27.11.2014 Views

FLUTTER STABILITY ANALYSIS FOR CABLE-STAYED BRIDGES

FLUTTER STABILITY ANALYSIS FOR CABLE-STAYED BRIDGES

FLUTTER STABILITY ANALYSIS FOR CABLE-STAYED BRIDGES

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>FLUTTER</strong> <strong>STABILITY</strong> <strong>ANALYSIS</strong><br />

<strong>FOR</strong> <strong>CABLE</strong>-<strong>STAYED</strong> <strong>BRIDGES</strong><br />

LE THAI HOA<br />

Kyoto University


CONTENT<br />

1. INTRODUCTION<br />

2. LITERATURE REVIEW ON AERODYNAMIC<br />

PHENOMENA AND <strong>FLUTTER</strong> IN<strong>STABILITY</strong><br />

3. FUNDAMENTAL EQUATIONS OF <strong>FLUTTER</strong><br />

4. ANALYTICAL METHODS <strong>FOR</strong> <strong>FLUTTER</strong> PROBLEMS<br />

5. NUMERICAL EXAMPLE AND DISCUSSION<br />

6. CONCLUSION<br />

1


INTRODUCTION<br />

Long-span bridges (suspension and cable-stayed bridges) are prone to<br />

dynamic behaviors (due to traffic, earthquake and wind)<br />

Effects of aerodynamic phenomena (due to wind):<br />

Catastrophe (Instability) + Serviceability (Discomfort)<br />

Prevention and Mitigation<br />

Wind-resistance Design and Analysis for Long-span Bridges<br />

Computational methods for aerodynamic instability analysis of long-<br />

- span bridges are world-widely developed increasingly thanks to<br />

computer-aid numerical methods and computational mechanics<br />

2


LONG-SPAN <strong>BRIDGES</strong> IN WORLD AND VIETNAM<br />

Span length (m)<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

Tacoma (USA) 1080<br />

TsingMa (HK) 1377<br />

Great Belt (DM) 1623<br />

Seto (Japan) 1723<br />

Akashi (Japan) 1991<br />

Messina (Italy) 3300<br />

Span length (m)<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Oresund(DM) 490<br />

Meiko (Japan) 590<br />

Yangpu (China) 602<br />

Normandy (France) 865<br />

Tatara (Japan) 890<br />

Stonecutter 1018<br />

Sutong(China)1088<br />

0<br />

Suspension Bridges<br />

0<br />

Cable-stayed bridges<br />

Sp a n le n g th (m )<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Bin h 2 6 0 m<br />

