27.11.2014 Views

Fractional Dual-Modulus Prescaler with Regenerative Divider

Fractional Dual-Modulus Prescaler with Regenerative Divider

Fractional Dual-Modulus Prescaler with Regenerative Divider

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The 13th IEEE International Symposium on Consumer Electronics (ISCE2009)<br />

<strong>Fractional</strong> <strong>Dual</strong>-<strong>Modulus</strong> <strong>Prescaler</strong> <strong>with</strong><br />

<strong>Regenerative</strong> <strong>Divider</strong><br />

Yue-Fang Kuo and Ro-Min Weng<br />

Dept. of Electrical Engineering,<br />

National Dong Hwa University,<br />

Hualien 97401, Taiwan, Republic of China<br />

romin@mail.ndhu.edu.tw<br />

Abstract—A fractional dual-modulus prescaler (FDMP) <strong>with</strong><br />

regenerative divider for 5 GHz band is presented using 0.13 µm<br />

CMOS technology. It provides a solution to generate a dualmodulus<br />

fractional division ratio which keeps up <strong>with</strong> high<br />

operation frequency from a voltage-controlled oscillator. The<br />

maximum operation frequency of FDMP is 6.3 GHz consuming<br />

6.75 mW at 1.2 V supply voltage. The proposed FDMP achieves<br />

both high operation frequency and large output swing of the<br />

quadrature outputs.<br />

f REF<br />

Phase<br />

Frequency<br />

Detector<br />

Q<br />

R<br />

S<br />

Charge<br />

Pump<br />

Pulse (N P )<br />

Counter<br />

Sallower (N S )<br />

Counter<br />

Loop Filter<br />

<strong>Dual</strong>-<strong>Modulus</strong><br />

<strong>Prescaler</strong><br />

N A /N A +1<br />

<strong>Modulus</strong><br />

Control<br />

VCO<br />

f VCO,I<br />

f VCO,Q<br />

f VCO<br />

Keywords-<strong>Fractional</strong> <strong>Dual</strong>-<strong>Modulus</strong> <strong>Prescaler</strong>; <strong>Regenerative</strong><br />

<strong>Divider</strong>; Miller <strong>Divider</strong>.<br />

I. INTRODUCTION<br />

A dual-modulus prescaler (DMP) is a key block of a<br />

frequency divider in a frequency synthesizer. The division<br />

number of a pulse-swallower divider is decided by DMP. To<br />

keep up <strong>with</strong> high frequency output from a voltage-controlled<br />

oscillator (VCO) and to reduce the power consumption, there is<br />

a trade-off between the speed and the divide-by-N of DMP.<br />

Commonly, a fixed-ratio prescaler is inserted between DMP<br />

and VCO in order to relax the speed constraint of DMP [1].<br />

However, the channel spacing becomes large and resolution is<br />

decreased by this solution. For maintaining the same channel<br />

spacing, the reference frequency f REF is required to be reduced<br />

by a factor of the fixed-ratio. Low reference frequency results<br />

in decreasing the useful bandwidth of a phase-locked loop<br />

(PLL). This solution increases the settling time and decreases<br />

phase noise performance. In this work, a new dual-modulus<br />

prescaler based on regenerative divider is introduced to solve<br />

the above problems and to achieve high operating frequency<br />

<strong>with</strong> the fractional division ratio.<br />

II.<br />

CIRCUIT DESIGN<br />

Fig. 1 depicts a frequency synthesizer based on a proposed<br />

fractional dual-modulus prescaler (FDMP) and a pulse<br />

swallower counter <strong>with</strong>out employing a fixed-ratio prescaler.<br />

