<br />

ON - OFF<br />

WATER VALVE<br />

24 VAC<br />

12VA MAX<br />

OPTIONAL FIELD INSTALLED<br />

PROPORTIONAL WATER VALVE<br />

OPTIONAL FIELD INSTALLED<br />

0N-OFF WATER VALVE<br />

<strong>NOTE</strong>S:<br />

1.<br />

Factory Wiring<br />

Field Wiring<br />

Optional or Alternate Wiring<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

1/4" Quick connect required for all field connections.<br />

Zone sensor terminals 4 <strong>and</strong> 5 require twisted pair wiring for communcations jack equipped zone sensor option.<br />

No additional wiring required for night setback override (ON/CANCEL).<br />

The optional binary input connects between TB4–1 (BIP) <strong>and</strong> 24VAC (HOT) from transformer. Input can be<br />

reconfigured as an occupancy input via the communications interface.<br />

Fan CFM can be easily adjusted from its min CFM to its max CFM via the ECM control board dial switches with<br />

a flat-head screwdriver. The switches set the percentage flow.<br />

Contactors are 24 VAC: 12VA max/coil (Mercury contactors). 10VA max/coil (Magnetic contactors).<br />

C 38<br />

9.<br />

Three-stage not available with pulse-width modulation.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Accessories<br />

LonMark Direct Digital<br />

Controller—Unit Control<br />

Module<br />

The Trane LonMark direct digital<br />

controller Unit Control Module (DDC-<br />

UCM) is a microprocessor-based<br />

terminal unit with non-volatile memory<br />

which provides accurate airflow <strong>and</strong><br />

room temperature control of Trane <strong>and</strong><br />

non-Trane <strong>VAV</strong> air terminal units.<br />

LonMark provides a simple open<br />

protocol to allow integration of Trane<br />

<strong>VAV</strong> units <strong>and</strong> controls into other<br />

existing control systems. The UCM can<br />

operate in pressure-independent or<br />

pressure-dependent mode <strong>and</strong> uses a<br />

proportional plus integral control<br />

algorithm. The controller monitors<br />

zone temperature setpoints, zone<br />

temperature <strong>and</strong> its rate of change <strong>and</strong><br />

valve airflow (via flow ring differential<br />

pressure). The controller also accepts<br />

an auxiliary duct temperature sensor<br />

input or a supply air temperature value<br />

from Tracer Summit. Staged electric<br />

heat, pulse width modulated electric<br />

heat, proportional hot water heat or on/<br />

off hot water heat control are provided<br />

when required. The control board<br />

operates using<br />

24-VAC power. The Trane LonMark<br />

DDC-UCM is also a member of the<br />

Trane Integrated Comfort systems<br />

(ICS) family of products. When used<br />

with a Trane Tracer Summit building<br />

management controller or other Trane<br />

controllers, zone grouping <strong>and</strong> unit<br />

diagnostic information can be<br />

obtained. Also part of ICS is the factorycommissioning<br />

of parameters<br />

specified by the engineer (see "Factory-<br />

Installed vs. Factory-Commissioned" in<br />

the Features <strong>and</strong> Benefits section for<br />

more details).<br />

SPECIFICATIONS<br />

Supply voltage:<br />

24 VAC, 50/60 Hz<br />

Maximum VA load:<br />

No heat or fan:<br />

8 VA (Board, Transducer, Zone Sensor,<br />

<strong>and</strong> Actuator)<br />

Note: If using field-installed heat,<br />

24 VAC transformer should be sized<br />

for additional load.<br />

Output ratings:<br />

Actuator Output: 24 VAC at 12 VA<br />

1st Stage Reheat: 24 VAC at 12 VA<br />

2nd Stage Reheat: 24 VAC at 12 VA<br />

3rd Stage Reheat: 24 VAC at 12 VA<br />

Binary input:<br />

24 VAC, occupancy or generic.<br />

Auxiliary input:<br />

Can be configured for discharge or<br />

primary air temperature sensor.<br />

Operating environment:<br />

32 to 140°F, (0 to 60°C)<br />

5% to 95% RH, Non-condensing<br />

Storage environment:<br />

-40 to 180°F (-40 to 82.2°C),<br />

5% to 95%RH, Non-Condensing<br />

For additional accessory information, refer to pages C 17 – 25.<br />

Physical dimensions:<br />

Width:<br />

5.5" (139.7 mm)<br />

Length:<br />

4.5" (69.85 mm)<br />

Height:<br />

2.0" (44.45 mm)<br />

Connections:<br />

1/4" (6.35 mm) Stab Connections<br />

Communications:<br />

LonMark – Space Comfort Control<br />

(SCC) profile with FTT-10 transceiver.<br />

22 awg. unshielded level 4<br />

communication wire.<br />

Fan control:<br />

Series fan:<br />

Parallel fan:<br />

On unless unoccupied<br />

<strong>and</strong> min. flow has been<br />

released.<br />

On when zone<br />

temperature is less than<br />

heating setpoint plus fan<br />

offset. Off when zone<br />

temperature is more than<br />

heating setpoint plus fan<br />

offset plus 0.5°F (0.28°C).<br />

Heat staging:<br />

Staged electric or hot water<br />

proportional or pulse-width<br />

modulation<br />

Note: Trane LonMark DDC-UCM<br />

controllres can also take advancage of<br />

factory-commissioned quality on non-<br />

Trane systems through LonMark open<br />

protocol.<br />

<strong>VAV</strong>-PRC008-EN C 39


<strong>Controls</strong>—<br />

LonMark DDC<br />

<strong>VAV</strong> Controller<br />

Data Lists<br />

Table 1 provides an input/output listing for Tracer VV550/551 <strong>VAV</strong> controllers. Table 2 provides the configuration properties for the<br />

controller. The content of the lists conforms to both the LonMark SCC functional profile 8500 <strong>and</strong> the LonMark node object.<br />

Table 1. Input/output listing<br />

Input description Input SNVT type<br />

Space temperature nviSpaceTemp SNVT_temp_p<br />

Setpoint nviSetpoint SNVT_temp_p<br />

Occupancy, schedule nviOccSchedule SNVT_tod_event<br />

Occupancy, manual comm<strong>and</strong> nviOccManCmd SNVT_occupancy<br />

Occupancy sensor nviOccSensor SNVT_occupancy<br />

Application mode nviApplicMode SNVT_hvac_mode<br />

Heat/cool mode input nviHeatCool SNVT_hvac_mode<br />

Fan speed comm<strong>and</strong> nviFanSpeedCmd SNVT_switch<br />

Auxiliary heat enable nviAuxHeatEnable SNVT_switch<br />

Valve override nviValveOverride SNVT_hvac_overid<br />

Flow override nviFlowOverride SNVT_hvac_overid<br />

Emergency override nviEmergOverride SNVT_hvac_emerg<br />

Source temperature nviSourceTemp SNVT_temp_p<br />

Space CO2 nviSpaceCO2 SNVT_ppm<br />

Clear alarms/diagnostics nviRequest* SNVT_obj_request<br />

Air flow setpoint input nviAirFlowSetpt SNVT_flow<br />

* Part of the node object.<br />

Output description Output SNVT type<br />

Space temperature nvoSpaceTemp SNVT_temp_p<br />

Unit status, mode nvoUnitStatus SNVT_hvac_status<br />

Effective setpoint nvoEffectSetpt SNVT_temp_p<br />

Effective occupancy nvoEffectOccup SNVT_occupancy<br />

Heat cool mode nvoHeatCool SNVT_hvac_mode<br />

Setpoint nvoSetpoint SNVT_temp_p<br />

Discharge air temperature nvoDischAirTemp SNVT_temp_p<br />

Space CO2 nvoSpaceCO2 SNVT_ppm<br />

Effective air flow setpoint nvoEffectFlowSP SNVT_flow<br />

Air flow nvoAirFlow SNVT_flow<br />

File table address nvoFileDirectory* SNVT_address<br />

Object status nvoStatus* SNVT_obj_status<br />

Alarm message nvoAlarmMessage SNVT_str_asc<br />

*Part of the node object.<br />

Table 2. Configuration properties<br />

Configuration property description Configuration property SNVT type SCPT reference<br />

Send heartbeat nciSndHrtBt SNVT_time_sec SCPTmaxSendTime (49)<br />

Occ temperature setpoints nciSetpoints SNVT_temp_setpt SCPTsetPnts (60)<br />

Minimum send time nciMinOutTm SNVT_time_sec SCPTminSendTime (52)<br />

Receive heartbeat nciRecHrtBt SNVT_time_sec SCPTmaxRcvTime (48)<br />

Location label nciLocation SNVT_str_asc SCPTlocation (17)<br />

Local bypass time nciBypassTime SNVT_time_min SCPTbypassTime (34)<br />

Manual override time nciManualTime SNVT_time_min SCPTmanOverTime (35)<br />

Space CO2 limit nciSpaceCO2Lim SNVT_ppm SCPTlimitCO2 (42)<br />

Nominal air flow nciNomFlow SNVT_flow SCPTnomAirFlow (57)<br />

Air flow measurement gain nciFlowGain SNVT_multiplier SCPTsensConst<strong>VAV</strong> (67)<br />

Minimum air flow nciMinFlow SNVT_flow SCPTminFlow (54)<br />

Maximum air flow nciMaxFlow SNVT_flow SCPTmaxFlow (51)<br />

Minimum air flow for heat nciMinFlowHeat SNVT_flow SCPTminFlowHeat (55)<br />

Maximum air flow for heat nciMaxFlowHeat SNVT_flow SCPTmaxFlowHeat (37)<br />

Minimum flow for st<strong>and</strong>by nciMinFlowStdby SNVT_flow SCPTminFlowStby (56)<br />

Firmware major version nciDevMajVer* n/a SCPTdevMajVer (165)<br />

Firmware minor version nciDevMinVer* n/a SCPTdevMinVer (166)<br />

Flow offset for tracking applications nciFlowOffset SNVT_flow_f SCPToffsetFlow (265)<br />

Local heating minimum air flow nciMinFlowUnitHt SNVT_flow SCPTminFlowUnitHeat (270)<br />

Minimum flow for st<strong>and</strong>by heat nciMnFlowStbyHt SVNT_flow SCPTminFlowStbyHeat(263)<br />

* Part of the node object.<br />

C 40<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Analog<br />

Options<br />

Single-Duct Terminal Unit (VCCF, VCWF, <strong>and</strong> VCEF)<br />

Unit Heat Control Description Page #<br />

Cooling Only EI05 Cooling Only C 42<br />

(VCCF) EI28 Cooling Only With Remote Hot Water Reheat <strong>and</strong> Electric Reheat - Automatic Dual Minimum C 43<br />

EI29 Cooling Only With Remote Hot Water Reheat <strong>and</strong> Electric Reheat - Constant Volume C 43<br />

Hot Water EI05 Cooling With Hot Water Reheat C 42<br />

(VCWF) EI28 Cooling With Hot Water Reheat - Automatic Dual Minimum C 43<br />

EI29 Cooling With Hot Water Reheat - Constant Volume C 43<br />

Electric EI05 Cooling With Electric Reheat C 42<br />

(VCEF) EI28 Cooling With Electric Reheat - Automatic Dual Minimum C 43<br />

EI29 Cooling With Electric Reheat - Constant Volume C 43<br />

Fan-Powered Terminal Units (VPCF, VPWF, VPEF, VSCF, VSWF, <strong>and</strong> VSEF)<br />

Low-Height Fan-Powered Terminal Units (LPCF, LPWF, LPEF, LSCF, LSWF, <strong>and</strong> LSEF)<br />

Unit Heat Control Description Page #<br />

Cooling Only<br />

Hot Water EI05 Cooling With Hot Water Reheat <strong>and</strong> Electric Reheat C 44<br />

Electric<br />

(VPxF, LPxF)<br />

Cooling Only<br />

Hot Water EI71 Cooling With Hot Water Reheat <strong>and</strong> Electric Reheat - Duct Pressure Switch C 45<br />

Electric<br />

(VSxF, LSxF)<br />

<strong>VAV</strong>-PRC008-EN C 41


AMERICAN STANDARD INC.<br />

R THE TRANE COMPANY<br />

TP4<br />

TP3<br />

TP2<br />

<strong>Controls</strong>—<br />

Analog<br />

Control<br />

Drawings<br />

VCCF, VCWF, <strong>and</strong> VCEF – Single-Duct Terminal Units<br />

(Normal Operation: Cooling With Reheat Capability)<br />

EI05 – Cooling Only<br />

EI05 – Cooling with Hot Water Reheat <strong>and</strong> Electric Rreheat<br />

An analog signal from the zone sensor is used to compare the difference in the zone temperature <strong>and</strong> the zone<br />

setpoint. On a rise in zone temperature above the setpoint, the controller outputs a 24-VAC signal, compensated for<br />

changing duct pressures, to open the air valve <strong>and</strong> to increase primary cooling airflow. Upon a decrease in zone<br />

temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

controller <strong>and</strong> are adjustable through potentiometers on the controller board. Upon a continued decrease in zone<br />

temperature, below setpoint, the reheat is enabled. For VCCF units with remote hot water reheat <strong>and</strong> VCWF units,<br />

the hot water valve is opened. For VCCF with remote electric reheat <strong>and</strong> VCEF units, the electric heat stages<br />

are energized.<br />

Water Valve<br />

Electric Heater<br />

24 VAC 60 HZ<br />

NEC Class - 2<br />

Control Circuit<br />

Board = 8 VA<br />

Min Load = 12 VA<br />

Transformer<br />

50 VA<br />

24 VAC 60 HZ<br />

(Optional)<br />

BL<br />

Y<br />

3<br />

2<br />

1<br />

TB1-1<br />

TB1-2<br />

Zone Sensor<br />

Remote Mtd.<br />

J9<br />

J7<br />

J7<br />

TB1-1<br />

TB1-2<br />

TB1-3<br />

TB1-4<br />

TB1-5<br />

On-Off<br />

Normally Closed<br />

24 VAC, 60 HZ<br />

12 VA Max<br />

J11 J10 J9<br />

J11<br />

J10<br />

J9<br />

J7<br />

J19<br />

J18<br />

J1<br />

J3<br />

3rd Stage<br />

2nd Stage<br />

1st Stage<br />

Hot<br />

BL-HOT<br />

BK-OPEN<br />

R-CLOSE<br />

Contactor(s)<br />

24 VAC, 12 VA<br />

Max/Coil<br />

M<br />

Air Valve<br />

Actuator<br />

4VA<br />

R68 R69 R67 R8 TP1<br />

G<br />

BK<br />

R<br />

J15<br />

Pressure<br />

Transducer<br />

C 42<br />

Notes:<br />

1.<br />

FACTORY INSTALLED.<br />

OPTIONAL OR INSTALLED BY OTHERS.<br />

2. No slaving of multiple units to a single zone sensor is allowed.<br />

3. Field connections are TB1-3, TB1-4, TB1-5, J7, J9, J10, <strong>and</strong> J11.<br />

<strong>VAV</strong>-PRC008-EN


AMERICAN STANDARD INC.<br />

R THE TRANE COMPANY<br />

TP4<br />

TP3<br />

TP2<br />

<strong>Controls</strong>—<br />

Analog<br />

Control<br />

Drawings<br />

VCCF, VCWF, <strong>and</strong> VCEF – Single-Duct Terminal Units<br />

(Normal Operation: Cooling With Reheat Capability <strong>and</strong> Auto Dual Minimum<br />

or Constant Volume)<br />

EI28 - Cooling With Hot Water Reheat <strong>and</strong> Electric Reheat - Auto Dual Minimum<br />

EI29 - Cooling With Hot Water Reheat <strong>and</strong> Electric Reheat - Constant Volume<br />

An analog signal from the zone sensor is used to compare the difference in the zone temperature <strong>and</strong> the zone<br />

setpoint. On a rise in zone temperature above the setpoint, the controller outputs a 24-VAC signal, compensated for<br />

changing duct pressures, to open the air valve <strong>and</strong> to increase primary cooling airflow. Upon a decrease in zone<br />

temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

controller <strong>and</strong> are adjustable through potentiometers on the controller board. Upon a continued decrease in zone<br />

temperature, below setpoint, the reheat is enabled. For VCCF units with remote hot water reheat <strong>and</strong> VCWF units,<br />

the hot water valve is opened. For VCCF with remote electric reheat <strong>and</strong> VCEF units, the electric heat stages are<br />

energized. If the pins on jumper J18 onthe board are connected, then the controller will control the air valve<br />

actuator to its heating minimum primary airflow when reheat is enabled (EI28). For EI29, The unit shall operate<br />

to constant volume flow regardless of changes in space temperature. The pins on jumper J15 on the board must<br />

be connected for constant volume mode to be active.<br />

24 VAC 60 HZ<br />

NEC Class - 2<br />

Control Circuit<br />

Board = 8 VA<br />

Min Load = 12 VA<br />

Transformer<br />

50 VA<br />

24 VAC 60 HZ<br />

(Optional)<br />

BL<br />

Y<br />

3<br />

2<br />

1<br />

TB1-1<br />

TB1-2<br />

Zone Sensor<br />

Remote Mtd.<br />

J9<br />

J7<br />

J7<br />

TB1-1<br />

TB1-2<br />

TB1-3<br />

TB1-4<br />

TB1-5<br />

Water Valve<br />

On-Off<br />

Normally Closed<br />

24 VAC, 60 HZ<br />

12 VA Max<br />

J11 J10 J9<br />

J11<br />

J10<br />

J9<br />

J7<br />

J19<br />

J18<br />

J1<br />

J3<br />

3rd Stage<br />

2nd Stage<br />

1st Stage<br />

Hot<br />

BL-HOT<br />

BK-OPEN<br />

R-CLOSE<br />

Electric Heater<br />

Contactor(s)<br />

24 VAC, 12 VA<br />

Max/Coil<br />

M<br />

Air Valve<br />

Actuator<br />

4VA<br />

R68 R69 R67 R8 TP1<br />

G<br />

BK<br />

R<br />

J15<br />

Pressure<br />

Transducer<br />

Notes:<br />

1. FACTORY INSTALLED.<br />

OPTIONAL OR INSTALLED BY OTHERS.<br />

2. No slaving of multiple units to a single zone sensor is allowed.<br />

3. Field connections are TB1-3, TB1-4, TB1-5, J7, J9, J10, <strong>and</strong> J11.<br />

<strong>VAV</strong>-PRC008-EN C 43


AMERICAN STANDARD INC.<br />

R THE TRANE COMPANY<br />

TP4<br />

TP3<br />

TP2<br />

<strong>Controls</strong>—<br />

Analog<br />

Control<br />

Drawings<br />

For Use With Parallel Fan-Powered Terminals<br />

(Normal Operation: Cooling With Reheat Capability)<br />

EI05 – Cooling Only<br />

EI05 – Cooling Only with Hot Water Reheat <strong>and</strong> Electric Reheat<br />

An analog signal from the zone sensor is used to compare the difference in the zone temperature <strong>and</strong> the zone<br />

setpoint. On a rise in zone temperature above the setpoint, the controller outputs a 24-VAC signal, compensated for<br />

changing duct pressures, to open the air valve <strong>and</strong> to increase primary cooling airflow. Upon a decrease in zone<br />

temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

controller <strong>and</strong> are adjustable through potentiometers on the controller board. Upon a continued decrease in zone<br />

temperature, below setpoint, the fan is energized. If the zone temperature continues to decrease then reheat is<br />

enabled. For VPCF <strong>and</strong> LPCF units with remote hot water reheat <strong>and</strong> VPWF <strong>and</strong> LPWF units, the hot water valve is<br />

opened. For VPCF <strong>and</strong> LPCF units with remote electric reheat <strong>and</strong> VPEF <strong>and</strong> LPEF units, the electric heat stages<br />

are energized.<br />

J10<br />

J7<br />

Water Valve<br />

On-Off<br />

Normally Closed<br />

24 VAC, 60 HZ<br />

12 VA Max<br />

J11<br />

J10<br />

J7<br />

2nd Stage<br />

1st Stage<br />

Hot<br />

Electric Heater<br />

Contactor(s)<br />

24 VAC, 12 VA<br />

Max/Coil<br />

Transformer<br />

50 VA<br />

24 VAC 60 HZ<br />

NEC Class - 2<br />

Control Circuit<br />

Board = 8 VA<br />

Min Load = 12 VA<br />

Fan Control<br />

3<br />

2<br />

1<br />

R-Fan<br />

BR<br />

BL<br />

Y<br />

Zone Sensor<br />

Remote Mtd.<br />

J7<br />

TB1-1<br />

TB1-2<br />

TB1-3<br />

TB1-4<br />

TB1-5<br />

J11 J10 J9<br />

R68 R69 R67 R8 TP1<br />

J19<br />

J18<br />

J1<br />

J3<br />

BL-HOT<br />

BK-OPEN<br />

R-CLOSE<br />

M<br />

Air Valve<br />

Actuator<br />

4VA<br />

G<br />

BK<br />

R<br />

J15<br />

Pressure<br />

Transducer<br />

C 44<br />

Notes:<br />

1.<br />

FACTORY INSTALLED.<br />

OPTIONAL OR INSTALLED BY OTHERS.<br />

2. No slaving of multiple units to a single zone sensor is allowed.<br />

3. Field connections are TB1-3, TB1-4, TB1-5, J7, J10, <strong>and</strong> J11.<br />

<strong>VAV</strong>-PRC008-EN


AMERICAN STANDARD INC.<br />

R THE TRANE COMPANY<br />

TP4<br />

TP3<br />

TP2<br />

<strong>Controls</strong>—<br />

Analog<br />

Control<br />

Drawings<br />

For Use With Series Fan-Powered Terminals<br />

(Normal Operation: Cooling With Reheat Capability)<br />

EI71 – Cooling Only - Duct Pressure Switch<br />

EI71 – Cooling with Hot water Reheat <strong>and</strong> Electric Reheat - Duct Pressure Switch<br />

Unit operation is initiated by the duct pressure switch signal to the controller. When signal to start by the duct<br />

pressure switch, the unit fan is started <strong>and</strong> ran continuously. An analog signal from the zone sensor is used to<br />

compare the difference in the zone temperature <strong>and</strong> the zone setpoint. On a rise in zone temperature above setpoint,<br />

the controller outputs a 24-VAC signal, compensated for changing duct pressures, to open the air valve <strong>and</strong> to<br />

increase primary cooling airflow. Upon a decrease in zone temperature, the opposite action occurs. Minimum <strong>and</strong><br />

maximum primary airflow settings are maintained by the controller <strong>and</strong> are adjustable through potentiometers on the<br />

controller board. Upon a continued decrease in zone temperature, below setpoint, the reheat is enabled. For VSCF<br />

<strong>and</strong> LSCF units with remote hot water reheat <strong>and</strong> VSWF <strong>and</strong> LSWF units, the hot water valve is opened. For VSCF<br />

<strong>and</strong> LSCF units with remote electric reheat <strong>and</strong> VSEF <strong>and</strong> LSEF units, the electric stages are energized.<br />

Water Valve<br />

Electric Heater<br />

J10<br />

J7<br />

On-Off<br />

Normally Closed<br />

24 VAC, 60 HZ<br />

12 VA Max<br />

J11<br />

J10<br />

J7<br />

2nd Stage<br />

1st Stage<br />

Hot<br />

Contactor(s)<br />

24 VAC, 12 VA<br />

Max/Coil<br />

Transformer<br />

50 VA<br />

24 VAC 60 HZ<br />

NEC Class - 2<br />

Control Circuit<br />

Board = 8 VA<br />

Min Load = 12 VA<br />

Fan Control<br />

3<br />

2<br />

1<br />

Zone Sensor<br />

Remote Mtd.<br />

Fan - BR<br />

R-Fan<br />

BR<br />

BL<br />

Y<br />

J7<br />

J7<br />

TB1-1<br />

TB1-2<br />

TB1-3<br />

TB1-4<br />

TB1-5<br />

J11 J10 J9<br />

R68 R69 R67 R8 TP1<br />

J19<br />

J18<br />

J1<br />

J3<br />

BL-HOT<br />

BK-OPEN<br />

R-CLOSE<br />

G<br />

BK<br />

R<br />

M<br />

Air Valve<br />

Actuator<br />

4VA<br />

NO<br />

C<br />

NC<br />

DUCT PRESSURE<br />

SWITCH<br />

4.<br />

J15<br />

Pressure<br />

Transducer<br />

Notes:<br />

1.<br />

FACTORY INSTALLED.<br />

OPTIONAL OR INSTALLED BY OTHERS.<br />

2. No slaving of multiple units to a single zone sensor is allowed.<br />

3. Field connections are TB1-3, TB1-4, TB1-5, J7, J10, <strong>and</strong> J11.<br />

4. Rating: 15 amps 125/250/277 VAC resistive, 1/4 HP 125 VAC, 1/2 HP 250 VAC.<br />

<strong>VAV</strong>-PRC008-EN C 45


<strong>Controls</strong>—<br />

Analog<br />

Accessories<br />

Analog Electronic Controller<br />

Trane Actuator – 90-Second Drive Time<br />

The Trane analog electronic controller<br />

offers basic <strong>VAV</strong> unit operation when<br />

used in conjunction with a Trane<br />

analog zone sensor. The control was<br />

designed specifically for use with the<br />

<strong>VariTrane</strong> air valve. Staged electric<br />

reheat or on/off hot water reheat<br />

control are provided when required.<br />

The control board operates using 24-<br />

VAC power. The controls operate in a<br />

pressure independent fashion.<br />

SPECIFICATIONS<br />

Supply Voltage:<br />

24VAC, 50/60 Hz<br />

Maximum VA Load:<br />

No Heat or Fan:<br />

8 VA (Board, Transducer, Zone Sensor<br />

<strong>and</strong> Actuator)<br />

Note: If using field-installed heat, 24-VAC<br />

transformer should be sized for<br />

additional load<br />

Output Ratings:<br />

Air Valve Output: 24 VAC at 12 VA<br />

1st Stage Reheat: 24 VAC at 12 VA<br />

2nd Stage Reheat: 24 VAC at 12 VA<br />

3rd Stage3 Reheat: 24 VAC at 12 VA<br />

Operating Environment:<br />

32 to 140°F (0 to 60°C)<br />

5% to 95%RH, Non-Condensing<br />

Storage Environment:<br />

-40 to 180°F (-40 to 82°C)<br />

5% to 95%RH, Non-Condensing)<br />

Physical Dimensions:<br />

Width:<br />

2.26" (57.4 mm)<br />

Length:<br />

5.50" (139.7 mm)<br />

Height:<br />

2" (50.8 mm)<br />

Connections:<br />

¼" (6.35 mm) Stab Connections<br />

Heat/Fan Staging:<br />

(J9) Fan/1st Stage: 1.5° Below Setpoint<br />

(J10) 2nd Stage: 2.5° Below Setpoint<br />

(J11) 3rd Stage: 3.5° Below Setpoint<br />

The actuator is a 3-wire, floating point<br />

control device. It is a direct-coupled<br />

over shaft (minimum shaft length of<br />

2.1\-”), enabling it to be mounted<br />

directly to the damper shaft without<br />

the need for connecting linkage. The<br />

actuator has an external manual gear<br />

release to allow manual positioning of<br />

the damper when the actuator is not<br />

powered. The actuator is Underwriters<br />

Laboratories St<strong>and</strong>ard 873 <strong>and</strong><br />

Canadian St<strong>and</strong>ards Association Class<br />

3221 02 certified as meeting correct<br />

safety requirements <strong>and</strong> recognized<br />

industry st<strong>and</strong>ards.<br />

SPECIFICATIONS<br />

Actuator design:<br />

3-wire, 18-gage, 24-VAC, floating-point<br />

control. Non-spring return.<br />

Actuator housing:<br />

Housing type-NEMA 1, IP30<br />

Rotation range:<br />

Adjustable from 30 to 90°, clockwise or<br />

counterclockwise<br />

Electrical rating:<br />

Power Supply – 24 VAC (20 to 30 VAC)<br />

at 50/60 Hz<br />

Power Consumption – 3.4 VA<br />

maximum, Class 2<br />

Electrical connection:<br />

6-pin female connector for UCM<br />

Manual override:<br />

External clutch release lever<br />

Shaft requirement:<br />

½" (12.7 mm) round<br />

2.1" (53.5 mm) length<br />

Humidity:<br />

90% RH max., Non-Condensing<br />

Temperature rating:<br />

Ambient operating – 32 to 125°F (0 to<br />

52°C)<br />

Shipping <strong>and</strong> storage – -20 to 150°F<br />

(-29 to 66°C)<br />

Torque:<br />

Running: 35 in.-lb (4 N-m)<br />

Breakaway: 35 in.-lb (4 N-m) minimum<br />

Stall: 40 in.-lb (4.5 N-m) minimum<br />

C 46<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Analog<br />

Accessories<br />

Analog Electronic Sensor<br />

Static Pressure Controller<br />

The analog electronic thermostat is<br />

used in conjunction with the Trane<br />

analog electronic controller to sense<br />

the space temperature <strong>and</strong> to allow for<br />

user adjustment of the zone setpoint.<br />

Models with internal <strong>and</strong> external zone<br />

setpoint adjustments are available.<br />

SPECIFICATIONS<br />

Thermistor Resistance Rating:<br />

3000 Ohms at 77°F (25°C)<br />

Setpoint Resistance Rating:<br />

Setpoint potentiometer is calibrated to<br />

produce 3070 Ohms at a setting of<br />

70°F (21.11°C)<br />

Electrical Connections:<br />

Terminal Block - Pressure Connections<br />

Physical Dimensions:<br />

Width:<br />

2.75" (69.85 mm)<br />

Length:<br />

4.5" (114.3 mm)<br />

Height:<br />

1.0" (25.4 mm)<br />

The Trane static pressure controller will<br />

sense duct static pressure <strong>and</strong><br />

modulate a relief device in an effort to<br />

limit maximum duct static pressure. An<br />

analog signal from the air probe is<br />

used to compare the difference in the<br />

duct static pressure <strong>and</strong> the duct static<br />

pressure setpoint. The relief device can<br />

be a <strong>VariTrane</strong> terminal or any blade<br />

damper device with the specifications<br />

stated below. See <strong>VAV</strong>-EB-64 for<br />

installation <strong>and</strong> calibration.<br />

PHYSICAL DIMENSIONS:<br />

24VAC 60 HZ<br />

NEC CLASS - 2<br />

CONTROL CIRCUIT<br />

- +<br />

SPECIFICATIONS<br />

Supply Voltage:<br />

24 VAC, 60 HZ<br />

Maximum VA Load:<br />

No more than 12 VA<br />

Recommended Wire Size:<br />

14 – 22 AWG Str<strong>and</strong>ed<br />

Housing Material:<br />

ABS<br />

Components:<br />

Control box<br />

Pressure sensor<br />

Interconnecting wire<br />

Static pressure tap<br />

Fits st<strong>and</strong>ard 2" deep x 4" x 2 1/8" utility<br />

box.<br />

PRESSURE<br />

TRANSDUCER<br />

2 5/8"<br />

PRESSURE<br />

CONTROLLER<br />

-<br />

V OUT<br />

+<br />

+<br />

G<br />

BK<br />

R<br />

HI<br />

PORT<br />

3<br />

-<br />

N<br />

U<br />

L<br />

S<br />

T<br />

P<br />

C<br />

L<br />

O<br />

S<br />

O<br />

P<br />

E<br />

C<br />

O<br />

M<br />

3 3/4"<br />

3 1/4"<br />

AIR PROBE<br />

OR<br />

HIGH PORT OF FLOW RING IF<br />

USED WITH VARITRANE VCCF.<br />

R<br />

BK BL<br />

3/16" Ø<br />

MTG. HOLES (2)<br />

AIR VALVE<br />

ACTUATOR<br />

<strong>VAV</strong>-PRC008-EN C 47<br />

M


<strong>Controls</strong>—<br />

Pneumatic<br />

Options<br />

Single-Duct Terminal Unit (VCCF, VCWF, <strong>and</strong> VCEF)<br />

Unit Heat Control Description Thermostat Page #<br />

PN00 Cooling Only With Normally-Open Damper, Actuator Only R.A. C 52<br />

PN04 Cooling Only With Remote Hot Water Reheat, Normally-Open Damper, 3011 PVR D.A. C 52<br />

