28.11.2014 Views

Deepwater Field Development - Flow Assurance - Dynamic ...

Deepwater Field Development - Flow Assurance - Dynamic ...

Deepwater Field Development - Flow Assurance - Dynamic ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

DP Conference MTS Symposium<br />

<strong>Flow</strong> <strong>Assurance</strong><br />

Elijah Kempton<br />

Tommy Golczynski<br />

Marine Technology Society<br />

September 30, 2004


Session Outline<br />

•<strong>Flow</strong> <strong>Assurance</strong> Overview<br />

•Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Wax<br />

•Hydrates<br />

•Slugging<br />

•<strong>Deepwater</strong> Impacts on <strong>Flow</strong> <strong>Assurance</strong><br />

•Emerging Technologies<br />

•Design Considerations<br />

•Black Oil Systems<br />

•Gas Condensate Systems


<strong>Flow</strong> <strong>Assurance</strong> Overview


What is <strong>Flow</strong> <strong>Assurance</strong>?<br />

• Analysis of the entire production system to ensure that<br />

the produced fluids continue to flow throughout the life<br />

of the field.<br />

• Optimization of the design and operating procedures to<br />

cost effectively prevent or mitigate slugging, surge<br />

volumes, wax deposition, gelling, hydrates,<br />

asphaltenes, etc.


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Wax (Paraffin) – What is it?<br />

•A solid hydrocarbon which precipitates<br />

from a produced fluid<br />

•Forms when the fluid temperature drops<br />

below the Wax Appearance Temperature<br />

(WAT)<br />

•Melts at elevated temperatures (20°F+<br />

above the WAT)<br />

•Rate of deposition can be predicted for<br />

pigging frequency


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Wax<br />

•Since 1996, there have been 51 major<br />

occurrences that the MMS had to be involved in<br />

•All were paraffin-related<br />

•Means of remediation<br />

•Pigging<br />

•Continuous inhibition (150-250 ppm for Gulf of Mexico)<br />

•Reduced wax deposition rate by 60-90%<br />

•Industry Technology<br />

•Modeling is overly-conservative (6X pigging<br />

frequency)


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

Example WAT Measurement<br />

Above WAT<br />

Wax Crystals (WAT)<br />

Seabed Temp. (40°F)


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Factors effecting wax deposition rate<br />

•Wax Appearance Temperature, WAT<br />

•Production Fluid Temperature<br />

•<strong>Flow</strong>line U-value<br />

•Fluid Properties<br />

•Viscosity<br />

•N-Paraffin Content


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Wax Deposition – Insulation Impact


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Hydrate – What is it?<br />

•An Ice-like solid that forms<br />

when:<br />

•Sufficient water is present<br />

•Hydrate former (i.e., methane)<br />

is present<br />

•Right combination of Pressure<br />

and Temperature (High<br />

Pressure / Low Temperature<br />

Molecular<br />

Structure of<br />

Hydrate Crystal


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Hydrates<br />

•Primary cause for insulated flowlines<br />

•<strong>Deepwater</strong> operations<br />

•Increased operating pressure<br />

•Cold ambient temperatures<br />

•Means of remediation<br />

•Crude oil displacement (looped flowlines)<br />

•Depressurization<br />

•Coiled tubing<br />

•Continuous Inhibition (Prevention Only)<br />

•Methanol/MEG<br />

•LDHI


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Hydrates – Base Information<br />

10000<br />

9000<br />

8000<br />

7000<br />

Pressure, psia<br />

6000<br />

5000<br />

4000<br />

Hydrates<br />

No<br />

Hydrates<br />

3000<br />

2000<br />

Pure Water<br />

Sea Water<br />

1000<br />

Produced Water<br />

0<br />

40 45 50 55 60 65 70 75 80 85<br />

Temperature, °F


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Hydrates – Base Information<br />

Methanol Dosage, Methanol BBL MeOH/BBL Rate, gpm Water<br />

50<br />

0.600<br />

45<br />

0.575<br />

0.550 40<br />

0.525 35<br />

0.500<br />

30<br />

0.475<br />

25<br />

0.450<br />

20<br />

0.425<br />

0.400 15<br />

0.375<br />

10<br />

5% Water Cut<br />

10% Water Cut<br />

20% Water Cut<br />

25% Water Cut<br />

30% Water Cut<br />

40% Water Cut<br />

50% Water Cut<br />

25 GPM<br />

0.350<br />

761 GOR 1100 GOR<br />

5<br />

0.325<br />

1700 GOR 2500 GOR<br />

0<br />

0.300<br />

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

50 75 100 125 150 175 200 225 250 275 300<br />

Shut-in <strong>Flow</strong>rate, Pressure, B/d bara


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Slugging – What is it?<br />