The output of FDMP is counted by the pulse swallower counter<br />

simultaneously. The division ratio of FDMP is changed by an<br />

S-R flip-flop which enables each state by generating variable<br />

swallow pulses from a pulse swallower divider. Therefore, the<br />

synthesized frequency f VCO is equal to<br />

VCO<br />

( N A<br />

N P<br />

N S<br />

) f REF<br />

f = + , (1)<br />

TABLE I.<br />

f REF<br />

(MHz)<br />

<strong>Divider</strong><br />

Figure 1. Architecture of the frequency synthesizer.<br />

SPECIFICATION OF THE PULSE SWALLOWER DIVIDER FOR<br />

DIFFERENT CHANNEL SPACING AND N A OF 3.5<br />

N P N S M = 3.5N P + N S<br />

Channel<br />

Spacing<br />

(MHz)<br />

Channel<br />

Numbers<br />

20 70 5-55 250-300 20 51<br />

10 142 3-103 500-600 10 101<br />

7 204 3-143 717-857 7 141<br />

3.5 408 1-286 1429-1714 3.5 286<br />

1.75 816 2-573 2858-3429 1.75 572<br />

where N P is the number of the pulses into each reference period<br />

of FDMP, N S is the number of the swallowed pulses per<br />

reference period, and N A is the division ratio of FDMP. For<br />

5GHz unlicensed band such as Wireless LAN and WiMAX<br />

[2][3], Table I shows the division number M of the pulse<br />

swallower counter <strong>with</strong> different reference frequency and N A of<br />

3.5. According to (1), the synthesized frequency can be<br />

covered between 5 GHz to and GHz <strong>with</strong> difference channel<br />

spacing. Therefore, FDMP can be applied to different system<br />

specifications <strong>with</strong>out using a fixed-ratio prescaler for various<br />

channel spacing.<br />

Fig. 2 shows the principle of FDMP <strong>with</strong> regenerative<br />

frequency divider, which consists of a single sideband (SSB)<br />

mixer <strong>with</strong> LC-tank, two divide-by-2 dividers, and a dual-mode<br />

