26.11.2014 Views

Linear Algebra Chapter 1 Solutions to Exercises Exercise 1.1. Let A ...

Linear Algebra Chapter 1 Solutions to Exercises Exercise 1.1. Let A ...

Linear Algebra Chapter 1 Solutions to Exercises Exercise 1.1. Let A ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Linear</strong> <strong>Algebra</strong><br />

<strong>Chapter</strong> 1<br />

<strong>Solutions</strong> <strong>to</strong> <strong><strong>Exercise</strong>s</strong><br />

<strong>Exercise</strong> <strong>1.1.</strong> <strong>Let</strong><br />

A =<br />

[ ]<br />

1 2<br />

, B =<br />

3 4<br />

[ ]<br />

4 3<br />

2 1<br />

Compute AB, BA. You should get different answers.<br />

Solution: [ ] [ ] [ ]<br />

1 2 4 3 8 5<br />

= .<br />

3 4 2 1 20 13<br />

[ ] [ ] [ ]<br />

4 3 1 2 13 20<br />

= .<br />

2 1 3 4 5 8<br />

[ ]<br />

[ ]<br />

1 2<br />

a b<br />

<strong>Exercise</strong> 1.2. <strong>Let</strong> A = as in 1.1, and suppose B = , where a+c =<br />

3 4<br />

c d<br />

d, 2c = 3b. Show that AB = BA.<br />

Solution:<br />

while<br />

[ ] [ ] [ ]<br />

1 2 a b a + 2c b + 2d<br />

AB =<br />

=<br />

,<br />

3 4 c d 3a + 4c 3b + 4d<br />

[ ] [ ]<br />

a b 1 2<br />

BA =<br />

=<br />

c d 3 4<br />

[<br />

a + 3b 2a + 4b<br />

c + 3d 2c + 4d<br />

Using the two given equations a + c = d, 2c = 3b, one sees that AB = BA.<br />

<strong>Exercise</strong> 1.3. Compute [ ] [ ]<br />

2 1 1 −1<br />

1 1 −1 2<br />

and [<br />

1 −1<br />

−1 2<br />

You should get the same answer both times.<br />

Solution: Both products are I.<br />

<strong>Exercise</strong> 1.4. Using the trig identities<br />

] [ ]<br />

2 1<br />

.<br />

1 1<br />

cos(θ + φ) = cos θ cos φ − sin θ sin φ, sin(θ + φ) = sin θ cos φ + sin φ cos θ,<br />

]<br />

.<br />

show that [<br />

cos θ<br />

sin θ<br />

] [ ]<br />

− sin θ cos φ − sin φ<br />

=<br />

cos θ sin φ cos φ<br />

[ ]<br />

cos(θ + φ) − sin(θ + φ)<br />

.<br />

sin(θ + φ) cos(θ + φ)<br />

Solution:<br />

[ ] [ ] [ ]<br />

cos θ − sin θ cos φ − sin φ cos θ cos φ − sin θ sin φ − cos θ sin φ − sin θ cos φ<br />

=<br />

sin θ cos θ sin φ cos φ sin θ cos φ + sin φ cos θ cos θ cos φ − sin θ sin φ<br />

[ ]<br />

cos(θ + φ) − sin(θ + φ)<br />

=<br />

,<br />

sin(θ + φ) cos(θ + φ)<br />

using the trig identities.<br />

1


2<br />

<strong>Exercise</strong> 1.5. [ The powers ] of a matrix are computed as A 2 = AA, A 3 = AAA,<br />

0 −1<br />

etc. <strong>Let</strong> A = . Compute A<br />

1 −1<br />

2 , A 3 , A 4 , A 100 .<br />

Solution:<br />

A 2 =<br />

[ ]<br />

−1 1<br />

, A 3 = I, A 4 = A, A 100 = AA 99 = A(A 3 ) 33 = A(I) 33 = A.<br />

−1 0<br />

<strong>Exercise</strong> 1.6. Find the inverses of<br />

A =<br />

[ ]<br />

2 1<br />

, B =<br />

1 1<br />

[ ]<br />

0 −1<br />

, C =<br />

1 −1<br />

[ ]<br />

1 b<br />

.<br />

0 1<br />

Solution:<br />

A −1 =<br />

[ ]<br />

1 −1<br />

, B −1 =<br />

−1 2<br />

[<br />

−1<br />

]<br />

1<br />

−1 0<br />

C −1 =<br />

[ ]<br />

1 −b<br />

.<br />

0 1<br />

<strong>Exercise</strong> 1.7. <strong>Let</strong><br />

Show that<br />

[<br />

cos θ − sin θ<br />

A =<br />

sin θ cos θ<br />

]<br />

.<br />

[ ]<br />

A −1 cos(−θ) − sin(−θ)<br />

=<br />

.<br />

sin(−θ) cos(−θ)<br />

Solution:<br />

First note that det A = sin 2 θ + cos 2 θ = 1, so<br />

A −1 = 1 [<br />

cos θ sin θ<br />

1 − sin θ cos θ<br />

]<br />

.<br />

To get the desired expression for A −1 , recall that cos θ is an even function and sin θ<br />

is an odd function.<br />

<strong>Exercise</strong> 1.8. There are only two numbers that are their own inverses, namely 1<br />

and -1. Find five matrices that are their own inverses.<br />

Solution:<br />

There are infinitely many such matrices, besides the obvious ones like<br />

[ ]<br />

±1 0<br />

.<br />

0 ±1<br />

For example, take any nonzero number b, and consider the matrices<br />

[ ]<br />

−1 b<br />

,<br />

0 1<br />

[<br />

0 b<br />

1<br />

b<br />

0<br />

]<br />

.


3<br />

<strong>Exercise</strong> 1.9. Find a matrix A having at least one nonzero entry, such that<br />

A 2 =<br />

[ ]<br />

0 0<br />

.<br />

0 0<br />

[ ]<br />

1 0<br />

Solution: Any matrix of the form works. The most general such matrix<br />

0 1<br />

(you only have <strong>to</strong> find one of them) is<br />

[ ]<br />

a b<br />

, where a 2 + bc = 0.<br />

c −a<br />

<strong>Exercise</strong> 1.10. <strong>Let</strong><br />

[ ] [ ] [ ]<br />

a b<br />

e f<br />

i j<br />

A = , B = , C = .<br />

c d<br />

g h<br />

k l<br />

Show that (AB)C = A(BC).<br />

Solution:<br />

We compute<br />

[ ] [ ]<br />

ae + bg af + bh i j<br />

(AB)C =<br />

ce + dg cf + dh k l<br />

[ ]<br />

(ae + bg)i + (af + bh)k (ae + bg)j + (af + bh)l<br />

=<br />

(ce + dg)i + (cf + dh)k (ce + dg)j + (cf + dh)l<br />

[ ]<br />

a(ei + fk) + b(gi + hk) a(ej + fl) + b(gj + hl)<br />

=<br />

c(ei + fk) + d(gi + hk) c(ej + fl) + d(gj + hl)<br />

[ ] [ ]<br />

a b ei + fk ej + fl<br />

=<br />

c d gi + hk gj + hl<br />

= A(BC).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!