25.11.2014 Views

Develop a Sample Preparation Procedure for HPLC Analysis of ...

Develop a Sample Preparation Procedure for HPLC Analysis of ...

Develop a Sample Preparation Procedure for HPLC Analysis of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Develop</strong> a <strong>Sample</strong> <strong>Preparation</strong> <strong>Procedure</strong> <strong>for</strong> <strong>HPLC</strong> <strong>Analysis</strong> <strong>of</strong> Glucosinolates in<br />

Traditional Chinese Medicines<br />

By<br />

LEE Kim Chung<br />

(02010364)<br />

A thesis submitted in partial fulfillment <strong>of</strong> the requirements<br />

<strong>for</strong> the degree <strong>of</strong><br />

Bachelor <strong>of</strong> Science (Honours)<br />

in Applied Chemistry<br />

(Concentration in Environmental Studies)<br />

at<br />

Hong Kong Baptist University<br />

22/04/2005


ACKNOWLEDGEMENT<br />

This is an ongoing project and has been done by graduated students, Miss C.Y. Cheung, Miss<br />

W.M. Au and Mr. C.K. Kwong. The negative electrospray ionization-quadrupole time-<strong>of</strong>- flight<br />

mass spectrometry and MS/MS analysis <strong>of</strong> glucosinolate standards, vegetable and Traditional<br />

Chinese Medicine (TCM) samples were done by Dr. Zongwei Cai’s M. Phil students, Mr. W.T.<br />

Ma and Mr. W. Chan. All other experiments described in this thesis were my own original work<br />

and were carried out by myself under the supervision <strong>of</strong> Dr. Zongwei Cai. Thank you <strong>for</strong> his<br />

valuable advice and guidance <strong>for</strong> me in this project.<br />

Thank you <strong>for</strong> Pr<strong>of</strong>. Albert W.M. Lee as my observer and provide me Rorippa indica (Linn.)<br />

Hiern sample [ 蔊 菜 ].<br />

Thank you <strong>for</strong> Dr. Zhong-zhen Zhao provide me Leaf <strong>of</strong> Isatis indigotica Fort. sample [ 大 青 葉 ].<br />

Thank you <strong>for</strong> Dr. Zongwei Cai’s M. Phil students, Mr. W.T. Ma and Mr. W. Chan as well as his<br />

PhD student, Miss Q. Luo and laboratory technician, Mr. John Ng who have helped me a lot in<br />

this project.<br />

Signature <strong>of</strong> Student<br />

Student Name<br />

Department <strong>of</strong> Chemistry<br />

Hong Kong Baptist University<br />

Date:<br />

II


<strong>Develop</strong> a <strong>Sample</strong> <strong>Preparation</strong> <strong>Procedure</strong> <strong>for</strong> <strong>HPLC</strong> <strong>Analysis</strong> <strong>of</strong> Glucosinolates in<br />

Traditional Chinese Medicines<br />

By<br />

LEE Kim Chung<br />

(02010364)<br />

Department <strong>of</strong> Chemistry<br />

ABSTRACT<br />

Glucosinolates which are β-D-thioglucoside-N-hydroxysulfates found in the plant family<br />

Cruciferae, especially in Brassica. A reversed-phase <strong>HPLC</strong> method using Hypersil BDS C18<br />

column was developed <strong>for</strong> analyzing twelve intact glucosinolates (glucoiberin, glucocheirolin,<br />

progoitrin, sinigrin, epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucosibarin,<br />

glucotropaeolin, glucoerucin, gluconasturtiin) in three vegetable and ten Traditional Chinese<br />

Medicine (TCM) samples. The samples were extracted with methanol, followed by filtration<br />

and evaporation. Interferences in the organic sample extracts were removed by using activated<br />

Florisil solid-phase extraction. A gradient program and mobile phases using methanol and<br />

30mM ammonium acetate at pH5.0 allowed sufficient retention and baseline separation <strong>of</strong> the<br />

glucosinolates in the sample extracts. Individual glucosinolates were detected by a UV detector<br />

at 233nm. Further confirmation was done by using liquid chromatography mass spectrometry.<br />

The glucosinolate concentrations in the sample extracts were determined by using an external<br />

calibration method. Detection limits <strong>of</strong> the glucosinolates were 25.2µg/g, 7.8µg/g, 1.8µg/g,<br />

5.7µg/g, 8.3µg/g, 10.8µg/g, 24.2µg/g, 19.8µg/g, 3.3µg/g, 14.7µg/g, 4.3µg/g and 17.5µg/g,<br />

respectively, when 5g <strong>of</strong> dried TCM was analyzed. The average recovery (accuracy) <strong>of</strong> the<br />

method was 99.8 % and the precisions were from 5.3% to 14.6% (relative standard derivation,<br />

n=3) respectively.<br />

III


Contents<br />

1. Introduction P.1-P.6<br />

2. Experimental preparations and procedures<br />

2.1 Chemicals and reagents P.7<br />

2.1 Vegetable and Traditional Chinese Medicine (TCM) samples<br />

2.1.1 Vegetable samples P.7<br />

2.1.2 Traditional Chinese Medicine (TCM) samples P.8<br />

2.3 <strong>Preparation</strong> <strong>of</strong> individual intact glucosinolate standard solutions P.9<br />

2.4 <strong>Preparation</strong> <strong>of</strong> intact glucosinolate standard mixture solutions P.9<br />

2.5 <strong>Preparation</strong> <strong>of</strong> vegetable and Traditional Chinese Medicine<br />

(TCM) samples<br />

2.5.1 <strong>Sample</strong> grinding and extraction P.9-P.10<br />

2.5.2 Clean-up process P.10<br />

2.6 <strong>Preparation</strong> <strong>of</strong> buffer solution P.11<br />

2.7 <strong>HPLC</strong> analysis P.11-P.12<br />

2.8 Mass spectrometry analysis P.12-P.13<br />

3. Experimental results and analysis<br />

3.1 Qualitative analysis<br />

3.1.1 Determination <strong>of</strong> the retention times <strong>for</strong><br />

each intact glucosinolate standard<br />

3.1.2 Identification <strong>of</strong> the glucosinolates in vegetable<br />

and Traditional Chinese Medicine (TCM) samples<br />

by using reversed-phase <strong>HPLC</strong> analysis<br />

3.1.3 Identification <strong>of</strong> the glucosinolates in vegetable<br />

and Traditional Chinese Medicine (TCM) samples<br />

by using ESI-QTOF-MS and MS/MS analysis<br />

P.13-P.14<br />

P.15-P.16<br />

P.16-32<br />

3.2 Quantitative analysis<br />

3.2.1 Calibration curves <strong>for</strong> each individual glucosinolate standard P.33-P.34<br />

IV


3.2.2 Detection limits <strong>of</strong> each glucosinolate P.35<br />

3.2.3 Method recoveries <strong>of</strong> each glucosinolate P.36-37<br />

3.2.4 Glucosinolate concentrations in vegetable and<br />

Traditional Chinese Medicine (TCM) samples<br />

P.38-39<br />

4. Discussion<br />

4.1 Extraction P.40<br />

4.2 Clean-up process P.40-P.42<br />

4.3 Optimization <strong>of</strong> buffer system P.42<br />

4.4 Gradient program P.42-P.43<br />

4.5 Optimization <strong>of</strong> glucosinolate concentrations in the sample extracts P.43-P.44<br />

5. Conclusion P.45<br />

6. Future plan P.45-P.46<br />

7. References P.47-P.48<br />

V


1. Introduction<br />

Glucosinolates are β-D-thioglucoside-N-hydroxysulfates. [1]<br />

More than 120 individual<br />

glucosinolates differing from each other in their structures <strong>of</strong> their glycon mioties have been<br />

identified: these generally classified as alkyl, aliphatic, alkenyl, hydroxyalkenyl, aromatic, or<br />

indole. [2]<br />

The diversity <strong>of</strong> the R Group leads to a wide variation in the polarity and biological<br />

activity <strong>of</strong> the natural products. [3]<br />

The glucosinolates generally occur in the <strong>for</strong>m <strong>of</strong> the<br />

sodium or potassium salt, and the general structure is shown in Figure 1. [4,5]<br />

CH 2 OH<br />

R<br />

ΟΗ<br />

Ο<br />

S<br />

C<br />

NOSO 3<br />

OH<br />

OH<br />

Figure 1: General structure <strong>of</strong> glucosinolates<br />

Glucosinolates are a class <strong>of</strong> approximately 100 plant secondary metabolites which contained<br />

in the seeds, roots, stems, and leaves <strong>of</strong> plants belonging to 11 families <strong>of</strong> dicotyledonous<br />

angiosperms <strong>of</strong> which the crucifers are certainly the most important. [6]<br />

Structural types and<br />

individual concentrations differ according to various factors, <strong>for</strong> example, species, tissue type,<br />

physiological age, and plant health and nutrition. [2]<br />

Glucosinolate concentrations in the<br />

reproductive tissues (florets/ flowers and seeds) are <strong>of</strong>ten as much as 10-40 times higher than<br />

in vegetative tissues. [2] Plant myrosinase is widespread in seeds and tissues <strong>of</strong> the family<br />

Cruciferae and catalyzes the hydrolysis <strong>of</strong> glucosinolates which are also contained in plant<br />

vacuoles <strong>of</strong> the cruciferous plants. [7] This reaction produces goitrogenic and potentially<br />

hepatoxic compounds e.g. isothiocyanates, thiocyanates, nitriles, and thiones, [7] depending on<br />

reaction conditions such as pH, temperature, metal ions, protein c<strong>of</strong>actors, and the properties<br />

1


<strong>of</strong> the side chain. [2] R C<br />

S<br />

β⎯D⎯glucose<br />

N<br />

OSO 3<br />

Myrosinase, H 2 O<br />

S<br />

R C<br />

+<br />

OH<br />

CH 2 OH<br />

OH<br />

Ο<br />

ΟΗ<br />

+<br />

N<br />

OH<br />

HSO 4<br />

unstable aglucon Glucose hydrogen suphate ion<br />

> pH7<br />

pH3, Fe 2+<br />

R S C N R S C N R C N S<br />

Thiocyanate Isothiocyanate Nitrile Sulfur<br />

Figure 2: Degradation <strong>of</strong> glucosinolate by myrosinase in the presence <strong>of</strong> water [8]<br />

The great number <strong>of</strong> the individual glucosinolates produces a large range <strong>of</strong> flavours as well as<br />

toxic effect upon consumption. [9,10]<br />

Glucosinolates have long been known <strong>for</strong> the fungicidal,<br />

bacteriodical, nematocidal, and allelopathic properties. [1]<br />

The activity <strong>of</strong> isothiocyanates<br />

such as sul<strong>for</strong>aphane against numerous human pathogens, <strong>for</strong> example, Escherichia coli,<br />

Salmonella typhimurium and Candida spp. could even contribute to the medicinal properties<br />

ascribed to cruciferous vegetables, such as cabbage and mustard. [1]<br />

Glucosinolate hydrolysis products, especially the isothiocyanates, were demonstrated that<br />

these molecules affect human health, either beneficially or adversely. [2]<br />

Several mechanism<br />

have been proposed to the cancer prevention by breakdown products from cruciferous<br />

vegetables. And they have been proposed to act as blocking agents against carcinogenesis by<br />

2


quinone reductase activity. [11]<br />

Moreover, glucosinolates and derived products would prevent<br />

carcinogen molecules from reaching the target site or interacting with the reactive<br />

carcinogenic molecules or activating the important hepatic enzymes <strong>for</strong> the protection against<br />

several carcinogens. [11]<br />

while some glucosinolates and their breakdown products are found to<br />

have anti-nutritional effect in cattle. [12]<br />

For the determination <strong>of</strong> glucosinolates, it is per<strong>for</strong>med either by indirectly measuring the<br />

enzymatic degradation products or by directly determining the intact glucosinolates. [13]<br />

However, enzymatically or chemically released products such as isothiocyanates,<br />

oxazolidinethiones, thiocyanate ion, sulfate, nitrile or glucose are also measured in the direct<br />

analysis. [13]<br />

Since, the direct analysis <strong>of</strong> the intact glucosinolates can reflect the specificity<br />

<strong>for</strong> the analysis <strong>of</strong> each individual glucosinolate. There<strong>for</strong>e, the direct analysis <strong>of</strong> intact<br />

glucosinolates is also used. [13]<br />

Product analyzed Method <strong>of</strong> dramatization and identification Main references<br />

1.Total glucosinolates I. Palladium chloride <strong>for</strong> tetrachloropallidate assay Moller et al.(1985); Bennert and Pauling (1988)<br />

II. Thymol assay<br />

Tholen et al.(1989); Bennert and Pauling(1988)<br />

III. Glucose-release enzyme-coupled assay Heaney et al. (1988)<br />

IV. Sulphate-release assay Schung (1987, 1988)<br />

V. ELISA Van Doorn et al. (1998)<br />

VI. Near infra-red reflectance(NIR) spectroscopy Velasco and Becker (1998)<br />

VII. Alkaline degradation and thioglucose detection Jesek et al. (1999)<br />

2. Individual intact I. Reverse phase <strong>HPLC</strong>-MS Moller et al. (1985); Bjerg and Sorenson (1987);<br />

glucosinolates Hogge et al. (1988); Kokkonen et al. (1991)<br />

Prestera et al. (1996); Lewkw et al. (1996);<br />

Zrybko et al. (1997); Schutze et al. (1999)<br />

Kaushik and Agnihotri (1999)<br />

II. Thermospray LC with tandem MS Heeremans et al. (1989)<br />

III. High per<strong>for</strong>mance capillary electrophoresis Arguello et al. (1999)<br />

IV. Capillary GC-MS, GC-MS, GC-MS-MS Shaw et al. (1987, 1989)<br />

3. Desulphoglucosinolates I. Reverse phase <strong>HPLC</strong> Fenwick et al. (1983); Quinsac et al. (1991)<br />

3


Heaney and Fenwick (1993); Bjergegaard et al.<br />

(1995); Hrncirik and Velisek (1997); Robertson<br />

and Botting (1999); Griffiths et al. (2000)<br />

II. X-ray fluorescence spectroscopy (XRF) Schung and Hane Klaus, (1990)<br />

4. Degradation Products I. GC or GC-MS Velisek et al. (1990); Daxenbichler et al. (1991)<br />

II. <strong>HPLC</strong> (all degradation products) Matthaus and Fiebig (1996)<br />

II. <strong>HPLC</strong> (fluorescent labeled products) Karcher and EI Rassi (1998)<br />

III. <strong>HPLC</strong> ( 1,2-benzenedithiol derivatives <strong>of</strong> Jiao et al. (1998)<br />

isothiocyanates<br />

Table 1: Some <strong>of</strong> the commonly used methods <strong>for</strong> the quantitative and qualitative<br />

analysis <strong>of</strong> the intact glucosinolates, desulphoglucosinolates, and their<br />

breakdown products [14]<br />

Various alternative methods e.g. GC analysis <strong>of</strong> the trimethsilyl (TMS) derivatization <strong>of</strong><br />

glucosinolates and high-per<strong>for</strong>mance liquid chromatography (<strong>HPLC</strong>) <strong>of</strong> the<br />

desulfoglucosinolate have been used <strong>for</strong> direct or indirect determination <strong>of</strong> total glucosinolate<br />

and individual glucosinolates. GC-MS analysis <strong>of</strong> the glucosinolate breakdown products is<br />

<strong>of</strong>ten used. [15]<br />

After a simple clean-up process, the hydrolysis products were determined<br />

qualitatively and quantitatively by GC-FID.<br />

[16]<br />

However, some side chains <strong>of</strong> the<br />

glucosinolates are non-volatile or breakdown products are unstable <strong>for</strong> the determination. [15]<br />

There<strong>for</strong>e, the most suitable technique is to use the <strong>HPLC</strong> analysis <strong>of</strong> the enzymatically<br />

desulfated glucosinolates. Desulfated glucosinolate gives a better separation. However,<br />

desulfated glucosinolates are <strong>of</strong>ten subject to the difficulties in interpreting results <strong>of</strong> the<br />

individual glucosinolates due to concerns over the effect <strong>of</strong> pH value, time, and enzyme<br />

concentration on desulfation products. [19]<br />

There<strong>for</strong>e, the direct analysis <strong>of</strong> the intact<br />

glucosinolates is needed <strong>for</strong> more specific and accurate determination, <strong>for</strong> better interpretation<br />

