05.11.2012 Views

Alphatronic Remote Control System - MAN Diesel & Turbo

Alphatronic Remote Control System - MAN Diesel & Turbo

Alphatronic Remote Control System - MAN Diesel & Turbo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Alphatronic</strong> <strong>Remote</strong> <strong>Control</strong> <strong>System</strong><br />

Contents Page<br />

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3<br />

Ship’s Propulsion Power – controlled by <strong>Alphatronic</strong> . . . . . . . . . . . . . . . . . 5<br />

Evolution of control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

Accumulated expertise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5<br />

<strong>Control</strong> is crucial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

Inherent advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6<br />

The engine and propeller manufacturer’s advantage . . . . . . . . . . . . . . . . . . . . . 6<br />

<strong>Alphatronic</strong> <strong>Remote</strong> <strong>Control</strong> <strong>System</strong> – General . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Plant configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7<br />

Included in the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

Engine equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

Primary control function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

In case of emergency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8<br />

Load control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10<br />

<strong>Control</strong> lever order and command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12<br />

Load program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13<br />

Manoeuvre Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Mode of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Separate mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Combined mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14<br />

Constant speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15<br />

Bridge and bridge wing manoeuvre panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16<br />

Manoeuvre distribution between bridge panels . . . . . . . . . . . . . . . . . . . . . . . . . . 17<br />

Engine control room manoeuvre panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18<br />

Manoeuvre responsibility panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19<br />

Special Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Shaft alternator panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20<br />

Shaft alternator speed control with Power Management . . . . . . . . . . . . . . . . . . 20<br />

Load limiter panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21<br />

<strong>Control</strong> and Interface Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22<br />

<strong>Alphatronic</strong> control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Interface unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23<br />

Load program unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

Noise suppression unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24<br />

Power supply unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25<br />

Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

External systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Layout examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26<br />

Optional instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27<br />

Cable plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28<br />

Commissioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30<br />

Instruction Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .<br />

31<br />

1


Introduction<br />

The purpose of this Product Information<br />

Manual is to act as a guide line in<br />

the project planning and the layout of<br />

<strong>Alphatronic</strong> <strong>Remote</strong> <strong>Control</strong> <strong>System</strong>s.<br />

The manual gives a description of the<br />

system in general, standard control elements<br />

and options available for tailoring<br />

a remote control system for the individual<br />

vessel and its propulsion system<br />

configuration, operating modes and<br />

manoeuvre stations.<br />

Our product range is constantly under<br />

review, being developed and improved<br />

according to present and future requirements<br />

and conditions.<br />

We therefore reserve the right to make<br />

changes to the technical specifications<br />

and data without prior notice.<br />

<strong>Alphatronic</strong> <strong>Remote</strong> <strong>Control</strong> <strong>System</strong>s<br />

are usually specified together with <strong>MAN</strong><br />

B&W <strong>Control</strong>lable Pitch propellers.<br />

The propeller programme may be studied<br />

in separate literature.<br />

3


Ship’s Propulsion Power –<br />

controlled by <strong>Alphatronic</strong><br />

<strong>MAN</strong> B&W <strong>Diesel</strong> A/S, Alpha <strong>Diesel</strong><br />

