26.11.2014 Views

Foraging and pollination behavior of Apis mellifera adansonii Latreille (Hymenoptera: Apidae) on Glycine max L. (Fabaceae) flowers at Maroua

To assess the impact of Apis mellifera adansonii on pod and seed yields of Glycine max, its foraging and pollinating activities were studied in Maroua, during the two season seasons (August-September 2010 and 2011). Observations were made on 51 to 17866 flowers per treatment. Treatment 1 represented by free flowers; treatment 2 bagged flowers and treatment 3 flowers visited only by A. m. adansonii. In addition, all flower visitors were recorded. The abundance of bee, duration of visits, impact of activity of A. m. adansonii on fruiting percentage, the influence of this bee on formation of pods, number of seeds in each pods and average of normal seeds (well developed) were recorded. Individuals from 28 species of insects were recorded on the flowers of G. max, after two years of observations. Apis mellifera adansonii with 23.18% of 954 visits was the most frequent, followed by Polyrachis sp. 1 (14.77%), Macronomia vulpina (14.22%), Lipotriches collaris (11.07%). This honey bee intensely and exclusively foraged for nectar. The mean foraging speed was 12.56 ± 5.79 flowers per minute. Flowers visited by insects had higher fruiting rate compared with the others while those bagged had the lowest. Apis mellifera adansonii foraging resulted to a significant increment in fruiting rate by 14.14 and 11.98%, as well as the number of seeds per pod by 36.95 and 35.65%, and the percentage of normal seeds by 32.61 and 29.26% respectively in 2010 and 2011. The installation of A. m. adansonii colonies in G. max plantations is recommended to improve pod and seeds production of this species.

To assess the impact of Apis mellifera adansonii on pod and seed yields of Glycine max, its foraging and pollinating activities were studied in Maroua, during the two season seasons (August-September 2010 and 2011). Observations were made on 51 to 17866 flowers per treatment. Treatment 1 represented by free flowers; treatment 2 bagged flowers and treatment 3 flowers visited only by A. m. adansonii. In addition, all flower visitors were recorded. The abundance of bee, duration of visits, impact of activity of A. m. adansonii on fruiting percentage, the influence of this bee on formation of pods, number of seeds in each pods and average of normal seeds (well developed) were recorded. Individuals from 28 species of insects were recorded on the flowers of G. max, after two years of observations. Apis mellifera adansonii with 23.18% of 954 visits was the most frequent, followed by Polyrachis sp. 1 (14.77%), Macronomia vulpina (14.22%), Lipotriches collaris (11.07%). This honey bee intensely and exclusively foraged for nectar. The mean foraging speed was 12.56 ± 5.79 flowers per minute. Flowers visited by insects had higher fruiting rate compared with the others while those bagged had the lowest. Apis mellifera adansonii foraging resulted to a significant increment in fruiting rate by 14.14 and 11.98%, as well as the number of seeds per pod by 36.95 and 35.65%, and the percentage of normal seeds by 32.61 and 29.26% respectively in 2010 and 2011. The installation of A. m. adansonii colonies in G. max plantations is recommended to improve pod and seeds production of this species.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology<br />

An Intern<strong>at</strong>i<strong>on</strong>al Scientific Research Journal<br />

Original Research<br />

<str<strong>on</strong>g>Foraging</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>behavior</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <str<strong>on</strong>g>L<strong>at</strong>reille</str<strong>on</strong>g><br />

(<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g>: <str<strong>on</strong>g>Apidae</str<strong>on</strong>g>) <strong>on</strong> <strong>Glycine</strong> <strong>max</strong> L. (<strong>Fabaceae</strong>) <strong>flowers</strong> <strong>at</strong> <strong>Maroua</strong><br />

Authors:<br />

Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>-Nestor<br />

Tchuenguem Fohouo 1 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Dounia 1-2* .<br />

Instituti<strong>on</strong>:<br />

1. Labor<strong>at</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology,<br />

Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Science,<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Ngaoundéré,<br />

Ngaoundéré, Camero<strong>on</strong>.<br />

2. Labor<strong>at</strong>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology,<br />

Higher Teacher Training<br />

College, University <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Yaoundé I, Yaoundé,<br />

Camero<strong>on</strong>.<br />

ABSTRACT:<br />

To assess the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> pod <str<strong>on</strong>g>and</str<strong>on</strong>g> seed yields <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>Glycine</strong> <strong>max</strong>, its foraging <str<strong>on</strong>g>and</str<strong>on</strong>g> pollin<strong>at</strong>ing activities were studied in <strong>Maroua</strong>, during the<br />

two seas<strong>on</strong> seas<strong>on</strong>s (August-September 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011). Observ<strong>at</strong>i<strong>on</strong>s were made <strong>on</strong><br />

51 to 17866 <strong>flowers</strong> per tre<strong>at</strong>ment. Tre<strong>at</strong>ment 1 represented by free <strong>flowers</strong>;<br />

tre<strong>at</strong>ment 2 bagged <strong>flowers</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> tre<strong>at</strong>ment 3 <strong>flowers</strong> visited <strong>on</strong>ly by A. m.<br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g>. In additi<strong>on</strong>, all flower visitors were recorded. The abundance <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

bee, dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> visits, impact <str<strong>on</strong>g>of</str<strong>on</strong>g> activity <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> fruiting<br />

percentage, the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> this bee <strong>on</strong> form<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pods, number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds in<br />

each pods <str<strong>on</strong>g>and</str<strong>on</strong>g> average <str<strong>on</strong>g>of</str<strong>on</strong>g> normal seeds (well developed) were recorded.<br />

Individuals from 28 species <str<strong>on</strong>g>of</str<strong>on</strong>g> insects were recorded <strong>on</strong> the <strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong>, after<br />

two years <str<strong>on</strong>g>of</str<strong>on</strong>g> observ<strong>at</strong>i<strong>on</strong>s. <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> with 23.18% <str<strong>on</strong>g>of</str<strong>on</strong>g> 954 visits was the<br />

most frequent, followed by Polyrachis sp. 1 (14.77%), Macr<strong>on</strong>omia vulpina (14.22%),<br />

Lipotriches collaris (11.07%). This h<strong>on</strong>ey bee intensely <str<strong>on</strong>g>and</str<strong>on</strong>g> exclusively foraged for<br />

nectar. The mean foraging speed was 12.56 ± 5.79 <strong>flowers</strong> per minute. Flowers<br />

visited by insects had higher fruiting r<strong>at</strong>e compared with the others while<br />

those bagged had the lowest. <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> foraging resulted to a<br />

significant increment in fruiting r<strong>at</strong>e by 14.14 <str<strong>on</strong>g>and</str<strong>on</strong>g> 11.98%, as well as the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod by 36.95 <str<strong>on</strong>g>and</str<strong>on</strong>g> 35.65%, <str<strong>on</strong>g>and</str<strong>on</strong>g> the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal<br />

seeds by 32.61 <str<strong>on</strong>g>and</str<strong>on</strong>g> 29.26% respectively in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011. The install<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A.<br />

m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> col<strong>on</strong>ies in G. <strong>max</strong> plant<strong>at</strong>i<strong>on</strong>s is recommended to improve pod <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

seeds producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this species.<br />

