25.11.2014 Views

Use of Simulation in Valuation Outline for today - MIT

Use of Simulation in Valuation Outline for today - MIT

Use of Simulation in Valuation Outline for today - MIT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> <strong>in</strong> <strong>Valuation</strong><br />

Richard de Neufville<br />

Pr<strong>of</strong>essor <strong>of</strong> Eng<strong>in</strong>eer<strong>in</strong>g Systems<br />

and <strong>of</strong><br />

Civil and Environmental Eng<strong>in</strong>eer<strong>in</strong>g<br />

<strong>MIT</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 1 <strong>of</strong> 17<br />

Outl<strong>in</strong>e <strong>for</strong> <strong>today</strong><br />

• Context: Approaches to <strong>Valuation</strong><br />

• <strong>Simulation</strong> Procedures<br />

• Example <strong>of</strong> <strong>Use</strong>: Antam<strong>in</strong>a M<strong>in</strong>e<br />

— Separate Slide show<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 2 <strong>of</strong> 17<br />

Page 1


Context <strong>for</strong> Option <strong>Valuation</strong>s<br />

• Many Approaches to <strong>Valuation</strong>, differ<strong>in</strong>g by<br />

way they Model and Value Uncerta<strong>in</strong>ty<br />

• Presentation so far <strong>of</strong> Standard Choices<br />

— DCF, Decision Analysis, Black-Scholes etc<br />

• Beg<strong>in</strong>n<strong>in</strong>g Now: New, pragmatic approaches<br />

— <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> (Antam<strong>in</strong>a M<strong>in</strong>e)<br />

— F<strong>in</strong>d<strong>in</strong>g Options (Bartolomei, Kalligeros)<br />

— Hybrid Analysis (Neely, auto case)<br />

— Non-Recomb<strong>in</strong>ant Lattices (Wang)<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 3 <strong>of</strong> 17<br />

Context <strong>for</strong> <strong>Valuation</strong>s -- Table<br />

Model<strong>in</strong>g <strong>of</strong> Uncerta<strong>in</strong>ty<br />

<strong>Simulation</strong><br />

Non-Recombi<br />

-nant Lattice<br />

GBM<br />

Lattice<br />

Subjective<br />

Probabilities<br />

None<br />

Garage<br />

Case<br />

DCF<br />

None<br />

Homework<br />

Assignment<br />

Homework<br />

Assignment<br />

Decision<br />

Analysis<br />

CAPM<br />

Neely<br />

Hybrid<br />

<strong>Valuation</strong> <strong>of</strong> Uncerta<strong>in</strong>ty<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 4 <strong>of</strong> 17<br />

Antam<strong>in</strong>a<br />

Example<br />

Wang<br />

Thesis<br />

Black-S.<br />

B<strong>in</strong>omial<br />

Replicat<strong>in</strong>g<br />

Portfolio<br />

Page 2


Context <strong>for</strong> <strong>Valuation</strong>s -- Issue<br />

• Given Many <strong>Valuation</strong> Possibilities…<br />

• The question is, which do we choose?<br />

• At present, no def<strong>in</strong>itive answer …<br />

• A subject <strong>of</strong> much research<br />

• Rest <strong>of</strong> Semester presents some recent<br />

developments – start<strong>in</strong>g with <strong>Simulation</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 5 <strong>of</strong> 17<br />

Outl<strong>in</strong>e <strong>of</strong> <strong>Simulation</strong> Portion<br />

• What is <strong>Simulation</strong>?<br />

• How is it done?<br />

• General Procedure <strong>for</strong> us<strong>in</strong>g<br />

<strong>Simulation</strong> to Value Options<br />

• Example: Antam<strong>in</strong>a M<strong>in</strong>e<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 6 <strong>of</strong> 17<br />

Page 3


What is <strong>Simulation</strong>?<br />

• Replicates outcomes <strong>of</strong> a probabilistic process<br />

(<strong>of</strong>ten called “Monte Carlo” simulation)<br />

— As <strong>in</strong> “Garage case”<br />

• It provides a way to describe what may occur,<br />

<strong>in</strong> the l<strong>in</strong>e <strong>of</strong><br />

— Decision tree, which enables discrete, trendbreak<strong>in</strong>g<br />

outcomes<br />

— Lattice, based on expand<strong>in</strong>g distribution over time<br />

• Can use any variety <strong>of</strong> irregular distributions<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 7 <strong>of</strong> 17<br />

<strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> is New<br />

• Recent s<strong>of</strong>tware makes simulation feasible<br />

— Simple example: Excel Add-<strong>in</strong> (see ESD 70)<br />

— Expensive, slick example: Crystal Ball<br />

• 1000’s <strong>of</strong> repetitions <strong>in</strong> seconds<br />

• Often, model <strong>of</strong> consequences simple, <strong>for</strong><br />

example, spreadsheet model<strong>in</strong>g pr<strong>of</strong>its<br />

— Example: Garage Case<br />

• More Complicated: See Antam<strong>in</strong>a case<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 8 <strong>of</strong> 17<br />

Page 4


Requirements <strong>for</strong> <strong>Simulation</strong><br />

• Distributions <strong>for</strong> Key parameters<br />

— May be observed, assumed, estimated, or guessed<br />

• Examples:<br />

— Observed: Ra<strong>in</strong>fall, river flows over years<br />

— Assumed: Market data as GBM (price <strong>of</strong> metal)<br />

— Estimated: Technical Cost Models (<strong>of</strong> m<strong>in</strong>e ops)<br />

— Guessed: Judgment (ore quantity, quality)<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 9 <strong>of</strong> 17<br />

<strong>Simulation</strong> Process Consists <strong>of</strong>:<br />

1. Hav<strong>in</strong>g a model <strong>of</strong> system (Ex: NPV <strong>of</strong> m<strong>in</strong><strong>in</strong>g)<br />

2. Def<strong>in</strong><strong>in</strong>g the distributions <strong>of</strong> key parameters<br />

(Ex: ore quantities, price <strong>of</strong> metal)<br />

3. Sampl<strong>in</strong>g a process (Ex: the distribution <strong>of</strong> the<br />

quality <strong>of</strong> ore <strong>in</strong> a m<strong>in</strong>e), to...<br />

4. Obta<strong>in</strong> a value <strong>of</strong> a parameter (Ex: ore quality)<br />

5. Calculat<strong>in</strong>g the consequences <strong>of</strong> that factor (Ex:<br />

the pr<strong>of</strong>it from that m<strong>in</strong>e)<br />

6. Repeat<strong>in</strong>g 1000’s <strong>of</strong> times, to get probability<br />

distribution <strong>of</strong> consequence (Ex: the pr<strong>of</strong>it)<br />

7. Calculat<strong>in</strong>g EV(NPV) and plott<strong>in</strong>g Value at Risk<br />

and Ga<strong>in</strong> (VARG) curve<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 10 <strong>of</strong> 17<br />

Page 5


Option Value by <strong>Simulation</strong><br />

• Step 1: Get distribution <strong>of</strong> consequences<br />

(Ex: pr<strong>of</strong>itability <strong>of</strong> M<strong>in</strong>e) and expected NPV<br />

• Step 2: Assume option exercised only <strong>in</strong><br />

favorable circumstances, thus drop<br />

unpr<strong>of</strong>itable outcomes from distribution<br />

=> revised NPV distribution, EV(NPV)<br />

• Step 3: Value <strong>of</strong> Option is difference<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 11 <strong>of</strong> 17<br />

Range <strong>for</strong> Option Value by <strong>Simulation</strong><br />

• Both Market and Technical Uncerta<strong>in</strong>ties<br />

— This is a most important feature <strong>for</strong> real options<br />

— Standard f<strong>in</strong>ancial approach ignores technical<br />

uncerta<strong>in</strong>ties <strong>of</strong> any project – why is this?<br />

Reason<strong>in</strong>g is that <strong>in</strong>vestors can diversify among<br />

projects and so should ignore project risks<br />

— Project owners however cannot ignore!<br />

• Both types <strong>of</strong> real options<br />

— “on” projects, where technology is a “black box”<br />

— “<strong>in</strong>” projects, with options designed <strong>in</strong>to project<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 12 <strong>of</strong> 17<br />

Page 6


Antam<strong>in</strong>a M<strong>in</strong>e Example<br />

• General Context<br />

— Peru government wanted to develop a m<strong>in</strong>e<br />

— M<strong>in</strong>e had uncerta<strong>in</strong> quality and quantity <strong>of</strong> ore<br />

