25.11.2014 Views

Chapter 3B -- Vectors

Chapter 3B -- Vectors

Chapter 3B -- Vectors

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>3B</strong> - <strong>Vectors</strong><br />

A PowerPoint Presentation by<br />

Paul E. Tippens, Professor of Physics<br />

Southern Polytechnic State University<br />

© 2007


<strong>Vectors</strong><br />

Surveyors use accurate measures of<br />

magnitudes and directions to create<br />

scaled maps of large regions.


Objectives: After completing this<br />

module, you should be able to:<br />

• Demonstrate that you meet mathematics<br />

expectations: : unit analysis, algebra, scientific<br />

notation, and right-triangle triangle trigonometry.<br />

• Define and give examples of scalar and vector<br />

quantities.<br />

• Determine the components of a given vector.<br />

• Find the resultant of two or more vectors.


Expectations<br />

• You must be able convert units of<br />

measure for physical quantities.<br />

Convert 40 m/s into kilometers per hour.<br />

m 1 km 3600 s<br />

40--- x ---------- x -------- = 144 km/h<br />

s 1000 m 1 h


Expectations (Continued):<br />

• College algebra and simple formula<br />

manipulation are assumed.<br />

Example:<br />

x<br />

<br />

<br />

<br />

v0<br />

v f<br />

2<br />

<br />

t<br />

<br />

Solve for v o<br />

v<br />

0<br />

<br />

vt<br />

f<br />

<br />

t<br />

2x


Expectations (Continued)<br />

• You must be able to work in scientific<br />

notation.<br />

Evaluate the following:<br />

Gmm’ (6.67 x 10 -11 )(4 x 10 -3 )(2)<br />

F = -------- = ------------<br />

(8.77 x 10 -3 ) 2<br />

r 2<br />

F = 6.94 x 10 -9 -9 N = 6.94 nN


Expectations (Continued)<br />

• You must be familiar with SI prefixes<br />

The meter (m) 1 m = 1 x 10 0 m<br />

1 Gm = 1 x 10 9 m 1 nm = 1 x 10 -9 m<br />

1 Mm = 1 x 10 6 m 1 m = 1 x 10 -6 m<br />

1 km = 1 x 10 3 m 1 mm = 1 x 10 -3 m


y<br />

Expectations (Continued)<br />

• You must have mastered right-triangle<br />

triangle<br />

trigonometry.<br />

x<br />

R<br />

<br />

sin <br />

cos <br />

y<br />

R<br />

x<br />

R<br />

y = R sin <br />

x = R cos <br />

y<br />

tan R 2 = x 2 + y 2<br />

x


Mathematics Review<br />

If you feel you need to<br />

brush up on your<br />

mathematics skills, try<br />

the tutorial from Chap.<br />

2 on Mathematics. Trig<br />

is reviewed along with<br />

vectors in this module.<br />

Select Chap. 2 from the On-Line Learning<br />

Center in in Tippens—Student Edition


Physics is the Science of<br />

Measurement<br />

Length<br />

Weight<br />

Time<br />

We begin with the measurement of length:<br />

its magnitude and its direction.


Distance: A Scalar Quantity<br />

• Distance is is the length of the actual path<br />

taken by an object.<br />

A<br />

s = 20 m<br />

B<br />

A scalar quantity:<br />

Contains magnitude<br />

only and consists of a<br />

number and a unit.<br />

(20 m, 40 mi/h, 10 gal)


Displacement—A A Vector Quantity<br />

• Displacement is is the straight-line<br />

separation of two points in a specified<br />

direction.<br />

D = 12 m, 20 o<br />

A<br />

<br />

B<br />

A vector quantity:<br />

Contains magnitude<br />

AND direction, a<br />

number, unit & angle.<br />

(12 m, 30 0 ; 8 km/h, N)


Distance and Displacement<br />

• Displacement is is the x or y coordinate of<br />

position. Consider a car that travels 4<br />

m, E then 6 m, W.<br />

D<br />

4 m,E<br />

Net displacement:<br />

D = 2 m, W<br />

x = -2<br />

6 m,W<br />

x = +4<br />

What is the distance<br />

traveled?<br />

10 m !!