Cooling Only PN05 Cooling Only With Remote Electric Reheat, Normally-Open Damper, 3011 P VR R.A. C 50<br />

(VCCF) PN11 Cooling Only With Remote Hot Water Reheat, Normally-Open Damper, 3011 PVR - Auto Dual Minimum D.A. C 50<br />

PN32 Cooling Only With Remote Hot Water Reheat, Normally-Open Damper, 3011 PVR - Constant Volume D.A. C 51<br />

PC00 Cooling Only With Normally-Closed Damper, Actuator Only D.A. C 49<br />

PC04 Cooling Only With Remote Hot Water Reheat, Normally-Closed Damper, 3011 PVR D.A. C 49<br />

PC05 Cooling Only With Remote Electric Reheat, Normally-Closed Damper, 3011 PVR R.A. C 53<br />

Hot Water PN04 Cooling With Hot Water Reheat, Normally-Open Damper, 3011 PVR, N.O. Hot Water Valve D.A. C 52<br />

(VCWF) PN32 Cooling With Hot Water Reheat, Normally-Open Damper, 3011 PVR, N.O. Hot Water Valve - Constant Volume D.A. C 51<br />

Electric PN05 Cooling With Electric Reheat, Normally-Open Damper, 3011 PVR R.A. C 50<br />

(VCEF) PN34 Cooling With Electric Reheat, Normally-Open Damper, 3011 PVR - Constant Volume R.A. C 51<br />

Dual-Duct Terminal Unit (VDDF)<br />

Unit Heat Control Description Thermostat Page #<br />

PN08 Cooling <strong>and</strong> Heating, Normally-Open Heating <strong>and</strong> Cooling Dampers, Actuators Only R.A. C 54<br />

None PN09 Cooling <strong>and</strong> Heating, Normally-Open Heating <strong>and</strong> Cooling Dampers, 3011 PVRs D.A. C 54<br />

(VDDF) PN10 Cooling <strong>and</strong> Heating, Normally-Open Heating <strong>and</strong> Cooling Dampers, 3501 PVRs - Constant Volume D.A. C 55<br />

PC03 Cooling <strong>and</strong> Heating, Normaly-Closed Heating <strong>and</strong> Normally-Open Cooling Dampers, 3011 PVRs D.A. C 55<br />

Fan-Powered Terminal Units (VPCF, VPWF, VPEF, VSCF, VSWF, <strong>and</strong> VSEF<br />

Low-Height Fan-Powered Terminal Units (LPCF, LPWF, LPEF, LSCF, LSWF, <strong>and</strong> LSEF)<br />

Unit Heat Control Description Thermostat Page #<br />

Cooling Only<br />

Hot Water PN00 Cooling With Reheat, Normally-Open Damper, Actuator Only R.A. C 56–58<br />

Electric PN05 Cooling With Reheat, Normally-Open Damper, 3011 PVR R.A. C 56–58<br />

(VPxF, LPxF)<br />

Cooling Only PN00 Cooling With Reheat, Normally-Open Damper, Actuator Only R.A. C 56–58<br />

Hot Water PN51 Cooling With Reheat, Normally-Open Damper, 3011 PVR - Duct Pressure Switch R.A. C 59–60<br />

Electric PN52 Cooling With Reheat, Normally-Open Damper, 3011 PVR - Dual Pressure Main R.A. C 60–61<br />

(VSxF, LSxF)<br />

R.A. = Reverse Acting Thermostat<br />

D.A. = Direct Acting Thermostat<br />

C 48<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PC00 – VCCF - Single-Duct Terminal Units<br />

(Normal Operation: Cooling Only)<br />

Normally-Closed Damper <strong>and</strong> Actuator (Direct-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is increased <strong>and</strong> the actuator opens to increase primary<br />

cooling airflow to the space. With a decrease in room temperature, the opposite action occurs.<br />

S<br />

20<br />

(137.9)<br />

Actuator<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

100<br />

% Position (Open)<br />

% Flow (CFM)<br />

S<br />

20<br />

(137.9)<br />

100<br />

Max<br />

CFM<br />

M<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

Water valve<br />

55.2<br />

3 8<br />

Volume<br />

Regulator<br />

55.2<br />

Air Valve Position<br />

T-Stat Branch Pressure (PSI)<br />

T<br />

69<br />

89.6<br />

89.6<br />

13<br />

103.4<br />

Air Flow<br />

100<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

Water<br />

Valve<br />

(N.O.)<br />

100<br />

Max<br />

LPS<br />

% Flow (LPS)<br />

Tee<br />

Customer Notes:<br />

Restrictor<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Remote Mounted<br />

(Direct Acting)<br />

Min<br />

Min<br />

CFM<br />

LPS<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

3 8 10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

<strong>VAV</strong>-PRC008-EN C 49<br />

1.<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

15<br />

S<br />

(103.4)<br />

(137.9)<br />

S<br />

20<br />

(137.9)<br />

20<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Factory installed.<br />

Optional or installed by others.<br />

PC04 – VCCF <strong>and</strong> VCWF - Single-Duct Terminal Units<br />

(Normal Operation: Cooling with Hot Water Reheat)<br />

Normally-Closed Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator<br />

(Direct-Acting Thermostat)<br />

% Position (Open)<br />

With an increase in room temperature, the thermostat output pressure is increased. <strong>This</strong> signal is input for the volume regulator, which<br />

also receives inputs from the high- <strong>and</strong> low-pressure sides of the flow ring. The volume regulator outputs a signal compensated for<br />

changing duct pressure to the valve actuator which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a<br />

decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

volume regulator. When the system is designed with reheat, heating stages are energized at the appropriate pressure settings.<br />

One Pipe<br />

T-Stat<br />

Restricted Leg<br />

One Pipe Inset


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN05 – VCCF <strong>and</strong> VCEF - Single-Duct Terminal Units<br />

(Normal Operation: Cooling with Electric Reheat)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Direct-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input for the volume regulator, which also<br />

receives the inputs from the high- <strong>and</strong> low-pressure sides of the flow ring. The volume regulator outputs a signal compensated for changing<br />

duct pressure to the valve actuator which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a decrease in room<br />

temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the volume regulator. When the<br />

system is designed with reheat, heating stages are energized at the appropriate pressure settings.<br />

T<br />

Electric Heater<br />

Terminal Box<br />

S<br />

15<br />

(103.4) 20<br />

(137.9)<br />

M<br />

Volume<br />

Regulator<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T–Stat<br />

(Reverse Acting)<br />

S<br />

20<br />

(137.9)<br />

T-Stat Branch Pressure (kPa)<br />

% Flow (CFM)<br />

Max<br />

CFM<br />

Min<br />

CFM<br />

3 8 10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

Stages of Heat<br />

PN11 – VCWF - Single-Duct Terminal Units<br />

Max<br />

LPS<br />

Min<br />

LPS<br />

% Flow (LPS)<br />

Restrictor<br />

Tee<br />

(Normal Operation: Cooling with Hot Water Reheat - Auto Dual Minimum)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Direct-Acting Thermostat)<br />

With a decrease in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume regulator, which also<br />

receives inputs from the high- <strong>and</strong> low-pressure sides of the flow ring. The volume regulator outputs a signal compensated for changing duct<br />

pressure to the valve actuator, which closes the damper <strong>and</strong> decreases primary cooling flow to the space. With a further decrease in room<br />

temperature, the auxiliary limit will override the thermostat signal, which is followed by the reheat being energized. Once the reheat has been<br />

energized, the volume regulator will send a signal to the actuator to open to its secondary minimum. With an increase in temperature, the<br />

opposite action occurs. Minimum <strong>and</strong> maximum airflow settings are maintained by the volume regulator. Heating stages are energized at the<br />

appropriate pressure settings.<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T–Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

M<br />

S<br />

20<br />

(137.9)<br />

Volume<br />

Regulator<br />

T-Stat Branch Pressure (kPa)<br />

T<br />

Diverting<br />

Relay<br />

C NO<br />

S NC<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

Restrictor<br />

Tee<br />

Restricted Leg<br />

S<br />

15<br />

(103.4) 20<br />

(137.9)<br />

Bleed<br />

Two Pipe<br />

Remote Mounted<br />

T–Stat<br />

(Direct Acting)<br />

Capped<br />

Ports<br />

Minimum<br />

Limiter<br />

C 50<br />

% Flow (CFM)<br />

100<br />

Max<br />

CFM<br />

Min<br />

CFM<br />

3 8 10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

100<br />

Max<br />

LPS<br />

Min<br />

LPS<br />

% Flow (LPS)<br />

Water<br />

Valve<br />

(N.O.)<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T–Stat<br />

(Direct Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN32 – VCWF - Single-Duct Terminal Units<br />

(Normal Operation: Cooling with Hot Water Reheat - Constant Volume)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Direct-Acting Thermostat)<br />

The unit shall operate to a constant volume flow regardless of changes in space temperature. The volume regulator receives the inputs from<br />

high- <strong>and</strong> low-pressure sides of the flow ring. The volume regulator outputs a signal compensated for changing duct pressure to maintain<br />

constant volume flow. When reheat is applied, heating stages are energized at the appropriate settings.<br />

S<br />

T<br />

15<br />

(103.4)<br />

20<br />

(137.9)<br />

% Flow (CFM)<br />

100<br />

Constant<br />

Volume<br />

M<br />

S<br />

20<br />

(137.9)<br />

Volume<br />

Regulator<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

Water Valve<br />

55.2<br />

69<br />

89.6<br />

Air Flow<br />

Constant Volume<br />

3 8 10 13<br />

T-Stat Branch Pressure (PSI)<br />

103.4<br />

15<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

100<br />

% Flow (LPS)<br />

Water<br />

Valve<br />

(N.O.)<br />

PN34 – VCEF - Single-Duct Terminal Units<br />

Restrictor<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Remote Mounted<br />

(Direct Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1.<br />

Factory installed.<br />

Optional or installed by others.<br />

(Normal Operation: Cooling with Electric Reheat - Constant Volume)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Reverse-Acting Thermostat)<br />

The unit shall operate to a constant volume flow regardless of changes in space temperature. The volume regulator receives the inputs from<br />

high- <strong>and</strong> low-pressure sides of the flow ring. The volume regulator outputs a signal compensated for changing duct pressure to maintain<br />

constant volume flow. When reheat is applied, heating stages are energized at the appropriate settings.<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

T-Stat<br />

T-Stat Branch Pressure (kPa)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

100<br />

100<br />

Restricted Leg<br />

Constant Volume<br />

3rd<br />

S<br />

20<br />

Air Valve 2nd<br />

(137.9)<br />

One Pipe Inset<br />

Constant<br />

Volume<br />

1st<br />

Customer Notes:<br />

1.<br />

Factory installed.<br />

3 8 10 13 15<br />

Stages of Heat<br />

Optional or installed by others.<br />

T-Stat Branch Pressure (PSI)<br />

<strong>VAV</strong>-PRC008-EN C 51<br />

% Flow (CFM)<br />

M<br />

S<br />

20<br />

(137.9)<br />

20.7<br />

Volume<br />

Regulator<br />

55.2<br />

T<br />

69<br />

89.6<br />

103.4<br />

Electric Heater<br />

Terminal Box<br />

% Flow (LPS)<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restrictor<br />

Tee


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN00 – VCCF - Single-Duct Terminal Units<br />

(Normal Operation: Cooling Only)<br />

Normally-Open Damper <strong>and</strong> Actuator (Reverse-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased <strong>and</strong> the actuator opens to increase primary cooling<br />

airflow to the space. With a decrease in room temperature, the opposite action occurs.<br />

S<br />

20<br />

(137.9)<br />

Actuator<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

55.2<br />

100<br />

% Position (Open)<br />

M<br />

Air Valve<br />

3 8<br />

T-Stat Branch Pressure (PSI)<br />

Volume<br />

Regulator<br />

T<br />

100<br />

% Position (Open)<br />

With an increase in room temperature, the thermostat output pressure is increased. <strong>This</strong> signal is input for the volume regulator, which also<br />

receives inputs from the high- <strong>and</strong> low-pressure sides of the flow ring. The volume regulator outputs a signal compensated for changing duct<br />

pressure to the valve actuator, which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a decrease in room temperature,<br />

the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the volume regulator. When the system is<br />

designed with reheat, heating stages are energized at the appropriate pressure settings.<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

Water<br />

Valve<br />

(N.O.)<br />

Tee<br />

Restrictor<br />

Tee<br />

PN04 – VCCF <strong>and</strong> VCWF - Single-Duct Terminal Units<br />

(Normal Operation: Cooling with Hot Water Reheat)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Direct-Acting Thermostat)<br />

15<br />

S<br />

S<br />

20<br />

(137.9)<br />

20 (103.4)<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1.<br />

Factory installed.<br />

Optional or installed by others.<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

C 52<br />

% Flow (CFM)<br />

S<br />

20<br />

(137.9)<br />

100<br />

Max<br />

CFM<br />

Min<br />

CFM<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

55.2<br />

69<br />

89.6<br />

103.4<br />

Water Valve<br />

Air Flow<br />

3 8 10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

100<br />

Max<br />

LPS<br />

Min<br />

LPS<br />

% Flow (LPS)<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

Customer Notes:<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

1. Factory installed.<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PC05 – VCCF <strong>and</strong> VCEF - Single-Duct Terminal Units<br />

(Normal Operation: Cooling with Electric Reheat)<br />

Normally-Closed Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Reverse-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input for the volume regulator, which also receives<br />

the inputs from the high- <strong>and</strong> low-pressure sides of the flow ring. The volume regulator outputs a signal compensated for changing duct pressure to<br />

the valve actuator which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a decrease in room temperature, the opposite<br />

action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the volume regulator. When the system is designed with reheat,<br />

heating stages are energized at the appropriate pressure settings.<br />

T<br />

Electric Heater<br />

Terminal Box<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

M<br />

Volume<br />

Regulator<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

S<br />

20<br />

(137.9)<br />

% Flow (CFM)<br />

100<br />

Max<br />

CFM<br />

Min<br />

CFM<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

55.2<br />

69<br />

89.6<br />

103.4<br />

Air Flow<br />

3rd<br />

2nd<br />

1st<br />

3 8 10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

100<br />

Max<br />

LPS<br />

Min<br />

LPS<br />

% Flow (LPS)<br />

Stages of Heat<br />

Customer Notes:<br />

1.<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Factory installed.<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN C 53


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN08 – VDDF - Dual-Duct Terminal Units<br />

(Normal Operation: Cooling <strong>and</strong> Heating)<br />

Normally-Open Heating Damper with Actuator <strong>and</strong> Normally-Open Cooling Damper with Actuator<br />

(Reverse-Acting Thermostat)<br />

With an increase in room temperature, the thermostat pressure is decreased. The cooling valve actuator opens the damper to<br />

increase primary cooling flow to the space, the heating valve is closed. With a decrease in room temperature, the heating valve<br />

modulates <strong>and</strong> the cooling valve is closed.<br />

S<br />

20<br />

(137.9)<br />

% Position (Open)<br />

100<br />

Actuator<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

Cooling<br />

55.2<br />

Heating<br />

89.6<br />

103.4<br />

B M S<br />

Reversing<br />

Relay<br />

8 PSI In<br />

(55.16 kPa)<br />

8 PSI Out<br />

(55.16 kPa)<br />

100<br />

% Position (Open)<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

Actuator<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

3 8<br />

13 15<br />

T-Stat Branch Pressure (PSI)<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

PN09 – VDDF - Dual-Duct Terminal Units<br />

(Normal Operation: Cooling <strong>and</strong> Heating)<br />

Normally-Open Heating Damper with Actuator, Normally-Open Cooling Damper with Actuator, <strong>and</strong><br />

3001 Pneumatic Volume Regulator (Qty of 2) (Direct-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume regulator,<br />

which also receives the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The volume regulator outputs a signal<br />

compensated for changing duct pressures to the valve actuator, which opens the damper <strong>and</strong> increases primary cooling flow to the<br />

space. With a decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are<br />

maintained by the volume regulator. If the zone temperature continues to decrease after the fan has been energized, heating stages<br />

are energized at the appropriate pressure settings.<br />

HI<br />

LO<br />

Flow Ring<br />

Heating<br />

B<br />

M<br />

Volume<br />

Regulator<br />

HI<br />

H L T LO<br />

Flow Ring<br />

Cooling<br />

H<br />

B<br />

L<br />

M<br />

Volume<br />

Regulator<br />

T<br />

% Flow (CFM)<br />

100<br />

Max<br />

CFM<br />

Min<br />

CFM<br />

Actuator<br />

Heating<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

Heating<br />

55.2<br />

3 8<br />

89.6<br />

Cooling<br />

13<br />

S<br />

20<br />

(137.9)<br />

103.4<br />

15<br />

T-Stat Branch Pressure (PSI)<br />

100<br />

Max<br />

LPS<br />

Min<br />

LPS<br />

% Flow (LPS)<br />

S<br />

20<br />

(137.9)<br />

Actuator<br />

Cooling<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

S<br />

20<br />

(137.9)<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

C 54<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN10 – VDDF - Dual-Duct Terminal Units<br />

(Normal Operation: Cooling <strong>and</strong> Heating - Constant Volume)<br />

Normally-Open Heating Damper with Actuator, Normally-Open Cooling Damper with Actuator, <strong>and</strong><br />

3501 Pneumatic Volume Regulator (Qty of 2) (Direct-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is increased. <strong>This</strong> signal is input to the volume regulators,<br />

which also receives the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The cooling volume regulator outputs a signal<br />

compensated for changing duct pressure to the valve actuator, which opens the damper <strong>and</strong> increases primary cooling airflow to the<br />

space. The heating valve is at a minimum flow. With a decrease in room temperature, the heating valve modulates in response to<br />

signals from the heating pneumatic volume regulator, while maintaining constant volume at the discharge. The heating minimum<br />

<strong>and</strong> maximum settings <strong>and</strong> the constant volume settings are maintained by the volume regulators.<br />

HI<br />

LO<br />

Flow Ring<br />

Heating<br />

H L<br />

Linear<br />

Reset<br />

B<br />

Volume<br />

M Regulator<br />

T<br />

HI<br />

LO<br />

Flow Ring<br />

Cooling<br />

in Discharge<br />

H<br />

L<br />

Linear<br />

Reset<br />

B<br />

Volume<br />

M Regulator<br />

T<br />

% Flow (CFM)<br />

100<br />

Max<br />

CFM<br />

Min<br />

CFM<br />

Actuator<br />

Heating<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

Heating<br />

55.2<br />

89.6<br />

Cooling<br />

S<br />

20<br />

(137.9)<br />

103.4<br />

3 8 13 15<br />

T-Stat Branch Pressure (PSI)<br />

100<br />

Max<br />

LPS<br />

Min<br />

LPS<br />

% Flow (LPS)<br />

S<br />

20<br />

(137.9)<br />

Actuator<br />

Cooling<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Restrictor<br />

Tee<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

PC03 – VDDF - Dual-Duct Terminal Units<br />

(Normal Operation: Cooling <strong>and</strong> Heating)<br />

Normally-Closed Heating Damper with Actuator, Normally-pen Cooling Damper with Actuator, <strong>and</strong><br />

3011 Pneumatic Volume Regulator (Qty of 2) (Direct-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is increased. <strong>This</strong> signal is input to the volume regulators,<br />

which also receives the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The cooling volume regulator outputs a signal<br />

compensated for changing duct pressure to the valve actuator, which opens the damper <strong>and</strong> increases primary cooling airflow to the<br />

space. The heating valve is at a minimum flow. With a decrease in room temperature, the heating valve modulates in response to<br />

signals from the heating pneumatic volume regulator. The heating valve is at a minimum flow. Both heating <strong>and</strong> cooling minimum<br />

<strong>and</strong> maximum settings are maintained by the volume regulators.<br />

S<br />

20<br />

(137.9)<br />

S<br />

20<br />

(137.9)<br />

HI<br />

LO<br />

Flow Ring<br />

Heating<br />

H L T<br />

B<br />

Volume<br />

M Regulator<br />

HI<br />

LO<br />

Flow Ring<br />

Cooling<br />

H L<br />

T<br />

B<br />

Volume<br />

M Regulator<br />

Actuator<br />

Heating<br />

S<br />

20<br />

(137.9)<br />

Actuator<br />

Cooling<br />

S<br />

20<br />

(137.9)<br />

% Flow (CFM)<br />

100<br />

Max<br />

CFM<br />

T-Stat Branch Pressure (kPa)<br />

20.7<br />

Heating<br />

55.2<br />

Max<br />

S<br />

LPS<br />

20<br />

Restricted Leg<br />

(137.9)<br />

One Pipe Inset<br />

Min<br />

Min<br />

CFM<br />

LPS<br />

Customer Notes:<br />

3 8 13 15<br />

1. Factory installed.<br />

Optional or installed by others.<br />

T-Stat Branch Pressure (PSI)<br />

<strong>VAV</strong>-PRC008-EN C 55<br />

Cooling<br />

89.6<br />

103.4<br />

100<br />

% Flow (LPS)<br />

S<br />

20<br />

(137.9)<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)<br />

Restrictor<br />

Tee<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Direct Acting)


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN00 – VPCF, LPCF, VSCF, LSCF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling Only)<br />

Normally-Open Damper <strong>and</strong> Actuator (Reverse-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased <strong>and</strong> the actuator opens to<br />

increase primary cooling airflow to the space. With a decrease in room temperature, the opposite action occurs<br />

until the damper is fully closed. Upon a continued decrease in zone temperature below setpoint, the parallel fan<br />

is energized.<br />

S<br />

15<br />

(103.4)<br />

20<br />

(137.9)<br />

Actuator<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse-Acting)<br />

100<br />

Position %<br />

20.7<br />

3<br />

Actuator<br />

Air Valve<br />

T-Stat Pressure (kPa)<br />

55.2<br />

62.1<br />

8 9<br />

Fan On<br />

T-Stat Pressure (PSI)<br />

Electric Heater<br />

Terminal Box<br />

Tee<br />

Tee<br />

Fan<br />

P.E.<br />

Switch<br />

(N.O.)<br />

9 PSI<br />

(62.06 kPa)<br />

100<br />

Position %<br />

9 PSI<br />

(62.06 kPa)<br />

Fan P.E.<br />

Switch<br />

(N.O.)<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

Restrictor<br />

Tee<br />

Customer Notes:<br />

1.<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse-Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Factory installed.<br />

Optional or installed by others.<br />

PN00 – VPEF, LPEF, VSEF, LSEF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling Only)<br />

Normally-Open Damper <strong>and</strong> Actuator (Reverse-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased <strong>and</strong> the actuator opens to increase<br />

primary cooling airflow to the space. With a decrease in room temperature, the opposite action occurs until the damper<br />

is fully closed. Upon a continued decrease in zone temperature below setpoint, the parallel fan is energized. If zone<br />

temperature continues to decrease after the fan has been energized, heating stages are energized at the appropriate<br />

pressure settings.<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse-Acting)<br />

100<br />

Position %<br />

20.7<br />

Air Valve<br />

T-Stat Pressure (kPa)<br />

55.2<br />

62.1<br />

69<br />

Fan On<br />

82.7<br />

2nd<br />

96.5<br />

3rd<br />

100<br />

Position %<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse-Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

C 56<br />

3<br />

1st<br />

8 9 10 12<br />

T-Stat Pressure (PSI)<br />

14<br />

Stages of Heat<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN00 – VPWF, LPWF, VSWF, LSWF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling with Hot Water Reheat)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Reverse-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased <strong>and</strong> the actuator opens to increase<br />

primary cooling airflow to the space. With a decrease in room temperature, the opposite action occurs until the damper<br />

is fully closed. Upon a continued decrease in zone temperature below setpoint, the parallel fan is energized. If the zone<br />

temperature continues to decrease after the fan has been energized, heating stages are energized at the appropriate<br />

pressure settings.<br />

100<br />

% Position (Open)<br />

Actuator<br />

20.7<br />

T-Stat Branch Pressure (kPa)<br />

Air Valve<br />

55.2<br />

62.1<br />

69<br />

Fan On<br />

Water<br />

89.6<br />

Valve<br />

103.4<br />

3 8 9 10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

Tee<br />

100<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

Water<br />

Valve<br />

(N.O.)<br />

9 PSI In<br />

B<br />

(62.06 kPa)<br />

M Reversing<br />

Relay 9 PSI Out<br />

S<br />

(62.06 kPa)<br />

Fan<br />

P.E.<br />

Switch<br />

(N.O.)<br />

9 PSI<br />

(62.06 kPa)<br />

Restrictor<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1.<br />

Factory installed.<br />

Optional or installed by others.<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume<br />

regulator, which also received the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The volume regulator outputs<br />

a signal compensated for changing duct pressures to the valve actuator, which opens the damper <strong>and</strong> increases primary<br />

cooling flow to the space. With a decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum<br />

primary airflow settings are maintained by the volume regulator.<br />

S<br />

One Pipe<br />

Remote Mounted<br />

PN05 – VPCF, LPCF - Fan-Powered Terminal Units<br />

S<br />

20<br />

(137.9)<br />

% Position (Open)<br />

Tee<br />

(Normal Operation: Cooling Only)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Reverse-Acting Thermostat)<br />

15<br />

(103.4)<br />

S<br />

20<br />

20<br />

(137.9)<br />

(137.9)<br />

T-Stat<br />

Tee<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

% Flow (CFM)<br />

100<br />

MAX<br />

CFM<br />

M<br />

S<br />

20<br />

(137.9)<br />

20.7<br />

Volume<br />

Regulator<br />

T-Stat Branch Pressure (kPa)<br />

Air Valve<br />

T<br />

55.2<br />

62.1<br />

Fan On<br />

Fan<br />

P.E.<br />

Switch<br />

(N.O.)<br />

9 PSI<br />

(62.06 kPa)<br />

100<br />

MAX<br />

LPS<br />

% Flow (LPS)<br />

Restrictor<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

MIN<br />

CFM<br />

MIN<br />

LPS<br />

Customer Notes:<br />

3<br />

8 9<br />

1. Factory installed.<br />

Optional or installed by others.<br />

T-Stat Branch Pressure (PSI)<br />

<strong>VAV</strong>-PRC008-EN C 57<br />

S<br />

20<br />

(137.9)


