24.11.2014 Views

Pedogenic carbonate

Pedogenic carbonate

Pedogenic carbonate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Pedogenic</strong> <strong>carbonate</strong>


Formation of calcic horizons<br />

• Requires dry climate<br />

– Rain=leaching=acid=<strong>carbonate</strong> soluble<br />

• In US, most soils west of prairie-forest<br />

transition (not mountains) have <strong>carbonate</strong>


Depth to <strong>carbonate</strong> horizon<br />

• Carbonate comes from…<br />

– Ca: dust (windblown)<br />

– C- decomposition of organic<br />

matter/atm/resp<br />

• Soluble, so depth is a<br />

function of rainfall…<br />

– Reported relationship<br />

• Depth to top of calcic horizon<br />

correlated to MAP<br />

• R2=.62, stdev=149mm<br />

• Reanalysis, more data r2=0.31


Other problems<br />

• Modern relationship masks control of atm CO2<br />

(also correlated to depth!)<br />

• What if it’s truncated?<br />

• What if it’s compacted?<br />

• Mississippi floodplain soils<br />

– Carbonate formed by upward (capillary) movement of<br />

groundwater; depth reflects water table…<br />

– Retallack equation calculates 545 and 908 mm, actual<br />

1500<br />

• Used rather extensively…


Isotopes…<br />

• C from OM/CaCO3<br />

• O from CaCO3<br />

• Check- offset in C<br />

right?<br />

• C-veg. or ?<br />

• O…rain?


Atmospheric CO2?<br />

• “Paleosol barometer”<br />

– 2 component mixing: atmospheric and soil CO2<br />

– Ca is atmospheric CO2 concentration (ppmV), Sz is<br />

soil-respired CO2 concentration (ppmV), and<br />

δ13Cs, δ13Cr, and δ13Ca are isotopic<br />

compositions of soil CO2, soil-respired CO2, and<br />

atmospheric CO2, respectively.<br />

• Cerling, T.E., 1999, Stable carbon isotopes in paleosol <strong>carbonate</strong>s, in Thiry, M., and Simon-Coincon, R., eds.,<br />

Palaeoweathering, palaeosurfaces and related continental deposits: International Association of<br />

Sedimentologists Special Publication 27, p. 43–60.


Where to get variables?<br />

• No, or known C4<br />

• Atmospheric d13C?<br />

– Find marine rocks of similar age.<br />

– Find shallow-living microfossils making shells from<br />

<strong>carbonate</strong><br />

– Assume equilibrium between dissolved CO2 in ocean<br />

and atmosphere<br />

–Calculate<br />

• Soil respired carbon d13C<br />

– Measure from OM? Find nearby coals?<br />

• Soil respired C concentration<br />

– Estimate from modern analogue<br />

• Soil CO2- measure from pedogenic <strong>carbonate</strong>…


Or…<br />

• Estimate a simpler relationship from<br />

different soil types


Other?<br />

• Total Fe content of Fe-Mn nodules in<br />

vertisols correlates to MAP (r2=.92)<br />

– Not dependent on soil depth! (better than<br />

<strong>carbonate</strong>!)<br />

• Oxygen/hydrogen isotopes of sheet<br />

silicates…(?)<br />

– Must be authigenic (formed in soil)


Or…<br />

• Estimate a simpler relationship from<br />

different soil types


Depth to <strong>carbonate</strong> horizon<br />

• Carbonate comes from…<br />

– Ca: dust (windblown)<br />

– C- decomposition of organic<br />

matter, respiration, atm. Etc.<br />

• identified using 10% HCl<br />

– degree of effervescence<br />

(audible only, visible as<br />

individual bubbles, or foamlike)<br />

• Depth is a function of<br />

rainfall…<br />

– Tied to pCO2, evap


For what soils does this work??<br />

• Soils of “moderate development”<br />

– Carbonate “nodules”, not “wisps” or “layers”<br />

• Unconsolidated parent material<br />

• Seasonal warm climates *if*<br />

– Depth measured to “abundant” not “solitary”<br />

nodules<br />

– *and* “within the low points of gilgai<br />

microrelief”