Kie n 2 7 0 m<br />

M yTh u a n 3 5 0 m<br />

Th u Th ie m 4 0 5 m<br />

Ba iC h a y 4 3 5 m<br />

C a n Th o 5 5 0 m<br />

0<br />

Cable-stayed bridges in VietNam<br />

2


BRIDGE AERODYNAMICS<br />

Vortex-induced vibration<br />

Bridge<br />

Aerodynamics<br />

Limited-amplitude<br />

Responses<br />

Divergent-amplitude<br />

Responses<br />

Buffeting vibration<br />

Wake-induced vibration<br />

Rain-wind-induced<br />

Galloping instability<br />

Flutter instability<br />

Wake instability<br />

Fig 1. Bridge aerodynamic branches<br />

3


Response<br />

Amplitude<br />

Karman-induced<br />

(Forced Vibration)<br />

‘Lock-in’<br />

Resonance<br />

Peak<br />

Buffeting Response<br />

(Random Vibration)<br />

Flutter and Galloping<br />

(Divergence)<br />

Reduced velocity (U re )<br />

Limited Amplitude<br />

Divergent Amplitude<br />

Fig 2. Response amplitude-velocity diagram<br />

4


FAILURE OF TACOMA NARROW<br />

BRIDGE<br />

Ansymmetric torsional mode<br />

No heaving mode<br />

Torsional mode<br />

Structural Catastrophe<br />

Aeroelastic Instability<br />

Flutter Instability<br />

Fig 3. Extreme vibration and failure images of Tacoma Narrow 5


<strong>FLUTTER</strong> IN<strong>STABILITY</strong>(1)<br />

Flutter might be the most critical concern to bridge design at high<br />

wind velocity causing to dynamic instability and structural catastrophe<br />

Flutter is the divergent-amplitude self-controlled vibration<br />

generated by the aerodynamic wind-structure interaction and<br />

negative damping mechanism (Structural + Aerodynamic damping)<br />

Bridge Flutter or classical Flutter are basically classified by<br />

Type 1: Pure torsional Flutter Bluff sections: Truss, boxed…<br />

Type 2: Coupled heaving-torsional Flutter Streamlined section<br />

The target of Flutter analysis and Flutter resistance design for long-span<br />

bridges is to<br />

Tracing<br />

the critical condition of Flutter occurrence<br />

Determining the critical wind velocity of Flutter occurrence 6


<strong>FLUTTER</strong> IN<strong>STABILITY</strong>(2)<br />

Bridge Flutter experienced dominant contribution either of one mode :<br />

fundamental torsional mode (Type 1) or of coupling between 2<br />

modes: fundamental torsional mode and fundamental heaving mode<br />

(Type 2).<br />

Positive work<br />

Negative work<br />

Positive work<br />

Negative work<br />

Without initial phase<br />

Positive work<br />

Positive work<br />

Lift force<br />

Movement<br />

Positive work<br />

With initial phase<br />

Positive work<br />

Fig 4. Form of combined heaving and torsional modes<br />

7


LITERATURE REVIEW (1)<br />

Flutter<br />

problems<br />

Analytical<br />

Methods<br />

Empirical Formula<br />

2DOF FlutterSolutions<br />

Selberg’s; Kloppel’s<br />

ComplexEigenMethod<br />

Sectional modes<br />

Step-by-Step Method<br />

nDOF FlutterSolutions<br />

Full-scale Bridges<br />

Experiment Method<br />

Simulation Method<br />

Single-Mode Method<br />

Two-Mode Method<br />

Multi-mode Method<br />

Free Vibration Method<br />

CFD<br />

Fig 5. Branches for flutter instability problems<br />

8


LITERATURE REVIEW (2)<br />

Empirical formulas: Bleich’s [1951], Selberg’s[1961], Kloppel’s [1967]<br />

Modeling self-controlled aerodynamic forces:<br />

Theodorsen’s circulation function (Potential Theory) [1935]<br />

Scanlan’s flutter deviatives (Experiment) [1971]<br />

2DOF Flutter problems:<br />

Complex eigenvalue analysis: Scanlan [1976]<br />

Step-by-step analysis: Matsumoto [1994]<br />

nDOF Flutter problems:<br />

Finite Differential Method (FDM) in Time Approximation:<br />

Agar [1987]<br />

Finite Element Method (FEM) in Modal Space:<br />

Scanlan [1990], Pleif [1995], Jain [1996], Katsuchi [1998], Ge [2002]<br />

9


OBJECTIVES<br />

Up-to-date numerical analytical methods for flutter instability<br />

analysis of bridges will be studied, some hints of analytical methods<br />

will be pointed out<br />

Some investigations and discussions thanks to numerical example<br />

of a cable-stayed bridge<br />

Wind resistance design and analysis, especially Flutter and Buffeting<br />

analytical methods for long-span bridges, are main interest in<br />

research and practical application of Vietnam<br />

10


FUNDAMENTAL EQUATIONS OF <strong>FLUTTER</strong><br />

2DOF:<br />

L h<br />

Zo<br />

Zo<br />

U<br />

<br />

C<br />

S<br />

M <br />

<br />

Zs<br />

C<br />

zo<br />

S<br />

xo<br />

h<br />

Kh,<br />

K<br />

Z<br />

O<br />

X<br />

Ch,<br />

C<br />

Xo<br />

h<br />

Z<br />

O<br />

Xs<br />

X<br />

Xo<br />

m h<br />

C<br />

I<br />

C<br />

<br />

h<br />

h<br />

<br />

<br />

<br />

K<br />

K<br />

h<br />

<br />

h L<br />

<br />

M<br />

Where:L h , M : Self-controlled unit lift force and<br />

nDOF: moment<br />

h<br />

<br />

Where: {P(t)}: Self-exited force vector<br />

11


ANALYTICAL MODELS <strong>FOR</strong> SELF-EXCITED AERODYNAMIC <strong>FOR</strong>CES<br />

