27.11.2014 Views

PODP Approach to Acquire Extractable Profile Data - PQRI

PODP Approach to Acquire Extractable Profile Data - PQRI

PODP Approach to Acquire Extractable Profile Data - PQRI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong> <strong>Approach</strong> <strong>to</strong> <strong>Acquire</strong><br />

<strong>Extractable</strong> <strong>Profile</strong> <strong>Data</strong><br />

Thomas Egert<br />

Alan Hendricker<br />

Chris Hous<strong>to</strong>n<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Thresholds and Best Practices for<br />

Parenteral and Ophthalmic Drug<br />

Products (<strong>PODP</strong>)<br />

February 22-23, 2011


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong> <strong>Approach</strong> <strong>to</strong> <strong>Acquire</strong><br />

<strong>Extractable</strong> <strong>Profile</strong> <strong>Data</strong><br />

Part 1: The Experimental Pro<strong>to</strong>col<br />

Thomas Egert<br />

Research Scientist<br />

Boehringer Ingelheim Pharma GmbH & Co.KG<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

<strong>PODP</strong> Working Plan Hypothesis<br />

• Threshold concepts that have been developed for safety<br />

qualification of leachables in OINDP can be extrapolated<br />

<strong>to</strong> the evaluation and safety qualification of leachables in<br />

<strong>PODP</strong>, with consideration of fac<strong>to</strong>rs and parameters such<br />

as dose, duration, patient population and additional<br />

product dependent characteristics unique <strong>to</strong> various <strong>PODP</strong><br />

types.<br />

• The “good science” best demonstrated practices that were<br />

established for the OINDP pharmaceutical development<br />

process can be extrapolated <strong>to</strong> container closure systems<br />

for <strong>PODP</strong>.<br />

• Threshold and best practices concepts can be integrated<br />

in<strong>to</strong> a comprehensive process for characterizing container<br />

closure systems with respect <strong>to</strong> leachable substances and<br />

their associated impact on <strong>PODP</strong> safety.<br />

3


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

Work Plan Outline<br />

• “. . . In order <strong>to</strong> test the hypothesis that<br />

best demonstrated practices for the<br />

characterization and analytical evaluation<br />

(of <strong>PODP</strong>) exist, the Working Group must<br />

establish such practices …“<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Motivation for a Experimental<br />

Program (Phase I):<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• Controlled Extraction<br />

Studies !<br />

4


<strong>PODP</strong> E&L<br />

Working Group<br />

Coming from OINDP Best Practices:<br />

Controlled Extraction Studies are the first<br />

experimental miles<strong>to</strong>ne . . .<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Select components and/or raw<br />

materials<br />

Conduct rusk assessment on<br />

information from supplier<br />

Individual<br />

ingredient poses<br />

unacceptable<br />

risk<br />

YES<br />

• Safety Thresholds and<br />

Best Practices for<br />

<strong>Extractable</strong>s and<br />

Leachables in Orally<br />

Inhaled and Nasal Drug<br />

Products 2006<br />

Summary of Results<br />

NO<br />

Conduct controlled extraction<br />

studies on components<br />

Individual<br />

extractable greater<br />

than or equal <strong>to</strong> the<br />

AET/SCT<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Develop and validate<br />

extraction studies on<br />

components<br />

NO<br />

No further safety assessment<br />

NO<br />

YES<br />

Conduct leachables studies on<br />

drug product and placebo<br />

Individual<br />

extractable greater<br />

than or equal <strong>to</strong> the<br />

AET/SCT<br />

Establish correlation between<br />

leachables and extractables<br />

profiles<br />

YES<br />

Report leachable <strong>to</strong><br />

<strong>to</strong>xicologist for risk<br />

assessment<br />

Report extractable <strong>to</strong><br />

<strong>to</strong>xicologist for risk<br />

assessment<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Establish acceptance criteria<br />

for leachables and extractables<br />

Go <strong>to</strong> safety qualification<br />

process<br />

5


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Recapitulation:<br />

What is the Purpose of a Controlled<br />

Extraction Study<br />

• Verify and complement supplier information about<br />

material<br />

• Establish a basis for the development and<br />

validation of routine quality control methods and<br />

acceptance criteria for critical components<br />

extractables profiles (consistency in composition)<br />

• Establish a basis for the development and<br />

validation of leachables methods<br />

• Allow for correlation of extractables and leachables<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

6


<strong>PODP</strong> E&L<br />

Working Group<br />

Investigation of Workplan Hypothesis<br />

Implies <strong>to</strong> Investigate:<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

• Nature of typical <strong>PODP</strong> materials and their<br />

(unique?) interactions with typical <strong>PODP</strong> drug<br />

product formulations (implications for<br />

extraction solvents and – techniques)<br />

• Universe of substances encountered<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Applicability of AET – related concept (OINDPparadigm)<br />

<strong>to</strong> extraction studies on <strong>PODP</strong><br />

materials<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

7


<strong>PODP</strong> E&L<br />

Working Group<br />

Investigation of Workplan Hypothesis<br />

Implies <strong>to</strong> Investigate (cont‘d):<br />

Analytical methods:<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Appropriate range of instrumental techniques<br />

(Likelihood of comprehensive evaluation of<br />

extractables)<br />

• Identification performance, suitable <strong>to</strong> generate<br />

data for safety assessment based on:<br />

(i) SAR endpoints<br />

(ii) confirmed identification<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• Sensitivity (in terms of lowest level for<br />

identification)<br />

• Specificity (matrix interferences)<br />

• Limitations (critical substances/mixtures)?<br />

8


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PQRI</strong> <strong>PODP</strong> Experimental Pro<strong>to</strong>col<br />

The General Concept<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• Test Articles representing <strong>PODP</strong> materials<br />