launched the first CP propeller as part<br />

of a propulsion system in 1902. A complete<br />

package including engine, clutch,<br />

shafting and propeller. A package<br />

where all control and manoeuvre actions<br />

were carried out, in accordance<br />

with the standards of that time, locally<br />

by hands–on.<br />

Evolution of control<br />

In view of the following years of development,<br />

not only in the physical dimensions<br />

of the ships, but also in the propul-<br />

2044352–9.0<br />

sion equipment itself, – the control and<br />

manoeuvre actions shifted from local to<br />

remote by means of different intermediates.<br />

These intermediates developed<br />

from mechanical push/pull rod systems,<br />

flexible cable systems, pneumatic<br />

systems up till today’s electronic<br />

systems. Year by year, both the operator<br />

and the equipment itself required<br />

more and more sophisticated control<br />

systems for economical cruising at various<br />

operating modes, engine load sharing<br />

etc.<br />

Accumulated expertise<br />

Since 1902, more than 6000 propellers<br />

Fig 1 : Two–stoke propulsion package (4S70MC, VBS 1680)<br />

and propulsion packages have gone<br />

into service – operated by various types<br />

of <strong>MAN</strong> B&W Alpha control systems.<br />

Today’s standard for <strong>MAN</strong> B&W CP<br />

propellers and propulsion packages is<br />

the well–proven electronic remote control<br />

system, <strong>Alphatronic</strong>.<br />

Since its introduction in 1982, more<br />

than 700 systems have been delivered<br />

for a wide range of propulsion plant<br />

combinations with two–stroke engines<br />

and propellers, four–stroke engines, reduction<br />

gearboxes and propellers for<br />

the output range up to 15,000 kW<br />

(20,400 bhp) per propeller.<br />

5


<strong>Control</strong> is crucial<br />

In the process of projecting and estimating<br />

propulsion systems, the associated<br />

control system is a ‘soft’ item frequently<br />

handled with less attention. The<br />

remote control system is often regarded<br />

as a necessary auxiliary element<br />

that just follows the primary propulsion<br />

elements. But the fuel and<br />

propulsion efficiency of the ‘hard’ engine<br />

and propeller elements are, however,<br />

undermined – without the correct<br />

matching and performing control system<br />

!<br />

Inherent advantages<br />

A tailored <strong>Alphatronic</strong> control system<br />

ensures:<br />

� Safe control of the propulsion plant<br />

and reliable manoeuvring of the ship<br />

� Economic operation due to optimized<br />

engine/propeller load control<br />

� Quick system response and efficient<br />

CP propeller manoeuvrability<br />

2044353–0.0<br />

6<br />

� Load changes controlled in such a<br />

way that the governor always keeps<br />

the engine speed within the range required<br />

� Good long–term engine performance<br />

due to overload protection<br />

� Thermal protection of the engine via<br />

controlled running–up programmes<br />

� Environmental friendliness due to<br />

balanced manoeuvring dynamics<br />

during acceleration with minimal<br />

smoke emission<br />

� Flexibility and individual customization<br />

due to modular system principles<br />

� Project support, simple installation<br />

procedures and safe commissioning<br />

� Minimal service and maintenance requirements<br />

� User–friendly operator functions due<br />

to logic and ergonomic design of control<br />

panels<br />

� Overall system reliability and durability<br />

– type approved by all major classification<br />

societies<br />

Fig 2 : Four–stroke propulsion package (6L40/54, VBS 1180)<br />

The engine and propeller manufacturer’s<br />

advantage<br />

In general, the control system acts as<br />

the central propulsion package element,<br />

being in charge of the remaining<br />

propulsion package elements, their coherence<br />

and their interaction with one<br />

another.<br />

The knowledge inherent in the <strong>Alphatronic</strong><br />

systems, accumulated during 15<br />

years of service:<br />

� Full knowledge of all propulsion package<br />

elements<br />

� Full knowledge of two–stroke and<br />

four–stroke engine design<br />

� Full knowledge of CP propeller design<br />

� Full knowledge regarding overall operating<br />

economy, long term performance,<br />

load characteristics and system<br />

dynamics<br />

– makes all the difference.


<strong>Alphatronic</strong> <strong>Remote</strong> <strong>Control</strong><br />

<strong>System</strong> – General<br />

With this electronic remote control system<br />

it is possible for the navigator to<br />

manoeuvre the ship from the bridge.<br />

The navigator may operate the control<br />

system without consideration for the<br />

engine load condition, since the system<br />

ensures automatic engine overload<br />

protection.<br />

When needed, the manoeuvre responsibility<br />

may be transferred from the<br />

main bridge panel to the bridge wing<br />

panels or to the control room panel.<br />

Plant configurations<br />

The <strong>Alphatronic</strong> remote control system<br />

is designed for propulsion plants consisting<br />

of a CP propeller and a two–<br />

stoke or a four–stroke engine in several<br />

plant configurations. From the relatively<br />

simple plant shown in fig 3 to many different<br />

and more complex configurations,<br />

eg multiple engines on one gearbox<br />

or multiple propeller plants.<br />

7


Included in the system<br />

As a minimum, the control system<br />

usually consists of the following main<br />

components shown in the principle diagram<br />

fig 3 :<br />

1 Manoeuvre panel for main bridge<br />

2 Manoeuvre panel for engine control<br />

room<br />

3 Responsibility panels<br />

4 <strong>Control</strong> / interface unit<br />

5 Optional load program unit (if required<br />

by engine maker)<br />

Normally, power supply and noise suppression<br />

units are also included in the<br />

system.<br />

Engine equipment<br />

If the engine is not of <strong>MAN</strong> B&W Alpha<br />

origin, there might be a fuel pump index<br />

transmitter. The governor and the safety<br />

system are normally specified with<br />

the engine and therefore not a part of<br />

the remote control system. Nevertheless,<br />

there is a close connection between<br />

these.<br />

Primary control function<br />

The manoeuvre panels fig 3, items 1<br />

and 2, are fitted with manoeuvre levers<br />

for controlling the propeller speed and<br />

8<br />

pitch. The levers have individual potentiometers<br />

integrated in the manoeuvre<br />

panel. From the speed and pitch potentiometers<br />

signals are sent to the servo<br />

electronic units at the engine and propeller.<br />

These units will adjust the engine<br />

speed and the propeller pitch in accordance<br />

with the orders given. The system<br />

is built up as a feedback control system<br />

with feedback potentiometers.<br />

In connection with the engine governor<br />

fig 3 , item 6, two possibilities exist regarding<br />

the adjustment of the engine<br />

speed in relation to orders from the<br />

speed potentiometer in the control<br />

panel:<br />

� When the engine has a governor with<br />

pneumatic speed setting, the electric<br />

speed order is converted into a pressure<br />

order in an E/P–converter.<br />

� When the engine has an electronic<br />

governor, the electric speed order is<br />

sent directly to this.<br />

The propeller pitch setting is controlled<br />

by two solenoid valves in the hydraulic<br />

system at the propeller servo oil tank<br />

unit – Hydra Pack fig 3, item 7. The<br />

electronic servo unit, which is located in<br />

a cabinet at the Hydra Pack, controls<br />

the solenoid valves for ’ahead’ and<br />

’astern’ pitch changes.<br />

Actual propeller pitch setting is<br />

measured by two transmitters located<br />

at the feedback ring of the propeller<br />

shaft coupling flange. One transmitter<br />

is for indication of the actual position of<br />

propeller pitch and the other one sends<br />

the feedback signal to the electronic<br />

servo unit.<br />

The responsibility panels fig 3 item 3,<br />

which are located on the main bridge<br />

and in the control room, contain push<br />

buttons for exchange of manoeuvre responsibility<br />

between bridge and engine<br />

control room.<br />

In case of emergency<br />

If the remote control system is out of<br />

service, the propulsion plant may be operated<br />

by the emergency back–up system.<br />

The back–up system is completely<br />

independent of the main control system,<br />

although it is physically an integrated<br />

part of the bridge panel.<br />

As required by the major classification<br />

societies, pre–set engine speed and<br />

propeller pitch order signals are maintained<br />

until the emergency control is in<br />

operation. This will prevent the order<br />

signals from changing, if a fault should<br />

occur.