Theodorsen’s analytical model:<br />

<br />

2<br />

<br />

L h<br />

b2FUh<br />

2 2<br />

( bU (1 F)<br />

GU ) <br />

(2U<br />

F bUG)<br />

2UGh<br />

<br />

<br />

<br />

<br />

2<br />

<br />

F b b<br />

<br />

M bbUFh<br />

2 1<br />

2<br />

2<br />

<br />

( b U U G)<br />

<br />

( UG<br />

bU F)<br />

bUGh<br />

<br />

2 2<br />

<br />

Where: F(k), G(k): Real and imaginary parts of the Theodorsen’s<br />

circulation function C(k)=F(k)+iG(k), determined by Bessel functions of<br />

first and second kind.<br />

Scanlan’s experimental model:<br />

h B<br />

h <br />

L <br />

1 <br />

2 *<br />

* <br />

2 *<br />

2<br />

h<br />

BU<br />

KH<br />

( K)<br />

KH ( K)<br />

K H ( K)<br />

K H<br />

*<br />

1<br />

2<br />

3<br />

<br />

4<br />

( K)<br />

<br />

2 U U<br />

B<br />

<br />

<br />

h B<br />

h <br />

M <br />

1 <br />

2 2 *<br />

* <br />

2 *<br />

2<br />

B U KA<br />

( K)<br />

KA ( K)<br />

K A ( K)<br />

K H<br />

*<br />

<br />

<br />

1<br />

2<br />

3<br />

<br />

4<br />

( K)<br />

<br />

2 U U<br />

B<br />

* *<br />

Where: H<br />

i<br />

, Ai<br />

( i 1<br />

4) Flutter derivatives associated with self-controlled<br />

lift force and pitching moment; K: Reduced frequency K B<br />

/ U , K 2k<br />

12


ANALYTICAL METHODS <strong>FOR</strong> <strong>FLUTTER</strong> PROBLEMS<br />

Modern computational procedure for nDOF system or bridge flutter<br />

solution consist of:<br />

Finite Element Method (FEM)<br />

Multimode superposition technique<br />

‘Critical condition’ tracing technique: based on Liapunov’s<br />

Theorem on Dynamic Stability and Instability<br />

Full-scale bridge<br />

FEM<br />

2D&3Dbridge<br />

Modeling<br />

Modal Space<br />

Generalized<br />

Coordinates<br />

Self-controlled<br />

aerodynamicforces<br />

Flutter Tracing<br />

Zero system<br />

damping ratio<br />

Velocity increment<br />

Iteration<br />

13


<strong>FLUTTER</strong> MOTION EQUATIONS IN MODAL SPACE<br />

Flutter motion equations in ordinary coordinates<br />

M<br />

X<br />

C<br />

X<br />

K<br />

X<br />

Pt<br />

<br />

P t P<br />

<br />

d<br />

Ps<br />

P X<br />

1<br />

P2<br />

X<br />

*<br />

*<br />

M<br />

X<br />

C<br />

X<br />

K<br />

X<br />

0<br />

*<br />

*<br />

K<br />

K<br />

P<br />

; C<br />

C<br />

P<br />

<br />

2<br />

Generalized coordinates and mass-matrix-based normalization<br />

X <br />

<br />

<br />

*<br />

*<br />

I C K <br />

0<br />

<br />

*<br />

T *<br />

* T<br />

K [ K ] ; C [ C<br />

* ] <br />

t<br />

e <br />

Det<br />

i<br />

<br />

2<br />

* *<br />

I C K 0<br />

Response in generalized coordinates<br />

<br />

i<br />

n<br />

i <br />

i<br />

<br />

t<br />

<br />

e <br />

p<br />

q<br />

t q<br />

p<br />

<br />

i sin<br />

