27.11.2014 Views

High throughput solubility measurement with crystalline/amorphous ...

High throughput solubility measurement with crystalline/amorphous ...

High throughput solubility measurement with crystalline/amorphous ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>High</strong> <strong>throughput</strong> <strong>solubility</strong> <strong>measurement</strong><br />

<strong>with</strong><br />

<strong>crystalline</strong>/<strong>amorphous</strong> information<br />

PhysChemForum5<br />

19 June 2008<br />

Kiyo Sugano<br />

Pfizer<br />

Kiyohiko.Sugano@pfizer.com


Outline<br />

• Introduction of new <strong>solubility</strong> screen<br />

• Results from 1700 <strong>measurement</strong>s<br />

• Strategy to apply the new method in drug<br />

discovery<br />

• Solubility calculation for oral absorption<br />

simulation


What determines <strong>solubility</strong>?<br />

Crystalline<br />

Yalkowski’s equation<br />

logSw0 Water<br />

logSw0 = 0.8– 0.8– (m.p.-25) x 0.01 0.01 – logP logP<br />

Lattice energy Hydration<br />

Bile micelle partition<br />

Amorphous<br />

Dissociation<br />

S<br />

=<br />

⎛<br />

⎜1+<br />

⎝<br />

Henderson – Hasselbalch equation<br />

Sw Sw = Sw Sw (1+[H+]/Ka)<br />

+<br />

log P<br />

H C<br />

⎞<br />

micelles ,undissociated<br />

micelles log Pmicelles ,dissociated<br />

⋅10<br />

+ ⋅ ⋅<br />

⎟ Bile micelle<br />

Ka Cwater<br />

⎠<br />

Dressman’s equation<br />

logP logP mic,undissolved<br />

=<br />

mic,undissolved 0.74logP+2.29<br />

+<br />

[ H ] C<br />

[ ]<br />

+<br />

micelles<br />

tot<br />

S0<br />

10<br />

Ka Cwater


Traditional kinetic <strong>solubility</strong><br />

• Start <strong>with</strong> DMSO sample solution<br />

• Short incubation time<br />

• Detect turbidity by nephelometry<br />

• Precipitant is assumed to be <strong>amorphous</strong><br />

– This assumption is wrong


Kinetic <strong>solubility</strong> > thermodynamic sol<br />

• Three possible reasons<br />

– Solubilitization effect of DMSO<br />

– Short incubation time<br />

– Crystal/<strong>amorphous</strong>


New <strong>solubility</strong> assay<br />

DMSO stock<br />

1. Long incubation<br />

2. Centrifuge<br />

Filtration<br />

•LC-MS<br />

•HPLC<br />

PLM<br />

Final DMSO = 1%<br />

(little effect on <strong>solubility</strong>)<br />

Glass bottom plate


Validation using Marketed Drugs<br />

Solubility from DMSO sample (log, μM )<br />

1.0E+03<br />

1.0E+02<br />

1.0E+01<br />

1.0E+00<br />

1.0E-01<br />

Incubation: 10 min<br />

(kinetic <strong>solubility</strong>)<br />

1.0E-02<br />

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03<br />

1.0E+03<br />

1.0E+02<br />

1.0E+01<br />

1.0E+00<br />

1.0E-01<br />

Incubation: 20 h<br />

1.0E-02<br />

1.0E-02 1.0E-01 1.0E+00 1.0E+01 1.0E+02 1.0E+03<br />

Equilibrium <strong>solubility</strong> from <strong>crystalline</strong> (log, μM )<br />

C rysta line<br />

P artia ly C rysta line<br />

N o C rystalO bse rve d


Concentration time profile<br />

Precipitate out<br />

Amorphous<br />

Crystalline<br />

~ 1000 fold<br />

~ 4 fold<br />

(mostly 2 fold)<br />

From powder<br />

(dissolve in, <strong>crystalline</strong>)<br />

Conc.<br />

Kinetic <strong>solubility</strong><br />

Incubation Time<br />

5 min 24 hours


Solubility Ratio: polymorphs<br />

25<br />

Solubility Ratio<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 20 40 60 80<br />

Compound Number<br />

M. Pudipeddi, A. T. M. Serajuddin. J. Pharm. Sci. 2005, 94, 929–939.


Solubility Ratio: hydrates<br />

25<br />

Solubility Ratio<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 5 10 15 20<br />

Compound Number<br />

M. Pudipeddi, A. T. M. Serajuddin. J. Pharm. Sci. 2005, 94, 929–939.


Photo of 96 well plate


Auto PLM diagnostic<br />

250<br />

Intensity – position<br />

C C’<br />

1 mm<br />

200<br />

150<br />

100<br />

50<br />

0<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 200 400 600 800 1000 1200<br />

0 200 400 600 800 1000 1200<br />

About 85% correct against human eye observation.


