28.11.2014 Views

Solved Problems Chapter 3: Mechanical Systems - KFUPM Open ...

Solved Problems Chapter 3: Mechanical Systems - KFUPM Open ...

Solved Problems Chapter 3: Mechanical Systems - KFUPM Open ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ME 413: System Dynamics and Control<br />

Dr. A. Aziz Bazoune<br />

Problem A-3-8-<br />

<strong>Solved</strong> <strong>Problems</strong><br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong><br />

In Figure 3-23, the simple pendulum shown consists<br />

of a sphere of mass m suspended by a string of<br />

negligible mass. Neglecting the elongation of the<br />

string, find a mathematical model of the pendulum.<br />

In addition, find the natural frequency of the system<br />

when θ is small. Assume no friction.<br />

Solution<br />

Assumptions:<br />

1. Mass of the rope is neglected compared to the<br />

mass of the bob.<br />

2. Motion occurs in one plane only.<br />

3. Friction in the pivot is neglected.<br />

4. Angle θ is small .<br />

l<br />

l cosθ<br />

h<br />

θ<br />

T<br />

l<br />

m<br />

lsinθ<br />

mg<br />

Figure 3-23<br />

Simple Pendulum<br />

Using Newton’s second law<br />

Taking CCW moment about the pivot. The only force that is producing moment about the pivot is<br />

the weight mg . This force is producing a CW moment. Therefore, the moment produced by mg is<br />

− mgl sin θ .<br />

M = J && θ<br />

2<br />

= ml . Therefore,<br />

∑<br />

− mgl sin<br />

θ<br />

=<br />

J &&<br />

θ<br />

Where J<br />

2<br />

ml &&<br />

θ<br />

+ mgl sin<br />

θ<br />

=<br />

0<br />

For small θ , sin θ<br />

≅<br />

θ<br />

, and the above equation of motion simplifies to<br />

&& g<br />

θ<br />

+ θ<br />

=<br />

0<br />

l<br />

which is of the form<br />

&& 2<br />

θ<br />

+ ω θ<br />

=<br />

0<br />

From the above, the natural frequency of the pendulum is<br />

n<br />

ω =<br />

n<br />

g<br />

l<br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong> 1


ME 413: System Dynamics and Control<br />

Dr. A. Aziz Bazoune<br />

Using The Conservation of Energy Method<br />

The potential energy is<br />

V = mgh = mgl ( 1<br />

−<br />

cos θ )<br />

The kinetic energy is<br />

1 2 1 2 1<br />

T = mv = ms&<br />

= m ( lθ&<br />

) 2<br />

2 2 2<br />

1<br />

2<br />

T + V = m ( l & θ<br />

) + mgl ( 1<br />

−<br />

cos θ<br />

)<br />

2<br />

d ( T + V ) 1 2 2<br />

= ml &&& θθ + mgl ( & θ sin θ<br />

)<br />

=<br />

0<br />

dt 2<br />

d ( T + V )<br />

2<br />

= ( ml && θ<br />

+ mgl sin θ ) & θ<br />

=<br />

0<br />

dt<br />

Since & θ ≠ 0 , then the terms in brackets must be equal to zero, Therefore<br />

ml l && θ<br />

+ g sin θ<br />

=<br />

Or<br />

( ) 0<br />

&& g<br />

θ<br />

+ θ<br />

=<br />

l<br />

Which is similar to the differential equation obtained before.<br />

Problem A-3-12<br />

0<br />

For the spring-mass-pulley system of Figure 3-27, the<br />

moment of inertia of the pulley about the axis of rotation is<br />

J and the radius is R . Assume that the system is initially at<br />

equilibrium. The gravitational force of mass m causes a<br />

static deflection of the spring such that k δ<br />

st<br />

= mg .<br />

Assuming that the displacement x of mass m is measured<br />

from the equilibrium position, obtain a mathematical model<br />

of the system. In addition, find the natural frequency of the<br />

system.<br />

Solution<br />

Assumptions:<br />

1. Lever is rigid and massless.<br />

2. Reactions at lever P are neglected.<br />

3. Displacement x is small.<br />

4. The wire is inextensible.<br />

x<br />

T<br />

T<br />

m<br />

mg<br />

R<br />

k<br />

θ<br />

δ<br />

Using Newton’s second law<br />

Figure 3-27<br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong> 2


ME 413: System Dynamics and Control<br />

Dr. A. Aziz Bazoune<br />

Applying Newton’s second law for the mass m<br />

or<br />

∑<br />

F<br />

=<br />

mx&&<br />

− T<br />

= mx&& (1)<br />

Where T is the tension in the wire (Notice that since x is measured from the static equilibrium<br />

