28.11.2014 Views

Quantitative investigation of the de Haas-van Alphen effect in the ...

Quantitative investigation of the de Haas-van Alphen effect in the ...

Quantitative investigation of the de Haas-van Alphen effect in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

PHYSICAL REVIEW B<br />

VOLUME 57, NUMBER 18<br />

1 MAY 1998-II<br />

<strong>Quantitative</strong> <strong><strong>in</strong>vestigation</strong> <strong>of</strong> <strong>the</strong> <strong>de</strong> <strong>Haas</strong>-<strong>van</strong> <strong>Alphen</strong> <strong>effect</strong> <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g state<br />

T. J. B. M. Janssen, C. Haworth, S. M. Hay<strong>de</strong>n, P. Meeson, and M. Spr<strong>in</strong>gford<br />

H. H. Wills Physics Laboratory, University <strong>of</strong> Bristol, Tyndall Avenue, Bristol, BS8 1TL, United K<strong>in</strong>gdom<br />

A. Wasserman<br />

Department <strong>of</strong> Physics, Oregon State University, Corvallis, Oregon, 97331<br />

Received 19 November 1997<br />

The <strong>de</strong> <strong>Haas</strong>-<strong>van</strong> <strong>Alphen</strong> <strong>effect</strong> <strong>in</strong> <strong>the</strong> vortex state <strong>of</strong> <strong>the</strong> type-II superconductors 2H-NbSe 2 and V 3 Si is<br />

studied. We discuss <strong>the</strong> experimental and <strong>the</strong>oretical consi<strong>de</strong>rations perta<strong>in</strong><strong>in</strong>g to <strong>the</strong> observation <strong>of</strong> such<br />

oscillations. Macroscopic p<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> flux lattice cannot expla<strong>in</strong> <strong>the</strong> observed attenuation <strong>of</strong> quantum<br />

oscillations <strong>in</strong> <strong>the</strong> mixed state. A critical comparison <strong>of</strong> our measurements with <strong>the</strong> various microscopic<br />

<strong>the</strong>oretical mo<strong>de</strong>ls <strong>de</strong>scrib<strong>in</strong>g this phenomenon is ma<strong>de</strong>. We show how orientation-<strong>de</strong>pen<strong>de</strong>nt <strong>de</strong> <strong>Haas</strong>-<strong>van</strong><br />

<strong>Alphen</strong> data may be analyzed <strong>in</strong> a mo<strong>de</strong>l-<strong>de</strong>pen<strong>de</strong>nt way to yield <strong>the</strong> variation <strong>of</strong> <strong>the</strong> superconduct<strong>in</strong>g gap over<br />

<strong>the</strong> Fermi surface. S0163-18299806418-2<br />

I. INTRODUCTION<br />

The first report <strong>of</strong> Landau quantum oscillations <strong>in</strong> <strong>the</strong><br />

mixed or vortex state <strong>of</strong> a superconductor was ma<strong>de</strong> twenty<br />

years ago by Graebner and Robb<strong>in</strong>s 1 who observed magneto<strong>the</strong>rmal<br />

oscillations <strong>in</strong> <strong>the</strong> layered compound 2H-NbSe 2 .<br />

Such observations are very puzzl<strong>in</strong>g, as <strong>the</strong> <strong>de</strong>velopment <strong>of</strong> a<br />

superconduct<strong>in</strong>g energy gap might, at first sight, be thought<br />

to elim<strong>in</strong>ate quantum oscillations whose presence has for<br />

long been taken as canonical evi<strong>de</strong>nce for a Fermi surface.<br />

Ra<strong>the</strong>r surpris<strong>in</strong>gly, no fur<strong>the</strong>r experimental work on this<br />

phenomenon was published until 1992 when Onuki and<br />

co-workers 2 confirmed <strong>the</strong> observations <strong>in</strong> <strong>the</strong> same material<br />

but exten<strong>de</strong>d <strong>the</strong> measurements to <strong>the</strong> lower temperature <strong>of</strong><br />

0.3 K. The field <strong>of</strong> <strong>de</strong> <strong>Haas</strong>-<strong>van</strong> <strong>Alphen</strong> dHvA <strong>effect</strong> measurements<br />

<strong>in</strong> <strong>the</strong> vortex state has been wi<strong>de</strong>ned consi<strong>de</strong>rably<br />

to <strong>in</strong>clu<strong>de</strong> not only 2H-NbSe 2 , 3–6 but also certa<strong>in</strong> A15 compounds,<br />

V 3 Si Refs. 7 and 8 and Nb 3 Sn, 9 Ba(K)BiO 3 , 10<br />

CeRu 2 , 11,12 YNi 2 B 2 C, 13–16 URu 2 Si 2 , 17,18 a molecular metal<br />

-(BEDT-TTF) 2 Cu(NCS) 2 , 19 and even reported measurements<br />

<strong>in</strong> <strong>the</strong> high-T c material YBa 2 Cu 3 O 7 . 20–26<br />

On <strong>the</strong> basis <strong>of</strong> this body <strong>of</strong> experimental evi<strong>de</strong>nce, it<br />

would seem reasonable to suppose that <strong>the</strong> dHvA <strong>effect</strong> is a<br />

fundamental property <strong>of</strong> a type-II superconductor <strong>in</strong> <strong>the</strong> vortex<br />

state. This realization has already motivated much <strong>the</strong>oretical<br />

work, although <strong>the</strong> dom<strong>in</strong>ant mechanism lead<strong>in</strong>g to<br />

magnetic quantum oscillations <strong>in</strong> such an environment has<br />

still to be clearly established. Never<strong>the</strong>less, a central <strong>the</strong>me<br />

<strong>in</strong> each <strong>of</strong> <strong>the</strong> <strong>the</strong>ories is <strong>the</strong> role played by <strong>the</strong> superconduct<strong>in</strong>g<br />

energy gap <strong>in</strong> <strong>de</strong>term<strong>in</strong><strong>in</strong>g <strong>the</strong> pr<strong>in</strong>cipal experimental<br />

observation: quantum oscillations suffer an additional attenuation<br />

<strong>in</strong> <strong>the</strong> vortex state, over and above that <strong>in</strong> <strong>the</strong> normal<br />

state. The possibility <strong>the</strong>n arises <strong>of</strong> <strong>de</strong>term<strong>in</strong><strong>in</strong>g <strong>the</strong> energy<br />

gap from <strong>the</strong> measured attenuation. The dHvA <strong>effect</strong> probes<br />

<strong>the</strong> anisotropy <strong>of</strong> quasiparticle states <strong>in</strong> k space so that given<br />

an appropriate <strong>the</strong>oretical foundation, we should anticipate<br />

that dHvA <strong>effect</strong> measurements <strong>in</strong> <strong>the</strong> vortex state can yield<br />

<strong>in</strong>formation on <strong>the</strong> magnitu<strong>de</strong> and variation <strong>of</strong> <strong>the</strong> energy<br />

gap over <strong>the</strong> Fermi surface.<br />

The present study has been un<strong>de</strong>rtaken <strong>in</strong> an attempt to<br />

clarify <strong>the</strong> experimental and <strong>the</strong>oretical situation. We report<br />

below a <strong>de</strong>tailed and quantitative experimental study <strong>of</strong> <strong>the</strong><br />

dHvA <strong>effect</strong> <strong>in</strong> <strong>the</strong> two superconductors 2H-NbSe 2 and<br />

V 3 Si. Be<strong>in</strong>g available as s<strong>in</strong>gle crystals <strong>of</strong> high quality, each<br />

permits <strong>the</strong> dHvA <strong>effect</strong> to be measured, with precision, over<br />

a wi<strong>de</strong> field range.<br />

This paper is organized as follows. Section II gives an<br />

<strong>in</strong>troduction to <strong>the</strong> <strong>de</strong> <strong>Haas</strong>-<strong>van</strong> <strong>Alphen</strong> <strong>effect</strong> <strong>in</strong> a normal<br />

metal. In Sec. III some <strong>of</strong> <strong>the</strong> rele<strong>van</strong>t <strong>the</strong>oretical mo<strong>de</strong>ls<br />

<strong>de</strong>scrib<strong>in</strong>g <strong>the</strong> dHvA <strong>effect</strong> <strong>in</strong> <strong>the</strong> vortex state are reviewed.<br />

In Sec. IV some important consi<strong>de</strong>rations concern<strong>in</strong>g <strong>the</strong> experimental<br />

observation <strong>of</strong> <strong>the</strong> dHvA <strong>effect</strong> <strong>in</strong> <strong>the</strong> vortex state<br />

are discussed. In Sec. V <strong>the</strong> experimental results and analysis<br />

<strong>of</strong> <strong>the</strong> quantum oscillations <strong>in</strong> <strong>the</strong> vortex state <strong>of</strong> NbSe 2 and<br />

V 3 Si are presented and discussed. A discussion <strong>of</strong> our results<br />

is given <strong>in</strong> Sec. VI. F<strong>in</strong>ally, <strong>in</strong> Sec. VII we briefly summarize<br />

our results.<br />

II. THE <strong>de</strong> HAAS-<strong>van</strong> ALPHEN EFFECT<br />

IN A NORMAL METAL<br />

The dHvA <strong>effect</strong> is an oscillatory contribution to <strong>the</strong> magnetization<br />

M˜ <strong>of</strong> a metal, which is periodic <strong>in</strong> <strong>the</strong> <strong>in</strong>verse<br />

applied magnetic field B 1 0 , where B 0 0 H. In <strong>the</strong> normal<br />

state, dHvA oscillations are conventionally <strong>in</strong>terpreted us<strong>in</strong>g<br />

<strong>the</strong> semiclassical Lifshitz-Kosevich LK <strong>the</strong>ory for a collection<br />

<strong>of</strong> weakly <strong>in</strong>teract<strong>in</strong>g quasiparticles. 27 The frequency<br />

and amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> oscillations provi<strong>de</strong> <strong>in</strong>formation about<br />

<strong>the</strong> low-energy quasiparticles. Each extremal cross-sectional<br />

area A <strong>of</strong> <strong>the</strong> Fermi surface <strong>in</strong> <strong>the</strong> plane normal to <strong>the</strong> applied<br />

field B 0 gives an <strong>in</strong>f<strong>in</strong>ite series <strong>of</strong> oscillatory components<br />

to M˜ LK with fundamental frequency F(/2e)A<br />

given by<br />

where<br />

<br />

M˜ LK <br />

r1<br />

B 0 ,T,rs<strong>in</strong> 2r F B 0<br />

1 2 4<br />

,<br />

1<br />

0163-1829/98/5718/1169815/$15.00 57 11 698 © 1998 The American Physical Society


57 QUANTITATIVE INVESTIGATION OF THE <strong>de</strong> HAAS- . . .<br />

11 699<br />

T<br />

1/2<br />

B 0 ,T,rB 0<br />

s<strong>in</strong>h2 2 rk B Tm /eB 0 <br />

cos rgm b<br />

2m e<br />

exp rm b<br />

eB 0 s ,<br />

0R<br />

2<br />

superconduct<strong>in</strong>g state, a numerical estimate <strong>of</strong> this <strong>effect</strong> was<br />

performed for an i<strong>de</strong>al type-II superconductor with a hexagonal<br />