2044404–6.0<br />

<strong>Control</strong> room panels<br />

3<br />

Fig 3 : <strong>Remote</strong> control system structure<br />

Pitch command<br />

7<br />

Pitch indication<br />

Rpm<br />

Hydra<br />

Pack<br />

2<br />

Bridge panels<br />

3 1<br />

<strong>Alphatronic</strong> control unit<br />

Engine interface unit<br />

Main engine<br />

Fuel index<br />

Rpm command<br />

Governor<br />

4 5<br />

Load<br />

program<br />

unit<br />

9


Load control<br />

The remote control system uses the<br />

propeller pitch and engine speed as<br />

controlling parameters. Fuel pump setting,<br />

propeller speed and pitch are used<br />

as feedback. The engine load is kept<br />

within the limits as specified by the load<br />

limit curve of the engine.<br />

The load control curve for combined<br />

mode is adjusted according to the specific<br />

engine and propulsion equipment<br />

– taking fuel oil consumption, propeller<br />

efficiency and manoeuvrability into consideration<br />

in order to obtain optimum<br />

overall propulsion efficiency.<br />

10<br />

2021026–0.0<br />

Engine output<br />

MEP<br />

(%)<br />

110<br />

(%)<br />

100<br />

90<br />

100% LOAD<br />

1<br />

2<br />

MCR<br />

100<br />

90<br />

80<br />

75% LOAD<br />

3<br />

80<br />

70<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50% LOAD<br />

25% LOAD<br />

5<br />

50 60 70 80 90 100<br />

Engine speed<br />

(%)<br />

For propulsion engine with CP propeller<br />

MCR=Maximum continuous rating<br />

1 = Engine load limit curve for acceptable continuos load<br />

2 = <strong>Alphatronic</strong> IIA overload protection curve<br />

3 = Theoretical fixed pitch propeller characteristic<br />

4 = <strong>Alphatronic</strong> IIA load control in combined mode (Curve 2 + 4)<br />

Based on a free sailing ship (Theoretical)<br />

5 = Idling/clutch in speed range<br />

6 = Propeller in zero pitch position (Theoretical)<br />

Fig 4 : General propeller and load curve example with <strong>Alphatronic</strong> IIA overload<br />

protection curve.<br />

4<br />

6<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10


The engine overload curve shown in fig<br />

5 illustrates the engine’s max allowed<br />

fuel index at the various revolutions,<br />

thus giving the engine load limit for the<br />

speed range.<br />

The engine load limit function is maintained<br />

whether the propulsion plant is<br />

operated in combined mode, separate<br />

mode or constant speed mode.<br />

2 03 44 75–9.0<br />

Fuel index<br />

20<br />

100%<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

%<br />

1<br />

3 4 MCR<br />

100%<br />

0 1 2 3 4 5 6 V<br />

Engine speed<br />

tacho signal<br />

Rpm Engine tacho Fuel index Fuel transmitter<br />

signal signal<br />

% V %<br />

mA<br />

1 = 50 2.25 36 9.2<br />

2 = 80 3.60 69 14.2<br />

3 = 98 4.41 100 18.5<br />

4 = 100 4.50 100 18.5<br />

Fig 5 : A specific load control curve (engine speed/fuel index) for a two–stroke<br />

engine.<br />

2<br />

11


<strong>Control</strong> lever order and command<br />

For plants with no specific requirements<br />

to load increase/decrease limits,<br />

the control lever orders are translated<br />

2025364–6.0<br />

12<br />

MCR<br />

speed %<br />

100<br />

Idling<br />

speed<br />

80<br />

60<br />

40<br />

20<br />

10<br />

1 11 sec 2 55 sec<br />

10 20 30 40 50 60<br />

Order demand<br />

idling to maximum<br />

engine speed<br />

into engine speed and propeller pitch<br />

commands in accordance with the control<br />

lever slew rate curves shown in figs<br />

6 and 7. Individual adjustment may be<br />

Time sec<br />

Fig 6 : <strong>Control</strong> lever slew rate for engine speed command<br />

2025364–6.0<br />

Pitch<br />

ahead %<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Neutral 0<br />

pitch<br />

1 15 sec 2 90 sec<br />

Time sec<br />

10 20 30 40 50 60 70 80 90<br />

Order demand<br />

zero to full ahead<br />

propeller pitch<br />

Fig 7 : <strong>Control</strong> lever slew rate for propeller pitch command<br />