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN05 – VPWF, LPWF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling with Hot Water Reheat)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator<br />

(Reverse-Acting Thermostat)<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume regulator, which<br />

also receives the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The volume regulator outputs a signal compensated for<br />

changing duct pressures to the valve actuator, which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a<br />

decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

volume regulator. If the zone temperature continues to decrease after the fan has been energized, heating stages are energized at<br />

the appropriate pressure settings.<br />

% Flow (CFM)<br />

100<br />

MAX<br />

CFM<br />

MIN<br />

CFM<br />

M<br />

S<br />

20<br />

(137.9)<br />

M<br />

20.7<br />

3<br />

Volume<br />

Regulator<br />

T-Stat Branch Pressure (kPa)<br />

Air Valve<br />

55.2<br />

62.1<br />

8 9<br />

T<br />

69<br />

Fan On<br />

Water<br />

Valve<br />

89.6<br />

10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

Volume<br />

Regulator<br />

T<br />

S<br />

20<br />

(137.9)<br />

103.4<br />

B<br />

S<br />

Tee<br />

100<br />

MAX<br />

LPS<br />

MIN<br />

LPS<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

Reversing<br />

Relay<br />

M<br />

Electric Heater<br />

Terminal Box<br />

Tee<br />

Water<br />

Valve<br />

(N.O.)<br />

9 PSI In<br />

(62.06 kPa)<br />

9 PSI Out<br />

(62.06 kPa)<br />

Tee<br />

Fan<br />

P.E.<br />

Switch<br />

(N.O.)<br />

9 PSI<br />

(62.06 kPa)<br />

Restrictor<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

PN05 – VPEF, LPEF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling with Electric Reheat)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator<br />

(Reverse-Acting Thermostat)<br />

% Flow (CFM)<br />

9 PSI<br />

(62.06 kPa)<br />

Fan P.E.<br />

Switch<br />

(N.O.)<br />

15<br />

20 (103.4)<br />

(137.9)<br />

One Pipe Inset<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume regulator, which<br />

also receives the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The volume regulator outputs a signal compensated for<br />

changing duct pressures to the valve actuator, which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a<br />

decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

volume regulator. If the zone temperature continues to decrease after the fan has been energized, heating stages are energized at<br />

the appropriate pressure settings.<br />

15<br />

S<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

S<br />

20<br />

(137.9)<br />

C 58<br />

% Flow (CFM)<br />

S<br />

20<br />

(137.9)<br />

100<br />

MAX<br />

CFM<br />

MIN<br />

CFM<br />

20.7<br />

T-Stat Branch Pressure (kPa)<br />

Air Valve<br />

55.2<br />

62.1<br />

69<br />

Fan On<br />

82.7<br />

1st<br />

2nd<br />

96.5<br />

3 8 9 10 12 14<br />

T-Stat Branch Pressure (PSI)<br />

3rd<br />

100<br />

Tee<br />

MAX<br />

LPS<br />

MIN<br />

LPS<br />

% Flow (LPS)<br />

Stages of Heat<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1.<br />

Factory installed.<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN51 – VSCF, LSCF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling Only - Duct Pressure Switch)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Reverse-Acting Thermostat)<br />

<strong>This</strong> unit is energized by sensing inlet static pressure by the duct pressure switch. The unit fan runs continually during occupied operation.<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume regulator, which<br />

also receives the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The volume regulator outputs a signal compensated for<br />

changing duct pressures to the valve actuator which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a<br />

decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

volume regulator.<br />

T<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

M<br />

Volume<br />

Regulator<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

% Flow (CFM)<br />

100<br />

MAX<br />

CFM<br />

MIN<br />

CFM<br />

S<br />

20<br />

(137.9)<br />

20.7<br />

T-Stat Branch Pressure (kPa)<br />

Occupied<br />

Fan On<br />

Air Valve<br />

55.2<br />

62.1<br />

3<br />

8 9<br />

T-Stat Branch Pressure (PSI)<br />

100<br />

MAX<br />

LPS<br />

MIN<br />

LPS<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

PN51 – VSEF, LSEF - Fan-Powered Terminal Units<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1.<br />

Factory installed.<br />

Optional or installed by others.<br />

(Normal Operation: Cooling with Electric Reheat - Duct Pressure Main)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator (Reverse-Acting Thermostat)<br />

<strong>This</strong> unit is energized by sensing inlet static pressure by the duct pressure switch. The unit fan runs continually during occupied operation.<br />

With an increase in room temperature, the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume regulator, which<br />

also receives the inputs from the high- <strong>and</strong> low-pressure from the flow ring. The volume regulator outputs a signal compensated for<br />

changing duct pressures to the valve actuator which opens the damper <strong>and</strong> increases primary cooling flow to the space. With a<br />

decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings are maintained by the<br />

volume regulator. If the zone temperature continures to decrease after the fan has been energized, heating stages are energized at the<br />

appropriate pressure settings.<br />

% Flow (LPS)<br />

M<br />

Volume<br />

Regulator<br />

T<br />

Electric Heater<br />

Terminal Box<br />

Tee<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

T-Stat Branch Pressure (kPa)<br />

Restrictor<br />

One Pipe<br />

Tee<br />

Remote Mounted<br />

T-Stat<br />

100<br />

Occupied<br />

(Reverse Acting)<br />

Fan On<br />

100<br />

Restricted Leg<br />

MAX<br />

MAX<br />

S<br />

CFM<br />

3rd<br />

(137.9)<br />

One Pipe Inset<br />

LPS<br />

20<br />

2nd<br />

MIN<br />

MIN<br />

CFM<br />

1st<br />

LPS<br />

Customer Notes:<br />

3<br />

8 9 10 12 14<br />

1. Factory installed.<br />

Stages of Heat<br />

T-Stat Branch Pressure (PSI)<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN C 59<br />

% Flow (CFM)<br />

S<br />

20<br />

(137.9)<br />

20.7<br />

Air Valve<br />

55.2<br />

62.1<br />

69<br />

82.7<br />

96.5<br />

% Flow (LPS)


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN51 – VSWF, LSWF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling with Hot Water Reheat - Duct Pressure Switch)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator<br />

(Reverse-Acting Thermostat)<br />

<strong>This</strong> unit is energized by sensing inlet static pressure by the duct pressure switch. The unit fan runs continually during occupied<br />

operation. With an increase in room temperature the thermostat output pressure is decreased. <strong>This</strong> signal is input to the volume<br />

regulator, which also receives the inputs from high- <strong>and</strong> low-pressure from the flow ring. The volume regulator outputs a signal<br />

compensated for changing duct pressures to the valve actuator which opens the damper <strong>and</strong> increases primary cooling flow to<br />

the space. With a decrease in room temperature, the opposite action occurs. Minimum <strong>and</strong> maximum primary airflow settings<br />

are maintained by the volume regulator. If the zone temperature continues to decrease after the fan has been energized, heating<br />

stages are energized at the appropriate pressure settings.<br />

% Flow (CFM)<br />

100<br />

MAX<br />

CFM<br />

MIN<br />

CFM<br />

M<br />

S<br />

20<br />

(137.9)<br />

20.7<br />

3<br />

T-Stat Branch Pressure (kPa)<br />

Occupied<br />

Fan On<br />

Air Valve<br />

Volume<br />

Regulator<br />

55.2<br />

62.1<br />

69<br />

Water<br />

Valve<br />

89.6<br />

103.4<br />

8 9 10 13 15<br />

T-Stat Branch Pressure (PSI)<br />

T<br />

B<br />

M Reversing<br />

Relay<br />

S<br />

Tee<br />

100<br />

MAX<br />

LPS<br />

MIN<br />

LPS<br />

% Flow (LPS)<br />

Water<br />

Valve<br />

(N.O.)<br />

9 PSI In<br />

(62.06 kPa)<br />

9 PSI Out<br />

(62.06 kPa)<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

Restrictor<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

PN52 – VSEF, LSEF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling with Electric Reheat - Duct Pressure Switch)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Regulator<br />

(Reverse-Acting Thermostat)<br />

The unit is energized into occupied status by a setting of main system air pressure to 15 psi (103 kpa). At unoccupied, the main<br />

system air is set to 20 psi (138 kpa). The unit fan cycles on as 1st stage heat when called for by the unit t-stat. Dual setpoint<br />

pneumatic thermostat is suggested for this option. With an increase in room temperature, the thermostat output pressure is<br />

decreased. <strong>This</strong> signal is input to the volume regulator, which also receives the inputs from the high- <strong>and</strong> low-pressure from<br />

the flow ring. The volume regulator outputs a signal compensated for changing duct pressures to the valve actuator, which<br />

opens the damper <strong>and</strong> increases primary cooling flow to the space. With a decrease in room temperature, the opposite action<br />

occurs. If the zone temperature continues to decrease after the fan has been energized, heating stages are energized at the<br />

appropriate pressure settings.<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

9 PSI<br />

(62.06 kPa)<br />

15<br />

S<br />

S<br />

20<br />

(137.9)<br />

20<br />

(103.4)<br />

(137.9)<br />

C 60<br />

% Flow (CFM)<br />

Occupied<br />

Fan On<br />

100<br />

MAX<br />

CFM<br />

MIN<br />

CFM<br />

15<br />

M<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

20.7<br />

T<br />

Volume<br />

Regulator<br />

T-Stat Branch Pressure (kPa)<br />

Air Valve<br />

55.2<br />

62.1<br />

69<br />

82.7<br />

1st<br />

2nd<br />

96.5<br />

3rd<br />

3<br />

8 9 10 12 14<br />

T-Stat Branch Pressure (PSI)<br />

Electric Heater<br />

Terminal Box<br />

Tee<br />

Unoccupied<br />

Fan On<br />

100<br />

MAX<br />

LPS<br />

MIN<br />

LPS<br />

% Flow (LPS)<br />

Stages of Heat<br />

Tee<br />

15<br />

Fan P.E.<br />

Switch-1<br />

(N.O.)<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

Fan P.E.<br />

Swtich-2<br />

(N.C.)<br />

18 PSI<br />

(124.11 kPa)<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Customer Notes:<br />

1.<br />

Factory installed.<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Control<br />

Drawings<br />

PN52 – VSCF, LSCF - Fan-Powered Terminal Units<br />

(Normal Operation: Cooling with Electric Reheat - Dual Pressure Main)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator<br />

(Reverse-Acting Thermostat)<br />

The unit is energized into occupied status by a setting of main system air pressure to 15 psi (103 kpa). At unoccupied, the main<br />

system air is set to 20 psi (138 kpa). The unit fan cycles on as 1st stage heat when called for by the unit's thermostat. Dual<br />

setpoint pneumatic thermostat is suggested for this option. With an increase in room temperature, the thermostat output pressure<br />

is decreased. <strong>This</strong> signal is input to the volume regulator, which also receives the inputs from the high- <strong>and</strong> low-pressure from the<br />

flow ring. The volume regulator outputs a signal compensated for changing duct pressures to the valve actuator which opens the<br />

damper <strong>and</strong> increases primary cooling flow to the space. With a decrease in room temperature, the opposite action occurs. Minimum<br />

<strong>and</strong> maximum primary airflow settings are maintained by the volume regulator.<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

M<br />

Volume<br />

Regulator<br />

T<br />

Tee<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

15<br />

M<br />

100<br />

(103.4)<br />

(137.9)<br />

% Flow (CFM)<br />

% Flow (CFM)<br />

S<br />

20<br />

MAX<br />

CFM<br />

MIN<br />

CFM<br />

100<br />

MAX<br />

CFM<br />

MIN<br />

CFM<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

20.7<br />

20.7<br />

T-Stat Branch Pressure (kPa)<br />

Occupied<br />

Fan On<br />

Air Valve<br />

T<br />

Volume<br />

Regulator<br />

55.2<br />

62.1<br />

Unoccupied<br />

Fan On<br />

3<br />

8 9<br />

T-Stat Branch Pressure (PSI)<br />

Occupied<br />

Fan On<br />

T-Stat Branch Pressure (kPa)<br />

Air Valve<br />

55.2<br />

62.1<br />

69<br />

89.6<br />

Water<br />

Valve<br />

103.4<br />

20<br />

(103.4)<br />

(137.9)<br />

9 PSI<br />

(62.06 kPa)<br />

100<br />

MAX<br />

LPS<br />

MIN<br />

LPS<br />

Tee<br />

Fan<br />

P.E.<br />

Switch-1<br />

(N.O.)<br />

Unoccupied<br />

Fan On<br />

B<br />

M Reversing<br />

Relay<br />

S<br />

MAX<br />

LPS<br />

MIN<br />

LPS<br />

Fan<br />

P.E.<br />

Switch-1<br />

(N.O.)<br />

9 PSI<br />

(62.06 kPa)<br />

Fan P.E.<br />

Swtich-2<br />

(N.C.)<br />

18 PSI<br />

(124.11 kPa)<br />

Restrictor<br />

Tee<br />

PN52 – VSWF, LSWF - Fan-Powered Terminal Units<br />

15<br />

S<br />

% Flow (LPS)<br />

% Flow (LPS)<br />

Restricted Leg<br />

Customer Notes:<br />

1. Factory installed.<br />

Optional or installed by others.<br />

Customer Notes:<br />

3 8 9 10 13 15<br />

1.<br />

Factory installed.<br />

T-Stat Branch Pressure (PSI)<br />

Optional or installed by others.<br />

<strong>VAV</strong>-PRC008-EN C 61<br />

Water<br />

Valve<br />

(N.O.)<br />

9 PSI In<br />

(62.06 kPa)<br />

9 PSI Out<br />

(62.06 kPa)<br />

Tee<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

3-8 PSI<br />

(20.69 - 55.16 kPa)<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

15<br />

S<br />

20<br />

(103.4)<br />

(137.9)<br />

S<br />

137.9<br />

(20)<br />

Fan P.E.<br />

Swtich-2<br />

(N.C.)<br />

Restrictor<br />

Tee<br />

S<br />

20<br />

(137.9)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

One Pipe Inset<br />

(Normal Operation: Cooling with Electric Reheat - Dual Pressure Main)<br />

Normally-Open Damper, Actuator, <strong>and</strong> 3011 Pneumatic Volume Regulator<br />

(Reverse-Acting Thermostat)<br />

The unit is energized into occupied status by a setting of main system air pressure to 15 psi (103 kpa). At unoccupied, the main<br />

system air is set to 20 psi (138 kpa). The unit fan cycles on as 1st stage heat when called for by the unit's thermostat. Dual<br />

setpoint pneumatic thermostat is suggested for this option. With an increase in room temperature, the thermostat output pressure<br />

is decreased. <strong>This</strong> signal is input to the volume regulator, which also receives the inputs from the high- <strong>and</strong> low-pressure from the<br />

flow ring. The volume regulator outputs a signal compensated for changing duct pressures to the valve actuator which opens the<br />

damper <strong>and</strong> increases primary cooling flow to the space. With a decrease in room temperature, the opposite action occurs. If the<br />

zone temperature continues to decrease after the fan has energized, heating stages are energized at the appropriate pressure settings.<br />

Two Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

18 PSI<br />

(124.11 kPa)<br />

One Pipe<br />

Remote Mounted<br />

T-Stat<br />

(Reverse Acting)<br />

Restricted Leg<br />

One Pipe Inset


<strong>Controls</strong>—<br />

Pneumatic<br />

Accessories<br />

3011 Pneumatic Volume<br />

Regulator<br />

3501 Pneumatic Volume<br />

Regulator<br />

The pneumatic volume regulator (PVR)<br />

is a controller that provides a consistent<br />

airflow to the space, regardless of<br />

varying inlet duct pressure conditions, in<br />

response to a pneumatic thermostat<br />

signal. The controller maintains<br />

minimum <strong>and</strong> maximum airflow<br />

setpoints. The 3011 PVR can be set to<br />

control either normally open or<br />

normally-closed air valve actuators <strong>and</strong><br />

can be calibrated to accept either directacting<br />

or reverse-acting thermostat<br />

signals. Fixed reset control of maximum<br />

<strong>and</strong> minimum airflow setpoints is<br />

provided.<br />

SPECIFICATIONS<br />

Differential Pressure Range:<br />

0-1 in. wg (0–249 Pa)<br />

Minimum Setpoint Range<br />

0-1 in. wg (0–249 Pa)<br />

Maximum Setpoint Range:<br />

0.05 in. wg (12.5 Pa) above minimum to<br />

1 in. wg (249 Pa) above minimum<br />

Operating Static Pressure Range:<br />

0.25 in. wg—6.0 in. wg (62.3–1494 Pa)<br />

Reset Pressure Span:<br />

Factory-set at 5 psig (34.5 kPa)<br />

Field-adjustable from 0 to 10 psig<br />

(0 to 68.9 kPa)<br />

Reset Start Point:<br />

Field-adjustable from 0 to 10 psig<br />

(0 to 68.9 kPa)<br />

Main Air Pressure:<br />

15 to 30 psig (103 to 207 kPa)<br />

Air Consumption:<br />

28.8 scim (0.472 L/m) at 20 psig (138 kPa)<br />

main air pressure<br />

Operating Environment:<br />

40 to 120ºF (4 to 49°C)<br />

Storage Environment:<br />

-40 to 140ºF (-40 to 60°C)<br />

Output Sensitivity:<br />

5 psig/0.02 in. wg (34.5 kPa/5.0 Pa)<br />

Physical Dimensions:<br />

Width:<br />

4.5" (114.3 mm)<br />

Length:<br />

2.3" (58.4 mm)<br />

Height:<br />

3.87" (98.3 mm)<br />

Weight: 11 oz (312 g)<br />

Tubing Connections:<br />

1/4" O.D. tubing connections<br />

The 3501 PVR can be set to control either<br />

normally open or normally-closed air<br />

valve actuators <strong>and</strong> can be calibrated to<br />

accept either direct-acting or reverseacting<br />

thermostat signals. Fixed reset<br />

control of maximum <strong>and</strong> minimum<br />

airflow setpoints is provided. The<br />

controller is used primarily in dual-duct<br />

constant-volume applications because of<br />

its linear output response characteristics.<br />

The controller resets the primary air<br />

velocity linearly with a change in<br />

thermostat pressure. <strong>This</strong> is in contrast to<br />

the 3011 PVR, which resets velocity<br />

pressure with a change in thermostat<br />

pressure. <strong>This</strong> allows the 3501 PVR to<br />

have improved stability at low flows.<br />

SPECIFICATIONS<br />

Differential Pressure Range:<br />

0–1.0 in. wg (0–249 Pa)<br />

Minimum Setpoint Range:<br />

0–1.0 in. wg (0–249 Pa)<br />

Maximum Setpoint Range:<br />

Minimum to 1.0 in. wg (249 Pa)<br />

Operating Static Pressure Range:<br />

0.25–6.0 in. wg (62.3–1494 Pa)<br />

Reset Pressure Span:<br />

Factory-set at 5 psig (34.5 kPa)<br />

Field-adjustable from 0 to 7 psig<br />

(0 to 48.3 kPa)<br />

Reset Start Point:<br />

Factory-set at 8 psig (55.2 kPa)<br />

Field-adjustable from 0 to 10 psig<br />

(0 to 68.9 kPa)<br />

Main Air Pressure:<br />

15–30 psig (103 to 207 kPa)<br />

Air Consumption:<br />

43.2 scim (0.708 L/m) at 20 psig (138 kPa)<br />

main air pressure<br />

Operating Environment:<br />

40 to 120ºF (4 to 49°C)<br />

Storage Environment:<br />

-40 to 140ºF (-40 to 60°C)<br />

Output Sensitivity:<br />

5 psig/ 0.02 in. wg (34.5 kPa/ 5.0 Pa)<br />

Physical Dimensions:<br />

Width:<br />

4.5" (114.3 mm)<br />

Length:<br />

3.87" (98.3 mm)<br />

Height:<br />

4.1" (104.1 mm)<br />

Weight: 12 oz (340 g)<br />

C 62<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong>—<br />

Pneumatic<br />

Accessories<br />

Pneumatic Damper Actuator<br />

Reversing Relay<br />

Signal Limiter<br />

The pneumatic actuator is designed for<br />

use on <strong>VAV</strong> terminal units in HVAC<br />

systems. The damper actuator mounts<br />

to a st<strong>and</strong>ard ½" diameter shaft by a<br />

pin <strong>and</strong> cross hold arrangement,<br />

retaining clip, <strong>and</strong> non-rotation bracket.<br />

Two model actuators are offered with<br />

spring ranges of 3–8 psi or 8–13 psi.<br />

SPECIFICATIONS<br />

Effective Area:<br />

8 sq inches (51.6 sq cm)<br />

Normal Rotation:<br />

100 degrees<br />

Spring Ranges:<br />

Model 3631–5000<br />

Model 3631–8000<br />

8-13 psi<br />

(55.2–89.6 kPa)<br />

3-8 psi<br />

(20.7–55.2 kPa)<br />

Supply Connection:<br />

3/16" (4.8 mm) nipple for ¼" (6.4 mm)<br />

O.D. tubing<br />

Weight:<br />

1.5 lbs (680 g)<br />

Ambient Limits:<br />

Operating:-20 to 120°F<br />

(-28.889 to 48.889°C)<br />

Shipping:-40 to 140°F (-40 to 60°C)<br />

Tubing Connections:<br />

1/4" O.D. tubing connections<br />

The pneumatic reversing relay is a<br />

proportional device that reverses the<br />

action of the input signal. It is used to<br />

change a direct-acting signal into a<br />

reverse-acting signal or to change a<br />

reverse-acting signal into a directacting<br />

signal. <strong>This</strong> relay is used to<br />

match the operating pressure range of<br />

controlled devices (valves, pressure<br />

switches, etc.) to the output pressure<br />

range of a controller (such as a<br />

thermostat). The output response will<br />

always remain in 1:1 proportion to the<br />

input signal, but the relay includes the<br />

capability to bias the output signal.<br />

SPECIFICATIONS<br />

Factory Setting:<br />

Contingent upon the selected<br />

control option<br />

Generally set for 8 psig in. = 8 psig out<br />

or 9 psig in=9 psig out (55.2 kPa in. =<br />

55.2 kPa out or 62.1 kPa in. =<br />

62.1 kPa out)<br />

Bias Adjustment:<br />

+/- 15 psig (103 kPa)<br />

Main Air Pressure:<br />

15-30 psig (103–207 kPa)<br />

Air Consumption:<br />

18 scim (0.295 L/m) at 20 psig (138 kPa)<br />

main air pressure<br />

Operating Environment:<br />

40 to 120ºF (4°C to 49°C)<br />

Storage Environment:<br />

-40 to 140ºF (-40 to 60°C)<br />

Physical Dimensions:<br />

Width:<br />

1.5" (38.1 mm)<br />

Length:<br />

1.5" (38.1 mm)<br />

Height:<br />

2.5" (63.5 mm)<br />

Tubing Connections:<br />

3/16" (4.8 mm) nipples for 1/4"<br />

(6.4 mm) polyethylene tubing<br />

The pneumatic signal limiter is a<br />

pressure limiting type device. The output<br />

pressure from the signal limiter is not<br />

allowed to rise above the signal limiter’s<br />

setting. Adjustments to the output<br />

pressure setting are made via a screw on<br />

the back side of the valve.<br />

SPECIFICATIONS<br />

Factory Setting:<br />

Maximum output = 8 psig (55.2 kPa)<br />

Adjustable from 2–12 psig (13.8–82.7 kPa)<br />

Main Air Pressure:<br />

Nominal 20 psig (138 kPa) 22 psig<br />

(152 kPa) maximum acceptable pressure<br />

Air Consumption:<br />

10 scim (0.164 L/m) at 20 psig (138 kPa)<br />

main air pressure<br />

Operating Environment:<br />

50 to 120ºF (10 to 48.89°C)<br />

Physical Dimensions:<br />

Width:<br />

1.1" (27.94 mm)<br />

Length:<br />

0.9" (22.86 mm)<br />

Height:<br />

0.9" (22.86 mm)<br />

Tubing Connections:<br />

9/100" (2.3 mm) nipples<br />

<strong>VAV</strong>-PRC008-EN C 63


<strong>Controls</strong><br />

Specifications<br />

For all <strong>VariTrane</strong> units, the unit<br />

controller continuously monitors the<br />

zone temperature <strong>and</strong> varies the<br />

primary airflow as required to meet<br />

zone setpoints. Airflow is limited by<br />

adjustable minimum <strong>and</strong> maximum<br />

setpoints.<br />

Additionally, for series fan-powered<br />

units, the controller will start <strong>and</strong> run the<br />

fan continuously during the occupied<br />

mode <strong>and</strong> intermittently during the<br />

unoccupied mode. Upon a further call<br />

for heat, any hot water or electric heat<br />

associated with the unit is enabled.<br />

For parallel fan-powered units, the<br />

controller energizes the fan upon a call<br />

for heat. Upon a further call for heat,<br />

reheat is enabled.<br />

FAN SPEED CONTROL<br />

Variable Speed Control Switch<br />

(SCR)—The SCR speed control device<br />

is st<strong>and</strong>ard on all fan-powered units.<br />

The SCR adjusts the fanspeed <strong>and</strong><br />

provides simplified system balancing.<br />

DIRECT DIGITAL CONTROLS (DDC)<br />

LonMark Direct Digital Controller—<br />

Trane-designed LonMark certified<br />

controller uses the space comfort<br />

control (SCC) profile to exchange<br />

information over a LonTalk Network.<br />

LonMark networks provide the latest<br />

open protocol technology<br />

Direct Digital Controller—The<br />

microprocessor-based terminal<br />

unit controller provides accurate,<br />

pressure-independent control through<br />

the use of a proportional integral control<br />

algorithm <strong>and</strong> direct digital control<br />

technology. The UCM, monitors zone<br />

temperature setpoints, zone<br />

temperature, the rate of temperature<br />

change, <strong>and</strong> valve airflow. With the<br />

addition of optional sensors, room<br />

occupancy or supply duct air<br />

temperature can be monitored. The<br />

controller is provided in an enclosure<br />

with 7/8" (22 mm) knockouts for remote<br />

control wiring. A Trane DDC zone sensor<br />

is required.<br />

DDC Actuator—Trane 3-wire, 18-<br />

gage, 24-VAC, floating-point control<br />

actuator with linkage release button.<br />

Torque is 35 in.-lb minimum <strong>and</strong> is<br />

non-spring return with a 90-second<br />

drive time. Travel is terminated by end<br />

stops at fully opened <strong>and</strong> closed<br />

positions. An integral magnetic clutch<br />

eliminates motor stall.<br />

DDC Zone Sensor—The UCM<br />

controller measures zone temperature<br />

through a sensing element located in<br />

the zone sensor. Other zone sensor<br />

C 64<br />

options may include an externallyadjustable<br />

setpoint, communications<br />

jack for use with a portable service tool,<br />

<strong>and</strong> an override button to change the<br />

individual controller from unoccupied to<br />

occupied mode. The override button has<br />

a cancel feature that will return the<br />

system to unoccupied. Wired zone<br />

sensors utilize a thermistor to vary the<br />

voltage output in response to changes<br />

in the zone temperature. Wiring to the<br />

UCM controller must be 18 to 22 awg.<br />

twisted pair wiring. The setpoint<br />

adjustment range is 50–88ºF (10–31°C)<br />

Depending upon the features available<br />

in the model of sensor selected, the<br />

zone sensor may require from a 2-wire<br />

to a 7-wire connection. Wireless zone<br />

sensors report the same zone<br />

information as wired zone sensors, but<br />

do so using radio transmitter<br />

technology. No wiring from the zone<br />

sensor to the UCM controller is<br />

necessary.<br />

Digital Display Zone Sensor with<br />

Liquid Crystal Display (LCD)—<br />

The direct digital zone sensor contains a<br />

sensing element which sends a signal to<br />

the UCM. A Liquid Crystal Display (LCD)<br />

indicates setpoint, or space<br />

temperature. Sensor buttons allow<br />

setpoint adjust, <strong>and</strong> allow space<br />

temperature readings to be turned on or<br />

off. The digital display zone sensor also<br />

includes a communication jack, for use<br />

with a portable edit device, <strong>and</strong> an<br />

override button to change the UCM<br />

from unoccupied to occupied. The<br />

override button has a cancel feature,<br />

which returns the system to unoccupied<br />

mode.<br />

The digital display zone sensor requires<br />

seven wires, one for 24-VAC power.<br />

System Communications—The<br />

Controller UCM sends <strong>and</strong> receives data<br />

from a Tracer Summit or other Trane<br />

Controller. Current unit status <strong>and</strong><br />

setpoints may be monitored <strong>and</strong>/or<br />

edited via this data communication<br />

feature. The network type is a twisted<br />

wire pair shielded serial<br />

communication.<br />

The following direct digital control<br />

features are available with <strong>VariTrane</strong><br />

terminal units:<br />

• <strong>Controls</strong> Option – DD00: Trane actuator<br />

for field-installed DDC controllers<br />

• <strong>Controls</strong> Option – DD01: Cooling Only<br />

(DDC/UCM)<br />

• <strong>Controls</strong> Option – DD02: Cooling with<br />

Normally-Closed On/Off hot water valve<br />

(Normally-Open outputs) (DDC/UCM)<br />

• <strong>Controls</strong> Option – DD03: Cooling with<br />

proportional hot water valve with<br />

optional spare On/Off Output)<br />

(DDC/UCM)<br />

• <strong>Controls</strong> Option – DD04: Cooling with<br />

staged On/Off electric heat (DDC/UCM)<br />

• <strong>Controls</strong> Option – DD05: Cooling with<br />

pulse-width modulation electric heat<br />

(DDC/UCM)<br />

• <strong>Controls</strong> Option – DD07: Cooling with<br />

Normally-Open On/Off hot water valve<br />

(Normally-Closed outputs) (DDC/UCM)<br />

• <strong>Controls</strong> Option – DD08: Cooling <strong>and</strong><br />

Heating - Dual-Duct Constant Volume<br />

(DDC/UCM)<br />

• <strong>Controls</strong> Option – FM00: Factory<br />

installation of customer supplied<br />

actuator <strong>and</strong> DDC controls. <strong>Controls</strong><br />

supplier is responsible for providing<br />

factory-installation <strong>and</strong> wiring<br />

instructions.<br />

• <strong>Controls</strong> Option – FM01: Trane actuator<br />

with factory installation of customer<br />

supplied DDC controls. <strong>Controls</strong> supplier<br />

is responsible for installing <strong>and</strong> wiring<br />

instructions.<br />

• <strong>Controls</strong> Option – ENON: Shaft only for<br />

field-installation of customer-supplied<br />

actuator <strong>and</strong> controls.<br />

The following override comm<strong>and</strong>s may<br />

be received by the Unit Control Module<br />

(UCM) from the Tracer Summit or other<br />

Trane Controllers.<br />

• Control Mode – The UCM Control Mode<br />

may be edited from occupied to<br />

unoccupied to accommodate night<br />

setback/setup.<br />

• Control Action –The Control Action may<br />

be edited from cooling to heating,<br />

changing the primary air damper to a<br />

heating source. <strong>This</strong> will accommodate<br />

a cooling/heating changeover system.<br />

• Control Offset – Enabling Control Offset<br />

will increase the cooling temperature<br />

setpoint <strong>and</strong> decrease the heating<br />

temperature setpoint by a control-offset<br />

value (Stored at limiting in the<br />

occupied mode).<br />

• Drive damper fully open<br />

• Drive damper fully closed<br />

• Drive damper to maximum airflow<br />

setpoint<br />

• Drive damper to minimum airflow<br />

setpoint<br />

• Disable unit heat<br />

• Reset-Enabling the reset function forces<br />

the controller <strong>and</strong> the flow sensor to<br />

recalibrate<br />

• Programmable hot water valve<br />

drive time<br />

• Programmable air damper drive time<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong><br />

