24.11.2014 Views

DIFFRACTION 2012, Lanzarote, Canary Islands, Spain

DIFFRACTION 2012, Lanzarote, Canary Islands, Spain

DIFFRACTION 2012, Lanzarote, Canary Islands, Spain

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

DIFFRACTIVE DIJET PRODUCTION AT CDF<br />

Konstantin Goulianos<br />

(for the CDF II Collaboration)<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

1


CONTENTS<br />

Introduction / motivation<br />

Diffractive dijets<br />

Summary<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

2


STUDIES OF <strong>DIFFRACTION</strong> IN QCD<br />

Non-diffractive<br />

color-exchange gaps<br />

exponentially suppressed<br />

Diffractive<br />

Colorless vacuum exchange<br />

large-gap signature<br />

Incident hadrons<br />

acquire color<br />

and break upart<br />

rapidity gap<br />

p<br />

Incident hadrons retain<br />

their quantum numbers<br />

remaining colorless<br />

CONFINEMENT<br />

Goal: probe the QCD nature of the diffractive exchange<br />

P<br />

O<br />

M<br />

E<br />

R<br />

O<br />

N<br />

p p p p<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

3


DEFINITIONS<br />

SINGLE <strong>DIFFRACTION</strong><br />

x,t<br />

M X<br />

p p’<br />

xp<br />

p<br />

1- x L<br />

ξ<br />

CAL<br />

ξ<br />

<br />

Σ<br />

<br />

all<br />

i1<br />

M 2 X<br />

s<br />

E<br />

i-tower<br />

T<br />

since no radiation <br />

no price paid for increasing<br />

diffractive gap size<br />

s<br />

e<br />

<br />

η i<br />

<br />

<br />

<br />

dσ<br />

d Δη<br />

<br />

<br />

<br />

t0<br />

p’<br />

Rap-gap<br />

Dh=-lnx<br />

constant <br />

dσ<br />

dξ<br />

0<br />

dN/dh<br />

ln ln s<br />

dσ 1<br />

<br />

2 2<br />

1<br />

ξ<br />

ln Mx 2<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

dM<br />

M X<br />

M<br />

4


<strong>DIFFRACTION</strong> AT CDF<br />

Elastic scattering s T =Im f el (t=0) Total cross section<br />

f<br />

gap<br />

h<br />

OPTICAL<br />

THEOREM<br />

f<br />

h<br />

SD DD DPE /CD SDD<br />

Single Diffraction or<br />

Single Dissociation<br />

Double Diffraction or<br />

Double Dissociation<br />

Double Pom. Exchange or<br />

Central Dissociation<br />

Single + Double<br />

Diffraction (SDD)<br />

JJ, b, J/y, W<br />

p<br />

exclusive<br />

JJ…ee…mm...gg<br />

p<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

5


540 GeV<br />

1800 GeV<br />

FACTORIZATION BREAKING IN<br />

SOFT <strong>DIFFRACTION</strong><br />

diffractive x-section suppressed relative<br />

to Regge prediction as √s increases<br />

p<br />

p<br />

x,t<br />

p’<br />

M<br />

Factor of ~8 (~5)<br />

suppression at<br />

√s = 1800 (540) GeV<br />

RENORMALIZATION<br />

√s=22 GeV<br />

C<br />

D<br />

F<br />

see KG, PLB 358, 379 (1995)<br />

Question:<br />

does factorization breaking<br />

affect t-distributions?<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

6


Run I<br />

Hard diffraction<br />

pp<br />

<br />

(<br />

<br />

X)<br />

<br />

gap<br />

or gap<br />

p pbar<br />

Fraction:<br />

SD/ND ratio<br />

@ 1800 GeV<br />

JJ<br />

W<br />

Fraction %<br />

0.75 +/- 0.10<br />

1.15 +/- 0.55<br />

dN/dh<br />

hard<br />

b<br />

J/y<br />

0.62 +/- 0.25<br />

1.45 +/- 0.25<br />

h<br />

All fractions ~ 1%<br />

(differences due to kinematics)<br />

‣ ~ FACTORIZATION !<br />

FACTORIZATION !<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

7


Diffractive dijets in Run I<br />

H1<br />

CDF<br />

~20<br />

~8 ~8<br />

All hard-diffraction processes in Run I were found to be suppressed by<br />

a factor of ~8 relative to predictions based on HERA-measured PDFs.<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

8


Excusive dijets<br />

Calibrate diffractive Higgs production models<br />

Phys. Rev. D 77, 052004 (2008)<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

