27.11.2014 Views

Solutions - Mu Alpha Theta

Solutions - Mu Alpha Theta

Solutions - Mu Alpha Theta

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Solutions</strong> to Calculus Individual – FAMAT State Convention 2004<br />

4 3 2<br />

D 1. Use L’Hopital’s Rule twice to get D 8. V = πr dV = 4πr dr<br />

3<br />

2<br />

dV = 4 π(2) (.01) dV = .16π<br />

≈0.503<br />

cos(2 x) + xcos x+ sin x−e<br />

= lim<br />

x→0<br />

96xcos x+<br />

96sin x<br />

x<br />

A 9. dw 1 1 dz 2<br />

− 2sin(2 x) + 2cos x−xsin x−e<br />

1<br />

= + = 3( x + 2) 2<br />

⋅2x<br />

2<br />

= lim<br />

=<br />

dz 27 z dx<br />

x→0<br />

192cos x−<br />

96xsin x 192<br />

dz dx 1 1 28<br />

| = 54 | = + =<br />

2 2<br />

dx x= 1 dz z=<br />

27 27 27 27<br />

D 2. I. True by Intermediate Value Theorem<br />

28 56<br />

II. Not necessarily true because f is not<br />

⋅ 54 =<br />

2<br />

27 27<br />

necessarily differentiable on (2,5).<br />

2<br />

III. True by Intermediate Value Theorem C 10. d y 4y<br />

2<br />

= ⋅ 2y<br />

−1=<br />

2y<br />

2<br />

dx<br />

2<br />

2 2y<br />

−1<br />

2<br />

A. 3. Solve 600 − 16t<br />

= 0 f′ () t =−32t<br />

2<br />

d y<br />

5 6 ⎛5 6 ⎞ | = 2(3) = 6<br />

2<br />

t =<br />

f ' 2<br />

⎜<br />

8<br />

2 ⎟ =− 0 6<br />

dx y=<br />

3<br />

⎝ ⎠<br />

x − x<br />

B 11. f′ ( x) = e −e −2sinx<br />

B 4.<br />

f′ (0) = 0, f′ ( − .1) < 0, f′<br />

(.1) > 0<br />

7 x −10−5 7 − 10+ 5 7 −10−25<br />

⋅ x =<br />

x<br />

f has a local minimum at x = 0.<br />

10( x − 5) 7x− 10+ 5 10( x−5) ⋅ 7x− 10+<br />

5<br />

C 12. y′ = − 2sin(2 x) + 2cos(2 x) = 0<br />

7x−35 7( x−5)<br />

= =<br />

1=<br />

tan(2 x)<br />

10( x−5) 7x− 10 + 5 10( x−5) 7x− 10 + 5<br />

π π k<br />

7 7<br />

2 x= + kπ;<br />

x= + π<br />

lim =<br />

+<br />

x 5<br />

10( 7 10 5)<br />

→ x − +<br />

4 8 2<br />

100<br />

The function has a period of π .<br />

B 5.<br />

y′ = x + x− =<br />

2<br />

3 4 4 1<br />

2<br />

3 4 15 0<br />

x<br />

+ x− =<br />

(3x− 5)( x+ 3) = 0<br />

1 f ⎛π<br />

⎞ ⎛5π<br />

⎞<br />

⎜ ⎟= 2 and ⎜ ⎟=<br />

2<br />

⎝ 8 ⎠ f ⎝ 8 ⎠<br />

−<br />

The maximum value is 2,<br />

5<br />

x= or x=−<br />

3<br />

3<br />

C 6.<br />

h′ ( x) = f′ ( g( x)) ⋅g′<br />

( x)<br />

h′′ ( x) = f′ ( g( x)) ⋅ g′′ ( x) + g′ ( x) ⋅ f′′ ( g( x)) ⋅g′<br />

( x)<br />

h′′ (2) = f′ (2) ⋅ g′′ (2) + 4 f′′<br />

(2)<br />

=− g′′ (2) + 4 f′′ (2) =− f′′ (2) + 4 f′′ (2) = 3 f′′<br />

(2)<br />

3<br />

1 2<br />

A 7. y = 2 1 ( 2 1)<br />

2<br />

∫ x+ dx= ⋅ x+ + C<br />

2 3<br />

1<br />

( 27 − 1<br />

y(4) − y(0) )<br />

3 26 13<br />

= = =<br />

4 4 12 6<br />

B 13. I. True because f is strictly decreasing.<br />

II. True because f ′ is decreasing.<br />

III. Not necessarily true.<br />

IV. True by the mean value theorem<br />

applied to f ′ .<br />

A 14. This series is equal to<br />

π<br />

∫<br />

o<br />

π<br />

sin xdx = − cos x ] =−cosπ<br />

−− cos0 = 2<br />

E 15.<br />

0<br />

x<br />

x<br />

x e + 1−xe<br />

g'( x) = ; g′′<br />

( x)<br />

=<br />

x<br />

e + 1 + 1<br />

1<br />

g′′ (0) =<br />

2<br />

x<br />

( e ) 2


<strong>Solutions</strong> to Calculus Individual – FAMAT State Convention 2004<br />