•Periods of Low <strong>Flow</strong><br />

Followed by Periods of<br />

High <strong>Flow</strong><br />

•Occurs in Multiphase<br />

<strong>Flow</strong>lines at Low Gas<br />

Velocities


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Slugging<br />

•Causes<br />

•Low fluid velocity<br />

•Bigger ≠ Better<br />

•Seabed bathymetry (downsloping)<br />

•Riser type<br />

•“Lazy-S” is a slug generator<br />

•Means of prevention<br />

•Increase flowrate<br />

•Separator pressure<br />

•Gas lift<br />

Advantages<br />

Proven<br />

Technology<br />

Relative<br />

Inexpensive<br />

Gas Lift<br />

Overview<br />

Disadvantages<br />

Erosion<br />

Concerns<br />

Lower<br />

Temperatures<br />

Difficult with<br />

Catenary Risers


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Slugging – Gas Lift Impacts<br />

Liquid Liquid Accumulation Outlet <strong>Flow</strong>rate Above (B/d)<br />

Normal (bbl)<br />

150<br />

40000 25000<br />

60000<br />

35000 100<br />

50000<br />

20000<br />

30000<br />

50<br />

40000<br />

25000<br />

15000<br />

0<br />

20000 30000<br />

10000<br />

15000 -50<br />

20000<br />

10000<br />

-100 5000<br />

10000<br />

5000<br />

5 MMSCFD 010 Gas MMSCFD Surge<br />

MMSCFD LiftVolume<br />

Gas Gas Lift Lift<br />

0 MMSCFD Gas Lift<br />

5 MMSCFD Gas Lift<br />

10 MMSCFD Gas Lift<br />

-150<br />

3.0 0<br />

3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0<br />

3.0 3.5 4.0 4.5 5.0 Time<br />

5.5<br />

(hours)<br />

6.0 6.5 6.5 7.0 7.0 7.5 7.5 8.0 8.0<br />

Time (hours)


Key <strong>Flow</strong> <strong>Assurance</strong> Issues<br />

•Other Issues<br />

Chemical Inventory<br />

Asphaltenes<br />

Pour Point<br />

Corrosion<br />

Scale<br />

Flare Capacity<br />

Emulsions<br />

C-Factors<br />

Cooldown Times<br />

Surge Volume<br />

Sand<br />

Liquids Management<br />

Erosion<br />

Depressurization Pigging


<strong>Deepwater</strong> Impacts on <strong>Flow</strong><br />

<strong>Assurance</strong><br />

•Hydrate Formation/Wax Deposition<br />

•Leads to:<br />

•Insulation / dual flowlines<br />

•Dry oil flushing<br />

•Active heating<br />

•Chemicals<br />

•Revamped operating strategies<br />

•Lack of pressure / need for boosting<br />

•<strong>Deepwater</strong> + high water cut + long tiebacks<br />

•Riser base gas lift<br />

•Multiphase pumping<br />

•Subsea separation


<strong>Deepwater</strong>:<br />

Temperature Losses<br />

• Potential Energy Losses<br />

• Gas does “work” in moving fluids<br />

• Function of water depth<br />

• Expansion Cooling (Joule-Thomson Effect)<br />

• Exacerbated at large pressure differentials<br />

• RISER DOMINATES DEEPWATER SYSTEMS<br />

• Insulation may not be the answer!


<strong>Deepwater</strong>:<br />

125<br />

Temperature Losses<br />

120<br />

FLOWLINE<br />

WELLHEAD<br />

RISER BASE<br />

115<br />

Temperature (°F)<br />

110<br />

105<br />

100<br />

Potential Energy<br />

(Work)<br />

48%<br />

Surroundings<br />

(U-Value)<br />

6%<br />

RISER<br />

Joule-Thomson<br />

Cooling<br />

46%<br />

TOPSIDES<br />

95<br />

0 1 2 3 4 5 6 7 8<br />

Distance (miles)


