24.11.2014 Views

1 Introduction 2 Preliminaries and notations - Any2Any ...

1 Introduction 2 Preliminaries and notations - Any2Any ...

1 Introduction 2 Preliminaries and notations - Any2Any ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

On the Inversion of V<strong>and</strong>ermonde Matrices<br />

Shui-Hung Hou<br />

Department of Applied Mathematics<br />

Hong Kong Polytechnic University<br />

mahoush@polyu.edu.hk<br />

Abstract<br />

Anovel <strong>and</strong> simple recursive algorithm for inverting V<strong>and</strong>ermonde<br />

matrix <strong>and</strong> its generalized form is presented. The algorithm is suitable<br />

for classroom use in both numerical as well as symbolic computation.<br />

1 <strong>Introduction</strong><br />

The importance of the V<strong>and</strong>ermonde matrix is well known. Inversion of<br />

this matrix is necessary in many areas of applications such as polynomial<br />

interpolation [4, 10], digital signal processing [2], <strong>and</strong> control theory [6], to<br />

mention a few. See also for example Klinger [8], Kalman [7]. However, an<br />

explicit recursive formula for the inversion of V<strong>and</strong>ermonde matrices seems<br />

unavailable in most linear algebra textbooks.<br />

The purpose of this paper is to present anovel <strong>and</strong> simple recursive algorithm<br />

for inverting V<strong>and</strong>ermonde matrix, as well as its generalized (or conuent)<br />

form, in a way more readily accessible for use in classroom <strong>and</strong> suitable for<br />

both numerical as well as symbolic computation.<br />

2 <strong>Preliminaries</strong> <strong>and</strong> <strong>notations</strong><br />

Let m be a nonnegative integer. For the sequence 1; (s , );:::;(s , ) m,1<br />

of polynomials we write s(; m) =[1; (s , );:::;(s , ) m,1 ] T . In particular,<br />

s(0;m)=[1;s;:::;s m,1 ] T :<br />

Let 1 ; 2 ;:::; r be given distinct zeros of the polynomial<br />

p(s) =(s , 1 ) n1 (s , r ) nr


with n 1 + :::+ n r = n. The generalized (or conuent) V<strong>and</strong>ermonde matrix<br />

related to the zeros of p(s) is known to be<br />

V =[V 1 V 2 V r ] ; (1)<br />

where the block matrix V k = V ( k ;n k ) is of order n n k , having elements<br />

i,1<br />

V ( k ;n k ) ij =<br />

j,1 <br />

i,j<br />

k<br />

for i j <strong>and</strong> zero otherwise (k = 1; 2;:::;r; i =<br />

1; 2;:::;n; j = 1; 2;:::;n k ). More specically, V k is the n n k matrix of<br />

coecients that appears in the truncated Taylor expansion at k , modulo<br />

(s , k ) n k,ofs(0;n). That is,<br />

s(0;n)=V ( k ;n k )s( k ;n k ) mod (s , k ) n k<br />

:<br />

In the case the zeros 1 ;:::; r of p(s) are simple, we have the usual V<strong>and</strong>ermonde<br />

matrix, namely,<br />

V =<br />

2<br />

6<br />

4<br />

1 1 1<br />

1 2 r<br />

7<br />

. . . 5 :<br />

n 1,1<br />

1<br />

n 2,1<br />

2<br />

nr,1<br />

r<br />

It will be shown that the inverse of the generalized V<strong>and</strong>ermonde matrix V<br />

in (1) has a form<br />

2 3<br />

W 1<br />

W<br />

V ,1 =<br />

2<br />

6<br />

4<br />

7<br />

. 5 ;<br />

W r<br />

where each block matrix W k is of order n k n, <strong>and</strong> may be computed by<br />

means of a recursive procedure.<br />

Generally, the inverse of the usual V<strong>and</strong>ermonde matrix [3], as well as the<br />

inverse of the generalized V<strong>and</strong>ermonde matrix [9] are based on using interpolation<br />

polynomials.<br />

Our approach is based on using the Leverrier-Faddeev algorithm [1, 5, 10],<br />

which states that the resolvent ofagiven n n matrix A is given by<br />

(sI , A) ,1 = B 1s n,1 + B 2 s n,2 + + B n<br />

s n + a 1 s n,1 + + a n<br />

; (2)<br />

where det(sI , A) =s n + a 1 s n,1 + + a n is the characteristic polynomial<br />