MCR<br />

speed %<br />

100<br />

Idling<br />

speed<br />

Pitch<br />

ahead<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Neutral 0<br />

pitch 20<br />

40<br />

60<br />

80<br />

100<br />

Pitch<br />

astern<br />

80<br />

60<br />

40<br />

20<br />

10<br />

set within the range ’fast’ (item 1) and<br />

’slow’ (item 2) ensuring optimal system<br />

dynamics.<br />

10<br />

1 5 sec 2 24 sec<br />

20 30<br />

40<br />

50<br />

Order demand<br />

maximum to idling<br />

engine speed<br />

Order demand<br />

full ahead to astern<br />

propeller pitch<br />

Time sec<br />

60<br />

10 20 30 40 50 60 70 80 90 100110120<br />

1 25 sec<br />

2<br />

Time sec


Load program<br />

If required, a load program for the en–<br />

gine can be included as an add–on unit<br />

with load–up limitations as illustrated in<br />

the example fig 8. The load program is<br />

a programmable unit, which will be supplied<br />

in accordance with the engine<br />

designers specifications.<br />

2035333–9.0<br />

Engine rating (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Full astern<br />

to stop<br />

Astern<br />

Stop to<br />

full astern<br />

In this example, the normal manoeuvre<br />

has the load–up sequence programmed<br />

for control of the propeller<br />

pitch. The load–up sequence may also<br />

be programmed for control of engine<br />

speed and propeller pitch in combination.<br />

Stop in full ahead<br />

The emergency curve represents the<br />

pitch control via the back–up panel, or<br />

pitch control directly at the solenoid<br />

valves of the servo unit.<br />

Ahead<br />

Full ahead<br />

to stop<br />

10<br />

0<br />

1 0 2 1 0 0 1 2 3 4 5 6 7 8 9 10 0 1 2<br />

2 1<br />

Time in minutes<br />

Fig 8 : Load program curve – engine type L48/60 – L58/64<br />

Normal manoeuvre<br />

Emergency manoeuvre<br />

13


Manoeuvre Panels<br />

A variety of panels are available for the<br />

remote control of propulsion plants.<br />

The panels should be installed in consoles<br />

located on the main bridge, bridge<br />

wings and in the control room. According<br />

to its location, each panel will present<br />

individual features as described in<br />

the following.<br />

Mode of operation<br />

The main feature is the propeller pitch<br />

and speed control performed by the two<br />

2045076–7.0<br />

14<br />

control levers on the panels. The<br />

manner in which the levers are operated,<br />

decides whether both parameters<br />

are to be adjusted individually or not.<br />

Separate mode<br />

Separate mode specifies the condition<br />

where pitch and speed are controlled<br />

individually by operating both levers.<br />

Maximum manoeuvrability and utilization<br />

of the entire CP propeller operating<br />

range is available.<br />

Engine speed 100%=MCR Speed RPM Pitch %<br />

120<br />

Idle RPM 77<br />

129<br />

117<br />

105<br />

94<br />

82<br />

70<br />

Propeller pitch<br />

100% = design P/D<br />

Engine speed order<br />

Propeller pitch order<br />

Combined mode<br />

Combined mode is selected by operating<br />

solely the pitch lever, thus leaving<br />

the speed lever in neutral. In combined<br />

mode, both pitch and speed are controlled<br />

by using the pitch lever only. This<br />

is done according to the combinator<br />

curve as shown in fig 9, ensuring optimum<br />

operation and propulsion economy<br />

– considering propeller efficiency,<br />

manoeuvrability and minimized fuel<br />

consumption.<br />

Power (kW)<br />

Max pitch reduction<br />

100 90 80 70 60 50 40 30 20 10 10<br />

10<br />

20 30 40 50 60 70 80 90 100<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

Power (Kw)<br />

Fig 9 : Combined mode – combined pitch/speed order and engine load curve for a two–stroke propulsion package –<br />