2 <br />

<br />

i 1<br />

2 cos<br />

t<br />

i<br />

i<br />

i<br />

i<br />

i<br />

1<br />

Liapunov’s Theorem<br />

If any i < 0 exists then Divergence<br />

i<br />

i<br />

i<br />

i<br />

i<br />

<br />

14


NODE-LUMPED SELF-CONTROLLED AERODYNAMIC <strong>FOR</strong>CES<br />

Self-controlled Forces = Elastic Aerodynamic Forces + Damping<br />

aerodynamic Forces<br />

P t P<br />

P<br />

P X<br />

P<br />

X<br />

d s 1<br />

<br />

2<br />

Linear-lumped in bridge deck’s nodes<br />

1<br />

4<br />

0<br />

<br />

<br />

0<br />

0<br />

<br />

0<br />

0<br />

<br />

0<br />

0<br />

*<br />

1<br />

0<br />

2<br />

1<br />

2<br />

P U<br />

B L<br />

<br />

1<br />

K<br />

U<br />

H<br />

BA<br />

*<br />

1<br />

0<br />

0<br />

P<br />

0<br />

*<br />

0<br />

BH<br />

BP<br />

B<br />

*<br />

2<br />

0<br />

0<br />

0<br />

0<br />

0 0 0 0<br />

0 0 0 0<br />

2<br />

A<br />

*<br />

2<br />

*<br />

0<br />

0<br />

<br />

<br />

0<br />

<br />

0<br />

0<br />

<br />

0<br />

<br />

1<br />

P2<br />

U<br />

4<br />

2<br />

BK<br />

2<br />

0<br />

<br />

<br />

0<br />

0<br />

L <br />

0<br />

0<br />

<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

H<br />

P<br />

BA<br />

0<br />

0<br />

*<br />

3<br />

*<br />

3<br />

*<br />

3<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

<br />

<br />

0<br />

<br />

0<br />

0<br />

<br />

0<br />

<br />

15


A Y<br />

<br />

<br />

BY<br />

<br />

MULTIMODE <strong>FLUTTER</strong> <strong>ANALYSIS</strong><br />

Generalized basic equation in the State Space<br />

<br />

*<br />

*<br />

I C K <br />

0<br />

Where:<br />

A<br />

<br />

<br />

<br />

0<br />

I<br />

<br />

I<br />

<br />

*<br />

C<br />

<br />

<br />

<br />

<br />

B<br />

<br />

<br />

<br />

I<br />

<br />

0<br />

0<br />

*<br />

K<br />

<br />

<br />

<br />

<br />

Y<br />

<br />

<br />

<br />

<br />

<br />

t<br />

e Y<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

e<br />

<br />

t<br />

<br />

A<br />

<br />

<br />

<br />

BZ<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

B<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

AZ<br />

<br />

1<br />

A BZ<br />

Z<br />

<br />

Z<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

D Z<br />

Z<br />

<br />

<br />

C<br />

<br />

<br />

<br />

<br />

*<br />

I<br />

<br />

<br />

<br />

K<br />

<br />

<br />

0<br />

*<br />

<br />

<br />

<br />

<br />

<br />

<br />

Z<br />

<br />

<br />

Z<br />

<br />

D<br />

<br />

<br />

<br />

<br />

C<br />

<br />

<br />

*<br />

<br />

<br />

<br />

<br />

K<br />

<br />

<br />

I 0 <br />

*<br />

Standard form of Eigen Problem<br />

16


SINGLE-MODE AND TWO-MODE <strong>FLUTTER</strong> <strong>ANALYSIS</strong><br />