Specifications<br />

The following unit setpoints reside in • Cooling setpoint high limit.<br />

to the <strong>VAV</strong> unit circuit board are made<br />

the UCM in nonvolatile memory. These • Local heating flow setpoint enable/ using st<strong>and</strong>ard three-conductor<br />

setpoints are editable from the Tracer disable <strong>and</strong> setpoint.<br />

thermostat wire. The setpoint<br />

via the communications link.<br />

• Auxiliary analog input mode select for<br />

adjustment range is 63–85ºF. (17–29°C)<br />

• Occupied cooling temperature setpoint either auxiliary temperature sensor or<br />

The sensor is available in two models.<br />

(60–80ºF (15–26°C))<br />

CO 2<br />

detector.<br />

One model has a concealed, internallyadjustable<br />

setpoint. The other model<br />

• Occupied heating temperature setpoint • Binary input mode select for either<br />

(60–80ºF (15–26°C))<br />

has an externally-adjustable setpoint.<br />

generic or occupancy detector.<br />

• Unoccupied cooling temperature<br />

The following analog electronic control<br />

In addition to the above setpoints, the<br />

setpoint (60–100ºF (15–37°C))<br />

features are available with <strong>VariTrane</strong><br />

following status information can be<br />

terminal units:<br />

• Unoccupied heating temperature<br />

transmitted to the Tracer Summit or<br />

setpoint (30–100ºF (15–37°C))<br />

other Trane Controllers.<br />

• <strong>Controls</strong> Option—EI05: Cooling with<br />

remote or unit installed reheat<br />

• Minimum cooling flow setpoint<br />

• Active cooling temperature setpoint<br />

(0, 10–110% of unit equivalent<br />

• <strong>Controls</strong> Option—EI28: Cooling with<br />

• Active heating temperature setpoint<br />

nominal airflow)<br />

remote or unit-installed reheat–Auto<br />

• Current unit primary airflow<br />

Dual Minimum<br />

• Minimum heating flow setpoint<br />

• Current zone temperature<br />

(0, 10–110% of unit equivalent<br />

• <strong>Controls</strong> Option—EI29: Cooling with<br />

nominal airflow)<br />

• Re-heat status (On/Off)<br />

remote or unit-installed reheat–<br />

• Maximum flow setpoint (0, 50–100% of • Auxiliary Air Temperature – Available Constant-Volume<br />

unit equivalent nominal airflow)<br />

only if the unit has an auxiliary<br />

• <strong>Controls</strong> Option–EI71: Cooling with<br />

temperature sensor.<br />

remote or unit-installed reheat–Duct<br />

• Fan Control Offset – <strong>This</strong> determines at<br />

what operating point the fan in a • Failure Indicators – The UCM will<br />

Pressure Switch<br />

parallel fan-powered unit is energized. indicate the following:<br />

• <strong>Controls</strong> Option—ENON: Shaft only for<br />

<strong>This</strong> can be specified as a function of Temperature Sensor Failure<br />

field-installation of actuator <strong>and</strong> DDC<br />

temperature, degrees above heating Flow Sensor Failure<br />

controls<br />

setpoint, or primary airflow (0–10°F<br />

Local Zone Sensor Setpoint Failure PNEUMATIC CONTROLS<br />

(-17–12°C) or 0,10–100% of unit<br />

• Ventilation Ratio<br />

Normally-Open Actuator—<br />

equivalent nominal airflow).<br />

• Fan Status (on/off)<br />

Pneumatic 3 to 8 psig (20 to 55 kPa)<br />

• Heating Setpoint Offset – <strong>This</strong><br />

• Calibration Status (calibration/notcalibrating)<br />

Normally-Closed Actuator—<br />

spring-range pneumatic actuator.<br />

determines at what point the first stage<br />

of reheat turns on. Expressed in • BIP state<br />

Pneumatic 8 to 13 psig (55 to 90 kPa)<br />

degrees below cooling setpoint. (Only<br />

• CO<br />

applicable when local thumbwheel<br />

2<br />

Concentration—Available only if spring-range pneumatic actuator.<br />

the unit has an auxiliary CO<br />

is enabled.)<br />

2<br />

sensor. 3011 Pneumatic Volume Regulator<br />

<strong>This</strong> mode <strong>and</strong> auxiliary air<br />

(PVR)—The regulator is a thermostat<br />

• Zone temperature, auxiliary<br />

temperature are mutually exclusive. reset velocity controller, which<br />

temperature, <strong>and</strong> zone setpoint<br />

calibration corrections (adjustable from<br />

ANALOG (Non-Communicating)<br />

provides consistent air delivery within<br />

5% of cataloged flow down to 15% of<br />

+/-10.0ºF (+/- -12°C)).<br />

Analog Controller—The controller unit cataloged cfm, independent of<br />

• Flow measurement calibration<br />

consists of a circuit board that offers changes in system static pressure.<br />

correction (50–150%)<br />

basic <strong>VAV</strong> unit operation <strong>and</strong> additional Factory-calibrated, field-adjustable<br />

override functions <strong>and</strong> operates using<br />

• Cooling Setpoint Low Limit – Applies<br />

setpoints for minimum <strong>and</strong> maximum<br />

24-VAC power. The controller uses a<br />

low limit to programmed occupied<br />

flows. Average total unit bleed rate,<br />

capacitive type pressure transducer to<br />

cooling setpoint or zone sensor cooling<br />

excluding thermostat, is 28.8 scim at<br />

maintain consistent air delivery<br />

setpoint (30–100°F (-1–37°C)).<br />

20 psig (7.87 ml/min at 138 kPa) supply.<br />

regardless of system pressure changes<br />

• Heating Setpoint High Limit – Applies<br />

3501 Pneumatic Volume Regulator<br />

in an enclosure with 7/8" (22 mm)<br />

high limit to programmed occupied<br />

(PVR) —The 3501 regulator is a linearreset<br />

volume controller. <strong>This</strong> PVR is<br />

knockouts for remote control wiring.<br />

heating setpoint or zone sensor<br />

A Trane electronic zone sensor is<br />

heating setpoint (30–100ºF (-1–37°C)).<br />

used to maintain a constant volume of<br />

required.<br />

• RTD / Thermistor – Determines what<br />

airflow from the dual-duct unit when<br />

Analog Actuator—A Trane 3-wire,<br />

type of zone temperature sensor will<br />

constant volume control is used.<br />

18-gage, 24-VAC, floating-point control<br />

be used.<br />

Average total unit bleed rate, excluding<br />

actuator with linkage release button. thermostat, is 43.2 scim at 20 psig<br />

• Occupied <strong>and</strong> Unoccupied Outside Air Torque is 35 in.-lb minimum <strong>and</strong> is (11.8 mL/min at 138 kPa) supply.<br />

Requirements – Determines the<br />

non-spring return with a 90-second<br />

percent of outdoor air required in the<br />

Considerations for Pneumatic<br />

drive time. Travel is terminated by end<br />

zone for air quality requirements.<br />

Thermostat—Field-supplied <strong>and</strong><br />

stops at fully-opened <strong>and</strong> -closed<br />

-installed based on chosen control<br />

• Series Fan Configuration – allows<br />

positions. An integral magnetic clutch<br />

options, a direct-acting or a reverseacting,<br />

one-pipe or two-pipe<br />

option of series fan-powered box to eliminates motor stall.<br />

shut off fan <strong>and</strong> close air valve when Analog Thermostat—<strong>This</strong> singletemperature,<br />

wall-mounted electronic control the available air valve, reheat<br />

pneumatic room thermostat will<br />

unit is unoccupied. Fan will operate in<br />

unoccupied mode if reheat is active. device utilizes a thermistor to vary the <strong>and</strong> fan switch to maintain room<br />