<strong>of</strong> analytical results, <strong>for</strong> the reduction <strong>of</strong> analytical time. [13]<br />

It is an ongoing project, three more glucosinolate standards would be analyzed and clean-up<br />

process is also studied. Twelve intact glucosinolate standards including epiprogoitrin,<br />

4


glucocheirolin, glucoerucin, glucoiberin, gluconapin, gluconasturtiin, glucoraphenin,<br />

glucosibarin, glucotropaeolin, progoitrin, sinalbin, sinigrin are determined qualitatively and<br />

quantitatively by using the reversed-phase high-per<strong>for</strong>mance liquid chromatography (<strong>HPLC</strong>).<br />

The trivial and chemical names, chemical <strong>for</strong>mulas, and chemical structures <strong>of</strong> side-chains and<br />

molecular weights <strong>of</strong> intact glucosinolate standards used <strong>for</strong> analysis were shown in Table 2.<br />

The retention times <strong>of</strong> each <strong>of</strong> the intact glucosinolates in the <strong>HPLC</strong> column depend on the<br />

polarities <strong>of</strong> the glucosinolates in the differences by the R groups. Longer side chain or<br />

containing <strong>of</strong> the aromatic ring in the R group will make it relative non-polar. On the other<br />

hand, shorter side chain or containing the polar R group will make it relative polar.<br />

There<strong>for</strong>e, the <strong>HPLC</strong> can be used <strong>for</strong> analysis.<br />

5


Trivial Name and Chemical<br />

<strong>for</strong>mula <strong>of</strong> glucosinolate (GS)<br />

Glucoiberin<br />

(C 11 H 20 NO 10 S 3 )<br />

Glucocheirolin<br />

(C 11 H 20 NO 11 S 3 )<br />

Progoitrin<br />

(C 11 H 18 NO 10 S 2 )<br />

Sinigrin<br />

(C 10 H 16 NO 9 S 2 )<br />

Epiprogoitrin<br />

(C 11 H 18 NO 10 S 2 )<br />

Chemical Name <strong>of</strong><br />

glucosinolate (GS)<br />

Chemical structure <strong>of</strong> Molecular weight b ,<br />

R Group a g/mol<br />

H H<br />

3-(methylsulfinyl)propyl-GS 2 H 2 2<br />

423.0327<br />

H 3 C<br />

H H<br />

3-(Methylsulfonyl)propyl-GS<br />

2 H 2 2<br />

H 3 C S C C C 439.0277<br />

(2R)-2-Hydroxybut-3-enyl-GS<br />

H 2 C C<br />

H<br />

C C<br />

389.0450<br />

(2R)<br />

H<br />

Prop-2-enyl-GS<br />

2<br />

H 2 C C C<br />

359.0345<br />

H 2 C<br />

H<br />

(2S)-2-Hydroxybut-3-enyl-GS 389.0450<br />

(2S)<br />

O<br />

S<br />

O<br />

O<br />

C<br />

C<br />

H<br />

H<br />

C<br />

C<br />

OH<br />

H<br />

OH<br />

H 2<br />

C<br />

C<br />

H 2<br />

Glucoraphenin<br />

(C 12 H 20 NO 10 S 3 )<br />

4-(methylsulfinyl)but-3-enyl-GS H 2 H 2 435.0327<br />

H 3 C<br />

O<br />

S<br />

C<br />

H<br />

C<br />

H<br />

C<br />

C<br />

Sinalbin<br />

(C 14 H 18 NO 10 S 2 )<br />

Gluconapin<br />

(C 11 H 18 NO 9 S 2 )<br />

Glucosibarin<br />

(C 15 H 20 NO 10 S 2 )<br />

Glucotropaeolin<br />

(C 14 H 18 NO 9 S 2 )<br />

Glucoerucin<br />

(C 12 H 22 NO 9 S 3 )<br />

Gluconasturtiin<br />

(C 15 H 20 NO 9 S 2 )<br />

p-Hydroxybenzyl-GS HO<br />

C 425.0450<br />

But-3-enyl-GS H 2 C C C C<br />

373.0501<br />

C C<br />

(2R)-2-Hydroxy-2-phenethyl-GS 439.0607<br />

Benzyl-GS C<br />

409.0501<br />

H H<br />

4-(Methylthio)butyl-GS 2 H 2 H 2 2<br />

421.0535<br />

H 3 C<br />

S<br />

C C<br />

Phenethyl-GS 423.0658<br />

H<br />

C<br />

H 2<br />

C<br />

OH<br />

H<br />

H 2<br />

H 2<br />

H 2<br />

C<br />

H 2<br />

H 2<br />

H 2<br />

C<br />

Remarks: a = the side-chain R in the general structures shown in Figure 1<br />

b<br />

= Molecular weights <strong>of</strong> intact glucosinolates<br />

Table 2: The trivial and chemical names, chemical <strong>for</strong>mulas, and chemical structures <strong>of</strong><br />

side-chains and molecular weights <strong>of</strong> intact glucosinolate standards used <strong>for</strong><br />

analysis<br />

6


2. Experimental preparations and procedures<br />

2.1 Chemicals and reagents<br />

Epiprogoitrin, glucocheirolin, glucoerucin, glucoiberin, gluconapin, gluconasturtiin,<br />

glucoraphenin, glucosibarin, glucotropaeolin, progoitrin, sinalbin were obtained from KVL<br />

(Frederiksberg C, Denmark). Sinigrin was obtained from Sigma (St. Louis, U.S.A.).<br />

<strong>HPLC</strong>-grade hexane and methanol were obtained from Riedel-de Haën ® (Hanover, Germany).<br />

<strong>HPLC</strong>-grade dichloromethane and ethyl acetate were obtained from Tedia (Fairfield, U.S.A.)<br />

Ammonium acetate was obtained from Panreac (Barcelona, Spain) and <strong>for</strong>mic acid was from<br />

Merck (Darmstadt, Germany). Milli-Q water was produced by using a Milli-Q ® Ultrapure<br />

Water Purification Academic System from Millipore (Billerica, U.S.A.).<br />

2.2 Vegetable and Traditional Chinese Medicine (TCM) samples<br />

2.2.1 Vegetable samples<br />

Three vegetable samples were analyzed and shown in Table 3.<br />

They were purchased from<br />

Wellcome supermarket in Hong Kong.<br />

Local name Scientific name Family name<br />

I. Chinese Radish [ 蘿 蔔 ] Raphanus sativus Cruciferae [ 十 字 花 科 ]<br />

II. Cherry Tomato [ 車 厘 茄 ] Lycopersicon esculentum Solanaceae [ 茄 科 ]<br />

III. Tomato [ 番 茄 ] Lycopersicon esculentum Solanaceae [ 茄 科 ]<br />

Table 3: Local, Scientific and Family names <strong>of</strong> the vegetable samples used <strong>for</strong> analysis<br />

7


2.2.2 Traditional Chinese Medicine (TCM) samples<br />

Ten TCM samples were analyzed and shown in Table 4. Leaf <strong>of</strong> Isatis indigotica Fort. [ 大 青<br />

葉 ] was a gift from Dr. Zhong-zhen Zhao, School <strong>of</strong> Chinese Medicine, Hong Kong Baptist<br />

University. Rorippa indica (Linn.) Hiern [ 蔊 菜 ] was a gift from Pr<strong>of</strong>. Albert W.M. Lee,<br />

Department <strong>of</strong> Chemistry, Hong Kong Baptist University. The other TCM samples were<br />

purchased from Mr. & Mrs. Chan Hon Yin Chinese Medicine Specialty Clinic & Good<br />

Clinical Practice Centre, Hong Kong Baptist University.<br />

Local name Scientific name Family name<br />

1. 北 板 藍 根 Root <strong>of</strong> Isatis indigotica Fort. Cruciferae [ 十 字 花 科 ]<br />

2. 南 板 藍 根 Root <strong>of</strong> Baphicacanthus cusia (Nees) Bremek. Acanthaceae [ 爵 床 科 ]<br />

3. 敗 醬 草 Patrinia scabiosaefolia Fisch. ex Trev. Valerianaceae [ 敗 醬 草 科 ]<br />

4. 菥 蓂 Thlaspi arvense L. Cruciferae [ 十 字 花 科 ]<br />

5. 大 青 葉 Leaf <strong>of</strong> Isatis indigotica Fort. Cruciferae [ 十 字 花 科 ]<br />

6. 廣 東 大 青 葉 Leaf <strong>of</strong> Baphicacanthus cusia (Nees) Bremek. Acanthaceae [ 爵 床 科 ]<br />

7. 蔊 菜 Rorippa indica (Linn.) Hiern Cruciferae [ 十 字 花 科 ]<br />

8. 白 芥 子 Seed <strong>of</strong> Sinapis alba L. Cruciferae [ 十 字 花 科 ]<br />

9. 萊 菔 子 Seed <strong>of</strong> Raphanus sativus L. Cruciferae [ 十 字 花 科 ]<br />

10. 葶 藶 子 Seed <strong>of</strong> Lepidium apetalum Willd Cruciferae [ 十 字 花 科 ]<br />

Remarks: 1 is the original TCM and commonly confused by 2 in Hong Kong.<br />

3 is the original TCM and commonly confused by 4 in Hong Kong.<br />

5 is the original TCM and commonly confused by 6 in Hong Kong<br />

Table 4: Local, Scientific and Family names <strong>of</strong> the Traditional Chinese Medicine (TCM)<br />

samples used <strong>for</strong> analysis<br />

8


2.3 <strong>Preparation</strong> <strong>of</strong> individual intact glucosinolate standard solutions<br />

1,000ppm <strong>of</strong> individual intact glucosinolate standard solutions were prepared by dissolving<br />

1mg each <strong>of</strong> intact glucosinolates (glucoiberin, glucocheirolin, progoitrin, sinigrin,<br />

epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucosibarin, glucotropaeolin, glucoerucin,<br />

gluconasturtiin) in 1mL <strong>of</strong> Milli-Q water respectively.<br />

2.4 <strong>Preparation</strong> <strong>of</strong> intact glucosinolate standard mixture solutions<br />

1mg each <strong>of</strong> intact glucosinolates (glucoiberin, glucocheirolin, progoitrin, sinigrin,<br />

epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucosibarin, glucotropaeolin, glucoerucin,<br />

gluconasturtiin) was weighed by precision weighing balance (Sartorius, Brad<strong>for</strong>d, Germany)<br />

and was dissolved in 1mL <strong>of</strong> Milli-Q water to prepare stock standard mixture solution with a<br />

concentration <strong>of</strong> 1,000ppm. This stock solution was diluted to prepare standard mixture<br />

solutions at 500ppm, 400ppm, 300ppm, 200ppm, 100ppm, 50ppm and 5ppm.<br />

2.5 <strong>Preparation</strong> <strong>of</strong> vegetable and Traditional Chinese Medicine (TCM) samples<br />

2.5.1 <strong>Sample</strong> grinding and extraction<br />

Fresh vegetable or dried TCM sample was submitted to an initial grinding in an Extra Fine<br />

Blade Blender (Hitachi, Ibaraki, Japan) <strong>for</strong> 2 minutes to <strong>for</strong>m vegetable paste or dried TCM<br />

powder. 50g <strong>of</strong> the vegetable paste or 5g <strong>of</strong> the dried TCM powder was weighed and<br />

blended with 100mL methanol. The sample mixture was heated with stirring at 70 o C <strong>for</strong> 15<br />

minutes. After cooling to room temperature, the sample mixture was filtered through a<br />

Whatman No. 40 filter paper (Maidstone, England) by suction filtration using water vacuum<br />

pump. The sample extract residue was washed twice with 50mL methanol. The collected<br />

sample extract was evaporated to dryness under vacuum using a Rotovap (Caframo, Germany)<br />

at 55 o C with 60 rpm. The solid sample extract was then dissolved in 10mL methanol and<br />

9


was centrifuged by cyclone centrifuge (Alltech, Deerfield, U.S.A.) <strong>for</strong> 15 minutes at<br />

13,000rpm.<br />

The supernate was collected <strong>for</strong> clean-up process.<br />

2.5.2 Clean-up process<br />

Non-glucosinolate interferences were eliminated from the organic sample extract by using<br />

activated Florisil solid-phase extraction (SPE) column. Florisil sorbent (Fisher Certified<br />

ACS, 60-100mesh) (Sigma, St. Louis, U.S.A.) was activated overnight at 200 o C be<strong>for</strong>e using<br />

<strong>for</strong> solid-phase extraction procedure. A 5mL polypropylene syringe barrel was filled with<br />

0.8g <strong>of</strong> the activated Florisil sorbent in between two 20µm polypropylene frits.<br />

All solvents were kept at a flow rate <strong>of</strong> 1-2mL/min in a vacuum manifold (Alltech, Deerfield,<br />

U.S.A.) by using water vacuum pump during the clean-up process. The activated Florisil<br />

column was rinsed with 5mL <strong>of</strong> 30% (v/v) dichloromethane in hexane. 300µL <strong>of</strong> the organic<br />

sample extract was mixed with 5mL <strong>of</strong> 30% (v/v) dichloromethane in hexane and then<br />

transferred onto the column. 5mL <strong>of</strong> 30% (v/v) dichloromethane in hexane was added to<br />

wash the non-polar interferences from the column. The glucosinolates in the sample extract<br />

were eluted from the column by using 5mL <strong>of</strong> 30% (v/v) ethyl acetate in methanol. The<br />

fraction was evaporated to dryness using a TurboVap ® LV Evaporator (Zymark, Hopkinton,<br />

U.S.A.) under a slow stream <strong>of</strong> nitrogen. The solid sample extract was then dissolved in<br />

300µL <strong>of</strong> Milli-Q water. The aqueous sample extract was centrifuged by the cyclone<br />

centrifuge <strong>for</strong> 15 minutes at 13,000rpm.<br />

The supernate was collected <strong>for</strong> <strong>HPLC</strong> analysis.<br />

10


2.6 <strong>Preparation</strong> <strong>of</strong> buffer solution<br />

30mM ammonium acetate buffer solution at pH5.0 was prepared by dissolving 2.31g <strong>of</strong><br />

ammonium acetate in 1L <strong>of</strong> Milli-Q water, followed by adding a certain amount <strong>of</strong> 100%<br />

<strong>for</strong>mic acid until a calibrated Orion Model 420 pH meter (Delhi, India) showed pH5.0 value.<br />

The buffer solution was then filtered through 0.2µm cellulose acetate filter paper (Alltech,<br />

Deerfield, U.S.A.) by suction filtration using water vacuum pump. The buffer solution was<br />

degassed ultrasonically by a Branson 2510 series Ultrasonic degasser (Danbury, U.S.A.) <strong>for</strong> 10<br />

minutes and was ready <strong>for</strong> <strong>HPLC</strong> analysis.<br />

2.7 <strong>HPLC</strong> analysis<br />

High-per<strong>for</strong>mance liquid chromatography (<strong>HPLC</strong>) experiments were per<strong>for</strong>med on a Hewlett<br />

Packard HP1100 series <strong>HPLC</strong> instrument with a diode array detector (DAD) (San Francisco,<br />

U.S.A.). A reversed-phase Hypersil BDS C18 column (250mm x 4.6mm i.d., 5µ particle size)<br />

(Alltech, Deerfield, U.S.A.) was used <strong>for</strong> separation <strong>of</strong> the glucosinolates in three vegetable<br />

and ten TCM sample extracts. 20µL <strong>of</strong> the aqueous sample extract was injected into the<br />

<strong>HPLC</strong> system by 100µL <strong>HPLC</strong>-syringe (Alltech, Deerfield, U.S.A.). Individual intact<br />

glucosinolates were detected by the DAD detector at a UV wavelength <strong>of</strong> 233nm. HP1100<br />

series degasser was used <strong>for</strong> the degas process. HP chemstation was used to control the<br />

operation <strong>of</strong> the system and per<strong>for</strong>med data analysis. A gradient program was used <strong>for</strong><br />

sufficient retention and baseline separation <strong>of</strong> the glucosinolates, in which mobile phase A<br />

consisted <strong>of</strong> 30mM ammonium acetate containing <strong>for</strong>mic acid at pH5.0 and mobile phase B<br />

consisted <strong>of</strong> pure methanol. The gradient program was shown in Figure 3:<br />