1DOF motion equation associated with ith mode in modal space<br />

<br />

i<br />

<br />

2<br />

Where:<br />

rmsn<br />

i<br />

<br />

i<br />

i<br />

i<br />

<br />

<br />

2<br />

i<br />

<br />

i<br />

<br />

p i<br />

( t)<br />

T<br />

T<br />

P<br />

<br />

<br />

P<br />

<br />

<br />

p ( t)<br />

<br />

<br />

1<br />

pi<br />

( t)<br />

U<br />

2<br />

i<br />

1 i i 2<br />

2<br />

BK<br />

[ H<br />

U<br />

m<br />

l k<br />

( r,<br />

k<br />

)<br />

m<br />

( s,<br />

k<br />

k1<br />

G <br />

)<br />

*<br />

1<br />

G<br />

n<br />

h h<br />

i<br />

j<br />

P<br />

*<br />

1<br />

G<br />

p p<br />

i<br />

j<br />

i<br />

B<br />

2<br />

A<br />

*<br />

2<br />

G<br />

: Modal sums<br />

:Generalized force of ith mode<br />

<br />

i<br />

j<br />

] <br />

i<br />

1 2 2<br />

BK<br />

*<br />

3<br />

U<br />

2<br />

[ BA G<br />

<br />

]<br />

i<br />

j<br />

<br />

i<br />

1DOF motion equation in standard form<br />

<br />

i<br />

2<br />

i i<br />

i<br />

<br />

i<br />

i<br />

0<br />

2<br />

2<br />

<br />

i<br />

i <br />

4<br />

B *<br />

1 A<br />

3<br />

( K i ) G<br />

i<br />

j<br />

B<br />

2<br />

i<br />

K i <br />

U<br />

4<br />

ω<br />

i ρ B<br />

i *<br />

*<br />

2 *<br />

[H<br />

1<br />

( K i ) G<br />

hihj<br />

P1<br />

( K i )G<br />

pipj<br />

B A<br />

2<br />

( K i<br />

ω<br />

)G<br />

i<br />

i 4<br />

Critical condition: System damping ratio equal zero<br />

α iα j<br />

17


NUMERICAL EXAMPLE<br />

Stuctural parameters:<br />

Pre-stressed concrete cable-stayed bridge taken into consideration<br />

for demonstration of the flutter analytical methods.<br />

A symmetrical span arrangement: 40.4m+97m+40.5m=178m<br />

Fig 7. Layout of cable-stayed bridge for numerical example<br />

18


20<br />

3.5<br />

15<br />

3<br />

H *i(i= 1 ,2 ,3 )<br />

10<br />

5<br />

0<br />

-5<br />

-10<br />

-15<br />

-20<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

H*1<br />

H 3 *<br />

H 1 *<br />

H*2<br />

H*3<br />

H 2 *<br />

Reduced Velocities<br />

A *i (i= 1 , 2 , 3 )<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

-0.5<br />

A 3 *<br />

A 1 *<br />

A 2 *<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Reduced Velocities<br />

Fig 8. Flutter derivatives (By quasi-steady<br />

formula Scanlan [1989], Pleif [1995])<br />

19


Mode 1<br />

f=0.60991<br />

Mode 2<br />

f=0.80166<br />

Mode 1<br />

f = 0.6099Hz<br />

Mode 2<br />

f= 0.801Hz<br />

Mode 3<br />

f= 0.8522Hz<br />

Mode 4<br />

f= 1.1949Hz<br />

Fig 9. Fundamental modal shapes of 3D modeling (Mode 1 Mode 8)<br />

20


Mode 5<br />

f =1.2931Hz<br />

Mode 6<br />

f =1.4495Hz<br />

Mode 7<br />

f =1.5819Hz<br />

Mode 8<br />

f = 1.6304Hz<br />

21


Modal Shape 1<br />

(1st Heaving Mode)<br />

Modal Shape 2<br />

( 2nd Heaving Mode)<br />

Modal Amplitude<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

-0.12<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Modal Amplitude<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Modal Amplitude<br />

0.02<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

Modal Shape 3<br />

(1st Torsional Mode)<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Modal Amplitude<br />

0.015<br />

0.01<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

Modal Shape 4<br />

(2nd Torsional Mode)<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

-0.02<br />

-0.02<br />

Fig 10. Modal amplitude value of fundamental modal shapes 22


Modal Shape 5<br />

(3rd Heaving Mode)<br />

Modal Shape 6<br />

(4th Heaving Mode)<br />

0.06<br />

0.1<br />

Modal Amplitude<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

Modal Amplitude<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

-0.12<br />

-0.15<br />

Modal Shape 7<br />

(3rd Torsional Mode)<br />

Modal Shape 8<br />

(4th Heaving Mode)<br />

1.00E-02<br />

0.12<br />

Modal Amplitude<br />

5.00E-03<br />

0.00E+00<br />

-5.00E-03<br />

-1.00E-02<br />

-1.50E-02<br />

-2.00E-02<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Modal A m plitude<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