FLL.<br />

We consi<strong>de</strong>r <strong>the</strong> highest occupied Landau level. With<strong>in</strong><br />

<strong>the</strong> semiclassical approximation, <strong>the</strong> flux thread<strong>in</strong>g <strong>the</strong> correspond<strong>in</strong>g<br />

cyclotron orbit <strong>in</strong> real space is quantized:<br />

m b dk<br />

<br />

2 orbit v F k ,<br />

and R s 1 <strong>in</strong> <strong>the</strong> normal metallic state. The exponential factor<br />

D<strong>in</strong>gle factor <strong>in</strong> Eq. 2 accounts for <strong>the</strong> scatter<strong>in</strong>g due<br />

to static <strong>de</strong>fects and impurities, 1 0 be<strong>in</strong>g <strong>the</strong> quasiparticle<br />

scatter<strong>in</strong>g rate. Alternatively, one can express <strong>the</strong> damp<strong>in</strong>g as<br />

a Landau level broa<strong>de</strong>n<strong>in</strong>g /2 0 or D<strong>in</strong>gle temperature<br />

/2 0 k B T D . is <strong>the</strong> many-body exchange or Stoner<br />

enhancement <strong>of</strong> <strong>the</strong> Pauli susceptibility. 28<br />

Three ‘‘electron masses’’ appear <strong>in</strong> Eq. 2, <strong>the</strong> mass <strong>of</strong><br />

<strong>the</strong> electron is <strong>de</strong>noted by m e . The difference between <strong>the</strong>se<br />

masses has been discussed <strong>in</strong> <strong>the</strong> literature, 28–31 we summarize<br />

<strong>the</strong>se below. We <strong>de</strong>note <strong>the</strong> ‘‘band mass’’ computed<br />

from Eq. 3 by m b . In this equation <strong>the</strong> Fermi velocity v F<br />

(1/)(dE/dk) is calculated from a quasiparticle band<br />

structure as envisaged by Hohenberg, Kohn, and Sham. 32,33<br />

We note that m b is not directly measured by <strong>de</strong> <strong>Haas</strong>-<strong>van</strong><br />

<strong>Alphen</strong> experiments see below. The ‘‘renormalized mass’’<br />

m occurs <strong>in</strong> <strong>the</strong> s<strong>in</strong>h factor <strong>in</strong> Eq. 2 and can be measured<br />

directly from <strong>the</strong> temperature <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> <strong>the</strong> amplitu<strong>de</strong><br />

<strong>of</strong> <strong>the</strong> dHvA oscillations. Appropriately averag<strong>in</strong>g this mass<br />

over all sheets <strong>of</strong> <strong>the</strong> Fermi surface would yield <strong>the</strong> electron<br />

mass <strong>de</strong>term<strong>in</strong>ed from specific heat measurements. The<br />

renormalized mass m differs from m b <strong>in</strong> that it <strong>in</strong>clu<strong>de</strong>s <strong>the</strong><br />

<strong>effect</strong>s <strong>of</strong> <strong>in</strong>teractions <strong>of</strong> <strong>the</strong> electrons with excitations such<br />

as phonons, magnons, and o<strong>the</strong>r magnetic excitations. The<br />

presence <strong>of</strong> <strong>the</strong>se low-frequency <strong>de</strong>grees <strong>of</strong> freedom can lead<br />

to a large enhancement <strong>of</strong> m over m b . It has been shown<br />

<strong>the</strong>oretically that <strong>the</strong> factor m b / 0 <strong>in</strong> <strong>the</strong> exponential or<br />

D<strong>in</strong>gle factor <strong>of</strong> Eq. 2 is unaffected by <strong>the</strong> electron-phonon<br />

<strong>in</strong>teraction 29 and is also believed to be unaffected by o<strong>the</strong>r<br />

electron <strong>in</strong>teractions. 28<br />

III. THE <strong>de</strong> HAAS-<strong>van</strong> ALPHEN EFFECT<br />

IN THE VORTEX STATE<br />

A. Field <strong>in</strong>homogeneity <strong>in</strong> <strong>the</strong> vortex state<br />

The observation <strong>of</strong> <strong>the</strong> dHvA <strong>effect</strong> requires str<strong>in</strong>gent<br />

conditions on <strong>the</strong> macroscopic homogeneity <strong>of</strong> <strong>the</strong> magnetic<br />

field B(r) with<strong>in</strong> <strong>the</strong> sample. Field <strong>in</strong>homogeneities result <strong>in</strong><br />

a loss <strong>of</strong> phase coherence between dHvA oscillations from<br />

different parts <strong>of</strong> <strong>the</strong> sample and hence a suppression <strong>of</strong> <strong>the</strong><br />

overall amplitu<strong>de</strong>. The formation <strong>of</strong> <strong>the</strong> flux l<strong>in</strong>e lattice<br />

FLL on enter<strong>in</strong>g <strong>the</strong> mixed state <strong>in</strong>troduces a somewhat<br />

different complication: a microscopic field variation, that is<br />

on a length scale less than <strong>the</strong> cyclotron orbit radius r c .It<br />

has been suggested that <strong>the</strong> suppression <strong>of</strong> <strong>the</strong> dHvA oscillations<br />

can be expla<strong>in</strong>ed by ‘‘phase smear<strong>in</strong>g’’ as a result <strong>of</strong><br />

<strong>the</strong> <strong>in</strong>homogeneous magnetic field distribution with<strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g<br />

vortex state. 2,7,11 In or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e<br />

whe<strong>the</strong>r <strong>the</strong> field <strong>in</strong>homogeneity due to <strong>the</strong> FLL itself needs<br />

to be <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> our consi<strong>de</strong>ration <strong>of</strong> <strong>the</strong> dHvA <strong>effect</strong> <strong>in</strong> <strong>the</strong><br />

3<br />

Br•dSn 2<br />

. 4<br />

e<br />

The <strong>in</strong>homogeneous field implies that for a given Landau<br />

<strong>in</strong><strong>de</strong>x n <strong>the</strong> orbit size will vary accord<strong>in</strong>g to <strong>the</strong> location <strong>of</strong><br />

its center <strong>in</strong> <strong>the</strong> FLL. To our knowledge, <strong>the</strong>re are no direct<br />

measurements by neutron scatter<strong>in</strong>g or muon sp<strong>in</strong> resonance<br />

<strong>of</strong> <strong>the</strong> magnetic field distribution for large materials at <strong>the</strong><br />

fields (10 T used <strong>in</strong> <strong>the</strong> present experiments. There are,<br />

however, a number <strong>of</strong> <strong>the</strong>oretical treatments, which have<br />

been experimentally confirmed at lower fields, 34,35 which<br />

give an estimate <strong>of</strong> <strong>the</strong> magnetic field distribution with<strong>in</strong> <strong>the</strong><br />

G<strong>in</strong>zburg-Landau formalism. The magnetic field with<strong>in</strong> a<br />

clean superconductor close to B c2 can be <strong>de</strong>scribed as 35<br />

BrBr 0 M <br />

K0<br />

b K cosK•r,<br />

where B(r) is <strong>the</strong> spatially averaged <strong>in</strong>duction and 0 M<br />

B 0 B(r) is <strong>the</strong> magnetization.<br />

For a hexagonal FLL with lattice parameter a, <strong>the</strong> reciprocal<br />

lattice vector KK mn (2/a)xˆmŷ(2nm)/3<br />

<strong>the</strong> applied field B 0 parallel to <strong>the</strong> z axis. At low temperatures<br />

(TT c ) <strong>the</strong> Fourier coefficients b K are<br />

approximately 34 given by b K (1) (3 3/4 /2)/ 3/2 , where<br />

m 2 mnn 2 . In <strong>the</strong> simulation we only use <strong>the</strong> Fourier<br />

components with 1. The magnetization is given by 35<br />

M 1 0<br />

B c2 B 0<br />

2 2 1 A<br />

,<br />

where is <strong>the</strong> G<strong>in</strong>zburg-Landau GL parameter and A<br />

1.1596 for <strong>the</strong> hexagonal FLL. Strictly speak<strong>in</strong>g, this<br />

equation only applies <strong>in</strong> <strong>the</strong> dirty limit close to T c . In <strong>the</strong><br />

clean limit l, as is <strong>the</strong> case for <strong>the</strong> materials studied <strong>in</strong><br />

this work, diverges for T→0 and B 0 B c2 which implies<br />

that M <strong>van</strong>ishes. 36,37 Therefore, Eq. 6 represents an upper<br />

bound for <strong>the</strong> magnetization.<br />

To calculate <strong>the</strong> distribution <strong>of</strong> areas <strong>of</strong> orbits l<strong>in</strong>k<strong>in</strong>g <strong>the</strong><br />

same magnetic flux, we first sample cyclotron orbits <strong>of</strong> fixed<br />

area with random centers <strong>in</strong> <strong>the</strong> FLL unit cell see Fig. 1a.<br />

The set <strong>of</strong> randomly sampled orbits has fluxes i and a<br />

typical distribution P() shown <strong>in</strong> Fig. 1b calculated for<br />

<strong>the</strong> parameters <strong>of</strong> V 3 Si. (V 3 Si has a lower value than<br />

NbSe 2 and hence <strong>the</strong> <strong>effect</strong> <strong>of</strong> <strong>the</strong> field <strong>in</strong>homogeneity will<br />

be stronger. The field <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> <strong>the</strong> standard <strong>de</strong>viation<br />

<strong>of</strong> <strong>the</strong> distribution is shown <strong>in</strong> Fig. 2a. The variation <strong>of</strong><br />

as a function <strong>of</strong> <strong>the</strong> applied magnetic field shows sharp<br />

m<strong>in</strong>ima which are found to be periodic <strong>in</strong> 1/B. This behavior<br />

can be simply un<strong>de</strong>rstood as a ‘‘geometrical resonance’’<br />

<strong>of</strong> <strong>the</strong> cyclotron orbit size r c with <strong>the</strong> FLL lattice parameter<br />

a. The m<strong>in</strong>ima <strong>in</strong> occur such that r c na where n is an<br />