6L60MC, VBS 1560.<br />

10440<br />

9396<br />

8352<br />

7308<br />

6870<br />

<strong>Control</strong> lever<br />

position %


Constant speed mode<br />

Constant speed mode is a third mode<br />

which is characterized by maintaining a<br />

fixed engine speed. The constant<br />

speed mode is selected and the speed<br />

is adjusted from a special (shaft alternator<br />

control) panel usually mounted in<br />

the switchboard in connection with the<br />

shaft alternator synchronizer.<br />

When constant speed mode is selected,<br />

the levers in the manoeuvre<br />

panels only control the propeller pitch.<br />

The automatic load control is, however,<br />

still active for engine overload protection.<br />

With the shaft alternator in service, the<br />

load control system can handle a crash<br />

stop order, without any risk of a black–<br />

out.<br />

15


Bridge and bridge wing manoeuvre<br />

panels<br />

As a minimum the remote control system<br />

will always include a bridge panel<br />

per engine/propeller, see fig 10.<br />

Via the control levers it is possible to adjust<br />

the propeller pitch and the speed.<br />

Furthermore, the panel includes push–<br />

2035733–0.1<br />

16<br />

FAILURE IN<br />

<strong>MAN</strong>OEUVRE<br />

SYSTEM<br />

LAMP TEST<br />

<strong>MAN</strong>OEUVRE<br />

RESP.<br />

buttons for manoeuvre responsibility,<br />

acknowledgement of failure in manoeuvre<br />

system, push–buttons for<br />

lamp test, as well as various status<br />

lamps. A facility for emergency back–<br />

up control is also present, controlling<br />

the propeller pitch by means of push–<br />

buttons at the actual pre–set engine<br />

speed value.<br />

PROPELLER<br />

RPM<br />

OVERLOAD<br />

Fig 10 : Bridge manoeuvre panel – primary<br />

1<br />

PITCH<br />

AHEAD<br />

PITCH<br />

ASTERN<br />

BACK–UP<br />

CONTROL<br />

ON/OFF<br />

4<br />

6<br />

8<br />

1 Light dimmer – push buttons<br />

2 Light dimmer instruments<br />

3 Headphone connection<br />

4 Marker knob<br />

2<br />

50 50<br />

100<br />

100<br />

ASTERN AHEAD<br />

PITCH<br />

3<br />

Both the indoor and outdoor wing manoeuvre<br />

panels are simplified versions<br />

of the bridge manoeuvre panel, as all<br />

push–buttons with functions regarding<br />

emergency control have been removed.<br />

For a single propeller plant, up<br />

to three additional wing panels are optional.<br />

4<br />

8<br />

6<br />

4<br />

4<br />

6<br />

8


Manoeuvre distribution between<br />

bridge panels<br />

Only one panel at a time can be in<br />

charge of the manoeuvre. A push–button<br />

is used for manoeuvre take–over<br />

between the various manoeuvre panels<br />

on the bridge.<br />

When accepting the responsibility at one<br />

panel, a flashing lamp changes to a<br />

steady light. On all other (inactive) panels<br />

2035733–0.1<br />

FAILURE IN<br />

<strong>MAN</strong>OEUVRE<br />

SYSTEM<br />

LAMP TEST<br />

<strong>MAN</strong>OEUVRE<br />

RESP.<br />

OVERLOAD<br />

Fig 11 : Wing manoeuvre panel indoor<br />

the flashing lamp will be switched off.<br />

To take over the responsibility between<br />

bridge panels, the button must be activated<br />

on the panel, to which the responsibility<br />

is requested.<br />

Responsibility take–over between<br />

bridge panels can only be accomplished<br />

by synchronized pitch lever settings<br />

of the ’responsible panel’ and of<br />

the panel from which the responsibility<br />

PROPELLER<br />

RPM<br />

4<br />

6<br />

8<br />

50 50<br />

100<br />

is requested. Inconsistencies between<br />

the lever adjustments are indicated by<br />

a flashing lamp when the button is activated.<br />

If the settings of the pitch levers differ,<br />

then activate the button at the same<br />

time as the pitch lever is synchronized.<br />

Then the responsibility will be taken<br />

over when the positions of the levers<br />

correspond.<br />

100<br />

ASTERN AHEAD<br />

PITCH<br />

8<br />

6<br />

4<br />

4<br />

6<br />

8<br />

17


Engine control room manoeuvre<br />

panel<br />

In addition to the manoeuvre panels for<br />

bridge location, there is also a ma-<br />

2028965–4.0<br />

18<br />

FAILURE IN<br />

<strong>MAN</strong>OEUVRE<br />

SYSTEM<br />

LAMP TEST<br />

<strong>MAN</strong>OEUVRE<br />

RESP.<br />

PROPELLER<br />

RPM<br />

noeuvre panel for use in the control<br />

room, see fig 12. The control room manoeuvre<br />

panel is also a simplified version<br />

of the main bridge manoeuvre<br />

OVERLOAD<br />

Fig 12 : <strong>Control</strong> room manoeuvre panel – primary<br />

4<br />

6<br />

8<br />

50 50<br />

100<br />

ASTERN AHEAD<br />

PITCH<br />

panel, as all push–buttons with functions<br />

regarding emergency control<br />

have been removed.<br />

100<br />

8<br />

6<br />

4<br />

4<br />

6<br />

8


Manoeuvre responsibility panels<br />

These panels are used for plants with a<br />

control room panel installed in addition<br />

to bridge panel(s). Each responsibility<br />

panel is located together with the actual<br />

main bridge panel and control room<br />

panel. The panels are used for the<br />

transfer of the manoeuvre responsibility<br />

from the bridge to the control room<br />

and vice versa.<br />

The responsibility panel contains two<br />

push–buttons which are used for the<br />

transfer, see fig 13.<br />

By pressing one of these buttons, it is<br />

possible to select to where the responsibility<br />

is to be assigned. This is<br />