1<br />

4<br />

2<br />

1<br />

E 23. 6x+ 2 = 4 6x= 2 x=<br />

D 16. u = x u(1) = 1 u(2) = 4<br />

2<br />

∫ e u du<br />

3<br />

π<br />

1<br />

⎛1⎞ 5<br />

4<br />

π<br />

4⎜<br />

⎟ − y = 3 y =−<br />

C 17. ∫( cos x − sin x) dx+ ∫( sin x−cos<br />

x)<br />

dx=<br />

⎝3⎠<br />

3<br />

2<br />

0<br />

π<br />

5 ⎛1⎞<br />

2 8<br />

4<br />

− = 3 ⎜ ⎟ + + k k = −<br />

π<br />

3 ⎝3⎠<br />

3 3<br />

4<br />

π<br />

( sin x+ cos x) ] + ( −cos x− sin x)<br />

] = B 24.<br />

0<br />

π<br />

I. . h(2) = f( g(2)) ≈ f(0) ≈5 NO<br />

4<br />

2 2 ⎛ 2 2 ⎞ II. h′ (3) = f′ ( g(3)) ⋅g′ (3) ≈ f′<br />

(.25) ⋅+=−⋅+=− NO<br />

+ − 1+ 1−0− − − = 2 2<br />

2 2 ⎜ 2 2 ⎟ III. h′ (1) = f′ ( g(1)) ⋅ g′ (1) = f′<br />

(1) ⋅−= 0 YES<br />

⎝ ⎠<br />

2<br />

IV. h′′ ( x) = f′ ( g( x)) ⋅ g′′ ( x) + ( g′ ( x) ) ⋅ f′′<br />

( g( x))<br />

3<br />

A 18. dy 2xy −6x<br />

−12<br />

2<br />

| = | = =−3 ′′<br />

2 2<br />

h (4) = f′ ( g(4)) ⋅ g′′ (4) + ( g′ (4))<br />

⋅ f′′<br />

( g(4))<br />

dx (2,0) 4−<br />

3x y (2,0) 4<br />

≈ 0+ 1⋅<br />

f ′′(1) = a positive number<br />

dy =− 3 dx dy =−3( − .03) = .09<br />

2x cosx−<br />

sinx<br />

since f is concave up at 1. YES<br />

A 19. v'( t) = a( t)<br />

=<br />

3<br />

2<br />

2x<br />

A 25.<br />

3 3π<br />

3 dV 9π<br />

2 dh<br />

r = h V = h = h<br />

a(3.5) < 0 and v(3.5) < 0<br />

4 16 dt 16 dt<br />

means speed is increasing.<br />

9π<br />

dh dh 2<br />

2<br />

6π<br />

= ⋅16 ⋅ = A=<br />

πr<br />

16 dt dt 3<br />

2<br />

A 20. When x < 0 slopes are negative and<br />

dA dr dA 1 dA ft<br />

= 2 πr<br />

= 2π<br />

⋅3 ⋅ = 3π<br />

when x > 0 slopes are positive. When<br />

dt dt dt 2 dt min<br />

x = 0 , slopes are 0.<br />

D 26.<br />

2 4<br />

2<br />

( )<br />

B 21. y x<br />

u 2 2 1<br />

= x ∫ xf ′( x ) + 1 dx = ( ) 1<br />

2<br />

∫ f ′ u du + dx<br />

3 4 3<br />

′ = 20 + 15x = 5 x (4 + 3 x) = 0<br />

∫<br />

0 0<br />

0<br />

x= 0 or x=−4/3<br />

1<br />

4<br />

1 1<br />

= f( u)] + 2 = ( f(4) − f(0) ) + 2= ⋅ 12+ 2=<br />

8<br />

2 3 2<br />

y′′ = 60x + 60x = 60 x (1 + x) = 0<br />

2 0 2 2<br />

x= 0 or x=−1<br />

2 −4<br />

B 27. f '( x) = f′′<br />

( x) = f(0) = 0;<br />

2x<br />

+ 1 ( 2 + 1) 2<br />

y′<br />

x<br />

+ − +<br />

f′ (0) = 2; f′′<br />

(0) =− 4 2 +− 4 =−2<br />

-4/3 0<br />

′′ y<br />

D 22. ∫<br />

−<br />

+ +<br />

−1<br />

0<br />

The graph has a local max, a local min,<br />

and an inflection point.<br />

3 4<br />

∫<br />

0 3<br />

( )<br />

x + 1dx + 2x −4<br />

dx =<br />

3<br />

2<br />

3 4<br />

2<br />

( x+ 1 ) 2 ] + ( x −4 x)<br />

]<br />

3<br />

0 3<br />

16 2 23<br />

= − + 0+ 3=<br />

3 3 3<br />

−kx<br />

−kx<br />

C 28. f '( x) = e ( − kx + 1) f ′′( x) =−ke (2 −kx)<br />

2 ⎛3⎞<br />

f′′ ( x) = 0 when x= f′′ (0) < 0 f′′<br />

⎜ ⎟><br />

0<br />

k<br />

⎝k<br />

⎠<br />

2<br />

f is concave down for x<<br />

.<br />

k<br />

B 29. The zeros of f are 1 and –7/2.<br />

⎛ 7 ⎞<br />

f′′ ( x) = 12x+ 6 f′′ (1) = 18 f′′<br />

⎜− ⎟=−36<br />

⎝ 2 ⎠<br />

D 30.<br />

g( − 1) =−2 f( − 2) =− 9 m= f′ ( −2) ⋅g′<br />

( − 1) = 19<br />

y− ( − 9) = 19( x+ 1) or 19x− y =−10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!