Identifying Direction<br />

A common way of identifying direction<br />

is is by reference to East, North, West,<br />

and South. (Locate points below.)<br />

N<br />

Length = 40 m<br />

40 m, 50 o N of E<br />

W<br />

50 o<br />

60 o 60 o 60 o<br />

E<br />

40 m, 60 o N of W<br />

40 m, 60 o W of S<br />

S<br />

40 m, 60 o S of E


Identifying Direction<br />

Write the angles shown below by using<br />

references to east, south, west, north.<br />

W<br />

N<br />

E<br />

45 o<br />

N<br />

S<br />

50 o<br />

W<br />

S<br />

E<br />

50 Click 0 S of to Esee the Answers 45 0 W . of . .<br />

N


<strong>Vectors</strong> and Polar Coordinates<br />

Polar coordinates ((R,) ) are an excellent<br />

way to to express vectors. Consider the<br />

vector 40 m, 50 0 N of of E, EE, for example.<br />

40 m<br />

90 o R<br />

90 o <br />

180 o<br />

50 o<br />

180 o<br />

270 o<br />

0 o<br />

270 o<br />

0 o<br />

R is the magnitude and is the direction.


<strong>Vectors</strong> and Polar Coordinates<br />

Polar coordinates ((R,) ) are given for each<br />

of four possible quadrants:<br />

210 o<br />

90 o<br />

120 o<br />

60 o 50 o<br />

0 o<br />

60<br />

60 o o<br />

(R,) ) = 40 m, 50 o<br />

(R,) ) = 40 m, 120 o<br />

180 o 270 o<br />

300 0<br />

(R,) ) = 40 m, 210 o<br />

(R,) ) = 40 m, 300 o


Rectangular Coordinates<br />

(-2, +3)<br />

-<br />

+<br />

y<br />

-<br />

(+3, +2)<br />

+<br />

x<br />

Reference is made to<br />

x and y axes, with +<br />

and - numbers to<br />

indicate position in<br />

space.<br />

Right, up = (+,+)<br />

Left, down = (-,-)<br />

(-1,<br />

-3)<br />

(+4, -3)<br />

(x,y) = (?, ?)


