12.07.2015 Views

Jeroen Tromp

Jeroen Tromp

Jeroen Tromp

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Spectral-Element and Adjoint Methods inSeismology<strong>Jeroen</strong> <strong>Tromp</strong>Min Chen, Vala Hjorleifsdottir, Dimitri Komatitsch, Swami Krishnan, Qinya Liu,Alessia Maggi, Anne Sieminski, Carl Tape & Ying Zhou


Introduction to the Spectral-Element Method(SEM)


Governing EquationsEquation of motion:Boundary condition:Initial conditions:Earthquake source:


Weak Form• Weak form valid for any test vector• Boundary conditions automatically included• Source term explicitly integratedFinite-fault (kinematic) rupture:


Finite-ElementsMapping from reference cube to hexahedral elements:Volume relationship:Jacobian of the mapping:Jacobian matrix:


Lagrange Polynomials and Gauss-Lobatto-Legendre (GLL) PointsThe 5 degree 4 Lagrange polynomials:Degree 4 GLL points:General definition:GLL points are n+1 roots of:Note that at a GLL point:


InterpolationRepresentation of functions on an element in terms of Lagrange polynomials:Gradient on an element:


IntegrationIntegration of functions over an element based upon GLL quadrature:• Integrations are pulled back to the reference cube• In the SEM one uses:• interpolation on GLL points• GLL quadratureDegree 4 GLL points:


The Diagonal Mass MatrixRepresentation of the displacement:Degree 4 Lagrange polynomials:Representation of the test vector:Weak form:Diagonal mass matrix:• Integrations are pulled back to the reference cube• In the SEM one uses:• interpolation on GLL points• GLL quadratureDegree 4 GLL points:


AssemblyNeed to distinguish:• local mesh• global meshEfficient routines availablefrom FEM applicationsGlobal equations:Global SEM time-marching isbased upon an explicitsecond-order time scheme


Parallel ImplementationGlobal mesh partitioning:Regional mesh partitioning:Cubed Sphere: 6 n2mesh slicesn x m mesh slices


Basin Code: SPECFEM3D_BASIN• Freely available for non-commercial use from geodynamics.org• Manual available at geodynamics.org• 3D Attenuation• 3D Anisotropy• Ocean load• Topography & bathymetry• Kinematic ruptures• Movies• Models:– Harvard 3D Southern California model– SOCAL 1D model– Homogeneous half-space model• Adjoint capabilities


Southern California Simulations100-10-20-30100-10-20-30A A’0 50 100 150 200 250 300 350 400 450B B’0 50 100 150 200 250 300 350 4002 3 4 5 6 7 8Vp(km/s)n x m mesh slices


Periods > 2 sKomatitsch et al. 2004


June 12, 2005, M=5.1 Big BearQuickTime and aYUV420 codec decompressorare needed to see this picture.


3D Regional Forward SimulationsPeriods > 6 s379 kmJune 12, 2005, M=5.1 Big Bear100kmQinya Liu


San Andreas Rupture ScenarioQuickTime and aYUV420 codec decompressorare needed to see this picture.


San Andreas Rupture Scenario:Quantitative Seismic Hazard AssessmentSwami Krishnan


Near Real-Time Applications• Automated near real-time simulations of all M>3.5 events• ShakeMovies at http://www.shakemovie.caltech.edu/• Soon:– CMT solutions– Synthetic seismograms


SPECFEM3D_BASIN: Future Plans• Switch to a (parallel) CUBIT hexahedral finite-element mesher (Casarotti, Lee)– Topography & bathymetry– Major geological interfaces– Basins– Fault surfaces• Use ParMETIS or SCOTCH for mesh partitioning & load-balancing• Retain the SPECFEM3D_BASIN solver (takes ParMETIS meshes; Komatitsch)• Add dynamic rupture capabilities (Ampuero, Lapusta, Kaneko)Taipei Basin102kmN88km100kmS.-J. Lee


Global Code: SPECFEM3D_GLOBE• Freely available for non-commercial use from geodynamics.org• Manual available at geodynamics.org• 3D Attenuation• 3D Anisotropy• Ocean load• Topography & bathymetry• Rotation• Self-gravitation (Cowling approximation)• Kinematic ruptures• Movies• Models:– 1D models: isotropic PREM, transversely isotropic PREM, AK135, IASP91, 1066A– S20RTS– Crust2.0• Adjoint capabilities


Global SimulationsPREM benchmarksCubed sphere meshParallel implementation:26 n mesh slices


SEM Implementation of AttenuationAnelastic, anisotropic constitutive relationship:Equivalent Standard Linear Solid (SLS) formulation:Attenuation (3 SLSs)Memory variable equation:Unrelaxed modulus:Modulus defect:Physical dispersion (3 SLSs)


Effect of Attenuation


Attenuation


Effect of Anisotropy


SEM Implementation of Anisotropy


Antipodal Transverse Record


Vertical PKP


Rotation & Self-GravitationWave equation solved by SPECFEM3D_GLOBE in crust, mantle and inner core:Wave equation solved by SPECFEM3D_GLOBE in fluid outer core:SPECFEM3D_GLOBE uses domain decomposition between the fluid outer coreand the solid inner core and mantle matching exactly:• continuity of traction• continuity of the normal component of displacement


Full Gravity Versus Cowling


SEM Implementation of Gravity


Effect of Ocean


SEM Implementation of OceanModified boundary condition:


3D Mantle ModelsS20RTS (Ritsema et al. 1999)


Crustal and Topographic ModelsCrust 2.0 (Bassin et al. 2000)ETOPO5


Great 2004 Sumatra-Andaman EarthquakeFinite slip model (Chen et al., 2005)Main shock & aftershocks (Harvard)


Sumatra Surface WavesQuickTime and aYUV420 codec decompressorare needed to see this picture.