audibly as well as visually indicated on<br />

the panels. The responsibility transfer<br />

is then to be accepted at the panel,<br />

which will be disengaged. To obtain the<br />

responsibility it is necessary to synchronize<br />

the propeller pitch control<br />

levers of the two panels in question, as<br />

well as accepting the responsibility by<br />

pressing the responsibility button on<br />

the manoeuvre panel. In addition to the<br />

responsibility push–buttons, the panel<br />

includes different indicator lamps to<br />

show the selected operating mode and<br />

the actual location (control room/<br />

bridge) of the manoeuvre responsibility.<br />

On all manoeuvre panels it is clearly<br />

indicated, if the individual panel is in<br />

control of the propulsion plant, or not.<br />

2022992–0.6<br />

COMBINED<br />

MODE<br />

BACK–UP<br />

CONTROL<br />

BRIDGE<br />

<strong>MAN</strong>OEUVRE<br />

RESPONSIBILITY<br />

CONTROL<br />

SEPARATE<br />

MODE<br />

CONSTANT<br />

SPEED<br />

LOCAL<br />

CONTROL<br />

CONTROL<br />

ROOM<br />

<strong>MAN</strong>OEUVRE<br />

Fig 13 : Manoeuvre responsibility panel – single propeller plant<br />

19


Special Panels<br />

In addition to the panels for ordinary<br />

manoeuvring control, optional special<br />

panels are available for shaft alternator<br />

control, shaft alternator control with<br />

Power Management as well as engine<br />

load limit control.<br />

Shaft alternator panel<br />

The panel is used for shaft generator<br />

operation to ensure that the engine runs<br />

at a fixed speed despite the setting of<br />

the speed lever on the manoeuvre<br />

panel. This means that the generator<br />

frequency can be set as desired and secured<br />

manually by means of a locking<br />

button. It is recommended that the<br />

panel is mounted in the main switchboard<br />

where the synchronzation and<br />

closing of the switchboard breaker<br />

takes place.<br />

Shaft alternator speed control with<br />

Power Management<br />

Upon request this panel can be supplied<br />

with interface facilities for Power<br />

Management systems making automatic<br />

adjustment of the shaft generator<br />

frequency possible. See fig 15.<br />

20<br />

2022992–0.6<br />

CONSTANT<br />

SPEED<br />

LAMP TEST<br />

IN SERVICE<br />

Fig 14 : Shaft alternator panel<br />

2038107–0.1<br />

SHAFT ALTERNATOR<br />

CONTROL<br />

Speed<br />

adjustment<br />

OUT OF<br />

SERVICE<br />

1. Potentiometer for engine speed<br />

2. Locking button<br />

SHAFT ALTERNATOR SPEED CONTROL<br />

IN<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50 60<br />

70<br />

80<br />

90<br />

100<br />

SERVICE SPEED<br />

OUT OF LOWER<br />

SERVICE<br />

Fig 15 : <strong>Control</strong> panel with Power Management<br />

RAISE<br />

SPEED<br />

1<br />

2


Load limiter panel<br />

With this panel it is possible to limit the<br />

engine load in the range 50–100% of<br />

normally permitted maximum output.<br />

In connection with an overhaul of the<br />

engine and the following running–in,<br />

the chief engineer may choose to be<br />

cautious and therefore limit the acceptable<br />

engine load. For this situation the<br />

load limit control panel shown in fig 16<br />

may be used.<br />

2033193–7.2<br />

Fig 16 : Load limit control<br />

ENGINE<br />

OVERLOAD<br />

LOAD<br />

LIMITER<br />

IN SERVICE<br />

ENGINE LOAD<br />

LIMIT CONTROL<br />

50%<br />

75%<br />

Load limit<br />

adjustment<br />

1. Potentiometer for load limit<br />

2. Locking button<br />

100%<br />

1<br />

2<br />

21


<strong>Control</strong> and Interface Unit<br />

The heart of the remote control system<br />

consists of a main control and interface<br />

unit shown in fig 17. The unit, handling<br />

Fig 17 : <strong>Control</strong> and interface unit<br />

22<br />

all vital control functions, will also interface<br />

the remote control system to various<br />

engine types.<br />

The system can also include (but this is<br />

separately supplied) a load program<br />

unit fig 19, which is necessary in order<br />

to fulfil the required protection against<br />

sudden changes in load according to<br />

the engine designer’s specifications.<br />

600<br />

E1<br />

E2<br />

E3<br />

E4<br />

E4<br />

1195


<strong>Alphatronic</strong> control unit<br />

The <strong>Alphatronic</strong> control unit contains 5<br />

circuit boards (see fig 18) to which the<br />

following tasks are assigned:<br />

� Supervision of the control system<br />

� Load control and engine overload<br />

protection<br />

� Mode selection<br />

202 29 05–9.0<br />

S2<br />

� Manoeuvre responsibility between<br />

bridge and control room panels<br />

� Manoeuvre distribution between<br />

bridge panels<br />

The control unit receives 24 V DC<br />

power supply from the interface unit<br />

and distributes the continuity supervised<br />

power to the manoeuvre panels.<br />

The cables between the units and panels<br />

are monitored by the system itself.<br />

Interface unit<br />

An interface unit is applied in order to<br />

use the system with different combinations<br />

of engines, governors etc. The interface<br />

unit converts the order and indication<br />

signals to signal levels suitable<br />

for the control system.<br />

The interface unit is supplied in a cabinet<br />

together with the control unit as<br />

shown in fig 17.<br />

E1 E2 E3 E4 E4<br />

E1 Safety card E2 Load control card E3 Man.resp./const.rpm card E4.1 Man. distribution card E4.2 Man. distribution card<br />