Trigonometry Review<br />

• Application of Trigonometry to <strong>Vectors</strong><br />

y<br />

Trigonometry<br />

x<br />

R<br />

<br />

sin <br />

cos <br />

y<br />

R<br />

x<br />

R<br />

y = R sin <br />

x = R cos <br />

y<br />

tan R 22 = x 22 + y 22<br />

x


Example 1: Find the height of a building<br />

if it casts a shadow 90 m long and the<br />

indicated angle is 30 o .<br />

The height h is opposite 30 0 and<br />

the known adjacent side is 90 m.<br />

h<br />

30 0<br />

90 m<br />

0<br />

tan 30<br />

<br />

opp<br />

adj<br />

<br />

h<br />

90 m<br />

h = (90 m) tan 30 o<br />

h = 57.7 m


Finding Components of <strong>Vectors</strong><br />

A component is the effect of a vector along<br />

other directions. The x and y components of<br />

the vector (R, are illustrated below.<br />

R<br />

<br />

x<br />

x = R cos <br />

y = R sin <br />

y<br />

Finding components:<br />

Polar to Rectangular Conversions


Example 2: A person walks 400 m in a<br />

direction of 30 o N of E. How far is the<br />

displacement east and how far north?<br />

N<br />

N<br />

R<br />

400 m<br />

y<br />

y = ?<br />

<br />

<br />

E<br />

x E<br />

x = ?<br />

The x-component (E) is ADJ:<br />

The y-component (N) is OPP:<br />

x = R cos <br />

y = R sin


Example 2 (Cont.): A 400-m walk in a<br />

direction of 30 o N of E. How far is the<br />

displacement east and how far north?<br />

N<br />

400 m<br />

<br />

x = ?<br />

y = ?<br />

E<br />

Note: x is the side<br />

adjacent to angle 30 0<br />

ADJ = HYP x Cos 30 0<br />

x = R cos <br />

x = (400 m) cos 30 o<br />

= +346 m, E<br />

The x-component x<br />

is:<br />

R x = +346 m


Example 2 (Cont.): A 400-m walk in a<br />

direction of 30 o N of E. How far is the<br />

displacement east and how far north?<br />

N<br />

400 m<br />

<br />

x = ?<br />

y = ?<br />

E<br />

Note: y is the side<br />

opposite to angle 30 0<br />

OPP = HYP x Sin 30 0<br />

y = R sin <br />

y = (400 m) sin 30 o<br />

= + 200 m, N<br />

The y-component y<br />

is:<br />

R y = +200 m


Example 2 (Cont.): A 400-m walk in a<br />

direction of 30 o N of E. How far is the<br />

displacement east and how far north?<br />

N<br />

400 m<br />

<br />

R x =<br />

+346 m<br />

R y =<br />

+200 m<br />

E<br />

The x- x and y- y<br />

components are<br />

each + in the<br />

first quadrant<br />

Solution: The person is displaced 346 m east<br />

and 200 m north of the original position.