<strong>in</strong>teger.<br />

5<br />

6


11 700 T. J. B. M. JANSSEN et al.<br />

57<br />

FIG. 1. a Schematic <strong>of</strong> a triangular flux-l<strong>in</strong>e lattice with lattice<br />

parameter a and unit cell (axˆ,2a/3ŷ) with <strong>the</strong> applied field parallel<br />

to <strong>the</strong> z axis. Two cyclotron orbits are shown with different<br />

centers with<strong>in</strong> <strong>the</strong> FLL unit cell. Note that <strong>the</strong> cyclotron radius <strong>in</strong><br />

this picture is drawn 5 times smaller than <strong>the</strong> actual size. In <strong>the</strong><br />

simulation we calculate <strong>the</strong> flux through typically 1000 orbits with<br />

random centers <strong>in</strong> <strong>the</strong> unit cell, produc<strong>in</strong>g a probability distribution<br />

such as shown <strong>in</strong> b. b P() versus , plotted as <strong>the</strong> <strong>de</strong>viation<br />

from <strong>the</strong> average flux, calculated for <strong>the</strong> parameters <strong>of</strong> V 3 Si.<br />

To obta<strong>in</strong> <strong>the</strong> correspond<strong>in</strong>g distribution <strong>of</strong> areas <strong>of</strong> orbits<br />

l<strong>in</strong>k<strong>in</strong>g <strong>the</strong> same flux, we note that <strong>in</strong> <strong>the</strong> limit B(r)<br />

B(r)B 0 such orbits can be obta<strong>in</strong>ed by <strong>in</strong>creas<strong>in</strong>g or<br />

<strong>de</strong>creas<strong>in</strong>g <strong>the</strong> area by ( i i )/B 0 . The standard <strong>de</strong>viation<br />

<strong>of</strong> <strong>the</strong> distribution <strong>of</strong> areas is /B 0 and <strong>the</strong> correspond<strong>in</strong>g<br />

spread <strong>of</strong> reciprocal space areas is (eB 0 /) 2 /B 0 . Us<strong>in</strong>g<br />

<strong>the</strong> fact that F(/2e)A, <strong>the</strong> spread <strong>in</strong> orbit sizes<br />

gives rise to an apparent spread <strong>in</strong> dHvA frequencies 27 F<br />

(/2e)(eB 0 /) 2 /B 0 . This results <strong>in</strong> an additional<br />

field-<strong>de</strong>pen<strong>de</strong>nt factor <strong>in</strong> <strong>the</strong> amplitu<strong>de</strong><br />

R s exp 2F<br />

B 0<br />

. 7<br />

The magnitu<strong>de</strong> <strong>of</strong> 1R s is about two or<strong>de</strong>rs <strong>of</strong> magnitu<strong>de</strong><br />

smaller than <strong>the</strong> observed values <strong>of</strong> 1R s reported <strong>in</strong> Sec.<br />

V. We <strong>the</strong>refore conclu<strong>de</strong> that <strong>the</strong> direct <strong>effect</strong> <strong>of</strong> <strong>the</strong> microscopic<br />

field <strong>in</strong>homogeneity due to <strong>the</strong> vortex lattice has a<br />

negligible <strong>effect</strong> on <strong>the</strong> amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> dHvA oscillations<br />

un<strong>de</strong>r <strong>the</strong> present conditions.<br />

B. Microscopic <strong>the</strong>ories<br />

A number <strong>of</strong> <strong>the</strong>oretical mo<strong>de</strong>ls have been proposed to<br />

expla<strong>in</strong> <strong>the</strong> persistence <strong>of</strong> <strong>the</strong> dHvA <strong>effect</strong> below B c2 <strong>in</strong> a<br />

type-II superconductor. We beg<strong>in</strong> with a brief discussion <strong>in</strong><br />

or<strong>de</strong>r to highlight <strong>the</strong>ir dist<strong>in</strong>guish<strong>in</strong>g features. In particular,<br />

FIG. 2. a Variation <strong>of</strong> <strong>the</strong> standard <strong>de</strong>viation, , <strong>of</strong> <strong>the</strong> calculated<br />

probability distributions, such as displayed <strong>in</strong> Fig. 1b, asa<br />

function <strong>of</strong> <strong>the</strong> applied magnetic field B 0 . The oscillations are periodic<br />

<strong>in</strong> 1/B 0 na. b Damp<strong>in</strong>g expressed as 1R s result<strong>in</strong>g<br />

from <strong>the</strong> field <strong>in</strong>homogeneity, versus magnetic field.<br />

we i<strong>de</strong>ntify <strong>the</strong> form <strong>of</strong> <strong>the</strong> magnetic field <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> <strong>the</strong><br />

dHvA <strong>effect</strong>. We note that <strong>the</strong>re are also mo<strong>de</strong>ls applicable<br />

only to two-dimensional 2D systems 38–41 which are not<br />

applicable to <strong>the</strong> materials consi<strong>de</strong>red <strong>in</strong> <strong>the</strong> present <strong><strong>in</strong>vestigation</strong>.<br />

Although NbSe 2 is a layered compound, <strong>the</strong> Fermi<br />

surface feature studied here is three dimensional 3 <strong>in</strong> <strong>the</strong> sense<br />

that <strong>the</strong> variation <strong>of</strong> <strong>the</strong> cross-sectional area <strong>of</strong> <strong>the</strong> Fermi<br />

surface perpendicular to <strong>the</strong> applied field is much greater<br />

than <strong>the</strong> difference <strong>in</strong> area <strong>of</strong> consecutive Landau orbits<br />

2eB 0 /.<br />

A common feature <strong>of</strong> all <strong>the</strong> <strong>the</strong>oretical mo<strong>de</strong>ls is <strong>the</strong><br />

suppression <strong>of</strong> <strong>the</strong> dHvA oscillations with respect to <strong>the</strong> standard<br />

LK formula Eq. 1. It is convenient to <strong>de</strong>scribe this<br />

suppression through <strong>the</strong> factor R s <strong>in</strong> Eq. 1. In <strong>de</strong>scrib<strong>in</strong>g<br />

<strong>the</strong> experimental data, it is convenient to <strong>de</strong>f<strong>in</strong>e a ‘‘scatter<strong>in</strong>g<br />

rate’’ s 1 due to <strong>the</strong> superconductivity through <strong>the</strong> relation<br />

R s exp rm b<br />

eB 0 s.<br />

Several <strong>of</strong> <strong>the</strong> microscopic mo<strong>de</strong>ls can be couched <strong>in</strong> this<br />

form. The microscopic <strong>the</strong>ories which consi<strong>de</strong>r<br />

explicitly 28,42,43 which mass occurs <strong>in</strong> Eq. 8 use <strong>the</strong> band<br />

mass m b ra<strong>the</strong>r than <strong>the</strong> <strong>effect</strong>ive mass m .<br />

The damp<strong>in</strong>g <strong>of</strong> quantum oscillations <strong>in</strong> <strong>the</strong> mixed state is<br />

presumed to <strong>in</strong>clu<strong>de</strong> <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> impurities and static<br />

<strong>de</strong>fects, as observed <strong>in</strong> <strong>the</strong> normal state, <strong>in</strong> addition to that<br />

aris<strong>in</strong>g from superconduct<strong>in</strong>g or<strong>de</strong>r. Hence, parametriz<strong>in</strong>g<br />

<strong>the</strong> damp<strong>in</strong>g due to superconduct<strong>in</strong>g or<strong>de</strong>r by s 1 (B 0 ,T),<br />

we may write for <strong>the</strong> total scatter<strong>in</strong>g rate 1 0 1 <br />

s 1 , <strong>in</strong> which ••• <strong>de</strong>signates an orbitally averaged<br />

value. This additive relation, or ‘‘orbital Mat<strong>the</strong>issen rule’’<br />

will break down if 0 1 is <strong>in</strong>fluenced by <strong>the</strong> superconductivity<br />

or if <strong>the</strong> anisotropies <strong>of</strong> 0 1 (k) and s 1 (k) differ. We<br />

8


57 QUANTITATIVE INVESTIGATION OF THE <strong>de</strong> HAAS- . . .<br />

11 701<br />

note that <strong>the</strong> microscopic <strong>the</strong>ory <strong>of</strong> Dukan and Tešanović<br />

discussed below explicitly does not assume <strong>the</strong> orbital Mat<strong>the</strong>issen<br />

rule.<br />

The superconduct<strong>in</strong>g gap enters all <strong>of</strong> <strong>the</strong> mo<strong>de</strong>ls discussed<br />

below. In <strong>the</strong> absence <strong>of</strong> measurements <strong>of</strong> <strong>the</strong> field<strong>de</strong>pen<strong>de</strong>nt<br />

superconductor gap, we use <strong>the</strong> equation<br />

B 0 01 B 0<br />

9<br />

B c2<br />

to <strong>de</strong>scribe <strong>the</strong> field-<strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> <strong>the</strong> superconduct<strong>in</strong>g gap.<br />

This form has consi<strong>de</strong>rable <strong>the</strong>oretical justification. 35<br />

1. Theories <strong>of</strong> Maki, Stephen, and Wasserman and Spr<strong>in</strong>gford<br />

(MSWS)<br />

The approach <strong>of</strong> Maki 44 is based on semiclassical approximations<br />

for <strong>the</strong> electron Green function <strong>in</strong> <strong>the</strong> mixed<br />

state. The approximation first <strong>in</strong>troduced by Brandt et al. 45<br />

was to reta<strong>in</strong> only <strong>the</strong> spatially averaged value <strong>of</strong> 2 . The<br />

existence <strong>of</strong> a gapless excitation spectrum is also a feature <strong>of</strong><br />

Brandt’s approach. 45 Whereas excitations with k parallel to<br />

B have <strong>the</strong> familiar BCS form, those <strong>in</strong> planes perpendicular<br />

to B are gapless. Because it is precisely <strong>the</strong> latter that are<br />

probed <strong>in</strong> a dHvA experiment, <strong>the</strong> physical orig<strong>in</strong> <strong>of</strong> quantum<br />

oscillations <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g state is due to this<br />

gaplessness. Maki f<strong>in</strong>ds that <strong>the</strong> dHvA oscillations have an<br />

extra damp<strong>in</strong>g Eq. 8 <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g state where<br />