S1<br />

S3<br />

Fig 18 : <strong>Alphatronic</strong> control unit<br />

E1: Safety card<br />

E2: Load control card<br />

E3: Manoeuvre responsibility card<br />

a. Constant speed<br />

b. Manoeuvre responsibility bridge/control room<br />

E4: Manoeuvre distribution cards<br />

S1: Fuse – control panels<br />

S2: Fuse – actuators<br />

S3: Fuse – supervision system<br />

23


Load program unit<br />

The load program unit is only included<br />

in the scope of supply at the discretion<br />

of the engine designers. It is a programmable<br />

unit capable of fulfilling the requirements<br />

for engine protection in a<br />

load increase situation. The unit is supplied<br />

in a cabinet as shown in fig 19.<br />

Noise suppression unit<br />

To ensure efficient EMC immunity, two<br />

noise suppression units are part of the<br />

remote control package, see fig 20.<br />

2042914–0.0<br />

24<br />

480<br />

Fig 19 : Load program unit.<br />

480<br />

EMC, signifying Electro Magnetic Compatibility<br />

is the ability of equipment and<br />

of systems to operate as designed –<br />

without degeneration or malfunctions –<br />

in electromagnetic fields. In addition the<br />

equipment or system must neither interfere,<br />

nor itself be interfered with, by<br />

other systems or equipment.<br />

2018457–0.2<br />

257<br />

NSU 10<br />

Noise suppression unit<br />

X10 156<br />

Fig 20 : Noise suppression unit


Power supply unit<br />

The power supply unit included in the<br />

usual <strong>Alphatronic</strong> scope of supply will<br />

ensure adequate and stable power supply<br />

for the control system. If omitted<br />

from the <strong>MAN</strong> B&W Alpha scope, the<br />

yard must ensure a power supply that<br />

fulfils the power supply requirement of<br />

<strong>Alphatronic</strong> remote control systems.<br />

2017150–0.3<br />

296<br />

Fig 21 : Power supply unit<br />

809<br />

25


Installation<br />

External systems<br />

The remote control system can be connected<br />

to different external systems<br />

such as:<br />

� Joystick control systems<br />

� Dynamic position systems<br />

� Power management systems<br />

� Manoeuvre log etc.<br />

Like the engine safety system, the<br />

above external systems are separate<br />

systems which all can be interfaced<br />

with the remote control system.<br />

2025543–2.3<br />

26<br />

PROPULSION MODE<br />

RESPONSIBILITY<br />

X6,X6S<br />

144<br />

10<br />

This will, however, require additional<br />

equipment in the remote control system<br />

package. Interface with external systems<br />

must be approved by <strong>MAN</strong> B&W<br />

Alpha in each individual case.<br />

Panels for this additional equipment, as<br />

well as for the engine safety system can<br />

be supplied in order to maintain a neat<br />

and matching panel layout.<br />

Layout examples<br />

To illustrate the bridge and control room<br />

layout for different <strong>Alphatronic</strong> control<br />

system applications the following examples<br />

are given:<br />

PROPELLER<br />

RPM<br />

4<br />

6<br />

8<br />

50 50<br />

100 100<br />

ASTERN AHEAD<br />

PITCH<br />

8<br />

6<br />

4<br />

4<br />

6 8<br />

X1 X1S<br />

288<br />

Fig 22 : Main bridge layout for double propeller plant<br />

760<br />

8<br />

6<br />

4<br />

4<br />

6<br />

8<br />

50 50<br />

100 100<br />

ASTERN AHEAd<br />

PITCH<br />

4<br />

6 8<br />

30 288<br />

PROPELLER<br />

RPM<br />

288


2025524–1.2<br />

288<br />

144<br />

RESPONSIBILITY<br />

CONTROL<br />

PROPELLER<br />

RPM<br />

X6 X1<br />

10<br />

144<br />

288<br />

443<br />

Fig 23 : Main bridge layout for single propeller plant<br />

2025524–1.2<br />

288<br />

144<br />

RESPONSIBILITY<br />

CONTROL<br />

PROPELLER<br />

RPM<br />

X7 10<br />

X5<br />

144<br />

288<br />

442<br />

Fig 24 : <strong>Control</strong> room layout for single propeller plant<br />

4<br />

6<br />

8<br />

4<br />

6<br />

8<br />

50 50<br />

100 100<br />

ASTERN AHEAD<br />

PITCH<br />

50 50<br />

100 100<br />

ASTERN HEAD<br />

PITCH<br />

8<br />

6<br />

4<br />

4 68<br />

8<br />

6<br />

4<br />

4<br />

6<br />

8<br />

Optional instruments<br />

<strong>Remote</strong> reading of analogue sensor instruments,<br />

eg turbocharger tachometers,<br />

may be arranged on the bridge and in<br />

the engine control room with instruments<br />

matching the <strong>Alphatronic</strong> panel<br />

design.<br />

27


Cable plans<br />

Cable plan and connection lists showing<br />

each cable connection to control<br />

system terminals are supplied by <strong>MAN</strong><br />

28<br />

Machinery section<br />

Mounted on servo<br />

Feed back<br />

B42<br />

Pitch in.<br />

B41<br />

Pro.tacho<br />

pick–up<br />

B40<br />

PANEL LAYOUT<br />

CONTROL<br />

ROOM<br />

X7 X5<br />

2–stroke cable plan<br />

Electronic<br />

governor<br />

for 2–stroke<br />

MAIN BRIDGE<br />

X6 X1<br />

W203 4<br />

/<br />

W204 4<br />

/<br />

W205 2<br />

/<br />

MAIN SWITCH<br />

BOARD<br />

X9<br />

Fig 25 : Cable plan example<br />

Shaft<br />

alternator<br />

panel<br />

X9 AMP<br />

<strong>Control</strong><br />

room<br />

panel<br />

X5 CMP<br />

<strong>Control</strong> room<br />

responsibility<br />

panel<br />