<strong>Deepwater</strong>:<br />

Temperature Losses<br />

<strong>Flow</strong>line<br />

Temperature Drop (°F)<br />

Length<br />

(miles)<br />

3<br />

<strong>Flow</strong>line<br />

1.2<br />

Riser<br />

16.6<br />

6<br />

2.9<br />

16.6<br />

15<br />

9.2<br />

16.5


• Heat transfer coefficient (U-value) dictates<br />

steady state temperatures<br />

• Q (heat loss) = U•A•∆T<br />

• U-Value ↓, Q ↓ …T ↑<br />

• Thermal mass (ρ, Cp) impacts transient<br />

performance<br />

• Measure of heat storage<br />

• Prolongs cooldown times<br />

• Prolongs warm-up times<br />

<strong>Deepwater</strong>:<br />

Temperature Losses


Transient Temperature Loss<br />

110<br />

100<br />

90<br />

Temperature (°F)<br />

80<br />

70<br />

60<br />

HIGH (Gelled Fluid #2 – Water Base)<br />

MEDIUM (Gelled Fluid #1 – Oil Base)<br />

50<br />

LOW (Nitrogen)<br />

40<br />

0 5 10 15 20 25 30 35 40<br />

Time(hours)


<strong>Deepwater</strong>:<br />

Pressure Losses<br />

2500<br />

WELLHEAD<br />

2000<br />

FLOWLINE<br />

RISER BASE<br />

1500<br />

Pressure (psia)<br />

1000<br />

RISER<br />

500<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Distance (miles)<br />

TOPSIDES


<strong>Deepwater</strong>:<br />

Pressure Losses<br />

<strong>Flow</strong>line<br />

Pressure Drop (psia)<br />

Length<br />

(miles)<br />

3<br />

<strong>Flow</strong>line<br />

143<br />

Riser<br />

1812<br />

6<br />

238<br />

1791<br />

15<br />

405<br />

1764


<strong>Deepwater</strong>:<br />

Dry Trees vs. Subsea Tieback<br />

• Dry trees preferred for accessibility<br />

• Dry trees more difficult for flow assurance<br />

• Typically cannot depressurize<br />

• Short cooldown times (2-8 hours)<br />

• Fewer insulation/heating options than subsea<br />

• Limited chemical (MeOH/MEG) deliverability<br />

• Wax deposition more difficult to remediate


Dry Tree:<br />

Conduction / Convection / Radiation<br />

100<br />

Dry Tree Analysis: Cooldown Comparison<br />

Production Fluid Temperature<br />

95<br />

90<br />

85<br />

80<br />

Temperature (°F)<br />

75<br />

70<br />

65<br />

60<br />

HYDRATE FORMATION TEMPERATURE<br />

55<br />

50<br />

45<br />

Solid - Conduction<br />

Liquid - Conduction+Convection<br />

Gas - Conduction+Convection+Radiation<br />

40<br />

0 1 2 3 4 5 6 7 8 9 10 11 12<br />

Time (Hours)


Dry Tree:<br />

Concentric vs. Non-Concentric<br />

• Accommodate Auxiliary Lines?<br />

Concentric<br />

Non-Concentric<br />

• Heat Transfer: Q = k·A·∆T / L<br />

(Conduction Only)


Dry Tree:<br />

Concentric vs. Non-Concentric


Dry Tree:<br />

Gas Properties<br />

100<br />

90<br />

80<br />

Temperature (°F)<br />

70<br />

60<br />

15 psia N2<br />

50<br />

30 psia N2<br />

59 psia N2<br />

102 psia N2<br />

40<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Time (Hours)


Design for Expansion<br />

• Transient issues drive deepwater design<br />

• Cooldown / restart - Hydrates<br />

• Typical deepwater practice<br />

• Dual flowlines / crude oil displacement<br />

• Typically cannot depressurize (oil systems)<br />

• Consider potential for future expansion<br />

• Insulation<br />

• Topsides facilities


Design for Expansion<br />

22.5 km<br />

10 km<br />

8 km 8 km<br />

Total Time to Displace Existing System = 22 Hours (Sequential)<br />

Total Time to Displace Integrated System = 45 Hours (Sequential)<br />

High Level Insulation, or Additional Topsides Facilities Required!