Signs for Rectangular Coordinates<br />

90 o R<br />

<br />

+<br />

+<br />

0 o<br />

R is positive (+)<br />

0 o > < 90 o<br />

x = +; y = +<br />

First Quadrant:<br />

x = R cos <br />

y = R sin


Signs for Rectangular Coordinates<br />

90 o<br />

R<br />

+<br />

180 o<br />

<br />

Second Quadrant:<br />

R is positive (+)<br />

90 o > < 180 o<br />

x = - ; y = +<br />

x = R cos <br />

y = R sin


Signs for Rectangular Coordinates<br />

Third Quadrant:<br />

<br />

R is positive (+)<br />

180 o > < 270 o<br />

180 o 270 o<br />

-<br />

R<br />

x = - y = -<br />

x = R cos <br />

y = R sin


Signs for Rectangular Coordinates<br />

Fourth Quadrant:<br />

R is positive (+)<br />

<br />

+ 360 o<br />

270 o > < 360 o<br />

x = + y = -<br />

270 o<br />

R<br />

x = R cos <br />

y = R sin


Resultant of Perpendicular <strong>Vectors</strong><br />

Finding resultant of two perpendicular vectors is<br />

like changing from rectangular to polar coord.<br />

R<br />

<br />

x<br />

y<br />

R<br />

x<br />

2<br />

y<br />

2<br />

tan <br />

y<br />

x<br />

R is always positive; is from + x axis


Example 3: A 30-lb<br />

southward force<br />

and a 40-lb<br />

eastward force act on a<br />

donkey at the same time. What is the<br />

NET or resultant force on the donkey?<br />

Draw a rough sketch.<br />

Choose rough scale:<br />

Ex: 1 cm = 10 lb<br />

Note: Force has 40 direction lb just like length<br />

does.<br />

40 lb<br />

We can treat force vectors just as we<br />

have length vectors to find the resultant<br />

force. The procedure is is the same!<br />

4 cm = 40 lb<br />

30 lb<br />

30 lb<br />

3 cm = 30 lb


Finding Resultant: (Cont.)<br />

Finding ( (R, R,) ) from given ( (x,y)) = (+40, -30)<br />

40 lb<br />

<br />

<br />

R x<br />

40 lb<br />

R y<br />

30 lb<br />

R<br />

30 lb<br />

R = x 2 + y 2<br />

R = (40) 2 + (30) 2 = 50 lb<br />

tan = -30<br />

40<br />

= -36.9 o<br />

= 323.1 o


R y<br />

30 lb<br />

Four Quadrants: (Cont.)<br />

R<br />

<br />

R x<br />

40 lb<br />

40 lb<br />

R y<br />

40 lb R x R x 40 lb<br />

<br />

<br />

30 lb R<br />

<br />

R = 50 lb<br />

R = 50 lb<br />

<br />

R<br />

R x<br />

R<br />

30 lb<br />

R y<br />

R y<br />

30 lb<br />

= 36.9 o ; = 36.9 o ; 143.1 o ; 216.9 o ; 323.1 o


Unit vector notation (i,j,k(<br />

i,j,k)<br />

y Consider 3D axes (x, y, z)<br />

k<br />

j<br />

i<br />

x<br />

Define unit vectors, i, j, k<br />

Examples of Use:<br />

z<br />

40 m, E = 40 i 40 m, W = -40 i<br />

30 m, N = 30 j 30 m, S = -30 j<br />

20 m, out = 20 k 20 m, in = -20 k


Example 4: A woman walks 30 m, W; W<br />

then 40 m, N. Write her displacement<br />

in i,j notation and in R, notation.<br />

+40 m R<br />

In i,j notation, we have:<br />

R = R x i + R y j<br />

<br />

R x = - 30 m<br />

R y = + 40 m<br />

-30 m<br />

R = -30 i i + 40 j<br />

Displacement is is 30 m west and 40 m<br />

north of the starting position.


Example 4 (Cont.): Next we find her<br />

displacement in R, notation.<br />

+40<br />

m<br />

R<br />

<br />

-30 m<br />

40<br />

tan ; = 59.1<br />

30<br />

= 180 0 – 59.1 0<br />

= 126.9 o<br />

R ( 30) 2<br />

(40)<br />

2<br />

R = 50 m<br />

(R,) = (50 m, 126.9 o )<br />

0


Example 6: Town A is 35 km south and 46 km<br />

west of Town B. Find length and direction of<br />

highway between towns.<br />

46 km<br />

R = -46<br />

i – 35 j<br />

R <br />

(46 km) (35 km)<br />

2 2<br />

R = 57.8 km<br />

46 km<br />

tan<br />

35 km<br />

35<br />

km<br />

A<br />

<br />

R = ?<br />

B<br />

= 180 0 + 52.7 0<br />

= 52.7 0 S. of W.<br />

= 232.7 0


Example 7. Find the components of the 240-N<br />

force exerted by the boy on the girl if his arm<br />

makes an angle of 28 0 with the ground.<br />

F y<br />

F = 240 N<br />

F<br />

28 0<br />

F y<br />

F x<br />

F x = -|(240 N) cos 28 0 | = -212 N<br />

F y = +|(240 N) sin 28 0 | = +113 N<br />

Or in i,j notation:<br />

F = -(212<br />

N)i + (113 N)j


Example 8. Find the components of a 300-N<br />

force acting along the handle of a lawn-<br />

mower. The angle with the ground is 32 0 .<br />

F = 300 N<br />

32 o<br />

F x<br />

32 o<br />

F y<br />

32 0<br />

F<br />

F y<br />

F x = -|(300 N) cos 32 0 | = -254 N<br />

F y = -|(300 N) sin 32 0 | = -159 N<br />

Or in i,j notation:<br />

F = -(254<br />

N)i - (159 N)j


Component Method<br />

1. Start at origin. Draw each vector to scale<br />

with tip of 1st to tail of 2nd, tip of 2nd to<br />

tail 3rd, and so on for others.<br />

2. Draw resultant from origin to tip of last<br />

vector, noting the quadrant of the resultant.<br />

3. Write each vector in i,j notation.<br />

4. Add vectors algebraically to get resultant in<br />

i,j notation. Then convert to (R,(<br />

R,).