Outline<br />

• Introduction of new <strong>solubility</strong> screen<br />

• Results from 1700 <strong>measurement</strong>s<br />

• Strategy to apply the new method in drug<br />

discovery<br />

• Oral absorption simulation


In real drug discovery, does it work?<br />

• In 2006, > 1600 compounds measured<br />

– All pain project compounds at lead optimization<br />

– 0.6 person x day/once a week<br />

– Semi automation (No robot)<br />

• Eye observation of <strong>crystalline</strong>/amourphous


All compounds (ca. 1700)<br />

2<br />

2<br />

2<br />

Log Solubility (μ m)<br />

1<br />

0<br />

5<br />

5<br />

0<br />

Log Solubility (μ m)<br />

1<br />

0<br />

5<br />

-1<br />

-1<br />

0 1 2 3 4 5<br />

-1<br />

1 2 3 4<br />

ACD logP<br />

Retention time (min)


Percentage of <strong>crystalline</strong><br />

precipitant<br />

Compound number Number of <strong>crystalline</strong> Crystal %<br />

All 1669 - -<br />

< 150 uM a 1219 434 36<br />

Project A a 625 248 40<br />

Project B a 341 82 24<br />

Project C a 130 73 56<br />

Project D a 85 14 16<br />

Project E a 38 17 45<br />

a Compounds <strong>with</strong> > 150 μM <strong>solubility</strong> value were excluded from the<br />

analysis due to uncertainty of crystal detection by PLM.


Three findings from 1700<br />

<strong>measurement</strong>s<br />

• Solubility of <strong>crystalline</strong> is lower than that of<br />

<strong>amorphous</strong> (Of course!).<br />

• Solubility – lipophilicity relationship is vague.<br />

– Even when the precipitant was <strong>amorphous</strong>.<br />

• Percentage of crystal differed among chemical<br />

scaffold.


Fact or Myth?<br />

• In silico is good enough for <strong>solubility</strong> and<br />

permeability. Let’s quite these assays”<br />

• Similar “Myth” is also found for oral<br />

absorption simulation<br />

• Formulation is perfect. No worry about low<br />

<strong>solubility</strong>.


Even logP/D calculation is not accurate<br />

Octanol shake flask vs in silico calculation (across all project)<br />

•Do •Do we we need need more more sophisticated calculation principle?<br />

•Even •Even logD logDcalculation is is not not accurate <strong>with</strong> <strong>with</strong> the the current current<br />

in in silico silico technology, how how <strong>solubility</strong>, Caco-2,etc<br />

prediction can can be be better better than than logD logDprediction?<br />

•With •With in in a chemical series, series, the the predictability may may be be<br />

better. better.<br />

Nagoya<br />

(Shake Flask)<br />

Alex Avdeef, Stefanie Bendels, Li Di, Bernard Faller, Manfred Kansy, Kiyohiko Sugano, Yukinori Yamauchi (Intercompany<br />

collaboration) J. Pharm. Sci., 2008, 2893-2909


Outline<br />

• Introduction of new <strong>solubility</strong> screen<br />

• Results from 1700 <strong>measurement</strong>s<br />

• Strategy to apply the new method in drug<br />

discovery<br />

• Oral absorption simulation


Low <strong>solubility</strong> compound increasing<br />

120<br />

100<br />

80<br />

60<br />

Frequency<br />

40<br />

20<br />

0<br />

2005<br />

2004<br />

2003<br />

2002<br />

2001<br />

2000<br />

1999<br />

1998<br />

1997<br />

1996<br />

1995<br />

1994<br />

1993<br />

1992<br />

1991<br />

1990<br />

1989<br />

1988<br />

1987<br />

1986<br />

1985<br />

1984<br />

1983<br />

1982<br />

1981<br />

1980<br />

1978<br />

1977<br />

1976<br />

1975<br />

Year<br />

Number of publications containing the concept "poor <strong>solubility</strong><br />

drug" as of December 2006. Carried out using SciFinder®<br />

Sugano et al., DMPK, 2007, 225-254


Solubility line-up<br />

Full fledged discovery decision point<br />

Development decision<br />

Library design<br />

Lead seeking<br />

Lead<br />

optimization<br />

Candidate<br />

selection<br />

API form<br />

optimization<br />

Formulation<br />

study<br />

FIH<br />

In silico<br />

DMSO precipitation PLM method<br />

Apparent <strong>solubility</strong> from powder material<br />

pH <strong>solubility</strong> profile/FaSSIF/FeSSIF<br />

Miniscale dissolution test/DP-system<br />

In vivo studies


Chemical modification or DDS?<br />

Does standard formulation approach work? (Milling/Salts)<br />

Is the compound suitable for DDS technique?<br />

What is possible and what is not possible?<br />

Which has higher success rate?<br />

Which is faster to clinical trial and launch?<br />

Which is less resource intensive (human, manufacture etc)?<br />

Computational<br />

simulation might<br />

help to<br />

understand this.