3


of the matrix A, <strong>and</strong>all the B j matrices are of order n n, satisfying<br />

B 1 = I; a 1 = , 1 1 tr(AB 1);<br />

B 2 = AB 1 + a 1 I; a 2 = , 1 2 tr(AB 2);<br />

.<br />

.<br />

B n = AB n,1 + a n,1I; a n = , 1 tr(AB n n)<br />

with 0=AB n + a n I terminating as a check of computation. Here tr st<strong>and</strong>s<br />

for the trace of a matrix.<br />

3 Main result<br />

Let J = diag(J 1 ;:::;J r ) be the block diagonal matrix, where<br />

2<br />

3<br />

k 1 0 0<br />

0 k 1 .<br />

J k = J( k ;n k )=<br />

0<br />

...<br />

... 0<br />

6<br />

4<br />

7<br />

. k 1 5<br />

0 0 0 k<br />

is the n k n k Jordan block with eigenvalue k . Then J has characteristic<br />

polynomial det(sI , J) =(s , 1 ) n1 (s , r ) nr<br />

= p(s).<br />

Substituting A = J in equations (2) <strong>and</strong> (3) of the Leverrier-Faddeev algorithm,<br />

we see immediately that<br />

where<br />

p(s)(sI , J) ,1 = B 1 s n,1 + B 2 s n,2 + + B n ; (4)<br />

B 1 = I;<br />

B 2 = JB 1 + a 1 I;<br />

<br />

B n = JB n,1 + a n,1I;<br />

0 = JB n + a n I:<br />

J = diag(J 1 ;:::;J r ) being block diagonal, so are all the B j matrices. In fact,<br />

B j =diag(B j;1 ;B j;2 ;:::;B j;r );<br />

j =1; 2;:::;n;<br />

<strong>and</strong> each block matrix B j;k is of order n k n k , satisfying<br />

B 1;k = I k ;<br />

B 2;k = J k B 1;k + a 1 I k ;<br />

<br />

B n;k = J k B n,1;k + a n,1I k ;<br />

0 = J k B n;k + a n I k ;<br />

(3)<br />

(5)


where I k is the n k n k identity matrix.<br />

Let us now put<br />

p k (s) =<br />

p(s)<br />

; k =1;:::;r:<br />

(s , k ) n k<br />

Dene also the n k -dimensional column vector k = [0; ; 0; 1] T , <strong>and</strong> write<br />

=[ T 1<br />

; ;r T ] T .<br />

If we postmultiply both sides of equation (4) by the column vector , we<br />

easily get 2<br />

3 2 3<br />

p 1 (s)s( 1 ;n 1 ) H<br />

6<br />

4 .<br />

7<br />

5 = 1<br />

6<br />

4 .<br />

7<br />

5 s(0;n): (6)<br />

p r (s)s( r ;n r ) H r<br />

Each H k is of the form<br />

H k = h B n;k k B 1;k k<br />

i<br />

<strong>and</strong> has order n k n.<br />

Comparing in turn for k =1; 2;:::;r the truncated Taylor expansions at k ,<br />

modulo (s , k ) n k, of both sides in (6) <strong>and</strong> putting these results together, we<br />

get<br />

2 3<br />

H 1<br />

diag(P 1 ;:::;P r )= 6<br />

h i<br />

4 .<br />

7<br />

5 V1 V r ;<br />

H r<br />

where each block P k is a n k n k upper triangular matrix given by<br />

P k = p k (J k )=<br />

n k ,1<br />

X<br />

j=0<br />

p (j)<br />

k<br />

( k )<br />

(N k ) j :<br />

j!<br />

It is noted here that N k = J(0;n k )=J k , k I k is nilpotent of order n k .<br />