Emerging Technologies<br />

• Artificial Lift<br />

• Subsea Separation (-)<br />

• Multiphase Pumping (+)<br />

• Gas Lift (+ / -)<br />

• Passive Insulation Solutions<br />

• Microporous Insulation<br />

• Phase Change Materials


Emerging Technologies<br />

• Active Heating<br />

• Hot Water Circulation<br />

• Electrically Heated<br />

• “Electrically-heated ready”<br />

• Chemicals<br />

• Low Dosage Hydrate Inhibitors<br />

• “Cold <strong>Flow</strong>”


Design Considerations:<br />

Black Oil and<br />

Gas Condensate Systems


Black Oil System:<br />

Steady State Design Checklist<br />

• Hydraulics<br />

• Line sizing<br />

• Dry tree vs. subsea tieback<br />

• Single vs. dual flowlines<br />

• Dual flowlines becoming “standard” for deepwater<br />

• Pressure drop<br />

• Velocity / erosion (minimum / maximum)<br />

• Slugging<br />

• Thermal<br />

• Insulation requirements<br />

• Hydrate formation<br />

• Wax deposition<br />

• Gel formation


Black Oil System:<br />

Transient Design Checklist<br />

• Shutdown<br />

• Planned<br />

• Unplanned<br />

• Depressurization<br />

• Restart<br />

• Warm<br />

• Cold<br />

• Fluid displacement / pigging<br />

• <strong>Flow</strong>line preheating


Black Oil Systems:<br />

Steady State Design Considerations


Black Oil System:<br />

Steady State Hydraulics<br />

• Pressure drop effects<br />

• Physical<br />

• Line size<br />

• Tieback distance<br />

• Water depth<br />

• Multiphase flow:<br />

Head losses head gains<br />

• Pipe roughness (typical values)<br />

• Steel: 0.0018”<br />

• Tubing: 0.0006”<br />

• Flexible pipe: ID/250<br />

• Fluid properties<br />

• Gas/oil ratio (GOR)<br />

• Density<br />

• Viscosity<br />

• May require insulation to limit viscosity<br />

Pressure (psia)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Distance (miles)


Black Oil System: Slugging<br />

• Hydrodynamic<br />

• High frequency<br />

• Minimal facilities impact<br />

7<br />

6<br />

5<br />

4<br />

Hydrodynamic Slugging<br />

Gas Outlet <strong>Flow</strong><br />

3<br />

2<br />

1<br />

• Terrain<br />

• High liquid / gas flowrates<br />

• Topsides concern<br />

• Riser fatigue concern<br />

• Utilize gas lift<br />

0<br />

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

Time (hours)<br />

Terrain Slugging<br />

Liquid Outlet <strong>Flow</strong><br />

10000<br />

0<br />

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Time (hours)


Black Oil System: Slugging<br />

• Slugging issues<br />

• Sensitivity to Fluid GOR / water cut<br />

Water Cut (%)<br />

0<br />

20<br />

40<br />

60<br />

80<br />

Terrain Slugging Regime (BPD) /<br />

Surge Volume (BBL)<br />

760 GOR 1300 GOR 1800 GOR<br />

15000 / 150 12500 / 100 7500 / 75<br />

20000 / 160 17500 / 100 15000 / 125<br />

24000 / 175 20000 / 125 15000 / 130<br />

26000 / 325 17500 / 250 10000 / 200<br />

DNF 5000 / 400 5000 / 300


Black Oil System: Slugging<br />

• Slugging issues<br />

• Sensitivity to Trajectory: up vs. downslope<br />

-7500<br />

-7600<br />

-7700<br />

Original Route - 40 miles total length<br />

Alternate Route #1 - 36 miles total length<br />

Alternate Route #2 - 45 miles total length<br />

-7800<br />

-7900<br />

Water Depth, ft<br />

-8000<br />

-8100<br />

-8200<br />

400<br />

350<br />

Original Route<br />

Alternate Route #1<br />

Alternate Route #2<br />

WELLHEAD<br />

RISER BASE<br />

-8300<br />

-8400<br />

-8500<br />

-8600<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40<br />

Distance, miles<br />

Liquid Accumulation Above Normal* (bbl)<br />

300<br />

250<br />

200<br />

150<br />

100<br />

>24 hour Ramp-up Required<br />

10 hour Ramp-up Required<br />

50<br />

50 bbl Slug Catcher Capacity<br />

0<br />

0 1 2 3 4 5 6 7 8<br />

Time (hours)