• Heating setpoint low limit.<br />

voltage output in response to changes temperature setpoint.<br />

in the zone temperature. Connections<br />

<strong>VAV</strong>-PRC008-EN C 65


<strong>Controls</strong><br />

Specifications<br />

The following pneumatic control<br />

features are available with <strong>VariTrane</strong><br />

terminal units:<br />

• <strong>Controls</strong> Option – PN00: Cooling with<br />

Normally-Open damper <strong>and</strong> actuator<br />

only (Reverse-Acting Thermostat)<br />

• <strong>Controls</strong> Option – PN04: Cooling with<br />

hot water reheat, Normally-Open<br />

damper, 3011 PVR (Direct-Acting<br />

Thermostat)<br />

• <strong>Controls</strong> Option – PN05: Cooling with<br />

electric reheat, Normally-Open<br />

damper, 3011 PVR (Reverse-Acting<br />

Thermostat)<br />

• <strong>Controls</strong> Option – PN08: Cooling <strong>and</strong><br />

Heating, Normally-Open dampers,<br />

actuators only (Reverse-Acting<br />

Thermostat)<br />

• <strong>Controls</strong> Option – PN09: Cooling <strong>and</strong><br />

Heating, Normally-Open dampers,<br />

3011 PVR’s (Direct-Acting Thermostat)<br />

• <strong>Controls</strong> Option – PN10: Cooling <strong>and</strong><br />

Heating, Normally-Open dampers,<br />

3501 PVR’s, Dual-Duct Constant Volume<br />

(Direct-Acting Thermostat)<br />

• <strong>Controls</strong> Option – PN11: Cooling with<br />

hot water reheat, Normally-Open<br />

damper, 3011 PVR - Auto Dual<br />

Minimum (Direct-Acting Thermostat)<br />

(N.O. Water Valve)<br />

• <strong>Controls</strong> Option – PN32: Cooling with<br />

hot water reheat, Normally-Open<br />

damper, 3011 PVR - Constant Volume<br />

(Direct-Acting Thermostat)<br />

• <strong>Controls</strong> Option – PN34: Cooling with<br />

electric reheat, Normally-Open<br />

damper, 3011 PVR - Constant Volume<br />

(Reverse-Acting Thermostat)<br />

• <strong>Controls</strong> Option – PN51: Cooling with<br />

reheat, Normally-Open damper, 3011<br />

PVR Duct Pressure Switch (Reverse-<br />

Acting Thermostat)<br />

• <strong>Controls</strong> Option – PN52: Cooling with<br />

reheat, Normally-Open damper, 3011<br />

PVR - Dual Pressure Minimum<br />

(Reverse-Acting Thermostat)<br />

• <strong>Controls</strong> Option – PC00: Cooling Only<br />

with Normally-Closed damper - Direct-<br />

Acting Thermostat<br />

• <strong>Controls</strong> Option – PC03: Cooling <strong>and</strong><br />

Heating, Normally-Closed heating<br />

damper, Normally-Open cooling<br />

damper, actuators only - Direct-Acting<br />

Thermostat<br />

• <strong>Controls</strong> Option – PC04: Cooling with<br />

hot water reheat, Normally-Closed<br />

damper, 3011 PVR - Direct-Acting<br />

Thermostat<br />

• <strong>Controls</strong> Option – PC05: Cooling with<br />

electric reheat, Normally-Closed<br />

damper, 3011 PVR - Reverse-Acting<br />

Thermostat<br />

OPTIONS<br />

Power Fuse (cooling only <strong>and</strong> hot<br />

water units, <strong>and</strong> VDDF)—An optional<br />

fuse is factory-installed in the primary<br />

voltage hot leg.<br />

Transformer (St<strong>and</strong>ard on fanpowered,<br />

optional on VCCF, VCWF,<br />

VDDF)—The 50-VA transformer is<br />

factory-wired <strong>and</strong> installed in an<br />

enclosure with 7/8" (22 mm) knockouts<br />

to provide 24 VAC for controls.<br />

Wireless Zone Sensor/Receiver—<br />

Factory mounted Receiver with field<br />

mounted Sensor accessory elimintes<br />

the need for the wiring between the<br />

zone sensor <strong>and</strong> unit level controller.<br />

See specifications on Page C67.<br />

Disconnect Switch (Optional on<br />

VCCF, VCWF, VDDF)—Disengages<br />

power.<br />

HOT WATER VALVES<br />

Two-Position Valve—The valve is a<br />

field-adaptable for 2-way or 3-way<br />

piping arrangements. All connections<br />

are National Pipe Thread (NPT). The<br />

valve body is forged brass with a<br />

stainless steel stem <strong>and</strong> spring. Upon<br />

dem<strong>and</strong>, the motor strokes the valve.<br />

When the actuator drive stops, a spring<br />

returns the valve to its fail-safe position.<br />

Flow Capacity – 1.17 Cv,<br />

Overall Diameter – ½" NPT<br />

Close-Off Pressure – 30 psi (207kPa)<br />

Flow Capacity – 3.0 Cv,<br />

Overall Diameter – 3/4" NPT<br />

Close-Off Pressure – 14.5 psi (100kPa)<br />

Flow Capacity – 6.4 Cv<br />

Overall Diameter – 1" NPT<br />

Close Off Pressure – 9 psi (62kPa)<br />

Maximum Operating Fluid<br />

Temperature – 203 o F (95 o C)<br />

Maximum System Pressure – 300 psi<br />

(2067kPa)<br />

Maximum Static Pressure – 300 psi<br />

(2067kPa)<br />

Electrical Rating – 7 VA at 24 VAC, 6.5<br />

Watts, 50/60Hz<br />

8 feet (2.44 m) of plenum rated wire<br />

lead is provided with each valve.<br />

Proportional Water Valve—The<br />

valve is a field-adaptable for 2-way or<br />

3-way piping arrangement. The valve is<br />

designed with an equal percentage<br />

plug. The intended fluid is water or<br />

water <strong>and</strong> glycol (50% maximum<br />

glycol). The actuator is a synchronous<br />

motor drive. The valve is driven to a<br />

predetermined position by the UCM<br />

controller using a proportional plus<br />

integral control algorithm. If power is<br />

removed, the valve stays in its last<br />

position. The actuator is rated for<br />

plenum applications under UL 94-5V<br />

<strong>and</strong> UL 873 st<strong>and</strong>ards.<br />

Pressure <strong>and</strong> Temperature Ratings –<br />

The valve is designed <strong>and</strong> tested in full<br />

compliance with ANSI B16.15 Class<br />

250 pressure/temperature ratings,<br />

ANSI B16.104 Class IV control shutoff<br />

leakage, <strong>and</strong> ISA S75.11 flow<br />

characteristic st<strong>and</strong>ards.<br />

Flow Capacity – 7.30 Cv, 4.60 Cv, 1.80<br />

Cv, <strong>and</strong> 0.79 Cv<br />

Overall Diameter – ½" NPT, ¾" NPT<br />

(7.30 Cv)<br />

Maximum Allowable Pressure – 345 psi<br />

(2415 kPa)<br />

Maximum Operating Fluid<br />

Temperature – 281 o F (138 o C)<br />

Maximum Close-Off Pressure – 55 psi<br />

(379 kPa)<br />

Electrical Rating – 4 VA at 24 VAC<br />

10 feet (3.05 m) of plenum rated<br />

22-gage wire for connection.<br />

Terminations are #6 stabs.<br />

DDC RETROFIT KIT (VRTO)<br />

The kit consists of a Trane DDC Unit<br />

Control Module (UCM) <strong>VAV</strong> terminal<br />

unit controller <strong>and</strong> a pressure<br />

transducer installed in a metal<br />

enclosure. The mechanical<br />

specifications of accessories such as<br />

DDC zone sensors, hot water valves,<br />

<strong>and</strong> transformers are found elsewhere<br />

in this section.<br />

C 66<br />

<strong>VAV</strong>-PRC008-EN


<strong>Controls</strong><br />

Specifications<br />

RETROFIT KIT OPTIONS<br />

Flow Bar Sensor—The flow bar<br />

sensor is a multiple-point, averaging,<br />

pitot tube type flow sensor. It is<br />

intended for field installation on<br />

terminal units that have no flow<br />

measurement device. The total <strong>and</strong><br />

static pressure outputs of the sensor<br />

are field-piped to the high <strong>and</strong> low<br />

inputs of the pressure transducer in the<br />

retrofit kit.<br />

Retrofit Kit Actuator—The electric<br />

actuator is a direct-coupled type<br />

actuator that utilizes three-wire,<br />

floating-point control. The actuator is<br />

field-installed to the damper shaft <strong>and</strong><br />

field-wired to the controller.<br />

Trane Actuator – Actuator is rated at<br />

4 VA at 24 VAC. Drive time is 90<br />

seconds with 35 in.-lb (4 N-m).<br />

Retrofit Actuator – Actuator is rated at<br />

3 VA at 24 VAC. Drive time is 80 to 110<br />

seconds for 0 to 35 in.-lb (0 to 4 N-m).<br />

Other options available:<br />

• DDC Zone Sensors<br />

• 2-Position & Modulating Water Valves<br />

• Control Transformer (Ships loose with<br />

mounting plate for 4x4 junction box)<br />

• Auxiliary Temperature Sensor<br />

• Zone Occupancy Sensors<br />

• Co2 Sensors (Room- or duct-mounted)<br />

Wireless Zone Sensor Specifications<br />

Sensor Operating Temperature<br />

32 to 122°F (0 to 50°C)<br />

Receiver Operating Temperature<br />

-40 to 158°F (-4 to 70°C)<br />

Storage Temperature<br />

-40 to 185°F (-4 to 85°C)<br />

Storage <strong>and</strong> Operating Humidity Range<br />

5% to 95%, non-condensing<br />

0.5°F over a range of 55 to 85°F (12.8 to<br />

Accuracy<br />

29.4°C)<br />

±0.125°F over a range of 60 to 80°F<br />

(15.56 to 26.67°C) ±0.25°F when outside<br />

Resolution<br />

this range<br />

Setpoint Functional Range<br />

-45 to 95°F (7.22 to 35°C)<br />

50 to 85°F (stamped every 5°F) <strong>and</strong> *,**<br />

Setpoint Thumbwheel Markings<br />

11 to 29°C (stamped every 3°C) <strong>and</strong> *,**<br />

Receiver Voltage 24V Nominal AC/DC ±10%<br />

Receiver Power Consumption<br />


Diffusers<br />

Table of<br />

Contents<br />

Introduction<br />

In today’s diverse building<br />

environment, we are seeing an<br />

exp<strong>and</strong>ing role of <strong>VAV</strong> applications<br />

across many different market<br />

segments. While this is happening,<br />

it is necessary to make sure the <strong>VAV</strong><br />

systems <strong>and</strong> diffusers in particular<br />

are applied, installed, <strong>and</strong> operated<br />

correctly.<br />

The purpose of this section of the<br />

catalog is to show these issues that<br />

need to be considered when selecting<br />

<strong>and</strong> placing diffusers.<br />

Introduction D 2 – 3<br />

Linear Slot Diffusers (LINR) D 4 – 11<br />

Adjustable Flow Diffusers (FAPF, VAPF, AABD, VAPS) D 12 – 21<br />

Light Fixture Diffusers (LITE) D 22 – 26<br />

Induction Diffusers (INDT, INDB, INCB, INSR) D 27 – 29<br />

Perforated Diffusers (PERF) D 30 – 32<br />

Mechanical Specifications D 33 – 34<br />

DIFFUSER<br />

PLENUM<br />

(OPTIONAL)<br />

CONTROL<br />

UNIT<br />

<strong>VAV</strong>-PRC008-EN D 1


Diffusers<br />

Introduction<br />

Diffusers<br />

The <strong>VariTrane</strong> line of variable-airvolume<br />

(<strong>VAV</strong>) products has been an<br />

industry leader in performance <strong>and</strong><br />

quality for many years. While most<br />

would associate the <strong>VariTrane</strong> name<br />

with <strong>VAV</strong> terminal units, the diffuser<br />

product line has grown significantly<br />

over the years.<br />

Room Air Distribution<br />

When variable-flow cooling <strong>and</strong><br />

constant-flow heating are combined in<br />

a zone, the zone air diffusers are<br />

usually selected at partial cooling load<br />

to ensure proper operation. Ceilingmounted<br />

linear slot diffusers are<br />

recommended since they perform well<br />

over a wide range of velocities. Cool air<br />

delivery takes advantage of the<br />

“Co<strong>and</strong>a” effect, whereby cool air<br />

discharged through a linear slot<br />

diffuser hugs the ceiling before<br />

descending, insuring proper operation<br />

over a wide range of flows without<br />

“dumping.” When delivering warm air<br />

with constant flow velocities, or warm/<br />

cool air with variable flow velocities,<br />

the flow velocity must be high enough<br />

to ensure that the air reaches the floor.<br />

To prevent stratification, the warm air<br />

temperature should not be more than<br />

20°F (6.7°C) above the zone air<br />

temperature.<br />

in the <strong>VariTrane</strong> line,<br />

an explanation of<br />

each type, <strong>and</strong> a short<br />

discussion of the<br />

proper application for<br />

each type.<br />

Linear Slot Diffuser<br />

(LINR)<br />

Linear slot diffusers<br />

are most commonly<br />

used in <strong>VAV</strong> systems.<br />

<strong>This</strong> type of diffuser has a fixed vane<br />

inside, which means that the pattern is<br />

not adjustable. The fixed vane allows a<br />

wide range of flows through the<br />

diffuser without causing drafts. Lower<br />

flanges provide ceiling tile support as<br />

an integral part of the diffuser housing.<br />

Recommended Guidelines—Linear<br />

Slot Diffusers<br />

Diffuser Placement – The maximum<br />

recommended distance between<br />

diffusers is three diffuser lengths. For<br />

example, if the diffuser length is 4 feet<br />

(1.219 m), the maximum separation<br />

distance would be 4 ft x 3 = 12ft<br />

(1.219 m x 3 = 3.658 m).<br />

The maximum recommended distance<br />

for diffusers from an exterior wall, with<br />

parallel flow to the wall is two diffuser<br />

lengths. For example, if the diffuser<br />

length is 4 feet (1.219 m), the<br />

maximum distance from the exterior<br />

wall would be 4 ft x 2 = 8 ft<br />

(1.219 m x 2 = 2.438 m).<br />

A simple rule for better air circulation is<br />

to avoid placing supply air linear slot<br />

diffusers that allow airflows to collide<br />

at right angles.<br />

General Guidelines – When<br />

beginning the placement <strong>and</strong> layout of<br />

diffusers, assume that each diffuser<br />

delivers only 75% to 80% of its<br />

SUPPLY<br />

AIR DIFFUSERS<br />

NEVER DO THIS!!<br />

(PERPENDICULAR AIR FLOWS)<br />

RETURN<br />

AIR<br />

DIFFUSER<br />

nominal airflow. If you start by using<br />

100% of the nominal airflow, you will<br />

end up with high losses in<br />

performance, acoustical problems, <strong>and</strong><br />

very little or no design flexibility.<br />

A diffuser airflow rate is 50 cfm per<br />

linear foot (77.4 L/s per linear meter) of<br />

diffuser. Therefore, the recommended<br />

flow to use when designing is 50 cfm/<br />

linear ft x 0.8 = 40 cfm/linear ft (77.4 L/s/<br />

linear m x 0.8 = 61.9 L/s/linear m).<br />

The nominal airflow of a diffuser is<br />

determined by multiplying the diffuser<br />

length, the number of slots, <strong>and</strong> the<br />

airflow per linear foot. Using the<br />

airflow per linear foot calculated above,<br />

a 4 foot, 2-slot, 2-way diffuser should<br />

be designed to h<strong>and</strong>le 4 linear ft x 2<br />

slots x 40 cfm/linear ft = 320 cfm<br />

(1.219 m x 2 slots x 61.9 L/s/linear m =<br />

150.9 L/s).<br />

To maximize the effectiveness of<br />

ventilation with ceiling diffusers,<br />

throws should be kept as long as<br />

possible. For proper air circulation, try<br />

to maintain at least a 20°F (6.7°C)<br />

difference between the supply air <strong>and</strong><br />

room temperature. <strong>This</strong> provides for<br />

optimum performance.<br />

Collision Velocities –The collision<br />

velocity is the speed at which moving<br />

air meets a wall or another airflow<br />

In addition to choosing the correct<br />

diffuser type, the designer must<br />

properly size <strong>and</strong> place each diffuser in<br />

the zone to minimize noise <strong>and</strong><br />

pressure drop while maximizing the<br />

throw <strong>and</strong> diffusion performance.<br />

<strong>VariTrane</strong> Diffuser Types<br />

The <strong>VariTrane</strong> line of diffusers contains<br />

a variety of different models. The<br />

following is a list of the diffuser types<br />

D 2<br />

<strong>VAV</strong>-PRC008-EN


Diffusers<br />

Introduction<br />

stream. For exterior walls, the collision<br />

velocity should be between 100 <strong>and</strong><br />

150 feet per minute (FPM) (0.508 <strong>and</strong><br />

0.762 m/s). Do not exceed 150 FPM<br />

(0.762 m/s) on an exterior wall. For<br />

interior walls, the collision velocity<br />

should be between 50 <strong>and</strong> 75 FPM<br />

(0.254 <strong>and</strong> 0.381 m/s). Try not to exceed<br />

75 FPM (0.381 m/s) for interior walls.<br />

The maximum recommended collision<br />

velocity between airflow streams<br />

should not exceed 150 FPM (0.762<br />

m/s). The collision velocity between<br />

airflow streams is determined by the<br />

addition of both velocities at the point<br />

of collision. Avoid collision of air<br />

velocities at right angles to each other<br />

by trying to maintain parallel flow.<br />

Following this guideline will allow one<br />

to maximize the "Co<strong>and</strong>a" effect <strong>and</strong><br />

proper air diffusion in a zone.<br />

Experience indicates that mixed air<br />

after collision near the ceiling <strong>and</strong><br />

below 150 FPM will produce comfort in<br />

the zone at the occupant's level.<br />

INTERIOR WALL<br />

150 FPM<br />

MAX.<br />

EXTERIOR WALL<br />

75 FPM<br />

MAX.<br />

150 FPM<br />

MAX.<br />

Return Air Slots – Return air slots<br />

are placed perpendicular to supply air<br />

slots. <strong>This</strong> prevents supply air from<br />

bypassing the space, <strong>and</strong> allows for<br />

proper air circulation. With a<br />

suspended ceiling, low operating static<br />

pressure across the ceiling panels must<br />

be maintained. Failure to do so will<br />

cause the return air to be forced<br />

around the edges of the ceiling panels.<br />

When this happens, soiling of the<br />

panels will occur <strong>and</strong> the mechanical<br />

system can become choked for return<br />

air. A space-to-plenum pressure drop<br />

of 0.02 to 0.03 inches of water is<br />

acceptable under most conditions.<br />

RETURN<br />

DIFFUSER<br />

SLOT<br />

PERPENDICULAR<br />

SUPPLY<br />

DIFFUSER<br />

Fully Adjustable Pattern Flow (FAPF) –<br />

The FAPF diffuser, a type of ceiling<br />

diffuser outlet, should be used with layin<br />

ceilings. The primary benefit of this<br />

kind of diffuser is that it provides the<br />

most flexibility of adjustment of the<br />

airflow pattern. The FAPF diffuser<br />

provides adjustable vanes for<br />

horizontal or vertical throw. The dualvane<br />

option allows each slot to be<br />

adjusted for left, right, or vertical throw.<br />

Besides pattern adjustments, the vanes<br />

also provide airflow dampering. In<br />

addition, the vanes are adjustable from<br />

the face of the diffuser so changes to<br />

the pattern can be made after the<br />

diffuser is installed.<br />

Vane Adjustable Pattern Flow (VAPF) –<br />

The VAPF diffuser is very similar to the<br />

FAPF ceiling outlet diffusers. The<br />

primary difference is the design of the<br />

pattern adjustment vane. The VAPF<br />

diffuser should be used with lay-in<br />

ceilings. The pattern is adjustable for<br />

horizontal left, horizontal right, or<br />

vertical throw. The pattern adjustment<br />

vane contains a felt seal on the end to<br />

reduce air leakage around the vane.<br />

The vanes are adjustable from the face<br />

of the diffuser, allowing the pattern to<br />

be easily changed after installation.<br />

Vane Adjustable Pattern Flow–<br />

Special (VAPS) –<br />

The VAPS diffuser is a special version<br />

of the VAPF diffuser. The design of the<br />

vane is slightly different from the VAPF<br />

model, but the VAPS has the same<br />

functionality. The VAPS has been<br />

popular in certain regions of the<br />

country.<br />

Adjustable Air Bar Diffuser (AABD) –<br />

The AABD diffuser is another lay-in<br />

ceiling type of diffuser. The difference<br />

between the AABD <strong>and</strong> the FAPF or the<br />

VAPF is that the AABD has no<br />

adjustment vane. A sliding air bar in<br />

the outlet of the diffuser makes the<br />

pattern adjustments. The pattern is<br />

adjustable for horizontal left, horizontal<br />

right, or vertical throw.<br />

Light Fixture Diffuser (LITE) –<br />

The LITE diffuser should be installed<br />

on a suspended ceiling light fixture.<br />

<strong>This</strong> type of diffuser is quite popular<br />

with architects, because the number of<br />

ceiling penetrations can be reduced.<br />

The diffuser is available with an<br />

integral sliding volume damper <strong>and</strong><br />

with or without pattern control vanes<br />

(some light fixtures already contain<br />

pattern control vanes). Both the<br />

volume damper <strong>and</strong> the pattern<br />

control vanes (if necessary) are<br />

adjustable with a screwdriver from the<br />

face of the diffuser without removing<br />

the light fixture doorframe. The pattern<br />

control vane allows for either<br />

horizontal or vertical throw.<br />

Induction Diffusers (INDT, INDB, INSR,<br />

INCB)—<br />

Induction diffuser discharges air in a<br />

tight pattern along a ceiling. The<br />

discharged air then induces the room<br />

air into the air stream to effectively mix<br />

the streams. Induction diffusers are<br />

typically used in exterior zones that<br />

have unusually high heat loads or<br />

drafts. They are designed to be<br />

installed in suspended ceilings <strong>and</strong><br />

have high induction horizontal airflow.<br />

The center down blow option provides<br />

a vertical air pattern for exterior walls<br />

or glass. Induction diffusers have<br />

adjustable blades for volume <strong>and</strong><br />

direction control.<br />

INDT –<strong>This</strong> type of induction diffuser<br />

contains a supply air outlet only. It will<br />

project air along a ceiling <strong>and</strong> provide<br />

mixing of the primary <strong>and</strong> room air<br />

streams.<br />

INDT –<strong>This</strong> type of induction diffuser<br />

contains a st<strong>and</strong>ard supply air outlet<br />

along with down blow outlet. The<br />

down blow outlet will project a jet of<br />

primary air in a vertical direction while<br />

the st<strong>and</strong>ard outlet projects the<br />

induction jet. The down blow jet is<br />

often washed along an exterior glass<br />

window or aimed to combat<br />

something that is producing a draft in<br />

the space.<br />

INSR –<strong>This</strong> type of induction diffuser<br />

contains a supply air outlet along with<br />

a separate return air inlet integrated<br />

into one device. <strong>This</strong> reduces the<br />

number of ceiling penetrations<br />

necessary.<br />

INCB – <strong>This</strong> type of induction diffuser<br />

contains a st<strong>and</strong>ard supply air outlet, a<br />

down blow outlet, <strong>and</strong> a separate<br />

return air inlet integrated into one<br />

device.<br />

Perforated Diffuser (PERF)<br />

The PERF diffusers are designed for<br />

use with lay-in ceilings <strong>and</strong> provide the<br />

most economical option for air<br />

diffusion. The pre-assembled diffuser is<br />

made to lay in a 24" x 24"<br />

(0.610 m x 0.610 m) ceiling opening<br />

<strong>and</strong> is available with multiple round<br />

inlet connection sizes. Outlets are<br />

available with disc or adjustable<br />

deflector. The air is projected in a<br />

circular pattern from the diffuser.<br />

<strong>VAV</strong>-PRC008-EN D 3


Diffusers—<br />

Linear<br />

Slot<br />

Model<br />

Number<br />

Description<br />

Linear Slot Diffusers<br />

The features of the Linear Slot Diffuser<br />

are described by the product<br />

categories shown in bold. Within each<br />

category the options available are<br />

listed.<br />

END BRACKET DETAIL<br />

1S1W<br />

1-SLOT<br />

1-WAY<br />

2S1W<br />

2-SLOT<br />

1-WAY<br />

NOMINAL LENGTH – 1<br />

LINR<br />

INLET DIAMETERS ARE BASED<br />

ON A COMBINATION OF CEILING<br />

TYPE AND DIFFUSER LENGTH.<br />

SEE CHART ON INLET AVAILABILITY.<br />

2S2W<br />

2-SLOT<br />

2-WAY<br />

DIFFUSER<br />

HEIGHT H<br />

1<br />

9<br />

4<br />

7<br />

12 16<br />

14<br />

LOW<br />

MED<br />

HIGH<br />

3S1W<br />

3-SLOT<br />

1-WAY<br />

<strong>NOTE</strong>S:<br />

1. FIXED VANE PROVIDES A DRAFTLESS AIR PATTERN OVER THE<br />

FULL RANGE OF FLOW. EXCELLENT FOR VARIABLE VOLUME.<br />

2. LOWER FLANGES PROVIDE TILE SUPPORT AS AN INTEGRAL PART<br />

OF THE DIFFUSER HOUSING.<br />

3. AVAILABLE IN NOMINAL LENGTHS OF 2', 2.5', 4', AND 5'.<br />

4. MATERIAL: 24-GAGE GALVANNEALED STEEL.<br />

5. ALL EXPOSED SURFACES HAVE WHITE ENAMEL FINISH.<br />

6. ALL DIMENSIONS ARE IN INCHES.<br />

INLET<br />

DIAMETER<br />

6"<br />

8"<br />

10"<br />

3S1I<br />

3-SLOT<br />

2-WAY<br />

INLET BALANCING DAMPER<br />

(OPTIONAL)<br />

MODEL DIFFUSER<br />

NUMBER WIDTH W<br />

13<br />

1S1W 116<br />

1<br />

2S1W 3 16<br />

1<br />

2S2W 4 8<br />

5<br />

3S1W 4 16<br />

3<br />

3S2I 5 8<br />

3<br />

3S1I 5 8<br />

5<br />

4S2W 6 8<br />

H<br />

3S1I<br />

3-SLOT<br />

1-WAY<br />

1SDR<br />

1-SLOT<br />

Direct Discharge<br />

W<br />

INTERNAL<br />

INSULATION<br />

TILE FLANGE DETAIL<br />

4S2W<br />

4-SLOT<br />

2-WAY<br />

2SDR<br />

2-SLOT<br />

Direct Discharge<br />

MODL Model<br />

VLSD Supply Diffuser<br />

VLRD Return Slot<br />

DSEQ Design Sequence<br />

A A Design Sequence<br />

TYPE Diffuser Type<br />

LINR Linear Diffuser<br />

LGTH Diffuser Length<br />

2 Diffuser Length – 2'<br />

2.5 Diffuser Length – 2 1/2'<br />

4 Diffuser Length – 4'<br />

5 Diffuser Length – 5'<br />

HGTH Diffuser Height<br />

LOW Low Height<br />

MED Medium Height<br />

HIGH High Height<br />

NONE For Return Slots<br />

WDTH Ceiling Tee Width<br />

916 9/16" Ceiling Grid<br />

1516 15/16" Ceiling Grid<br />

SLOT Slot Configuration<br />

1S1W 1-Slot, 1-Way<br />

2S1W 2-Slot, 1-Way<br />

3S1W 3-Slot, 1-Way<br />

2S2W 2-Slot, 2-Way<br />

4S2W 4-Slot, 2-Way<br />

1SDR 1-Slot, Direct Discharge<br />

3S1I 3-Slot, 2 Way, Inlet on 1-Slot Side<br />

3S2I 3-Slot, 2 Way, Inlet on 2-Slot Side<br />

2SDR 2-Slot, Direct Discharge<br />

CEIL Ceiling Type<br />

TBAR 15/16" T-Bar<br />

2X2T 15/16" T-Bar with Center Notch<br />

PLSR Plaster Ceiling<br />

T916 9/16" Narrow Faced Grid<br />

D916 9/16" Narrow Regressed Grid<br />

2X2N 9/16" Center Notch, Narrow<br />

Faced Grid<br />

2X2D 9/16" Center Notch, Narrow<br />

Regressed Grid<br />

SPLN Concealed Spline<br />

DMPR Damper Type<br />

FIRE Fire Damper<br />

BAL Balancing Damper<br />

HNGR Hanger Holes<br />

WITH Hanger Holes<br />

D 4<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Linear<br />

Slot<br />

Ceiling<br />

Cross<br />

Reference<br />

CEILING SYSTEM CROSS REFERENCE<br />

(TYP. ALL)<br />

1½<br />

GRID TYPE<br />

15/16"GRID<br />

STANDARD T-BAR GRID<br />

(T-BAR, 2x2T)<br />

COMPANY/NAME OR MODEL<br />

ARMSTRONG – PRELUDE SERIES<br />

CHICAGO METALLIC – 200/1800 SERIES<br />

USG/DONN – DX SERIES<br />

15/16<br />

1½<br />

9/16" GRID<br />

NARROW FACED GRID<br />

(T916, 2x2N)<br />

ARMSTRONG – SUPRAFINE<br />

CHICAGO METALLIC – TEMPRA 4000<br />

USG/DONN – CENTRICITEE<br />

9/16<br />

1½<br />

REVEAL GRID<br />

NARROW FACED GRID<br />

(T916, 2x2N)<br />

CHICAGO METALLIC – STYLINE 3700 (9/16")<br />

USG/DONN – DX MERIDIAN (9/16")<br />

9/16<br />

1½<br />

REVEAL GRID<br />

NARROW FACED GRID<br />

(T916, 2x2N)<br />

CHICAGO METALLIC – STYLINE 3800 (3/4")<br />

3/4<br />

5/16<br />

BOLT SLOT GRID<br />

(FINELINE TYPE)<br />

NARROW REGRESSED GRID<br />

(D916, 2x2D)<br />

ARMSTRONG – SILHOUETTE (1¾" HEIGHT)<br />

CHICAGO METALLIC – ULTRALINE 3500/3600<br />

USG/DONN – FINELINE (1 25/32" HEIGHT)<br />

GORDON INC. – SIMPLICITY A-SERIES<br />

9/16<br />

5/16<br />

SCREW SLOT GRID<br />

(EXTRUDED ALUMINUM)<br />

NARROW REGRESSED GRID<br />

(D916, 2x2D)<br />

ARMSTRONG – TRIMLOK<br />

USG/DONN – HIGHLINE<br />

GORDON INC. – SIMPLICITY B-SERIES<br />

9/16<br />

<strong>NOTE</strong>S:<br />

1. T-BAR HEIGHTS RANGE FROM 1½" – 2¼". CHECK WITH FACTORY TO ASSURE<br />

COMPATIBILITY BEFORE SPECIFYING DIFFUSERS FOR THESE TYPES OF GRIDS.<br />

2. ALL DIMENSIONS ARE IN INCHES.<br />

<strong>VAV</strong>-PRC008-EN D 5


Diffusers—<br />

Linear<br />

Slot<br />

Dimensional<br />

Data—<br />

LINR<br />

LINR<br />

INLET BALANCING DAMPER<br />

(OPTIONAL)<br />

INTERNAL<br />

INSULATION<br />

H<br />

NOMINAL LENGTH – 1<br />

W<br />

END BRACKET DETAIL<br />

DIFFUSER<br />

HEIGHT H<br />

1<br />

9<br />

4<br />

7<br />

12<br />

16<br />

14<br />

LOW<br />

MED<br />

HIGH<br />

INLET<br />

DIAMETER<br />

6"<br />

8"<br />

10"<br />

INLET DIAMETERS ARE BASED<br />

ON A COMBINATION OF CEILING<br />

TYPE AND DIFFUSER LENGTH.<br />

SEE CHART ON INLET AVAILABILITY.<br />

MODEL<br />

NUMBER<br />

1S1W<br />

2S1W<br />

2S2W<br />

3S1W<br />

3S2I<br />

3S1I<br />

4S2W<br />

DIFFUSER<br />

WIDTH W<br />

13<br />

116<br />

1<br />

3 16<br />

1<br />

4 8<br />

5<br />

4<br />

16<br />

3<br />

5 8<br />

3<br />

5<br />

8<br />

5<br />

6<br />

8<br />

TILE FLANGE DETAIL<br />

1S1W<br />

1-SLOT<br />

1-WAY<br />

2S1W<br />

2-SLOT<br />

1-WAY<br />

2S2W<br />

2-SLOT<br />

2-WAY<br />

3S1W<br />

3-SLOT<br />

1-WAY<br />

3S1I<br />

3-SLOT<br />

2-WAY<br />

3S1I<br />

3-SLOT<br />

1-WAY<br />

4S2W<br />

4-SLOT<br />

2-WAY<br />

<strong>NOTE</strong>S:<br />

1. FIXED VANE PROVIDES A DRAFTLESS AIR PATTERN OVER THE<br />

FULL RANGE OF FLOW. EXCELLENT FOR VARIABLE VOLUME.<br />

2. LOWER FLANGES PROVIDE TILE SUPPORT AS AN INTEGRAL PART<br />

OF THE DIFFUSER HOUSING.<br />

3. AVAILABLE IN NOMINAL LENGTHS OF 2', 2.5', 4', AND 5'.<br />

4. MATERIAL: 24-GAGE GALVANNEALED STEEL.<br />

5. ALL EXPOSED SURFACES HAVE WHITE ENAMEL FINISH.<br />

6. ALL DIMENSIONS ARE IN INCHES.<br />

1SDR<br />

1-SLOT<br />

Direct Discharge<br />

2SDR<br />

2-SLOT<br />

Direct Discharge<br />

D 6<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Linear<br />

Slot<br />

Dimensional<br />

Data—<br />

LINR<br />

LINR OPEN RETURNS<br />

NOMINAL LENGTH – 1<br />

END BRACKET DETAIL<br />

5<br />

5<br />

1S1W<br />

<strong>NOTE</strong>S:<br />

1. LOWER FLANGES PROVIDE TILE SUPPORT AS AN INTEGRAL<br />

PART OF THE DIFFUSER HOUSING.<br />

2. AVAILABLE IN NOMINAL LENGTHS OF 2', 2.5', 4', AND 5'.<br />

3. ALL EXPOSED SURFACES HAVE WHITE ENAMEL FINISH.<br />

4. RETURNS ARE MADE OF 24-GAGE GALVANNEALED STEEL.<br />

5. ALL DIMENSIONS ARE IN INCHES.<br />

<strong>VAV</strong>-PRC008-EN D 7


Diffusers—<br />

Linear<br />

Slot<br />

Dimensional<br />

Data—<br />

LINR<br />

ONE WAY LINEAR SLOT DIFFUSER OR RETURN SLOT<br />

U.L. Listed<br />

Fusible Link<br />

Fire Damper<br />

20-gage Steel<br />

1S1W 2S1W 3S1W<br />

1-SLOT<br />

2-SLOT<br />

3-SLOT<br />

1-WAY<br />

1-WAY<br />

1-WAY<br />

TWO WAY LINEAR SLOT DIFFUSER OR RETURN SLOT<br />

U.L. Listed<br />

Fusible Link<br />

Fire Damper<br />

20-gage Steel<br />

2S2W<br />

2-SLOT<br />

2-WAY<br />

3S1I<br />

3-SLOT<br />

1-WAY<br />

3S2I<br />

3-SLOT<br />

2-WAY<br />

3S1I<br />

3-SLOT<br />

1-WAY<br />

4S2W<br />

4-SLOT<br />

2-WAY<br />

Notes:<br />

1. Spring loaded dampers blades are hinged <strong>and</strong> held open by<br />

158˚F (70˚C) fusible links.<br />

2. <strong>This</strong> drawing is for pictorial view only <strong>and</strong> not to be used<br />

for dimensional purposes.<br />

3. The UL Reference R6700 VOLUME 2 (1-SLOT <strong>and</strong> 2-SLOT models only).<br />

D 8<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Linear<br />

Slot<br />

Dimensional<br />

Data—<br />

LINR<br />

SLOT DIFFUSER SURFACE MOUNT FRAMES<br />

FOR PLASTER CEILING<br />

ACTUAL<br />

3<br />

DIFFUSER + 1<br />

LENGTH<br />

W<br />

DIFFUSER WIDTH<br />

¾<br />

¾<br />

DIFFUSER<br />

CLIP<br />

MODEL DIFFUSER<br />

NUMBER<br />

1S1W<br />

2S2W<br />

3S1W<br />

3S1I<br />

FRAME<br />

CEILING<br />

3S2I<br />

4S2W<br />

SECTION DETAIL<br />

(INSTALLED)<br />

<strong>VAV</strong>-PRC008-EN D 9


Diffusers—<br />

Linear<br />

Slot<br />

Inlet<br />

Availability<br />

Linear Slot Diffusers—Inlet Availability<br />

24" Length 30" Length 48" Length 60" Length<br />

Ceiling Type Slot Arrangement Low Med High Low Med High Low Med High Low Med High<br />

15/16" T-Bar — 1-slot, 1-way 5" 5" — 5" 5" — 6" 6" — 6" 6" —<br />

Plaster 2-slot, 1-way — 6" — — 6" — — 8" — — 8" —<br />

3-slot, 1-way — — 8" — — 8" — — 10" — — 10"<br />

2-slot, 2-way 6" 6" 6" 6" 6" 6" 8"o* 8" 8" 8"o* 8" 8"<br />

3-slot, 2-way — — 8" — — 8" — — 10" — -— 10"<br />

4-slot, 2-way — — 8" — — 8" — — 10" — — 10"<br />

15/16" T-Bar 1-slot, 1-way — — — — — — 6" 6" — — — —<br />

with Center 2-slot, 1-way — — — — — — — 8" — — — —<br />

Notch 3-slot, 1-way — — — — — — — — 10" — — —<br />

(2 x 2 T) 2-slot, 2-way — — — — — — 8"o* 8" 8" — — —<br />

3-slot, 2-way — — — — — — — — 10" — — —<br />

4-slot, 2-way — — — — — — — — 10" — — —<br />

9/16" Narrow 1-slot, 1-way 5" 5" — — — — 6" 6" — 6" 6" —<br />

Faced Grid or 2-slot, 1-way — 6" — — — — — 8" — — 8" —<br />

9/16" Narrow 3-slot, 1-way — — 8" — — — — — 10" — — 10"<br />

Regressed Grid 2-slot, 2-way 6" 8" 10" 6" 8" 10" 6" 8" 10" 6" 8" 10"<br />

Or Concealed 3-slot, 2-way — — 10" — — 10" — — 10" — — 10"<br />

Spline 4-slot, 2-way — — 10" — — 10" — — 10" — — 10"<br />

9/16" Center 1-slot, 1-way — — — — — — 6" 6" — — — —<br />

Notch—Narrow 2-slot, 1-way — — — — — — — 8" — — — —<br />

Faced Grid or 3-slot, 1-way — — — — — — — — 10" — — —<br />

9/16" Center 2-slot, 2-way — — — — — — 6" 8" 10" — — —<br />

Notch—Narrow 3-slot, 2-way — — — — — — — — 10" — — —<br />

Regressed Grid 4-slot, 2way — — — — — — — — 10" — — —<br />

Note: *O- Oval<br />

D 10<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Linear<br />

Slot<br />

Performance<br />

Data—<br />

LINR<br />

Table 1- Style LINR Diffuser Performance<br />

Supply Slot Performance–2'<br />

1S1W Cfm 20 40 60 80 100<br />

TSP .01 .03 .06 .10 .15<br />

Throw 11 17 22 25 27<br />

NC (20) (20) (20) 22 27<br />

2S1W Cfm 40 80 120 160 200<br />

TSP .01 .03 .07 .12 .18<br />

Throw 14 21 27 31 34<br />

NC (20) (20) (20) 26 31<br />

2S2W Cfm 40 80 120 160 200<br />

TSP .01 .03 .06 .09 .14<br />

Throw 11 17 22 25 27<br />

NC (20) (20) (20) 22 27<br />

3S1W Cfm 60 120 180 240 300<br />

TSP .01 .03 .06 .12 .19<br />

Throw 17 27 35 40 43<br />

NC (20) (20) (20) 26 31<br />

3S2W Cfm 60 120 180 240 300<br />

TSP .01 .03 .06 .10 .15<br />

Throw 1 11 17 22 25 27<br />

Throw 2 14 21 27 31 34<br />

NC (20) (20) (20) 26 32<br />

4S2W Cfm 80 160 240 320 400<br />

TSP .01 .03 .06 .10 .15<br />

Throw 14 21 27 31 34<br />

NC (20) (20) 21 29 36<br />

Supply Slot Performance–4'<br />

1S1W Cfm 40 80 120 160 200<br />

TSP .01 .03 .08 .14 .20<br />

Throw 11 17 22 25 27<br />

NC (20) (20) (20) 26 32<br />

2S1W Cfm 80 160 240 320 400<br />

TSP .01 .04 .08 .14 .22<br />

Throw 14 21 27 31 34<br />

NC (20) (20) 21 30 37<br />

2S2W Cfm 80 160 240 320 400<br />

TSP .01 .03 .06 .09 .15<br />

Throw 11 17 22 25 27<br />

NC (20) (20) (20) 26 32<br />

3S1W Cfm 120 240 360 480 600<br />

TSP .01 .03 .06 .12 .19<br />

Throw 17 27 35 40 43<br />

NC (20) (20) 21 30 37<br />

3S2W Cfm 120 240 360 480 600<br />

TSP .01 .03 .06 .10 .16<br />

Throw 1 11 17 22 25 27<br />

Throw 2 14 21 27 31 34<br />

NC (20) (20) 22 31 38<br />

4S2W Cfm 160 320 480 640 800<br />

TSP .01 .03 .06 .11 .17<br />

Throw 14 21 27 31 34<br />

NC (20) (20) 26 34 42<br />

Return Slot Performance–2'<br />

1S1W Cfm 20 40 60 80 100<br />

-SP .01 .03 .06 .10 .18<br />

2S2W Cfm 40 80 120 160 200<br />

-SP .01 .03 .06 .10 .19<br />

Return Slot Performance–2.5'<br />

1S1W Cfm 25 50 75 100 125<br />

-SP .01 .03 .06 .10 .18<br />

2S2W Cfm 50 100 150 200 250<br />

-SP .01 .03 .06 .10 .19<br />

Return Slot Performance–4'<br />

1S1W Cfm 40 80 120 160 200<br />

-SP .01 .03 .06 .10 .19<br />

2S2W Cfm 80 160 240 320 400<br />

-SP .01 .03 .06 .11 .20<br />

Return Slot Performance–5'<br />

1S1W Cfm 50 100 150 200 250<br />

-SP .01 .03 .06 .11 .22<br />

2S2W Cfm 100 200 300 400 500<br />

-SP .01 .03 .06 .12 .23<br />

Supply Slot Performance–2.5'<br />

1S1W Cfm 25 50 75 100 125<br />

TSP .01 .03 .06 .11 .16<br />

Throw 11 17 22 25 27<br />

NC (20) (20) (20) 23 28<br />

2S1W Cfm 50 100 150 200 250<br />

TSP .01 .03 .07 .12 .19<br />

Throw 14 21 27 31 34<br />

NC (20) (20) (20) 27 32<br />

2S2W Cfm 50 100 150 200 250<br />

TSP .01 .03 .06 .09 .14<br />

Throw 11 17 22 25 27<br />

NC (20) (20) (20) 23 28<br />

3S1W Cfm 75 150 225 300 375<br />

SP .01 .03 .06 .12 .19<br />

Throw 17 27 35 40 43<br />

NC (20) (20) (20) 27 33<br />

3S2I Cfm 75 150 225 300 375<br />

3S1I TSP .01 .03 .06 .10 .15<br />

Throw 1 11 17 22 25 27<br />

Throw 2 14 21 27 31 34<br />

NC (20) (20) (20) 27 33<br />

4S2W Cfm 100 200 300 400 500<br />

TSP .01 .03 .06 .10 .15<br />

Throw 14 21 27 31 34<br />

Supply Slot Performance–5'<br />

1S1W Cfm 50 100 150 200 250<br />

TSP .01 .04 .09 .15 .24<br />

Throw 11 17 22 25 27<br />

NC (20) (20) 21 30 37<br />

2S1W Cfm 100 200 300 400 500<br />

TSP .01 .04 .08 .14 .22<br />

Throw 14 21 27 31 34<br />

NC (20) (20) 24 35 43<br />

2S2W Cfm 100 200 300 400 500<br />

TSP .01 .03 .06 .11 .17<br />

Throw 11 17 22 25 27<br />

NC (20) (20) 21 30 37<br />

3S1W Cfm 150 300 450 600 750<br />

TSP .01 .03 .07 .13 .21<br />

Throw 17 27 35 40 43<br />

NC (20) (20) 24 35 43<br />

3S2W Cfm 150 300 450 600 750<br />

TSP .01 .03 .06 .11 .18<br />

Throw 1 11 17 22 25 27<br />

Throw 2 14 21 27 31 34<br />

NC (20) (20) 25 36 44<br />

4S2W Cfm 200 400 600 800 1000<br />

TSP .01 .03 .07 .13 .20<br />

Throw 14 21 27 31 34<br />

NC (20) (20) 32 40 48<br />

NC (20) (20) 22 30 38<br />

TSP - Static pressure readings in in. wg.<br />

Throw - Horizontal distance in feet to reach terminal velocity, VT, of 50 FPM.<br />

Throw 1 <strong>and</strong> Throw 2 indicates number of slots throwing each direction on 3-slot, 2-way diffuser.<br />

NC - A one number evaluation of sound generation derived from sound power levels (re: 10-12 watts) less 10 db room absorption. (20) indicates less than 20 NC rating.<br />

Data shown is for one diffuser. Additional diffusers will tend to increase the NC value by perhaps 2 db each, depending on size, air quantity <strong>and</strong> distance from other<br />

diffusers. Return applications will add +2 db to all values shown. Performance data is based on tests performed in accordance with ADC 1062 GRD-84 Test Code.<br />