11


Gradient program<br />

%B<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 1 20 25 30<br />

Time(min)<br />

Figure 3: Gradient program <strong>for</strong> separation <strong>of</strong> the glucosinolates<br />

The flow rate was kept at 1mL/min during the <strong>HPLC</strong> analysis. 100% mobile phase A and 0%<br />

mobile phase B were kept <strong>for</strong> the first 5 minutes. Then, 0% mobile phase B was gradually<br />

increased to 30% mobile phase B from 5 minutes to 17 minutes. 30% mobile phase B was<br />

then kept until the end <strong>of</strong> the separation. The twelve glucosinolate standards were separated<br />

completely under these conditions and their corresponding retention times were recorded.<br />

By comparing the retention times <strong>of</strong> the twelve glucosinolate standards with those <strong>of</strong> the<br />

sample extracts, the presence <strong>of</strong> the glucosinlates in the sample extracts could be identified.<br />

The peak areas <strong>of</strong> the identified glucosinoates in the sample extracts were recorded and used<br />

<strong>for</strong> quantitative analysis.<br />

2.8 Mass spectrometry analysis<br />

<strong>HPLC</strong> fractions <strong>of</strong> the twelve intact glucosinolates detected in the vegetable and TCM sample<br />

extracts were collected and analyzed by using electrospray ionzation-quadrupole time-<strong>of</strong>-flight<br />

mass spectrometry (ESI-QTOF-MS) in negative mode and MS/MS analysis <strong>for</strong> the<br />

confirmation <strong>of</strong> the glucosinolates in the sample extracts.<br />

12


The confirmation depended on the masses <strong>of</strong> the molecular ions and their corresponding<br />

fragment ions. The QTOF mass spectrometer was equipped with a turbo ionspray source<br />

(Sciex Q-Star Pulsar i, Applied Biosystem, Canada). The parameters <strong>of</strong> the turbo ionspray<br />

were shown in Table 5:<br />

Ion source gas 1 25 Declustering potential 1 -65.0V<br />

Ion source gas 2 8 Focusing potential -165.0V<br />

Curtain gas 15 Declustering potential 2 -15.0V<br />

Ionspray voltage -4,000V Collision gas 3<br />

Temperature <strong>of</strong> Ion<br />

source gas 2<br />

200 o C Scan mass mode 50-600 amu<br />

Table 5: Experimental conditions <strong>for</strong> ESI-QTOF-MS analysis <strong>of</strong> the glucosinolates<br />

3. Experimental results and analysis<br />

3.1 Qualitative analysis<br />

3.1.1 Determination <strong>of</strong> the retention times <strong>for</strong> each intact glucosinolate standard<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE108.D)<br />

mAU<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

Sinigrin<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

4.772<br />

5.150<br />

5.837<br />

6.244<br />

Epiprogoitrin<br />

7.042<br />

Glucoraphenin<br />

Sinalbin<br />

11.234<br />

11.899<br />

Gluconapin<br />

Glucosibarin<br />

15.084<br />

Glucotropaeolin<br />

15.811<br />

16.160<br />

Glucoerucin<br />

19.101<br />

Gluconasturtiin<br />

200<br />

8.492<br />

0<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 4: Chromatogram <strong>of</strong> 300ppm glucosinolate standard mixture solution<br />

min<br />

13


In the <strong>HPLC</strong> analysis, the twelve intact glucosinolate standards were baseline separated as<br />

shown in Figure 4. The most polar glucosinolate standard, glucoiberin was first eluted out.<br />

When the composition <strong>of</strong> mobile phase B was increased by the gradient program, the<br />

relatively non-polar glucosinolates were eluted out in an order <strong>of</strong> descending the polarities <strong>of</strong><br />

the glucosinolate standards. The most non-polar glucosinolate standard, gluconasturtiin was<br />

the last one to be eluted out.<br />

Under the chromatographic conditions described in Chapter 2.7, the average and relative<br />

retention times <strong>for</strong> each glucosinolate standard were determined and shown in Table 6:<br />

Intact Glucosinolate standard<br />

Retention time (min)<br />

Glucoiberin 4.77 ± 0.02<br />

Glucocheirolin 5.14 ± 0.02<br />

Progoitrin 5.83 ± 0.03<br />

Sinigrin 6.25 ± 0.03<br />

Epiprogoitrin 7.04 ± 0.03<br />

Glucoraphenin 8.48 ± 0.04<br />

Sinalbin 11.23 ± 0.03<br />

Gluconapin 11.90 ± 0.04<br />

Glucosibarin 15.08 ± 0.03<br />

Glucotropaeolin 15.82 ± 0.03<br />

Glucoerucin<br />

16.16 ± 0.03<br />

Gluconasturtiin<br />

19.11 ± 0.03<br />

Table 6: The average and relative retention times <strong>for</strong> each glucosinolate standard<br />

14


3.1.2 Identification <strong>of</strong> the glucosinolates in vegetable and Traditional Chinese Medicine<br />

(TCM) samples by using reversed-phase <strong>HPLC</strong> analysis<br />

The glucosinolates in three vegetable and ten TCM samples were analyzed. By comparing<br />

the retention times <strong>of</strong> the sample extracts with those <strong>of</strong> the glucosinolate standards, the<br />

presence <strong>of</strong> the glucosinolates in the sample extracts could be identified. However, the<br />

retention times <strong>of</strong> the glucosinolates in the sample extracts varied a little bit due to the<br />

complicated martices in the sample extracts. There<strong>for</strong>e, a small volume <strong>of</strong> 1,000ppm<br />

glucosinolate mixture standard solution was spiked into the sample extracts <strong>for</strong> the<br />

identification <strong>of</strong> the glucosinolates in the sample extracts. By comparing the peak areas <strong>of</strong><br />

the corresponding retention times in the chromatogram <strong>of</strong> original sample extract with the<br />

spiked one, the peak areas <strong>of</strong> the spiked one were increased. It identified that the sample<br />

extract contained the glucosinolates being spiked.<br />

By repeating the spiked standard method described above, it identified that Root <strong>of</strong> Isatis<br />

indigotica Fort. [ 北 板 藍 根 ] contained glucoiberin, glucocheirolin, progoitrin, sinigrin,<br />

epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucotropaeolin, glucoerucin and<br />

gluconasturtiin.<br />

The chromatograms <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract and Root <strong>of</strong> Isatis<br />

indigotica Fort. [ 北 板 藍 根 ] extract with standards spiked were shown in Figures 5a and 5b<br />

respectively.<br />

15


mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE094.D)<br />

Glucoiberin<br />

4.805<br />

Glucocheirolin<br />

5.834<br />

Progoitrin<br />

Sinigrin<br />

6.971<br />

Epiprogoitrin<br />

Glucoraphenin<br />

Sinalbin<br />

11.883<br />

Gluconapin<br />

Glucotropaeolin<br />

Glucoerucin<br />

Gluconasturtiin<br />

100<br />

50<br />

5.212<br />

6.276<br />

8.548<br />

11.306<br />

15.799<br />

16.026<br />

19.255<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 5a: Chromatogram <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract<br />

min<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE095.D)<br />

Glucoiberin<br />

4.796<br />

Progoitrin<br />

Glucocheirolin<br />

5.168<br />

5.830<br />

Sinigrin<br />

6.272<br />

6.972<br />

Epiprogoitrin<br />

Glucoraphenin<br />

8.557<br />

Sinalbin<br />

11.290<br />

11.883<br />

Gluconapin<br />

Glucosibarin<br />

Glucotropaeolin<br />

15.881<br />

15.137<br />

16.210<br />

Glucoerucin<br />

19.182<br />

Gluconasturtiin<br />

50<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 5b: Chromatogram <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract with<br />

standards spiked<br />

min<br />

3.1.3 Identification <strong>of</strong> the glucosinolates in vegetable and Traditional Chinese Medicine<br />

(TCM) samples by using ESI-QTOF-MS and MS/MS analysis<br />

By using the spiked standard method described in Chapter 3.1.2, the glucosinolates in the<br />

sample extracts can be detected. However, the retention times <strong>of</strong> the spiked glucosinolate<br />

standards might be same as those <strong>of</strong> the interferences in the sample extracts.<br />

16


To pinpoint the co-elution problem mentioned above, the electrospray ionzation-quadrupole<br />

time-<strong>of</strong>-flight mass spectrometry in negative mode was used <strong>for</strong> further confirmation <strong>of</strong> the<br />

<strong>HPLC</strong> fractions <strong>of</strong> the glucosinolates detected in the sample extracts. The identification was<br />

based on the molecular ion mass and the pattern <strong>of</strong> their corresponding fragment ions. It was<br />

a more powerful method than the spiked standard method and capable <strong>of</strong> providing the<br />

in<strong>for</strong>mation on the elemental compositions and the structures <strong>of</strong> the molecules.<br />

<strong>HPLC</strong> fractions <strong>of</strong> the glucosinolates detected in vegetable and TCM sample extract were<br />

collected. The collected fractions were diluted with methanol, followed by negative<br />

ESI-QTOF-MS analysis.<br />

The deprotoned molecular ion, [M-H] - <strong>of</strong> the <strong>HPLC</strong> fraction in ESI-QTOF-MS spectrum was<br />

compared with that <strong>of</strong> the corresponding glucosinolate standard. For example, the<br />

deprotonated molecular ion, [M-H] - <strong>of</strong> gluconapin standard was found to be m/z 372.0536 in<br />

ESI-QTOF-MS spectrum. By comparing the mass <strong>of</strong> the deprotonated molecular ion, [M-H] -<br />

<strong>of</strong> the gluconapin standard with that <strong>of</strong> the Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract at<br />

11.883min, m/z 372.0233 was found. It showed a positive result <strong>for</strong> the further confirmation<br />

<strong>of</strong> the gluconapin in the <strong>HPLC</strong> fraction collected from the Root <strong>of</strong> Isatis indigotica Fort. [ 北 板<br />

藍 根 ] extract at 11.883min. The ESI-QTOF-MS spectrums <strong>of</strong> gluconapin standard and Root<br />

<strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract at 11.883min were shown in Figure 6a and 6b<br />

respectively.<br />

17


-TOF MS: 30 MCA scans from <strong>Sample</strong> 5 (gluconapin) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 4487.0 counts.<br />

4487<br />

372.0536<br />

4000<br />

(S)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H 2<br />

C<br />

H<br />

CH 2<br />

[M-H] -<br />

3500<br />

3000<br />

OH (R)<br />

(S)<br />

OH<br />

Gluconapin standard<br />

M.W. = 373.0501<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400<br />

m/z, amu<br />

Figure 6a: ESI-QTOF-MS spectrum <strong>of</strong> gluconapin standard<br />

374.0497<br />

220.1537<br />

255.2393<br />

227.2081<br />

283.2709 293.1867 325.1875339.2078 358.0353 388.0655<br />

-TOF MS: 30 MCA scans from <strong>Sample</strong> 10 (Rt11.955-1) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 3982.0 counts.<br />

3982<br />

3800<br />

3600<br />

3400<br />

3200<br />

3000<br />

2800<br />

2600<br />

2400<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

372.0233<br />

[M-H] -<br />

264.1464 374.0192<br />

267.2177 315.0541<br />

383.0960<br />

297.2460 341.0834 393.9971<br />

440.0099 455.9759 484.0196<br />

260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600<br />

m/z, amu<br />

Figure 6b: ESI-QTOF-MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 11.883min<br />

18<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H 2<br />

C<br />

H<br />

Gluconapin in Root <strong>of</strong> Isatis<br />

indigotica Fort.<br />

[ 北 板 藍 根 ] extract at<br />

11.883min<br />

M.W. = 373.0501<br />

CH 2


However, interferences in the sample extracts might have the similar molecular mass. For<br />

further confirmation <strong>of</strong> the glucosinolates present in the sample extracts, the MS/MS analysis<br />

with resolution <strong>of</strong> 10,000 was done. It provides further confirmation <strong>of</strong> the glucosinolates<br />

detected and structural elucidation. The pattern <strong>of</strong> the fragment ions <strong>of</strong> the glucosinolates is<br />

different <strong>for</strong> different compounds even they have similar molecular mass.<br />

The MS/MS spectrum <strong>of</strong> the gluconapin standard was shown in Figure 7a, the peak at m/z<br />

372.0600 corresponded to the deprotoned molecular ion, [M-H] - <strong>of</strong> the gluconapin. The<br />

observed fragment ion at m/z 292.0796 resulted from the loss <strong>of</strong> SO 3 from the [M-H] - ion.<br />

The peak at m/z 274.9975 corresponded to the molecular ion with the loss <strong>of</strong> HSO 4 from the<br />

[M-H] - ion. The peak <strong>of</strong> m/z 195.0337 corresponded to the fragment ion <strong>of</strong> the glucose<br />

group in gluconapin. The peaks <strong>of</strong> m/z 96.9584 and m/z 79.9501 represented the fragment<br />

ions <strong>of</strong> HSO - 4 and SO - 3 , respectively. By comparing the MS/MS spectrum <strong>of</strong> the gluconapin<br />

with that <strong>of</strong> <strong>HPLC</strong> fraction collected from the Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 11.883min, similar fragment ion pattern in the sample extract was shown in Figure<br />

7b. There<strong>for</strong>e, the gluconapin was identified in the <strong>HPLC</strong> fraction collected from the Root <strong>of</strong><br />

Isatis indigotica Fort. [ 北 板 藍 根 ] at 11.883min.<br />

19


-TOF Product (372.0): 30 MCA scans from <strong>Sample</strong> 7 (gluconapinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 118.0 counts.<br />

118<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

74.9866<br />

96.9584<br />

HSO 4<br />

-<br />

SO 3<br />

-<br />

Figure 7a: MS/MS spectrum <strong>of</strong> gluconapin standard<br />

OH<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

OH<br />

S<br />

20<br />

372.0600<br />

79.9501<br />

130.0304<br />

195.0337<br />

259.0176<br />

274.9975<br />

10<br />

178.9801<br />

85.0244 128.9378<br />

59.0074 175.9927<br />

292.0796<br />

163.0819<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400<br />

m/z, amu<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H 2<br />

Gluconapin standard<br />

M.W. = 373.0501<br />

[M-HSO 4 -H] - [M-SO 3 -H] -<br />

C<br />

H<br />

[M-H] -<br />

CH 2<br />

-TOF Product (372.0): 59 MCA scans from <strong>Sample</strong> 14 (Rt11.955-1(MS/MS)-2) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 124.0 counts.<br />

124<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

96.9548<br />

HSO 4<br />

-<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H 2<br />

C<br />

H<br />

Root <strong>of</strong> Isatis indigotica<br />

Fort. [ 北 板 藍 根 ] extract<br />

at 11.883min<br />

M.W. = 373.0501<br />

CH 2<br />

[M-H] -<br />

372.0156<br />

60<br />

74.9854<br />

OH<br />

OH<br />

50<br />

SO 3<br />

-<br />

[M-HSO 4 -H] -<br />

40<br />

30<br />

130.0262<br />

195.0168<br />

258.9959<br />

[M-SO 3 -H] -<br />

20<br />

274.9716<br />

79.9515<br />

178.9716<br />

10<br />

128.9233<br />

85.0283 145.0374 292.0578<br />

227.0103 240.9984<br />

56.4612<br />

300.9815<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400<br />

m/z, amu<br />

Figure 7b: MS/MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] at 11.883min<br />

20


By using similar confirmation procedures described as above, glucoiberin, glucocheirolin,<br />

progoitrin, sinigrin, epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucotropaeolin,<br />

glucoerucin and gluconasturtiin detected in the Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

extract were analyzed and all gave the positive results expect glucoiberin and glucoerucin.<br />