Gilgai microrelief<br />

• Gilgai: Australian aboriginal term for small<br />

water hole<br />

• Usually associated with vertisols/shrink<br />

swell


Does not work for…<br />

• “Petrocalcic horizons”<br />

• Calcretized bedrock<br />

• Dolocretes<br />

• Carbonate collars<br />

• Erosion-susceptible hillslope soils<br />

• “Nevertheless, the relationship…has<br />

wided applicability to soils of tropical to<br />

frigid, monsoonal to mildly seasonal, and<br />

desert to forest climates”


Other precipitation indicators<br />

• In general;<br />

wetter=more<br />

clay, more red,<br />

less weatherable<br />

stuff<br />

• Histosols=wet<br />

• Aridisols=dry<br />

– evaporites


Clays<br />

• Clays: Hydrated layer silicates<br />

of Al, Fe, and Mg<br />

• Weathering products:<br />

authigenic (formed in soil)<br />

– Aluminum/octahedral,<br />

silica/tetrahedral<br />

– 1:1 group (TO; kaolinite)<br />

• CEC low<br />

– 2:1 groups (TOT)<br />

• smectite (montmorillonite)<br />

– CEC high, shrink/swell<br />

• Mica (illite)<br />

– CEC low; inter unit cations<br />

– 2:1:1 group ((TOT)O;chlorite)<br />

• 2:1 plus octahedral, CEC<br />

moderate-low<br />

– Mixed layer clays


Clays vs. climate and time<br />

• Weathering extent <br />

sequence of clays<br />

– Muscovite/illite/chlorite<br />

–Smectites<br />

– Kaolinite<br />

– Oxides<br />

• Depends on other soil-forming<br />

factors<br />

– Grain size/mineral composition<br />

of parent<br />

– Temperature, seasonality of<br />

rainfall, time


• Palygorskite, Sepiolite<br />

Indicator clays<br />

– Very dry (Morocco: all clays in soils


• Kaolinite (clay), boehmite, gibbsite<br />

(aluminum oxides)<br />

– Very humid<br />

– (tropics)


How to use?<br />

• Ideally, use soils developed on igneous or<br />

metamorphic bedrock<br />

• Petrographic work<br />

– “Bright clay fabric” = soil clays vs. alluvial clays<br />

• Grain size<br />

– Authigenic finer grained<br />

• Crystallinity (XRD)<br />

– More finely crystalline= authigenic<br />

• Also check for burial alteration<br />

– “Illitization”<br />

– Lots of paleosols=illite dominant<br />

– Alteration of smectite to illite during burial?


Burial illitization<br />

• Not necessarily complete!<br />

– Smectite often left<br />

– Illitization spatially limited<br />

• Check:<br />

• (Maybe you’re ok)<br />

– Crystallinity<br />

• “metamorphic” illite= more crystalline<br />

– Chemical variation<br />

• Long story:<br />

– Coupled variations in Na/Ca/Al/K different for weathering<br />

process vs. illitization


Soil chemistry<br />

• Idea: more water, fewer bases<br />

• Won’t work for:<br />

– Dry climate soils (evaporites)<br />

– Wet climate soils (lots of kaolinite clay; Al<br />

only, can’t change)<br />

– Very weakly developed<br />

– Very strongly developed<br />

– Altered by burial illitization


• Clays!<br />

Oxygen/hydrogen isotopes<br />

– Must be authigenic (formed in soil)<br />

– Temperature dependent fractionation- water to<br />

clay<br />

– Unknown water<br />

– Possibility for post depositional alteration by<br />

hydrothermal fluids<br />

• Seems to work?


• Total Fe content of Fe-Mn nodules in<br />

vertisols correlates to MAP (r2=.92)<br />

– Not dependent on soil depth! (better than<br />

<strong>carbonate</strong>!)<br />

Geology: Vol. 29,<br />

No. 10, pp. 943–946.<br />

<strong>Pedogenic</strong> ironmanganese<br />

nodules<br />

in Vertisols: A new<br />

proxy for<br />

paleoprecipitation?<br />

Cynthia A. Stiles, *<br />

Claudia I. Mora, and<br />

Steven G. Driese

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!