• Appropriate extraction techniques<br />

• Appropriate solvents<br />

• Various analytical techniques<br />

• Various participating labora<strong>to</strong>ries<br />

(experienced in the field of E&L)<br />

• Comprehensive and detailed experimental<br />

pro<strong>to</strong>col<br />

• Semiquantitative approach –<br />

Reporting Limit 10 µg/g<br />

• Quality requirements (system suitability)<br />

9


<strong>PODP</strong> E&L Test Articles<br />

Working Group<br />

(Material Type)<br />

Test Articles Representing <strong>PODP</strong> Materials<br />

Format<br />

Composition<br />

(Supplier Information)<br />

Application<br />

Category<br />

Polycarbonate<br />

(PC)<br />

Injection<br />

moulded<br />

plaques<br />

• 0.05 PHR Irganox 1076<br />

• 0.1 PHR Irgafos 168<br />

Ports,<br />

Tubes<br />

LVP<br />

Rubber<br />

Elas<strong>to</strong>mer<br />

(Bromobutyl)<br />

Sheet • Brominated isobutylene isoprene<br />

copolymer (57.3%)<br />

• calcined aluminum silicate, 38.2%<br />

• titanium dioxide, 1.2%;<br />

• paraffinic oil, 1.2%;<br />

• zinc oxide, 0.6%<br />

• polyethylene0.6%<br />

• SRF Carbon block mixture, 0.4%<br />

• calcined magnesium oxide, 0.3%<br />

• 4,4’-dithiodimorpholine/polyisobutylene,<br />

0.3%<br />

Closures,<br />

Plungers,<br />

Gaskets<br />

SVP<br />

Cyclic Olefin<br />

Copolymer<br />

(COC)<br />

Plaques • Irganox 1010<br />

• Ultramarine Blue<br />

Syringes,<br />

Vials<br />

PFS, SVP<br />

Polyvinylchloride<br />

(PVC)<br />

Pellets • PVC resin<br />

• DEHP 30%<br />

• Epoxidized oil 7%<br />

• Zn stearate 0.5%<br />

• Ca stearate 0.5%<br />

• Stearamide 1%<br />

Bags,<br />

Tubing<br />

LVP<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Low density<br />

polyethylene<br />

(LDPE)<br />

Blown Film<br />

• Irganox B 215 (2:1 blend of Irgafos<br />

168 and Irganox 1010) 1000 ppm<br />

• BHT 200 ppm<br />

• Calcium Stearate 500 ppm<br />

• Erucamide 500 ppm<br />

• Chimassorb 944 2000 ppm<br />

Overpouch,<br />

BFS,<br />

Containers<br />

BFS, SVP,<br />

LVP<br />

10


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Solvents should mimic drug product<br />

formulation<br />

• The majority of <strong>PODP</strong> are represented by aqueous based<br />

formulations !<br />

• Cosolvents can be subdivided in<strong>to</strong> two groups:<br />

A: Polarity Neutral<br />

B: Polarity Impacting<br />

Summary of Results<br />

Primary function of excipient is not drug<br />

solubilization<br />

Generally compounds with high<br />

aqueous solubility:<br />

Components primary function is <strong>to</strong><br />

increase the solubility of the drug<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Diluents (dextrose, saline)<br />

• Buffers (acetate, lactate, bicarbonate,<br />

phosphate)<br />

• Amino acids<br />

• Vitamins<br />

• Tween 80<br />

• Cyclodextrins<br />

• SDS<br />

• Lipids up <strong>to</strong> 20% wt/wt<br />

• Surfactants, Emollients<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Aqueous pH 2.5 / 9.5<br />

Isopropanol / Water<br />

11


<strong>PODP</strong> E&L<br />

Working Group<br />

Extraction/Solvent Map<br />

Solvent Polarity /<br />

Drug Product Similarity<br />

Temp.<br />

Thermal<br />

n‐ Isopropanool/Water<br />

pH 2.5 pH 9.5<br />

Isopropan‐<br />

Aqueous Aqueous<br />

Hexane<br />

Headspace X ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐<br />

Reflux ‐‐‐ X X PC/PVC only ‐‐‐ ‐‐‐<br />

Soxhlet ‐‐‐ X X ‐‐‐ ‐‐‐ ‐‐<br />

Sealed Vessel ‐‐‐ ‐‐‐ ‐‐‐ 55°C/3d<br />

(121°C/<br />

1hr) 1<br />

Sonication ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ x x<br />

1 : au<strong>to</strong>clave conditions: (121°C/1hr)<br />

(121°C/<br />

1hr) 1<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

12


<strong>PODP</strong> E&L<br />

Working Group<br />

Extraction “Paradigms*” in Labora<strong>to</strong>ry Practice<br />

• Vigorous/exaggerated/-<br />

exhaustive conditions<br />

• no material deformulation<br />

‣„Hot“ extraction techniques<br />

but no sample dissolving<br />

solvents<br />

• Solvents should be<br />

attributed <strong>to</strong> the<br />

expected universe of<br />

substances (cover<br />

wide range of polarity)<br />

• Solvents<br />

should mimic<br />

drug product<br />

formulation<br />

Thermal<br />

n‐ Isopropanool/Water<br />

pH 2.5 pH 9.5<br />

Isopropan‐<br />

Aqueous Aqueous<br />

Hexane<br />

Headspace X ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐<br />

Reflux ‐‐‐ X X PC/PVC only ‐‐‐ ‐‐‐<br />

Soxhlet ‐‐‐ X X ‐‐‐ ‐‐‐ ‐‐<br />

Sealed Vessel ‐‐‐ ‐‐‐ ‐‐‐ 55°C/3d<br />

(121°C/<br />

1hr) 1<br />

Sonication ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ x x<br />

1 : au<strong>to</strong>clave conditions: (121°C/1hr)<br />

(121°C/<br />

1hr) 1<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

13


<strong>PODP</strong> E&L<br />

Working Group<br />

Analytical Methods – General Aspects<br />

Primary Focus:<br />

• Specific analytical procedures<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

(non specific could have supplemental character (e.g.<br />

gravimetry, pho<strong>to</strong>metry, <strong>to</strong>tal organic carbon, alkalinity, acidity,<br />

reducing subtances, infrared, thermal gravimetry etc.) <br />

pharmacopoeial testing<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

•Non-Target Analysis in addition <strong>to</strong> targets known from<br />

composition<br />

•“Small“ molecules (< 1000 Da)<br />

•Trace (Organic) Analysis<br />

•Standard – chroma<strong>to</strong>graphic conditions suitable <strong>to</strong><br />

efficiently separate the majority of the log Po/w range <strong>to</strong><br />

be expected.<br />

•What you might been missing . . .?<br />

14


<strong>PODP</strong> E&L<br />

Working Group<br />

Analytical Methods<br />

…choosing the most adequate <strong>to</strong>ols …<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Inorganic<br />

Trace elements and metals<br />

ICP/MS<br />

Organic<br />

Volatiles substances:<br />

Static Headspace-GC/MS<br />

Semivolatiles (GC-amenable)<br />

GC/MS<br />

Semivolatiles (not GC-amenable)<br />

LC/UV<br />

LC/MS n , HRMS<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Philosophy:<br />

Identification <strong>to</strong> an extent practicable . . .<br />

(OINDP Best Practices)<br />

15


Conditions<br />

for Analytical<br />

<strong>PODP</strong> E&L<br />

Working Group<br />

Methods<br />

(Chroma<strong>to</strong>graphy)<br />

Headspace-GC/MS<br />

Column:<br />

DB WAXETR<br />

60 m x iD 0.32 mm, FT 1.0 µm<br />

He 5 psi<br />

GC/FID (MS)<br />

Column:<br />

DB 5HT<br />

30m x 0.25 mm, FT 0.25µm<br />

LC/UV (MS)<br />

Column:<br />

Agilent Zorbax Exclipse Plus<br />

C18, 100 x 3.0 mm,<br />

3.5 µm particles<br />

Oven-Program<br />

35°C-7 min-1 K/min - 40°C – 15 min -<br />

10 K/min – 100 - 25 K/min – 240 - 5 min<br />

MS: EI 70 eV, 25 – 200 amu<br />

Headspace-Cond.: 80°C - 120 min<br />

Oven-Program<br />

50°C – 5 min – 10 K/min – 330°C – 5min<br />

Inj.-Vol. 1 µl, splitless<br />

Injec<strong>to</strong>r: 310 °C<br />

FID: 150°C<br />

MS: EI 70 eV, 33-650 amu<br />

Mobile-Phase<br />

A : 10 mM ammonium acetate<br />

B : ace<strong>to</strong>nitrile<br />

Flow rate: 0.8 mL/min<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Column Oven : 40 °C<br />