1 s is now given by<br />

or<br />

s 1 22 B 0 <br />

v F<br />

10<br />

R s exp 3/2 m b<br />

eB 0<br />

2 B 1/2<br />

0<br />

F<br />

, 11<br />

where (2eB 0 ) 1/2 , v F is <strong>the</strong> Fermi velocity. The quantities<br />

on <strong>the</strong> right hand si<strong>de</strong> <strong>of</strong> Eq. 10 may vary around <strong>the</strong><br />

orbit, e.g., <strong>in</strong> NbSe 2 , <strong>the</strong> Fermi velocity is anisotropic. In this<br />

case we <strong>in</strong>terpret Eq. 10 to be orbitally averaged and use<br />

1/v F m b /2eF. Stephen 46,47 obta<strong>in</strong>ed Maki’s result by<br />

solv<strong>in</strong>g <strong>the</strong> Bogoliubov–<strong>de</strong> Gennes BdG equations for<br />

magnetic fields close to B c2 small ) but his result, a quantized<br />

energy spectrum with level spac<strong>in</strong>g c , differs from<br />

that <strong>of</strong> Dukan and Tesanovic. 42<br />

Wasserman and Spr<strong>in</strong>gford 43 <strong>in</strong>corporated Brandt’s selfenergy<br />

<strong>in</strong> a general field-<strong>the</strong>oretic expression for <strong>the</strong> dHvA<br />

<strong>effect</strong> <strong>in</strong> an <strong>in</strong>teract<strong>in</strong>g system 28 <strong>in</strong> which <strong>the</strong> real and imag<strong>in</strong>ary<br />

parts <strong>of</strong> <strong>the</strong> electron self-energy evaluated on <strong>the</strong> imag<strong>in</strong>ary<br />

energy axis renormalize <strong>the</strong> frequency and amplitu<strong>de</strong><br />

terms <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al LK formula whilst leav<strong>in</strong>g its general<br />

structure unaltered. The real part <strong>of</strong> <strong>the</strong> self-energy <strong>van</strong>ishes<br />

correspond<strong>in</strong>g to no change <strong>in</strong> <strong>the</strong> dHvA frequency<br />

Stephen’s 47 approach predicts a small energy shift. The<br />

imag<strong>in</strong>ary part, however, is f<strong>in</strong>ite and contributes an extra<br />

damp<strong>in</strong>g term i<strong>de</strong>ntical to Eq. 10. In <strong>the</strong> above mo<strong>de</strong>ls, <strong>the</strong><br />

damp<strong>in</strong>g is <strong>de</strong>term<strong>in</strong>ed by <strong>the</strong> spatially averaged value <strong>of</strong><br />

2 , a result which un<strong>de</strong>rl<strong>in</strong>es its <strong>in</strong>sensitivity to <strong>the</strong> <strong>de</strong>gree <strong>of</strong><br />

or<strong>de</strong>r <strong>in</strong> <strong>the</strong> vortex lattice. The <strong>in</strong>clusion <strong>of</strong> higher or<strong>de</strong>r<br />

terms represent<strong>in</strong>g Fourier components <strong>of</strong> <strong>the</strong> 2D periodic<br />

or<strong>de</strong>r parameter associated with <strong>the</strong> or<strong>de</strong>red vortex lattice, is<br />

FIG. 3. Schematic diagram show<strong>in</strong>g <strong>the</strong> rele<strong>van</strong>t energies as a<br />

function <strong>of</strong> magnetic field calculated for <strong>the</strong> parameters <strong>of</strong> NbSe 2 .<br />

The angle between magnetic field and c axis is 68.6°. The solid l<strong>in</strong>e<br />

is <strong>the</strong> cyclotron energy c , <strong>the</strong> dotted l<strong>in</strong>e is <strong>the</strong> superconduct<strong>in</strong>g<br />

energy gap calculated us<strong>in</strong>g <strong>the</strong> BCS relation with (0) taken to be<br />

<strong>the</strong> BCS value <strong>of</strong> 1.1 meV. The long dashed l<strong>in</strong>e is <strong>the</strong> field<strong>de</strong>pen<strong>de</strong>nt<br />

damp<strong>in</strong>g due to <strong>the</strong> vortex state calculated us<strong>in</strong>g Eq.<br />

10. The horizontal solid l<strong>in</strong>e represents <strong>the</strong> field <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt Landau<br />

level broa<strong>de</strong>n<strong>in</strong>g due to impurity scatter<strong>in</strong>g.<br />

straightforward, but was found by Wasserman and Spr<strong>in</strong>gford<br />

not to add significantly to <strong>the</strong> result expressed <strong>in</strong> Eq.<br />

10.<br />

In Fig. 3 we illustrate <strong>the</strong> various contributions <strong>in</strong> this<br />

mo<strong>de</strong>l for <strong>the</strong> material NbSe 2 <strong>de</strong>tails for this material are<br />

given below. /2 0 represents <strong>the</strong> Landau-level broa<strong>de</strong>n<strong>in</strong>g<br />

due to impurity scatter<strong>in</strong>g and c is <strong>the</strong> Landau-level spac<strong>in</strong>g.<br />

Ignor<strong>in</strong>g <strong>the</strong> vortex state, <strong>the</strong> classical limit for observ<strong>in</strong>g<br />

<strong>the</strong> quantum oscillations is given by <strong>the</strong> condition<br />

/2 0 c marked by <strong>the</strong> dashed vertical l<strong>in</strong>e. When <strong>the</strong><br />

vortex state is <strong>in</strong>clu<strong>de</strong>d, a superconduct<strong>in</strong>g gap <strong>de</strong>velops below<br />

B c2 , which leads to an additional broa<strong>de</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

Landau-levels given by Eq. 10. In this picture 0 is taken to<br />

be a constant as a function <strong>of</strong> magnetic field, <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt <strong>of</strong><br />

whe<strong>the</strong>r a vortex state is present or not. This assumption may<br />

not be true, but seems to be supported by <strong>the</strong> field <strong>the</strong>oretical<br />

mo<strong>de</strong>l <strong>of</strong> Wasserman and Spr<strong>in</strong>gford. Figure 3 illustrates <strong>the</strong><br />

<strong>in</strong>creased magnetic field <strong>de</strong>pen<strong>de</strong>nt damp<strong>in</strong>g <strong>in</strong> <strong>the</strong> vortex<br />

state as <strong>the</strong> gap parameter <strong>de</strong>velops.<br />

2. Theory <strong>of</strong> Miyake (MMG)<br />

Miyake 48 consi<strong>de</strong>red <strong>the</strong> extreme type-II limit 1 and<br />

neglected <strong>the</strong> spatial variation <strong>of</strong> <strong>the</strong> superconduct<strong>in</strong>g gap .<br />

BCS-quasiparticle states are <strong>the</strong>n quantized us<strong>in</strong>g <strong>the</strong> semiclassical<br />

Bohr-Sommerfeld rule. An expression for <strong>the</strong> oscillatory<br />

magnetization can <strong>the</strong>n be obta<strong>in</strong>ed follow<strong>in</strong>g <strong>the</strong><br />

usual Lifshitz-Kosevich method. The result <strong>of</strong> such a calculation<br />

yields an additional factor<br />

R s K 1 <br />

12<br />

<strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g state, where 2rm b /eB 0 .<br />

K 1 (z) is <strong>the</strong> Bessel function <strong>of</strong> imag<strong>in</strong>ary argument. In this<br />

<strong>the</strong>ory, <strong>the</strong> contributions <strong>of</strong> <strong>the</strong> normal core regions are neglected.<br />

The damp<strong>in</strong>g <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g state results<br />

from replac<strong>in</strong>g <strong>the</strong> sharp step <strong>in</strong> <strong>the</strong> Fermi-Dirac occupation<br />

function with BCS quasiparticle energies and occupation<br />

functions. Miller and Györffy 49 have <strong>de</strong>rived <strong>the</strong> same results<br />

start<strong>in</strong>g from <strong>the</strong> BdG equation see below. For <strong>the</strong>


11 702 T. J. B. M. JANSSEN et al.<br />

57<br />

case <strong>of</strong> a simple BCS superconductor, where <strong>the</strong> gap parameter<br />

is isotropic, this mo<strong>de</strong>l predicts a large attenuation <strong>of</strong> <strong>the</strong><br />

quantum oscillations <strong>in</strong> <strong>the</strong> vortex state. If, however, <strong>the</strong> gap<br />

<strong>van</strong>ishes at some po<strong>in</strong>ts or l<strong>in</strong>es on <strong>the</strong> Fermi surface, <strong>the</strong><br />

size <strong>of</strong> R s becomes <strong>of</strong> or<strong>de</strong>r unity small damp<strong>in</strong>g when <strong>the</strong><br />

cyclotron orbit <strong>in</strong> k space passes through such zeros even if<br />

<strong>the</strong> gap parameter on o<strong>the</strong>r parts <strong>of</strong> <strong>the</strong> cyclotron orbit is<br />

sizable.<br />

3. Theory <strong>of</strong> Dukan and Tešanović (DT)<br />

This approach 42 rests upon <strong>the</strong> observation that, <strong>in</strong> <strong>the</strong><br />

quantum limit ( c ) where <strong>the</strong> Landau levels can be<br />

treated explicitly, (r), <strong>the</strong> spatial <strong>de</strong>pen<strong>de</strong>nt or<strong>de</strong>r parameter,<br />

goes to zero at sites correspond<strong>in</strong>g to <strong>the</strong> positions <strong>of</strong><br />

<strong>the</strong> vortex cores. The excitation spectrum, calculated by analytically<br />

solv<strong>in</strong>g <strong>the</strong> BdG equations, is found to be ‘‘gapless’’<br />

at a related set <strong>of</strong> po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> magnetic Brillou<strong>in</strong> zone<br />

<strong>of</strong> <strong>the</strong> flux lattice. Fur<strong>the</strong>rmore, with some modification, this<br />

behavior persists to relatively low fields, far below B c2 . 50<br />

The physical orig<strong>in</strong> <strong>of</strong> <strong>the</strong> dHvA <strong>effect</strong> <strong>in</strong> <strong>the</strong> vortex state is<br />

traced to this particular feature <strong>of</strong> <strong>the</strong> excitation spectrum.<br />

The oscillatory part <strong>of</strong> <strong>the</strong> <strong>the</strong>rmodynamic potential <strong>in</strong> <strong>the</strong><br />

superconduct<strong>in</strong>g state is <strong>the</strong>n calculated <strong>in</strong> <strong>the</strong> presence <strong>of</strong><br />

this gapless spectrum. Oscillatory contributions to <strong>the</strong> potential<br />

are divi<strong>de</strong>d <strong>in</strong>to two components, one from <strong>the</strong> gapless<br />

region and a second but negligible contribution from <strong>the</strong> rema<strong>in</strong><strong>de</strong>r<br />