23


Tab 1. Characteristics of free vibration<br />

Modes Eigenvalue Frequency(Hz)<br />

Period (s)<br />

Modal Features<br />

2<br />

<br />

dao ®éng<br />

1 1.47E+01 0.609913 1.639579 S-V-1<br />

2 2.54E+01 0.801663 1.247406 A-V-2<br />

3 2.87E+01 0.852593 1.172893 S-T-1<br />

4 5.64E+01 1.194920 0.836876 A-T-2<br />

5 6.60E+01 1.293130 0.773318 S-V-3<br />

6 8.30E+01 1.449593 0.689849 A-V-4<br />

7 9.88E+01 1.581915 0.632145 S-T-P-3<br />

8 1.05E+02 1.630459 0.613324 S-V-5<br />

9 1.12E+02 1.683362 0.594049 A-V-6<br />

10 1.36E+02 1.857597 0.53830 S-V-7<br />

Ghi chó :<br />

S : Heaving Mode<br />

A : Ansymmetrical<br />

V : D¹ng dao ®éng uèn<br />

T : Torsional Mode<br />

P : Lateral Mode<br />

24


Tab 2. Modal integral sums G rmsn<br />

Modes<br />

Freq.<br />

Feature<br />

Modal integral sums G rmsn<br />

(Hz) G hihi<br />

G pipi<br />

G ii<br />

1 0.609913 S-V-1 5.20E-01 7.50E-11 0.00E+00<br />

2 0.801663 A-V-2 4.95E-01 7.43-09 1.35E-09<br />

3 0.852593 S-T-1 3.79E-09 5.23E-05 1.14E-02<br />

4 1.194920 A-T-2 1.78E-07 1.82E-05 1.06-9E-02<br />

5 1.293130 S-V-3 5.07E-01 1.36E-07 23.62E-09<br />

6 1.449593 A-V-4 4.99E-01 2.10E-09 9.42E-09<br />

7 1.581915 S-T-P-3 2.67E-07 1.10E-03 1.10E-02<br />

8 1.630459 S-V-5 5.03E-01 1.43E-07 1.27E-08<br />

9 1.683362 A-V-6 1.64E-06 1.77E-04 1.09E-02<br />

10 1.857597 S-V-7 4.16E-06 2.78E-03 1.11E-02<br />

G<br />

N<br />

r m s n<br />

lk<br />

( r,<br />

k<br />

)<br />

m<br />

( s,<br />

k<br />

)<br />

n<br />

k1<br />

25


System damping ratio<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Mode 1 Mode 2<br />