Corresp<strong>on</strong>ding author:<br />

Dounia.<br />

Keywords:<br />

<str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g>, <strong>Glycine</strong> <strong>max</strong>, flower, visit, nectar, <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g>.<br />

Email Id:<br />

Web Address:<br />

http://jresearchbiology.com/<br />

documents/RA0415.pdf.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology<br />

An Intern<strong>at</strong>i<strong>on</strong>al<br />

Scientific Research Journal<br />

Article Cit<strong>at</strong>i<strong>on</strong>:<br />

Fern<str<strong>on</strong>g>and</str<strong>on</strong>g>-Nestor Tchuenguem Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia.<br />

<str<strong>on</strong>g>Foraging</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>behavior</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <str<strong>on</strong>g>L<strong>at</strong>reille</str<strong>on</strong>g> (<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g>:<br />

<str<strong>on</strong>g>Apidae</str<strong>on</strong>g>) <strong>on</strong> <strong>Glycine</strong> <strong>max</strong> L. (<strong>Fabaceae</strong>) <strong>flowers</strong> <strong>at</strong> <strong>Maroua</strong>.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219<br />

D<strong>at</strong>es:<br />

Received: 15 Jan 2014 Accepted: 04 Feb 2014 Published: 11 April 2014<br />

This article is governed by the Cre<strong>at</strong>ive Comm<strong>on</strong>s Attributi<strong>on</strong> License (http://cre<strong>at</strong>ivecomm<strong>on</strong>s.org/<br />

licenses/by/2.0), which gives permissi<strong>on</strong> for unrestricted use, n<strong>on</strong>-commercial, distributi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

reproducti<strong>on</strong> in all medium, provided the original work is properly cited.<br />

1209-1219 | JRB | 2014 | Vol 4 | No 1<br />

www.jresearchbiology.com


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

INTRODUCTION<br />

<strong>Glycine</strong> <strong>max</strong> is an annual plant origin<strong>at</strong>ed from<br />

Northern <str<strong>on</strong>g>and</str<strong>on</strong>g> Central regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> China (Hymowitz, 1970).<br />

The plant is an annual, herbaceous, erect, <str<strong>on</strong>g>and</str<strong>on</strong>g> can reach a<br />

height <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5m; there are cultivars <str<strong>on</strong>g>of</str<strong>on</strong>g> soybean<br />

indetermin<strong>at</strong>e, determin<strong>at</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> semi-determin<strong>at</strong>e growth<br />

MATERIALS AND METHODS<br />

Study site, experimental plot <str<strong>on</strong>g>and</str<strong>on</strong>g> biological m<strong>at</strong>erial<br />

The experimental is carried, from June to October,<br />

in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011 <strong>at</strong> Mayel -Ibbé (L<strong>at</strong>itude 10° 62' N,<br />

L<strong>on</strong>gitude 14°33' E <str<strong>on</strong>g>and</str<strong>on</strong>g> altitude 400 m), <strong>Maroua</strong>, Far<br />

North Regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Camero<strong>on</strong>. This Regi<strong>on</strong> bel<strong>on</strong>gs to the<br />

(Gallais <str<strong>on</strong>g>and</str<strong>on</strong>g> Bannerot, 1992). The first leaves are Savanna z<strong>on</strong>e, with unimodal rainfall (Letouzey, 1985).<br />

simple, opposite <str<strong>on</strong>g>and</str<strong>on</strong>g> swallowed, while the following are<br />

trifoli<strong>at</strong>e <str<strong>on</strong>g>and</str<strong>on</strong>g> altern<strong>at</strong>e; the pod is straight or slightly<br />

curved, with a length <str<strong>on</strong>g>of</str<strong>on</strong>g> two to seven cm; the seed is<br />

It has a Sahel-Sudanian clim<strong>at</strong>e type, characterized by<br />

two seas<strong>on</strong>s: a more extended dry seas<strong>on</strong> (November to<br />

May) <str<strong>on</strong>g>and</str<strong>on</strong>g> a brief rainy seas<strong>on</strong> (June to October) (Kuete<br />

generally oval, but may vary depending <strong>on</strong> the cultivar, et al., 1993). The <strong>max</strong>imum rainfall <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

almost spherical, el<strong>on</strong>g<strong>at</strong>ed <str<strong>on</strong>g>and</str<strong>on</strong>g> fl<strong>at</strong>tened (Hymowitz <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Harlan, 1983). Flowers are grouped by two to eight <strong>on</strong> a<br />

short racemes inserted <strong>on</strong> the stem axile sheets <str<strong>on</strong>g>and</str<strong>on</strong>g> are<br />

temper<strong>at</strong>ure are 1100mm <str<strong>on</strong>g>and</str<strong>on</strong>g> 38°C respectively<br />

(Kuete et al., 1993). The experimental plot was 28m x<br />

5m. The biological m<strong>at</strong>erial was represented by <str<strong>on</strong>g>Apis</str<strong>on</strong>g><br />

purple or white (Boyeldieu, 1991). Each flower has a <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <str<strong>on</strong>g>L<strong>at</strong>reille</str<strong>on</strong>g> (<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g>: <str<strong>on</strong>g>Apidae</str<strong>on</strong>g>),<br />

tubular calyx <str<strong>on</strong>g>of</str<strong>on</strong>g> five sepals, a corolla <str<strong>on</strong>g>of</str<strong>on</strong>g> five petals, a<br />

single carpel <str<strong>on</strong>g>and</str<strong>on</strong>g> ten stamens, nine <str<strong>on</strong>g>of</str<strong>on</strong>g> which being<br />

welded <str<strong>on</strong>g>and</str<strong>on</strong>g> the tenth is free (Hymowitz <str<strong>on</strong>g>and</str<strong>on</strong>g> Harlan,<br />

1983). Each <strong>flowers</strong> Produce nectar <str<strong>on</strong>g>and</str<strong>on</strong>g> pollen which<br />

<strong>at</strong>tract insects (Milf<strong>on</strong>t et al., 2013). The reproducti<strong>on</strong><br />

system is autogam/allogam (Ibarra-Perez et al., 1999).<br />

Soybean is grown primarily for its seeds, which have<br />

many uses in the food <str<strong>on</strong>g>and</str<strong>on</strong>g> industrial sectors (USDA,<br />

2002). It is a major edible oil <str<strong>on</strong>g>and</str<strong>on</strong>g> vegetable sources <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

protein (38-40%) for the feed <str<strong>on</strong>g>of</str<strong>on</strong>g> men <str<strong>on</strong>g>and</str<strong>on</strong>g> other animals<br />

(Boyeldieu, 1991; Tien et al., 2002; USDA, 2002).<br />

Currently the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> in Camero<strong>on</strong> is low<br />

whereas the dem<str<strong>on</strong>g>and</str<strong>on</strong>g> for seeds is high (MINADER,<br />

2010). Therefore, it is important to investig<strong>at</strong>e <strong>on</strong> the<br />

possibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing the producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this plant<br />

in the country. This can be d<strong>on</strong>e if flowering insects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

G. <strong>max</strong> in each regi<strong>on</strong> are well known <str<strong>on</strong>g>and</str<strong>on</strong>g> exploited<br />