Black Oil System:<br />

Steady State Thermal Design<br />

• Hydrates<br />

• Maintain steady state temperature<br />

above hydrate formation region,<br />

down to “reasonable” flowrate<br />

• Looped flowline ~ 25% of field<br />

production (50% per flowline)<br />

• For low water-cut systems,<br />

continuous hydrate inhibition is<br />

possible<br />

• Future: continuous LDHI inhibition


• Wax<br />

Black Oil System:<br />

Steady State Thermal Design<br />

• Maintain temperature above WAT (stock<br />

tank), down to “reasonable” flowrate<br />

• Looped flowline ~ 25% of field production<br />

(50% per flowline)<br />

• Maintain viscosity at acceptable levels to<br />

reduce pressure drop<br />

• Insulate to minimize pigging frequency<br />

• Pigging frequency > residence time<br />

• Continuous paraffin inhibition (if<br />

necessary)


Black Oil System:<br />

Steady State Thermal Design<br />

Insulation Option<br />

Flexible<br />

Wet (Syntactic)<br />

Burial<br />

Pipe-in-pipe<br />

Micro-porous<br />

Achievable U-value<br />

(BTU/hr-ft²-°F)<br />

0.75 – 1.50<br />

0.50 – 0.75<br />

0.50 – 1.00<br />

0.20 – 0.25<br />

0.08 – 0.10<br />

Issue / Concern<br />

•Limited insulating capacity<br />

•Buoyancy issues<br />

•Dependant on soil properties<br />

•Combined with insulation<br />

•Riser installation difficulties<br />

•Industry acceptance


Black Oil System:<br />

Steady State Thermal Design<br />

50.0<br />

Arrival Temperature<br />

Water Cut = 0%<br />

Arrival temperature (°C)<br />

48.0<br />

46.0<br />

44.0<br />

42.0<br />

40.0<br />

38.0<br />

36.0<br />

34.0<br />

32.0<br />

30.0<br />

Adiabatic (0 BTU/ft² hr ºF)<br />

0.09 BTU/ft² hr ºF<br />

0.20 BTU/ft² hr ºF<br />

0.30 BTU/ft² hr ºF<br />

0.50 BTU/ft² hr ºF<br />

28.0<br />

26.0<br />

24.0<br />

22.0<br />

0.5 W/m².K<br />

1.0 W/m².K<br />

2 W/m².K<br />

3.0 W/m².K<br />

no heat loss<br />

20.0<br />

7500 10000 12500 15000 17500 20000 22500 25000 27500 30000 32500 35000 37500 40000<br />

Liquid <strong>Flow</strong>rate (blpd)


Black Oil Systems:<br />

Cooldown Design Considerations


Black Oil System:<br />

Cooldown<br />

• Shutdown statistics<br />

• Typical shutdown durations<br />

• 89% shutdowns < 10 hours<br />

• 94% shutdowns < 12 hours<br />

• 99.9% shutdowns < 24 hours<br />

• Typical shutdown causes<br />

Pumps<br />

Scale<br />

Corrosion<br />

Sand<br />

Paraffin<br />

Hydrates<br />

Asphaltenes<br />

Separation<br />

Other


Black Oil System: Cooldown<br />

• Planned shutdown Procedure<br />

• Inject hydrate inhibitor for one residence time<br />

(minimum)<br />

• At high water cuts, may need to reduce flowrate to<br />

effectively treat system<br />

• Inject hydrate inhibitor into subsea equipment<br />

• Particular attention to horizontal components<br />

• Self-draining manifold / jumpers<br />

• Treat upper portion of wellbore<br />

• SCSSV vs. top ~50 ft<br />

• Shut-in system


Black Oil System:<br />

Cooldown<br />

• Unplanned shutdown Procedure<br />

• Determine minimum cooldown times<br />

• “No-Touch Time”<br />

• ~2-4 hours / no action taken subsea<br />

• “Light Touch Time”<br />

• ~2-4 hours / treat critical components<br />

• Time is a function of chemical injection philosophy / number of wells<br />

• “Preservation Time”<br />

• Time required to depressurize or displace flowlines with non-hydrate<br />

forming fluid<br />

Time=0<br />

Time=4<br />

Time=8<br />

“No-Touch” “Light Touch” “Preservation”


Black Oil System:<br />

Cooldown<br />

• Insulation selection<br />

• Cooldown time determined<br />

by:<br />

• U-Value<br />

• Thermal mass (ρ, Cp)<br />

• Measure of heat<br />

storage<br />

• Line size impacts<br />

• Bigger = More<br />

Thermal Mass<br />

• Gas / liquid interface<br />

typically controlling point<br />

• Gas = low thermal mass<br />

• Highest pressure<br />

• Coldest temperature<br />

Temperature (F)<br />

150<br />

Pipe-in-Pipe (0.20 BTU/hr-ft²-F)<br />

140<br />

Wet Insulation (0.75 BTU/hr-ft²-F)<br />

130<br />

Flexible Pipe (1.00 BTU/hr-ft²-F)<br />

120<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

HYDRATE FORMATION (PURE WATER)<br />

50<br />

40<br />

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36<br />

Time (hours)