9


THE CDF II DETECTOR<br />

PLAN VIEW<br />

|h|


The RPS<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

11


The MiniPlugs<br />

overlap bgnd (BG) is reduced by including the MPs in the x CAL evaluation<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

12


Dynamic Alignment of RPS<br />

Method: iteratively adjust the RPS X and Y offsets from the<br />

nominal beam axis until a maximum in the b-slope is obtained @ t=0.<br />

±2 mm<br />

Limiting factors<br />

1-statistics<br />

2-beam size<br />

3-beam jitter<br />

±2 mm<br />

use RPStrk data<br />

width~ 2 mm/√N<br />

N~1 K events<br />

DX,DY = ± 60 m<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

13


x CAL vs x RPS<br />

slice<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

14


Why select 0.05


RPS ACCEPTANCE<br />

0.05 < x


t >1 GeV 2 : asymmetric t-distributions as<br />

a tool for evaluating bgd at high t<br />

schematic view of fiber tracker<br />

25 mm<br />

t-distributions<br />

7.5 mm<br />

12.5 mm<br />

x<br />

2.5 mm<br />

Y<br />

p p<br />

• •<br />

2 mm<br />

Y = 7.5 mm<br />

bgnd =<br />

20 evts/GeV 2<br />

‣ tracker’s upper edge: |t|=2.3 GeV 2 , estimated from t~q 2<br />

‣ the lower edge is at |t|= 6.5 GeV 2 (not shown)<br />

‣ background level: region of Y track >Y o data for |t|>2.3 GeV 2<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

17


Diffractive dijet results<br />

http://arxiv.org/abs/1206.3955<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

18


Measurement of F jj<br />

SD<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

19


x CAL vs x RPS<br />

As RPS tracking was not available for all analyzed data, we used x CAL and<br />

calibrated it vs x RPS from data in which RPS tracking was available.<br />

A linear relationship is observed between x CAL vs<br />

x RPS in the region of x CAL of the measurement<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

20


Average E T<br />

jet<br />

and h Jet<br />

The SD and ND E T<br />

Jet<br />

distributions are nearly identical<br />

The SD h* distribution is shifted towards the c.m.s of the Pomeron-proton collision<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

21


Azimuthal angle difference of jets<br />

Left: the SD distributions are more back-to-back<br />

Right: the SD multiplicity is peaked at zero, while the ND is peaked at 9.<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

22


x Bj Distributions vs <br />

=100 GeV 2<br />

The Run I result is confirmed.<br />

‣ The drop-off on the rhs is due to the<br />

different range of the calorimeters in<br />

Run I and Run II.<br />

The Bjorken-x distributions vary by only a factor of ~2<br />

over a range of of 2 orders of magnitude!<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

23


t-Distributions and Slopes vs for –t


t-Distributions for -t


Result of the week<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

26


EXCLUSIVE Dijet Excl. Higgs THEORY CALIBRATION<br />

_<br />

p<br />

p<br />

} JJ<br />

PRD 77, 052004 (2008)<br />

Exclusive dijets<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

27


CDF 4 LHC<br />

Larger Energy Larger ET<br />

‣ Multigap diffraction<br />

‣ Diffractive Higgs production<br />

The CDF measurements are having an impact on all LHC physics<br />

the MBR (Minimum Bias Rockefeller) simulation is now in PYTHIA8<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

28


Summary<br />

We measured SD to ND ratios in dijet production vs Bjorken-x<br />

for up to 10 4 GeV 2 and –t > 4 GeV 2<br />

We find:<br />

nearly identical E T<br />

jet<br />

distributions for SD and ND events<br />

small dependence as a function of Bjorken-x<br />

no dependence of the b-slopes at low t<br />

t distributions compatible with DL at low t<br />

at high t the distributions lie increasingly higher than DL,<br />

becoming approximately flat for –t >2 GeV 2<br />

compatible with a diffraction minimum at –t >2.5 GeV 2<br />

Our findings are compatible with models of diffraction in<br />

which the hard scattering is controlled by the PDF of the<br />

recoil antiproton, while the rapidity gap formation is governed<br />

by the color-neutral soft exchange.<br />

Thank you for your attention<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

29


BACKUP<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

30


Data samples<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

31


Ratio of SD to ND events vs E T *<br />

TABLE III<br />

Diffractive Dijet Production at CDF<br />

K. Goulianos<br />

32


Slopes of t-didtributions<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

33


RIGGERS AND EVENT SAMPLES<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

34


The end!<br />

Diffraction <strong>2012</strong> <strong>Lanzarote</strong> Diffractive Dijet Production at CDF K. Goulianos<br />

35

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!