Gradient:<br />

Sample Size: 10 µl Time: %B<br />

0.0 5.0<br />

Detection 8.4 100.0<br />

UV 205 - 300 nm 35.0 100.0<br />

MS API-ES positive and 36.0 5.0<br />

negative ion (mass 39.0 5.0<br />

range 80 - 1200)<br />

16


<strong>PODP</strong> E&L<br />

Working Group<br />

Identification <strong>to</strong> “the Extent Practicable”…<br />

Identification attributes according <strong>to</strong> OINDP Best Practices<br />

have been applied<br />

Category<br />

Supporting Identification <strong>Data</strong><br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

A<br />

B<br />

Mass spectrometric fragmentation behaviour<br />

Confirmation of molecular weight<br />

C<br />

Confirmation of elemental composition<br />

Summary of Results<br />

D<br />

Mass spectrum matches au<strong>to</strong>mated library or<br />

literature spectrum<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

E<br />

Confimed<br />

Confident<br />

Tentative<br />

Mass spectrum and chroma<strong>to</strong>graphic retention<br />

index match authentic specimen<br />

Categories A, B(or)C and D(or)E fulfilled<br />

Sufficient <strong>Data</strong> <strong>to</strong> preclude all but the most<br />

closely related structures have been obtained<br />

<strong>Data</strong> have obtained that are consistent with a<br />

class of molecule only<br />

Confir<br />

med ID<br />

SAR<br />

Endpoints<br />

17


<strong>PODP</strong> E&L<br />

Working Group<br />

System Suitability Requirements were<br />

applied <strong>to</strong> moni<strong>to</strong>r result integrity<br />

Level 1 - Qualified Instrumentation<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

•Proper instrument condition and instrument suitabilty will be demonstrated<br />

by each participating labora<strong>to</strong>ry by following its proprietay (inhouse)<br />

procedures<br />

Level 2 – System suitability mixtures<br />

•Specific test mixtures <strong>to</strong> be analyzed by HS-GC, GC, LC and ICP<br />

•Test mixtures are suitable <strong>to</strong> demonstrate adequate and effective analytical<br />

performance (separation efficiency, selectivity, sensitivity)<br />

•Results be evaluated against defined acceptance criteria<br />

Level 3 - Internal standardization<br />

•Surrogate Internal Standard – added <strong>to</strong> the extract<br />

control of effectiveness of the sample preparation process<br />

•Injection Internal Standard – added <strong>to</strong> the injection solution<br />

control of the sample introduction and chroma<strong>to</strong>graphic process for each<br />

sample run.<br />

18


<strong>PODP</strong> E&L<br />

Working Group<br />

Suitability Mixtures HS-GC and GC<br />

HS-<br />

GC Cus<strong>to</strong>m-Mix: (µg/vial)<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

methanol 2<br />

acetic acid 2<br />

cyclohexanone 1<br />

<strong>to</strong>luene 1<br />

trimethylsilanol 2<br />

2-ethyl hexanol 2<br />

dance<br />

2e+07<br />

1.9e+07<br />

1.8e+07<br />

1.7e+07<br />

1.6e+07<br />

1.5e+07<br />

1.4e+07<br />

1.3e+07<br />

1.2e+07<br />

1.1e+07<br />

1e+07<br />

9000000<br />

8000000<br />

7000000<br />

6000000<br />

5000000<br />

4000000<br />

3000000<br />

2000000<br />

1000000<br />

16.608<br />

TIC: 9NOV2009003.D\ data.ms<br />

33.201<br />

32.014<br />

31.309<br />

39.182<br />

37.957<br />

39.064<br />

Summary of Results<br />

GC “Grob”-Mix: (µg/ml)<br />

><br />

10.00 15.00 20.00 25.00 30.00 35.00 40.00<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

L(+)-2,3-butanediol 27<br />

n-decane 14<br />

2,6-dimethylaniline 16<br />

2,6-dimethylphenol 16<br />

methyl decanoate (C10:0) 21<br />

methyl docecanoate (C12:0) 21<br />

methyl undecanoate (C11:0) 21<br />

nonanal 20<br />

1-octanal 18<br />

n-undecane (C11) 14<br />

1300000<br />

1200000<br />

1100000<br />

1000000<br />

900000<br />

800000<br />

700000<br />

600000<br />

500000<br />

400000<br />

300000<br />

1<br />

200000<br />

100000<br />

Time--><br />

2<br />

Signal: 1201014.D\FID1A.CH<br />

6<br />

7<br />

5<br />

9<br />

11<br />

3<br />

8<br />

12<br />

10<br />

4<br />

Grob Mix (1/100)<br />

8 9 10 11 12 13 14 15<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

19


<strong>PODP</strong> E&L<br />

Working Group<br />

Suitability Mixtures LC and ICP<br />

LC<br />

(UV/MS) Cus<strong>to</strong>m-Mix: (µg/ml)<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Summary of Results<br />

caprolactam 1<br />

butylatedhydroxy<strong>to</strong>luene 5<br />

diphenylamine 5<br />

mono-(2-ethylhexyl)<br />

1<br />

phthalate<br />

stearic acid 5<br />

di-(2-ethylhexyl phthalate) 1<br />

bisphenol A 1<br />

DAD1 A, Sig=210,20 Ref =360,100 (JIJ2009\JI000003.D)<br />

mAU<br />

-500<br />

0 2 4 6 8 10 12 14 16<br />

MSD1 TIC, MS File (JIJ2009\JI000003.D) API-ES, Neg, Scan, Frag: 100, "Negativ e"<br />

50000<br />

0 2 4 6 8 10 12 14 16<br />

MSD2 TIC, MS File (JIJ2009\JI000003.D) API-ES, Pos, Scan, Frag: 100, "Positiv e"<br />

200000<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

MSD2 114, EIC=113.7:114.7 (JIJ2009\JI000003.D) API-ES, Pos, Scan, Frag: 100, "Positiv e"<br />

min<br />

min<br />

min<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

MSD1 227, EIC=226.7:227.7 (JIJ2009\JI000003.D) API-ES, Neg, Scan, Frag: 100, "Negativ e"<br />

min<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

MSD1 277, EIC=276.7:277.7 (JIJ2009\JI000003.D) API-ES, Neg, Scan, Frag: 100, "Negativ e"<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

MSD1 299, EIC=298.7:299.7 (JIJ2009\JI000003.D) API-ES, Neg, Scan, Frag: 100, "Negativ e"<br />

min<br />

min<br />

20000<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

MSD1 283, EIC=282.7:283.7 (JIJ2009\JI000003.D) API-ES, Neg, Scan, Frag: 100, "Negativ e"<br />

min<br />

20000<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

MSD2 391, EIC=390.7:391.7 (JIJ2009\JI000003.D) API-ES, Pos, Scan, Frag: 100, "Positiv e"<br />

min<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

ICP all target elements 0.25<br />

100000<br />

0<br />

0 2 4 6 8 10 12 14 16<br />

20<br />

min


<strong>PODP</strong> E&L<br />

Working Group<br />

Surrogate Internal Standard<br />

Internal Standards<br />

Objective Requirements Substance used<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Moni<strong>to</strong>ring of<br />

sample<br />

preparation<br />

process and<br />

instrumental<br />

performance<br />

• sufficiently stable<br />

• sufficiently soluble in all extraction<br />

solvents<br />

• amenable <strong>to</strong> back-extraction from<br />

aqueous extracts by organic solvents<br />

• amenable <strong>to</strong> TMS-derivatization<br />

• semi-volatile<br />

• amenable <strong>to</strong> all detection principles<br />

• selectively detectable<br />

Bisphenol M<br />

CAS 13595-25-0<br />

MW: 346.46<br />

Summary of Results<br />

Injection Internal Standard<br />

Objective Requirements Substance used<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Moni<strong>to</strong>ring of<br />

instrumental<br />

performance<br />

• sufficiently stable<br />

• sufficiently soluble in final extract<br />

• semi-volatile<br />

• amenable <strong>to</strong> all detection principles<br />

• selectively detectable<br />

Irganox 415<br />

CAS: 96-69-5<br />

MW: 358.538<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Headspace Internal Standard<br />