X7 RMP<br />

B&W Alpha – after the Purchase Contract<br />

has been signed and upon receipt<br />

of all necessary shipyard information.<br />

1x10<br />

SHIP AC SUPPLY<br />

Supply 220 V AC/ 6 A fused<br />

Supply 110 V AC/ 10 A fused<br />

Ship hull<br />

Servo<br />

remote<br />

control<br />

X41<br />

W206<br />

/<br />

17x1.5<br />

W126 5<br />

/<br />

W108<br />

/<br />

2x2.5<br />

W156 / 2<br />

<strong>Alphatronic</strong> control system<br />

X62/X11<br />

<strong>Alphatronic</strong> <strong>Alphatronic</strong><br />

W109 3x2.5 Filter<br />

/<br />

unit<br />

X10.1<br />

REMOTE CONTROL<br />

Supply 24 V DC 10A<br />

W101 2x2.5<br />

/<br />

Power supply<br />

To governor system<br />

interface<br />

unit<br />

X62<br />

control<br />

unit<br />

X11<br />

W60 2x2.5<br />

/<br />

Filter<br />

unit<br />

X10.2<br />

W50 2x2.5<br />

/<br />

TO ALARM SYST.<br />

EAX76<br />

SHIP EMERGENCY SUPPLY<br />

Supply 24VDC 10A peak<br />

50 W nominal<br />

TO ALARM SYST.<br />

EAX66, EAX68<br />

W44 5<br />

/<br />

W132 3<br />

/<br />

W131 4<br />

/<br />

W142<br />

/<br />

8<br />

W141<br />

/<br />

6<br />

<strong>Control</strong> room section<br />

W55<br />

/<br />

14x1.5<br />

W4 / 20<br />

W2<br />

/<br />

8<br />

W1<br />

/<br />

4x2.5<br />

W42<br />

/<br />

13<br />

W43 / 14<br />

W41 / 2x2.5<br />

W145 17x1<br />

/<br />

Bridge man.<br />

panel 1<br />

with back–up<br />

control<br />

X1 BMP<br />

W8 / 2x2.5<br />

W9 / 4<br />

Bridge<br />

responsibility<br />

panel<br />

X6 RMP<br />

Bridge section


Fig 26 : Connection list example<br />

29


In order to ensure the optimum function,<br />

reliability and safety of the control<br />

system, without compromize – the following<br />

installation requirements must<br />

be taken into consideration:<br />

� Power supply cables must be of size<br />

2.5 mm2 � If the supply cable length between the<br />

bridge and the engine room is in excess<br />

of 60 metres, the voltage drop<br />

should be considered<br />

� The signal cables should have wires<br />

with cross–sectional area, min 0.5<br />

mm2 and max 1.5 mm2 � All cables should be shielded and the<br />

screen must be connected to earth<br />

(terminal boxes) at both ends<br />

� Signal cables are not to be located<br />

alongside any other power cables<br />

conducting high voltage (ie large motors<br />

etc) or radio communication<br />

cables. Cables for the remote control<br />

30<br />

signals can induce current from their<br />

immediate environment sufficient to<br />

disturb or even damage the electronic<br />

control system.<br />

Commissioning<br />

As part of the on–board acceptance<br />

procedures, a final system test of the<br />

remote control system is carried out by<br />

<strong>MAN</strong> B&W Alpha commissioning engineers.<br />

A number of classification societies<br />

usually require the on–board test to be<br />

performed in the presence of a surveyor<br />

before the official sea trial.<br />

Prior to the functional test, and even before<br />

the power supply voltage is<br />

switched on – the cable plan and connection<br />

lists are cross–checked with all<br />

wiring and connections made by the<br />

shipyard.<br />

The <strong>MAN</strong> B&W Alpha procedure for<br />

<strong>Alphatronic</strong> <strong>Remote</strong> <strong>Control</strong> <strong>System</strong><br />

Test is carried out in accordance with a<br />

40–point check list covering a number<br />

of tasks within the following categories:<br />

� Power up and control room responsibility<br />

� <strong>Control</strong> panel operations and indications<br />

� Manoeuvre responsibility and transfer<br />

� Failure and alarm simulation<br />

� Propeller pitch back–up control<br />

� Shaft alternator control<br />

The commissioning engineers will adjust<br />

all lever positions, order signals and<br />

actuators as preparation for the fine<br />

tuning of settings for propeller pitch,<br />

fuel index etc performed during the sea<br />

trials.


Instruction Manual<br />

As part of our technical documentation,<br />

an instruction manual will be forwarded.<br />

The instruction manual is tailor–made<br />

for each individual control system and<br />

includes:<br />

� Descriptions and technical data<br />

� Operation and maintenance guide–<br />

lines<br />

� Spare parts plates<br />

The manual can be supplied in two different<br />

versions – a printed copy as well<br />

as an electronic book in English on CD–<br />

ROM.<br />

The layout of the electronic book corresponds<br />

to the paperback book. In the<br />

electronic book it is possible to search<br />

for specific topics or words, zoom–in on<br />

diagrams and technical drawings, jump<br />

to references and to add personal<br />

notes. Parts of the book or the entire<br />

book can be printed out.<br />

The electronic book is compatible with<br />

any standard PC Windows environment<br />

when using a special viewer<br />

which is part of the software on the CD–<br />

ROM.<br />

consisting of:<br />

Gearbox 2000 0872<br />

Propeller 3000 5340<br />

<strong>Remote</strong> <strong>Control</strong>s 4000<br />

5340<br />

Safety <strong>System</strong> 4000 0340<br />

April 1998<br />

31

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!