Example 9. A boat moves 2.0 km east then<br />

4.0 km north, then 3.0 km west, and finally<br />

2.0 km south. Find resultant displacement.<br />

1. Start at origin.<br />

Draw each vector to<br />

scale with tip of 1st<br />

to tail of 2nd, tip of<br />

2nd to tail 3rd, and<br />

so on for others.<br />

D<br />

2 km, S<br />

2. Draw resultant from origin to tip of last<br />

vector, noting the quadrant of the resultant.<br />

Note: The scale is approximate, but it is still<br />

clear that the resultant is in the fourth quadrant.<br />

N<br />

3 km, W<br />

C<br />

A<br />

2 km, E<br />

B<br />

4 km, N<br />

E


Example 9 (Cont.) Find resultant displacement.<br />

3. Write each vector<br />

in i,j notation:<br />

A = +2 i<br />

B = + 4 j<br />

C = -3 i<br />

D = - 2 j 4. Add vectors A,B,C,D<br />

algebraically to get<br />

R = -1 i + 2 j resultant in i,j notation.<br />

1 km, west and 2<br />

km north of origin.<br />

D<br />

2 km, S<br />

N<br />

3 km, W<br />

C<br />

A<br />

2 km, E<br />

B<br />

4 km, N<br />

E<br />

5. Convert to R, notation<br />

See next page.