If we can show that each P k is invertible, then<br />

2 3<br />

P ,1<br />

1 H 1<br />

V ,1 = 6<br />

4 .<br />

7<br />

5 : (8)<br />

P<br />

r ,1 H r<br />

To this end we require the following lemma which is an easy consequence of<br />

the partial fraction expansion of 1=p(s) <strong>and</strong>the fact that N k is nilpotent.<br />

(7)


Lemma 1 Let there be given the partial fraction expansion<br />

1<br />

rX<br />

p(s) =<br />

k=1<br />

Then for k =1; 2;:::;r<br />

K k;nk<br />

(s , k ) n k<br />

X<br />

n k ,1<br />

P ,1<br />

k<br />

=<br />

j=0<br />

where the polynomial K k (s) is given by<br />

+ K k;n k ,1<br />

(s , k ) + + K !<br />

k;1<br />

:<br />

n k,1<br />

s , k<br />

K k;j (N k ) j = K k (J k );<br />

K k (s) =K k;nk + K k;nk ,1(s , k )++ K k;1 (s , k ) n k,1<br />

:<br />

Putting the above results together with equations (7) <strong>and</strong> (8), we are now<br />

ready to state our main result:<br />

Theorem 1 The inverse of V = [V 1 V 2 :::V r ] related to the distinct zeros<br />

1 ;:::; r of p(s) is given by<br />

2 3<br />

W 1<br />

W<br />

V ,1 =<br />

2<br />

6<br />

4<br />

7<br />

. 5 ;<br />

W r<br />

where each block matrix<br />

W k = W ( k ;n k )= h K k (J k )B n;k k K k (J k )B n,1;k k K k (J k )B 1;k k<br />

i<br />

is of order n k n.<br />

Taking into account of (5), we nd that K k (J k )B j;k = B j;k K k (J k );j =<br />

1; 2;:::;n, so that B 1;k K k (J k )=K k (J k ), <strong>and</strong> for j =2;:::;n<br />

B j;k K k (J k ) = J k B j,1;kK k (J k )+a j,1K k (J k )<br />

= ( k I k + N k )B j,1;kK k (J k )+a j,1K k (J k ):<br />

Moreover, ( k I k + N k )B n;k K k (J k )+a n K k (J k )=0.


4 The Algorithm<br />

Based on the results obtained in the last section, we are now ready to give a<br />

recursive algorithm for inverting generalized V<strong>and</strong>ermonde matrix.<br />

The Algorithm:<br />

Let 1 ; 2 ;:::; r be distinct zeros of the polynomial<br />

p(s) = (s , 1 ) n1 (s , r ) nr<br />

= s n + a 1 s n,1 + + a n<br />

given together with the partial fraction expansion of<br />

1<br />

rX<br />

p(s) = K k;nk<br />

+ K k;n k ,1<br />

(s , k ) n k<br />

(s , k ) + + K !<br />

k;1<br />

:<br />

n k,1<br />

s , k<br />

k=1<br />

For each k 2f1; 2;:::;rg, compute recursively polynomials h 1 ;h 2 ;:::;h n of<br />

degree at most n k , 1by means of the following scheme:<br />

terminating at<br />

h 1 (s) = K k;nk + sK k;nk ,1 + + s n k,1<br />

K k;1 ;<br />

h 2 (s) = ( k + s)h 1 (s)+a 1 h 1 (s) mod s n k<br />

;<br />

h 3 (s) = ( k + s)h 2 (s)+a 2 h 1 (s) mod s n k<br />

;<br />

.<br />

h n (s) = ( k + s)h n,1(s)+a n,1h 1 (s) mod s n k<br />

;<br />

0=( k + s)h n (s)+a n h 1 (s) mod s n k<br />

:<br />

Obtain a block matrix W k = W ( k ;n k ) of order n k n via the equality<br />

h<br />

s<br />

n k ,1<br />

s n k,2<br />

1 i W ( k ;n k )= h h n h n,1 h 1<br />

i<br />

:<br />

The inverse of the generalized V<strong>and</strong>ermonde matrix V related to the distinct<br />