<strong>of</strong> <strong>the</strong> gapped Fermi surface. The gapless region G<br />

has an area attributed to it that is essentially <strong>the</strong> sum <strong>of</strong> <strong>the</strong><br />

normal areas around <strong>the</strong> no<strong>de</strong>s. In reciprocal space G has a<br />

radius q c given by<br />

q c C max T , ,<br />

13<br />

where C is a constant <strong>of</strong> or<strong>de</strong>r unity, is <strong>the</strong> imag<strong>in</strong>ary part<br />

<strong>of</strong> <strong>the</strong> electron self-energy related to <strong>the</strong> total <strong>effect</strong>ive scatter<strong>in</strong>g<br />

rate 1 tot by /2 tot , and is <strong>de</strong>f<strong>in</strong>ed as <strong>the</strong> amplitu<strong>de</strong><br />

<strong>of</strong> <strong>the</strong> or<strong>de</strong>r parameter. A self-consistent calculation<br />

<strong>of</strong> when 2 0 yields<br />

B 0 0B 0 <br />

, 14<br />

2<br />

where 0 is <strong>the</strong> value <strong>in</strong> <strong>the</strong> normal state and <strong>the</strong> magnetic<br />

field <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> is taken <strong>in</strong>to account via <strong>the</strong><br />

G<strong>in</strong>zburg-Landau equation<br />

B 0 0 1 B 1/2<br />

0<br />

B c2 . 15<br />

This leads to <strong>the</strong> amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> fundamental harmonic <strong>of</strong><br />

<strong>the</strong> dHvA <strong>effect</strong> <strong>in</strong> a superconductor conta<strong>in</strong><strong>in</strong>g an additional<br />

term to that <strong>in</strong> <strong>the</strong> normal state,<br />

R s 2 C max T ,<br />

2<br />

exp m b<br />

eB 0 tot ,<br />

16<br />

with 1 tot 2(B 0 ) for 2 0 and 1 1<br />

tot 2 0 0<br />

for 2 0 .<br />

4. Theory <strong>of</strong> Miller and Györffy (MG)<br />

In this approach 49 <strong>the</strong> BdG equations correspond<strong>in</strong>g to a<br />

simple tight b<strong>in</strong>d<strong>in</strong>g mo<strong>de</strong>l <strong>in</strong> a magnetic field are solved<br />

us<strong>in</strong>g a real-space recursion method, to give a self-consistent<br />

microscopic solution for <strong>the</strong> Abrikosov flux lattice. A key<br />

result is <strong>the</strong> appearance <strong>of</strong> a discrete Landau-level-like structure<br />

<strong>in</strong> <strong>the</strong> <strong>de</strong>nsity <strong>of</strong> states spectrum, even <strong>in</strong> <strong>the</strong> presence <strong>of</strong><br />

a large or<strong>de</strong>r parameter. The ground state is visualized as<br />

be<strong>in</strong>g formed from Cooper pairs <strong>of</strong> electrons which occupy<br />

discrete ‘‘Landau levels.’’ With chang<strong>in</strong>g magnetic field, <strong>the</strong><br />

levels adjust <strong>in</strong> a manner not dissimilar to <strong>the</strong> case <strong>of</strong> a<br />

normal metal lead<strong>in</strong>g to quantum oscillations <strong>in</strong> <strong>the</strong> <strong>the</strong>rmodynamic<br />

potential with <strong>the</strong> same period. The orig<strong>in</strong> <strong>of</strong> <strong>the</strong><br />

dHvA <strong>effect</strong> <strong>in</strong> <strong>the</strong> vortex state is i<strong>de</strong>ntified with this un<strong>de</strong>rly<strong>in</strong>g<br />

quantization <strong>of</strong> <strong>the</strong> superconduct<strong>in</strong>g ground state energy.<br />

Although <strong>the</strong> frequency <strong>of</strong> quantum oscillations is unchanged<br />

<strong>in</strong> this mo<strong>de</strong>l from its value <strong>in</strong> <strong>the</strong> normal state, <strong>the</strong><br />

amplitu<strong>de</strong> is dim<strong>in</strong>ished accord<strong>in</strong>g to Eq. 12 essentially because<br />

<strong>the</strong> <strong>the</strong>rmodynamic potential <strong>in</strong>clu<strong>de</strong>s <strong>the</strong> variation <strong>of</strong><br />

particle occupation number u k 2 which changes over an energy<br />

region on <strong>the</strong> scale <strong>of</strong> , <strong>the</strong> magnitu<strong>de</strong> <strong>of</strong> <strong>the</strong> or<strong>de</strong>r<br />

parameter.<br />

5. Theory <strong>of</strong> Norman, MacDonald, and Akera (NMA)<br />

NMA Ref. 51 also seek a solution <strong>of</strong> <strong>the</strong> mean field gap<br />

BdG equations <strong>in</strong> <strong>the</strong> vortex state <strong>in</strong> <strong>the</strong> presence <strong>of</strong> Landau<br />

quantization <strong>of</strong> <strong>the</strong> energy levels, although <strong>the</strong>ir approach is<br />

based on a different formalism. Aga<strong>in</strong>, gapless branches <strong>of</strong><br />

<strong>the</strong> excitation spectrum are a feature <strong>of</strong> <strong>the</strong>ir solution as <strong>in</strong><br />

<strong>the</strong> previous mo<strong>de</strong>l. The magnetic field is assumed uniform<br />

throughout <strong>the</strong> superconductor and <strong>the</strong> free energy and hence<br />

magnetization calculated for a representative mo<strong>de</strong>l <strong>of</strong> a<br />

weak-coupl<strong>in</strong>g superconductor. Although direct comparison<br />

<strong>of</strong> <strong>the</strong>se results with experiments on specific materials is difficult,<br />

estimates <strong>of</strong> <strong>the</strong> additional damp<strong>in</strong>g due to <strong>the</strong> presence<br />

<strong>of</strong> a superconduct<strong>in</strong>g or<strong>de</strong>r parameter can be ma<strong>de</strong> by<br />

<strong>in</strong>troduc<strong>in</strong>g an amplitu<strong>de</strong> reduction factor for <strong>the</strong> fundamental<br />

dHvA harmonic as <strong>in</strong> Eq. 8. Near B c2 and neglect<strong>in</strong>g<br />

1<br />

<strong>of</strong>f-diagonal pair<strong>in</strong>g, <strong>the</strong> superconduct<strong>in</strong>g relaxation rate s<br />

is found to be,<br />

1 s 0.6n 1/4 k B T c 1 B 1/2<br />

0<br />

B c2 , 17<br />

which <strong>in</strong>corporates <strong>the</strong> G<strong>in</strong>zburg-Landau form <strong>of</strong> <strong>the</strong> field<br />

<strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> T c . The presence <strong>of</strong> n 1/4 , <strong>in</strong> which n is <strong>the</strong><br />

Landau level <strong>in</strong><strong>de</strong>x, means that small pieces <strong>of</strong> Fermi surface<br />

suffer stronger damp<strong>in</strong>g than larger ones. Us<strong>in</strong>g a <strong>the</strong>oretical<br />

mo<strong>de</strong>l to <strong>in</strong>fer <strong>the</strong> full damp<strong>in</strong>g when <strong>in</strong>ter-Landau level<br />

<strong>of</strong>f-diagonal pair<strong>in</strong>g is <strong>in</strong>clu<strong>de</strong>d, <strong>the</strong>y f<strong>in</strong>d that <strong>the</strong> relaxation<br />

rate is enhanced by approximately 3.5, so that Eq. 17<br />

becomes<br />

s 1 n 1/4 B 0 ,<br />

18<br />

<strong>in</strong> which (B 0 ,T), is directly related to <strong>the</strong> energy gap, but<br />

by an unspecified numerical constant.<br />

In a later report Norman and McDonald 52 studied <strong>the</strong><br />

magnetic quantum oscillations <strong>in</strong> <strong>the</strong> vortex state <strong>in</strong> greater<br />

<strong>de</strong>tail and noted that <strong>the</strong> actual behavior is more complicated.<br />

They argue that a crossover regime exists from l<strong>in</strong>ear


57 QUANTITATIVE INVESTIGATION OF THE <strong>de</strong> HAAS- . . .<br />

11 703<br />

to quadratic behavior <strong>in</strong> <strong>the</strong> or<strong>de</strong>r parameter when <strong>the</strong> quantity<br />

F 0 /n 1/4 falls below 2k B T, where F 0 is <strong>de</strong>f<strong>in</strong>ed <strong>in</strong> Ref.<br />

51 as <strong>the</strong> vortex lattice analogue <strong>of</strong> <strong>the</strong> BCS gap. This implies<br />

that at higher temperatures <strong>the</strong> relaxation rate takes <strong>the</strong><br />

form<br />

1 s n 1/2 2 B 0 .<br />

19<br />

In <strong>the</strong> crossover regime both terms should be present. 53<br />

6. Theory <strong>of</strong> Maniv, Rom, Vagner, and Wy<strong>de</strong>r (MRVW)<br />

MRVW Refs. 38–41 start with a Gorkov-G<strong>in</strong>zburg-<br />

Landau like expansion <strong>of</strong> <strong>the</strong> free energy <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g<br />

state to forth or<strong>de</strong>r <strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g or<strong>de</strong>r parameter.<br />

For a two-dimensional 2D superconductor, <strong>the</strong>y<br />

f<strong>in</strong>d a new contribution to <strong>the</strong> dHVA oscillations which is <strong>in</strong><br />

antiphase with normal state oscillatory magnetization. The<br />

total oscillatory magnetization 3/2 corresponds to<br />

R s 1 m b<br />

eB 0<br />

2 B 1/2<br />

0<br />

F<br />

. 20<br />

In <strong>the</strong> limit <strong>of</strong> small 2 this is <strong>the</strong> same as <strong>the</strong> MSWS form,<br />

however, <strong>the</strong> MRVW <strong>the</strong>ory is strictly only applicable <strong>in</strong> <strong>the</strong><br />

2D limit.<br />

IV. EXPERIMENTAL CONSIDERATIONS<br />

The experiments <strong>de</strong>scribed <strong>in</strong> this work were performed<br />

<strong>in</strong> a cryomagnetic system <strong>in</strong>corporat<strong>in</strong>g a top-load<strong>in</strong>g dilution<br />

refrigerator with a base temperature <strong>of</strong> 17 mK and a<br />

superconduct<strong>in</strong>g solenoid provid<strong>in</strong>g a field <strong>of</strong> 13.6 T at 4.2<br />