There<strong>for</strong>e, the Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] contained glucocheirolin, progoitrin,<br />

sinigrin, epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucotropaeolin and<br />

gluconasturtiin. The other sample extracts were analyzed by the similar methods and the<br />

chromatograms <strong>of</strong> the sample extracts were shown in the following:<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE143.D)<br />

mAU<br />

300<br />

250<br />

200<br />

Glucoiberin<br />

Sinigrin<br />

Glucocheirolin<br />

Glucosibarin<br />

16.142<br />

Glucoerucin<br />

150<br />

100<br />

50<br />

4.675<br />

5.148<br />

6.186<br />

8.709<br />

15.122<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

Figure 8a: Chromatogram <strong>of</strong> Raphanus sativus [ 蘿 蔔 (Chinese Radish)] extract<br />

min<br />

mAU<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE144.D)<br />

Glucocheirolin<br />

Glucoiberin<br />

4.760<br />

5.178<br />

Progoitrin<br />

5.840<br />

6.242<br />

Epiprogoitrin<br />

Sinigrin<br />

7.083<br />

Glucoraphenin<br />

8.616<br />

Sinalbin<br />

11.271<br />

Gluconapin<br />

11.861<br />

Glucosibarin<br />

15.077<br />

Glucotropaeolin<br />

15.834<br />

16.103<br />

Glucoerucin<br />

Gluconasturtiin<br />

19.110<br />

0<br />

0 2 4 6 8 10 12 14 16 18<br />

Figure 8b: Chromatogram <strong>of</strong> Raphanus sativus [ 蘿 蔔 (Chinese Radish)] extract with<br />

standards spiked<br />

min<br />

21


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE056.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

8.267<br />

Glucoraphenin<br />

Glucosibarin<br />

14.950<br />

18.873<br />

Gluconasturtiin<br />

100<br />

50<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 9a: Chromatogram <strong>of</strong> Lycopersicon esculentum [ 車 厘 茄 (Cherry Tomato)] extract<br />

min<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE058.D)<br />

Glucoiberin<br />

4.611<br />

4.971<br />

Sinigrin<br />

Progoitrin<br />

Glucocheirolin<br />

5.631<br />

6.064<br />

Epiprogoitrin<br />

6.838<br />

8.240<br />

Glucoraphenin<br />

Sinalbin<br />

11.051<br />

11.718<br />

Gluconapin<br />

Glucosibarin<br />

14.935<br />

15.656<br />

Glucotropaeolin<br />

Glucoerucin<br />

15.991<br />

18.904<br />

Gluconasturtiin<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 9b: Chromatogram <strong>of</strong> Lycopersicon esculentum [ 車 厘 茄 (Cherry Tomato)] extract<br />

with standards spiked<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE146.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

Progoitrin<br />

Glucoraphenin<br />

8.729<br />

Glucoerucin<br />

Gluconasturtiin<br />

100<br />

50<br />

5.853<br />

16.168<br />

19.153<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 10a: Chromatogram <strong>of</strong> Lycopersicon esculentum [ 番 茄 (Tomato)] extract<br />

min<br />

22


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE147.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Glucoiberin<br />

Glucocheirolin<br />

Sinigrin<br />

Progoitrin<br />

4.778<br />

5.158<br />

5.818<br />

6.257<br />

7.091<br />

Epiprogoitrin<br />

Glucoraphenin<br />

8.668<br />

Sinalbin<br />

11.291<br />

11.881<br />

Gluconapin<br />

Glucosibarin<br />

15.111<br />

15.847<br />

16.159<br />

Glucotropaeolin<br />

Glucoerucin<br />

19.138<br />

Gluconasturtiin<br />

50<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 10b: Chromatogram <strong>of</strong> Lycopersicon esculentum [ 番 茄 (Tomato)] extract with<br />

standards spiked<br />

min<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE094.D)<br />

Glucocheirolin<br />

5.834<br />

Progoitrin<br />

6.971<br />

Sinigrin<br />

Epiprogoitrin<br />

Glucoraphenin<br />

Sinalbin<br />

11.883<br />

Gluconapin<br />

Glucotropaeolin<br />

Gluconasturtiin<br />

150<br />

100<br />

6.276<br />

8.548<br />

11.306<br />

15.799<br />

19.255<br />

50<br />

5.212<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 11a: Chromatogram <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE095.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Glucoiberin<br />

4.796<br />

5.168<br />

5.830<br />

Progoitrin<br />

Glucocheirolin<br />

Sinigrin<br />

6.272<br />

6.972<br />

Epiprogoitrin<br />

Glucoraphenin<br />

8.557<br />

Sinalbin<br />

11.290<br />

11.883<br />

Gluconapin<br />

Glucosibarin<br />

Glucotropaeolin<br />

15.881<br />

15.137<br />

16.210<br />

Glucoerucin<br />

19.182<br />

Gluconasturtiin<br />

50<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 11b: Chromatogram <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract with<br />

standards spiked<br />

23<br />

min


mAU<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE161.D)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 12a: Chromatogram <strong>of</strong> Root <strong>of</strong> Baphicacanthus cusia (Nees) Bremek. [ 南 板 藍 根 ]<br />

extract<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE157.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Glucoiberin<br />

Glucocheirolin<br />

Sinigrin<br />

Progoitrin<br />

4.661<br />

5.060<br />

5.698<br />

6.103<br />

6.918<br />

Epiprogoitrin<br />

Glucoraphenin<br />

8.401<br />

Sinalbin<br />

11.169<br />

11.741<br />

Gluconapin<br />

Glucosibarin<br />

Glucotropaeolin<br />

15.692<br />

14.944<br />

16.011<br />

Glucoerucin<br />

18.963<br />

Gluconasturtiin<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 12b: Chromatogram <strong>of</strong> Root <strong>of</strong> Baphicacanthus cusia (Nees) Bremek. [ 南 板 藍 根 ]<br />

extract with standards spiked<br />

min<br />

mAU<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE165.D)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 13a: Chromatogram <strong>of</strong> Patrinia scabiosaefolia Fisch. ex Trev. [ 敗 醬 草 ] extract<br />

min<br />

24


mAU<br />

400<br />

300<br />

200<br />

100<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE158.D)<br />

Sinigrin<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

4.657<br />

5.054<br />

5.693<br />

6.099<br />

Epiprogoitrin<br />

6.901<br />

Glucoraphenin<br />

8.367<br />

Sinalbin<br />

11.161<br />

11.743<br />

Gluconapin<br />

Glucosibarin<br />

14.941<br />

Glucotropaeolin<br />

15.688<br />

16.006<br />

Glucoerucin<br />

18.908<br />

Gluconasturtiin<br />

0<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 13b: Chromatogram <strong>of</strong> Patrinia scabiosaefolia Fisch. ex Trev. [ 敗 醬 草 ] extract<br />

with standards spiked<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE154.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

Glucocheirolin<br />

6.005<br />

Progoitrin<br />

Sinigrin<br />

Glucoraphenin<br />

8.350<br />

Glucosibarin<br />

100<br />

50<br />

4.978<br />

5.568<br />

14.842<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 14a: Chromatogram <strong>of</strong> Thlaspi arvense L. [ 菥 蓂 ] extract<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE153.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Glucoiberin<br />

Glucocheirolin<br />

6.004<br />

Progoitrin<br />

Epiprogoitrin<br />

Sinigrin<br />

4.643<br />

5.021<br />

5.667<br />

6.875<br />

Glucoraphenin<br />

8.347<br />

Sinalbin<br />

11.137<br />

11.724<br />

Gluconapin<br />

Glucosibarin<br />

14.931<br />

Glucotropaeolin<br />

15.684<br />

16.005<br />

Glucoerucin<br />

Gluconasturtiin<br />

18.962<br />

50<br />

0<br />

-50<br />

0 2 4 6 8 10 12 14 16 18<br />

Figure 14b: Chromatogram <strong>of</strong> Thlaspi arvense L. [ 菥 蓂 ] extract with standards spiked<br />

min<br />

25


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE150.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

Progoitrin<br />

8.478<br />

Glucoraphenin<br />

Glucosibarin<br />

100<br />

50<br />

5.588<br />

14.918<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 15a: Chromatogram <strong>of</strong> Leaf <strong>of</strong> Isatis indigotica Fort. [ 大 青 葉 ] extract<br />

min<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE149.D)<br />

Sinigrin<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

4.763<br />

5.169<br />

5.823<br />

6.238<br />

Epiprogoitrin<br />

7.065<br />

8.668<br />

Glucoraphenin<br />

Sinalbin<br />

11.293<br />

11.873<br />

Gluconapin<br />

Glucosibarin<br />

15.081<br />

Glucotropaeolin<br />

15.832<br />

16.141<br />

Glucoerucin<br />

19.126<br />

Gluconasturtiin<br />

50<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 15b: Chromatogram <strong>of</strong> Leaf <strong>of</strong> Isatis indigotica Fort. [ 大 青 葉 ] extract with<br />

standards spiked<br />

min<br />

mAU<br />

350<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE152.D)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 16a: Chromatogram <strong>of</strong> Leaf <strong>of</strong> Baphicacanthus cusia (Nees) Bremek. [ 廣 東 大 青 葉 ]<br />

extract<br />

min<br />

26


mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE160.D)<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

4.604<br />

4.988<br />

5.602<br />

Sinigrin Sinigrin<br />

5.996<br />

Figure 16b: Chromatogram <strong>of</strong> Leaf <strong>of</strong> Baphicacanthus cusia (Nees) Bremek. [ 廣 東 大 青 葉 ]<br />

extract with standards spiked<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE164.D)<br />

Epiprogoitrin<br />

6.777<br />

Glucoraphenin<br />

8.220<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Sinalbin<br />

11.064<br />

11.629<br />

Gluconapin<br />

Glucosibarin<br />

14.850<br />

Glucotropaeolin<br />

15.611<br />

15.941<br />

Glucoerucin<br />

18.920<br />

Gluconasturtiin<br />

19.122<br />

Gluconasturtiin<br />

min<br />

100<br />

50<br />

6.209<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 17a: Chromatogram <strong>of</strong> Rorippa indica (Linn.) Hiern [ 蔊 菜 ] extract<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE159.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Sinigrin<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

4.659<br />

5.050<br />

5.694<br />

6.094<br />

Epiprogoitrin<br />

6.901<br />

Glucoraphenin<br />

8.364<br />

Sinalbin<br />

11.141<br />

11.736<br />

Gluconapin<br />

Glucosibarin<br />

14.940<br />

Glucotropaeolin<br />

15.708<br />

16.010<br />

Glucoerucin<br />

18.967<br />

Gluconasturtiin<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 17b: Chromatogram <strong>of</strong> Rorippa indica (Linn.) Hiern [ 蔊 菜 ] extract with<br />

standards spiked<br />

min<br />

27


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE100.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Glucoiberin<br />

4.772<br />

5.821<br />

5.999<br />

Progoitrin<br />

Epiprogoitrin<br />

Sinigrin<br />

7.050<br />

Sinalbin<br />

11.138<br />

11.723<br />

Gluconapin<br />

Glucosibarin<br />

15.177<br />

16.204<br />

Glucoerucin<br />

Gluconasturtiin<br />

19.192<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 18a: Chromatogram <strong>of</strong> Seed <strong>of</strong> Sinapis alba L. [ 白 芥 子 ] extract<br />

min<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE101.D)<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

4.769<br />

5.146<br />

5.819<br />

6.006<br />

Epiprogoitrin<br />

Sinigrin<br />

7.049<br />

Glucoraphenin<br />

8.526<br />

Sinalbin<br />

11.128<br />

11.722<br />

Gluconapin<br />

Glucotropaeolin<br />

Glucosibarin<br />

15.166<br />

15.899<br />

16.228<br />

Glucoerucin<br />

19.194<br />

Gluconasturtiin<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 18b: Chromatogram <strong>of</strong> Seed <strong>of</strong> Sinapis alba L. [ 白 芥 子 ] extract with standards<br />

spiked<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE120.D)<br />

mAU<br />

175<br />

150<br />

125<br />

100<br />

75<br />

Progoitrin<br />

Glucoiberin<br />

6.176<br />

Sinigrin<br />

Epiprogoitrin<br />

Sinalbin<br />

11.212<br />

11.833<br />

Gluconapin<br />

Glucosibarin<br />

Glucoerucin<br />

Gluconasturtiin<br />

50<br />

25<br />

0<br />

4.753<br />

5.818<br />

7.027<br />

15.119<br />

16.145<br />

19.093<br />

-25<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 18c: Chromatogram <strong>of</strong> five-fold dilution <strong>of</strong> Seed <strong>of</strong> Sinapis alba L. [ 白 芥 子 ]<br />

extract<br />

min<br />

28


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE121.D)<br />

mAU<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

4.747<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

5.130<br />

5.812<br />

6.174<br />

Epiprogoitrin<br />

Sinigrin<br />

7.023<br />

Glucoraphenin<br />

8.467<br />

Sinalbin<br />

11.208<br />

11.834<br />

Gluconapin<br />

Glucosibarin<br />

15.077<br />

Glucotropaeolin<br />

15.818<br />

16.140<br />

Glucoerucin<br />

19.084<br />

Gluconasturtiin<br />

25<br />

0<br />

-25<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 18d: Chromatogram <strong>of</strong> five-fold dilution <strong>of</strong> Seed <strong>of</strong> Sinapis alba L. [ 白 芥 子 ]<br />

extract with standards spiked<br />

min<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE113.D)<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

Epiprogoitrin<br />

Sinigrin<br />

Progoitrin<br />

7.953<br />

Glucoraphenin<br />

Gluconapin<br />

100<br />

50<br />

5.750<br />

6.092<br />

6.929<br />

11.809<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 19a: Chromatogram <strong>of</strong> Seed <strong>of</strong> Raphanus sativus L. [ 萊 菔 子 ] extract<br />

min<br />

mAU<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE135.D)<br />

Sinigrin<br />

Progoitrin<br />

Glucocheirolin<br />

Glucoiberin<br />

Epiprogoitrin<br />

4.633<br />

5.010<br />

5.677<br />

6.070<br />

6.857<br />

7.924<br />

Glucoraphenin<br />

Sinalbin<br />

11.128<br />

11.732<br />

Gluconapin<br />

Glucosibarin<br />

Glucotropaeolin<br />

14.924<br />

15.677<br />

15.992<br />

Glucoerucin<br />

Gluconasturtiin<br />

18.929<br />

50<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 19b: Chromatogram <strong>of</strong> Seed <strong>of</strong> Raphanus sativus L. [ 萊 菔 子 ] extract with<br />

standards spiked<br />

min<br />

29


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE126.D)<br />

mAU<br />

150<br />

125<br />

100<br />

75<br />

Progoitrin<br />

Sinigrin<br />

Epiprogoitrin<br />

8.592<br />

Glucoraphenin<br />

50<br />

25<br />

0<br />

5.924<br />

6.300<br />

7.180<br />

-25<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 19c: Chromatogram <strong>of</strong> ten-fold dilution <strong>of</strong> Seed <strong>of</strong> Raphanus sativus L. [ 萊 菔 子 ]<br />

extract<br />

min<br />

mAU<br />

150<br />

125<br />

100<br />

75<br />

50<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE132.D)<br />

Glucocheirolin<br />

Glucoiberin<br />

4.636<br />

5.016<br />

Sinigrin<br />

Progoitrin<br />

5.679<br />

6.088<br />

Epiprogoitrin<br />

6.871<br />

8.216<br />

Glucoraphenin<br />

Sinalbin<br />

11.115<br />

11.735<br />

Gluconapin<br />

Glucosibarin<br />

14.924<br />

Glucotropaeolin<br />

15.672<br />

15.990<br />

Glucoerucin<br />

Gluconasturtiin<br />

18.921<br />

25<br />

0<br />

-25<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 19d: Chromatogram <strong>of</strong> ten-fold dilution <strong>of</strong> Seed <strong>of</strong> Raphanus sativus L. [ 萊 菔 子 ]<br />

extract with standards spiked<br />

min<br />

mAU<br />

350<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE117.D)<br />

6.202<br />

11.413<br />

300<br />

250<br />

200<br />

150<br />

Glucocheirolin<br />

Sinigrin<br />

Sinalbin<br />

Gluconapin<br />

Glucoerucin<br />

100<br />

50<br />

5.157<br />

11.110<br />

16.027<br />

0<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 20a: Chromatogram <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ] extract<br />

min<br />

30


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE134.D)<br />

mAU<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Glucocheirolin<br />

Glucoiberin<br />

4.616<br />

4.997<br />

5.657<br />

6.021<br />

Progoitrin<br />

Epiprogoitrin<br />

Sinigrin<br />

6.837<br />

Glucoraphenin<br />

8.250<br />

Sinalbin<br />

10.946<br />

11.256<br />

Gluconapin<br />

Glucotropaeolin<br />

Glucosibarin<br />

15.177<br />

15.666<br />

15.990<br />

Glucoerucin<br />

Gluconasturtiin<br />

18.917<br />

0<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 20b: Chromatogram <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ] extract with<br />

standards spiked<br />

min<br />

mAU<br />

200<br />

150<br />

100<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE124.D)<br />

Glucocheirolin<br />

Sinigrin<br />

Sinalbin<br />

11.875<br />

Gluconapin<br />

Glucoerucin<br />

50<br />

6.336<br />

11.201<br />

0<br />

5.245<br />

16.112<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

min<br />

Figure 20c: Chromatogram <strong>of</strong> twenty-fold dilution <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd<br />