(Milf<strong>on</strong>t et al., 2013). Unfortun<strong>at</strong>ely no research has<br />

been reported <strong>on</strong> the rel<strong>at</strong>i<strong>on</strong>ships between G. <strong>max</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

its anthophilous insects in Camero<strong>on</strong>. In <strong>Maroua</strong> A. m.<br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visit <strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G. Max (unpublished d<strong>at</strong>a), <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

this study is carried out to assess the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> foraging<br />

activities <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> yields <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong>.<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> others insects present in the envir<strong>on</strong>ment. Seed <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

G. <strong>max</strong> was provided by the Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural<br />

Research for Development (IARD).<br />

Sowing <str<strong>on</strong>g>and</str<strong>on</strong>g> weeding<br />

On th e June 12, 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> June 15, 2011, the<br />

experimental plot was cleaned <str<strong>on</strong>g>and</str<strong>on</strong>g> divided into 24<br />

subplots, each measuring 1m × 1m. Sowing <str<strong>on</strong>g>and</str<strong>on</strong>g> weeding<br />

was d<strong>on</strong>e as described by Douka <str<strong>on</strong>g>and</str<strong>on</strong>g> Tchuenguem<br />

(2013).<br />

Determin<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reproducti<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Glycine</strong><br />

<strong>max</strong><br />

On July 22, 2010, eight subplots carrying 106<br />

plants with 34395 <strong>flowers</strong> <strong>at</strong> the bud stage were labeled.<br />

Four subplots carrying 80 plants with 17187 <strong>flowers</strong><br />

were left to be open pollin<strong>at</strong>ed (tre<strong>at</strong>ment 1) (figure 1)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> four subplots carrying 17208 <strong>flowers</strong> were<br />

protected with gauze mesh prevent to insect or other<br />

pollin<strong>at</strong>ing animals visits (tre<strong>at</strong>ment 2) (figure 2).<br />

On July 28, 2011, the experiment was repe<strong>at</strong>ed, for<br />

tre<strong>at</strong>ment 1 four subplots carrying 80 plants with 17866<br />

<strong>flowers</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> four tre<strong>at</strong>ment 2 four subplots carrying 80<br />

plants with 15875 <strong>flowers</strong>.<br />

Twenty days after shading <str<strong>on</strong>g>of</str<strong>on</strong>g> the last flower,<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> pods was assessed in each tre<strong>at</strong>ment.<br />

1210 Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

Figure 1. <strong>Glycine</strong> <strong>max</strong> plot showing unprotected<br />

plants in bloom.<br />

The podding index (P i ) was then calcul<strong>at</strong>ed as described<br />

by Tchuenguem et al., (2004): P i = F 2 /F 1 , where F 2 is<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> pods formed <str<strong>on</strong>g>and</str<strong>on</strong>g> F 1 the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

viable <strong>flowers</strong> initially set.<br />

The allogamy r<strong>at</strong>e (Alr) from which derives the<br />

autogamy r<strong>at</strong>e (Atr) was expressed as the difference in<br />

podding indexes between tre<strong>at</strong>ment 1 (unprotected<br />

<strong>flowers</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> tre<strong>at</strong>ment 2 ( bagged <strong>flowers</strong>) as follows<br />

(Demarly, 1977):<br />

Alr = [(P i1 - P i2 ) / P i1 ] × 100, Where P i1 <str<strong>on</strong>g>and</str<strong>on</strong>g> P i2<br />

are respectively the podding average indexes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tre<strong>at</strong>ments I <str<strong>on</strong>g>and</str<strong>on</strong>g> II. Atr = 100 – Alr.<br />

Study <str<strong>on</strong>g>of</str<strong>on</strong>g> the foraging activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g><br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> <strong>Glycine</strong> <strong>max</strong> <strong>flowers</strong><br />

The frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> in the <strong>flowers</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> was determined based observ<strong>at</strong>i<strong>on</strong>s <strong>on</strong><br />

<strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tre<strong>at</strong>ments 1 in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011. Experience<br />

were made <strong>on</strong> 17187 individual opened pollin<strong>at</strong>ed<br />

<strong>flowers</strong> (tre<strong>at</strong>ment 1) each day, from July 26 to August<br />

20, 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> from August 2, to August 24, 2011 <strong>at</strong><br />

7 – 8 h, 9 – 10 h, 11 – 12 h, 13 – 14 h, 15 – 16 h <str<strong>on</strong>g>and</str<strong>on</strong>g> 17<br />

– 18 h. Capture <str<strong>on</strong>g>and</str<strong>on</strong>g> determin<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insects th<strong>at</strong> visited<br />

G. <strong>max</strong> <strong>flowers</strong> was realize as described by Borror <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

White (1991).<br />

The determin<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the rel<strong>at</strong>ive frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> all<br />

insects visit the G. <strong>max</strong> <strong>flowers</strong> was calcul<strong>at</strong>ed<br />

Figure 2. <strong>Glycine</strong> <strong>max</strong> plot showing isol<strong>at</strong>ed<br />

plants in bloom.<br />

(Tchuenguem, 2005).<br />

During the same time th<strong>at</strong> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g><br />

encountered <strong>on</strong> <strong>flowers</strong> were registered, the types <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

floral products collected by this bee were noted. This<br />

parameter was measured to determine if A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g><br />

is strictly a pollenivore, nectarivore or pollenivore <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

nectarivore. This could give an idea <strong>on</strong> its implic<strong>at</strong>i<strong>on</strong> as<br />

a cross pollin<strong>at</strong>or <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong>.<br />

In the morning <str<strong>on</strong>g>of</str<strong>on</strong>g> each day, the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

opened <strong>flowers</strong> was counted. The determin<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> visits, the dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong><br />

the flower <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> was recorded according to<br />

Tchuenguem (2005). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> pollin<strong>at</strong>ed visits,<br />

the abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> foragers, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>flowers</strong><br />

visited by A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> per minute was recording<br />

every day <str<strong>on</strong>g>of</str<strong>on</strong>g> observ<strong>at</strong>i<strong>on</strong>. The method <str<strong>on</strong>g>of</str<strong>on</strong>g> observ<strong>at</strong>i<strong>on</strong> was<br />

followed as given by Tchuenguem et al., (2004).<br />

The foraging speed was calcul<strong>at</strong>ed according to<br />

Jacob – Renacle (1989) by this formula: Vb = (Fi/di) x<br />

60 where di is the time (s) given by a stopw<strong>at</strong>ch <str<strong>on</strong>g>and</str<strong>on</strong>g> Fi is<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>flowers</strong> visited during di.<br />

The<br />

interacti<strong>on</strong> between A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

competitors <str<strong>on</strong>g>and</str<strong>on</strong>g> the <strong>at</strong>tractiveness exerted by the flower<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> other plant species around the experimental plot <strong>on</strong><br />

A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> were recorded (Tchuenguem et al.,<br />

2004). The clim<strong>at</strong>ic factor (temper<strong>at</strong>ure <str<strong>on</strong>g>and</str<strong>on</strong>g> humidity)<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219 1211


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

was registered as described by Douka <str<strong>on</strong>g>and</str<strong>on</strong>g> Tchuenguem<br />

(2013).<br />

Evalu<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> other insects <strong>on</strong> <strong>Glycine</strong> <strong>max</strong> yields<br />

This evalu<strong>at</strong>i<strong>on</strong> was based <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

visiting <strong>flowers</strong> <strong>on</strong> <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g>, the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g><br />