Black Oil System: Cooldown<br />

140<br />

0 hours (Steady State)<br />

130<br />

120<br />

110<br />

RESERVOIR<br />

WELLHEAD<br />

FLOWLINE<br />

1 hours<br />

2 hours<br />

4 hours<br />

6 hours<br />

8 hours<br />

10 hours<br />

100<br />

12 hours<br />

18 hours<br />

Temperature (F)<br />

90<br />

80<br />

24 hours<br />

70<br />

60<br />

50<br />

40<br />

RISER<br />

30<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Distance (miles)


Black Oil System: Cooldown<br />

6000<br />

5500<br />

5000<br />

RESERVOIR<br />

0 hours (Steady State)<br />

24 hours<br />

4500<br />

4000<br />

WELLHEAD<br />

Pressure (psia)<br />

3500<br />

3000<br />

2500<br />

2000<br />

FLOWLINE<br />

1500<br />

RISER<br />

1000<br />

500<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Distance (miles)


Black Oil System: Cooldown<br />

1.0<br />

0.9<br />

RESERVOIR<br />

WELLHEAD<br />

FLOWLINE<br />

0.8<br />

0.7<br />

Liquid Holdup (-)<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0 hours (Steady State)<br />

RISER<br />

24 hours<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Distance (miles)


Black Oil System: Cooldown<br />

60<br />

WELLHEAD<br />

50<br />

RESERVOIR<br />

FLOWLINE<br />

40<br />

Hydrate Propensity, T-Thyd (F)<br />

30<br />

20<br />

10<br />

0 hours (Steady State)<br />

1 hours<br />

0 2 hours<br />

4 hours<br />

6 hours<br />

-10<br />

8 hours<br />

10 hours<br />

-20<br />

12 hours<br />

18 hours<br />

RISER<br />

24 hours<br />

-30<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0<br />

Distance (miles)


Black Oil System:<br />

Cooldown Checklist<br />

• Is there adequate chemical injection to treat subsea components within<br />

cooldown time?<br />

• Wellbore<br />

• Trees<br />

• Jumpers<br />

• Manifolds<br />

• What is the subsea valve closure philosophy?<br />

• Packed: More liquid / higher pressures<br />

• Un-packed: Less liquid / lower pressures<br />

• Does insulation provide sufficient cooldown time?<br />

• No-touch<br />

• Light-touch<br />

• Preservation<br />

• Is gel formation a possibility?<br />

• If yes, system design philosophy changes<br />

• Is SCSSV set deep enough to avoid hydrates?


Black Oil Systems:<br />

Depressurization Design<br />

Considerations


Black Oil System: Depressurization<br />

• Hydrate remediation strategy<br />

• Reduce pressure below hydrate formation pressure at seabed<br />

• Effectiveness based on:<br />

• Fluid properties<br />

• GOR<br />

• Water cut<br />

• Seabed bathymetry<br />

• Upslope<br />

• Downslope<br />

• <strong>Deepwater</strong> issues<br />

10000<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000 Phyd ~ 200 psia<br />

Pure Water<br />

2000<br />

Sea Water<br />

1000<br />

Produced Water<br />

0<br />

40 45 50 55 60 65 70 75 80 85<br />

Temperature, °F<br />

• Reduce pressure to ~200 psia at seabed<br />

Time=0<br />

• Maintain pressure below hydrate conditions during restart<br />

Time=4<br />

Time=8<br />

Pressure, psia<br />

“No-Touch”<br />

“Light Touch”<br />

“Preservation”:<br />

Depressurization


Depressurization:Subsea Tieback<br />

4500<br />

4000<br />

BOTTOM HOLE<br />

3500<br />

3000<br />

2500<br />

FLOWLINE<br />

0.0 hours<br />

0.5 hours<br />

1.0 hours<br />

Pressure (psia)<br />

2000<br />

1500<br />

1000<br />

MUDLINE<br />

500<br />

RISER BASE<br />

0<br />

0 1 2 3 4 5 6 7 8 9<br />

Distance (miles)