<strong>VAV</strong>-PRC008-EN D 11


Diffusers—<br />

Adjustable<br />

Flow<br />

Model<br />

Number<br />

Description<br />

Adjustable Flow Diffusers<br />

The features of the Adjustable Flow<br />

Diffuser are described by the product<br />

categories shown in bold. Within each<br />

category the options available are<br />

listed.<br />

FAPF<br />

VAPF<br />

MODL Model<br />

VLSD Supply Diffuser<br />

VLRD Return<br />

DSEQ Design Sequence<br />

A A Design Sequence<br />

TYPE Diffuser Type<br />

FAPF Fully Adjustable Pattern Flow<br />

Diffuser<br />

VAPF Vane Adjustable Pattern Flow<br />

Diffuser<br />

AABD Adjustable Air Bar Diffuser<br />

VAPS Vane Adjustable Pattern Flow<br />

Diffuser<br />

LGTH Diffuser Length<br />

2 Diffuser Length – 2'<br />

3 Diffuser Length – 3'<br />

4 Diffuser Length – 4'<br />

5 Diffuser Length – 5'<br />

22 Diffuser Length – 22"<br />

34 Diffuser Length – 34"<br />

46 Diffuser Length – 46"<br />

58 Diffuser Length – 58"<br />

24 Diffuser Length – 23 3/4"<br />

36 Diffuser Length – 35 3/4"<br />

48 Diffuser Length – 47 3/4"<br />

60 Diffuser Length – 59 3/4"<br />

HGTH Diffuser Height<br />

LOW Low Height<br />

MED Medium Height<br />

HIGH High Height<br />

WDTH Ceiling Tee Width<br />

9/16 Ceiling Grid – 9/16"<br />

1516 Ceiling Grid – 15/16"<br />

SLOT Slot Configuration<br />

1SLT Slot – 1<br />

2SLT Slot – 2<br />

3SLT Slot – 3<br />

4SLT Slot – 4<br />

CEIL Ceiling Type<br />

TBAR T-bar – 15/16"<br />

T916 Narrow Faced T-bar – 9/16"<br />

2X2T Center Notched Grid – 15/16"<br />

2X2N Narrow Faced Center Notch – 9/16"<br />

2X2D Narrow Regressed Cntr Notch – 9/16"<br />

PLSR Plaster Ceiling<br />

D916 Narrow Regressed T-bar - 9/16"<br />

SPLN Concealed Spline<br />

DMPR Damper Type<br />

BAL Balancing Damper<br />

DISW Discharge Width<br />

.5 Discharge Width – 1/2"<br />

.75 Discharge Width – 3/4"<br />

1.0 Discharge Width – 1"<br />

1.25 Discharge Width – 1 1/4"<br />

1.5 Discharge Width – 1 1/2"<br />

2.0 Discharge Width – 2"<br />

2.25 Discharge Width – 2 1/4"<br />

2.5 Discharge Width – 2 1/2"<br />

STYL Diffuser Style<br />

NONE For VAPF, AABD, <strong>and</strong> VAPS<br />

11 1-slot – one way<br />

12 1-slot – 2-way left or right<br />

13 1-slot – 1-way with 1<br />

factory-installed T-bar<br />

14 1-slot – 2-way left or right<br />

with 1 factory-installed T-bar<br />

15 1-slot – 1-way with 2<br />

factory-installed T-bars<br />

16 1-slot – 2-way left or right<br />

with 2 factory-installed T-bars<br />

21 2-slot – 2-way opposite<br />

22 2-slot – 2-way opposite left<br />

or right<br />

23 2-slot – 2-way opposite<br />

with 1 factory-installed T-bar<br />

24 2-slot – 2-way opposite left<br />

or right with 1 factory-installed<br />

T-bar<br />

25 2-slot – 2-way opposite<br />

with 2 factory-installed T-bars<br />

26 2-slot – 2-way opposite left<br />

or right with 2 factory-installed<br />

T-bars<br />

27 2-slot – 2-way opposite with<br />

3 factory-installed T-bars<br />

28 2-slot – 2-way opposite left<br />

or right with 3 factory-installed<br />

T-bars<br />

29 2-slot – 2-way opposite with<br />

2 factory-installed T-bars<br />

33 3-slot – 1-way<br />

34 3-slot – 2-way left or right<br />

43 1-slot – 2-way opposite<br />

44 4-slot – 2-way opposite left<br />

or right<br />

D 12<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Adjustable<br />

Flow<br />

Dimensional<br />

Data—<br />

VAPF<br />

VAPF<br />

INLET<br />

DIA +3<br />

INLET<br />

DIAMETER<br />

6"<br />

8"<br />

10"<br />

HEIGHT<br />

LOW - 9"<br />

MED - 11"<br />

HIGH - 13"<br />

NOMINAL LENGTH - ¼<br />

NOMINAL LENGTH<br />

INLET DAMPER (OPTIONAL)<br />

½ INTERNAL INSULATION<br />

9<br />

16<br />

A<br />

B<br />

9 9<br />

9<br />

16<br />

A<br />

16<br />

A<br />

16<br />

B<br />

B<br />

CENTER T - BAR<br />

STANDARD ON 2, 3, 4 SLOT<br />

T - BAR CLIPS<br />

(OPTIONAL)<br />

A<br />

B<br />

SIDE T - BARS<br />

(OPTIONAL)<br />

<strong>NOTE</strong>S:<br />

1. MATERIAL: 24-GAGE GALVANNEALED STEEL. ALL EXPOSED<br />

SURFACES PAINTED FLAT BLACK. T - BARS ARE WHITE.<br />

2. AVAILABLE IN NOMINAL LENGTHS OF 2', 3', 4', & 5'.<br />

3. ALUMINUM VANE WITH FELT SEAL IS FULLY ADJUSTABLE FROM<br />

THE FACE FOR LEFT, RIGHT, OR VERTICAL THROW.<br />

4. DESIGNED FOR VARIABLE OR CONSTANT VOLUME SYSTEMS.<br />

5. MAXIMUM PERFORMANCE AND FLEXIBILITY FOR INTERIOR OR<br />

PERIMETER APPLICATIONS IN A VARIETY OF CEILING SYSTEMS.<br />

6. ALL DIMENSIONS ARE IN INCHES<br />

SLOT<br />

WIDTH A<br />

3"<br />

4<br />

1"<br />

1 1"<br />

2<br />

DIFFUSER WIDTH B<br />

1-SLOT 2-SLOT 3-SLOT 4-SLOT<br />

1<br />

7" 5"<br />

3<br />

5"<br />

8 8<br />

5<br />

16<br />

7"<br />

1" 1" 1"<br />

2<br />

8<br />

4 6<br />

8 16<br />

8"<br />

2<br />

5"<br />

5<br />

1" 9"<br />

7<br />

8 8 16<br />

10"<br />

<strong>VAV</strong>-PRC008-EN D 13


Diffusers—<br />

Adjustable<br />

Flow<br />

Performance<br />

Data—<br />

VAPF<br />

Style VAPF Diffuser Performance<br />

1-Slot–2'<br />

Discharge Width<br />

.75 Cfm 15 25 35 50 75 100<br />

(Ak .05) TSP .01 .02 .04 .09 .20 .35<br />

(Low) Throw 5 7 9 11 15 17<br />

NC (20) (20) (20) (20) 31 39<br />

1.0 Cfm 20 35 50 75 100 125<br />

(Ak .06) TSP .01 .03 .06 .14 .25 .39<br />

(Low) Throw 5 8 13 15 17 19<br />

NC (20) (20) (20) 24 31 37<br />

1.5 Cfm 25 50 85 100 125 175<br />

(Ak .11) TSP .01 .02 .05 .08 .13 .26<br />

(Med) Throw 3 9 13 17 19 24<br />

NC (20) (20) (20) 21 26 35<br />

1-Slot–4'<br />

Discharge Width<br />

.75 Cfm 25 50 75 100 125 175<br />

(Ak .10) TSP .01 .03 .06 .10 .16 .32<br />

(Low) Throw 4 10 14 17 19 22<br />

NC (20) (20) (20) 22 28 38<br />

1.0 Cfm 50 75 100 150 200 250<br />

(Ak .11) TSP .02 .04 .06 .14 .26 .40<br />

(Med) Throw 8 13 18 21 23 27<br />

NC (20) (20) (20) 27 34 40<br />

1.5 Cfm 50 100 150 200 250 300<br />

(Ak .22) TSP .01 .02 .05 .09 .14 .20<br />

(Med) Throw 4 11 17 22 25 28<br />

NC (20) (20) (20) 24 29 34<br />

1-Slot–5'<br />

Discharge Width<br />

.75 Cfm 50 75 100 125 150 200<br />

(Ak .12) TSP .02 .03 .06 .09 .13 .23<br />

(Med) Throw 8 12 17 19 22 24<br />

NC (20) (20) (20) 23 28 37<br />

1.0 Cfm 75 100 150 200 250 300<br />

(Ak .14) TSP .02 .04 .09 .16 .25 .36<br />

(High) Throw 9 14 20 24 27 28<br />

NC (20) (20) 22 30 35 40<br />

1.5 Cfm 75 125 200 250 300 350<br />

(Ak .28) TSP .01 .02 .05 .08 .12 .16<br />

(High) Throw 7 13 20 26 29 31<br />

NC (20) (20) (20) 25 29 33<br />

2-Slot–2'<br />

Discharge Width<br />

.75 Cfm 25 50 75 100 125 150<br />

(Ak .10) TSP .01 .03 .06 .10 .16 .22<br />

(Low) Throw 4 10 14 17 20 24<br />

NC (20) (20) (20) 22 28 34<br />

1.0 Cfm 50 75 100 125 150 200<br />

(Ak .11) TSP .02 .04 .08 .12 .17 .30<br />

(Low) Throw 9 13 18 19 22 25<br />

NC (20) (20) (20) 22 27 34<br />

1.5 Cfm 50 100 150 200 250 300<br />

(Ak .22) TSP .01 .02 .05 .09 .14 .20<br />

(Med) Throw 6 12 19 23 27 30<br />

NC (20) (20) (20) 24 29 34<br />

2-Slot–4'<br />

Discharge Width<br />

.75 Cfm 50 100 150 200 250 300<br />

(Ak .19) TSP .01 .03 .06 .10 .16 .23<br />

(Med) Throw 6 13 19 24 27 30<br />

NC (20) (20) (20) 25 31 37<br />

1.0 Cfm 100 150 200 250 300 400<br />

(Ak .22) TSP .02 .05 .08 .12 .18 .32<br />

(Med) Throw 11 16 21 26 28 33<br />

NC (20) (20) (20) 25 30 37<br />

D 14<br />

2-Slot–5'<br />

Discharge Width<br />

.75 Cfm 75 125 200 250 300 375<br />

(Ak .24) TSP .01 .02 .06 .10 .14 .22<br />

(High) Throw 7 13 20 26 29 32<br />

NC (20) (20) (20) 26 31 38<br />

1.0 Cfm 150 200 250 300 400 500<br />

(Ak .28) TSP .03 .05 .07 .10 .18 .29<br />

(High) Throw 14 20 27 29 32 34<br />

NC (20) (20) 20 25 33 38<br />

3-Slot–2'<br />

Discharge Width<br />

.75 Cfm 50 75 125 175 225 250<br />

(Ak .14) TSP .01 .02 .07 .13 .21 .26<br />

(Med) Throw 7 11 19 22 26 28<br />

NC (20) (20) (20) 28 35 39<br />

1.0 Cfm 75 100 150 175 225 300<br />

(Ak .17) TSP .02 .03 .07 .10 .16 .28<br />

(Med) Throw 10 15 22 23 26 30<br />

NC (20) (20) (20) 22 29 36<br />

1.5 Cfm 75 125 200 250 300 375<br />

(Ak .33) TSP .01 .02 .04 .06 .09 .14<br />

(High) Throw 5 12 20 26 29 32<br />

NC (20) (20) (20) 21 25 31<br />

3-Slot–4'<br />

Discharge Width<br />

.75 Cfm 75 150 225 300 375 450<br />

(Ak .29) TSP .01 .03 .06 .10 .16 .23<br />

(High) Throw 6 17 26 30 33 37<br />

NC (20) (20) (20) 27 33 38<br />

1.0 Cfm 150 225 300 400 500 600<br />

(Ak .34) TSP .02 .04 .08 .14 .22 .31<br />

(High) Throw 16 23 31 34 39 43<br />

NC (20) (20) 21 29 34 39<br />

4-Slot–2'<br />

Discharge Width<br />

.75 Cfm 50 100 150 200 250 300<br />

(Ak .19) TSP .01 .03 .06 .10 .16 .24<br />

(Med) Throw 5 14 20 24 28 30<br />

NC (20) (20) (20) 25 31 37<br />

1.0 Cfm 100 150 200 250 300 400<br />

(Ak .22) TSP .02 .05 .08 .12 .18 .32<br />

(Med) Throw 13 19 26 28 30 34<br />

NC (20) (20) (20) 25 30 37<br />

1.5 Cfm 75 150 225 300 375 450<br />

(Ak .44) TSP .01 .02 .03 .06 .09 .13<br />

(High) Throw 3 13 19 27 33 35<br />

NC (20) (20) (20) (20) 25 30<br />

4-Slot–4'<br />

Discharge Width<br />

.75 Cfm 100 200 300 400 500 600<br />

(Ak .39) TSP .01 .03 .06 .10 .16 .22<br />

(High) Throw 7 19 29 34 39 43<br />

NC (20) (20) (20) 28 34 40<br />

TSP - Total pressure readings in in. wg with horizontal throw.<br />

Ak - Area factor along with cfm is used to determine the<br />

average face velocity - Vk = cfm / Ak<br />

Throw - Horizontal distance in feet to reach terminal velocity,<br />

VT, of 50 FPM.<br />

NC - A one number evaluation of sound generation derived<br />

from sound power levels ( re: 10-12 watts) less 10 db room<br />

absorption. (20) indicates less than 20 NC rating. Data shown is<br />

for one diffuser. Additional diffusers will tend to increase the<br />

NC value by perhaps 2 db each, depending on size, air quantity<br />

<strong>and</strong> distance from other diffusers. Return applications will add<br />

+2 db to all values shown. Peformance data is based on tests<br />

performed in accordance with ADC 1062 GRD-84 Test Code.<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Adjustable<br />

Flow<br />

Dimensional<br />

Data—<br />

VAPS<br />

VAPS<br />

Inlet Damper (Optional)<br />

1"<br />

1<br />

2<br />

Insulation<br />

Length<br />

Inlet<br />

Diameter<br />

LENGTH<br />

22"<br />

34"<br />

46"<br />

58"<br />

24" (23-3/4")<br />

36" (35-3/4")<br />

48" (47-3/4")<br />

60" (59-3/4")<br />

INLET<br />

6"<br />

7"<br />

8"<br />

10" OVAL<br />

6"<br />

7"<br />

8"<br />

10" OVAL<br />

1 3 "<br />

16<br />

3"<br />

7"<br />

1<br />

8<br />

7"<br />

8<br />

12"<br />

13"<br />

16<br />

3"<br />

1<br />

16<br />

13"<br />

2<br />

16<br />

13"<br />

16<br />

3"<br />

1<br />

16<br />

13"<br />

2<br />

16<br />

Open Return<br />

Supply Diffuser<br />

Notes:<br />

1. Material: 24-gage galvannealed steel with exposed surfaces <strong>and</strong><br />

pattern controller painted flat black.<br />

2. Neck opening is located so that the bottom of inlet is above air pattern<br />

controller throughout the range of settings including vertical.<br />

3. VAPS diffusers are only available for 15/16" T-Bar <strong>and</strong> 15/16" center<br />

notched grid ceilings.<br />

4. All dimensions are in inches.<br />

<strong>VAV</strong>-PRC008-EN D 15


Diffusers—<br />

Adjustable<br />

Flow<br />

Dimensional<br />

Data—<br />

FAPF<br />

FAPF 1 <strong>and</strong> 2 SLOT<br />

1<br />

1<br />

2<br />

B + 1<br />

INSULATION<br />

INLET<br />

DIA +3<br />

1<br />

2<br />

NOMINAL LENGTH - ¼<br />

NOMINAL LENGTH<br />

1<br />

2<br />

2<br />

DAMPERS<br />

(OPTIONAL)<br />

INLET<br />

DIAMETER<br />

6"<br />

8"<br />

10"<br />

HEIGHT<br />

LOW - 9.5"<br />

MED - 11.5"<br />

HIGH - 13.5"<br />

SLOT WIDTH A<br />

OVERALL WIDTH B<br />

A<br />

B<br />

ONE SLOT SUPPLY<br />

B<br />

ONE SLOT<br />

TWO SLOT<br />

1" 3" 1" 1" 1"<br />

1"<br />

1" 1"<br />

1<br />

2<br />

1"<br />

3"<br />

4<br />

1 1<br />

4 2 2<br />

4<br />

1<br />

4<br />

2<br />

1" 1" 3"<br />

1 1 1<br />

1" 1" 1"<br />

2<br />

2" 3 2<br />

3" 3" 3"<br />

4 4 4<br />

3 3 4<br />

4 4 4 4 5 4<br />

+<br />

1<br />

2<br />

T-CLIPS<br />

(OPTIONAL)<br />

A<br />

B<br />

TWO SLOT SUPPLY<br />

<strong>NOTE</strong>S:<br />

1. ADJUSTABLE VANES FOR HORIZONTAL OR VERTICAL THROW.<br />

DUAL VANE OPTION ALLOWS EACH SLOT TO BE ADJUSTED FOR<br />

LEFT, RIGHT OR VERTICAL THROW AND DAMPERING.<br />

2. DIFFUSERS OVER 36" LONG HAVE VANES MADE IN TWO<br />

SEPARATE PIECES TO ALLOW SPLITTING AIR FLOW SETTINGS<br />

WITHIN EACH SLOT.<br />

D<br />

A<br />

B<br />

D<br />

+ 3<br />

ONE SLOT RETURN<br />

B<br />

A<br />

TWO SLOT RETURN<br />

3. AVAILABLE IN NOMINAL LENGTHS FROM 2', 3', 4', AND 5'.<br />

4. MATERIAL: 24-GAGE GALVANNEALED STEEL.<br />

5. ALL EXPOSED SURFACES PAINTED FLAT BLACK. FACTORY-<br />

INSTALLED T-BARS ARE WHITE.<br />

6. ALL DIMENSIONS ARE IN INCHES.<br />

SLOT WIDTH A<br />

OVERALL WIDTH B<br />

OUTLET HEIGHT D<br />

ONE SLOT<br />

TWO SLOT<br />

1" 3" 1" 1" 1" 3"<br />

1" 1<br />

1"<br />

1" 1 1<br />

1<br />

1"<br />

2 4 4 2 2 4 4 2<br />

1" 1" 3" 1"<br />

1<br />

2 3" 1" 3" 1" 3"<br />

1<br />

2<br />

1 2" 3 3<br />

4 4<br />

3 4<br />

4 4<br />

4 4 4<br />

5<br />

4<br />

1" 3"<br />

1<br />

1" 1" 1" 1"<br />

1" 1 1"<br />

2<br />

1 2" 2 3"<br />

4 4 2 2 2<br />

STYLES:<br />

ONE SLOT<br />

TWO SLOT<br />

11 12 13 14 15 16 21 22 23 24 25 26 27 28 29<br />

D 16<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Adjustable<br />

Flow<br />

Dimensional<br />

Data—<br />

FAPF<br />

FAPF 3 <strong>and</strong> 4 SLOT<br />

INLET DAMPER<br />

(OPTIONAL)<br />

INSULATION<br />

INLET<br />

DIA + 3½<br />

NOMINAL LENGTH - ¼<br />

INLET<br />

DIAMETER<br />

HEIGHT<br />

2½<br />

½<br />

6"<br />

LOW - 9.5"<br />

8"<br />

10"<br />

MED - 11.5"<br />

HIGH - 13.5"<br />

A<br />

B<br />

SIDE T-BARS<br />

(OPTIONAL)<br />

CENTER T-BARS<br />

(STANDARD)<br />

<strong>NOTE</strong>S:<br />

1. AVAILABLE IN NOMINAL LENGTHS FROM 2 TO 5 FEET.<br />

2. MATERIAL: 24-GAGE GALVANNEALED STEEL.<br />

3. ALL EXPOSED SURFACES PAINTED FLAT BLACK.<br />

FACTORY-INSTALLED T-BARS ARE WHITE.<br />

4. ALL DIMENSIONS ARE IN INCHES.<br />

SLOT<br />

WIDTH A<br />

OVERALL<br />

WIDTH B<br />

THREE SLOT FOUR SLOT<br />

3"<br />

3"<br />

3"<br />

4 1" 1 1"<br />

1" 1<br />

2 4 4<br />

15" 11" 3" 5" 5" 5"<br />

4 5 7 6 7 9<br />

16 16 16 8 8 8<br />

PATTERN CONFIGURATIONS<br />

SINGLE VANES ALLOW EACH SLOT TO<br />

THROW IN ONE HORIZONTAL DIRECTION<br />

OR VERTICAL. SPECIFY THE NUMBER OF<br />

SLOTS TO THROW IN EACH DIRECTION.<br />

EX:<br />

(STYL 33)<br />

(STYL 43)<br />

DUAL VANES ALLOW EACH SLOT TO BE<br />

ADJUSTED FOR RIGHT, LEFT OR VERTICAL<br />

THROW. (STYL 34)<br />

(STYL 44)<br />

<strong>VAV</strong>-PRC008-EN D 17


Diffusers—<br />

Adjustable<br />

Flow<br />

Performance<br />

Data—<br />

FAPF<br />

Style FAPF Diffuser Performance<br />

1-Slot–2'<br />

Discharge Width<br />

.5 Cfm 30 40 50 60 70 80 90 100<br />

TSP .08 .10 .16 .22 .31 .40 .50 .63<br />

Throw 5 5 7 8 9 10 12 13<br />

NC (20) (20) 26 31 36 40 44 46<br />

.75 Cfm 30 40 50 60 70 80 90 100<br />

TSP .04 .05 .08 .11 .15 .20 .25 .31<br />

Throw 4 5 6 7 8 9 10 11<br />

NC (20) (20) 21 26 31 35 38 41<br />

1.0 Cfm 50 60 70 80 90 100 120 140 160<br />

TSP .03 .04 .05 .07 .09 .10 .15 .21 .25<br />

Throw 5 5 6 7 8 8 10 12 13<br />

NC (20) (20) (20) 23 28 29 37 40 43<br />

1.25 Cfm 60 70 80 90 100 120 140 160 180 200<br />

TSP .03 .04 .06 .08 .09 .13 .20 .23 .27 .30<br />

Throw 5 6 6 7 8 9 11 13 14 14<br />

NC (20) (20) (20) 21 23 30 35 38 40 42<br />

1.5 Cfm 80 90 100 120 140 160 180 200 225<br />

TSP .04 .05 .06 .09 .13 .17 .21 .26 .32<br />

Throw 8 9 10 12 14 16 18 20 22<br />

NC (20) (20) (20) (20) 25 29 33 37 40<br />

1-Slot–4'<br />

Discharge Width<br />

.5 Cfm 50 60 70 80 90 100 120 140 160<br />

TSP .04 .06 .07 .09 .12 .16 .22 .26 .35<br />

Throw 5 6 6 7 9 10 12 13 14<br />

NC (20) (20) (20) 20 24 30 34 37 40<br />

.75 Cfm 80 90 100 120 140 160 180 200 225<br />

TSP .05 .06 .07 .10 .14 .19 .24 .29 .33<br />

Throw 6 7 8 10 11 13 15 16 17<br />

NC (20) (20) 22 27 32 37 41 44 46<br />

1.0 Cfm 100 120 140 160 180 200 225 250 275 300<br />

TSP .03 .04 .06 .07 .09 .11 .14 .17 .19 .22<br />

Throw 6 7 8 10 11 12 14 15 16 18<br />

NC (20) (20) 21 26 31 33 38 42 43 46<br />

1.25 Cfm 120 140 160 180 200 225 250 275 300 325<br />

TSP .03 .04 .06 .08 .10 .12 .15 .17 .20 .24<br />

Throw 5 6 8 10 11 13 14 15 17 18<br />

NC (20) (20) 20 24 30 32 35 40 42 45<br />

1.50 Cfm 140 160 180 200 225 250 275 300 325 350 400<br />

TSP .03 .05 .05 .07 .09 .10 .13 .15 .18 .21 .26<br />

Throw 10 11 12 14 16 17 20 21 23 25 27<br />

NC (20) (20) (20) (20) (20) 20 25 26 31 33 37<br />

1-Slot–5'<br />

Discharge Width<br />

1.50 Cfm 225 250 275 300 325 350 400 450 500 550 600<br />

TSP .05 .06 .08 .09 .11 .13 .16 .19 .24 .32 .38<br />

Throw 14 16 17 19 21 22 25 29 32 36 38<br />

NC (20) (20) (20) 20 21 24 29 33 36 40 43<br />

D 18<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Adjustable<br />

Flow<br />

Performance<br />

Data—<br />

FAPF<br />

Style FAPF Diffuser Performance (con't.)<br />

2-Slot–2'<br />

Discharge Width<br />

.5 Cfm 50 60 70 80 90 100 120 140 160<br />

TSP .04 .06 .07 .10 .13 .16 .22 .28 .32<br />

Throw 4 4 5 6 7 8 9 10 11<br />

NC (20) (20) (20) (20) 23 26 32 35 38<br />

.75 Cfm 80 90 100 120 140 160 180 200 220<br />

TSP .05 .06 .08 .11 .15 .20 .25 .31 .36<br />

Throw 5 5 6 7 8 9 10 12 12<br />

NC (20) 21 24 29 34 38 42 45 48<br />

1.0 Cfm 100 120 140 160 180 200 220 240 260 280<br />

TSP .03 .04 .06 .07 .09 .11 .15 .16 .19 .23<br />

Throw 5 5 6 7 8 9 11 11 12 13<br />

NC (20) 23 26 31 36 38 42 44 47 48<br />

1.25 Cfm 120 140 160 180 200 220 240 260 280 300<br />

TSP .03 .04 .05 .06 .07 .08 .09 .10 .14 .16<br />

Throw 5 5 6 6 7 8 9 10 11 12<br />

NC (20) 23 25 26 31 34 35 35 40 44<br />

1.50 Cfm 140 160 180 200 220 240 260 280 300 325<br />

TSP .03 .04 .05 .07 .08 .10 .12 .14 .17 .20<br />

Throw 7 8 9 11 11 12 13 14 15 16<br />

NC (20) (20) (20) (20) (20) 20 22 25 27 29<br />

2-Slot–4'<br />

Discharge Width<br />

.5 Cfm 100 120 140 160 180 200 220 240 260 280<br />

TSP .04 .05 .07 .10 .13 .15 .18 .22 .26 .29<br />

Throw 5 6 7 8 9 9 11 12 13 13<br />

NC (20) (20) (20) 22 27 29 30 35 37 38<br />

.75 Cfm 140 160 180 200 220 240 260 280 300 350<br />

TSP .04 .06 .07 .08 .09 .11 .13 .15 .17 .24<br />

Throw 6 6 7 8 9 10 11 11 13 14<br />

NC (20) (20) 22 27 28 32 34 36 39 42<br />

1.0 Cfm 180 200 220 240 260 280 300 350 400 450<br />

TSP .02 .03 .03 .04 .05 .05 .06 .08 .10 .14<br />

Throw 6 6 7 7 8 9 9 11 12 14<br />

NC (20) (20) 20 22 25 27 30 35 38 41<br />

1.25 Cfm 200 220 240 260 280 300 350 400 450 500<br />

TSP .02 .03 .04 .05 .05 .05 .06 .08 .10 .13<br />

Throw 6 6 7 7 8 9 11 12 12 14<br />

NC (20) (20) (20) 20 21 25 28 34 37 41<br />

1.50 Cfm 300 325 350 375 400 450 500 550 600 700<br />

TSP .03 .04 .05 .06 .06 .08 .10 .12 .15 .21<br />

Throw 10 11 12 12 15 16 17 20 21 25<br />

NC (20) (20) (20) (20) (20) (20) 21 24 28 33<br />

2-Slot–5'<br />

Discharge Width<br />

1.50 Cfm 325 350 375 400 450 500 550 600 700 800<br />

TSP .03 .03 .04 .04 .05 .07 .07 .09 .13 .17<br />

Throw 11 12 13 14 15 16 17 18 24 26<br />

NC (20) (20) (20) (20) (20) (20) (20) 20 25 29<br />

TSP - Total pressure readings in in. wg with horizontal throw.<br />

Throw - Horizontal distance in feet to reach terminal velocity, VT, of 50 FPM.<br />

NC - A one number evaluation of sound generation derived from sound power levels ( re:<br />