<strong>on</strong> fructific<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong>, <str<strong>on</strong>g>and</str<strong>on</strong>g> the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

yields [fruiting r<strong>at</strong>e, mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal (well developed) seeds] <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seeds (well developed) was then calcul<strong>at</strong>ed for each<br />

tre<strong>at</strong>ment 3.<br />

D<strong>at</strong>a analysis<br />

D<strong>at</strong>a were analyzed using descriptive st<strong>at</strong>istics,<br />

student’s t-test for the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> means <str<strong>on</strong>g>of</str<strong>on</strong>g> the two<br />

samples, correl<strong>at</strong>i<strong>on</strong> coefficient (r) for the study <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

associ<strong>at</strong>i<strong>on</strong> between two variables, chi-square (χ2) for<br />

the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two percentages using SPSS st<strong>at</strong>istical<br />

s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware <str<strong>on</strong>g>and</str<strong>on</strong>g> Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Excel.<br />

tre<strong>at</strong>ments 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2. The fruiting r<strong>at</strong>e due to the activity<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> insects (Fr i ) was calcul<strong>at</strong>ed as follows by Tchuenguem<br />

et al., (2004): Fr i = {[(Fr 1 – Fr 2 ) / Fr 1 ] × 100}<br />

Where Fr 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fr 2 are the fruiting r<strong>at</strong>e in tre<strong>at</strong>ments<br />

1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.<br />

The fruiting r<strong>at</strong>e (Fr) is: Fr = [(F 2 /F 1 ) × 100]<br />

Where F 2 is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> pods formed <str<strong>on</strong>g>and</str<strong>on</strong>g> F 1 the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>flowers</strong> initially set.<br />

At m<strong>at</strong>urity, pods were harvested from each<br />

tre<strong>at</strong>ment. The mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal seeds were then calcul<strong>at</strong>ed for<br />

each tre<strong>at</strong>ment.<br />

RESULTS<br />

Reproducti<strong>on</strong> system <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Glycine</strong> <strong>max</strong><br />

According to table 2 : the allogamy r<strong>at</strong>e was<br />

6.59% <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.38% respectively in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

autogamy r<strong>at</strong>e was 93.41% <str<strong>on</strong>g>and</str<strong>on</strong>g> 94.62% respectively in<br />

2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011. <strong>Glycine</strong> <strong>max</strong> (used in our experiments)<br />

has a mixed reproducti<strong>on</strong> system autogamous -<br />

allogamous, with the predominance <str<strong>on</strong>g>of</str<strong>on</strong>g> autogamy.<br />

Frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> in the floral entom<str<strong>on</strong>g>of</str<strong>on</strong>g>auna<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Glycine</strong> <strong>max</strong><br />

Am<strong>on</strong>g the 532 <str<strong>on</strong>g>and</str<strong>on</strong>g> 422 visits <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 <str<strong>on</strong>g>and</str<strong>on</strong>g> 24<br />

Evalu<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> insect species counted <strong>on</strong> G. <strong>max</strong> flower in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> <strong>Glycine</strong> <strong>max</strong><br />

In 2010, al<strong>on</strong>g with the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

tre<strong>at</strong>ment 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2, 11 plants bel<strong>on</strong>ging to four subplots<br />

2011, respectively, A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> was the most<br />

r epr esen t ed insect with 132 visits (24.81 %) <str<strong>on</strong>g>and</str<strong>on</strong>g> 91<br />

visits (21.56 %), in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011, respectively. The<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> carrying 47 <strong>flowers</strong> were protected using gauze mesh difference between these two percentages is not<br />

(tre<strong>at</strong>ment 3). In 2011 the same experience was repe<strong>at</strong>ed<br />

but <strong>on</strong> 16 plants carrying 51 <strong>flowers</strong>. Between 7 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

9am, <str<strong>on</strong>g>of</str<strong>on</strong>g> each observ<strong>at</strong>i<strong>on</strong> d<strong>at</strong>e, the evalu<strong>at</strong>i<strong>on</strong> or the<br />

efficiency <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> G. <strong>max</strong><br />

was realized as according <str<strong>on</strong>g>of</str<strong>on</strong>g> Douka <str<strong>on</strong>g>and</str<strong>on</strong>g> Tchuenguem<br />

(2013). The impact (Fr x ) <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> to fruiting<br />

r<strong>at</strong>e was calcul<strong>at</strong>ed as follows by Tchuenguem et al.,<br />

(2004) the formula:<br />

Fr x = {[(Fr 3 – Fr 2 ) / Fr 3 ] x 100}<br />

Where Fr 3 <str<strong>on</strong>g>and</str<strong>on</strong>g> Fr 2 are the fruiting r<strong>at</strong>es in tre<strong>at</strong>ment<br />

significant (χ2 = 1.39‚ df = 1‚ p > 0.05) (Table 1). In<br />

2010, the highest mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g><br />

simultaneously in activity was <strong>on</strong>e per flower (n = 50; s<br />

= 0) <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.88 per 1000 <strong>flowers</strong> (n = 60; s = 3.53; <strong>max</strong>i<br />

= 19). In 2011, the corresp<strong>on</strong>ding figures were <strong>on</strong>e per<br />

flower (n = 50; s = 0) <str<strong>on</strong>g>and</str<strong>on</strong>g> 1.97 per 1000 <strong>flowers</strong> (n<br />

= 60; s = 2.59; <strong>max</strong>i = 12). The difference between the<br />

mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> foragers per 1000 <strong>flowers</strong> in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

2011 was highly significant (t = 9.19; df = 118, p <<br />

0.001).<br />

3 (protected <strong>flowers</strong> visited exclusively by Activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> <strong>Glycine</strong> <strong>max</strong><br />

A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g>) <str<strong>on</strong>g>and</str<strong>on</strong>g> tre<strong>at</strong>ment 2 (protected <strong>flowers</strong>).<br />

The number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod, the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal<br />

Floral reward harvested<br />

During each <str<strong>on</strong>g>of</str<strong>on</strong>g> the two flowering periods, A. m.<br />

1212 Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

Figure 3. <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> collecting nectar in<br />

a flower <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Glycine</strong> <strong>max</strong><br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> was found to collect nectar intensively <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

exclusively (Figure 3).<br />

Rel<strong>at</strong>i<strong>on</strong>ship between visits <str<strong>on</strong>g>and</str<strong>on</strong>g> flowering stages<br />

Visits were most numerous when the number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

open <strong>flowers</strong> was highest (Figure 4) Furthermore a<br />

positive <str<strong>on</strong>g>and</str<strong>on</strong>g> significant correl<strong>at</strong>i<strong>on</strong> was found between<br />

the number <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> opened <strong>flowers</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the number<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visits in 2010, as well as 2011<br />

(r 2010 = 0.90; df = 8; p < 0.05; r 2011 = 0.85; df = 8; p <<br />

0.05). <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> foraged <strong>on</strong> G. <strong>max</strong><br />

<strong>flowers</strong> throughout the blooming period, with a peak <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

activity situ<strong>at</strong>ed between 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 11am (Figure 5).<br />

Dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> visits per flower<br />

In 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011, the mean dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m.<br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visit is 2.50 sec (n = 132; s = 1.34; <strong>max</strong>i = 6<br />

sec) <str<strong>on</strong>g>and</str<strong>on</strong>g> 2.61 sec (n = 91; s = 1.40; <strong>max</strong>i = 6 sec)<br />

respectively. The difference between the dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

visit in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011 is higher significant (t = 22.25;<br />

df = 221, p < 0.001). For the two cumul<strong>at</strong>ed years‚ the<br />

mean dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a flower visit were 2.55 sec.<br />

<str<strong>on</strong>g>Foraging</str<strong>on</strong>g> speed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> <strong>Glycine</strong><br />

<strong>max</strong> <strong>flowers</strong><br />

On the pot <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong>, A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visited<br />

between 4 <str<strong>on</strong>g>and</str<strong>on</strong>g> 24 <strong>flowers</strong>/min in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> between five<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> 25 <strong>flowers</strong>/min in 2011. The mean foraging speed<br />

was 11.65 <strong>flowers</strong>/min (n = 50; s = 5.77) in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

13.48 <strong>flowers</strong>/min (n = 50; s = 5.82) in 2011. The<br />

difference between these means is highly significant (t =<br />

- 7.95; df = 98, p < 0.001). For the two cumul<strong>at</strong>ed years‚<br />

the mean foraging speed was 12.56 <strong>flowers</strong> /min.<br />

Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> clim<strong>at</strong>e <strong>on</strong> foraging activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g><br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> <strong>Glycine</strong> <strong>max</strong> <strong>flowers</strong><br />

Clim<strong>at</strong>ic c<strong>on</strong>diti<strong>on</strong> seem not to influence the<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g>. T he correl<strong>at</strong>i<strong>on</strong> was<br />

neg<strong>at</strong>ive <str<strong>on</strong>g>and</str<strong>on</strong>g> not significant (r 2010 = - 0.34; df = 11; p<br />

> 0.05 <str<strong>on</strong>g>and</str<strong>on</strong>g> r 2011 = 0.28; df = 11; p > 0.05) between the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visits <strong>on</strong> G. <strong>max</strong> <strong>flowers</strong><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> the temper<strong>at</strong>ure. It was positive <str<strong>on</strong>g>and</str<strong>on</strong>g> not significant<br />

(r 2010 = 0.48; df = 11; p > 0.05 <str<strong>on</strong>g>and</str<strong>on</strong>g> r 2011 = 0.07; df = 11;<br />

p > 0.05) between the number <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visits<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> rel<strong>at</strong>ive humidity (Figure 6).<br />

Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> anthophilous insects <strong>on</strong> pod form<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

seed yields <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Glycine</strong> <strong>max</strong><br />

During nectar harvest <strong>on</strong> G. <strong>max</strong>, foraging<br />

insects always shook <strong>flowers</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> are regularly in c<strong>on</strong>tact<br />

Figure 4: Vari<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>flowers</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> visits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> the<br />

<strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Glycine</strong> <strong>max</strong> in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011.<br />

Figure 5. Vari<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>flowers</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> visits <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> the <strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Glycine</strong><br />

<strong>max</strong> according to daily time in 2010, 2011.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219 1213


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

with the anthers <str<strong>on</strong>g>and</str<strong>on</strong>g> stigma (Figure 3), increasing cross<br />

<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> fruiting r<strong>at</strong>e, number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seeds per pod <str<strong>on</strong>g>and</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal seeds in different<br />

tre<strong>at</strong>ments (Table 2).<br />

a - The difference observed was highly<br />

significant between fruiting r<strong>at</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> free opened <strong>flowers</strong><br />

(tre<strong>at</strong>ment 1) <str<strong>on</strong>g>and</str<strong>on</strong>g> th<strong>at</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bagged <strong>flowers</strong> (tre<strong>at</strong>ment 2),<br />

the first year (χ2 = 248.73, df = 1, p < 0.001) <str<strong>on</strong>g>and</str<strong>on</strong>g> the<br />

sec<strong>on</strong>d year (χ2 = 299.84, df = 1, p < 0.001). T he<br />

fruiting r<strong>at</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> t r e a t m e n t 1 ( unprotected <strong>flowers</strong>)<br />

was higher than tre<strong>at</strong>ment 2 (protected <strong>flowers</strong>) in 2010<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> in 2011. The fruiting r<strong>at</strong>e due to the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> insects<br />

was 5.92 <str<strong>on</strong>g>and</str<strong>on</strong>g> 5.81% in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011 respectively.<br />

For the two cumul<strong>at</strong>ed years, the fructific<strong>at</strong>i<strong>on</strong> r<strong>at</strong>e due to<br />

the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> insects was 5.86%.<br />

b - For the mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod,<br />

there was a highly significant difference between<br />

tre<strong>at</strong>ments 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2 (t 2010 = 4315.78; df = 30462; p <<br />

0.001; t 2011 = 5958.33; df = 30670; p < 0.001).<br />

C<strong>on</strong>sequently, a high mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod in<br />

tre<strong>at</strong>ment 1 (opened <strong>flowers</strong>) were noticed compared to<br />

tre<strong>at</strong>ments 2 (bagged <strong>flowers</strong>). The number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per<br />

pod <strong>at</strong>tributed to the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> insects was 26.11% in<br />

2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 36.47% in 2011, giving an overall mean <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

31.29%.<br />

c - There was a highly significant difference<br />

between the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal seed <str<strong>on</strong>g>of</str<strong>on</strong>g> tre<strong>at</strong>ment 1<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> th<strong>at</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tre<strong>at</strong>ment 2 in the first year (χ2 = 4329.98; df<br />

= 1; p < 0.0001) as well as the sec<strong>on</strong>d year (χ2 =<br />

6094.38; df = 1; p


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

Table 1. Diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> floral insects <strong>on</strong> <strong>Glycine</strong> <strong>max</strong> in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011, number <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> visits <str<strong>on</strong>g>of</str<strong>on</strong>g> different insects<br />

Insects 2010 2011<br />

Order Family Genus, species, sub-species n 1 p 1 % n 2 p 2 %<br />

<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g> <str<strong>on</strong>g>Apidae</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> n 132 24.81 91 21.56<br />

Amegilla sp. 1 n 4 0.75 0 0<br />

Xylocopa sp. 1 n 3 0.56 1 0.24<br />

Halictidae Macr<strong>on</strong>omia vulpina n 87 16.35 51 12.09<br />

Lipotriches collaris n 56 10.53 49 11.61<br />

Megachilidae Chalicodoma sp.1 n 13 2.44 2 0.47<br />

Megachile sp. 1 n 3 0.56 1 0.24<br />

Megachile sp. 2 n 0 0 4 0.95<br />

Formicidae Polyrachis sp. 1 sh 79 14.85 62 14,69<br />

Vespidae Synagris cornuta n 11 2.07 4 0.95<br />

(1 sp.) n 1 0.19 0 0<br />

Sphecidae Philanthus triangulum pr 6 1.13 2 0.47<br />

(1 sp.) pr 1 0.19 0 0<br />

Lepidoptera Pieridae C<strong>at</strong>opsilia florella n 28 5.26 29 6.87<br />