Depressurization – Dry Tree<br />

4500<br />

4000<br />

3500<br />

3000<br />

BOTTOM HOLE<br />

0.0 hours<br />

0.5 hours<br />

1.0 hours<br />

Pressure (psia)<br />

2500<br />

2000<br />

1500<br />

1000<br />

SCSSV<br />

MUDLINE<br />

500<br />

GAS/LIQUID<br />

INTERFACE<br />

0<br />

0 2000 4000 6000 8000 10000 12000<br />

Distance (feet)


Black Oil System:<br />

Depressurization Checklist<br />

• Can you depressurize below hydrate formation conditions?<br />

• If YES, can you depressurize in late-life at high water cuts?<br />

• If YES, can you maintain pressure below hydrate formation conditions<br />

during restart?<br />

• Difficult for deepwater<br />

• If YES, is there a pour point concern?<br />

• Depressurization increases restart pressure requirements<br />

• If NO, consider the following for hydrate prevention:<br />

• Displacement (dual flowlines)<br />

• Active heating<br />

• Continuous chemical inhibition


Black Oil Systems:<br />

Displacement Design<br />

Considerations


• During “Prevention” time, displace produced<br />

fluids from flowline<br />

Time=0<br />

Black Oil System: Displacement<br />

Hydrate Prevention - Shutdown<br />

• Unable to get hydrate inhibitor to in-situ fluids<br />

during shutdown<br />

• Dual flowlines required<br />

• Sufficient insulation / cooldown time<br />

• Function of flowline length<br />

Time=4<br />

Time=8<br />

“No-Touch”<br />

“Light Touch”<br />

“Preservation”:<br />

Displacement


Black Oil System: Displacement<br />

Discharge Pressure Required<br />

HOLD BACKPRESSURE AT OUTLET


Black Oil System: Displacement<br />

Hydrate Prevention - Shutdown<br />

1800<br />

Dead Oil Flushing - Year 5<br />

FPSO Pump Discharge Pressure<br />

FPSO Arrival Pressure Controlled at 1500 psia<br />

1600<br />

1400<br />

Produced fluids move<br />

up second riser<br />

Gas breaks<br />

through<br />

second riser<br />

1200<br />

Pig moves up<br />

second riser<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Pig reaches base of first riser<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

Time (H)


Black Oil System: Displacement<br />

Hydrate Prevention - Shutdown<br />

• During “Prevention” time, displace produced fluids<br />

from flowline<br />

• Topsides design considerations<br />

• Available backpressure<br />

• Circulation rate<br />

• Limited by pig integrity<br />

• Typically 3-5 ft/sec<br />

• May be faster for “straight-pipe”<br />

• Storage volume<br />

• Circulation passes<br />

• With pig: 1 residence time<br />

• Without pig: 2-3 residence times for efficient water removal


Black Oil System: Displacement<br />

Hydrate Prevention – Dry Tree<br />

• During shutdown, how quickly will fluids fall below<br />

SCSSV?<br />

• Very little work done with L/D ratios >100 (deepwater riser<br />

~10000)<br />

• <strong>Field</strong> data shows oil/water separation ~ 70-80 ft/hr<br />

• Bullhead / displace with non-hydrate forming<br />

chemical to SCSSV<br />

• Methanol/MEG (volume concerns)<br />

• Heavy diesel (high density, by-pass produced fluids)<br />

• Dead oil<br />

• Ability to bullhead a function of displacement rate


• Is there sufficient time to accomplish displacement<br />

operation?<br />

• Sufficient insulation / Cooldown time<br />

• Is the topsides facility designed to accomplish displacement<br />

operation?<br />

• Pump capacity<br />

• Storage capacity<br />

Black Oil System:<br />

Displacement Checklist<br />

• Can system be restarted into crude-oil filled flowline?<br />

• Displace with gas?<br />

• High pour point fluids – what is the restart pressure required?<br />

• For dry trees, is a proper fluid available for displacement?