1,4-Dioxane<br />

CAS: 123-91-1<br />

MW: 88.11<br />

21


Experimental<br />

Workflow<br />

<strong>PODP</strong> E&L<br />

Working Group<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

22


Experimental<br />

<strong>PODP</strong> Workflow E&L<br />

Working Group<br />

Phase 1/3: Extract Preparation<br />

Thermal<br />

n‐ Isopropanool/Water<br />

pH 2.5 pH 9.5<br />

Isopropan‐<br />

Aqueous Aqueous<br />

Hexane<br />

Headspace X ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐<br />

Reflux ‐‐‐ X X PC/PVC only ‐‐‐ ‐‐‐<br />

Soxhlet ‐‐‐ X X ‐‐‐ ‐‐‐ ‐‐<br />

Sealed Vessel ‐‐‐ ‐‐‐ ‐‐‐ 55°C/3d<br />

(121°C/<br />

1hr) 2<br />

(121°C/<br />

1hr) 2<br />

Sonication ‐‐‐ ‐‐‐ ‐‐‐ ‐‐‐ x x<br />

1 : All test articles (materials) were extracted following this scheme if not indicated otherwise<br />

2 : au<strong>to</strong>clave conditions: (121°C/1hr)<br />

Extraction Techniques:<br />

Soxhlet (min. 10 cycles, 24 hrs, 5 g- 200 ml)<br />

Reflux (2 hrs, 5 g - 200 ml)<br />

Sonication (2 hrs, T=0°C, 5 g - 200 ml)<br />

Sealed Vessel (55 °C / 3 d, 5 g- 200 ml)<br />

Sealed Vessel Au<strong>to</strong>claved<br />

(121 °C / 1 hr 5 g - 200 ml, 2 replicates)<br />

Test Articles:<br />

Sample Weight [5g]<br />

Sample Pre-treatment<br />

Materials:<br />

LDPE<br />

PC<br />

PVC<br />

COC<br />

Rubber<br />

HS-GC/MS(FID)<br />

ICP/MS(AES)<br />

Aqueous Extract<br />

pH 2.5<br />

200 ml<br />

Aqueous Extract<br />

pH 9.5<br />

200 ml<br />

IPA/Water extract<br />

200 ml<br />

IPA extract<br />

200 ml<br />

N-Hexane extract<br />

200 ml<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

23


Experimental<br />

<strong>PODP</strong> Workflow E&L<br />

Working Group<br />

Phase 2/3: Sample Preparation<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

24


Experimental<br />

<strong>PODP</strong> Workflow E&L<br />

Working Group<br />

Phase 3/3: Instrumental Analysis<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

25


<strong>PODP</strong> E&L<br />

Working Group<br />

Challenges Ahead:<br />

What could have been missed?<br />

Example: Epoxidized soybean oil (specif. PVC stabilizer):<br />

<strong>PODP</strong><br />

Experimental<br />

Pro<strong>to</strong>col<br />

Mixture of glycerol esters –<br />

75 possible structures<br />

consisting of: (~ %)<br />

Epoxidized trilinolein<br />

C 57 H 98 O 12, MW 975.45 g/mol<br />

O<br />

Palmitic acid C16:0 11<br />

O<br />

Summary of Results<br />

Stearic acid C18:0 5<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Epoxidized oleic acid C18:1 8<br />

Epoxidized linoleic acid C18:2 23<br />

Epoxidized linolenic acid C18:3 54<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• Identified and quantified ?<br />

• Almost missed ?<br />

• Completely missed ?<br />

26


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong> <strong>Approach</strong> <strong>to</strong> <strong>Acquire</strong><br />

<strong>Extractable</strong> <strong>Profile</strong> <strong>Data</strong><br />

Part 2: Summary of Results<br />

Alan Hendricker<br />

Catalent Pharma Solutions<br />

Thresholds and Best Practices for<br />

Parenteral and Ophthalmic Drug<br />

Products (<strong>PODP</strong>)<br />

February 22-23, 2011<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Test Articles for <strong>Extractable</strong>s Studies<br />

Material Type<br />

Low density polyethylene<br />

(LDPE)<br />

Material<br />

Application<br />

Test Articles.<br />

Material<br />

Format<br />

Composition<br />

Overpouch Blown Film Dow 640-I LDPE resin;<br />

Irganox B 215 (2:1 blend of<br />

Irgafos 168 and Irganox 1010)<br />

1000 ppm, BHT 200 ppm,<br />

Calcium Stearate 500 ppm,<br />

Erucamide 500 ppm,<br />

Chimassorb 944 2000 ppm<br />

Cyclic Olefin (COC) Syringe barrels, vials Plaques Irganox 1010, Ultramarine<br />

Blue<br />

Polycarbonate (PC) Port Tubes Injection<br />

molded plaques<br />

Poly (vinyl chloride)<br />

(PVC)<br />

Rubber (Elas<strong>to</strong>mer) (RE)<br />

Solution Bags,<br />

tubing<br />

Gaskets, s<strong>to</strong>ppers,<br />

closures<br />

0.05 Parts per Hundred (PHR)<br />

Irganox 1076, 0.1 PHR<br />

Irgafos 168<br />

Pellets PVC resin; DEHP 30%;<br />

Epoxidized oil 7%, Zn<br />

stearate 0.5%; Ca stearate<br />

0.5%; Stearamide 1%<br />

Sheets<br />

Brominated isobutylene isoprene<br />

copolymer (57.3%); calcined<br />

aluminum silicate, 38.2%, titanium<br />

dioxide, 1.2%; paraffinic oil, 1.2%;<br />

zinc oxide, 0.6%; polyethylene,<br />

0.6%; SRF Carbon block mixture,<br />

0.4%; calcined magnesium oxide,<br />

0.3%; 4,4’-dithiodimorpholine/polyisobutylene,<br />

0.3%


<strong>PODP</strong> E&L<br />

Working Group<br />

Poly(vinyl chloride) PVC Test Material<br />

Metals Results all less than 5 µg/g. Calcium and Zinc<br />

(known additives) detected in most extracts. Maximum<br />

Calcium 1.72 µg/g, Zinc 1.33 µg/g<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Volatiles testing (HS-GC-MS) showed primarily aliphatic<br />

hydrocarbons of short chain length, branched and<br />

unbranched. One volatile identified was attributed <strong>to</strong> 2-ethyl-<br />