(sp. 1) n 17 3.20 8 1.90<br />

(sp. 2) n 12 2.26 3 0.71<br />

Nymphalidae (1 sp.) n 19 3.57 23 5.45<br />

Acraeidae Acraea acer<strong>at</strong>a n 13 2.44 17 4.03<br />

Diptera Muscidae Musca domestica n 26 4.89 49 11.61<br />

Drosophilidae Drosophila sp. 1 n 12 2.26 8 1.90<br />

Syrphidae (1 sp.) n 2 0.38 3 0.71<br />

Calliphoridae (1.sp.) n 3 0.56 0 0<br />

Hemiptera Coreidae Anoplocnemis curvipes n 1 0.19 1 0.24<br />

Pyrrhocoridae Dysdercus voelkeri n 1 0.19 2 0.47<br />

Orthroptera (sp.1) lv 0 0 5 1.18<br />

(sp.2) lv 0 0 2 0.47<br />

Nevroptera (sp.1) pr 2 0.38 1 0.24<br />

(sp.2) pr 0 0 4 0.95<br />

Total 28 species 532 100 422 100<br />

Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visits for two years: χ2 = 1.39 ([df = 1; P > 0.05]).<br />

n 1 : number <str<strong>on</strong>g>of</str<strong>on</strong>g> visits <strong>on</strong> 17187 <strong>flowers</strong> in 10 days.<br />

n 2 : number <str<strong>on</strong>g>of</str<strong>on</strong>g> visits <strong>on</strong> 17866 <strong>flowers</strong> in 10 days.<br />

p 1 <str<strong>on</strong>g>and</str<strong>on</strong>g> p 2 : percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> visits.<br />

p 1 = (n 1 / 532) x 100.<br />

p 2 = (n 2 / 422) x 100.<br />

n: Visitor collected nectar.<br />

lv: Visitor e<strong>at</strong>ing leaves.<br />

sh: visitor shelter<br />

pr: Pred<strong>at</strong>i<strong>on</strong>.<br />

sp.: Undetermined species.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219 1215


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

35.65% respectively in 2010 in 2011. The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the mean number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod <strong>at</strong>tributed to the<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> was 36.30%.<br />

c - There was highly significant difference<br />

between the percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal seed <str<strong>on</strong>g>of</str<strong>on</strong>g> tre<strong>at</strong>ment 3<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> th<strong>at</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tre<strong>at</strong>ment 2 in first year (χ2 = 67.76; df = 1;<br />

p < 0.001) as well as the sec<strong>on</strong>d year (χ2 = 58.58; df<br />

= 1; p < 0.001). The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal seeds in<br />

tre<strong>at</strong>ment 3 was higher than in tre<strong>at</strong>ment 2. The<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the normal seeds due to A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g><br />

was 32.61% in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 29.26% in 2011. T he<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds per pod <strong>at</strong>tributed to<br />

the activity <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> was 30.93%.<br />

DISCUSSION<br />

H<strong>on</strong>ey bee was the main floral visitor <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

G. <strong>max</strong> during the observ<strong>at</strong>i<strong>on</strong> period. This bee has<br />

been reported as the main floral visitor <str<strong>on</strong>g>of</str<strong>on</strong>g> this <strong>Fabaceae</strong><br />

in USA (Rortais et al., 2005) <str<strong>on</strong>g>and</str<strong>on</strong>g> Brazil (Milf<strong>on</strong>t et al.,<br />

2013). <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> was also shown to be the<br />

most abundant floral visitors <str<strong>on</strong>g>of</str<strong>on</strong>g> other <strong>Fabaceae</strong> members<br />

such as Phaseolus coccineus in Yaoundé, Camero<strong>on</strong><br />

(P<str<strong>on</strong>g>and</str<strong>on</strong>g>o et al., 2011a), <str<strong>on</strong>g>and</str<strong>on</strong>g> Phaseolus vulgaris in<br />

Ngaoundéré, Camero<strong>on</strong> (Kingha et al., 2012) <str<strong>on</strong>g>and</str<strong>on</strong>g> in<br />

<strong>Maroua</strong> by Douka <str<strong>on</strong>g>and</str<strong>on</strong>g> Tchuenguem (2013). The<br />

significant difference between the percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m.<br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visits for the two studied years could be<br />

<strong>at</strong>tributed to the vari<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>ies <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

this h<strong>on</strong>ey bee around the experimental site. The peak <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> <strong>on</strong> G. <strong>max</strong> <strong>flowers</strong> was <strong>at</strong><br />

between 10 <str<strong>on</strong>g>and</str<strong>on</strong>g> 11am, which correl<strong>at</strong>ed to the period<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> highest availability <str<strong>on</strong>g>of</str<strong>on</strong>g> nectar <strong>on</strong> G. <strong>max</strong> <strong>flowers</strong>. The<br />

positive <str<strong>on</strong>g>and</str<strong>on</strong>g> highly significant correl<strong>at</strong>i<strong>on</strong> between the<br />

number <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> <strong>flowers</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m.<br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visits indic<strong>at</strong>es the <strong>at</strong>tractiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong><br />

nectar with respect to this bee. The significant<br />

difference observed between the dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> visits in<br />

2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011 could be <strong>at</strong>tributed to the availability <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

nectar, the floral morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> this crop or the vari<strong>at</strong>i<strong>on</strong><br />

in the diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> flowering insects from <strong>on</strong>e year to<br />

another. At <strong>Maroua</strong> in 2010 <str<strong>on</strong>g>and</str<strong>on</strong>g> 2011 (in the rainy<br />

seas<strong>on</strong>), A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> intensely <str<strong>on</strong>g>and</str<strong>on</strong>g> regularly<br />

harvested nectar <strong>on</strong> the <strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> during<br />

flowering periods. This could be <strong>at</strong>tributed to the needs<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>ies during the flowering period. During our<br />

investig<strong>at</strong>i<strong>on</strong>s, the interrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> visits by other insects<br />

or the same h<strong>on</strong>ey bee reduced the dur<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m.<br />

<str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> visits. Similar results were found in<br />

Cameroun by Tchuenguem et al., (2009b) <str<strong>on</strong>g>and</str<strong>on</strong>g> Douka<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Tchuenguem (2013) <strong>on</strong> <strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Vigna<br />

unguicul<strong>at</strong>a (L.) (<strong>Fabaceae</strong>) <str<strong>on</strong>g>and</str<strong>on</strong>g> Phaseolus vulgaris<br />

(<strong>Fabaceae</strong>) respectively. I t indic<strong>at</strong>es th<strong>at</strong><br />

A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> can increased the possibility <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> <strong>flowers</strong>. During the collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Table 2. <strong>Glycine</strong> <strong>max</strong> yields under <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> tre<strong>at</strong>ments.<br />

Tre<strong>at</strong>ment Year Flowers Pods Fruiting r<strong>at</strong>e<br />

Seeds / Pod<br />

Mean<br />

sd<br />

Total<br />

seeds<br />

Normal<br />

seed<br />

% normal<br />

seed<br />

Unlimited visits 2010 17187 15688 91.28% 3.14 1.42 48853 42609 87.22<br />

Protected plot 2010 17208 14776 85.87% 2.32 1.01 34162 22415 65.61<br />

Protected plot 2011 17866 16697 93.46% 3.92 2.06 66020 57137 86.54<br />

Bagged <strong>flowers</strong> 2011 15875 13974 88.03% 2.49 1.52 63176 43250 68.46<br />

A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> 2010 47 47 100.00% 3.68 1.84 152 148 97.37<br />

A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> 2011 51 51 100.00% 3.87 1.88 217 201 92.63<br />