[ 葶 藶 子 ] extract<br />

mAU<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE128.D)<br />

Glucoiberin<br />

4.767<br />

Progoitrin<br />

Glucocheirolin<br />

5.147<br />

5.803<br />

6.209<br />

Epiprogoitrin<br />

Sinigrin<br />

6.991<br />

Glucoraphenin<br />

8.416<br />

Sinalbin<br />

11.234<br />

11.777<br />

Gluconapin<br />

Glucotropaeolin<br />

Glucosibarin<br />

15.093<br />

15.854<br />

16.186<br />

Glucoerucin<br />

Gluconasturtiin<br />

19.203<br />

0<br />

-25<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

min<br />

Figure 20d: Chromatogram <strong>of</strong> twenty-fold dilution <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd<br />

[ 葶 藶 子 ] extract with standards spiked<br />

31


By similar confirmations described in Chapter 3.1, the glucosinolates in the vegetable and<br />

TCM sample extracts were identified and shown in Table 7.<br />

Vegetable and Traditional<br />

Chinese Medicine <strong>Sample</strong>s<br />

Raphanus sativus<br />

[ 蘿 蔔 (Chinese Radish)]<br />

Lycopersicon esculentum<br />

[ 車 厘 茄 (Cherry Tomato)]<br />

Lycopersicon esculentum<br />

[ 番 茄 (Tomato)]<br />

Root <strong>of</strong> Isatis indigotica Fort.<br />

[ 北 板 藍 根 ]<br />

Root <strong>of</strong> Baphicacanthus cusia<br />

(Nees) Bremek.<br />

[ 南 板 藍 根 ]<br />

Patrinia scabiosaefolia Fisch.ex<br />

Trev.<br />

[ 敗 醬 草 ]<br />

Thlaspi arvense L.<br />

[ 菥 蓂 ]<br />

Leaf <strong>of</strong> Isatis indigotica Fort.<br />

[ 大 青 葉 ]<br />

Baphicacanthus cusia (Nees)<br />

Bremek.<br />

[ 廣 東 大 青 葉 ]<br />

Rorippa indica (Linn.) Hiern<br />

[ 蔊 菜 ]<br />

Seed <strong>of</strong> Sinapis alba L.<br />

[ 白 芥 子 ]<br />

Seed <strong>of</strong> Raphanus sativus L.<br />

[ 萊 菔 子 ]<br />

Glucoiberin<br />

Glucocheirolin<br />

Progoitrin<br />

32<br />

Sinigrin<br />

Epiprogoitrin<br />

Glucoraphenin<br />

Sinalbin<br />

Gluconapin<br />

Glucosibarin<br />

Glucotropaeolin<br />

Glucoerucin<br />

O O X O X X X X O X O X<br />

X X X X X O X X O X X O<br />

X X O X X O X X X X O O<br />

X O O O O O` O O X O X O<br />

X X X X X X X X X X X X<br />

X X X X X X X X X X X X<br />

X O O O X O X X O X X X<br />

X X O X X O X X O X X X<br />

X X X X X X X X X X X X<br />

X X X O X X X X X X X O<br />

O X O O O X O O O X O O<br />

X X O O O O X O X X X X<br />

Seed <strong>of</strong> Lepidium apetalum Willd<br />

[ 葶 藶 子 ]<br />

X O X O X X O O X X O X<br />

Remarks: O = Detected<br />

X = Not Detected<br />

Table 7: Identified glucosinolates in vegetable and Traditional Chinese Medicine samples<br />

Gluconasturtiin


3.2 Quantitative analysis<br />

3.2.1 Calibration curves <strong>for</strong> each individual glucosinolate standard<br />

Concentration <strong>of</strong><br />

standards<br />

Peak Areas<br />

Glucosinolates 5ppm 50ppm 100ppm 200ppm 300ppm 400ppm 500ppm<br />

Glucoiberin 57.50 595.28 1284.74 2339.79 3548.86 4774.39 5878.06<br />

Glucocheirolin 50.42 533.42 1164.18 2113.01 3200.47 4274.74 5308.13<br />

Progoitrin 66.55 693.25 1512.60 2743.52 4144.70 5528.09 6866.26<br />

Sinigrin 101.99 1046.88 2268.54 4135.44 6231.07 8345.19 10297.54<br />

Epiprogoitrin 58.53 602.21 1305.75 2373.71 3604.46 4801.89 5979.22<br />

Glucoraphenin 46.08 466.58 1012.19 1848.87 2786.48 3739.58 4667.01<br />

Sinalbin 123.42 1362.18 2970.99 5694.20 8622.51 11414.40 14046.44<br />

Gluconapin 58.57 649.87 1416.32 2577.45 3911.87 5220.12 6493.76<br />

Glucosibarin 67.63 690.12 1496.50 2718.96 4112.67 5495.41 6809.96<br />

Glucotropaeolin 104.51 1080.15 2355.41 4272.70 6421.64 8542.62 10457.04<br />

Glucoerucin 60.38 614.48 1345.29 2445.27 3660.38 4855.57 5969.82<br />

Gluconasturtiin 67.97 709.73 1536.00 2783.57 4221.78 5634.59 7015.29<br />

Table 8: Peak areas <strong>of</strong> the glucosinolates at 5ppm, 50ppm, 100ppm, 200ppm, 300ppm, 400ppm, and<br />

500ppm<br />

Calibration curves <strong>for</strong> each glucosinolate standard were obtained by plotting the peak areas<br />

against concentrations <strong>for</strong> each glucosinolate standard respectively. The graph <strong>of</strong> the<br />

calibration curve <strong>for</strong> epiprogoitrin was shown in Figure 21. The summary <strong>of</strong> the equations<br />

and their corresponding correlation coefficients (R 2 values) <strong>of</strong> the calibration curves <strong>for</strong> each<br />

glucosinolate were shown in Table 9.<br />

According to the R 2 values <strong>of</strong> the calibration curves <strong>for</strong><br />

each glucosinolate, the linearity <strong>of</strong> all calibration curves were acceptable.<br />

dddddddddddddddddddddddddddddddd<br />

.<br />

33


Calibration curve <strong>for</strong> Epiprogoitrin<br />

7000<br />

6000<br />

Area<br />

5000<br />

4000<br />

3000<br />

y = 11.916x + 28.152<br />

R 2 = 0.9997<br />

2000<br />

1000<br />

0<br />

0 100 200 300 400 500 600<br />

Concentration <strong>of</strong> Epiprogoitrin (ppm)<br />

Figure 21: Calibration curve <strong>for</strong> epiprogoitrin<br />

Glucosinolates Equations <strong>of</strong> the calibration curves R 2 values<br />

Glucoiberin y = 11.758x + 27.812 R 2 = 0.9996<br />

Glucocheirolin y = 10.588x + 25.809 R 2 = 0.9996<br />

Progoitrin y = 13.687x + 38.843 R 2 = 0.9996<br />

Sinigrin y = 20.569x + 63.207 R 2 = 0.9996<br />

Epiprogoitrin y = 11.916x + 28.152 R 2 = 0.9997<br />

Glucoraphenin y = 9.290x + 17.229 R 2 = 0.9997<br />

Sinalbin y = 28.268 x+ 39.627 R 2 = 0.9997<br />

Gluconapin y = 12.954x + 26.35 R 2 = 0.9996<br />

Glucosibarin y = 13.585x+ 38.123 R 2 = 0.9996<br />

Glucotropaeolin y = 20.928x + 98.804 R 2 = 0.9993<br />

Glucoerucin y = 11.927x + 57.822 R 2 = 0.9994<br />

Gluconasturtiin y = 13.974x + 34.193 R 2 = 0.9996<br />

Table 9: The summary <strong>of</strong> the equations and their corresponding R 2 values <strong>of</strong> the<br />

calibration curves <strong>for</strong> each glucosinolate<br />

34


3.2.2 Detection limits <strong>of</strong> each glucosinolate<br />

Both instrument detection limits and method detection limits <strong>of</strong> each glucosinolate can be<br />

calculated by applying the following equation:<br />

C L =kS B /b<br />

Remarks: C L = Concentration related to the smallest measure <strong>of</strong> response can be<br />

detected<br />

k = 3(based on the confidence interval)<br />

S B = Standard derivation <strong>of</strong> the blank <strong>of</strong> the method<br />

b = Slope <strong>of</strong> the calibration curve <strong>for</strong> corresponding glucosinolates<br />

By using the the equations <strong>of</strong> calibration curves <strong>for</strong> each glucosinolate and equation above, the<br />

detection limits <strong>for</strong> each glucosinolate were calculated and shown in Table 10:<br />

Glucosinolates<br />

Slope, b<br />

Standard deviation,<br />

S B<br />

Instrument Detection<br />

Limit, ng/µL<br />

Method Detection<br />

Limit, µg/g a<br />

Method Detection<br />

Limit, µg/g b<br />

Glucoiberin 11.758 49.33 12.59 25.17 2.52<br />

Glucocheirolin 10.588 13.75 3.90 7.79 0.78<br />

Progoitrin 13.687 4.10 0.90 1.80 0.18<br />

Sinigrin 20.569 19.52 2.85 5.69 0.57<br />

Epiprogoitrin 11.916 16.42 4.13 8.27 0.83<br />

Glucoraphenin 9.290 10.02 5.39 10.79 1.08<br />

Sinalbin 28.268 113.80 12.08 24.15 2.42<br />

Gluconapin 12.954 42.72 9.89 19.79 1.98<br />

Glucosibarin 13.585 7.42 1.64 3.28 0.33<br />

Glucotropaeolin 20.928 51.13 7.33 14.66 1.47<br />

Glucoerucin 11.927 8.62 2.17 4.34 0.43<br />

Gluconasturtiin 13.974 40.80 8.76 17.52 1.75<br />

Remarks: a = Method Detection Limit when 5g <strong>of</strong> dried TCM was analyzed<br />

b = Method Detection Limit when 50g <strong>of</strong> fresh vegetable was analyzed<br />

Table 10: Detection limits <strong>of</strong> each glucosinolate<br />

35


3.2.3 Method recoveries <strong>of</strong> each glucosinolate<br />

In the sample preparation, some <strong>of</strong> the glucosinolates might lose in heating, transfer <strong>of</strong> the<br />

sample extract, filtration, evaporation and clean-up process. There<strong>for</strong>e, recovery tests were<br />

done to determine both accuracies <strong>of</strong> the glucosinolates extracted from those sample<br />

preparation procedures described in Chapter 2.5 and the effects <strong>of</strong> the interferences on the<br />

glucosinolates in the sample extracts.<br />

A recovery test was carried out by using a dried TCM sample, Root <strong>of</strong> Belamcanda chinensis<br />

(L.) DC. [ 射 干 ] that had been repeatedly analyzed and showed no existing glucosinolates.<br />

50µL <strong>of</strong> 10,000ppm <strong>of</strong> the glucosinolate mixture standard was spiked into 5 g Root <strong>of</strong><br />

Belamcanda chinensis (L.) DC. [ 射 干 ] in 100mL methanol solution. Then, the spiked<br />

sample was prepared by repeating the same experimental procedures described in Chapter 2.5.<br />

Theoretically, the final concentration <strong>of</strong> the glucosinolates would be 50ppm. The peak areas<br />

<strong>of</strong> the glucosinolates determined in the sample extract were compared with those <strong>of</strong> standard<br />

mixture solutions at 50ppm to obtain the recovery data. The recovery test was repeated three<br />

times in order to get the average recoveries (accuracies) and precisions [relative standard<br />

derivations, (RSD, n=3)] <strong>of</strong> each standard.<br />

Method recoveries <strong>of</strong> the glucosinolates were calculated by applying the following equation:<br />

Peak area <strong>of</strong> the glucosinolates in the testing solution<br />

Recoveries (%) = X 100%<br />

Peak area <strong>of</strong> the glucosinolates in the 50ppm glucosinolate<br />

standard mixture solution<br />

36


By using the similar calculation, both the method recoveries and RSD values <strong>for</strong> each<br />

glucosinolate were obtained and shown in Table 11. The method recoveries <strong>of</strong> each<br />

glucosinolate were over 86.10% with average 99.80%.<br />

The precisions were from 5.27% to<br />

14.60% (RSD, n=3) respectively.<br />

Glucosinolates<br />

Peak areas <strong>of</strong> Peak areas <strong>of</strong><br />

testing solution 1 testing solution 2<br />

Peak areas <strong>of</strong><br />

testing solution 3<br />

Peak areas <strong>of</strong><br />

50ppm standard<br />

mixture solution<br />

Recoveries,<br />

%<br />

Glucoiberin 513.98 534.96 536.40 595.28 88.77<br />

Glucocheirolin 496.38 501.96 512.35 533.42 94.40<br />

Progoitrin 705.11 712.87 717.92 693.25 102.70<br />

Sinigrin 1025.82 1019.19 1033.70 1046.88 98.03<br />

Epiprogoitrin 540.48 562.65 551.10 602.21 91.56<br />

Glucoraphenin 556.86 563.22 590.52 466.58 122.21<br />

Sinalbin 1269.54 1255.47 1282.99 1362.18 93.18<br />

Gluconapin 776.46 788.20 811.59 649.87 121.88<br />

Glucosibarin 577.80 602.60 604.20 690.12 86.10<br />

Glucotropaeolin 1124.00 1106.50 1119.62 1080.15 103.38<br />

Glucoerucin 604.14 586.20 584.89 614.48 96.30<br />

Gluconasturtiin 688.13 683.23 696.56 709.73 97.12<br />

RSD, %<br />

10.24<br />

6.61<br />

5.27<br />

5.93<br />

9.05<br />

14.60<br />

11.24<br />

14.60<br />

12.09<br />

7.44<br />

8.78<br />

5.51<br />

Average 99.80 9.28<br />

Table 11: Summary <strong>of</strong> method recoveries and RSD values <strong>for</strong> each glucosinolate<br />

37


3.2.4 Glucosinolate concentrations in vegetable and Traditional Chinese<br />

Medicine (TCM) samples<br />

For sinigrin in Thlaspi arvense L. [ 菥 蓂 ] extract,<br />

y, Peak area <strong>of</strong> sinigrin in Thlaspi arvense L. [ 菥 蓂 ] extract = 9628.09;<br />

y = 20.569x + 63.207 <strong>for</strong> sinigrin;<br />

By substituting the peak area <strong>of</strong> sinigrin in Thlaspi arvense L. [ 菥 蓂 ] extract into the equation<br />

<strong>of</strong> the calibration curve <strong>for</strong> sinigrin, the concentration <strong>of</strong> sinigrin in 10mL sample extract was<br />

found.<br />

There<strong>for</strong>e, x = 465.0145ppm (mgL -1 )<br />

Weight <strong>of</strong> sinigrin in 5g Thlaspi arvense L. [ 菥 蓂 ] extract<br />

= Concentration <strong>of</strong> sinigrin x diluted factor / recovery <strong>of</strong> sinigrin<br />