K. The field modulation method <strong>of</strong> <strong>de</strong>tection was used at<br />

modulation frequencies <strong>in</strong> <strong>the</strong> range 1–20 Hz. Some <strong>of</strong> <strong>the</strong><br />

experiments were performed <strong>in</strong> a 60 T pulsed magnet system<br />

at temperatures down to 1.2 K. The s<strong>in</strong>gle crystal samples<br />

used have each been <strong>de</strong>scribed <strong>in</strong> earlier work. 3,8 Details <strong>of</strong><br />

<strong>the</strong> properties and bandstructures <strong>of</strong> <strong>the</strong>se materials can be<br />

found <strong>in</strong> <strong>the</strong>se articles and references <strong>the</strong>re<strong>in</strong>. Before we<br />

present <strong>the</strong> experimental results <strong>in</strong> <strong>the</strong> next section we discuss<br />

some <strong>of</strong> <strong>the</strong> experimental issues perta<strong>in</strong><strong>in</strong>g to <strong>the</strong> observation<br />

<strong>of</strong> <strong>the</strong> dHvA <strong>effect</strong> <strong>in</strong> <strong>the</strong> vortex state <strong>of</strong> a superconductor.<br />

A number <strong>of</strong> techniques are used for <strong>the</strong> <strong>de</strong>tection <strong>of</strong><br />

quantum oscillations <strong>in</strong> metals; <strong>the</strong>se <strong>in</strong>clu<strong>de</strong> field modulation,<br />

pulsed techniques, and torque magnetometry. Magneto<strong>the</strong>rmal<br />

oscillations were <strong>in</strong>itially <strong>de</strong>tected by a field modulation<br />

technique, while dHvA magnetization oscillations<br />

have been <strong>de</strong>tected both by field modulation and pulsed field<br />

methods. Most <strong>of</strong> <strong>the</strong> measurements presented <strong>in</strong> this paper<br />

were ma<strong>de</strong> us<strong>in</strong>g a field modulation technique <strong>in</strong> which an<br />

oscillatory field b(t)b 0 cos(t) is superimposed parallel to<br />

a ‘‘quasistatic’’ field B 0 which <strong>in</strong>creases or <strong>de</strong>creases<br />

slowly (Ḃ 0 b 0 ) at a constant rate. Below we consi<strong>de</strong>r<br />

what <strong>effect</strong> <strong>the</strong> formation <strong>of</strong> <strong>the</strong> vortex state has on measurements<br />

performed <strong>in</strong> this way.<br />

A. dHvA measurements <strong>in</strong> <strong>the</strong> presence <strong>of</strong> p<strong>in</strong>n<strong>in</strong>g<br />

In real superconductors flux l<strong>in</strong>es are p<strong>in</strong>ned by <strong>in</strong>homogeneities<br />

<strong>in</strong> <strong>the</strong> material, e.g., dislocations, vacancies, and<br />

gra<strong>in</strong> boundaries. The p<strong>in</strong>n<strong>in</strong>g <strong>of</strong> flux l<strong>in</strong>es has been discussed<br />

extensively. 54 P<strong>in</strong>n<strong>in</strong>g has a number <strong>of</strong> consequences<br />

concern<strong>in</strong>g <strong>the</strong> present measurements. 1 The magnetization<br />

M(B) and <strong>the</strong> field distribution with<strong>in</strong> <strong>the</strong> superconductor<br />

B(r) are history <strong>de</strong>pen<strong>de</strong>nt and M displays a hysteresis loop<br />

when <strong>the</strong> applied field is cycled. 2 The dHvA amplitu<strong>de</strong><br />

will be <strong>de</strong>creased because <strong>of</strong> <strong>the</strong> variation <strong>of</strong> <strong>the</strong> magnetic<br />

field over <strong>the</strong> sample ‘‘phase smear<strong>in</strong>g’’ and <strong>the</strong> partial<br />

penetration <strong>of</strong> <strong>the</strong> modulation field <strong>in</strong>to <strong>the</strong> sample. In <strong>the</strong><br />

follow<strong>in</strong>g section we use a Bean mo<strong>de</strong>l analysis to estimate<br />

<strong>the</strong> <strong>effect</strong> <strong>of</strong> p<strong>in</strong>n<strong>in</strong>g on our dHvA measurements.<br />

1. ac magnetic response <strong>in</strong> <strong>the</strong> mixed state<br />

A quantitative picture <strong>of</strong> <strong>the</strong> <strong>effect</strong> <strong>of</strong> p<strong>in</strong>n<strong>in</strong>g is affor<strong>de</strong>d<br />

by <strong>the</strong> Bean mo<strong>de</strong>l. 35,55 In its orig<strong>in</strong>al version, this mo<strong>de</strong>l<br />

assumes a B-<strong>in</strong><strong>de</strong>pen<strong>de</strong>nt critical current <strong>de</strong>nsity J c . We<br />

consi<strong>de</strong>r <strong>the</strong> response <strong>of</strong> a flat superconduct<strong>in</strong>g slab to a low<br />

frequency ac field superimposed on a constant field, B a (t)<br />

B 0 b 0 cos(t). The applied field B a is assumed to be<br />

along <strong>the</strong> z direction and <strong>the</strong> th<strong>in</strong> dimension <strong>of</strong> <strong>the</strong> slab is<br />

along x. The Maxwell equation curl(B) 0 J <strong>the</strong>n yields<br />

B z /x 0 J y . If <strong>the</strong> applied field is <strong>in</strong>creased from zero<br />

to B a B 0 b 0 , <strong>the</strong> result<strong>in</strong>g field distributions <strong>in</strong>si<strong>de</strong> <strong>the</strong><br />

superconductor are shown <strong>in</strong> Fig. 4a, where B 1 2 0 J c a.<br />

Here we have consi<strong>de</strong>red three separate regimes <strong>de</strong>pend<strong>in</strong>g<br />

on <strong>the</strong> relative magnitu<strong>de</strong> <strong>of</strong> b 0 and B . Upon <strong>de</strong>creas<strong>in</strong>g <strong>the</strong><br />

applied field to B 0 b 0 <strong>the</strong> result<strong>in</strong>g field pr<strong>of</strong>iles are shown<br />

<strong>in</strong> Fig. 4b. The average fields BB(x) dx/dx <strong>in</strong> each<br />

case can easily be calculated; <strong>the</strong>se are<br />

B ↑ B 0 b 0 B /2<br />

B ↓ B 0 b 0 B /2b 0 2 /B for b 0B*,<br />

B ↑ B 0 b 0 B /2<br />

B ↓ B 0 b 0 B /2<br />

for b 0 B , 21<br />

B ↑ B 0 b 0<br />

B ↓ B 0 b 0 for b 0B .<br />

Note that for b 0 B <strong>the</strong> <strong>effect</strong> <strong>of</strong> p<strong>in</strong>n<strong>in</strong>g is m<strong>in</strong>imal and <strong>the</strong><br />

result<strong>in</strong>g field distribution homogeneous.<br />

The hysteresis loops obta<strong>in</strong>ed <strong>in</strong> each case are shown <strong>in</strong><br />

Fig. 4c, from which it is observed that <strong>the</strong> modulation field<br />

<strong>in</strong>si<strong>de</strong> <strong>the</strong> superconductor <strong>de</strong>pends critically on <strong>the</strong> relative<br />

magnitu<strong>de</strong>s <strong>of</strong> b 0 and B , and <strong>the</strong>refore on <strong>the</strong> magnetization<br />

or critical current J c ) and <strong>the</strong> geometry <strong>of</strong> <strong>the</strong> sample. For a<br />

real superconductor <strong>the</strong> critical current J c is not B <strong>in</strong><strong>de</strong>pen<strong>de</strong>nt<br />

as assumed <strong>in</strong> <strong>the</strong> Bean mo<strong>de</strong>l and consequently <strong>the</strong><br />

magnitu<strong>de</strong> <strong>of</strong> <strong>the</strong> hysteresis will change as a function <strong>of</strong><br />

magnetic field. This will result <strong>in</strong> an average modulation<br />

field <strong>in</strong>si<strong>de</strong> <strong>the</strong> superconductor which is B <strong>de</strong>pen<strong>de</strong>nt and<br />

affects <strong>the</strong> measured amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> dHvA oscillations.<br />

We have measured <strong>the</strong> hysteresis loops generated by <strong>the</strong><br />

modulation field for <strong>the</strong> NbSe 2 sample used <strong>in</strong> <strong>the</strong> dHvA<br />

experiments. Figure 5 shows a collection <strong>of</strong> hysteresis loops<br />

measured at several different values <strong>of</strong> <strong>the</strong> constant ma<strong>in</strong><br />

magnetic field B 0 . In or<strong>de</strong>r to <strong>in</strong>tensify <strong>the</strong> <strong>effect</strong> <strong>of</strong> p<strong>in</strong>n<strong>in</strong>g<br />

<strong>the</strong> modulation amplitu<strong>de</strong> was set at b 0 2 mT which is<br />

about 25 times smaller than <strong>the</strong> modulation amplitu<strong>de</strong> used<br />

<strong>in</strong> <strong>the</strong> dHvA experiments. The hysteresis loops were mea-


11 704 T. J. B. M. JANSSEN et al.<br />

57<br />

FIG. 4. Field pr<strong>of</strong>iles for a flat superconduct<strong>in</strong>g slab accord<strong>in</strong>g<br />

to <strong>the</strong> Bean mo<strong>de</strong>l. The magnetic field is <strong>in</strong>creased from zero to<br />

B a B 0 b 0 giv<strong>in</strong>g rise to <strong>the</strong> pr<strong>of</strong>iles shown <strong>in</strong> a accord<strong>in</strong>g to <strong>the</strong><br />

relative magnitu<strong>de</strong>s <strong>of</strong> b 0 and B . Upon <strong>de</strong>creas<strong>in</strong>g <strong>the</strong> field by 2b 0<br />

<strong>the</strong> range <strong>of</strong> <strong>the</strong> modulation field, <strong>the</strong> pr<strong>of</strong>iles <strong>in</strong> b are obta<strong>in</strong>ed.<br />

c Calculated hysteresis loops produced by <strong>the</strong> modulat<strong>in</strong>g magnetic<br />

field b(t)B a (t)B 0 . The vertical axis is B(t)B(t)<br />

B 0 which is proportional to <strong>the</strong> magnetization. F<strong>in</strong>ally, <strong>the</strong> balanced<br />

response a second coil is used to subtract <strong>the</strong> field <strong>in</strong> <strong>the</strong><br />

absence <strong>of</strong> sample is shown <strong>in</strong> d.<br />

sured with <strong>the</strong> pick-up coils balanced to give zero response<br />