Mode 1 (Heaving)<br />

Mode 2 (Heaving)<br />

Mode 3 (Torsional)<br />

Mode 4 (Torsional)<br />

Mode 5 (Heaving)<br />

Mode 5<br />

0<br />

Mode 3<br />

Mode 4<br />

-0.2<br />

10 20 30 40 50 6064.5 70 8088.5<br />

90<br />

Wind velocity (m/s)<br />

Fig 11. Damping ratio-velocity diagram of 5 fundamental modes<br />

39


1.3<br />

1.2<br />

1.1<br />

Aerodynamic interaction<br />

Mode 3<br />

Mode 3 (Torsional)<br />

Mode 4 (Torsional)<br />

Frequency (Hz)<br />

1<br />

0.9<br />

Aerodynamic interaction<br />

0.8<br />

Mode 4<br />

0.7<br />

0.6<br />

10 20 30 40 50 60 70 80 90<br />

Wind velocity (m/s)<br />

Fig 12. Frequency-Velocity diagram of torsional modes<br />

26


Critical velocity (m/s)<br />

68<br />

66<br />

64<br />

62<br />

60<br />

58<br />

56<br />

54<br />

52<br />

50<br />

66<br />

56<br />

1<br />

64<br />

67<br />

Selberg's<br />

formula<br />

Complex eigen<br />

method<br />

Mode-by-mode<br />

method<br />

Two-mode<br />

method<br />

Fig 13. Critical wind velocity resulted in some analytical methods<br />

27


Fig 14. Modal amplitude-time diagram of 5 fundamental modes<br />

1<br />

0<br />

Mode 1<br />

1<br />

0<br />

Mode 1<br />

U= 50m/s<br />

U=70m/s<br />

Modal Amplitude<br />

Modal Amplitude<br />

-1<br />

1<br />

0 10 20 30 40 50<br />

Mode 2<br />

60 70 80 90 100<br />

0<br />

-1<br />

1<br />

0 10 20 30 40 50<br />

Mode 3<br />

60 70 80 90 100<br />

0<br />

-1<br />

1<br />

0 10 20 30 40 50<br />

Mode 4<br />

60 70 80 90 100<br />

0<br />

-1<br />

1<br />

0 10 20 30 40 50<br />

Mode 5<br />

60 70 80 90 100<br />

0<br />

-1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (s)<br />

1<br />

0<br />

Mode 1<br />

-1<br />

1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Mode 2<br />

0<br />

-1<br />

5<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Mode 3<br />

0<br />

-5<br />

1<br />

0 10 20 30 40 50<br />

Mode 4<br />

60 70 80 90 100<br />

0<br />

Modal Amplitude<br />

Modal Amplitude<br />

-1<br />

1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Mode 2<br />

0<br />

-1<br />

2<br />

0 10 20 30 40 50 60 70<br />

Mode 3 (Divergence)<br />

80 90 100<br />

0<br />

-2<br />

1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Mode 4<br />

0<br />

-1<br />

1<br />

0 10 20 30 40 50<br />

Mode 5<br />

60 70 80 90 100<br />

0<br />

-1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (s)<br />

1<br />

0<br />

Mode 1<br />

-1<br />

1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Mode 2<br />

0<br />

-1<br />

1<br />

0 x 105 10 20 30 40 50 60 70 80 90 100<br />

Mode 3 (Divergence)<br />

0<br />

-1<br />

2<br />

0 10 20 30 40 50 60<br />

Mode 4 (Divergence)<br />

70 80 90 100<br />

0<br />

U= 65m/s U= 90m/s<br />

-1<br />

1<br />

0 10 20 30 40 50<br />

Mode 5<br />

60 70 80 90 100<br />

0<br />

-2<br />

1<br />

0 10 20 30 40 50<br />

Mode 5<br />

60 70 80 90 100<br />

0<br />

-1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (s)<br />

-1<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Time (s)<br />

28


Fig 15. Nodes’ modal amplitude–velocity diagram<br />

0.06<br />

0.04<br />

0.02<br />

1 st Heaving mode<br />

Modal amplitude<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Initial<br />

50m/s<br />

65m/s<br />

70m/s<br />

90m/s<br />

-0.12<br />

Deck nodes<br />

0.1<br />

0.05<br />

2 st Heaving mode<br />

Modal amplitude<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Initial<br />

50m/s<br />

65m/s<br />

70m/s<br />

90m/s<br />

Deck nodes<br />

29


0.01<br />

0.005<br />

1 st Torsional mode<br />

Modal amplitude<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

-0.02<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Initial<br />

50m/s<br />

65m/s<br />

70m/s<br />

90m/s<br />

-0.025<br />

Deck nodes<br />

0.015<br />

0.01<br />

3 nd Heaving mode<br />

Modal amplitude<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

-0.02<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Initial<br />

50m/s<br />

65m/s<br />

70m/s<br />

90m/s<br />

Deck nodes<br />

30


Fig 16. Nodes’ modal amplitude–time diagram<br />

0.06<br />

0.04<br />

1 st Heaving mode<br />

Modal amplitude (at 50m/s)<br />

0.02<br />

0<br />

-0.02<br />

-0.04<br />

-0.06<br />

-0.08<br />

-0.1<br />

-0.12<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Initial<br />

1second<br />

2seco nds<br />

3seco nds<br />

5seco nds<br />

10seco nds<br />

Deck nodes<br />

0.01<br />

1 st Torsional mode<br />

Modal amplitude (at 70m/s)<br />

0.005<br />

0<br />

-0.005<br />

-0.01<br />

-0.015<br />

-0.02<br />

-0.025<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29<br />

Deck nodes<br />

Initial<br />

1seco nd<br />

2seco nds<br />

3seco nds<br />

5seco nds<br />

10seconds<br />

31


CONCLUSION<br />

Flutter problem: Iteration procedure with velocity<br />

increment +<br />

Critical condition tracing technique<br />

Bridge Flutter usually experiences to be associated with i) Pure<br />

torsional mode or ii) Coupled heaving and torsional modes.<br />

Thus single-mode and two-mode analysis methods<br />

seems to exhibit enough accuracy<br />

Further studies on numerical analytical methods should be:<br />

1) Aerodynamic coupling between Flutter (Self-excited<br />

forces) and Buffeting (Random forces)<br />

2) Non-linear geometry problem should be included for<br />

Flutter time-domain analysis for ‘flexible’ long-span bridges<br />

32


THANKS VERY MUCH <strong>FOR</strong> YOUR ATTENTION

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!