1-hexanol, a known extractable from PVC.<br />

Semivolatiles testing (GC-MS) showed a large number of<br />

peaks (up <strong>to</strong> 50) for each extraction condition. Peaks were<br />

attributed <strong>to</strong> fatty acids, fatty amides, fatty alcohols, fatty<br />

acid esters, fatty aldehydes, aliphatic hydrocarbons, BHT,<br />

phthalates, phthalate esters and phthalate degradation<br />

products. Fatty acids and related peaks were observed at<br />

the highest concentrations (up <strong>to</strong> around 500 ppm).<br />

Non-volatiles testing (LC-MS) confirmed GC-MS results,<br />

peaks detected were attributed <strong>to</strong> fatty acids, fatty amides<br />

(erucamide, (z)-9-Octadecenamide), and phthalates.<br />

Example of a PVC<br />

IV Bag<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

29


<strong>PODP</strong> E&L<br />

Working Group<br />

Polycarbonate (PC) Test Material<br />

Metals results showed only trace level metals except in one<br />

extraction condition (Au<strong>to</strong>clave/pH 2.5) which showed<br />

approximately 50 µg/g of Zn and 25 µg/g of Ca.<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Volatiles testing using HS-GC-MS showed only low levels of a few<br />

volatiles with a maximum concentration of 0.12 µg/g for nonanal.<br />

Ace<strong>to</strong>ne and ace<strong>to</strong>nitrile were also observed at trace levels.<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Semivolatiles testing of extracts using GC-MS showed a<br />

significant number of peaks, including several phenolic peaks<br />

which are likely degradation products of the polymer itself. Most<br />

notable of these was Bisphenol-A, a compound of significant<br />

potential <strong>to</strong>xicity. It is not known the extent <strong>to</strong> which this species<br />

is generated via the extraction versus being present at<br />

endogenous levels. Other species detected included Irgafos 168<br />

and its oxidation product, Irganox 1076, 2,4-di-t-butylphenol and<br />

dimethyphthalate.<br />

Non-volatiles testing (LC-MS) showed a significant number of<br />

peaks, many of which overlapped and for which first pass<br />

identification was not possible. They may be various oligomeric<br />

fragments related <strong>to</strong> the base polymer.<br />

Example of a<br />

Polycarbonate<br />

Baby Bottle (no<br />

longer marketed)<br />

30


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Cyclic Olefin Copolymer (COC) Test<br />

Material<br />

Metals results showed only trace levels of metals in general.<br />

One extraction condition (Au<strong>to</strong>clave/pH 2.5) showed<br />

approximately 25 µg/g of Mg 44 µg/g of Zn and 68 µg/g of<br />

Bromine.<br />

Volatiles testing using HS-GC-MS showed very clean<br />

profiles, only one peak attributed <strong>to</strong> Cis-decahydronaphthalene<br />

was observed at 0.03 µg/g.<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Semivolatiles testing of extracts using GC-MS showed a<br />

large number of peaks, especially via sealed vessel<br />

extraction. Peaks detected were attributed <strong>to</strong> fatty acids,<br />

fatty acid esters, siloxanes, phthalate related peaks and a<br />

significant number of peaks which could not be given first<br />

pass identifications. The intensity of peaks observed in all<br />

extracts was very small, typically less than 0.1 µg/g. With<br />

several extraction technique, no discernable extractables<br />

could be detected using this method.<br />

COC Syringe<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Non-volatiles testing (LC-MS) showed no peaks in sealed<br />

vessel or sonication extractions. Reflux extraction in IPA<br />

produced several low level peaks which could not be<br />

identified (less than approximately 0.1 µg/g).<br />

31


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Low density polyethylene (LDPE)<br />

Test Material<br />

Metals testing results showed no significant metal<br />

extractables (all less than 1 µg/g). Calcium (known<br />

additive) was not detected under any extraction<br />

condition.<br />

Volatiles testing using HS-GC-MS showed only one peak<br />

above the AET, which was late eluting and could not be<br />

identified. It was present at 0.26 µg/g.<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Semivolatiles testing of extracts using GC-MS showed<br />

BHT (antioxidant), Z-9-octadecenamide (antistatic)<br />

erucamide (antistatic) and Dilauryl-3,3'-thiodipropionate<br />

or Irganox PS 800 (heat stabilizer and antioxidant). A<br />

number of aliphatic hydrocarbons branched and<br />

unbranched can be observed, oligomeric fragments of<br />

the PE itself.<br />

Polyethylene<br />

resin beads<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Non-volatiles testing (LC-MS) showed no additional<br />

identifiable extractables for the tests performed, though<br />

several peaks were observed at 220nm.<br />

32


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Rubber Elas<strong>to</strong>mer (RE) Test Material<br />

Metals results showed significant amounts of Bromine, up <strong>to</strong> 20<br />

µg/g, which was not surprising, since it was a bromobutyl<br />

elas<strong>to</strong>mer. Smaller amounts (all less than 10 µg/g) were detected<br />

of the other known metal additives, including Mg, Al, Ca, Ti and<br />

Zn. The pH 2.5 sonication extraction showed the highest levels of<br />

these metal species.<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Volatiles testing using HS-GC-MS showed several peaks<br />

attributed <strong>to</strong> butyl oligomers. Peaks attributed <strong>to</strong> methyl<br />

cyclopentane and cyclohexane were also observed. All peaks<br />

except cyclohexane were less than 1 µg/g, except<br />

methylcyclopentane at 1.19 µg/g.<br />

Semivolatiles testing of extracts using GC-MS showed an<br />

extremely complex extractables profile, with large numbers of<br />

unknowns. Peaks identified were attributed <strong>to</strong> fatty acids, fatty<br />

acid esters, fatty amides, aliphatic hydrocarbon species, BHT, and<br />

brominated oligomers.<br />

Example of<br />

Elas<strong>to</strong>meric<br />

S<strong>to</strong>ppers<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Non-volatiles testing (LC-MS) showed a complex unresolved<br />

envelope of dozens of peaks, especially for organic extracts. The<br />

method utilized was insufficient for peak identifications in most<br />

cases.<br />

33


<strong>PODP</strong> E&L<br />

Working Group<br />

Observations<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

• <strong>Profile</strong>s can be complex! With<br />

multiple extraction solvents and<br />

techniques hundreds of peaks can be<br />

extracted using the chroma<strong>to</strong>graphic<br />

methods<br />

Summary of Results<br />

• AET should be employed <strong>to</strong> help<br />

simplify data analysis<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• In general, residual solvents and<br />

metals testing showed low levels of<br />

extractables and were generally<br />

innocuous species, but provided<br />

valuable information<br />

See the forest<br />

through the<br />

trees?<br />

34


<strong>PODP</strong> E&L<br />

Working Group<br />

Observations<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• Understand that the peaks you are<br />