10-12 watts) less 8 db room absorption. (20) indicates less than 20 NC rating. Data shown<br />

is for one diffuser. Additional diffusers will tend to increase the NC value by perhaps 2 db<br />

each, depending on size, air quantity <strong>and</strong> distance from other diffusers. Return<br />

applications will add +2 db to all values shown. Performance data is based on tests<br />

performed in accordance with ADC 1062 GRD-84 Test Code.<br />

<strong>VAV</strong>-PRC008-EN D 19


Diffusers—<br />

Adjustable<br />

Flow<br />

Dimensional<br />

Data—<br />

AABD<br />

AABD<br />

INLET<br />

DIA + 3½<br />

NOMINAL LENGTH<br />

INTERNAL INSULATION<br />

INLET DAMPER<br />

(OPTIONAL)<br />

1½<br />

INLET<br />

DIAMETER<br />

HEIGHT<br />

6"<br />

LOW – 9.5"<br />

8"<br />

MED – 11.5"<br />

10"<br />

HIGH – 13.5"<br />

2½<br />

½<br />

T-CLIPS<br />

(OPTIONAL)<br />

<strong>NOTE</strong>S:<br />

1. SLIDING AIR BAR PROVIDES LEFT, RIGHT, OR VERTICAL THROW.<br />

2. DIFFUSERS OVER 36" IN LENGTH HAVE TWO AIR BARS<br />

PER SLOT TO ALLOW SPLIT AIR PATTERNS.<br />

A<br />

B<br />

B<br />

T-BARS BY OTHERS<br />

A<br />

3. AVAILABLE IN NOMINAL LENGTHS FROM 2' TO 5'.<br />

NORMAL T-BAR APPLICATION IS NORMAL LENGTH<br />

LESS ¼".<br />

4. MATERIAL: 24-GAGE GALVANNEALED STEEL. ALL<br />

EXPOSED SURFACES PAINTED BLACK.<br />

5. ONLY AVAILABLE FOR 15/16" T-BAR AND<br />

CENTER NOTCHED GRID (2X2T) CEILING ONLY.<br />

6. ALL DIMENSIONS ARE IN INCHES.<br />

ONE SLOT<br />

TWO SLOT<br />

SLOT WIDTH A<br />

3 1 1 3 1 1<br />

– 1 1 – 1 – 2 – 1 1 – 1 –<br />

4 4 2 4 4 2<br />

3 3 3 3 3 3<br />

OVERALL WIDTH B 1 1 1<br />

1<br />

– 1 – 2 – 2 – 3 – 3 – 3 – 4 – 5 –<br />

2 4 4 4 8 4 4 4 4<br />

D 20<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Adjustable<br />

Flow<br />

Performance<br />

Data—<br />

AABD<br />

Style AABD Diffuser Performance<br />

1-Slot–4'<br />

Discharge Width<br />

.75 Cfm 50 75 100 125 150<br />

(Low) TSP .02 .05 .10 .15 .23<br />

Throw 4–7 9–12 13–17 15–21 17–25<br />

NC (20) 23 31 37 43<br />

1.0 Cfm 75 100 125 150 175<br />

(Med) TSP .04 .08 .12 .18 .23<br />

Throw 8–11 12–17 13–18 16–23 18–26<br />

NC 22 29 34 40 45<br />

1.25 Cfm 75 100 150 200 250<br />

(Med) TSP .02 .05 .10 .17 .26<br />

Throw 7–11 10–14 13–18 16–23 20–31<br />

NC (20) 21 32 40 47<br />

1.50 Cfm 75 100 150 200 250<br />

(Med) TSP .02 .04 .08 .13 .21<br />

Throw 5–9 9–13 12–17 15–21 19–28<br />

NC (20) (20) 29 38 46<br />

2.0 Cfm 100 150 200 250 300<br />

(Med) TSP .04 .07 .12 .18 .27<br />

Throw 8–12 10–14 12–17 15–21 18–26<br />

NC (20) 26 36 43 48<br />

2.25 Cfm 100 150 200 250 300<br />

(Med) TSP .03 .06 .09 .14 .20<br />

Throw 6–9 9–12 11–15 14–19 17–25<br />

NC (20) 25 34 40 45<br />

2.50 Cfm 150 200 250 300 350<br />

(Med) TSP .05 .09 .13 .18 .25<br />

Throw 7–11 10–14 13–18 15–21 18–26<br />

NC 24 33 40 44 49<br />

2 Slot–4'<br />

Discharge Width<br />

.75 Cfm 100 150 200 250 300<br />

(Med) TSP .02 .05 .10 .16 .24<br />

Throw 4–7 9–12 13–17 15–21 17–24<br />

NC 21 25 34 40 46<br />

1.0 Cfm 150 200 250 300 350<br />

(Med) TSP .04 .08 .12 .18 .23<br />

Throw 8–11 12–17 13–18 16–23 18–26<br />

NC 23 32 37 43 49<br />

1.25 Cfm 150 200 250 300 400<br />

(High) TSP .02 .05 .07 .10 .18<br />

Throw 7–11 10–14 11–16 13–18 16–23<br />

NC (20) 23 28 35 43<br />

1.50 Cfm 150 200 300 400 500<br />

(High) TSP .02 .04 .09 .14 .22<br />

Throw 5-9 9-13 12-17 15-21 19-28<br />

NC (20) 21 32 41 49<br />

UNIT LENGTH FACTORS<br />

Multiply 48" data by the following factors:<br />

Nominal<br />

Length TSP Throw NC<br />

24" x 3.0 x 2.0 x 1.4<br />

36" x1.4 x 1.5 x 1.1<br />

60" x 0.8 x 0.9 x 1.0<br />

TSP - Static pressure readings in in. wg.<br />

Throw - Horizontal distance in feet to reach terminal velocity, VT, of 50 FPM.<br />

NC - A one number evaluation of sound generation derived from sound power levels ( re: 10-12 watts) less 10<br />

db room absorption. (20) indicates less than 20 NC rating. Data shown is for one diffuser. Additional diffusers<br />

will tend to increase the NC value by perhaps 2 db each, depending on size, air quantity <strong>and</strong> distance from<br />

other diffusers. Return applications will add +2 db to all values shown. Peformance data is based on tests<br />

performed in accordance with ADC 1062 GRD-84 Test Code.<br />

<strong>VAV</strong>-PRC008-EN D 21


Diffusers—<br />

Light<br />

Fixture<br />

Model<br />

Number<br />

Description<br />

Light Fixture Diffusers MODL Model<br />

The features of the Light Fixture<br />

Diffuser are described by the product<br />

categories shown in bold. Within each<br />

category the options available are<br />

listed.<br />

VLSD - SNGL<br />

with Side Inlet<br />

VLSD Supply Diffuser<br />

VLRD Return Diffuser<br />

DSEQ Design Sequence<br />

A A Design Sequence<br />

TYPE Diffuser Type<br />

SNGL Single Side Diffuser<br />

DUAL Dual Side Diffuser<br />

LGTH Diffuser Length<br />

2 Diffuser Length – 2'<br />

3 Diffuser Length – 3'<br />

4 Diffuser Length – 4'<br />

2x2 Light Fixture Diffuser Size – 2' x 2'<br />

3x3 Light Fixture Diffuser Size – 3' x 3'<br />

1x4 Light Fixture Diffuser Size – 1' x 4'<br />

2x4 Light Fixture Diffuser Size – 2' x 4'<br />

4x4 Light Fixture Diffuser Size – 4' x 4'<br />

INLT Inlet Size And Location<br />

S5 5” Side Inlet<br />

S6 6” Side Inlet<br />

T5 5” Top Inlet<br />

T6 6” Top Inlet<br />

T7 7” Top Inlet<br />

T8 8” Top Inlet<br />

INSL Insulation<br />

NONE No Insulation On Diffuser<br />

INT Matte-Faced – Internally<br />

Insulated<br />

EXT Foil-Faced – Externally<br />

Insulated<br />

VLSD-Dual<br />

with Side Inlet<br />

VLSD-DUAL<br />

with Top Inlet<br />

D 22<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Light<br />

Fixture<br />

Dimensional<br />

Data—<br />

VLSD–SNGL<br />

VLSD – SNGL<br />

MOUNTING<br />

BRACKET<br />

1<br />

13<br />

16 11 2<br />

4 7 8<br />

6 3 4<br />

INTERNAL INSULATION<br />

(OPTIONAL)<br />

VOLUME DAMPER<br />

ACCESSIBLE THROUGH<br />

AIR SLOT - 4' MODELS<br />

HAVE TWO INDIVIDUAL<br />

DAMPERS<br />

AIR PATTERN BAR<br />

OMITTED WHEN LIGHT<br />

FIXTURE RAIL IS FURNISHED<br />

WITH DEFLECTOR<br />

HOLD-DOWN TABS TO<br />

ALIGN AND LOCK DIFFUSER<br />

TO LIGHT FIXTURE AIR SLOT<br />

(SHIPPED FLAT)<br />

3<br />

8<br />

3<br />

4<br />

1 1<br />

16<br />

1<br />

8<br />

1 3 4<br />

5<br />

8<br />

INSULATION<br />

L<br />

NONE - STEEL UNINSULATED<br />

INT - STEEL WITH 1/2" FOIL FACED EXTERNAL INSULATION<br />

EXT - STEEL WITH 1/2" FOIL FACED EXTERNAL INSULATION<br />

INSL - NONE INSL - INT INSL - EXT<br />

<strong>NOTE</strong>S:<br />

1. DIFFUSERS ARE AVAILABLE AS SUPPLY UNITS<br />

FOR REGRESSED OR FLUSH AIR HANDLING<br />

LIGHT DIFFUSERS.<br />

2. MATERIAL: GALVANNEALED STEEL.<br />

EXPOSED SLOT AREA PAINTED FLAT BLACK.<br />

3. HEIGHT: 6¾" STANDARD. CEILING CLEARANCE<br />

REQUIRED IS 7" PLUS AMOUNT LIGHT IS REGRESSED<br />

ABOVE CEILING LINE. (FOR SINGLE SIDE ONLY)<br />

4. INLETS: 5" OR 6" OVAL STANDARD ON SIDE ENTRY.<br />

DIFFUSER<br />

LENGTH<br />

2<br />

3<br />

4<br />

AIR<br />

DIFFUSER<br />

LENGTH<br />

20"<br />

27"<br />

40"<br />

5. ALL SUPPLY DIFFUSERS INCLUDE PLENUM, INSULATION<br />

(WHEN SPECIFIED) AND DUCT CONNECTION.<br />

6. INSULATION IS U.L. LISTED AND MEETS NFPA 90A AND<br />

U.L. 181.<br />

7. STANDARD DIFFUSER LENGTHS ARE STATED. ACTUAL<br />

LENGTH WILL VARY WITH LIGHT MANUFACTURER. TO<br />

INSURE COMPATIBILITY, LIST LIGHT MANUFACTURER<br />

AND MODEL NUMBER.<br />

INLET<br />

S5 - 5" SIDE INLET<br />

S6 - 6" SIDE INLET<br />

8. ALL DIMENSIONS ARE IN INCHES.<br />

<strong>VAV</strong>-PRC008-EN D 23


Diffusers—<br />

Light<br />

Fixture<br />

Dimensional<br />

Data—<br />

VLSD–DUAL<br />

VLSD – DUAL<br />

D 24<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Light<br />

Fixture<br />

Dimensional<br />

Data—<br />

VRLD–SNGL<br />

VRLD – SNGL OPEN RETURNS<br />

MOUNTING<br />

BRACKET<br />

(SHIPPED FLAT)<br />

3 1 2<br />

LENGTH<br />

INTERNAL INSULATION<br />

(OPTIONAL)<br />

VOLUME DAMPER<br />

ACCESSIBLE THROUGH<br />

AIR SLOT - 4' MODELS<br />

HAVE TWO INDIVIDUAL<br />

DAMPERS<br />

HOLD-DOWN TABS TO<br />

ALIGN AND LOCK DIFFUSER<br />

TO LIGHT FIXTURE AIR SLOT<br />

(SHIPPED FLAT)<br />

1 1<br />

16<br />

3<br />

4<br />

1 3 4<br />

INSULATION<br />

NONE - STEEL UNINSULATED<br />

INT - STEEL WITH ½" INTERNAL MATTE FACED INSULATION<br />

INSL - NONE<br />

8 5 2<br />

<strong>NOTE</strong>S:<br />

1. DIFFUSERS ARE AVAILABLE AS RETURN UNITS.<br />

FOR REGRESSED OR FLUSH AIR HANDLING<br />

LIGHT DIFFUSERS.<br />

2. MATERIAL: GALVANNEALED STEEL EXPOSED<br />

AREA PAINTED FLAT BLACK.<br />

3. INSULATION IS U.L. LISTED AND MEETS NFPA 90A<br />

AND U.L. 181.<br />

4. HEIGHT: 3½" STANDARD. CEILING CLEARANCE<br />

REQUIRED IS 3¾" PLUS AMOUNT LIGHT IS<br />

REGRESSED ABOVE CEILING LINE.<br />

5. STANDARD DIFFUSER LENGTHS ARE STATED. ACTUAL<br />

LENGTH WILL VARY WITH LIGHT MANUFACTURER. TO<br />

INSURE CMPATIBILITY, LIST LIGHT MANUFACTURER<br />

AND MODEL NUMBER.<br />

6. ALL DIMENSIONS ARE IN INCHES.<br />

LENGTH<br />

3<br />

4<br />

AIR<br />

DIFFUSER<br />

LENGTH<br />

20"<br />

27"<br />

40"<br />

<strong>VAV</strong>-PRC008-EN D 25


Diffusers—<br />

Light<br />

Fixture<br />

Performance<br />

Data—<br />

VLSD<br />

Style LITE Diffuser Performance<br />

VLSD-SNGL<br />

Side inlet–2'<br />

Cfm 30 40 50 60 70 80 90 100<br />

Throw-V 3–4 4–6 5–7 6–8 7–9 8–10 9–10 9–11<br />

Throw-H 6–8 7–10 8–12 9–13 10–14 11–15 12–16 13–17<br />

TSP-5" .04 .08 .13 .19 .25 .32 .41 50<br />

TSP-6" .04 .08 .12 .18 .24 .31 .39 .48<br />

NC (20) (20) 22 29 33 36 41 44<br />

VLSD-SNGL<br />

Side inlet–3'<br />

Cfm 40 50 60 70 80 90 100 110<br />

Throw-V 3–5 4–6 5–7 6–8 6–9 7–9 7–10 8–10<br />

Throw-H 4–6 5–8 6–10 8–11 9–13 10–14 11–15 12–16<br />

TSP-5" .04 .06 .09 .12 .17 .21 .27 .32<br />

TSP-6" .04 .06 .08 .11 .15 .19 .24 .29<br />

NC (20) (20) (20) 23 27 32 35 39<br />

VLSD-SNGL<br />

Side inlet–4'<br />

Cfm 50 60 70 80 90 100 110 120<br />

Throw-V 3–4 4–5 5–6 5–7 6–8 6–8 6–9 7–9<br />

Throw-H 4–6 5–7 5–8 6–9 7–10 7–11 8–12 9–13<br />

TSP-5" .04 .06 .08 .11 .15 .17 .21 .25<br />

TSP-6" .04 .06 .08 .11 .14 .16 .20 .23<br />

NC (20) (20) (20) 23 27 30 34 37<br />

VLSD-DUAL<br />

Top inlet–2’<br />

CFM 50 60 70 80 90 100 110 120<br />

Throw-V 3–5 4–6 5–7 5–8 6–8 6–9 7–9 7–10<br />

Throw-H 2–4 4–8 6–10 7–10 7–11 8–11 8–12 9–13<br />

TSP-5" .05 .07 .09 .12 .15 .18 .22 .26<br />

TSP-6" .04 .06 .08 .10 .13 .16 .19 .23<br />

NC (20) (20) (20) 22 26 31 33 36<br />

VLSD-DUAL<br />

Top inlet–3’<br />

CFM 90 100 110 120 130 140 150 160<br />

Throw-V 3–5 3–6 4–6 4–6 5–7 6–7 6–8 6–9<br />

Throw-H 4–6 5–7 6–8 6–9 7–9 7–10 8–11 8–12<br />

TSP-5" .08 .10 .12 .15 .18 .20 .23 .28<br />

TSP-6" .08 .09 .11 .13 .16 .18 .20 .23<br />

NC 20 23 26 28 32 33 34 37<br />

VLSD-DUAL<br />

Top inlet–4’<br />

CFM 60 80 100 120 140 160 180 200<br />

Throw-V 1–2 1–3 2–3 2–4 3–5 4–6 5–7 6–8<br />

Throw-H 2–3 2–4 3–5 4–6 4–7 5–8 6–9 7–10<br />

TSP-5" .03 .06 .09 .13 .17 .22 .28 .35<br />

TSP-6" .03 .05 .08 .10 .14 .18 .23 .29<br />

NC (20) (20) 21 24 31 33 37 41<br />

VLSD-DUAL<br />

Side Inlet–2'<br />

Cfm 50 60 70 80 90 100 110 120<br />

Throw-V 3–5 4–6 5–7 5–8 6–8 6–9 7–9 7–10<br />

Throw-H 2–4 4–8 6–10 7–10 7–11 8–11 8–12 9–13<br />

TSP-5" .05 .06 .08 .10 .13 .16 .19 .23<br />

TSP-6" .04 .06 .08 .10 .12 .15 .18 .21<br />

NC (20) (20) (20) 21 25 29 32 36<br />

VLSD-DUAL<br />

Side Inlet–3'<br />

Cfm 90 100 110 120 130 140 150 160<br />

Throw-V 3–5 3–6 4–6 4–6 5–7 6–7 6–8 6–9<br />

Throw-H 4–6 5–7 6–8 6–9 7–9 7–10 8–11 8–12<br />

TSP-5" .07 .08 .10 .12 .14 .17 .19 .22<br />

TSP-6" .06 .07 .09 .11 .13 .15 .17 .19<br />

NC (20) 20 23 25 29 30 33 34<br />

VLSD-DUAL<br />

Side Inlet–4'<br />

Cfm 60 80 100 120 140 160 180 200<br />

Throw-V 1–2 1–3 2–3 2–4 3–5 4–6 5–7 6–8<br />

Throw-H 2–3 2–4 3–5 4–6 4–7 5–8 6–9 7–10<br />

TSP-5" .02 .04 .07 .10 .13 .16 .21 .26<br />

TSP-6" .02 .04 .06 .08 .11 .15 .19 .23<br />

NC (20) (20) (20) 21 26 30 33 37<br />

Projection - V <strong>and</strong> H are vertical <strong>and</strong> horizontal distance in feet to reach terminal velocities of 100 FPM <strong>and</strong> 50 FPM respectively.<br />

TSP - Static pressure drop in in. wg across the diffuser with dampers full open <strong>and</strong> horizontal air projection.<br />

NC - A one number evaluation of sound generation derived from sound power levels ( re: 10-12 watts) less 8 db room absorption. (20) indicates less than 20 NC rating.<br />

Data shown is for one diffuser. Additional diffusers will tend to increase the NC value by perhaps 2 db each, depending on size, air quantity <strong>and</strong> distance from other<br />

diffusers. Return applications will add +2 db to all values shown. Performance data is based on tests performed in accordance with ADC 1062 GRD-84 Test Code.<br />

D 26<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Induction<br />

Induction Diffusers<br />

The features of the Induction Diffuser<br />

are described by the product<br />

categories shown in bold. Within each<br />

category the options available are<br />

listed.<br />

Model<br />

Number<br />

Description<br />

MODL<br />

VLSD<br />

DSEQ<br />

A<br />

TYPE<br />

INDT<br />

INDB<br />

INCB<br />

Model<br />

Supply Diffuser<br />

Design Sequence<br />

A Design Sequence<br />

Diffuser Type<br />

Induction, Supply Only<br />

Induction, Down Blow,<br />

Supply Only<br />

Induction, Down Blow,<br />

Supply/Return<br />

Induction, Supply/Return<br />

Diffuser Length<br />

INSR<br />

LGTH<br />

2 Diffuser Length - 2'<br />

3 Diffuser Length - 3'<br />

4 Diffuser Length - 4'<br />

5 Diffuser Length - 5'<br />

CEIL Ceiling Type<br />

TBAR Tbar - 15/16”<br />

2X2T Center Notch Grid - 15/16”<br />

PLSR Plaster Ceiling<br />

DMPR Damper Type<br />

BAL Balancing Damper<br />

<strong>VAV</strong>-PRC008-EN D 27


Diffusers—<br />

Induction<br />

INDT, INDB, INSR, INCB<br />

Dimensional<br />

Data—INDT,<br />

INDB, INSR, INCB<br />

SUPPLY DIFFUSER<br />

SUPPLY DIFFUSER WITH DOWNBLOW<br />

A<br />

B<br />

(INDT)<br />

(INDB)<br />

B<br />

B<br />

A<br />

B<br />

A<br />

A<br />

SUPPLY/RETURN DIFFUSER<br />

SUPPLY/RETURN WITH DOWNBLOW<br />

A<br />

B<br />

(INSR)<br />

(INCB)<br />

B B<br />

A B A A<br />

SUPPLY DIFFUSER<br />

SUPPLY/RETURN DIFFUSER<br />

Internal insulation<br />

Internal insulation<br />

INLET<br />

SIZE<br />

DIFFUSER<br />

HEIGHT H<br />

6<br />

8<br />

5<br />

3<br />

2 4<br />

11<br />

A=<br />

16<br />

11<br />

A=<br />

16<br />

Vane Detail<br />

(T-BAR by other)<br />

3<br />

8<br />

13<br />

2<br />

16<br />

7<br />

8<br />

3<br />

8<br />

7<br />

8<br />

5<br />

5<br />

16<br />

2<br />

1<br />

2<br />

Notes:<br />

1. High induction horizontal air flow.<br />

2. Center down blow option provides a veritcal air<br />

pattern for exterior walls or glass. Adjustable<br />

Blades for volume <strong>and</strong> direction control.<br />

3. Supply/Return combination diffusers allow room air to<br />

be returned to ceiling plenum.<br />

4. Nominal lengths of 2', 3', 4', <strong>and</strong> 5'.<br />

Actual length is nominal minus 1/4 inch.<br />

5. Material: 24-gage galvannealed steel. All exposed<br />

surfaces painted flat black.<br />

6. All dimensions are in inches.<br />

D 28<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Induction<br />

Performance<br />

Data—<br />

INDUCT<br />

Style INDUCT Diffuser Performance<br />

Supply Slot Performance – INDT, INSR<br />

2' Cfm 60 80 100 120 140 160 180 200<br />

TSP .02 .03 .06 .08 .11 .14 .19 .23<br />

Throw 13 16 19 22 24 25 26 29<br />

NC (20) (20) (20) (20) (20) 22 26 29<br />

3' Cfm 90 120 150 180 210 240 270 300<br />

TSP .03 .04 .07 .10 .14 .18 .23 .29<br />

Throw 13 16 20 22 24 26 27 29<br />

NC (20) (20) (20) 22 25 29 32 35<br />

4' Cfm 120 160 200 240 280 320 360 400<br />

TSP .03 .05 .09 .12 .17 .22 .29 .36<br />

Throw 11 14 17 19 21 23 24 25<br />

NC (20) (20) 21 26 29 33 37 40<br />

5' Cfm 150 200 250 300 350 400 450 500<br />

TSP .03 .05 .10 .13 .18 .24 .31 .39<br />

Throw 9 11 14 15 17 18 19 20<br />

NC (20) 21 25 29 33 37 41 44<br />

Supply Slot Performance with Down Blow– INDB, INCB<br />

3' Cfm 90 120 150 180 210 240 270 300<br />

TSP .03 .06 .09 .13 .18 .23 .29 .35<br />

Throw H 11 16 19 22 24 26 27 29<br />

Throw V 4 5 5 6 6 7 7 8<br />

NC 20 25 31 35 40 43 45 48<br />

4' Cfm 120 160 200 240 280 320 360 400<br />

TSP .03 .06 .09 .13 .18 .23 .29 .36<br />

Throw H 11 16 19 22 25 26 27 29<br />

Throw V 4 5 5 6 6 7 7 8<br />

NC (20) 24 30 33 39 42 45 48<br />

5' Cfm 150 200 250 300 350 400 450 500<br />

TSP .03 .06 .09 .14 .19 .24 .30 .38<br />

Throw H 11 16 19 21 24 25 26 27<br />

Throw V 4 5 5 6 6 7 7 8<br />

NC (20) 24 30 33 38 42 44 47<br />

Return Slot Performance – INSR, INCB<br />

Cfm/Ft 30 40 50 60 70 80 90 100<br />

Neg. SP .01 .02 .03 .04 .06 .07 .09 .11<br />

TSP - Static pressure readings in in. wg.<br />

Throw - Horizontal distance in feet to reach terminal velocity, VT, of 50 FPM.<br />

Vertical throw values are based on st<strong>and</strong>ard 12" long down blow slot <strong>and</strong> 3/8"<br />

width setting.<br />

NC - A one number evaluation of sound generation derived from sound power<br />

levels (re: 10-12 watts) less 8 db room absorption. (20) indicates less than 20 NC<br />

rating. Data shown is for one diffuser. Additional diffusers will tend to increase<br />

the NC value by perhaps 2 db each, depending on size, air quantity <strong>and</strong> distance<br />

from other diffusers. Return applications will add +2 db to all valves shown.<br />

Performance data is based on tests performed in accordance with ADC 1062<br />

GRD-84 Test Code.<br />

<strong>VAV</strong>-PRC008-EN D 29


Diffusers—<br />

Perforated<br />

Model<br />

Number<br />

Description<br />

Perforated Diffusers<br />

The features of the Perforated Diffuser are described by the product categories<br />

shown in bold. Within each category the options available are listed.<br />

MODL<br />

VLSD<br />

VLRD<br />

DSEQ<br />

A<br />

DEFL<br />

ADJ<br />

DISC<br />

NONE<br />

TYPE<br />

PERF<br />

Model<br />

Supply Diffuser<br />

Return Diffuser<br />

Design Sequence<br />

A Design Sequence<br />

Deflector<br />

Adjustable Deflector<br />

Disc Deflector<br />

No Deflector<br />

Diffuser Type<br />

Perforated Diffuser<br />

CEIL Ceiling Type<br />

TBAR T-bar – 15/16"<br />

T916 Narrow Faced Grid – 9/16"<br />

D916 Narrow Regressed Grid – 9/16"<br />

INLT Inlet Size And Location<br />

6 6" Round Inlet, Top<br />

8 8" Round Inlet, Top<br />

10 10" Round Inlet, Top<br />

12 12" Round Inlet, Top<br />

14 14" Round Inlet, Top<br />

DMPR Damper Type<br />

BFLY Butterfly Damper<br />

D 30<br />

<strong>VAV</strong>-PRC008-EN


Diffusers—<br />

Perforated<br />

Dimensional<br />

Data—<br />

PERF<br />

PERF<br />

BUTTERFLY DAMPER<br />

(OPTIONAL FOR VLSD ONLY)<br />

1½<br />

16 T-BARS<br />

DISC OR ADJUSTABLE DEFLECTOR<br />

(FOR VLSD ONLY)<br />

24" CENTERS<br />

DEFL<br />

ADJ<br />

DISC DEFLECTOR (VLSD ONLY)<br />

ADJUSTABLE DEFLECTOR (VLSD ONLY)<br />

NO DEFLECTOR (VLRD ONLY)<br />

INLT<br />

6<br />

8<br />

12<br />

14<br />

6" TOP INLET<br />

8" TOP INLET<br />

12" TOP INLET<br />

14" TOP INLET<br />

<strong>NOTE</strong>S:<br />

1. COMPLETELY ASSEMBLED FOR EASY LAY-IN INSTALLATION.<br />

2. 22-GAGE PERFORATED STEEL FACE WITH WHITE FINISH<br />

AND 51% OPEN AREA.<br />

3. 24-GAGE STEEL PLENUM WITH BLACK INTERIOR. THE<br />

FACE FOR LEFT, RIGHT, OR VERTICAL THROW.<br />

4. ROUND INLET SIZES 6" THROUGH 14".<br />

5. AVAILABLE WITH DISC OR ADJUSTABLE DEFLECTOR.<br />

6. ALL DIMENSIONS ARE IN INCHES.<br />

<strong>VAV</strong>-PRC008-EN D 31


Diffusers—<br />

Perforated<br />

Performance<br />

Data—<br />

PERF<br />

Table 1 - Style PERF Diffuser Performance<br />

24 x 24 Nominal size<br />

Inlet Size<br />

6 Cfm 60 80 100 120 135 158 176 195 234<br />

TSP .01 .01 .02 .03 .04 .05 .06 .08 .12<br />

Throw 1 2 3 3 4 4 5 5 6<br />

NC — — — 20 21 23 27 30 35<br />

8 Cfm 104 139 175 210 245 280 315 350 420<br />

TSP .01 .02 .03 .04 .05 .06 .08 .10 .14<br />

Throw 2 3 4 4 5 6 7 7 8<br />

NC — — — 20 26 29 33 35 40<br />

10 Cfm 165 220 275 325 380 435 490 545 650<br />

TSP .01 .02 .03 .04 .06 .08 .10 .12 .18<br />

Throw 2 4 5 5 6 7 8 8 9<br />

NC — — 20 24 29 33 36 39 44<br />

12 Cfm 240 315 395 475 550 630 710 785 945<br />

TSP .01 .02 .04 .05 .07 .09 .12 .14 .20<br />

Throw 3 4 5 6 7 9 9 10 11<br />

NC — — 22 28 32 36 39 42 49<br />

14 Cfm 320 430 536 640 747 856 960 1070 1281<br />

TSP .01 .02 .04 .06 .08 .10 .13 .16 .23<br />

Throw 3 5 6 7 8 10 10 11 12<br />

NC — 20 25 30 36 39 42 45 50<br />

TSP - Total pressure readings in in. wg across diffuser.<br />

Throw - Horizontal distances in feet to reach terminal velocity, VT, of 50 FPM.<br />

NC - A one number evaluation of sound generation derived from sound power levels (re:<br />

10-12 watts) less 10 db room absorption. (20) indicates less than 20 NC rating. Data shown<br />

is for one diffuser. Additional diffusers will tend to increase the NC value by perhaps 2 db<br />

each, depending on size, air quantity <strong>and</strong> distance from other diffusers. Return applications<br />

will add +2 db to all valves shown. Performance data is based on tests performed at Donco<br />