Surface-Wave FitsVala Hjorleifsdottir


SPECFEM3D_GLOBE: Future PlansOn-demand TeraGrid applications:• Automated, near real-time simulations of all M>6 earthquakes• Analysis of past events (more than 20,000 events)• Seismology Web Portal (prototype available at this meeting)Petascale simulations:• Global simulations at 1-2 Hz• New doubling brick(perfect load-balancing)


Adjoint Spectral-Element Simulations(ASEM)


Adjoint TomographyPDE-constrained waveform tomography:Change in the waveform misfit function:


Adjoint EquationsAdjoint wavefield:Adjoint equation of motion:Adjoint boundary conditions:Adjoint initial conditions:Adjoint source:


Frechet derivativeThe Frechet derivative may be expressed as:Density and elastic tensor kernels:


Isotropic KernelsFor isotropic perturbations we have:whereand we have defined the strain deviatorsIn terms of wave speeds:where


Traveltime Frechet DerivativesTraveltime tomography:Change in the misfit function:Traveltime anomaly in terms of banana-donut kernel (Dahlen):The kernel is a weighted sum of banana-donut kernels :


Adjoint WavefieldKernel in terms of the adjoint wavefield:The adjoint wavefieldis generated by the adjoint sourceNotes:• Need simultaneous access to the regular wavefield at time t and the adjointwavefield at time T – t• Use of the time-reversed velocity as the source for the adjoint wavefield


Numerical ImplementationNeed simultaneous access to and• During calculation of adjoint field ,reconstruct by solving the `backward’ waveequationNeed to store from a previous forward simulation:– Last snapshot– Wavefield absorb on artificial boundariesChallenge:– `Undoing’ attenuation


2D Adjoint Tomography


Construction of a Banana-Donut KernelTape et al. 2006


Adjoint Tomography


Construction of an Event KernelEvent Kernel:• Sum of weighted bananadonutkernels• Two simulations per event


Construction of the Misfit KernelMisfit kernel:• Sum of all the event kernels• Two simulations per event• Gradient of misfit function


Conjugate Gradient Algorithm


Conjugate Gradient Algorithm


Joint Structure-Source Inversion


Southern California Rayleigh Waves25 events


Toward 3D Tomography: SPECFEM3DAdjoint Capabilities


3D Sensitivity KernelsSSSPSPSSPECFEM3D_BASINLiu & <strong>Tromp</strong> 2006


3D Body-Wave Sensitivity KernelsSeptember 3, 2002,M=4.2 Yorba Linda


3D Surface-Wave Sensitivity KernelsRayleigh (HEC)Love (HEC)


Our First 3D Event Kernels!


Global 3D Body-Wave Sensitivity KernelsFinite-Frequency effects20 second P wave9 second P waveSPECFEM3D_GLOBEQinya Liu


Global 3D Body-Wave Sensitivity KernelsPdiffPKPScSSKSQinya Liu


PKP Kernel


P’P’ KernelLiu & <strong>Tromp</strong> 2006


Global 3D Transversely Isotropic KernelsαhPαvαhSHαvβhβvβhβvηρηρAnne Sieminski


Transversely IsotropicParameters: A, C, L, N, F1 ζ: J, K, M2 ζ: G, B, H3 ζ: D4 ζ: EAnne Sieminski


1D Versus 3D Kernels1D3DYing Zhou


Time-Reversal Imaging: GlacialEarthquakesGreenlandCarene Larmat


Measuring all available Phase &Amplitude Anomalies


Measure all suitable phasesRARF2=0.93dT=1.00F2=0.83dT=1.00F2=0.83dT=6.00F2=0.68dT=2.00F2=0.78dT=-1.00PP PKiKPpPKiKPsPKiKPSKiKPSKSac SSKKSacpSKSac pSsSKSac sSP PcP pP ScS SPnsP PnS SSSKKSdfSKKSacP’P’df400 800 1200 1600 2000 2400 2800 3200 3600 4000Time (s)SeismogramsANMOF2=0.91F2=0.93F2=0.68F2=0.92F2=0.91F2=0.83F2=0.84F2=0.83F2=0.69F2=0.85F2=0.91F2=0.92F2=0.51F2=0.61F2=0.66400 800 1200 1600 2000 2400 2800 3200 3600 4000Time (s)Alessia Maggi


ConclusionsAdjoint methods:• Choose an observable, e.g., waveforms or cross-correlation traveltimes• Choose a measure of misfit, e.g., least-squares• Determine the appropriate adjoint source for this observable & measurement• Use fully 3D reference models• Any arrival suitable for measurement• No dependence on the number of stations, components, or measurements• 3D sensitivity kernels may be calculated based upon two forward simulations for each earthquake• Number of simulations: 3 * (# earthquakes) * (# iterations)• Full anisotropy for the same cost• Attenuation remains a challengeRegional simulations:• One 3 minute forward simulation accurate to 1.5 seconds takes 45 minutes on a 75 node cluster• 150 events and 3 iterations would require 1800 simulations, i.e., three weeks of dedicated CPU time on75 nodes• Near real-time simulationsGlobal simulations:• One 1 hour forward simulation accurate to 20 seconds takes 4 hours on a 75 node cluster• 500 events and 3 iterations would require 6,000 simulations, i.e., 100 days on a 750 node cluster• Near real-time simulations• On-demand global seismology• Petascale application

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!