zeros 1 ; 2 ;:::; r of p(s) may then be given by<br />

V ,1 = [V ( 1 ;n 1 )V ( 2 ;n 2 ) V ( r ;n r )] ,1<br />

=<br />

2<br />

6<br />

4<br />

W ( 1 ;n 1 )<br />

W ( 2 ;n 2 )<br />

.<br />

W ( r ;n r )<br />

3<br />

7<br />

5 :


Let us now give some supplementary remarks on the above algorithm.<br />

(i) A check on the accuracy of the computation of polynomials h 1 ;:::;h n is<br />

provided by the last polynomial ( k + s)h n (s)+a n h 1 (s), which should<br />

result identically in the zero polynomial 0 when modulo s n k<br />

is performed.<br />

(ii) The coecients a 1 ;a 2 ;:::;a n of the polynomial p(s) may be recursively<br />

computed using (3) with A = diag( 1 ;:::; 1 ;:::; r ;:::; r ).<br />

| {z }<br />

n 1<br />

| {z }<br />

(iii) The partial fraction coecients K k;nk ;K k;nk ,1;:::;K k;1 used in the construction<br />

of the starting polynomial h 1 (s) may be obtained by exp<strong>and</strong>ing<br />

n<br />

1<br />

p k (s) = k ,1<br />

X<br />

K k;nk ,j(s , k ) j + <br />

j=0<br />

in powers of (s , k ). They may also be recursively computed using<br />

the following scheme:<br />

K k;nk = 1=p k;0 ;<br />

K k;nk ,j =<br />

P j<br />

i=1<br />

p k;i K k;nk ,j+i<br />

,<br />

p k;0<br />

(j =1;:::;n k , 1);<br />

where p k (s) = n,n P k<br />

j=0<br />

p k;j (s , k ) j .<br />

5 Illustrative example<br />

The following example will serve to illustrate the recursive algorithm presented<br />

above. Let the generalized V<strong>and</strong>ermonde matrix V in (1) be given<br />

by<br />

2<br />

3 2<br />

3<br />

1 0 0 1 1 0 0 1<br />

V =<br />

1 1 0 2<br />

6<br />

4 2 1<br />

2 1 1 2 7<br />

2 5 = ,2 1 0 3<br />

6<br />

4 4 ,4 1 9 7<br />

5 ;<br />

3 1<br />

3 2 1<br />

3 1 3 2<br />

,8 12 ,6 27<br />

for which 1 = ,2;n 1 = 3, <strong>and</strong> 2 = 3;n 2 = 1. The coecients of the<br />

polynomial p(s) = (s +2) 3 (s , 3) are given by a 1 = 3;a 2 = ,6;a 3 = ,28,<br />

nr


<strong>and</strong> a 4 = ,24. It is easy to determine the partial fraction expansion of 1=p(s)<br />