1216 Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

nectar, A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> foragers regularly come into<br />

c<strong>on</strong>tact with the stigma <str<strong>on</strong>g>and</str<strong>on</strong>g> carry the pollen to the anthers<br />

for stigma. The weight <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> shoot the<br />

fl owers <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> during nectar collecti<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> this<br />

movement played a positive role in liber<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen<br />

by anthers for the optimal occup<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stigma.<br />

This phenomen<strong>on</strong> was also reported by Ahrent <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Caviness (1994) <str<strong>on</strong>g>and</str<strong>on</strong>g> Rortais et al., (2005) <strong>on</strong> G. <strong>max</strong>.<br />

Thus in additi<strong>on</strong> to their direct <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> role,<br />

A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> foragers also indirectly effected self<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> cross-<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong> <strong>flowers</strong>. The<br />

positive <str<strong>on</strong>g>and</str<strong>on</strong>g> significant c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g><br />

in pods, seed yields <str<strong>on</strong>g>and</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> normal seeds <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

G. <strong>max</strong> is justified by the acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this bee <strong>on</strong><br />

<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g>. The similar have been obtain in Britain<br />

(Kendall <str<strong>on</strong>g>and</str<strong>on</strong>g> Smith, 1976) <strong>on</strong> Phaseolus coccineus<br />

(<strong>Fabaceae</strong>), USA (Ibarra-Perez et al., 1999) <strong>on</strong><br />

Phaseolus coccineus (<strong>Fabaceae</strong>), Ngaoundéré<br />

(Camero<strong>on</strong>) (Kingha et al., 2012) <strong>on</strong> Phaseolus vulgaris<br />

(<strong>Fabaceae</strong>), <strong>Maroua</strong> (Camero<strong>on</strong>) (Douka <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Tchuenguem, 2013) <strong>on</strong> Phaseolus vulgaris (<strong>Fabaceae</strong>)<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Brazil (Milf<strong>on</strong>t et al., 2013) <strong>on</strong> G. <strong>max</strong> who showed<br />

th<strong>at</strong> these plants species produce fewer seeds per pod in<br />

the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> efficient pollin<strong>at</strong>ors. The higher<br />

percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> pods, seeds <str<strong>on</strong>g>and</str<strong>on</strong>g> normal seeds in the<br />

tre<strong>at</strong>ment with unlimited visits or tre<strong>at</strong>ment visiting<br />

exclusively by A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> compared to tre<strong>at</strong>ment<br />

with protected, showing th<strong>at</strong> insect visits were effective<br />

in increasing cross-<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> or self- <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g>.<br />

Our results c<strong>on</strong>firmed those <str<strong>on</strong>g>of</str<strong>on</strong>g> Caviness (1970), Ahrent<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> Caviness (1994), Rortais et al., (2005) <str<strong>on</strong>g>and</str<strong>on</strong>g> Milf<strong>on</strong>t<br />

et al., (2013) who revealed th<strong>at</strong> G. <strong>max</strong> <strong>flowers</strong> set little<br />

pods in the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> insect pollin<strong>at</strong>ors. Similar<br />

experiments <strong>on</strong> cr op sp e ci es r ea l i zed in Engl<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

(Free, 1966) <str<strong>on</strong>g>and</str<strong>on</strong>g> in Brazil (Free, 1993) have shown th<strong>at</strong><br />

<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> by insects was not always needed.<br />

Woodworth (1922) showed th<strong>at</strong> self-<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

G. <strong>max</strong> <strong>flowers</strong> produced as many pods <str<strong>on</strong>g>and</str<strong>on</strong>g> seeds as<br />

exposed plants. Thus, <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> requirements may<br />

differ between plant varieties <str<strong>on</strong>g>and</str<strong>on</strong>g> /or regi<strong>on</strong>.<br />

CONCLUSION<br />

This study reveals th<strong>at</strong> th e var i et y <str<strong>on</strong>g>of</str<strong>on</strong>g> G. <strong>max</strong><br />

studied is a nectariferous bee plant th<strong>at</strong> obtained<br />

benefits from the <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> by insects am<strong>on</strong>g which A.<br />

m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> is the must important. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pods <str<strong>on</strong>g>and</str<strong>on</strong>g> seeds set <str<strong>on</strong>g>of</str<strong>on</strong>g> unprotected <strong>flowers</strong> with th<strong>at</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>flowers</strong> visited exclusively by A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g><br />

underscores the value <str<strong>on</strong>g>of</str<strong>on</strong>g> this bee in increasing pods <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

seed yields as well as seed quality. The install<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

A. m. <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> col <strong>on</strong> i es to G. <strong>max</strong> fields should<br />

be recommended for the increase <str<strong>on</strong>g>of</str<strong>on</strong>g> pod <str<strong>on</strong>g>and</str<strong>on</strong>g> seeds<br />

yields <str<strong>on</strong>g>of</str<strong>on</strong>g> this valuable crop.<br />

REFERENCES<br />

Ahrent DK, Caviness CE. 1994. N<strong>at</strong>ural cross<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> twelve soybean cultivars in Arkansas.<br />

Crop. Sci. 34 (2): 376-378.<br />

Borror DJ, White RE. 1991. Les insectes de<br />

l’Amérique du Nord (au nord du Mexique). Broquet<br />

(ed.), Laprairie. p. 408.<br />

Boyeldieu J. 1991. Produire des grains oléagineux et<br />

protéagineux. Ed. Tec et Doc/Lavoisier Col. Agriculture<br />

d’aujourd’hui. 115 - 152<br />

Caviness CE. 1970. Cross-<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> in the soybean.<br />

In : The indispensable pollin<strong>at</strong>ors, Ark. Agr. Ext. Serv.<br />

Misc. Pub. 127: 33-36.<br />

Demarly Y. 1977. Genetic <str<strong>on</strong>g>and</str<strong>on</strong>g> amelior<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants.<br />

Mass<strong>on</strong>, Paris. p. 577.<br />

Douka C, Tchuenguem FF-N. 2013. <str<strong>on</strong>g>Foraging</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>behavior</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> L.<br />

(<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g>, <str<strong>on</strong>g>Apidae</str<strong>on</strong>g>) <strong>on</strong> Phaseolus vulgaris<br />

(<strong>Fabaceae</strong>) <strong>flowers</strong> <strong>at</strong> <strong>Maroua</strong> (Camero<strong>on</strong>). Intern<strong>at</strong>i<strong>on</strong>al<br />

Research Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Science 4(2): 45-54.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219 1217


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

Free JB. 1966. The <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the beans Phaseolus<br />

multiflorus <str<strong>on</strong>g>and</str<strong>on</strong>g> Phaseolus vulgaris by h<strong>on</strong>eybees. J.<br />

Apicult. Res. 5: 87-91.<br />

Free JB. 1993. Insect <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> crops. Academic<br />