Example 9 (Cont.) Find resultant displacement.<br />

Resultant Sum is:<br />

R = -1 i + 2 j<br />

Now, We Find R, <br />

2 2<br />

R ( 1) (2) 5<br />

R = 2.24 km<br />

D<br />

2 km, S<br />

N<br />

3 km, W<br />

C<br />

A<br />

2 km, E<br />

B<br />

4 km, N<br />

E<br />

2 km<br />

tan<br />

1 km<br />

= 63.4 0 N or W<br />

R x = -1 km<br />

R<br />

<br />

R y = +2<br />

km


Reminder of Significant Units:<br />

For convenience, we<br />

follow the practice of<br />

assuming three (3)<br />

significant figures for<br />

all data in problems.<br />

D<br />

2 km<br />

N<br />

3 km<br />

C<br />

A<br />

2 km<br />

B<br />

4 km<br />

E<br />

In the previous example, we assume that the<br />

distances are 2.00 km, 4.00 km, and 3.00 km.<br />

Thus, the answer must be reported as:<br />

R = 2.24 km, 63.4 0 N of W


Significant Digits for Angles<br />

Since a tenth of a<br />

degree can often be<br />

significant, sometimes a<br />

fourth digit is needed.<br />

Rule: Write angles to to<br />

the nearest tenth of of<br />

a degree. See the<br />

two examples below:<br />

<br />

<br />

<br />

R<br />

R x<br />

R x<br />

40 lb<br />

40 lb<br />

30 lb<br />

R y<br />

R y<br />

= 36.9 o ; 323.1 o<br />

R<br />

30 lb


Example 10: Find R, for the three vector<br />

displacements below:<br />

A = 5 m, 0 0<br />

B = 2.1 m, 20 0<br />

C = 0.5 m, 90 0<br />

<br />

R<br />

A = 5 m<br />

B<br />

20 0<br />

C =<br />

0.5 m<br />

B = 2.1 m<br />

1. First draw vectors A, B, and C to approximate<br />

scale and indicate angles. (Rough drawing)<br />

2. Draw resultant from origin to tip of last vector;<br />

noting the quadrant of the resultant. (R,)<br />

3. Write each vector in i,j notation. (Continued ...)


Example 10: Find R, for the three vector<br />

displacements below: (A table may help.)<br />

For i,j notation<br />

find x,y components<br />

of each<br />

vector A, B, C.<br />

A = 5 m<br />

Vector X-component (i)(<br />

Y-component (j)(<br />

A=5 m 0 0 + 5 m 0<br />

20 0<br />

B = 2.1 m<br />

B=2.1m 20 0 +(2.1 m) cos 20 0 +(2.1 m) sin 20 0<br />

C=.5 m 90 0 0 + 0.5 m<br />

<br />

R<br />

R x<br />

= A x<br />

+B x<br />

+C x<br />

R y<br />

= A y<br />

+B y<br />

+C y<br />

B<br />

C =<br />

0.5 m


Example 10 (Cont.): Find i,j for three<br />

vectors: A = 5 m,0 0 ; B = 2.1 m, 20<br />

90 0 .<br />

= 2.1 m, 20 0 ; C = 0.5 m,<br />

X-component (i)(<br />

Y-component (j)(<br />

A x<br />

= + 5.00 m A y<br />

= 0<br />

B x<br />

= +1.97 m B y<br />

= +0.718 m<br />

C x<br />

= 0 C y<br />

= + 0.50 m<br />

4. Add vectors to<br />

get resultant R<br />

in i,j notation.<br />

A = 5.00 i + 0 j<br />

B = 1.97 i + 0.718 j<br />

C = 0 i + 0.50 j<br />

R = 6.97 i + 1.22 j


Example 10 (Cont.): Find i,j for three vectors:<br />

R <br />

A = 5 m,0 0 ; B = 2.1 m, 20 0 ; C = 0.5 m, 90 0 .<br />

R = 6.97 i + 1.22 j<br />

5. Determine R, from x,y:<br />

(6.97 m) (1.22 m)<br />

R = 7.08 m<br />

2 2<br />

Diagram for<br />

finding R,<br />

R x = 6.97 m<br />

1.22 m<br />

tan = 9.93 0<br />

6.97 m<br />

N. of E.<br />

<br />

R<br />

R y<br />

1.22 m


Example 11: A bike travels 20 m, E then 40 m<br />

at 60 o N of W, and finally 30 m at 210 o . What<br />

is the resultant displacement graphically?<br />

C = 30 m<br />

30 o R<br />

<br />

<br />

B =<br />

40 m<br />

60 o<br />

Graphically, we use<br />

ruler and protractor<br />

to draw components,<br />

then measure the<br />

Resultant R,<br />

A = 20 m, E<br />

Let 1 cm = 10 m<br />

R = (32.6 m, 143.0 o )