to be<br />

1<br />

(s +2) 3 (s , 3) = , 1 5<br />

(s +2) + , 1<br />

25<br />

3 (s +2) + , 1<br />

1<br />

125<br />

2 s +2 + 125<br />

s , 3 :<br />

Let us consider rst the case 1 = ,2. Clearly<br />

Then<br />

h 1 (s) =, 1 5 ,<br />

s<br />

25 , s2<br />

125 :<br />

h 2 (s) = (,2+s)h 1 (s)+3h 1 (s) mod s 3<br />

= , 1 5 , 6s<br />

25 , 6s2<br />

125 ;<br />

h 3 (s) = (,2+s)h 2 (s) , 6h 1 (s) mod s 3<br />

= 8 5 + 13s<br />

25 , 12s2<br />

125 ;<br />

h 4 (s) = (,2+s)h 3 (s) , 28h 1 (s) mod s 3<br />

= 12 5 + 42s<br />

25 + 117s2<br />

125 :<br />

As a check of computation, we verify that<br />

(,2+s)h 4 (s) , 24h 1 (s) mod s 3 = 117s3<br />

125 mod s3 =0:<br />

h i h i<br />

Thus it follows from s 2 s 1 W 1 = h 4 h 3 h 2 h 1 that<br />

2<br />

3<br />

117<br />

, 12 , 6 , 1<br />

125 125 125 125<br />

42 13<br />

W 1 = 6<br />

,<br />

4<br />

6 , 1 7<br />

25 25 25 25 5 :<br />

Similarly, for 2 =3we nd that<br />

h 1 (s) = 1<br />

125 ;<br />

12<br />

5<br />

8<br />

5<br />

, 1 5<br />

, 1 5<br />

h 2 (s) = (3 + s)h 1 (s)+3h 1 (s) mod s = 6<br />

125 ;<br />

h 3 (s) = (3 + s)h 2 (s) , 6h 1 (s) mod s = 12<br />

125 ;<br />

h 4 (s) = (3 + s)h 3 (s) , 28h 1 (s) mod s = 8<br />

125 :


<strong>and</strong><br />

(3 + s)h 4 (s) , 24h 1 (s) mod s =3<br />

Then h 1 i W 2 = h h 4 h 3 h 2 h 1<br />

i<br />

gives<br />

8 24<br />

125 , 125 =0:<br />

W 2 = h 8<br />

125<br />

12<br />

125<br />

6<br />

125<br />

1<br />

125<br />

i<br />

:<br />

Finally, we have<br />

V ,1 =<br />

"<br />

W1<br />

#<br />

=<br />

W 2<br />

2<br />

6<br />

4<br />

117<br />

125<br />

42<br />

25<br />

12<br />

5<br />

8<br />

125<br />

, 12<br />

125<br />

13<br />

25<br />

8<br />

5<br />

12<br />

125<br />

, 6<br />

125<br />

, 6<br />

25<br />

, 1 5<br />

6<br />

125<br />

, 1<br />

125<br />

, 1<br />

25<br />

, 1 5<br />

1<br />

125<br />

3<br />

7<br />

5<br />

:<br />

Acknowledgment<br />

This work was supported by the Research Committee of The Hong Kong<br />

Polytechnic University (Grant No.G-S744).<br />

References<br />

[1] D. K. Faddeev <strong>and</strong> V. N. Faddeeva, Computational Methods of<br />

Linear Algebra, Freeman, San Francisco, 1963.<br />

[2] H. K. Garg, Digital Signal Processing Algorithms, CRC Press, 1998.<br />

[3] F. A. Graybill, Matrices with Applications to Statistics, second ed.,<br />

Wadsworth, Belmont, Calif., 1983.<br />

[4] R. A. Horn <strong>and</strong> C. R. Johnson, Matrix Analysis, Cambridge University<br />

Press, 1985.<br />

[5] S. H. Hou, On Leverrier-Faddeev Algorithm, Proceedings of the<br />

Third Asian Technology Conference in Mathematics, Yang et al (Eds.),<br />

Springer Verlag, 399-403, 1998.<br />

[6] T. Kailath, Linear Systems, Prentice Hall, Inc., Englewood Clis,<br />

New Jersey, 1980.<br />

[7] D. Kalman, The Generalized V<strong>and</strong>ermonde Matrix, Math. Mag., 57:15-<br />

21, 1984.


[8] A. Klinger, The V<strong>and</strong>ermonde Matrix, Amer. Math. Monthly, 74:571-<br />

574, 1967.<br />

[9] N. Macon <strong>and</strong> A. Spitzbart, Inverses of V<strong>and</strong>ermonde Matrices,<br />

Amer. Math. Monthly, 65:95-100, 1958.<br />

[10] C. Pozrikidis, Numerical Computation in Science <strong>and</strong> Engineering,<br />

Oxford University Press, 1998.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!