Press. p. 544<br />

Freitas BM. 1997. Number <str<strong>on</strong>g>and</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

cashew (Anacardium occidentale) pollen grains <strong>on</strong> the<br />

bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> its pollin<strong>at</strong>ors, <str<strong>on</strong>g>Apis</str<strong>on</strong>g> <str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> Centris<br />

tars<strong>at</strong>a. J. Apicul. Res. 36 (1): 15-22.<br />

Gallais A, Bannerot H. 1992. Amélior<strong>at</strong>i<strong>on</strong> des espèces<br />

végétales cultivées. INRA, Paris.p.768.<br />

Hymowitz T. 1970. On the domestic<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

soybean. Ec<strong>on</strong>. Bot. 24 (4): 408-421.<br />

Hymowitz T, Harlan JR. 1983. Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soybean<br />

to North America by Samuel Bowen in 1765. Ec<strong>on</strong>. Bot.<br />

37 (4): 371-379.<br />

Ibarra-Perez FJ, Barnhart D, Ehdaie B, Knio KM,<br />

Waines JG. 1999. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> insect tripping <strong>on</strong> seed<br />

yield <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> bean. Crop Sci. 39 (2): 428-433.<br />

Jacob-Remacle A. 1989. Comportement de butinage de<br />

l’abeille domestique et des abeilles sauvages dans des<br />

vergers de pommiers en Belgique. Apidologie. 20 (4):<br />

271-285.<br />

Kendal DA, Smith BD. 1976. The pollin<strong>at</strong>ing efficiency<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> h<strong>on</strong>ey bee <str<strong>on</strong>g>and</str<strong>on</strong>g> Bumblebee visits to <strong>flowers</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

runner bean Phaseolus coccineus L. J. Applied Ecology<br />

13 (3): 749-752.<br />

Kuete M, Melingui A, Mounkam J, N<str<strong>on</strong>g>of</str<strong>on</strong>g>iele D. 1993.<br />

Nouvelle géographie du Cameroun. EDICEF, Paris. p.<br />

207.<br />

Kingha BMT, Tchuenguem FF-N, Ngakou A,<br />

Brückner D. 2012. <str<strong>on</strong>g>Foraging</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> activities<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Xylocopa olivacea (<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g>, <str<strong>on</strong>g>Apidae</str<strong>on</strong>g>) <strong>on</strong><br />

Phaseolus vulgaris (<strong>Fabaceae</strong>) <strong>flowers</strong> <strong>at</strong> Dang<br />

(Ngaoundere-Camero<strong>on</strong>) J. Agric. Extensi<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Rural<br />

Development. 4 (10): 330-339.<br />

Letouzey R. 1985. Notice de la carte<br />

phytogéographique du Cameroun au 1/500000. Inst.<br />

Carto. Intern. Végét<strong>at</strong>i<strong>on</strong>, Toulouse et Inst. Rech.<br />

Agr<strong>on</strong>., Yaoundé.<br />

Milf<strong>on</strong>t MO, Rocha EEM, Lima AON, Freitas BM.<br />

2013. Higher soybean producti<strong>on</strong> using h<strong>on</strong>eybee <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

wild pollin<strong>at</strong>ors, a sustainable altern<strong>at</strong>ive to pesticides<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> auto<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g>. Envir<strong>on</strong>. Chem. Lett. 11(4) :335-<br />

341. Doi 10.1007/s10311-013-0312 .8.<br />

Minader. 2010. Annuaire des St<strong>at</strong>istiques du Secteur<br />

Agricole, Campagnes 2007 & 2008. Directi<strong>on</strong> des<br />

Enquêtes et des St<strong>at</strong>istiques, Agricoles. AGRI-STAT<br />

Cameroun n° 16, p.98.<br />

P<str<strong>on</strong>g>and</str<strong>on</strong>g>o JB, Tchuenguem FF-N, Tamesse JL. 2011a.<br />

<str<strong>on</strong>g>Foraging</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> Xylocopa calens<br />

Lepeletier (<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g>: <str<strong>on</strong>g>Apidae</str<strong>on</strong>g>) <strong>on</strong> Phaseolus<br />

coccineus L. (<strong>Fabaceae</strong>) <strong>flowers</strong> <strong>at</strong> Yaoundé<br />

(Camero<strong>on</strong>). Entomol. Res. 41(5): 185-193.<br />

Rortais a A, Arnold a G, Halm b MP, Touffet-Briens b F.<br />

2005. Modes <str<strong>on</strong>g>of</str<strong>on</strong>g> h<strong>on</strong>eybees exposure to systemic<br />

insecticides: estim<strong>at</strong>ed amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tamin<strong>at</strong>ed pollen<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> nectar c<strong>on</strong>sumed by different c<strong>at</strong>egories <str<strong>on</strong>g>of</str<strong>on</strong>g> bees.<br />

Apidologie., 36 (1): 71-83).<br />

Tchuenguem FF-N, Messi J, Brückner D, Bouba B,<br />

Mb<str<strong>on</strong>g>of</str<strong>on</strong>g>ung G, Hentchoya HJ. 2004. <str<strong>on</strong>g>Foraging</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the African h<strong>on</strong>ey bee (<str<strong>on</strong>g>Apis</str<strong>on</strong>g><br />

<str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g>) <strong>on</strong> Callistem<strong>on</strong> rigidus <strong>flowers</strong> in<br />

Ngaoundéré (Camero<strong>on</strong>). J. Cam. Acad. Sci.<br />

4(2): 133-140.<br />

Tchuenguem FF-N, Ngakou A, Kengni BS. 2009b.<br />

Pollin<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> yield resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> cowpea (Vigna<br />

unguicul<strong>at</strong>a L. Walp.) to the foraging activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Apis</str<strong>on</strong>g><br />

1218 Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219


Fohouo <str<strong>on</strong>g>and</str<strong>on</strong>g> Dounia, 2014<br />

<str<strong>on</strong>g>mellifera</str<strong>on</strong>g> <str<strong>on</strong>g>adans<strong>on</strong>ii</str<strong>on</strong>g> (<str<strong>on</strong>g>Hymenoptera</str<strong>on</strong>g>: <str<strong>on</strong>g>Apidae</str<strong>on</strong>g>) <strong>at</strong><br />

Ngaoundéré (Camero<strong>on</strong>). Afr. J. Biotechnol.<br />

8 (9): 1988-1996.<br />

Tien HH, Hien TM, S<strong>on</strong> MT, Herridge D. 2002.<br />

Rhizobial Inocul<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> N 2 fix<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soybean <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

mungbean in the Eastern regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> South Vietnam. In”<br />

inoculants <str<strong>on</strong>g>and</str<strong>on</strong>g> nitrogen Fix<strong>at</strong>i<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> legumes in<br />

Vietnam”. Edited by D. Herridge. ACIAR proceedings<br />

109 e .<br />

USDA. 2002. Oilseeds : World markets <str<strong>on</strong>g>and</str<strong>on</strong>g> trade.<br />

Foreign Agricultural Service. Circular series FOP.<br />

Woodworth CM. 1922. The extent <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>at</strong>ural cross<str<strong>on</strong>g>pollin<strong>at</strong>i<strong>on</strong></str<strong>on</strong>g><br />

in soybeans. Jour. Amer. Soc. Agr<strong>on</strong>.<br />

14: 278-283.<br />

Submit your articles <strong>on</strong>line <strong>at</strong> www.jresearchbiology.com<br />

Advantages<br />

Easy <strong>on</strong>line submissi<strong>on</strong><br />

Complete Peer review<br />

Affordable Charges<br />

Quick processing<br />

Extensive indexing<br />

You retain your copyright<br />

submit@jresearchbiology.com<br />

www.jresearchbiology.com/Submit.php.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Research in Biology (2014) 4(1): 1209-1219 1219

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!