Air Products <strong>and</strong> ETL Laboratories in accordance with ADC 1062 GRD-84 Test Code.<br />

D 32<br />

<strong>VAV</strong>-PRC008-EN


Diffusers<br />

Mechanical<br />

Specifications<br />

MODEL VLSD <strong>and</strong> VLRD<br />

Supply <strong>and</strong> Return Diffusers.<br />

LINR<br />

1. General Casing—<strong>This</strong> diffuser is<br />

constructed of 24-gage<br />

galvannealed steel. Hanger holes<br />

on each end of the diffuser for<br />

installation are optional. Slot edges<br />

formed over; provide double<br />

thickness tile support as an integral<br />

part of the diffuser housing. All<br />

exposed surfaces are finished with<br />

white enamel.<br />

2. Insulation—The interior surface of<br />

the diffuser casing is acoustically<strong>and</strong><br />

thermally-lined with ½-inch<br />

(13 mm) 1.9 lb cu ft (30.4 kgs/cu m),<br />

R-Value of 2.1 density glass fiber<br />

with high-density facing. The<br />

insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards.<br />

3. T-Bar Ceiling—<strong>This</strong> diffuser is<br />

designed to install over the “T” of<br />

most st<strong>and</strong>ard exposed suspended<br />

ceilings. The end angle is provided<br />

to allow the slot to fit flush with the<br />

bottom of the “T” <strong>and</strong> ceiling tile.<br />

4. 2x2 T-Bar Ceiling—<strong>This</strong> diffuser is<br />

designed to install over the “T” of<br />

most st<strong>and</strong>ard exposed suspended<br />

ceilings. The notch is provided in<br />

the middle of the unit to allow the<br />

diffuser to set over the “T” located<br />

at the middle point.<br />

5. Concealed Spline Ceiling—The<br />

diffuser is designed to sit in the<br />

center of the module, parallel to the<br />

main ceiling support member. The<br />

ceiling tile rests on the edge of the<br />

discharge slot <strong>and</strong> the flange. A<br />

t-bar insert is provided in the center<br />

of a two-way throw diffuser, when<br />

applicable.<br />

6. Plaster Ceiling—The diffuser is<br />

designed to sit into the opening in<br />

the plaster. The diffuser must be<br />

used in conjunction with a trim<br />

frame for a finished appearance.<br />

7. Trim Frame—The trim frame is<br />

extruded aluminum <strong>and</strong> designed<br />

to attach to the diffuser slot(s) with<br />

clips. The trim frame is finished with<br />

white enamel <strong>and</strong> is designed to<br />

set into the opening of a plaster<br />

ceiling for a finished appearance.<br />

8. Fire Damper—An integral fusible<br />

link, 22-gage factory installed fire<br />

damper. The fusible link has a<br />

melting point of 158°F (70°C).<br />

9. Inlet Balancing Damper—A<br />

factory-provided <strong>and</strong> -installed<br />

single-blade damper, with a<br />

position-locating h<strong>and</strong>le for<br />

balancing air.<br />

10. Inlet—The inlet connection is sized<br />

to fit st<strong>and</strong>ard, round, flexible<br />

ductwork.<br />

11. Agency Listing—UL listed as<br />

environmental air terminal unit.<br />

Control #419X (1- <strong>and</strong> 2-slot only).<br />

FAPF, VAPF, VAPS, AABD<br />

1. General Casing—<strong>This</strong> diffuser is<br />

constructed of 24-gage<br />

galvannealed steel. All exposed<br />

surfaces of the diffuser are finished<br />

with flat black enamel. Factoryinstalled<br />

t-bars are finished with<br />

white enamel.<br />

2. Insulation—The interior surface of<br />

the supply diffuser casing is<br />

acoustically- <strong>and</strong> thermally-lined<br />

with ½-inch (13 mm) 1.9 lb/cu ft<br />

(30.4 kg/cu m), R-Value of<br />

2.1 density glass fiber with highdensity<br />

facing. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong><br />

UL 181 st<strong>and</strong>ards.<br />

3. T-Bar Ceiling—<strong>This</strong> diffuser is<br />

designed to install over the “T” of<br />

most st<strong>and</strong>ard exposed suspended<br />

ceilings. The end angle is provided<br />

to allow the slot to fit flush with the<br />

bottom of the “T” <strong>and</strong> ceiling tile.<br />

4. 2x2 T-Bar Ceiling—<strong>This</strong> diffuser is<br />

designed to install over the “T” of<br />

most st<strong>and</strong>ard exposed suspended<br />

ceilings. The notch is provided in<br />

the middle of the unit to allow the<br />

diffuser to set over the “T” located<br />

at the middle point.<br />

5. Plaster Ceiling—The diffuser is<br />

designed to set into the opening in<br />

the plaster. The diffuser must be<br />

used in conjunction with a trim<br />

frame for a finished appearance.<br />

The trim frame is extruded<br />

aluminum with white finish.<br />

6. Inlet Balancing Damper—A<br />

factory-provided <strong>and</strong> -installed<br />

single-blade damper, with a<br />

position-locating h<strong>and</strong>le for<br />

balancing air.<br />

7. Inlet – The inlet connection is sized<br />

to fit st<strong>and</strong>ard, round, flexible<br />

ductwork.<br />

INDT<br />

1. General Casing – <strong>This</strong> diffuser<br />

is constructed of 24-gage<br />

galvannealed steel. Exposed<br />

surfaces are finished with flat<br />

black enamel.<br />

2. Insulation – The interior surface of<br />

the diffuser casing is acoustically<strong>and</strong><br />

thermally-lined with ½-inch<br />

(13 mm) 1.9 lb cu ft (30.4 kgs/cu m),<br />

R-Value of 2.1 density glass fiber<br />

with high-density facing. The<br />

insulation is UL listed <strong>and</strong> meets<br />

NFPA-90A <strong>and</strong> UL 181 st<strong>and</strong>ards.<br />

3. T-Bar Ceiling—<strong>This</strong> diffuser is<br />

designed to install over the “T”<br />

of most st<strong>and</strong>ard exposed<br />

suspended ceilings.<br />

4. 2x2 T-Bar Ceiling—<strong>This</strong> diffuser is<br />

designed to install over the “T” of<br />

most st<strong>and</strong>ard exposed suspended<br />

ceilings. The notch is provided in<br />

the middle of the unit to allow the<br />

diffuser to set over the “T” located<br />

at the middle point.<br />

5. Plaster Ceiling—The diffuser is<br />

designed to set into the opening in<br />

the plaster. The diffuser must be<br />

used in conjunction with a trim<br />

frame, for a finished appearance.<br />

The trim frame is extruded<br />

aluminum <strong>and</strong> designed to attach<br />

to the diffuser slot with clips. The<br />

trim frame is finished with white<br />

enamel.<br />

6. Inlet Balancing Damper—A<br />

factory-provided <strong>and</strong> -installed<br />

single-blade damper, with a<br />

position-locating h<strong>and</strong>le for<br />

balancing air.<br />

7. Inlet—The inlet connection is sized<br />

to fit st<strong>and</strong>ard, round, flexible<br />

ductwork.<br />

LITE<br />

1. General Casing—<strong>This</strong> diffuser is<br />

constructed of 24-gage<br />

galvannealed steel. Hold-down tabs<br />

on the diffuser ends are provided to<br />

align <strong>and</strong> lock the diffuser to the<br />

light air slot. Exposed slot area is<br />

painted flat black.<br />

2. Insulation—Optional. If used, the<br />

interior surface of the diffuser<br />

casing is acoustically <strong>and</strong> thermally<br />

lined with ½ inch (13 mm) 1.9 lb cu<br />

ft (30.4 kgs/cu m), R-Value of 2.1<br />

density glass fiber with highdensity<br />

facing. The insulation is UL<br />

listed <strong>and</strong> meets NFPA-90A <strong>and</strong><br />

UL 181 st<strong>and</strong>ards. The external<br />

insulation is foil-faced.<br />

3. Dual Side Diffuser—<strong>This</strong> diffuser<br />

is designed for dual-side<br />

installation on the light fixture.<br />

4. Single Side Diffuser—<strong>This</strong><br />

diffuser is designed for single-side<br />

installation on the light fixture. A<br />

side bracket is provided for extra<br />

support.<br />

5. Inlet—The inlet connection is sized<br />

to fit st<strong>and</strong>ard, round, flexible<br />

ductwork.<br />

<strong>VAV</strong>-PRC008-EN D 33


Diffusers—<br />

Perforated<br />

Mechanical<br />

Specifications<br />

PERF<br />

1. General Casing—<strong>This</strong> diffuser<br />

plenum is constructed of 24-gage<br />

galvannealed steel with black<br />

interior. The diffuser face is 22-gage<br />

perforated steel with a white finish<br />

<strong>and</strong> 51% open area.<br />

2. Adjustable Deflector—A set of<br />

four square louver-type deflectors<br />

attached to the backside of the<br />

perforated panel, directly below the<br />

inlet collar. Each deflector pivots to<br />

allow for one-, two-, three-, <strong>and</strong><br />

four-way horizontal air patterns.<br />

Factory-set at a four-way air pattern.<br />

3. Disc Deflector—A round disc<br />

attached to the backside of the<br />

perforated panel, directly below the<br />

inlet collar to deflect the air in a<br />

360° horizontal air pattern.<br />

4. T-Bar Ceiling—<strong>This</strong> diffuser is<br />

designed for easy lay-in installation<br />

in the suspended T-bar ceiling grid.<br />

5. Butterfly Damper—A two-bladed<br />

volume damper located in the inlet<br />

collar. Adjustments are made<br />

through the perforated metal with<br />

a screwdriver.<br />

6. Inlet – The inlet connection is sized<br />

to fit st<strong>and</strong>ard, round, flexible<br />

ductwork.<br />

D 34<br />

<strong>VAV</strong>-PRC008-EN


Index<br />

by Nomenclature<br />

A<br />

AABD .....................................................................................D 2, D 12, D 20–21, D 33<br />

D<br />

DD00 ...................................................................................................... C 2, C 7, C 48<br />

DD01. ............................................................................ C 2, C 9, C 12, C 14, C 16, C 48<br />

DD02 .................................................................................. C 2, C 9–10, C 15–16, C 48<br />

DD03 .................................................................................. C 2, C 9–10, C 15–16, C 48<br />

DD04 ............................................................................ C 2, C 9, C 11, C 14, C 16, C 48<br />

DD05 ............................................................................ C 2, C 9, C 11, C 14, C 16, C 48<br />

DD07 .................................................................................. C 2, C 9–10, C 15–16, C 48<br />

DD08 ................................................................................................... C 2, C 13, C 48<br />

DUAL ................................................................................................. D 22, D 24, D 26<br />

E<br />

EI05 .............................................................................................. C 25–26, C 28, C 49<br />

EI28 .................................................................................................... C 25, C 27, C 49<br />

EI29 .................................................................................................... C 25, C 27, C 49<br />

EI71 ................................................................................................... C 25, C 29, C 49<br />

ENON ..................................................................................................... C 2, C 48–49<br />

F<br />

FAPF ............................................................................................... D 3, D 16–19, D 33<br />

FM00 ..................................................................................................... C 2, C 8, C 48<br />

FM01 .................................................................................................... C 2, C 8, C 48<br />

I<br />

INCB ....................................................................................................... D 3, D 27–29<br />

INDB ....................................................................................................... D 3, D 27–29<br />

INDT .............................................................................................. D 3, D 27–29, D 33<br />

INSR ....................................................................................................... D 3, D 27–29<br />

L<br />

LINR......................................................................................................... D 2–11, D 33<br />

LITE ............................................................................................... D 3, D 22–26, D 33<br />

LPCF ............................................................................................................ LHP 1–21<br />

LPEF ............................................................................................................ LHP 1–21<br />

LPWF ........................................................................................................... LHP 1–21<br />

LSCF ............................................................................................................ LHP 1–24<br />

LSEF ............................................................................................................ LHP 1–24<br />

LSWF ........................................................................................................... LHP 1–24<br />

<strong>VAV</strong>-PRC008-EN<br />

IBN i


Index<br />

by Nomenclature<br />

P<br />

PERF .............................................................................................. D 3, D 30–32, D 34<br />

PC00 ...................................................................................................... C 32–33, C 50<br />

PC03 .................................................................................................. C 32, C 39, C 50<br />

PC04 ...................................................................................................... C 32–33, C 50<br />

PC05 ................................................................................................... C 32, C 37, C 50<br />

PN00.................................................................................... C 32, C 36, C 40–41, C 50<br />

PN04 .................................................................................................. C 32, C 36, C 50<br />

PN05 .................................................................................... C 32, C 34, C 41–42, C 50<br />

PN08 .................................................................................................. C 32, C 38, C 50<br />

PN09 .................................................................................................. C 32, C 38, C 50<br />

PN10 .................................................................................................. C 32, C 39, C 50<br />

PN11 .................................................................................................. C 32, C 34, C 50<br />

PN32 .................................................................................................. C 32, C 35, C 50<br />

PN34 .................................................................................................. C 32, C 35, C 50<br />

PN51 ............................................................................................. C 32, C 43–44, C 50<br />

PN52 ............................................................................................. C 32, C 44–45, C 50<br />

S<br />

SNGL .................................................................................................... D 23–23, D 25<br />

V<br />

VAPF .............................................................................................. D 3, D 12–14, D 33<br />

VAPS ........................................................................................... D 3, D 12, D15, D 33<br />

VCCF .............................................................................................................. SD 1–30<br />

VCEF .............................................................................................................. SD 1–30<br />

VCWF ............................................................................................................ SD 1–30<br />

VDDF .............................................................................................................DD 1–15<br />

VLRD .......................................................................................................... D 22, D 25<br />

VLSD .................................................................................................... D 22–24, D 26<br />

VPCF ............................................................................................................ FPP 1–44<br />

VPEF ............................................................................................................ FPP 1–44<br />

VPWF .......................................................................................................... FPP 1–44<br />

VSCF ........................................................................................................... FPS 1–45<br />

VSEF ............................................................................................................ FPS 1–45<br />

VSWF .......................................................................................................... FPS 1–45<br />

IBN ii<br />

<strong>VAV</strong>-PRC008-EN


Index<br />

by Section<br />

Features <strong>and</strong> Benefits ......................................................................... FB 1–5<br />

Energy Efficiency ................................................................................................. FB 1<br />

Unit Construction ........................................................................................... FB 2 – 3<br />

Indoor Air Quality (IAQ) ....................................................................................... FB 3<br />

Integrated Comfort Systems (ICS) ................................................................... FB 3–4<br />

Factory-Installed vs. Factory-Commissioned ........................................................ FB 4<br />

Advanced Control Sequences .............................................................................. FB 5<br />

Application Considerations ............................................................ AC 1–23<br />

<strong>VAV</strong> Systems ................................................................................................... AC 2–4<br />

Single-Duct Terminal<br />

Dual-Duct Terminal<br />

Parallel Fan-Powered Terminal<br />

Series Fan-Powered Terminal<br />

Low-Height Parallel Fan-Powered Terminal<br />

Low-Height Series Fan-Powered Terminal<br />

Parallel vs. Series ................................................................................................ AC 5<br />

Low-Temperature Air ....................................................................................... AC 6–7<br />

Energy Savings <strong>and</strong> System Control .................................................................. AC 8<br />

ECM<br />

Fan Pressure Optimization<br />

Ventilation Reset<br />

Agency Certifications .......................................................................................... AC 9<br />

ARI 880-98<br />

ARI 885-98<br />

UL 1995<br />

Control Types ............................................................................................... AC 10–12<br />

Direct Digital <strong>Controls</strong> (DDC)<br />

Analog Electronic<br />

Pneumatic<br />

Flow Measurement <strong>and</strong> Control .................................................................. AC 13–14<br />

Flow Ring<br />

Elevation Effects<br />

Reheat Option ................................................................................................... AC 15<br />

Hot Water Reheat <strong>and</strong> Valves (Cv)<br />

Electric Reheat (kW)<br />

Insulation .......................................................................................................... AC 16<br />

Metal Encapsulated Edges<br />

Matte-Faced<br />

Foil-Faced<br />

Double-Wall<br />

Closed-Cell<br />

Acoustics ..................................................................................................... AC 17–18<br />

Duct Design .......................................................................................................AC 19<br />

Equal Friction<br />

Static Regain<br />

Selection Program ............................................................................................ AC 20<br />

TOPSS Selection Program<br />

<strong>VariTrane</strong> Quick Select<br />

Best Practices .................................................................................................... AC 21<br />

Unit Conversions .............................................................................................. AC 22<br />

Additional References ....................................................................................... AC 23<br />

Single-Duct Terminal Units –<br />

Models VCCF, VCWF, VCEF ............................................................... SD 1–30<br />

Service Model Number Description .................................................................SD 2–3<br />

Selection Procedure .........................................................................................SD 4–5<br />

General Data<br />

Valve/Controller Airflow Guidelines ................................................................ SD 6<br />

Performance Data<br />

Air Pressure Requirements ..........................................................................SD 7–9<br />

VCWF Hot Water Coil ............................................................................... SD 10–15<br />

VCEF Electric Coil .................................................................................... SD 16–17<br />

<strong>VAV</strong>-PRC008-EN<br />

IBS i


Index<br />

by Section<br />

Acoustics<br />

VCCF ..................................................................................................... SD 18–21<br />

Dimensional Data<br />

VCCF Dimensions ........................................................................................ SD 22<br />

VCWF Dimensions ....................................................................................... SD 23<br />

Hot Water 1-Row Coil Connections ............................................................... SD 24<br />

Hot Water 2-Row Coil Connections ............................................................... SD 25<br />

VCEF Dimensions ......................................................................................... SD 26<br />

VCEF (Right-h<strong>and</strong>) Dimensions .................................................................... SD 27<br />

Mechanical Specifications<br />

VCCF, VCWF, VCEF .................................................................................... SD 28–30<br />

Dual-Duct Terminal Units –<br />

Models VDDF ........................................................................................DD 1–15<br />

Service Model Number Description .................................................................... DD 2<br />

Selection Procedure ........................................................................................ DD 3–4<br />

General Data<br />

Valve/Controller Airflow Guidelines ................................................................ DD 5<br />

Performance Data<br />

Air Pressure Requirements ......................................................................... DD 6–7<br />

Acoustics ................................................................................................... DD 8–11<br />

Dimensional Data<br />

VDDF Dimensions ................................................................................... DD 12–13<br />

Mechanical Specifications<br />

VDDF ....................................................................................................... DD 14–15<br />

Parallel Fan-Powered Terminal Units –<br />

Models VPCF, VPWF, VPEF ............................................................. FPP 1–37<br />

Service Model Number Description ................................................................... FPP 2<br />

Selection Procedure ....................................................................................... FPP 3–5<br />

General Data<br />

Valve/Controller Airflow Guidelines ............................................................... FPP 6<br />

Performance Data<br />

Air Pressure Requirements ........................................................................ FPP 7–8<br />

Fan Curves .............................................................................................. FPP 9–12<br />

Hot Water Coil ........................................................................................FPP 13–16<br />

Electrical Data ........................................................................................ FPP 17–19<br />

Acoustics ............................................................................................... FPP 20–25<br />

Dimensional Data<br />

VPCF Dimensions ........................................................................................ FPP 26<br />

VPWF Dimensions ...................................................................................... FPP 27<br />

VPWF on DIscharge Dimensions ................................................................. FPP 28<br />

Hot Water 1-Row Coil Connections .............................................................. FPP 29<br />

Hot Water 2-Row Coil Connections .............................................................. FPP 30<br />

Hot Water Discharge 1-Row Connections .................................................... FPP 31<br />

Hot Water Discharge 2-Row Connections .................................................... FPP 32<br />

VPEF Dimensions ........................................................................................ FPP 33<br />

Enclosure Details ......................................................................................... FPP 34<br />

Mechanical Specifications<br />

VPCF, VPWF, VPEF .................................................................................. FPP 35–37<br />

Series Fan-Powered Terminal Units –<br />

Models VSCF, VSWF, VSEF ............................................................ FPS 1–40<br />

Service Model Number Description ...................................................................FPS 2<br />

Selection Procedure ....................................................................................... FPS 3–5<br />

General Data<br />

Valve/Controller Airflow Guidelines ...............................................................FPS 6<br />

Performance Data<br />

Air Pressure Requirements ........................................................................ FPS 7–8<br />

Fan Curves .............................................................................................. FPS 9–12<br />

Hot Water Coil ....................................................................................... FPS 13–16<br />

Electrical Data ........................................................................................FPS 17–19<br />

Acoustics ............................................................................................... FPS 20–25<br />

IBS ii<br />

<strong>VAV</strong>-PRC008-EN


Index<br />

by Section<br />

Dimensional Data<br />

VSCF Dimensions .................................................................................. FPS 26-29<br />

VSWF Dimensions ................................................................................. FPS 30-33<br />

Hot Water 1-Row Coil Connections .............................................................. FPS 34<br />

Hot Water 2-Row Coil Connections .............................................................. FPS 35<br />

VSEF Dimensions ................................................................................... FPS 36-37<br />

Mechanical Specifications<br />

VSCF, VSWF, VSEF .................................................................................. FPS 38–40<br />

Low-Height Parallel Fan-Powered Terminal Units –<br />

Models LPCF, LPWF, LPEF .............................................................. LHP 1–29<br />

Service Model Number Description ............................................................... LHP 2–3<br />

General Data<br />

Valve/Controller Airflow Guidelines .............................................................. LHP 4<br />

Performance Data<br />

Air Pressure Requirements ........................................................................ LHP 5–6<br />

Fan Curves ................................................................................................ LHP 7–8<br />

Hot Water Coil ......................................................................................... LHP 9–10<br />

Electrical Data ............................................................................................. LHP 11<br />

Acoustics ............................................................................................... LHP 12–15<br />

Dimensional Data<br />

LPCF Dimensions .................................................................................. LHP 16–18<br />

LPWF Dimensions ................................................................................. LHP 19–22<br />

Hot Water 1-Row Coil Connections (10SQ) ...................................................LHP 23<br />

Hot Water 2-Row Coil Connections (10SQ) ..................................................LHP 24<br />

LPEF Dimensions .................................................................................. LHP 25–26<br />

Mechanical Specifications<br />

LPCF, LPWF, LPEF .................................................................................... LHP27–29<br />

Low-Height Series Fan-Powered Terminal Units –<br />

Models LSCF, LSWF, LSEF ............................................................. LHS 1–27<br />

Service Model Number Description ............................................................... LHS 2–3<br />

General Data<br />

Valve/Controller Airflow Guidelines .............................................................. LHS 4<br />

Performance Data<br />

Air Pressure Requirements ........................................................................ LHS 5–6<br />

Fan Curves ................................................................................................ LHS 7–8<br />

Hot Water Coil ......................................................................................... LHS 9–10<br />

Electrical Data ....................................................................................... LHS 11–12<br />

Acoustics ............................................................................................... LHS 13–16<br />

Dimensional Data<br />

LSCF Dimensions .................................................................................. LHS 17–18<br />

LSWF Dimensions ................................................................................. LHS 19–20<br />

Hot Water 1-Row Coil Connections ............................................................. LHS 21<br />

Hot Water 2-Row Coil Connections ............................................................. LHS 22<br />

LSEF Dimensions .................................................................................. LHS 23–24<br />

Mechanical Specifications<br />

LSCF, LSWF, LSEF .................................................................................. LHS 25–27<br />

<strong>VAV</strong>-PRC008-EN<br />

IBS iii


Index<br />

by Section<br />

<strong>VariTrane</strong> <strong>Controls</strong> ................................................................................ C 1–67<br />

Direct Digital <strong>Controls</strong><br />

Options .............................................................................................................C 3<br />

General Logic ....................................................................................................C 4<br />

DDC Reheat Control ...................................................................................... C 5–7<br />

Control Drawings ........................................................................................ C 8–17<br />

Accessories<br />

Direct Digital Controller/UCM ..................................................................... C 18<br />

Wireless Receiver/Wireless Zone Sensor .................................................... C 19<br />

DDC Zone Sensor ....................................................................................... C 19<br />

CO 2<br />

Wall Sensor .......................................................................................... C 20<br />

Duct CO 2<br />

Sensor ......................................................................................... C 20<br />

DDC Zone Sensor with LCD ........................................................................ C 20<br />

Zone Occupancy Sensor ............................................................................ C 21<br />

Auxiliary Temperature Sensor ..................................................................... C 21<br />

Control Relay .............................................................................................. C 21<br />

Two-Position Water Valve ............................................................................ C 22<br />

Proportional Water Valve ............................................................................. C 22<br />

Differential Pressure Transducer ................................................................. C 23<br />

Transformers .............................................................................................. C 23<br />

Trane Actuator – 90 Second Drive Time ...................................................... C 24<br />

DDC Retrofit Kit .......................................................................................... C 24<br />

Retrofit Kit Actuator – Variable Drive Time ................................................... C 25<br />

LonMark DDC <strong>VAV</strong> Controller<br />

Introduction ..................................................................................................... C 26<br />

Options ........................................................................................................... C 27<br />

Features & Benefits ................................................................................... C 28–29<br />

Controller Logic ......................................................................................... C 30–32<br />

Ventilation Control ........................................................................................... C 33<br />

Flow Tracking ................................................................................................... C 34<br />

Control Drawings ...................................................................................... C 35–38<br />

Accessories ..................................................................................................... C 39<br />

Data Lists ........................................................................................................ C 40<br />

Analog <strong>Controls</strong><br />

Options ........................................................................................................... C 41<br />

Control Drawings ...................................................................................... C 42–45<br />

Accessories<br />

Analog Electronic Controller ....................................................................... C 46<br />

Trane Actuator – 90 Second Drive Time ...................................................... C 46<br />

Analog Electronic Sensor ........................................................................... C 47<br />

Static Pressure Controller ........................................................................... C 47<br />

Pneumatic <strong>Controls</strong><br />

Options ........................................................................................................... C 48<br />

Control Drawings ...................................................................................... C 49–61<br />

Accessories<br />

3011 Pneumtic Volume Regulator ............................................................... C 62<br />

3501 Pneumatic Volume Regulator ............................................................. C 62<br />

Pneumatic Damper Actuator ...................................................................... C 63<br />

Reversing Relay .......................................................................................... C 63<br />

Signal Limiter ............................................................................................. C 63<br />

Mechanical Specifications ............................................................................. C 64–67<br />

IBS iv<br />

<strong>VAV</strong>-PRC008-EN


Index<br />

by Section<br />

Diffusers .................................................................................................... D 1–34<br />

Introduction ....................................................................................................... D 1–3<br />

Linear Slot Diffusers (LINR)<br />

Model Number Description .............................................................................. D 4<br />

Ceiling System Cross Reference ....................................................................... D 5<br />

Dimensional Data .......................................................................................... D 6–9<br />

Inlet Availability ............................................................................................... D 10<br />

Performance Data ........................................................................................... D 11<br />

Adjustable Flow Diffusers (VAPF, VAPS, FAPF, AABD)<br />

Model Number Description .............................................................................D 12<br />

Dimensional Data (VAPF) ................................................................................D 13<br />

Performance Data (VAPF) ................................................................................ D 14<br />

Dimensional Data (VAPS) ................................................................................D 15<br />

Dimensiona Data (FAPF) ........................................................................... D 16–17<br />

Performance Data (FAPF) .......................................................................... D 18–19<br />

Dimensional Data (AABD) .............................................................................. D 20<br />

Performance Data (AABD) .............................................................................. D 21<br />

Light Diffusers (SNGL, DUAL)<br />

Model Number Description ............................................................................ D 22<br />

Dimensional Data ...................................................................................... D 23–25<br />

Performance Data (VLSD) .............................................................................. D 26<br />

Induction Diffusers (INDT, INDB, INCB, INSR)<br />

Model Number Description ............................................................................ D 27<br />

Dimensional Data ........................................................................................... D 28<br />

Performance Data .......................................................................................... D 29<br />

Perforated Diffusers (PERF)<br />

Model Number Description ............................................................................ D 30<br />

Dimensional Data ........................................................................................... D 31<br />

Performance Data .......................................................................................... D 32<br />

Mechanical Specifications .............................................................................. D 33–34<br />

Index by Nomenclature ........................................................................ IBN i–ii<br />

Index by Section ..................................................................................... IBS i–v<br />

<strong>VAV</strong>-PRC008-EN<br />

IBS v


Trane<br />

A business of American St<strong>and</strong>ard Companies<br />

www.trane.com<br />

For more information contact your local district office<br />

or e-mail us at comfort@trane.com<br />

Literature Order Number<br />

File Number<br />

Supersedes<br />

<strong>VAV</strong>-PRC008-EN<br />

PL-TD-<strong>VAV</strong>-000-<strong>VAV</strong>-PRC008-EN-0506<br />

PL-TD-<strong>VAV</strong>-000-<strong>VAV</strong>-PRC008-EN-0306<br />

Stocking Location Electronic Only/Last Print is 2004<br />

Trane has a policy of continuous product <strong>and</strong> product data improvement <strong>and</strong> reserves the right to change<br />

design <strong>and</strong> specifications without notice.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!