<strong>in</strong> <strong>the</strong> normal state just above B c2 , i.e., <strong>the</strong> normal state<br />

response M(B) is subtracted. The response <strong>in</strong> <strong>the</strong> normal<br />

metallic state is similar to <strong>the</strong> case <strong>de</strong>picted <strong>in</strong> Fig. 4c for<br />

b 0 B . Therefore, <strong>in</strong> or<strong>de</strong>r to compare <strong>the</strong> measured hysteresis<br />

loops <strong>in</strong> Fig. 5 with <strong>the</strong> calculated loops <strong>in</strong> Fig. 4, we<br />

must subtract this normal state response from <strong>the</strong> responses<br />

<strong>in</strong> Fig. 4c. The height <strong>of</strong> <strong>the</strong> hysteresis loops <strong>in</strong> Fig. 4d<br />

will <strong>the</strong>n be given by 2b 0 b 0 2 /B for b 0 B , B for b 0<br />

B , and zero for b 0 B .<br />

The height <strong>of</strong> <strong>the</strong> hysteresis loops can also be obta<strong>in</strong>ed by<br />

measur<strong>in</strong>g <strong>the</strong> ac response at <strong>the</strong> fundamental <strong>of</strong> <strong>the</strong> modulation<br />

frequency, which is shown <strong>in</strong> Fig. 6, giv<strong>in</strong>g a qualitative<br />

measure <strong>of</strong> B as a function <strong>of</strong> magnetic field. The signal<br />

also conta<strong>in</strong>s a contribution <strong>of</strong> <strong>the</strong> background<br />

susceptibility and is thus not directly proportional to B and<br />

J c . For illustration <strong>the</strong> magnetic field <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> J c is<br />

shown schematically <strong>in</strong> <strong>the</strong> <strong>in</strong>set <strong>of</strong> Fig. 6.<br />

Figure 6 suggests that <strong>the</strong> response <strong>of</strong> <strong>the</strong> flux lattice to a<br />

FIG. 5. Measured hysteresis loops at several different magnetic<br />

fields for <strong>the</strong> NbSe 2 sample. The x axis is obta<strong>in</strong>ed by time <strong>in</strong>tegrat<strong>in</strong>g<br />

<strong>the</strong> signal from one half <strong>of</strong> <strong>the</strong> balanced pick-up coil and is<br />

proportional to <strong>the</strong> modulation field b(t)b 0 cost with b 0 2mT<br />

and f 4.8 Hz. In <strong>the</strong> dHvA experiments b 0 50 mT. The y axis<br />

is obta<strong>in</strong>ed by time <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> signal from <strong>the</strong> total balanced<br />

pick-up coil and is proportional to B(t) i.e., <strong>the</strong> magnetization.<br />

The pick-up coils were electronically balanced, to give zero response,<br />

<strong>in</strong> <strong>the</strong> normal metallic state at 13.5 T just above B c2 .<br />

modulation field can be split <strong>in</strong>to three different regimes.<br />

The superconduct<strong>in</strong>g transition occurs at a field <strong>of</strong> 13.3 T,<br />

as <strong>in</strong>dicated by <strong>the</strong> onset <strong>of</strong> <strong>the</strong> so-called ‘‘peak <strong>effect</strong>’’ region<br />

I <strong>in</strong> Fig. 6. The peak <strong>effect</strong> which stretches from<br />

13.3 down to 11.5 T is due to p<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> vortices <strong>in</strong><br />

a field regime where <strong>the</strong> flux lattice is s<strong>of</strong>t and thus able to<br />

distort easily. 56,57 From a comparison <strong>of</strong> <strong>the</strong> measured hysteresis<br />

loops <strong>in</strong> Fig. 5 <strong>in</strong> <strong>the</strong> peak <strong>effect</strong> region with <strong>the</strong><br />

calculated loops <strong>in</strong> Fig. 4d, we can conclu<strong>de</strong> that for this<br />

regime <strong>the</strong> response is similar to <strong>the</strong> situation <strong>de</strong>picted for<br />

b 0 B . For fields just below <strong>the</strong> peak <strong>effect</strong> region <strong>the</strong> elastic<br />

constants <strong>of</strong> <strong>the</strong> flux lattice <strong>de</strong>crease as <strong>the</strong> vortex l<strong>in</strong>es<br />

become more wi<strong>de</strong>ly spaced and <strong>in</strong>teractions reduce and <strong>the</strong><br />

average <strong>effect</strong> <strong>of</strong> <strong>the</strong> p<strong>in</strong>n<strong>in</strong>g centers is reduced region II<br />

<strong>in</strong> Fig. 6. This region stretches from 11.5 down to 4 T,<br />

which corresponds to <strong>the</strong> case for b 0 B <strong>in</strong> Fig. 4d. In<strong>the</strong><br />

low field limit <strong>the</strong> number <strong>of</strong> vortices is small and so <strong>the</strong><br />

<strong>in</strong>tervortex spac<strong>in</strong>g is necessarily large region III <strong>in</strong> Fig.<br />

6. This means that <strong>the</strong> elastic constants <strong>of</strong> <strong>the</strong> flux lattice are<br />

small and <strong>the</strong> flux lattice can be easily distorted near p<strong>in</strong>n<strong>in</strong>g<br />

sites. From compar<strong>in</strong>g <strong>the</strong> measured hysteresis loop at 1 T,<br />

with <strong>the</strong> calculated loop shown <strong>in</strong> Fig. 4d, we conclu<strong>de</strong> that<br />

for <strong>the</strong> low field regime b 0 B .<br />

2. <strong>Quantitative</strong> estimation <strong>of</strong> <strong>the</strong> attenuation due to p<strong>in</strong>n<strong>in</strong>g<br />

In <strong>the</strong> present study, we were unable to record dHvA<br />

oscillations <strong>in</strong> <strong>the</strong> peak <strong>effect</strong> region just below B c2 due to


57 QUANTITATIVE INVESTIGATION OF THE <strong>de</strong> HAAS- . . .<br />

11 705<br />

f B 0 ,a r ,b r ,c r ,,,<br />

r1<br />

2<br />

a r exp rb r 1 B 0<br />

1 B i<br />

s<strong>in</strong> 2r F B 0<br />

1 2 c r<br />

B 0 B 0 2 .<br />

22<br />

FIG. 6. Measured ac response i.e., <strong>the</strong> signal at <strong>the</strong> fundamental<br />

<strong>of</strong> <strong>the</strong> modulation frequency as a function <strong>of</strong> magnetic field for<br />

NbSe 2 at a temperature <strong>of</strong> 20 mK with <strong>the</strong> magnetic field perpendicular<br />

to <strong>the</strong> crystal c axis. The normal-state ac response at 13.5 T<br />

has been subtracted. The signal amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> ac response corresponds<br />

to <strong>the</strong> height <strong>of</strong> <strong>the</strong> hysteresis loop as displayed <strong>in</strong> Fig. 4.<br />

The <strong>in</strong>set shows a schematic <strong>of</strong> <strong>the</strong> critical current versus magnetic<br />

field. The three <strong>in</strong>dicated regimes correspond to I peak <strong>effect</strong> region<br />

where p<strong>in</strong>n<strong>in</strong>g is strong, II region where p<strong>in</strong>n<strong>in</strong>g is weak, and<br />

III region where p<strong>in</strong>n<strong>in</strong>g <strong>in</strong>creases aga<strong>in</strong>.<br />

<strong>the</strong> rapid variation <strong>of</strong> <strong>the</strong> non-oscillatory component <strong>of</strong> <strong>the</strong><br />

magnetic response. It is unclear whe<strong>the</strong>r dHvA oscillations<br />

exist <strong>in</strong> this region <strong>in</strong> <strong>the</strong> materials un<strong>de</strong>r study. We note that<br />

Terashima et al. 16 have recently observed quantum oscillations<br />

through B c2 and <strong>the</strong> peak <strong>effect</strong> region <strong>in</strong> YNi 2 B 2 C and<br />

observed a reduction <strong>in</strong> amplitu<strong>de</strong> <strong>in</strong> this region possibly due<br />

to an <strong>in</strong>crease <strong>in</strong> p<strong>in</strong>n<strong>in</strong>g.<br />

The results obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> present work were collected <strong>in</strong><br />

<strong>the</strong> region <strong>of</strong> weak p<strong>in</strong>n<strong>in</strong>g II. It is clearly important to<br />

establish whe<strong>the</strong>r p<strong>in</strong>n<strong>in</strong>g results <strong>in</strong> a reduction <strong>of</strong> <strong>the</strong> observed<br />

dHvA signal <strong>in</strong> our measurements. As discussed <strong>in</strong><br />

Sec. IV A 1, <strong>the</strong> characteristic shape <strong>of</strong> <strong>the</strong> hysteresis loops<br />

<strong>in</strong> Fig. 5, allows <strong>the</strong> estimation <strong>of</strong> B . S<strong>in</strong>ce data was not<br />

collected <strong>in</strong> <strong>the</strong> peak <strong>effect</strong> region I, <strong>the</strong> loop collected at<br />

4.25 T corresponds to <strong>the</strong> worst case. We estimate B <br />

0.12 mT. The dHvA data presented later were collected<br />

with b50 mT; if bB <strong>the</strong>n B is <strong>the</strong> variation <strong>of</strong> B over<br />

<strong>the</strong> sample. Phase smear<strong>in</strong>g due a <strong>in</strong>homogeneous magnetic<br />

field whose distribution has a half width B lead to a damp<strong>in</strong>g<br />

factor R exp(2FB/B 0 ). Us<strong>in</strong>g values for NbSe 2 ,<br />

F144 T, B 0 4.25 T, and assum<strong>in</strong>g BB , gives R <br />

0.97, an or<strong>de</strong>r magnitu<strong>de</strong> less than <strong>the</strong> observed attenuation.<br />

We conclu<strong>de</strong> that flux p<strong>in</strong>n<strong>in</strong>g <strong>effect</strong>s cannot expla<strong>in</strong><br />

<strong>the</strong> amplitu<strong>de</strong> reduction <strong>in</strong> dHvA amplitu<strong>de</strong> observed <strong>in</strong> <strong>the</strong><br />

mixed state.<br />

V. EXPERIMENTAL RESULTS<br />

A. Determ<strong>in</strong>ation <strong>of</strong> dHvA amplitu<strong>de</strong><br />

It is essential to have a reliable method <strong>of</strong> <strong>de</strong>term<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> oscillations as a function <strong>of</strong> magnetic field<br />

with an estimate <strong>of</strong> <strong>the</strong> error for each po<strong>in</strong>t. To achieve this<br />

we have chosen to fit a general form <strong>of</strong> <strong>the</strong> LK expression to<br />

<strong>the</strong> data us<strong>in</strong>g <strong>the</strong> nonl<strong>in</strong>ear Levenberg-Marquardt method. 58<br />