divide-by-2 divider [4]. The differential output of SSB mixer is<br />

obtained by the difference combination of two double sideband<br />

(DSB) mixers [5]. The switching pairs of an SSB mixer are<br />

connected to the quadrature outputs of a dual-mode divide-by-2<br />

divider which provides two opposite phase sequences. The up-<br />

978-1-4244-2976-9/09/$25.00 ©2009 IEEE 495


SSB Mixer<br />

DOWN<br />

Conversion<br />

UP<br />

Conversion<br />

Voltage<br />

Controlled<br />

Oscillator<br />

f VCO,I<br />

f VCO,Q<br />

DSB<br />

Mixer1<br />

+<br />

+<br />

2 N f VCO<br />

2 N +1<br />

C<br />

2<br />

2L<br />

2 N f VCO<br />

2 N -1<br />

+<br />

f out1<br />

-<br />

f out4,I<br />

2 N f VCO<br />

LC-Tank<br />

2 N + 1<br />

f out4,Q<br />

<strong>Divider</strong><br />

1/2<br />

+<br />

f out2<br />

-<br />

2 N -1 f VCO<br />

2 N + 1<br />

N = 3<br />

<strong>Divider</strong><br />

1/2<br />

+<br />

f out3<br />

-<br />

2 N -2 f VCO<br />

2 N + 1<br />

<strong>Dual</strong>-Mode<br />

<strong>Divider</strong><br />

1/2<br />

DSB<br />

Mixer2<br />

2 N -3 f VCO<br />

2 N + 1<br />

Figure 2. Principle of FDMP.<br />

V DD<br />

LC-Tank<br />

L<br />

L<br />

Mode<br />

C<br />

C<br />

f out1<br />

+<br />

f VCO,I<br />

-<br />

DFF1<br />

D Q<br />

DFF2<br />

D Q<br />

M 1 M 2 M 3 M 4<br />

M 7 M 8 M 9 M 10<br />

f MCML<br />

out2<br />

f out3<br />

D Q D Q<br />

Divide-by-2<br />

CK CK CK CK<br />

M 5 R M 6 M 11 M 12<br />

1<br />

R +<br />

2<br />

f VCO,Q<br />

-<br />

MCML Divide-by-2<br />

I S I S<br />

I S<br />

I S<br />

Mode = 1<br />

CW<br />

DSB Mixer2<br />

DSB Mixer1<br />

M 34 M 35 M 36<br />

t<br />

f out4,I1<br />

f out4,Q2,270 f out4,Q1,90<br />

f out4,I2 f<br />

f out4,I1,0 out4,Q1<br />

f<br />

Mode = 0<br />

out4,Q2 CCW<br />

M 13 M 14 M 15 M 16 M 17 M 18 M 19 M 20 M 21 M 22 M 23 M 24<br />

t<br />

M 25 M 26 M 27<br />

M 28 M 29 M 30 f out4,Q1,270 f out4,Q2,90<br />

f out4,I1,0<br />

Mode<br />

M 31 M 32<br />

M 33<br />

V DD<br />

Mode<br />

I SS<br />

<strong>Dual</strong>-Mode Divide-by-2 <strong>Divider</strong><br />

conversion or down-conversion output of an SSB mixer can be<br />

obtained by choosing different quadrature phase to tune the<br />

LC-tank load. When center frequency of the resonant LC-tank<br />

is around (2 N f VCO )/(2 N -1), the SSB mixer generates the upconversion<br />

and suppresses the down-sideband. The<br />

regenerative modulation of the input sinusoidal signal is<br />

generated from f VCO to (2 N-3 f VCO )/(2 N -1). The output frequency<br />

of FDMP will be succeed to achieve the differential output<br />

frequency, f OUT = (1/3.5) f VCO , when N is equal to 3. Assuming<br />

that the resonant LC-tank tunes the center frequency from<br />

(2 N f VCO )/(2 N -1) to (2 N f VCO )/(2 N +1) at the output of the SSB<br />

mixer. In additional, the dual-mode divider changes the<br />

opposite quadrature phase at the frequency of (2 N-3 f VCO )/(2 N +1).<br />

Then, the up-sideband suppression can be increased where<br />

FDMP is divided by 4.5.<br />

A Gilbert double-balanced DSB mixer is used for<br />

providing the quadrature inputs of the SSB mixer which<br />

accomplish addition and subtraction of frequency, as shown in<br />

Fig. 3. The resonant LC-tank composes of a symmetric shared<br />

inductor <strong>with</strong> centre-tap and two switched capacitors. The<br />

linearity and flat voltage gain can be improved during the<br />

Figure 3. Schematic of proposed FDMP<br />

desired division ratio of FDMP. For high-frequency operation<br />

of the SSB mixer, its output is halved by a divide-by-2 divider<br />

<strong>with</strong> MOS current mode logic (MCML) circuits which<br />

achieves both low phase noise and wide operating frequency<br />

range of (2 N+1 f VCO )/(2 2N -1) [6]. The schematic of the dual-mode<br />

divide-by-2 divider is introduced by Lee [7]. Two phase<br />

patterns of both clockwise and counterclockwise sequences are<br />

provided. According to the pattern selection switch signal<br />

Mode, the tail current of transistor M 31 (M 32 ) steers the MCML<br />

circuits and controls different phases transferring to the output<br />

ports.<br />

III.<br />

SIMULATION RESULT<br />

The proposed regenerative frequency divider is simulated<br />

<strong>with</strong> 0.13 µm CMOS process parameters at 1.2 V power<br />

supply. Fig. 4 shows the output signal of the proposed divider<br />

<strong>with</strong> an input 200 mV peak-to-peak voltage of 6 GHz<br />

operating frequency. It is obvious that the input signal of a<br />

divide-by-4.5 state has one more delay than that of a divideby-3.5<br />

state. Fig. 5 shows the sensitivity curves of the<br />

proposed divider in two different division ratios. The results<br />

496


show that the proposed divider achieves large output swing<br />

<strong>with</strong> small input signal between 5 GHz and 6 GHz. The<br />

operating range of FDMP is limited by the center frequency of<br />

the resonant LC-tank. With 6 GHz input signal, the output<br />

spectrum of SSB mixer shows Fig. 6. In Fig. 6(a), the SSB<br />

mixer generates a down-conversion signal of 6.855 GHz and<br />

suppresses both 3.43 GHz and 10.28 GHz below 30dB. The<br />

sideband around 2.668 GHz and 8 GHz are at least 25dB lower<br />

than output of SSB mixer at 5.335 GHz, as shown in Fig. 6(b).<br />

The input signal of VCO and the sideband signal are<br />

effectively suppressed by the resonant LC-tank. The power<br />

consumption <strong>with</strong>in the operating frequency band is less than<br />