detecting are not necessarily what was<br />

added <strong>to</strong> the polymer originally (e.g. 2,4-<br />

di-t-butylphenol and palmitic acid can<br />

originate from Irgafos 168 and Calcium<br />

Stearate, among others)<br />

• Use “realistic” extraction solvents <strong>to</strong><br />

understand risk. Use aggressive solvents<br />

<strong>to</strong> facilitate identifications<br />

• Oligomeric fragments represent<br />

challenging species for complete<br />

structural identification. However,<br />

compound class may be enough <strong>to</strong><br />

assess <strong>to</strong>xicological risk<br />

Abundance<br />

Time<br />

55000<br />

50000<br />

45000<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

Time--><br />

Response_<br />

1300000<br />

1200000<br />

1100000<br />

1000000<br />

900000<br />

800000<br />

700000 x<br />

600000<br />

500000<br />

400000<br />

300000<br />

x<br />

1<br />

1<br />

3<br />

Signal: RS015.D\FID1A.CH<br />

Signal: RS020.D\FID1A.CH (*)<br />

Signal: RS021.D\FID1A.CH (*)<br />

Underivatized PVC pH9.5 Samples Overlay<br />

A - Internal Standard 1 (Irganox 415)<br />

27<br />

B - Internal Standard 2 (Bisphenol M)<br />

9<br />

13<br />

14<br />

22<br />

18 21<br />

19 23<br />

25<br />

6 8 10 12 14 16 18 20 22 24 26<br />

UNDERIVATIZED RUBBER ELASTOMER SAMPLES OVERLAY<br />

Signal: RS006.D\FID1A.CH<br />

Signal: RS017.D\FID1A.CH (*)<br />

Signal: RS027.D\FID1A.CH (*)<br />

x - Peaks with this symbol are similar in size, Extract vs Extraction blank<br />

x<br />

x<br />

x<br />

2<br />

3<br />

4<br />

5<br />

8<br />

9<br />

11<br />

10<br />

10<br />

11<br />

11<br />

14<br />

16<br />

15<br />

18<br />

17<br />

200000 1<br />

x<br />

18<br />

RE-pH2.5-1<br />

100000<br />

6 8 10 12 14 16 18 20 22 24 26<br />

16<br />

Do you see the<br />

trees now?<br />

20<br />

20<br />

21<br />

21<br />

30<br />

24<br />

25<br />

32<br />

26<br />

28<br />

26<br />

28<br />

29<br />

32<br />

36<br />

30<br />

ISTD1<br />

38<br />

A<br />

ISTD2<br />

B<br />

RE-IW-2<br />

RE-pH9.5-2<br />

35<br />

PVC-pH9.5-2<br />

PVC-pH9.5-1<br />

pH9.5-Blank-2


<strong>PODP</strong> E&L<br />

Working Group<br />

Observations<br />

• Solvents pH may change extractables<br />

(specific example shown subsequently)<br />

DAD1 A, Sig=220,4 Ref=550,50 (F:\3\500_B...SETS\50_RESULTS_MATERIALS\03_RE\LC-UV\013-1101_REF3_NHEX_RE.D)<br />

mAU<br />

400<br />

300<br />

200<br />

7 . 5 5 3 7 . 7 5 2<br />

8 . 6 6 0<br />

1 0 . 1 4 9<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

• Use HPLC-MS <strong>to</strong> complement GC-MS. As<br />

a standalone technique data interpretation in<br />

LC-MS can be difficult<br />

100<br />

0<br />

-100<br />

DAD1 A, Sig=220,4 Ref=550,50 (F:\3\500_B...SETS\50_RESULTS_MATERIALS\03_RE\LC-UV\013-1101_REF3_NHEX_RE.D)<br />

mAU<br />

400<br />

300<br />

200<br />

100<br />

9 . 2 6 7<br />

1 0 . 4 4 3<br />

1 0 . 8 9 9<br />

1 1 . 8 2 7<br />

.1 2 4<br />

1 2 . 4 4 7<br />

1 2 . 7 5 5<br />

1 3 . 23 17 80<br />

1 3 .9 2 6<br />

1 4 . 4 7 2<br />

2.5 5 7.5 10 12.5 15 17.5 20 22.5<br />

1 5 . 5 0 2<br />

1 6 . 6 1 7<br />

1 7 . 9 2 1<br />

min<br />

0<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

• In some cases we did not observe known<br />

additives. Understand you may need <strong>to</strong> alter<br />

extraction conditions in some cases <strong>to</strong><br />

facilitate extraction. Or realize that you may<br />

never see them even through due diligence<br />

(e.g. consumed processing agent)<br />

-100<br />

5 10 15 20<br />

min<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Where did my<br />

trees (peaks) go?<br />

36


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Observations<br />

How low could we go?<br />

• By applying state-of-the-art analytical procedures and<br />

instrumentation, the limits of identification for single chemical<br />

entities (extractables) observed were in the<br />

range of 0.1 – 100 µg/g of material…<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

Phthalic<br />

anhydride<br />

3 µg/g<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

GC/MS – Chroma<strong>to</strong>gram: Isopropanol (Reflux) extract of PVC<br />

37


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Observations (and Last Tree Analogy)<br />

In the end, materials extractables characterization can produce a complex<br />

scene, difficult <strong>to</strong> interpret or understand but full of information and when<br />

done correctly, paints a great picture. See the posters for the full picture<br />

(warning: not quite as nice as the one below).<br />

Summary of Results<br />

Recommended Best<br />

Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Maroon Bells, Aspen Colorado<br />

38


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

<strong>PODP</strong> <strong>Approach</strong> <strong>to</strong> <strong>Acquire</strong><br />

<strong>Extractable</strong> <strong>Profile</strong> <strong>Data</strong><br />

Part 3: Recommended Best<br />

Practices for <strong>Extractable</strong>s Testing<br />

Chris<strong>to</strong>pher T Hous<strong>to</strong>n<br />

Principal Scientist, Bausch + Lomb<br />

Thresholds and Best Practices for<br />

Parenteral and Ophthalmic Drug<br />

Products (<strong>PODP</strong>)<br />

February 22-23, 2011


<strong>PODP</strong> E&L<br />

Working Group<br />

Best Practices<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• In September 2006, <strong>PQRI</strong> issued prior<br />

guidance for OINDP:<br />

• “Safety Thresholds and Best Practices for<br />

<strong>Extractable</strong>s and Leachables in Orally Inhaled and<br />

Nasal Drug Products”<br />

• Contained 10 best practices with respect <strong>to</strong><br />

controlled extraction studies<br />

• Most of these are quite relevant <strong>to</strong> <strong>PODP</strong><br />

• <strong>PODP</strong> nuances result from aqueous drug product<br />

formulations<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

40


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Review of OINDP Best Practice<br />

Recommendations<br />

1. Controlled Extraction Studies should employ vigorous extraction with multiple<br />

solvents of varying polarity<br />

2. Controlled Extraction Studies should incorporate multiple extraction techniques<br />

3. Controlled Extraction Studies should include careful sample preparation based on<br />

knowledge of analytical techniques <strong>to</strong> be used<br />

4. Controlled Extraction Studies should employ multiple analytical techniques<br />

5. Controlled Extraction Studies should include a defined and systematic process for<br />

identification of individual extractables<br />

6. Controlled Extraction Study “definitive” extraction techniques/methods should be<br />

optimized<br />

7. During the Controlled Extraction Study process, sponsors should revisit supplier<br />

information describing component formulation<br />

8. Controlled Extraction Studies should be guided by an Analytical Evaluation<br />

Threshold (AET) that is based on an accepted safety evaluation threshold<br />

9. Polyaromatic hydrocarbons, N-nitrosamines, and 2-mercap<strong>to</strong>benzothiazole (MBT) are<br />

considered <strong>to</strong> be “special case” compounds, requiring evaluation by specific<br />

analytical techniques and technology defined threshold<br />

10. Qualitative and quantitative extractables profiles should be discussed with and<br />

reviewed by pharmaceutical development team <strong>to</strong>xicologists so that any potential<br />

safety concerns regarding individual extractables, i.e. potential leachables, are<br />

identified early in the pharmaceutical development process<br />

41


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

“Controlled Extraction Studies should<br />

employ vigorous extraction with multiple<br />

solvents of varying polarity”<br />

• Prior OINDP recommendation:<br />

• Advocated use of water in extraction studies for<br />

aqueous products<br />

• Discouraged using water as the sole extraction<br />

solvent for components from aqueous drug products<br />

• <strong>PODP</strong> Experience:<br />

• Aligned with prior recommendation (Examples 1 - 3)<br />

• Relevance of pH (Examples 4 and 5)<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