— Step 1: explore geology, topography <strong>for</strong> access<br />

— Step 2: decide to develop and spend 3 years on<br />

build<strong>in</strong>g facilities be<strong>for</strong>e gett<strong>in</strong>g pr<strong>of</strong>its <strong>in</strong> Year 6<br />

• Government plan<br />

— Required bidd<strong>in</strong>g on 2-stage process<br />

— Companies must bid <strong>for</strong> right to explore and<br />

must decide on development <strong>in</strong> 2 years<br />

— Big penalty <strong>for</strong> not develop<strong>in</strong>g (why?)<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 13 <strong>of</strong> 17<br />

Antam<strong>in</strong>a M<strong>in</strong>e -- Options<br />

• Option “on” project<br />

— W<strong>in</strong>n<strong>in</strong>g Company has “right, not obligation” to<br />

abandon m<strong>in</strong>e <strong>in</strong> 2 years “European” put<br />

— Option Cost = Price to Peru + Exploration Costs<br />

— Strike Price = Costs <strong>for</strong>feited to Peru<br />

• Options “<strong>in</strong>” project<br />

— Technical staff can create Options “<strong>in</strong>” system<br />

— Ex: build up port dur<strong>in</strong>g 2 years <strong>of</strong> exploration,<br />

to provide “right, not obligation” to expedite<br />

development <strong>in</strong> only 2 years – and thus advance<br />

revenue stream by 1 year and <strong>in</strong>crease NPV<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 14 <strong>of</strong> 17<br />

Page 7


Antam<strong>in</strong>a M<strong>in</strong>e <strong>Simulation</strong><br />

• System Model: NPV <strong>of</strong> Pr<strong>of</strong>it as function <strong>of</strong>:<br />

— ore quality, quantity<br />

— cost <strong>of</strong> m<strong>in</strong><strong>in</strong>g<br />

— value <strong>of</strong> metals (mostly copper, z<strong>in</strong>c and “moly”)<br />

• Distributions <strong>for</strong> Key parameters<br />

— Assumed: Market data as GBM (lattice evolution<br />

from current price <strong>of</strong> metal)<br />

— Estimated: Technical Cost Models (<strong>of</strong> m<strong>in</strong>e ops)<br />

— Guessed: Expert Judgment to be revised by<br />

results <strong>of</strong> exploration (ore quantity, quality)<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 15 <strong>of</strong> 17<br />

Antam<strong>in</strong>a M<strong>in</strong>e <strong>Valuation</strong><br />

• Assumed operators could “lock <strong>in</strong>” price <strong>for</strong><br />

metal by long-term contracts over life <strong>of</strong> m<strong>in</strong>e<br />

— Probably not possible <strong>in</strong> fact. However, it is<br />

necessary assumption to know value <strong>of</strong> ore to use<br />

as basis <strong>for</strong> valu<strong>in</strong>g NPV <strong>of</strong> m<strong>in</strong>e over its life<br />

• Value <strong>of</strong> “on” Option = EV(all positive NPV) –<br />

EV(project without option to abandon)<br />

• Value <strong>of</strong> “<strong>in</strong>” Option = further improvements<br />

<strong>in</strong> NPV due to flexibility provided<br />

• See special Antam<strong>in</strong>a slide show<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 16 <strong>of</strong> 17<br />

Page 8


Take-Aways<br />

• <strong>Simulation</strong> is a useful way to represent pdfs<br />

<strong>of</strong> outcomes that will def<strong>in</strong>e value <strong>of</strong> option<br />

— Computationally efficient<br />

• Can deal with all k<strong>in</strong>ds <strong>of</strong> uncerta<strong>in</strong>ties<br />

— Contrast to B-S, lattice techniques<br />

• Relatively easy to expla<strong>in</strong> to decision-makers<br />

— No complicated math, no “replicat<strong>in</strong>g portfolio”,<br />

no confus<strong>in</strong>g trees or “messy bushes”<br />

CAN BE A VERY GOOD APPROACH<br />

Eng<strong>in</strong>eer<strong>in</strong>g Systems Analysis <strong>for</strong> Design Richard de Neufville ©<br />

Massachusetts Institute <strong>of</strong> Technology <strong>Use</strong> <strong>of</strong> <strong>Simulation</strong> Slide 17 <strong>of</strong> 17<br />

Page 9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!