position the term mg does not enter into the equation).<br />

Applying Newton’s second law for the pulley<br />

or<br />

∑<br />

T<br />

=<br />

Jθ&&<br />

Eliminating T from equations (1) and (2) gives<br />

TR − kxR = Jθ&& (2)<br />

&& (3)<br />

− mxR − kxR = Jθ&&<br />

Noting that x<br />

or<br />

= Rθ , one can simplify the above equation<br />

( )<br />

&& (4)<br />

J + mR 2 θ<br />

+ kR<br />

2<br />

θ<br />

=<br />

0<br />

2<br />

⎛<br />

kR<br />

⎞<br />

θ<br />

+ ⎜<br />

θ<br />

=<br />

J + mR<br />

⎟<br />

⎝<br />

⎠<br />

&& (5)<br />

θ 0<br />

2<br />

which represents the mathematical model for the system. The natural frequency of the system is<br />

given by<br />

ω =<br />

n<br />

J<br />

2<br />

kR<br />

+ mR<br />

2<br />

(6)<br />

Using The Energy Method<br />

The kinetic energy of the system is<br />

1 2 1 2<br />

T = mx&<br />

+ Jθ&<br />

123 2 123 2<br />

Due to Translation<br />

Due to Rotation<br />

(7)<br />

The potential energy of the system is<br />

V<br />

1 2<br />

= kx<br />

(8)<br />

{ 2<br />

Strain energy of the spring<br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong> 3


ME 413: System Dynamics and Control<br />

Dr. A. Aziz Bazoune<br />

Noting that x<br />

= Rθ , one can simplify the above equation<br />

T + V<br />

1 2 1 2 1 2<br />

= mx&<br />

+ J & θ<br />

+<br />

kx<br />

2 2 2<br />

T + V<br />

1 2 2 1 2 1 2 2<br />

= mR &<br />

θ + J &<br />

θ +<br />

kR<br />

θ<br />

2 2 2<br />

T + V<br />

1 2 2 1 2 2<br />

= ( mR + J ) &<br />

θ<br />

+<br />

kR<br />

θ<br />

2 2<br />

(9)<br />

d 1 2 1 2<br />

( T + V ) = 0 ⇒ 2 ( mR + J ) &&& θθ<br />

+ 2 kR & θθ<br />

=<br />

0<br />

(10)<br />

dt<br />

2 2<br />

Or<br />

( )<br />

mR 2 + J && θ<br />

+ kR<br />

2<br />

θ<br />

=<br />

0<br />

(11)<br />

which is similar to the one obtained before<br />

Problem A-3-13<br />

In the mechanical system of Figure 3-28, one end of the lever is connected to a spring and a damper,<br />

and a force f ( t ) is applied to the other end of the lever. Derive a mathematical model of the<br />

system. Assume that the displacement x is small and the lever is rigid and massless.<br />

( ) f t<br />

l<br />

1<br />

l<br />

2<br />

P<br />

k<br />

x<br />

b<br />

Solution<br />

Assumptions:<br />

1. Lever is rigid and massless.<br />

2. Reactions at lever P are neglected.<br />

3. Displacement x is small.<br />

Figure 3-28<br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong> 4


ME 413: System Dynamics and Control<br />

Dr. A. Aziz Bazoune<br />

Free Body Diagram (FBD): The FBD is shown in the Figure below<br />

l<br />

l<br />

2<br />

1<br />

f ( t)<br />

P<br />

F<br />

k<br />

=−k x<br />

x<br />

Figure 3-28<br />

F<br />

b<br />

= −b x&<br />

Equation of motion:<br />

Applying Newton’s second law, for a system in rotation about point P gives<br />

∑<br />

M<br />

P<br />

= 0 ⇒ f ( t ) l 1 − b x&<br />

l 2 − k x l 2<br />

=<br />

0<br />

DID YOU ASK YOURSELF<br />

WHY THE RHS of the above equation is ZERO?<br />

Rearranging, one can write:<br />

or<br />

( ) ( & )<br />

f t l b x k x l<br />

1 − + 2 =<br />

0<br />

⎛<br />

l1<br />

⎞<br />

b x&<br />

+ k x = ⎜<br />

⎟<br />

f ( t )<br />

⎝<br />

l2<br />

⎠<br />

which is the mathematical model of the system. It is clear that this differential equation<br />

represents is a first order system since it is represented by a first order ordinary differential<br />

equation with constant coefficients. The RHS of the above differential equation is not zero.<br />