= 465.0145ppm x 10 x 10 -3 L / 98.03%<br />

= 4.7436mg<br />

Concentration <strong>of</strong> sinigrin in Thlaspi arvense L. [ 菥 蓂 ]<br />

= Weight <strong>of</strong> sinigrin / weight <strong>of</strong> Thlaspi arvense L. [ 菥 蓂 ]<br />

= 4.7436mg / 5g<br />

=0.9487mg/g<br />

=948.70µg/g<br />

There<strong>for</strong>e, the concentration <strong>of</strong> sinigrin in Thlaspi arvense L. [ 菥 蓂 ] was found to be<br />

948.70µg/g.<br />

38


By similar calculation and compare the concentrations <strong>of</strong> the identified glucosinolates in the<br />

sample extract with detection limit, the glucosinolate concentrations in three vegetable and ten<br />

TCM samples were obtained and shown in Table 12:<br />

Concentration (µg/g)<br />

Vegetable and Traditional<br />

Chinese Medicine <strong>Sample</strong>s<br />

Raphanus sativus<br />

[ 蘿 蔔 (Chinese Radish)]<br />

Glucoiberin<br />

Glucocheirolin<br />

Progoitrin<br />

Sinigrin<br />

Epiprogoitrin<br />

Glucoraphenin<br />

13.02 1.00 X 2.65 X X X X 6.31 X 61.16 X 84.14<br />

Lycopersicon esculentum<br />

[ 車 厘 茄 (Cherry Tomato)] X X X X X 26.63 X X 5.13 X X 6.83 38.59<br />

Lycopersicon esculentum<br />

[ 番 茄 (Tomato)] X X 3.40 X X 30.41 X X X X 4.13 9.96 47.90<br />

Root <strong>of</strong> Isatis indigotica<br />

Fort.<br />

[ 北 板 藍 根 ] X 9.55 795.32 28.91 2099.66 124.54 24.32 636.09 X 18.58 X 9.56 3746.53<br />

Root <strong>of</strong> Baphicacanthus<br />

cusia (Nees) Bremek.<br />

[ 南 板 藍 根 ] X X X X X X X X X X X X 0.00<br />

Patrinia scabiosaefolia<br />

Fisch. ex Trev.<br />

[ 敗 醬 草 ] X X X X X X X X X X X X 0.00<br />

Thlaspi arvense L.<br />

[ 菥 蓂 ] X 42.87 16.45 984.70 X 281.05 X X 28.95 X X X 1354.02<br />

Leaf <strong>of</strong> Isatis indigotica Fort.<br />

[ 大 青 葉 ] X X 14.32 X X 488.77 X X 42.32 X X X 545.41<br />

Leaf <strong>of</strong> Baphicacanthus<br />

cusia (Nees) Bremek.<br />

[ 廣 東 大 青 葉 ] X X X X X X X X X X X X 0.00<br />

Rorippa indica (Linn.) Hiern<br />

[ 蔊 菜 ] X X X 20.69 X X X X X X X 60.63 81.32<br />

Seed <strong>of</strong> Sinapis Alba L.<br />

[ 白 芥 子 ] 66.31 X 8.34 4313.82 41.43 X 1591.08 2966.87 26.75 X 17.01 21.56 9053.17<br />

Seed <strong>of</strong> Raphanus sativus L.<br />

[ 萊 菔 子 ] X X 23.64 13.67 37.68 10919.08 X 20.67 X X X X 11014.74<br />

Seed <strong>of</strong> Lepidium apetalum<br />

Willd<br />

[ 葶 藶 子 ] X 39.92 X 430.70 X X 66.55 12648.94 X X 13.71 X 13199.82<br />

Remark: X = Not Detected<br />

Table 12: Glucosinolate concentrations in vegetable and Traditional Chinese Medicine<br />

(TCM) samples<br />

Sinalbin<br />

Gluconapin<br />

Glucosibarin<br />

Glucotropaeolin<br />

Glucoerucin<br />

Gluconasturtiin<br />

Total glucosinolates<br />

39


4 Discussion<br />

4.1 Extraction<br />

To inactivate myrosinase to catalyze the hydrolysis <strong>of</strong> the glucosinolates into glucose and<br />

unstable products that described in Figure 2, 100% methanol was used <strong>for</strong> extraction <strong>of</strong> the<br />

glucosinolates from the vegetable and Traditional Chinese Medicine (TCM) samples.<br />

Moreover, less pigment was extracted and all glucosinolates could be extracted with high<br />

recoveries, above 85%. Heating the sample extract at 70 o C <strong>for</strong> 15minutes in extraction<br />

process could denature the myrosinase and increase dissolution <strong>of</strong> the glucosinolates into<br />

methanol. After cooling to room temperature, the proteins in the organic sample extract were<br />

precipitated out due to the low solubility <strong>of</strong> proteins in methanol.<br />

4.2 Clean-up process<br />

Both normal-phase solid-phase extraction using activated Florisil column and reversed-phase<br />

solid-phase extraction using C18 column were tried <strong>for</strong> the clean-up process. The activated<br />

Florisil clean-up process was described in Chapter 2.5. And both C18 and activated Florisil<br />

clean-up processes could achieve more than 88% <strong>of</strong> method recoveries <strong>for</strong> all glucosinolates<br />

in testing conditions. They differed from each other by the ability <strong>of</strong> removal <strong>of</strong> the<br />

interferences in the sample extracts.<br />

In C18 clean-up process, C18 cartridge (Alltech, Deerfield, U.S.A.) was rinsed with 5mL <strong>of</strong><br />

methanol, followed by 5mL <strong>of</strong> deionized water. The 5mL aqueous sample extract was<br />

transferred onto the column, followed by collection <strong>of</strong> the glucosinolates due to their poor<br />

retentions on C18 column. 5mL <strong>of</strong> the 10% methanol in deionized water was added to elute<br />

the remaining glucosinolates. The final volume <strong>of</strong> the sample extracts was 10mL.<br />

40


Glucosinolates were very polar that they had poor retention on the C18 column. And C18<br />

clean-up process was done by retaining <strong>of</strong> the non-polar interferences on the sorbent.<br />

However, the interferences with the co-retention time <strong>of</strong> the glucotropaeolin in the Root <strong>of</strong><br />

Isatis indigotica Fort. [ 北 板 藍 根 ] were eluted together with the glucosinolates. The<br />

chromatograms <strong>of</strong> the original Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] and Root <strong>of</strong> Isatis<br />

indigotica Fort. [ 北 板 藍 根 ] after C18 clean-up process were shown in Figure 21a and 21b<br />

respectively.<br />

Activated Florisil clean-up method could remove the interferences with the co-retention time<br />

<strong>of</strong> the glucotropaeolin in the Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] as shown in Figure 11a.<br />

Florisil was activated at 200 o C <strong>for</strong> overnight that could remove volatile organic compounds in<br />

the sorbent. And there<strong>for</strong>e, the activated Florisil could then be used as adsorption sorbent <strong>for</strong><br />

adsorption <strong>of</strong> slightly polar interferences. By washing the column with 30% dichoromethane<br />

in hexane, the non-polar interferences were removed from the sample extracts. Organic sample<br />

extracts were prepared to load onto the column as water in the aqueous sample extract was too<br />

polar that could inactivate the activated Florisil column.<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE178.D)<br />

mA U<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Glucocheirolin<br />

Progoitrin<br />

4.906<br />

5.560<br />

Area: 6281.9 Area: 13465.5<br />

5.919<br />

6.654<br />

Sinigrin<br />

Area: 55.7971 Area: 29.5705<br />

Epiprogoitrin<br />

8.266<br />

Glucoraphenin<br />

Area: 1560.09<br />

Sinalbin<br />

10.990<br />

11.645<br />

Area: 5581.52<br />

Area: 237.494<br />

Gluconapin<br />

15.480<br />

Area: 14890.5<br />

glucotropaeolin<br />

with<br />

interferences<br />

Gluconasturtiin<br />

18.953<br />

Area: 41.0646<br />

0<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

min<br />

Figure 21a: Chromatogram <strong>of</strong> the original Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

41


DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\SUB00006.D)<br />

mA U<br />

350<br />

300<br />

250<br />

200<br />

150<br />

Progoitrin<br />

5.624<br />

Area: 5235.53 Area: 10792.9<br />

6.699<br />

Sinigrin<br />

Epiprogoitrin<br />

Glucoraphenin<br />

Sinalbin<br />

11.660<br />

Area: 4597.09<br />

Gluconapin<br />

15.483<br />

Area: 10577.4<br />

Glucotropaeolin<br />

with<br />

interferences<br />

Gluconasturtiin<br />

100<br />

50<br />

0<br />

6.040<br />

Area: 88.5345<br />

8.232<br />

Area: 848.149<br />

11.013<br />

Area: 162.052<br />

18.929<br />

Area: 57.3498<br />

-50<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

Figure 21b: Chromatogram <strong>of</strong> the original Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] after<br />

C18 clean-up process<br />

min<br />

4.3 Optimization <strong>of</strong> buffer system<br />

Glucosinolates were present in ionic states in aqueous medium. The retention <strong>of</strong> the<br />

glucosinolates on the reversed-phase <strong>HPLC</strong> column was usually poor because <strong>of</strong> high polarity<br />

<strong>of</strong> the glucosinolates. There<strong>for</strong>e, 30mM ammonium acetate containing <strong>for</strong>mic acid at pH5.0<br />

was used <strong>for</strong> <strong>HPLC</strong> analysis. The buffer solution was used to achieve better retention and<br />

good peak shape <strong>for</strong> the glucosinolates. Formic acid was a strong acid and easily protonate<br />

the glucosinolates in aqueous medium. Ammonium acetate was completely ionize in the<br />

aqueous medium and suppressed the protonated glucosinolates to ionize. The protonated<br />

glucosinolates were relatively non-polar and had sufficient retention on the reversed-phase<br />

C18 <strong>HPLC</strong> column <strong>for</strong> baseline separation <strong>of</strong> them.<br />

4.4 Gradient program<br />

When 100% buffer solution was kept at a flow rate <strong>of</strong> 1mL/min in isocratic condition, some<br />

(relatively non-polar) peaks <strong>of</strong> the glucosinolates eluted from <strong>HPLC</strong> column more than one<br />

hour and became flattened in peak shape. When 100% methanol was kept at a flow rate <strong>of</strong><br />

1mL/min in isocratic condition, the glucosinolate standards were eluted out together.<br />

There<strong>for</strong>e, gradient program was used. The gradient program was used in <strong>HPLC</strong> system to<br />

42


increase the resolutions and lower the detection limits <strong>of</strong> the glucosinolates. To get a better<br />

retention <strong>of</strong> the glucosinolates on the <strong>HPLC</strong> column, a 100% aqueous phase was used as the<br />

initial condition. Methanol was used as the organic phase and was increased to 30% from 5<br />

minutes to 17 minutes using the gradient program in order to separate the glucosinolates<br />

completely and elute the relatively non-polar glucosinolates.<br />

4.5 Optimization <strong>of</strong> glucosinolate concentrationsin the sample extracts<br />

The glucosinolate concentrations in some TCM samples, especially the seed TCM samples<br />

were found to be very high. For example, seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ]<br />

contained 12648.94µg/g <strong>of</strong> the gluconapin and seed <strong>of</strong> Raphanus sativus L.[ 萊 菔 子 ] contained<br />

10919.08µg/g <strong>of</strong> the glucoraphenin. There<strong>for</strong>e, the pre-concentration process was necessary<br />

<strong>for</strong> quantitative analysis. Otherwise, the glucosinolate concentration in the sample extracts<br />

might be out <strong>of</strong> the range <strong>of</strong> the calibration curve or even the <strong>HPLC</strong> column might be<br />

overloaded. The column overloading could be seen with back tailing <strong>of</strong> the peak in the<br />

chromatogram. For example, the gluconapin in seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ]<br />

extract overloaded the column as shown in Figure 22a. And its corresponding peak area,<br />

71780.70 was above the range <strong>of</strong> the calibration curve, from 58.57 to 6493.76. After<br />

twenty-fold dilution <strong>of</strong> the seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ] extract, a good peak<br />

shape <strong>of</strong> the gluconapin was achieved as shown in Figure 22b. And its corresponding area,<br />

5026.12 was within the range <strong>of</strong> the calibration curve.<br />

43


mAU<br />

2500<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE117.D)<br />

11.413<br />

2000<br />

1500<br />

1000<br />

500<br />

Glucocheirolin<br />

Sinigrin<br />

6.202<br />

Sinalbin<br />

Gluconapin<br />

Glucoerucin<br />

0<br />

5.157<br />

11.110<br />

16.027<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

min<br />

Figure 22a: Chromatogram <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ] extract<br />

mAU<br />

DAD1 A, Sig=233,4 Ref=550,100 (CHUNG2\KCLEE124.D)<br />

11.875<br />

800<br />

600<br />

400<br />

Glucocheirolin<br />

Sinigrin<br />

Sinalbin<br />

Gluconapin<br />

Glucoerucin<br />

200<br />

0<br />

5.245<br />

6.336<br />

11.201<br />

16.119<br />

0 2.5 5 7.5 10 12.5 15 17.5 20<br />

min<br />

Figure 22b: Chromatogram <strong>of</strong> twenty-fold dilution <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd<br />

[ 葶 藶 子 ] extract<br />

44


5. Conclusion<br />

The developed reversed-phase <strong>HPLC</strong> method using C18 column provides sufficient retention<br />

and baseline separation <strong>for</strong> analyzing twelve intact glucosinolates (glucoiberin, glucocheirolin,<br />

progoitrin, sinigrin, epiprogoitrin, glucoraphenin, sinalbin, gluconapin, glucosibarin,<br />

glucotropaeolin, glucoerucin, gluconasturtiin) in three vegetable and twelve Traditional<br />

Chinese Medicine (TCM) samples. Combined the method with ESI-QTOF-MS in negative<br />

mode and MS/MS analysis, the glucosinolates in the sample extract can be detected and<br />

identified. Glucosinolate concentrations in the sample extract can be successfully determined<br />

by an external calibration method.<br />

At least two glucosinoates were found in the three vegetable and cruciferous TCM samples.<br />

None <strong>of</strong> the detectable glucosinolates were found in the non-cruciferous TCM samples.<br />

Concentrations <strong>of</strong> the total glucosinolates were found to be very high in seed TCM samples,<br />

more than 9,000µg/g.<br />

Seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ] contained the highest concentration <strong>of</strong> total<br />

glucosinolates, 13199.82µg/g. Root <strong>of</strong> Baphicacanthus cusia (Nees) Bremek.<br />

[ 南 板 藍 根 ], Patrinia scabiosaefolia Fisch. ex Trev. [ 敗 醬 草 ] and Leaf <strong>of</strong> Baphicacanthus<br />

cusia (Nees) Bremek. [ 廣 東 大 青 葉 ] contained the least concentration <strong>of</strong> total glucosinolates,<br />

0.00µg/g. The range <strong>of</strong> the total glucosinolates in the sample extracts was found to be<br />

0.00µg/g to 13199.82µg/g, respectively.<br />

45


6. Future plan<br />

Fresh vegetable samples were analyzed in this project. The water content was different in<br />

different vegetable samples. There<strong>for</strong>e, a drying freezer can be used to dry the vegetable<br />

samples be<strong>for</strong>e analysis.<br />

Glucosinolate concentrations in the reproductive tissues (florets/ flowers and seeds) are <strong>of</strong>ten<br />

as much as 10-40 times higher than those in vegetative tissues. [2]<br />

And the seed TCM<br />

samples were found with relatively high glucosinolate levels. There<strong>for</strong>e, reproductive tissues<br />

<strong>of</strong> the cruciferous plants can be analyzed and compared with the vegetative tissues.<br />

Different <strong>for</strong>ms <strong>of</strong> 板 藍 根 products in the market can be analyzed, <strong>for</strong> example, 板 藍 根<br />

extract to investigate whether they are made <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] or<br />