Black Oil Systems:<br />

Restart Design Considerations


Black Oil System: Cold Restart<br />

• System pressure < hydrate formation conditions throughout<br />

restart?<br />

• For deepwater, hydrostatic pressure in riser too high<br />

• Separator pressure: may need alternate start-up vessel<br />

• Hydrate inhibition required until arrival temperature reaches<br />

“Safe Operating Temperature” (SOT)<br />

• Maintain hydrate inhibitor rate: Fluid completely inhibited<br />

• Reduce hydrate inhibitor rate: Fluid not completely inhibited to<br />

shut-in conditions<br />

• SOT is minimum topsides temperature that provides<br />

sufficient cooldown time, in the event of an interrupted restart


Black Oil System: Cold Restart<br />

0.60<br />

0.55<br />

Methanol Dosage, BBL MeOH/BBL H2O<br />

0.50<br />

0.45<br />

0.40<br />

0.35<br />

0.30<br />

PURE WATER<br />

1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000<br />

Shut-in Pressure, psia<br />

SEA WATER<br />

PRODUCED<br />

WATER


Black Oil System: Cold Restart<br />

50<br />

45<br />

40<br />

75% WATER<br />

50% WATER<br />

Methanol, gpm<br />

35<br />

30<br />

25<br />

20<br />

25% WATER<br />

15<br />

10<br />

5<br />

5% WATER<br />

0<br />

2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

<strong>Flow</strong>rate, BPD


Black Oil System: Cold Restart<br />

• Achievable restart rates determined by:<br />

• Shut-in conditions<br />

• Fluid GOR<br />

• Water cut<br />

• Hydrate inhibitor<br />

• “Rule of Thumb”: Greater inhibitor injection rates result in<br />

lower overall inhibitor volumes used during restart<br />

• Small tiebacks: 5-10 gpm / well<br />

• Large deepwater: 25+ gpm / well<br />

• Warm-up trends:<br />

• Wellbore: Very quick (


Black Oil System: Cold Restart


Black Oil System: Cold Restart


Cold Restart: Case Study<br />

3 Mile Tieback – Warm-up Time<br />

Insulation<br />

Type<br />

5000<br />

STBPD<br />

10000<br />

STBPD<br />

Max<br />

<strong>Flow</strong>rate<br />

Micro-porous<br />

5.8<br />

2.9<br />

1.1<br />

Pipe-in-pipe<br />

6.1<br />

3.0<br />

1.1<br />

Conventional<br />

9.2<br />

3.5<br />

1.2<br />

Flexible<br />

10.6<br />

3.2<br />

1.1<br />

Buried<br />

> 24<br />

8.4<br />

1.5


Cold Restart: Case Study<br />

15 Mile Tieback – Warm-up Time<br />

Insulation<br />

Type<br />

5000<br />

STBPD<br />

10000<br />

STBPD<br />

Max<br />

<strong>Flow</strong>rate<br />

Micro-porous<br />

> 24<br />

13.0<br />

7.0<br />

Pipe-in-pipe<br />

> 24<br />

14.0<br />

7.2<br />

Conventional<br />

> 24<br />

> 24<br />

10.9<br />

Flexible<br />

> 24<br />

> 24<br />

12.3<br />

Buried<br />

> 24<br />

> 24<br />

> 24


Cold Restart: Case Study<br />

15 Mile Tieback – MeOH Volume<br />

Insulation<br />

Type<br />

5000<br />

STBPD<br />

10000<br />

STBPD<br />

Max<br />

<strong>Flow</strong>rate<br />

Micro-porous<br />

> 850<br />

798<br />

772<br />

Pipe-in-pipe<br />

> 850<br />

814<br />

781<br />

Conventional<br />

> 850<br />

> 1700<br />

1074<br />

Flexible<br />

> 850<br />

> 1700<br />

1053<br />

Buried<br />

> 850<br />

> 1700<br />

> 2300


• Is there sufficient hydrate inhibitor available?<br />

• Delivery rates<br />

• Storage volumes<br />

Black Oil System:<br />

Restart Checklist<br />

• How will multiple wells be restarted?<br />

• Single well at max. rate<br />

• Multiple wells at reduced rate<br />

• Single flowline vs. dual flowline<br />

• What is the minimum temperature required to<br />

achieve safe conditions?<br />

• Safe Operating Temperature (SOT)


Black Oil System:<br />

Summary of Design Considerations<br />

• Hydraulics<br />

• Ensure Production Delivery Throughout <strong>Field</strong> Life<br />

• Minimize Slugging<br />

• Wax Deposition<br />

• Minimize Wax Deposition (Insulation/Pigging/Chemicals)<br />

• Hydrate Formation<br />

• Avoid Steady State Hydrate Formation<br />

• Optimize Cooldown Times (Insulation)<br />

• Prevent Transient Hydrate Formation<br />

(Depressurization/Displacement/Chemicals)<br />

• Minimize Inhibitor Consumption

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!