A Graphical Understanding of the Components<br />

and of the Resultant is given below:<br />

Note: R x = A x + B x + C x<br />

C y<br />

B y<br />

C<br />

B<br />

0<br />

R y = A y + B y + C y<br />

R y<br />

30 o R<br />

<br />

<br />

60 o<br />

A<br />

R x<br />

A x<br />

C x<br />

B x


Example 11 (Cont.) Using the Component<br />

Method to solve for the Resultant.<br />

C y<br />

B y<br />

30 o R<br />

C<br />

B<br />

Write each vector<br />

in i,j notation.<br />

A x = 20 m, A y = 0<br />

R y<br />

R x<br />

<br />

<br />

60<br />

A<br />

A<br />

A = 20 i<br />

B x = -40 cos 60 o = -20 m<br />

C x<br />

B x<br />

x<br />

B y = 40 sin 60 o = +34.6 m<br />

C x = -30 cos 30 o = -26 m<br />

C y = -30 sin 60 o = -15 m<br />

B = -20 i + 34.6 j<br />

C = -26 i - 15 j


Example 11 (Cont.) The Component Method<br />

C y<br />

B y<br />

30 o R<br />

C<br />

B<br />

Add algebraically:<br />

A = 20 i<br />

B = -20 i + 34.6 j<br />

R y<br />

R x<br />

C x<br />

<br />

<br />

B x<br />

60<br />

A<br />

A<br />

x<br />

C = -26 i - 15 j<br />

R = -26 i + 19.6 j<br />

+19.6<br />

R<br />

<br />

-26<br />

R = (-26) 2 + (19.6) 2 = 32.6 m<br />

tan = 19.6<br />

-26<br />

= 143 o


Example 11 (Cont.) Find the Resultant.<br />

C y<br />

B y<br />

30 o C<br />

R<br />

B<br />

R = -26 i + 19.6 j<br />

R y<br />

R x<br />

C x<br />

<br />

<br />

B x<br />

60<br />

A<br />

A<br />

x<br />

+19.6<br />

R<br />

<br />

-26<br />

The Resultant Displacement of the bike is best<br />

given by its polar coordinates R and .<br />

R = 32.6 m; = 143 0


Example 12. Find A + B + C for <strong>Vectors</strong><br />

Shown below.<br />

B<br />

A = 5 m, 90 0<br />

B = 12 m, 0 0 A<br />

C = 20 m, -35 0<br />

R<br />

<br />

C x<br />

<br />

C y<br />

C<br />

A x = 0; A y = +5 m<br />

B x = +12 m; B y = 0<br />

C x = (20 m) cos 35 0<br />

C y = -(20 m) sin -35<br />

0<br />

A = 0 i + 5.00 j<br />

B = 12 i + 0 j<br />

C = 16.4 i – 11.5 j<br />

R = 28.4 i - 6.47 j


Example 12 (Continued). Find A + B + C<br />

A<br />

B<br />

R<br />

<br />

<br />

C<br />

R x = 28.4 m<br />

<br />

R<br />

R y = -6.47 m<br />

2 2<br />

R (28.4 m) (6.47 m) R = 29.1 m<br />

6.47 m<br />

tan = 12.8 0<br />

28.4 m<br />

S. of E.


Vector Difference<br />

For vectors, signs are indicators of direction.<br />

Thus, when a vector is subtracted, the sign<br />

(direction) must be changed before adding.<br />

First Consider A + B Graphically:<br />

B<br />

A<br />

R = A + B<br />

A<br />

R<br />

B


Vector Difference<br />

For vectors, signs are indicators of direction.<br />

Thus, when a vector is subtracted, the sign<br />

(direction) must be changed before adding.<br />

Now A – B: First change sign (direction)<br />

of B, then add the negative vector.<br />

B -B<br />

A<br />

A<br />

A<br />

R’<br />

-B


Addition and Subtraction<br />

Subtraction results in a significant difference<br />

both in the magnitude and the direction of<br />

the resultant vector. |(A – B)| = |A| - |B|<br />

Comparison of addition and subtraction of B<br />

B<br />

A<br />

R = A + B<br />

A<br />

R<br />

R’ = A - B<br />

A<br />

B R’ -B


Example 13. Given A = 2.4 km, N and<br />

B = 7.8 km, N: find A – B and B – A.<br />

A – B;<br />

B - A<br />

A - B<br />

+A<br />

-B<br />

R<br />

B - A<br />

-A<br />

+B<br />

R<br />

A<br />

2.43 N<br />

B<br />

7.74 N<br />

(2.43 N – 7.74 S)<br />

5.31 km, S<br />

(7.74 N – 2.43 S)<br />

5.31 km, N


Summary for <strong>Vectors</strong><br />

• A scalar quantity is completely specified<br />

by its magnitude only. (40(<br />

m, m 10 gal)<br />

• A vector quantity is completely specified by<br />

its magnitude and direction. (40(<br />

m, 30 0 )<br />

Components of R:<br />

R x = R cos <br />

R y = R sin <br />

R<br />

<br />

R x<br />

R y


Summary Continued:<br />

• Finding the resultant of two perpendicular<br />

vectors is like converting from polar (R, )<br />

to the rectangular (R x , R y ) coordinates.<br />

Resultant of <strong>Vectors</strong>:<br />

R x y<br />

tan <br />

2 2<br />

y<br />

x<br />

R<br />

<br />

R x<br />

R y


Component Method for <strong>Vectors</strong><br />

• Start at origin and draw each vector in<br />

succession forming a labeled polygon.<br />

• Draw resultant from origin to tip of last<br />

vector, noting the quadrant of resultant.<br />

• Write each vector in i,j notation ( (R x ,R y ).<br />

• Add vectors algebraically to get resultant<br />

in i,j notation. Then convert to ( (R


Vector Difference<br />

For vectors, signs are indicators of direction.<br />

Thus, when a vector is subtracted, the sign<br />

(direction) must be changed before adding.<br />

Now A – B: First change sign (direction)<br />

of B, then add the negative vector.<br />

B -B<br />

A<br />

A<br />

A<br />

R’<br />

-B


Conclusion of <strong>Chapter</strong> <strong>3B</strong> - <strong>Vectors</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!