6.75 mW.<br />

IV.<br />

CONCLUSION<br />

A novel fractional dual-modulus precsaler <strong>with</strong><br />

regenerative divider is presented. The proposed presclaer<br />

provides a dual-modulus fractional division ratio for keeping<br />

up <strong>with</strong> high operation frequency under a small input voltage<br />

swing. The simulated results prove that the proposed prescaler<br />

achieves high operation frequency <strong>with</strong> a large output swing.<br />

The designed prescaler can be further applied to the frequency<br />

dividers for high speed systems.<br />

1.6<br />

1.4<br />

1.2<br />

Divide-by-3.5<br />

Divide-by-4.5<br />

fvco<br />

fout3<br />

Mode<br />

ACKNOWLEDGMENT<br />

The tsmc 0.13µm CMOS process parameters for this work<br />

are supported by the National Chip Implementation Center<br />

(CIC) of the National Applied Research Laboratories, Taiwan.<br />

REFERENCES<br />

[1] S. Pellerano, S. Levantino, C. Samori, and A. L. Lacaita, “A 13.5-mW<br />

5-GHz Frequency Synthesizer With Dynamic-Logic Frequency<br />

<strong>Divider</strong>,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 378-383, Feb.<br />

2004.<br />

[2] T. H. Lee, H. Samavati, and H. R. Rategh, “5-GHz CMOS Wireless<br />

LANs,” IEEE Trans.Microw. Theory Tech., vol. 50, no. 1, pp. 268-280,<br />

Jan. 2002.<br />

[3] G. C. T. Leung and H. C. Luong, “A 1-V 5.2-GHz CMOS Synthesizer<br />

for WLAN Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 11,<br />

pp. 1873-1882, Nov. 2004.<br />

[4] K. Sengupta, T. K. Bhattacharcharyya, and H. Hashemi, “A Nonlinear<br />

Transient Analysis of <strong>Regenerative</strong> Frequency <strong>Divider</strong>s,” IEEE Trans.<br />

Circuits Syst. I, Reg. Papers, vol. 54, no. 12, pp. 2646-60, Dec. 2007.<br />

[5] Y. F. Kuo and R. M. Weng, “<strong>Regenerative</strong> Frequency <strong>Divider</strong> for 14<br />

Sub-band UWB Applications,” Electron. Lett., vo1. 44, no. 2, pp. 111-3,<br />

Jan. 2008.<br />

[6] X. P. Yu, M. A. Do, J. G. Ma, K. S. Yeo, R. Wu, and G. Q. Yan, “1V<br />

10GHz CMOS Frequency <strong>Divider</strong> <strong>with</strong> Low Power Consumption,”<br />

Electron. Lett., vol.40, no. 8, pp. 467-9, April 2004<br />

[7] J. Lee, “A 3-to-8-GHz Fast-Hopping Frequency Synthesizer in 0.18µm<br />

CMOS Technology,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp.<br />

566-573, March 2006.<br />

0<br />

1.0<br />

-20<br />

voltage, V<br />

0.8<br />

0.6<br />

0.4<br />

Power, dBm<br />

-40<br />

-60<br />

0.2<br />

-80<br />

0.0<br />

28.0 28.5 29.0 29.5 30.0 30.5 31.0 31.5 32.0 32.5 33.0<br />

time, ns<br />

-100<br />

0 2 4 6 8 10 12 14<br />

Frequency, GHz<br />

Figure 4. Output waveforms of FDMP.<br />

0<br />

(a)<br />

minmum input peak-to-peak voltage, V<br />

1.2<br />

1.1<br />

1.0<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

-0.1<br />

4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6<br />

operating frequency, GHz<br />

Divide-by-3.5<br />

Divide-by-4.5<br />

1.11<br />

1.10<br />

1.09<br />

1.08<br />

1.07<br />

1.06<br />

1.05<br />

1.04<br />

1.03<br />

1.02<br />

1.01<br />

output peak-to-peak voltage, V<br />

Power, dBm<br />

-20<br />

-40<br />

-60<br />

-80<br />

-100<br />

0 2 4 6 8 10 12 14<br />

Frequency, GHz<br />

(b)<br />

Figure 6. Output spectrum of SSB mixer <strong>with</strong> (a) divide-by-3.5 and (b)<br />

divide-by-4.5 mode.<br />

Figure 5. Sensitivity simulation for each operation frequency.<br />

497

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!