System Response:<br />

In the above system, the input is the force F while the output is the displacement x . We will<br />

try to find a relationship between the input and the output.<br />

Taking Laplace transform of both sides of the above equations provided we have zero initial<br />

conditions gives<br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong> 5


ME 413: System Dynamics and Control<br />

Dr. A. Aziz Bazoune<br />

where X ( s ) and ( )<br />

⎛<br />

l1<br />

⎞<br />

( b s + k ) X ( s) = ⎜<br />

⎟<br />

F ( s)<br />

⎝<br />

l2<br />

⎠<br />

F s are Laplace transform of x and f ( t ) , respectively. The above<br />

equation can be written as<br />

Output X ( s)<br />

⎛<br />

l ⎞<br />

1 C<br />

G ( s)<br />

= = = =<br />

Input F s l b s k b s k<br />

where C ( l1 l2<br />

)<br />

where C *<br />

1<br />

⎜<br />

⎟<br />

( ) ⎝ 2<br />

⎠ ( + ) ( +<br />

)<br />

= . The above relation can be written in the standard form as:<br />

Output X ( s)<br />

C b C *<br />

G ( s)<br />

= = = =<br />

Input F ( s) ⎛ k 1<br />

s<br />

⎞ ⎛ s<br />

⎞<br />

⎜ + ⎟ ⎜ +<br />

⎟<br />

⎝ b<br />

⎠ ⎝ τ<br />

⎠<br />

= C b and τ = b k<br />

( s )<br />

F<br />

14243<br />

Input<br />

C<br />

s +<br />

*<br />

( 1 τ )<br />

144424443<br />

Transfer Function<br />

( )<br />

X s<br />

1 42443<br />

Output<br />

The response ( )<br />

x t will depend on the input force f ( t ) . If f ( t ) is a step input of magnitude 1:<br />

F s = / s and<br />

C * 1 C * α β<br />

X ( s ) = F ( s ) = = +<br />

⎛ 1 ⎞ s ⎛ 1 ⎞ s ⎛ 1 ⎞<br />

⎜ s + ⎟ ⎜ s + ⎟ ⎜ s + ⎟<br />

⎝ τ ⎠ ⎝ τ ⎠ ⎝ τ ⎠<br />

In this case ( ) 1<br />

where<br />

α =<br />

Therefore,<br />

and hence<br />

1<br />

s<br />

s C *<br />

⎛ 1 ⎞<br />

⎜ s + ⎟<br />

⎝ ⎠<br />

τ<br />

s = 0<br />

⎛<br />

⎜<br />

1 ⎝<br />

= τC<br />

* and β =<br />

s<br />

⎛ ⎞<br />

⎜ 1 1 ⎟<br />

X ( s ) = τ C ⎜ − ⎟<br />

s ⎛ 1 ⎞<br />

s<br />

⎜ ⎜ + ⎟<br />

τ<br />

⎟<br />

⎝ ⎝ ⎠ ⎠<br />

1 ⎞<br />

s + ⎟ C *<br />

τ ⎠<br />

⎛ 1 ⎞<br />

⎜ s + ⎟<br />

⎝ τ ⎠ 1<br />

s = −<br />

τ<br />

= − τC<br />

*<br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong> 6


ME 413: System Dynamics and Control<br />

Dr. A. Aziz Bazoune<br />

( )<br />

τ<br />

⎛<br />

1<br />

⎜<br />

⎝<br />

*<br />

x t = C − e<br />

⎛ 1 ⎞<br />

− ⎜ ⎟ t<br />

⎝ τ ⎠<br />

⎞<br />

⎟<br />

⎠<br />

<strong>Chapter</strong> 3: <strong>Mechanical</strong> <strong>Systems</strong> 7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!