42


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 1:<br />

LDPE / Aqueous Drug Product<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• In <strong>PODP</strong> pro<strong>to</strong>col, extracted LDPE with known<br />

additive package by multiple solvents /<br />

techniques including water<br />

• In ophthalmology, significant prior art for<br />

extractables used water as the only solvent<br />

• Although aqueous solvent extracts may be<br />

useful for gauging significant extractables, they<br />

may not promote understanding of the material<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

43


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 1:<br />

LDPE / Aqueous Drug Product<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Known<br />

Additive<br />

Sonication<br />

pH 2.5<br />

Sonication<br />

pH 9.5<br />

Sealed<br />

Vessel<br />

IPA/Water<br />

Irganox 1010<br />

Summary of Results<br />

Irgafos 168<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

BHT<br />

Ca Stearate<br />

(as stearic acid)<br />

Erucamide<br />

Red = Not detected / Green = detected by GC and/or HPLC 44


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 1:<br />

LDPE / Aqueous Drug Product<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Sonication in aqueous solvents successfully detects<br />

erucamide, but no other anticipated additive<br />

• Solvents of different polarity provide better<br />

understanding of the material<br />

• Relevant <strong>to</strong> an aqueous product?<br />

• An aqueous extraction profile lacking extractables does<br />

not necessarily impart material knowledge<br />

• Though non-polar additives such as Irganox 1010 are less<br />

likely <strong>to</strong> migrate in<strong>to</strong> aqueous product, its identification<br />

alerts the researcher <strong>to</strong> look for more polar degradation /<br />

transformation products<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

45


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 2:<br />

Extraction of DEHP from PVC<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

• PVC material contained 30% bis(2-ethylhexyl)<br />

phthalate (DEHP)<br />

• Sealed vessel extracts:<br />

DEHP<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

IPA/Water<br />

pH 9.5<br />

pH 2.5<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

46


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

Example 2:<br />

Extraction of DEHP from PVC<br />

• DEHP is a significant extractable from PVC<br />

• Aqueous (pH 2.5, 9.5) solvent detect<br />

significantly less DEHP than IPA/water<br />

• Many “aqueous” formulations are not purely<br />

aqueous, but contain surfactants or other<br />

excipients that enhance solubility<br />

• Using water as the only extraction solvent runs<br />

the risk of not observing a key extractable that<br />

is poorly water soluble but nonetheless<br />

soluble in drug product<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

47


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 3:<br />

Solvent Polarity and Polycarbonate<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

• The strongest solvent does not always yield<br />

the worst-case extraction profile<br />

• Consider this example of isopropanol and n-<br />

hexane extracts generated by Soxhlet and<br />

reflux<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

48


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 3:<br />

Solvent Polarity and Polycarbonate<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

<strong>Extractable</strong><br />

IPA<br />

Reflux<br />

Estimated Quantity (μg/g)<br />

IPA<br />

Soxhlet<br />

Hexane<br />

Reflux<br />

Hexane<br />

Soxhlet<br />

4-t-butylphenol 65.7 13.7 2.2 2.9<br />

2,4-di-t-butylphenol 56.0 24.3 2.0 29.4<br />

Bisphenol A 77.1 9.4 9.4 12.7<br />

Irgafos 168 35.9 13.6 0.3 0.8<br />

Irgafos 168, oxidized 25.1 17.2 0.0 1.6<br />

Irganox 1076 21.8 8.3 0.1 0.5<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

IPA is a superior solvent for many of these<br />

extractables, despite being “weaker”<br />

49


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 4:<br />

pH Effects and Polycarbonate<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

• Polycarbonate extraction at pH 2.5 and 9.5<br />

BPA<br />

Summary of Results<br />

IPA/<br />

Water<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

pH 9.5<br />

pH 2.5<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

50


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 4:<br />

pH Effects and Polycarbonate<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Bisphenol A detected from polycarbonate<br />

• pH 2.5: 0.12 mg/L<br />

• pH 9.5: 1.7 mg/L<br />

• Not detected in isopropanol/water extract<br />

• At alkaline pH, an order of magnitude more<br />

BPA is observed than at acidic pH<br />

• Implications for product pH and packaging<br />

compatibility<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

51


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

Example 5:<br />

pH and Solvent Effects / PVC<br />

• Diethylhexyl phthalate (DEHP) and monoethylhexyl<br />

phthalate (MEHP) detected<br />

• HPLC semiquantitative results:<br />

<strong>Extractable</strong> pH 2.5<br />

(mg/L)<br />

pH 9.5<br />

(mg/L)<br />

IPA/water<br />

(mg/L)<br />

DEHP 0.05 0.79 930<br />

MEHP 0.02 0.57 0.09<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• DEHP and MEHP are extracted in significantly<br />

higher quantities at basic versus acidic pH<br />

• No single solvent system is sufficient for all analytes<br />

52


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

“Controlled Extraction Studies<br />

should incorporate multiple<br />

extraction techniques”<br />

• Prior OINDP recommendations:<br />

• Justification needed for low temperature techniques<br />

such as sonication with respect <strong>to</strong> extraction efficiency<br />

• Sonication found <strong>to</strong> be less efficient than Soxhlet<br />

and reflux by OINDP working group<br />

• Extraction profiles from higher temperature extraction<br />

techniques should be carefully examined for extraction<br />

artifacts.<br />

• <strong>PODP</strong> Experience<br />

• Aqueous extraction by sonication versus sealed vessel<br />

(Example 6)<br />

• Thermal methods, headspace GC (Example 7)<br />

53


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 6:<br />

Sonication v. Sealed Vessel / Polycarbonate<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Sealed vessel (121 °C, 1 hr) at pH 2.5 or 9.5<br />

• Bisphenol A detected<br />

• 0.12 mg/L @ pH 2.5<br />

• 1.7 mg/L @ pH 9.5<br />

• Sonication (2 hr, 0 °C) at pH 2.5 or 9.5<br />

• No bisphenol A detected, even at high pH<br />

• Sealed vessel extraction was more efficient than<br />

sonication in this example<br />

• Sonication required significant effort <strong>to</strong> standardize<br />

temperature relative <strong>to</strong> sealed vessel<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

54


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 7:<br />

Thermal Methods / Headspace GC<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• Headspace GC (80 °C, 2 hours) on all materials<br />