Root <strong>of</strong> Baphicacanthus cusia (Nees) Bremek. [ 南 板 藍 根 ].<br />

46


5. References<br />

1. Tsiafoulis, C.G.; Prodromidis, M.I.; Karayannis, M.I. Anal. Chem. 2003, 75, 927-934<br />

2. Bennett, R.N.; Mellon, F.A.; Kroon, P.A. J. Agric. Food Chem. 2004, 52, 428-438<br />

3. Arguello, L.G.; Sensharma, D.K.; Qiu, F.; Nurtaeva, A.; Rassi, Z.E. J. <strong>of</strong> AOAC int.<br />

1999, 82(5), 1115-1127<br />

4. Warton, B.; Matthiessen, J.N.; Shackleton, M.A. J. Agric. Food Chem. 2001, 49,<br />

5244-5250<br />

5. Szmigielska, A.M.; Schoenau, J.J. J. Agric. Food Chem. 2000, 48, 5190-5194<br />

6. Nastruzzi, C.; Cortesi, R.; Esposito, E.; Menegatti, E.; Leoni, O.; Iori, R.; Palmieri, S.<br />

J. Agric. Food Chem. 1996, 44, 1014-1021<br />

7. Leoni, O.; Iori, R.; Palmieri*, S. J. Agric. Food Chem. 1991, 39, 2322-2326<br />

8. Karcher, A.; Melouk, H.A.; Rassi, Z.E. J. Agric. Food Chem. 1999, 47, 4267-4274<br />

9. Karcher, A.; Melouk, H.A.; Rassi, Z.E. Analytical Biochemistry 1999, 267, 92-99<br />

10. Mellon, F.A.; Bennett, R.N.; Holst, B.; Williamson, G. Analytical Biochemistry 2002,<br />

306, 83-91<br />

11. Nastruzzi, C.; Cortesi, R.; Esposito, E.; Menegatti, E.; Leoni, O.; Iori, R.; Palmieri J.<br />

Agric. Food Chem. 2000, 48, 3572-3575<br />

12. Tolra, R.P.; Alonso, R.; Poschenrieder, C.; Barcelo, D.; Barcelo, J. J. <strong>of</strong><br />

Chromatograph A 2000, 889, 75-81<br />

13. Cai, Z.W.; Cheung, C.Y.; Ma, W.T.; Au, W.M.; Zhang, X.Y.; Lee, A. Anal. Bioanal.<br />

Chem. 2004, 378, 827-833<br />

14. Kiddle, G.; Bennett, R.N.; Botting, N.P.; Davidson, N.E.; Robertson, A.A.B.;<br />

Wallsgrove, R.M. Phytochemical <strong>Analysis</strong> 2001, 12, 226-242<br />

15. Botting, C.H.; Davidson, N.E.; Griffiths, D.W.; Bennett, R.N.; Botting, N.P. J. Agric.<br />

47


Food Chem. 2002, 50, 983-988<br />

16. Warton, B.; Matthiessen, J.N.; Shackleton, M.A. J. Agric. Food Chem. 2001, 49,<br />

5244-5250<br />

48


APPENDIX<br />

-TOF Product (422.0): 30 MCA scans from <strong>Sample</strong> 6 (glucoriderin-MS2) <strong>of</strong> chung2.wiff<br />

a=3.56258132228446760e-004, t0=5.70181404275608660e+001<br />

Max. 33.0 counts.<br />

32<br />

30<br />

28<br />

26<br />

24<br />

96.9719<br />

HSO 4<br />

-<br />

(S)<br />

OH (R)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

S CH<br />

O<br />

H 2<br />

C CH 2 C<br />

C<br />

H 2<br />

3<br />

NOSO 3H<br />

Glucoiberin standard<br />

M.W. = 423.0327<br />

358.0605<br />

22<br />

20<br />

18<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

195.9942<br />

422.0670<br />

[M-H] -<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

74.9981<br />

OH<br />

SO 3<br />

-<br />

OH<br />

138.9866<br />

162.0042<br />

180.0400<br />

79.9645 228.9958<br />

135.9759<br />

119.0577<br />

259.0409<br />

275.0237<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.1: MS/MS spectrum <strong>of</strong> glucoiberin standard<br />

342.1137<br />

407.0218<br />

-TOF Product (438.0): 30 MCA scans from <strong>Sample</strong> 32 (GlucocheirolinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 211.0 counts.<br />

211<br />

O<br />

438.0303<br />

200<br />

180<br />

160<br />

140<br />

120<br />

96.9576<br />

HSO 4<br />

-<br />

(S)<br />

OH (R)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

C CH 2 S<br />

H 2<br />

O<br />

CH 3<br />

Glucocheirolin standard<br />

M.W. = 439.0277<br />

CH 2 OH<br />

[M-H] -<br />

ΟΗ<br />

Ο<br />

S<br />

100<br />

74.9871<br />

OH<br />

OH<br />

80<br />

259.0150<br />

60<br />

SO 3<br />

-<br />

196.0107<br />

40<br />

20<br />

0<br />

274.9952<br />

128.9252 244.9655<br />

138.9692<br />

79.9536 241.9766<br />

358.0900<br />

119.0313<br />

145.0517 214.9696<br />

290.9898<br />

59.0091<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

m/z, amu<br />

Figure A.2: MS/MS spectrum <strong>of</strong> glucocheirolin standard<br />

49


-TOF Product (388.0): 30 MCA scans from <strong>Sample</strong> 8 (progoitrin-MS2) <strong>of</strong> chung2.wiff<br />

a=3.56258132228446760e-004, t0=5.70181404275608660e+001<br />

Max. 22.0 counts.<br />

22.0<br />

20.0<br />

96.9659<br />

HSO 4<br />

-<br />

(S)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

H<br />

H 2<br />

C C (R) C<br />

C<br />

H<br />

OH<br />

NOSO 3 H<br />

CH 2<br />

18.0<br />

16.0<br />

14.0<br />

74.9987<br />

OH (R)<br />

(S)<br />

OH<br />

Progoitrin standard<br />

M.W. = 389.0450<br />

CH 2 OH<br />

Ο<br />

ΟΗ<br />

S<br />

[M-H] -<br />

12.0<br />

135.9813<br />

OH<br />

10.0<br />

8.0<br />

SO 3<br />

-<br />

195.0521<br />

OH<br />

388.0835<br />

6.0<br />

4.0<br />

259.0350<br />

275.0274<br />

2.0<br />

79.9665 154.0002 192.0159<br />

0.0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.3: MS/MS spectrum <strong>of</strong> progoitrin standard<br />

-TOF Product (358.0): 30 MCA scans from <strong>Sample</strong> 4 (sinigrinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 62.0 counts.<br />

62<br />

60<br />

55<br />

74.9844<br />

HSO 4<br />

-<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

S<br />

Ο<br />

ΟΗ<br />

(S)<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H<br />

CH 2<br />

50<br />

45<br />

40<br />

96.9581<br />

OH<br />

Sinigrin standard<br />

M.W. = 359.0345<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

35<br />

30<br />

SO 3<br />

-<br />

OH<br />

OH<br />

[M-H] -<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

79.9540<br />

116.0077 161.9818 195.0323<br />

259.0135<br />

164.9700<br />

101.0191 275.0175<br />

128.9360<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400<br />

m/z, amu<br />

Figure A.4: MS/MS spectrum <strong>of</strong> sinigrin standard<br />

358.0175<br />

50


-TOF Product (388.0): 30 MCA scans from <strong>Sample</strong> 1 (epiprogoitrin-MS2) <strong>of</strong> chung2.wiff<br />

a=3.56258132228446760e-004, t0=5.70181404275608660e+001<br />

OH<br />

CH CH 74.9995<br />

2 OH<br />

H 2 OH<br />

2<br />

C C (S) C<br />

17.0<br />

S C<br />

H<br />

S<br />

96.9709<br />

Ο<br />

Ο<br />

H<br />

16.0<br />

(S) ΟΗ<br />

ΟΗ<br />

NOSO<br />

(S)<br />

3 H<br />

15.0<br />

14.0<br />

13.0<br />

12.0<br />

11.0<br />

10.0<br />

9.0<br />

HSO 4<br />

-<br />

146.0472 195.0836<br />

135.9845<br />

OH<br />

OH<br />

OH (R)<br />

(S)<br />

OH<br />

Epiprogoitrin standard<br />

M.W. = 389.0450<br />

CH 2<br />

388.0763<br />

Max. 17.0 counts.<br />

[M-H] -<br />

8.0<br />

7.0<br />

SO 3<br />

-<br />

259.0273<br />

275.0241<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

192.0093<br />

2.0<br />

301.0257<br />

1.0<br />

79.9678<br />

332.0249<br />

0.0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.5: MS/MS spectrum <strong>of</strong> epiprogoitrin standard<br />

-TOF Product (434.0): 30 MCA scans from <strong>Sample</strong> 18 (GlucorapheninMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 45.0 counts.<br />

45<br />

96.9527<br />

O<br />

40<br />

HSO 4<br />

-<br />

(S)<br />

OH<br />

CH 2OH<br />

ΟΗ<br />

(R)<br />

Ο<br />

(S)<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3H<br />

C<br />

H 2<br />

C<br />

H<br />

C<br />

H<br />

S<br />

CH 3<br />

35<br />

OH<br />

Glucoraphenin standard<br />

30<br />

25<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

M.W. = 435.0327 [M-H] -<br />

434.0301<br />

20<br />

15<br />

74.9846<br />

SO 3<br />

-<br />

OH<br />

OH<br />

259.0061<br />

419.0080<br />

10<br />

5<br />

195.0467<br />

129.0238<br />

274.9921<br />

192.0068 240.9591<br />

79.9536 138.9877 255.9360<br />

330.9917<br />

370.0284<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.6: MS/MS spectrum <strong>of</strong> glucoraphenin standard<br />

51


-TOF Product (424.0): 30 MCA scans from <strong>Sample</strong> 57 (SinalbinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

493<br />

Max. 493.0 counts.<br />

424.0434<br />

450<br />

400<br />

350<br />

300<br />

(S)<br />

OH (R)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

Sinalbin standard<br />

M.W. = 425.0450<br />

OH<br />

CH 2 OH<br />

Ο<br />

ΟΗ<br />

S<br />

[M-H] -<br />

OH<br />

250<br />

OH<br />

200<br />

150<br />

182.0288<br />

259.0156<br />

274.9930<br />

100<br />

195.0314<br />

230.9794<br />

50<br />

0<br />

227.9960<br />

168.9768 200.9738 241.0054 246.0136<br />

291.0005<br />

344.0885<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

m/z, amu<br />

Figure A.7: MS/MS spectrum <strong>of</strong> sinalbin standard<br />

-TOF Product (372.0): 30 MCA scans from <strong>Sample</strong> 6 (gluconapinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 110.0 counts.<br />

110<br />

74.9853<br />

100<br />

90<br />

96.9586<br />

HSO 4<br />

-<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3 H<br />

C<br />

H 2<br />

C<br />

H<br />

CH 2<br />

80<br />

70<br />

60<br />

OH<br />

Gluconapin standard<br />

M.W. = 373.0501<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

[M-H] -<br />

50<br />

40<br />

SO 3<br />

-<br />

OH<br />

OH<br />

30<br />

20<br />

79.9513<br />

195.0279<br />

130.0285<br />

10 59.0082 119.0339<br />

178.9952<br />

138.9607<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400<br />

m/z, amu<br />

Figure A.8: MS/MS spectrum <strong>of</strong> gluconapin standard<br />

259.0185<br />

275.0045<br />

292.0821<br />

372.0505<br />

52


-TOF Product (438.0): 30 MCA scans from <strong>Sample</strong> 12 (glucosibarinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 80.0 counts.<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

96.9551<br />

HSO 4<br />

-<br />

135.9682<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

OH (R)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

H<br />

H 2<br />

C C (R)<br />

C<br />

OH<br />

NOSO 3H<br />

Glucosibarin standard<br />

M.W. = 439.0607<br />

50<br />

45<br />

OH<br />

OH<br />

[M-H] -<br />

40<br />

438.0619<br />

35<br />

30<br />

25<br />

74.9869<br />

SO 3<br />

-<br />

195.0317<br />

259.0157<br />

20<br />

15<br />

10<br />

5<br />

0<br />

79.9553<br />

138.9689<br />

153.9711<br />

244.9909<br />

85.0281 128.9375<br />

145.0472<br />

169.9414<br />

198.9805 215.0118<br />

275.0003<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

m/z, amu<br />

Figure A.9: MS/MS spectrum <strong>of</strong> glucosibarin standard<br />

301.0042<br />

332.0046<br />

358.1076<br />

-TOF Product (408.0): 30 MCA scans from <strong>Sample</strong> 38 (GlucotropaeolinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 524.0 counts.<br />

524<br />

500<br />

450<br />

400<br />

350<br />

300<br />

74.9859<br />

96.9588<br />

HSO 4<br />

-<br />

CH 2 OH<br />

S<br />

Ο<br />

ΟΗ<br />

OH<br />

OH<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

Glucotropaeolin standard<br />

M.W. = 409.0501<br />

[M-H] -<br />

250<br />

SO 3<br />

-<br />

408.0478<br />

200<br />

166.0322<br />

150<br />

100<br />

50<br />

0<br />

85.0259<br />

79.9525<br />

119.0357<br />

138.9683<br />

168.9781<br />

195.0338<br />

163.0623<br />

214.9826<br />

259.0134<br />

274.9888<br />

230.0145 328.0864<br />

241.0019<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

m/z, amu<br />

Figure A.10: MS/MS spectrum <strong>of</strong> glucotropaeolin standard<br />

53


-TOF Product (420.0): 30 MCA scans from <strong>Sample</strong> 22 (GlucoerucinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 227.0 counts.<br />

220<br />

96.9567<br />

HSO 4<br />

-<br />

(S)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

C<br />

H 2<br />

C CH C 2<br />

H 2<br />

NOSO 3H<br />

C<br />

H 2<br />

S CH 3<br />

200<br />

OH<br />

(R)<br />

(S)<br />

180<br />

160<br />

140<br />

74.9853<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

OH<br />

Glucoerucin standard<br />

M.W. = 421.0535<br />

[M-H] -<br />

420.0475<br />

120<br />

SO 3<br />

-<br />

OH<br />

OH<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

259.0160<br />

79.9525 178.0352<br />

195.0335<br />

274.9891<br />

226.9948<br />

85.0231 119.0323<br />

138.9692<br />

163.0610 224.0099 242.0073<br />

131.0417<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

m/z, amu<br />

Figure A.11: MS/MS spectrum <strong>of</strong> glucoerucin standard<br />

340.0940<br />

-TOF Product (422.0): 30 MCA scans from <strong>Sample</strong> 27 (GluconasturtiinMS2) <strong>of</strong> Chung.wiff<br />

a=3.56036418804506270e-004, t0=5.68918465398965050e+001<br />

Max. 686.0 counts.<br />

686<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

74.9855<br />

96.9574<br />

HSO 4<br />

-<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

OH (R)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

C<br />

H 2<br />

Gluconasturtiin standard<br />

M.W. = 423.0658<br />

[M-H] -<br />

350<br />

300<br />

SO 3<br />

-<br />

OH<br />

OH<br />

422.0648<br />

250<br />

200<br />

150<br />

180.0497<br />

259.0141<br />

100<br />

50<br />

0<br />

79.9522<br />

195.0340<br />

228.9978<br />

274.9890<br />

138.9682<br />

85.0259<br />

119.0323<br />

165.0357 240.9993 342.1033<br />

131.0277 301.0072<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

m/z, amu<br />

Figure A.12: MS/MS spectrum <strong>of</strong> gluconasturtiin standard<br />

54


-TOF MS: 0.050 min from <strong>Sample</strong> 1 (t-rt-6.94) <strong>of</strong> chung1.wiff<br />

a=3.56264499558618230e-004, t0=5.71842229067915470e+001<br />

Max. 56.0 counts.<br />

55<br />

50<br />

(S)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

C<br />

H 2<br />

C<br />

H<br />

C<br />

H<br />

O<br />

S<br />

CH 3<br />

434.0255<br />

45<br />

40<br />

35<br />

30<br />

OH (R)<br />

(S)<br />

OH<br />

Glucoraphenin in<br />

Lycopersicon esculentum<br />

[ 番 茄 (Tomato)] extract at<br />

8.729min<br />

M.W. = 435.0327<br />

[M-H] -<br />

25<br />

20<br />

15<br />

10<br />

152.9173<br />

183.0124<br />

265.1454<br />

293.1837 325.1753<br />

418.9928<br />

5<br />

136.9300<br />

216.9001<br />

255.2330 270.8373 311.1668<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.13a: ESI-QTOF-MS spectrum <strong>of</strong> Lycopersicon esculentum [ 番 茄 (Tomato)]<br />

extract at 8.729min<br />

-TOF Product (434.0): 30 MCA scans from <strong>Sample</strong> 2 (t-rt-6.94-MS2) <strong>of</strong> chung1.wiff<br />

a=3.56264499558618230e-004, t0=5.71842229067915470e+001<br />

O<br />

Max. 82.0 counts.<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

96.9605<br />

HSO 4<br />

-<br />

CH 2 OH<br />

S<br />

Ο<br />

ΟΗ<br />

OH<br />

OH<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

C<br />

H 2<br />

C<br />

H<br />

C<br />

H<br />

Glucoraphenin in Lcopersicon<br />

esculentum [ 番 茄 (Tomato)]<br />

extract at 8.729min<br />

M.W. = 435.0327<br />

S<br />

CH 3<br />

434.0272<br />

[M-H] -<br />

45<br />

40<br />

259.0183<br />

419.0099<br />

35<br />

30<br />

74.9894<br />

195.0322<br />

25<br />

20<br />

15<br />

10<br />

5<br />

129.0232<br />

168.9535<br />

192.0163<br />

240.9715<br />

274.9914<br />

93.5864 135.9696<br />

145.0446<br />

255.9464<br />

203.2529 297.5118<br />

339.4955<br />

393.7627<br />

427.7920<br />

488.2259<br />

113.4158 153.4012 186.4013<br />

234.2286<br />

331.7443<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.13b: MS/MS spectrum <strong>of</strong> Lycopersicon esculentum [ 番 茄 (Tomato)] extract at<br />

