26.11.2014 Views

Wavelet basis functions in biomedical signal processing

Wavelet basis functions in biomedical signal processing

Wavelet basis functions in biomedical signal processing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

8 J. Rafiee et al. / Expert Systems with Applications xxx (2010) xxx–xxx<br />

db44<br />

Channel 1<br />

900<br />

880<br />

Evaluation Criterion<br />

x 10 6<br />

2<br />

db44<br />

db44<br />

Channel 2<br />

Channel 3<br />

Evaluation Criterion<br />

860<br />

840<br />

660<br />

640<br />

620<br />

Db44 & Db45<br />

Haar<br />

Forearm Pronation<br />

5 10 15 20 25 30 35 40 45<br />

Haar<br />

Db44 & Db45<br />

Spread F<strong>in</strong>gers<br />

1<br />

5 10 15 20 25 30 35 40 45<br />

0<br />

0 50 100 150 200 250 300<br />

Mother wavelet <strong>functions</strong><br />

Fig. 13. Trend of Daubechies family vs. evaluation criterion <strong>in</strong> Intramuscular EMG<br />

<strong>signal</strong>s for two motions.<br />

Fig. 11. Evaluation criterion (no unit) across 324 mother wavelet candidates for<br />

EEG <strong>signal</strong>s across three channels (Pz, POz, Oz).<br />

Evaluation Criterion<br />

2<br />

1.5<br />

1<br />

0.5<br />

x 10 7<br />

db45<br />

Haar<br />

db44<br />

shan0.2-0.1<br />

shan0.1-0.1<br />

cmor3-0.1<br />

cmor4-0.1<br />

fbsp1-0.1-0.1<br />

shan0.5-0.1<br />

fbsp3-0.1-0.1<br />

fbsp2-0.1-0.1<br />

fbsp1-0.2-0.1<br />

fbsp2-0.2-0.1<br />

fbsp3-0.2-0.1<br />

bior3.1<br />

gaus1<br />

cgau1<br />

rbio3.1<br />

Evaluation Criterion<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

db45<br />

db44<br />

cmor1-0.01<br />

two motions<br />

shan0.2-0.1<br />

dmey<br />

meyr<br />

cmor1-0.1<br />

cmor4-0.1<br />

shan0.5-0.1<br />

fbsp1-0.2-0.1<br />

shan5-0.2<br />

shan1-0.4 fbsp3-0.2-0.9<br />

fbsp3-0.2-0.1<br />

fbsp2-0.2-0.1<br />

fbsp1-0.2-0.2<br />

cmor1-1.5<br />

fbsp3-0.1-0.1<br />

rbio5-5<br />

fbsp2-0.1-0.1<br />

fbsp1-0.1-0.1 bior3-1<br />

0<br />

0 50 100 150 200 250 300<br />

Mother wavelet <strong>functions</strong><br />

Fig. 12. Evaluation criterion (no unit) vs. mother wavelets for VPA <strong>signal</strong>s recorded<br />

from one subject.<br />

Intramuscular EMG <strong>signal</strong>s. As shown, the EC <strong>in</strong>creases slightly <strong>in</strong><br />

low-order db and decreases slightly for high-order db. This demonstrates<br />

that Daubechies <strong>functions</strong> do not behave dramatically different<br />

on the bio<strong>signal</strong>s, while rang<strong>in</strong>g from db1 to db43. It also<br />

highlights the likely limitation of the mostly lower order Daubechies<br />

that typically are used <strong>in</strong> prior research. The trend changes<br />

dramatically for db44, which cannot be seen <strong>in</strong> Fig. 13 due to scal<strong>in</strong>g<br />

restrictions.<br />

db44 and db45 are the most similar <strong>functions</strong> as the other 322<br />

<strong>functions</strong> have pronouncedly poorer performance (similarity).<br />

Closer exam<strong>in</strong>ation of the evaluation criterion (see Figs. 12 and<br />

14) for VPA and <strong>in</strong>tramuscular EMG reveals some variability of fit<br />

amongst other function families. To demonstrate the difference between<br />

db44 and the other <strong>functions</strong>, the cont<strong>in</strong>uous wavelet coefficients<br />

of one of the segmented unit <strong>signal</strong>s us<strong>in</strong>g db44 has been<br />

0<br />

Mother wavelet <strong>functions</strong><br />

Fig. 14. Evaluation criterion (no unit) vs. mother wavelets for <strong>in</strong>tramuscular EMG<br />

<strong>signal</strong>s recorded from one of the six channels of data acquisition system.<br />

compared to those calculated with the Morlet function, which<br />

has been used frequently <strong>in</strong> previous research (see Figs. 15 and<br />

16, see Fig. 17 for decomposition scale) (e.g. Saravanan, Kumar<br />

Siddabattuni, & Ramachandran, 2008). The difference between<br />

the values of the CWC (Y-axis) calculated by db44 is much higher<br />

than those calculated by Morlet function. Moreover, periodic s<strong>in</strong>usoidal<br />

trends also are obvious us<strong>in</strong>g the db44. This is a very desirable<br />

feature, because it means that periodic behavior can be<br />

extracted from biological <strong>signal</strong>s us<strong>in</strong>g db44 function. This might<br />

be useful for preprocess<strong>in</strong>g biological <strong>signal</strong>s.<br />

Some other complex mother wavelets (<strong>in</strong> addition to db44 and<br />

db45) show high similarity to EEG and VPA <strong>signal</strong>s (e.g. see Fig. 12).<br />

After db44 and db45, EEG <strong>signal</strong>s also display some similarity to<br />

bior 3.1 and other complex mother wavelets unlike the EMG. However,<br />

these differences appear m<strong>in</strong>or and appear due mostly to<br />

complex <strong>functions</strong> with different wavelet center frequency. The<br />

center frequency varies simply with the frequency contents of<br />

the <strong>signal</strong>s.<br />

Please cite this article <strong>in</strong> press as: Rafiee, J., et al. <strong>Wavelet</strong> <strong>basis</strong> <strong>functions</strong> <strong>in</strong> <strong>biomedical</strong> <strong>signal</strong> process<strong>in</strong>g. Expert Systems with Applications (2010),<br />

doi:10.1016/j.eswa.2010.11.050

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!