• Observed extractables generally included low levels<br />

of hydrocarbons<br />

• Multiple hydrocarbons for PVC ranging from 0.5 <strong>to</strong> 4.6<br />

μg/g<br />

• Butyl rubber related oligomers in the rubber/elas<strong>to</strong>mer<br />

sample<br />

• Low parity with other extraction approaches,<br />

including Soxhlet and reflux with IPA or hexane<br />

• However…<br />

55


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 7:<br />

Thermal Methods / Headspace GC<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Headspace GC holds significant value in some<br />

<strong>PODP</strong> dosage forms<br />

• Certain dosage forms in semipermeable<br />

packaging systems are susceptible <strong>to</strong> volatile<br />

leachables from secondary packaging systems<br />

• Examples <strong>to</strong> be provided in Ophthalmology<br />

session<br />

• Stay tuned for further evaluation of<br />

headspace…<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

56


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

“Controlled Extraction Studies should<br />

include careful sample preparation<br />

based on knowledge of analytical<br />

techniques <strong>to</strong> be used”<br />

• Prior OINDP recommendations:<br />

• Promoted the notion of solvent exchange when extraction<br />

solvent not suitable for use with analytical method<br />

• <strong>PODP</strong> Experience:<br />

• Solvent exchange (Example 8)<br />

• Extract concentration, 100X (Example 9)<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

57


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 8:<br />

Solvent Exchange for HPLC<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

• The HPLC method developed for the <strong>PODP</strong><br />

pro<strong>to</strong>col intended <strong>to</strong> span a broad polarity.<br />

• Caprolactam included in the system suitability<br />

mixture as the most polar compound<br />

• With low retention, caprolactam<br />

exhibits poor peak shape<br />

if injection solvent is <strong>to</strong>o strong<br />

• Underscores necessity for<br />

solvent exchange from nonpolar<br />

extracts<br />

58


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 9:<br />

100x Extract Concentration<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Aqueous extracts were back-extracted in<strong>to</strong><br />

methylene chloride for GC analysis<br />

• A 100x concentration step was performed <strong>to</strong><br />

increase sensitivity<br />

• In such concentration schemes, care must be<br />

taken <strong>to</strong> ensure that background contaminants<br />

are not concentrated with samples…<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

59


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 9:<br />

100x Extract Concentration<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

GC-MS, <strong>to</strong>tal ion chroma<strong>to</strong>grams<br />

60


<strong>PODP</strong> E&L<br />

Working Group<br />

“Controlled Extraction Studies<br />

should employ multiple analytical<br />

techniques”<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Prior OINDP recommendations:<br />

• No single analytical technique can detect and<br />

identify all possible extractables<br />

• Techniques used should be “compound specific”<br />

• Detec<strong>to</strong>r response proportional <strong>to</strong> extractable<br />

quantity<br />

• <strong>PODP</strong> Experience:<br />

• Aligned with prior recommendation (Example 10)<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

61


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

Additives<br />

Example 10:<br />

<strong>Extractable</strong>s Detected in LDPE<br />

Irganox 1010<br />

Irgafos 168<br />

BHT<br />

Stearic acid<br />

Erucamide<br />

Irganox 1010, related<br />

Irgafos 168, related<br />

Detected by HPLC<br />

(UV,MS)<br />

Detected by GC<br />

(FID,MS)<br />

DEHP*<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Oleamide*<br />

* Not included in resin composition information 62


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Example 10:<br />

<strong>Extractable</strong>s Detected in LDPE<br />

• Strength of multiple analytical survey techniques for organic<br />

extractables:<br />

• Although overlap exists, HPLC and GC contain some<br />

complementary data<br />

• Where overlap exists, the different techniques provide confirmation<br />

and may aid in identification<br />

• Multiple survey methods allows for broader characterization,<br />

including the identification of unanticipated extractables (DEHP and<br />

oleamide in Example 9)<br />

• Inorganic analyses<br />

• The <strong>PODP</strong> pro<strong>to</strong>col also included ICP-MS for elemental analysis<br />

• If metals are a concern, the added orthogonality of a<strong>to</strong>mic<br />

spectroscopy is critical<br />

63


<strong>PODP</strong> E&L<br />

Working Group<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

“During the Controlled Extraction Study<br />

process, sponsors should revisit<br />

supplier information describing<br />

component formulation.”<br />

• Prior OINDP recommendations:<br />

• Check list of experimentally-derived extractables<br />

against supplier information<br />

• Are anticipated extractables observed?<br />

• Are other extractables observed?<br />

• Supplier information can serve as a starting point<br />

for the development of analytical methods<br />

• <strong>PODP</strong> Experience:<br />

• Experimental work can reveal extractables that<br />

were not anticipated based on supplier information<br />

(Example 11)<br />

64


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 11:<br />

Extraction Studies of COC<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• Additives known <strong>to</strong> be formulated in<strong>to</strong> the COC:<br />

• Irganox 1010, ultramarine blue (pigment)<br />

• Noteworthy examples of extractables observed during the<br />

<strong>PODP</strong> study of COC:<br />

• Irganox 1010, monoethylhexyl phthalate, DEHP, cis/transdecahydronaphthalene,<br />

oleamide, hexadecanoic acid, octadecanoic<br />

acid<br />

• Additional extractables observed from COC material beyond<br />

those anticipated from supplier information<br />

• Sponsors cannot claim <strong>to</strong> understand critical component<br />

chemistry simply on the basis of supplier information<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

65


<strong>PODP</strong> E&L<br />

Working Group<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Controlled Extraction Study “definitive”<br />

extraction techniques/methods should<br />

be optimized<br />

• Prior OINDP Recommendations:<br />

• After first pass extraction studies, development<br />

team should choose a “definitive” method /<br />

technique <strong>to</strong> optimize.<br />

• Complete validation is not recommended or<br />

expected for Controlled Extraction studies<br />

• Method should be demonstrably fit for purpose<br />

with respect <strong>to</strong> accuracy and precision<br />

• <strong>PODP</strong> Experience:<br />

• Some extractables may require unique or<br />

dedicated methods <strong>to</strong> meet this objective<br />

(Example 12)


<strong>PODP</strong> E&L<br />

Working Group<br />

Example 12:<br />

“Borderline” Analytes (ESBO)<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

ESBO „Pattern“ in LC/MS<br />

( not quantifiable)<br />

Summary of Results<br />

O<br />

O<br />

O<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

Epoxidized trilinolein<br />

C 57 H 98 O 12, MW 975.45 g/mol<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

Epoxidized soybean oil from PVC<br />

67


<strong>PODP</strong> E&L<br />

Working Group<br />

Conclusion<br />

<strong>PODP</strong><br />

Experimental Pro<strong>to</strong>col<br />

Summary of Results<br />

Recommended<br />

Best Practices for<br />

<strong>Extractable</strong>s Testing<br />

• The <strong>PODP</strong> pro<strong>to</strong>col underscores the value of<br />

extrapolating the OINDP best practice<br />

recommendations <strong>to</strong> other dosage forms<br />

• For many <strong>PODP</strong>s, water is an essential solvent and<br />

suggests nuances on OINDP recommendations<br />

• Although the OINDP recommendations discuss water, that<br />

work focused on more non-polar solvents (isopropanol,<br />

hexane, methylene chloride)<br />

• <strong>PODP</strong> work demonstrates the importance of pH as a<br />

consideration for extraction solvent selection<br />

T. Egert, A. Hendricker,<br />

C. Hous<strong>to</strong>n<br />

Bethesda, February 2011<br />

68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!