8.729min<br />

55


-TOF MS: 40 MCA scans from <strong>Sample</strong> 21 (Rt5.435) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 2087.0 counts.<br />

2087<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

264.1433<br />

281.2313<br />

[M-H] -<br />

388.0120<br />

283.2469 341.0869<br />

503.1292<br />

389.0183<br />

549.1344<br />

279.2185<br />

325.0969<br />

368.9610<br />

306.1862 431.1085 455.9921 539.0968<br />

297.1118 339.3029 377.0592<br />

471.9644<br />

593.1555<br />

260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600<br />

m/z, amu<br />

Figure A.14a: ESI-QTOF-MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 5.834min<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

H<br />

H 2<br />

C C (R) C<br />

C<br />

H<br />

OH<br />

NOSO 3 H<br />

CH 2<br />

Progoitrin in Root <strong>of</strong> Isatis<br />

indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 5.834min<br />

M.W. = 389.0450<br />

-TOF Product (388.0): 60 MCA scans from <strong>Sample</strong> 22 (Rt5.435(MS/MS)-388.01-1) <strong>of</strong> Chung291104.wi...<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

H<br />

74.9863<br />

47<br />

CH 2 OH<br />

H 2<br />

C C (R) C<br />

45<br />

S C<br />

H<br />

Ο<br />

OH<br />

(S) ΟΗ<br />

NOSO<br />

(S)<br />

3 H<br />

CH<br />

40<br />

2 OH<br />

(S)<br />

OH (R)<br />

96.9559<br />

S<br />

-<br />

Ο<br />

OH<br />

HSO ΟΗ<br />

35<br />

4<br />

30<br />

25<br />

OH<br />

OH<br />

CH 2<br />

Progoitrin in Root <strong>of</strong> Isatis<br />

indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 5.834min<br />

M.W. = 389.0450<br />

Max. 47.0 counts.<br />

20<br />

135.9633<br />

[M-H] -<br />

-<br />

15<br />

SO 3 195.0270<br />

146.0211<br />

388.0060<br />

258.9906<br />

10<br />

138.9644<br />

79.9524<br />

119.0309<br />

274.9692<br />

5<br />

153.9726<br />

128.9249 191.9868 300.9982<br />

57.4090 161.0347<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400<br />

m/z, amu<br />

Figure A.14b: MS/MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract at<br />

5.834min<br />

56


-TOF MS: 60 MCA scans from <strong>Sample</strong> 15 (Rt5.801-1) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 918.0 counts.<br />

900<br />

850<br />

800<br />

750<br />

700<br />

650<br />

600<br />

550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

264.1433<br />

281.2339<br />

283.2468<br />

267.2170<br />

279.2168<br />

358.0053<br />

[M-H] -<br />

503.1270<br />

150<br />

341.0884<br />

270.2344<br />

284.2501<br />

100<br />

368.9543<br />

388.0106<br />

50 293.1611298.9842 359.0127 367.3363 412.9449 549.1374<br />

381.3464 439.0693<br />

465.0872 505.1302<br />

593.1540<br />

0<br />

260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600<br />

m/z, amu<br />

Figure A.15: ESI-QTOF-MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 6.276min<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H<br />

Sinigrin in Root <strong>of</strong><br />

Isatis indigotica Fort.<br />

[ 北 板 藍 根 ] extract at<br />

6.276min<br />

CH 2<br />

-TOF MS: 33 MCA scans from <strong>Sample</strong> 46 (Rt6.369) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 2890.0 counts.<br />

388.0270<br />

2800<br />

OH<br />

2600<br />

2400<br />

(S)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

H 2<br />

C C (S) C<br />

C<br />

H<br />

H<br />

NOSO 3 H<br />

CH 2<br />

2200<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

[M-H] -<br />

OH (R)<br />

(S)<br />

OH<br />

Epiprogoitrin in Root <strong>of</strong><br />

Isatis indigotica Fort.<br />

[ 北 板 藍 根 ] extract at<br />

6.971min<br />

M.W. = 389.0450<br />

1000<br />

800<br />

600<br />

400<br />

264.1544<br />

390.0253<br />

200 267.2234<br />

341.1002 368.9640 456.0104<br />

445.9772 503.1513 549.1584<br />

563.1551<br />

0<br />

260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 700<br />

m/z, amu<br />

Figure A.16a: ESI-QTOF-MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 6.971min<br />

57


-TOF Product (388.0): 100 MCA scans from <strong>Sample</strong> 47 (Rt6.369(MS/MS)-388) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 207.0 counts.<br />

207<br />

CH 2 OH<br />

200<br />

CH 2 OH<br />

S C<br />

Ο<br />

190<br />

H<br />

S<br />

(S) ΟΗ<br />

NOSO<br />

(S)<br />

3 H<br />

Ο<br />

180<br />

ΟΗ<br />

(S)<br />

OH (R)<br />

170 74.9891<br />

160<br />

96.9602<br />

-<br />

HSO 4<br />

OH<br />

OH<br />

150<br />

OH<br />

140<br />

130<br />

120<br />

110<br />

135.9680<br />

100<br />

90<br />

195.0321<br />

80<br />

70<br />

-<br />

259.0038<br />

SO 3<br />

60<br />

146.0223<br />

50<br />

40<br />

274.9864<br />

30<br />

138.9633<br />

20 79.9575 119.0328<br />

191.9884<br />

210.0027<br />

10<br />

128.9266<br />

85.0345<br />

59.0129 164.9880<br />

198.9876 225.9676<br />

0<br />

240.9916 308.0766<br />

H 2<br />

C C (S) C<br />

H<br />

332.0057<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400<br />

m/z, amu<br />

Figure A.16b: MS/MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract at<br />

6.971min<br />

OH<br />

CH 2<br />

Epiprogoitrin in Root <strong>of</strong><br />

Isatis indigotica Fort.<br />

[ 北 板 藍 根 ] extract at<br />

6.971min<br />

M.W. = 389.0450<br />

[M-H] -<br />

388.0269<br />

-TOF MS: 39 MCA scans from <strong>Sample</strong> 32 (Rt11.258) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 534.0 counts.<br />

534<br />

500<br />

264.1495<br />

(S)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

OH<br />

450<br />

400<br />

350<br />

300<br />

250<br />

281.2373<br />

283.2526<br />

267.2217<br />

[M-H] -<br />

OH (R)<br />

(S)<br />

OH<br />

Sinalbin in Root <strong>of</strong><br />

Isatis indigotica Fort.<br />

[ 北 板 藍 根 ] extract at<br />

11.290min<br />

M.W. = 425.0450<br />

200<br />

150<br />

100<br />

270.2400<br />

50<br />

0<br />

279.2205<br />

284.2546 368.9629<br />

424.0150<br />

277.1950 306.1949 341.0987<br />

362.2543 412.9511 426.0113<br />

451.4223 487.3240 550.1018<br />

564.0580<br />

260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600<br />

m/z, amu<br />

Figure A.17a: ESI-QTOF-MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ]<br />

extract at 11.290min<br />

58


-TOF Product (424.0): 60 MCA scans from <strong>Sample</strong> 34 (Rt11.258(MS/MS)-424-1) <strong>of</strong> Chung291104.wiff<br />

a=3.55978894933761710e-004, t0=5.66641529975095180e+001<br />

Max. 9.0 counts.<br />

9.0<br />

8.5<br />

8.0<br />

7.5<br />

7.0<br />

6.5<br />

6.0<br />

5.5<br />

5.0<br />

4.5<br />

4.0<br />

74.9881<br />

96.9522<br />

HSO 4<br />

-<br />

182.0260<br />

(S)<br />

OH (R)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

Sinalbin in Root <strong>of</strong><br />

Isatis indigotica Fort.<br />

[ 北 板 藍 根 ] extract at<br />

11.290min<br />

M.W. = 425.0450<br />

OH<br />

[M-H] -<br />

424.0178<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440<br />

m/z, amu<br />

Figure A.17b: MS/MS spectrum <strong>of</strong> Root <strong>of</strong> Isatis indigotica Fort. [ 北 板 藍 根 ] extract at<br />

11.290min<br />

-TOF MS: 0.400 min from <strong>Sample</strong> 3 (z-rt-6.15) <strong>of</strong> chung1.wiff<br />

a=3.56264499558618230e-004, t0=5.71842229067915470e+001<br />

Max. 76.0 counts.<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

(S)<br />

OH (R)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H<br />

Sinigrin in Thlaspi<br />

arvensis L. [ 菥 蓂 ]<br />

extract at 6.005min<br />

M.W. = 359.0345<br />

CH 2<br />

183.0122<br />

265.1545<br />

293.1855<br />

309.1856<br />

358.0384<br />

[M-H] -<br />

30<br />

25<br />

20<br />

15<br />

281.2549<br />

353.2094<br />

325.1939<br />

337.2132<br />

397.2451<br />

10<br />

5<br />

255.2342<br />

184.0176 241.2168 297.1492<br />

321.2279<br />

381.2446<br />

441.2700<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.18a: ESI-QTOF-MS spectrum <strong>of</strong> Thlaspi arvense L. [ 菥 蓂 ] extract at 6.005min<br />

59


-TOF Product (358.0): 30 MCA scans from <strong>Sample</strong> 4 (z-rt-6.15-MS2) <strong>of</strong> chung1.wiff<br />

a=3.56264499558618230e-004, t0=5.71842229067915470e+001<br />

Max. 65.0 counts.<br />

65<br />

60<br />

74.9926<br />

(S)<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3 H<br />

C<br />

H<br />

CH 2<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

96.9621<br />

HSO 4<br />

-<br />

CH 2 OH<br />

S<br />

Ο<br />

ΟΗ<br />

OH<br />

OH<br />

[M-H] -<br />

OH (R)<br />

(S)<br />

OH<br />

Sinigrin in Thlaspi<br />

arvensis L. [ 菥 蓂 ]<br />

extract at 6.005min<br />

M.W. = 359.0345<br />

25<br />

20<br />

95.9562<br />

SO 3<br />

-<br />

15<br />

195.0349<br />

358.0394<br />

10<br />

161.9916<br />

275.0004<br />

79.9581 116.0176<br />

259.0274<br />

138.9804<br />

5<br />

134.9781<br />

63.8038 177.4611 262.9085 314.9930 376.8085 432.4078 447.5264<br />

211.1616 460.1431<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.18b: MS/MS spectrum <strong>of</strong> Thlaspi arvense L. [ 菥 蓂 ] extract at 6.005min<br />

-TOF MS: 30 MCA scans from <strong>Sample</strong> 11 (z8.5) <strong>of</strong> chung2.wiff<br />

a=3.56258132228446760e-004, t0=5.70181404275608660e+001<br />

O<br />

Max. 39.0 counts.<br />

38<br />

36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

148.0700<br />

178.0723<br />

205.1455<br />

220.1677<br />

250.1725<br />

233.1742<br />

223.0486<br />

265.1727<br />

255.2594<br />

325.2181<br />

311.1937<br />

183.0295<br />

126.9162 206.1480<br />

281.2803<br />

186.9412194.9564<br />

293.1983<br />

241.2383 259.0410<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.19a: ESI-QTOF-MS spectrum <strong>of</strong> Thlaspi arvense L. [ 菥 蓂 ] extract at 8.347min<br />

(S)<br />

OH<br />

CH 2OH<br />

ΟΗ<br />

(R)<br />

Ο<br />

(S)<br />

OH<br />

S<br />

(S)<br />

C<br />

H 2<br />

C<br />

NOSO 3H<br />

C<br />

H 2<br />

C<br />

H<br />

C<br />

H<br />

Glucoraphenin in<br />

Thlaspi arvensis L.<br />

[ 菥 蓂 ] extract at<br />

434.0624<br />

8.347min<br />

M.W. = 435.0327 [M-H] -<br />

S<br />

CH 3<br />

60


-TOF MS: 0.367 min from <strong>Sample</strong> 6 (t-rt-11.8) <strong>of</strong> chung1.wiff<br />

a=3.56264499558618230e-004, t0=5.71842229067915470e+001<br />

Max. 471.0 counts.<br />

471<br />

450<br />

(S)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3 H<br />

C<br />

H 2<br />

C<br />

H<br />

CH 2<br />

372.0464<br />

400<br />

350<br />

300<br />

250<br />

OH (R)<br />

(S)<br />

OH<br />

Gluconapin in Seed <strong>of</strong><br />

Lepidium apetalum<br />

Willd [ 葶 藶 子 ] extract<br />

at 11.875min<br />

M.W. = 373.0501<br />

[M-H] -<br />

200<br />

150<br />

100<br />

50<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.20a: ESI-QTOF-MS spectrum <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ]<br />

extract at 11.875min<br />

-TOF Product (372.0): 22 MCA scans from <strong>Sample</strong> 5 (t-rt-11.8-ms2) <strong>of</strong> chung1.wiff<br />

a=3.56264499558618230e-004, t0=5.71842229067915470e+001<br />

Max. 156.0 counts.<br />

156<br />

150<br />

74.9918<br />

(S)<br />

CH 2OH<br />

ΟΗ<br />

Ο<br />

S<br />

(S)<br />

H 2<br />

C<br />

C<br />

NOSO 3H<br />

C<br />

H 2<br />

C<br />

H<br />

CH 2<br />

140<br />

OH (R)<br />

(S)<br />

130<br />

120<br />

110<br />

100<br />

90<br />

96.9639<br />

HSO 4<br />

-<br />

CH 2 OH<br />

ΟΗ<br />

Ο<br />

S<br />

OH<br />

Gluconapin in Seed <strong>of</strong><br />

Lepidium apetalum<br />

Willd [ 葶 藶 子 ] extract<br />

at 11.875min<br />

M.W. = 373.0501<br />

80<br />

OH<br />

70<br />

60<br />

OH<br />

[M-H] -<br />

50<br />

40<br />

30<br />

20<br />

79.9621<br />

-<br />

SO 3<br />

130.0357 259.0226<br />

195.0410 241.0128<br />

275.0018<br />

372.0598<br />

10<br />

0<br />

60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500<br />

m/z, amu<br />

Figure A.20b: MS/MS spectrum <strong>of</strong> Seed <strong>of</strong> Lepidium apetalum Willd [ 葶 藶 子 ] extract at<br />

11.875min<br />

61

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!