Outline<br />

• Introduction of new <strong>solubility</strong> screen<br />

• Results from 1700 <strong>measurement</strong>s<br />

• Strategy to apply the new method in drug<br />

discovery<br />

• Solubility data for oral absorption<br />

simulation


Scheme to calculate <strong>solubility</strong> in each GI tract<br />

Measurement<br />

Chemical structure<br />

Melting point Hydrophobicity<br />

(ΔH, ΔS melting)<br />

K sp<br />

pK a<br />

Intrinsic equilibrium <strong>solubility</strong><br />

Bile micelles water<br />

partition coefficient<br />

pH and bile conc. (Av/SD)<br />

•GI position<br />

•Fasted/fed<br />

•Species differences<br />

•Individual differences<br />

Standard HH HH equation<br />

pH pH <strong>solubility</strong> profile profile<br />

Modified HH HH equation<br />

Solubility in in the the intestinal fluid fluid at at each each GI GI position<br />

•Average value value<br />

•Individual differences<br />

Sugano et al., DMPK, 2007, 225-254


Glomme, A.; März, J.; Dressman, J.,. In Pharmacokinetic Profiling in Drug Research, Testa, B.; Krämer, S.;<br />

Wunderli-Allenspach, H.; Folkers, G., Eds. Wiley-VCH: Zurich, 2006; pp 259-280.<br />

Avdeef, A.; Box, K. J.; Comer, J. E.; Hibbert, C.; Tam, K. Y.,. Pharmaceutical Research 1998, 15, (2), 209-215.<br />

Modified Henderson-Hasselbalch equation<br />

10<br />

Buffer<br />

NaTC 7.5 mM, TC/PL = 4:1<br />

<strong>solubility</strong> (mg/mL)<br />

1<br />

0.1<br />

0.01<br />

Dipyridamol<br />

Buffer HH<br />

HH for Biorelavent media<br />

Using Buffer HH for<br />

biorelevant media<br />

0.001<br />

3 4 5 6 7 8<br />

If FaSSIF <strong>solubility</strong> (at pH<br />

6.5) was used to calculate<br />

the pH <strong>solubility</strong> profile<br />

using the standard HH<br />

equation, <strong>solubility</strong> at low<br />

pHs would be over<br />

estimated. Please check<br />

your program simulation.<br />

pH<br />

+<br />

+<br />

[ H ] C<br />

log P [ H ]<br />

⎛<br />

micelles<br />

C<br />

micelles ,undissociated<br />

micelles<br />

S<br />

⎜<br />

tot<br />

= S0<br />

1+<br />

+ ⋅10<br />

+ ⋅ ⋅10<br />

⎝ Ka Cwater<br />

Ka Cwater<br />

log P<br />

− log P ≈ 1 Base<br />

log P<br />

micelles,undissociated<br />

micelles,undissociated<br />

− log P<br />

micelles,dissociated<br />

micelles,dissociated<br />

≈ 2<br />

Acid<br />

log P<br />

micelles ,dissociated<br />

⎞<br />

⎟<br />


Other precautions for simulation<br />

• pH change at solid surface<br />

• Bile micelles diffusion coefficient<br />

• Free fraction? Or drug in bile micelles absorbed?<br />

• Precipitation<br />

• GI fluid volume<br />

• Hydrodynamics<br />

• Species differences of bile conc<br />

• …<br />

• …<br />

I will discuss these items at this British Pharmaceutical Conference @ Manchester.<br />

Please come and see me again!!!


Conclusion<br />

• The new <strong>solubility</strong> assay is a beneficial asset for drug<br />

discovery.<br />

• Crystalline/<strong>amorphous</strong> information is important for<br />

drug design and compound selection.<br />

• Strategic approach is required to fix the low <strong>solubility</strong><br />

issues.<br />

– Computational simulation might help.<br />

• The modified HH equation is required for oral<br />

absorption simulation<br />

– There are many other precautions for simulation


Acknowledgement<br />

• Pfizer Nagoya members<br />

– Teruhisa Kato (Sandwich at present)<br />

– Kentaro Suzuki<br />

– Shiho Torii<br />

– Arimichi Okazaki<br />

– Atsushi Omura<br />

– Takashi Mano (Sandwich at present)<br />

• Pfizer Sandwich members<br />

– Michael Cram<br />

– Richard Manley<br />

– Hurst Kelly

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!