We also <strong>in</strong>clu<strong>de</strong> higher-or<strong>de</strong>r harmonics and impose a quadratic<br />

polynomial function for <strong>the</strong> background magnetization.<br />

The fitt<strong>in</strong>g function is given by<br />

The data are split up <strong>in</strong>to equal <strong>in</strong>tervals <strong>in</strong> 1/B 0 <strong>of</strong> a length<br />

correspond<strong>in</strong>g to 1 1 2 oscillations <strong>of</strong> <strong>the</strong> fundamental frequency<br />

and center 1/B i . In this way it is possible to extract<br />

<strong>the</strong> field-<strong>de</strong>pen<strong>de</strong>nt amplitu<strong>de</strong> a 1 (B i ) <strong>of</strong> <strong>the</strong> fundamental (r<br />

1) dHvA frequency. We choose not to impose any fur<strong>the</strong>r<br />

constra<strong>in</strong>ts on <strong>the</strong> fitt<strong>in</strong>g procedure to ensure statistical <strong>in</strong><strong>de</strong>pen<strong>de</strong>nce<br />

between data po<strong>in</strong>ts. After <strong>the</strong> set <strong>of</strong> po<strong>in</strong>ts<br />

a 1 (B i ) have been corrected for <strong>the</strong> <strong>effect</strong> <strong>of</strong> field<br />

modulation, 59 <strong>the</strong>y may be compared with Eq. 2. We first<br />

use data with B i B c2 to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> normal state scatter<strong>in</strong>g<br />

rate 1 0 and <strong>the</strong>n R s (B i ) is obta<strong>in</strong>ed by compar<strong>in</strong>g <strong>the</strong><br />

data collected at fields B i B c2 with Eq. 2.<br />

B. NbSe 2<br />

The layered material NbSe 2 is a convenient material for<br />

study<strong>in</strong>g <strong>the</strong> quantum oscillations <strong>in</strong> <strong>the</strong> vortex state. It has a<br />

mo<strong>de</strong>st T c (7.2 K and B c2 12.7 T for B 0 parallel to <strong>the</strong><br />

layers parallel to <strong>the</strong> a axis and 4.2 T for B 0 perpendicular<br />

to <strong>the</strong> layers parallel to <strong>the</strong> c axis. This implies that for<br />

orientations <strong>of</strong> <strong>the</strong> magnetic field away from <strong>the</strong> a axis a<br />

reasonable range <strong>of</strong> normal-state data can be obta<strong>in</strong>ed <strong>in</strong> our<br />

experimental set up <strong>in</strong> one s<strong>in</strong>gle magnetic field sweep. As<br />

we shall discuss below <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> normal-state data is<br />

<strong>of</strong> paramount importance for <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> damp<strong>in</strong>g<br />

mechanisms <strong>in</strong> <strong>the</strong> vortex state. As discussed above, although<br />

NbSe 2 is a layered material with strong anisotropic<br />

properties its Fermi surface is three dimensional.<br />

Figure 7a shows <strong>the</strong> dHvA signal <strong>in</strong> NbSe 2 for <strong>the</strong> field<br />

aligned 68.6° from <strong>the</strong> c axis. The Fourier spectrum gives<br />

F155 T and <strong>the</strong> <strong>effect</strong>ive mass was <strong>de</strong>term<strong>in</strong>ed from <strong>the</strong><br />

temperature <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> <strong>the</strong> dHvA amplitu<strong>de</strong> as m <br />

0.610.01 m e . From left to right three regimes can be<br />

observed <strong>in</strong> Fig. 7a; normal state, peak-<strong>effect</strong> region, and<br />

vortex state. Figure 7b shows <strong>the</strong> field <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> <strong>the</strong><br />

amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> first harmonic a 1 (B 0 ) <strong>de</strong>term<strong>in</strong>ed by <strong>the</strong><br />

procedure <strong>de</strong>scribed <strong>in</strong> Sec. V A. Fitt<strong>in</strong>g <strong>the</strong> data for B 0<br />

B c2 yields a normal-state damp<strong>in</strong>g 0 1 1.310.02 meV<br />

Fig. 7c. This value was <strong>the</strong>n used to <strong>de</strong>term<strong>in</strong>e R s (B i )<br />

which are shown <strong>in</strong> Fig. 8.<br />

1. Comparison with <strong>the</strong>ory<br />

We can now proceed to compare R s (B 0 ) with <strong>the</strong> different<br />

<strong>the</strong>oretical mo<strong>de</strong>ls given <strong>in</strong> Sec. III B. In most mo<strong>de</strong>ls <strong>the</strong><br />

product <strong>of</strong> <strong>the</strong> mass and gap parameter appears directly as<br />

m b (0) <strong>in</strong> <strong>the</strong> R s (B 0 ) damp<strong>in</strong>g equations or <strong>in</strong>directly as<br />

/(0) <strong>in</strong> <strong>the</strong> DT mo<strong>de</strong>l. Therefore, as a first step we will<br />

obta<strong>in</strong> <strong>the</strong> product m b (0) by fitt<strong>in</strong>g each mo<strong>de</strong>l to <strong>the</strong> measured<br />

R s (B 0 ) and allow<strong>in</strong>g m b (0) to vary. Then, <strong>in</strong> <strong>the</strong><br />

next step we will discuss <strong>the</strong> various methods for <strong>de</strong>term<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> band mass and calculate <strong>the</strong> result<strong>in</strong>g superconduct<strong>in</strong>g<br />

gap parameters.


11 706 T. J. B. M. JANSSEN et al.<br />

57<br />

FIG. 8. R s (B i ) for NbSe 2 <strong>de</strong>term<strong>in</strong>ed from <strong>the</strong> data shown <strong>in</strong><br />

Fig. 7. Filled squares represent normal-state data and open squares<br />

vortex state data. The predictions <strong>of</strong> <strong>the</strong> <strong>the</strong>oretical mo<strong>de</strong>ls <strong>de</strong>scribed<br />

<strong>in</strong> <strong>the</strong> text are shown by i dashed l<strong>in</strong>es: mo<strong>de</strong>l predictions<br />

calculated us<strong>in</strong>g <strong>the</strong> literature value <strong>of</strong> <strong>the</strong> superconduct<strong>in</strong>g gap and<br />

band mass and ii solid l<strong>in</strong>es: mo<strong>de</strong>l predictions fitted to <strong>the</strong> data<br />

allow<strong>in</strong>g m b (0) to vary.<br />

FIG. 7. a dHvA oscillations <strong>in</strong> NbSe 2 for 68.6° between c<br />

axis and magnetic field, both above and below <strong>the</strong> critical field<br />

which itself is <strong>de</strong>pen<strong>de</strong>nt on <strong>the</strong> orientation <strong>in</strong> this anisotropic material.<br />

Trace was obta<strong>in</strong>ed by low frequency 5 Hzfield modulation<br />

method, at T20 mK. b Amplitu<strong>de</strong> a 1 (B i ) calculated us<strong>in</strong>g<br />

<strong>the</strong> procedure <strong>de</strong>scribed <strong>in</strong> Sec. V A and corrected for <strong>the</strong> <strong>effect</strong> <strong>of</strong><br />

field modulation. c Field <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> lna i (B i )s<strong>in</strong>h(X)B i 1/2 T 1 <br />

for <strong>the</strong> above data trace sometimes referred to as D<strong>in</strong>gle plot<br />

show<strong>in</strong>g <strong>the</strong> onset <strong>of</strong> an additional attenuation on pass<strong>in</strong>g from <strong>the</strong><br />

normal to <strong>the</strong> superconduct<strong>in</strong>g state at B c2 . The solid l<strong>in</strong>e is a fit to<br />

<strong>the</strong> data <strong>in</strong> <strong>the</strong> normal state.<br />

Figure 8 shows a comparison <strong>of</strong> our measured R s (B 0 )<br />

with four <strong>of</strong> <strong>the</strong> <strong>the</strong>oretical mo<strong>de</strong>ls. In each panel <strong>the</strong> solid<br />

l<strong>in</strong>e shows <strong>the</strong> result <strong>of</strong> fitt<strong>in</strong>g <strong>the</strong> mo<strong>de</strong>l to <strong>the</strong> measured<br />

R s (B 0 ) and allow<strong>in</strong>g m b (0) to vary. The fitted values <strong>of</strong><br />

m b (0) are collected <strong>in</strong> Table I. The dashed l<strong>in</strong>e shows <strong>the</strong><br />

results obta<strong>in</strong>ed us<strong>in</strong>g (0)1.1 meV, <strong>the</strong> literature value<br />

from <strong>in</strong>frared and Raman scatter<strong>in</strong>g experiments, 60,61 and<br />

m b 0.52 m e discussed below. From analyz<strong>in</strong>g many different<br />

data traces we f<strong>in</strong>d that it is important to collect data <strong>in</strong><br />

both <strong>the</strong> normal and superconduct<strong>in</strong>g states when compar<strong>in</strong>g<br />

with <strong>the</strong> <strong>the</strong>oretical mo<strong>de</strong>ls. This provi<strong>de</strong>s an accurate estimate<br />

<strong>of</strong> 1 0 and constra<strong>in</strong>s <strong>the</strong> amplitu<strong>de</strong> <strong>in</strong> <strong>the</strong> vortex state.<br />

In <strong>the</strong> last column <strong>of</strong> Table I <strong>the</strong> 2 / values <strong>of</strong> <strong>the</strong> fits are<br />

listed which are representative <strong>of</strong> <strong>the</strong> quality <strong>of</strong> <strong>the</strong> fit. From<br />

<strong>the</strong>se values and <strong>in</strong>spection <strong>of</strong> Fig. 8 we observe that <strong>the</strong><br />

MSWS <strong>the</strong>ory gives <strong>the</strong> best fit to <strong>the</strong> NbSe 2 data over a<br />

wi<strong>de</strong> field range. The MMG <strong>the</strong>ory can also provi<strong>de</strong> <strong>the</strong> right<br />

functional form, however, with a lesser quality than <strong>the</strong><br />

MSWS <strong>the</strong>ory.<br />

The third row <strong>in</strong> Table I gives results when us<strong>in</strong>g <strong>the</strong><br />

NMA mo<strong>de</strong>l Eq. 18 with <strong>the</strong> l<strong>in</strong>ear <strong>de</strong>pen<strong>de</strong>nce on <strong>the</strong><br />

gap parameter n 1/4 (0). The temperature and energy<br />

scales <strong>of</strong> our experiment suggest that we are <strong>in</strong> <strong>the</strong> appropriate<br />

regime for <strong>the</strong> l<strong>in</strong>ear behavior to apply (F 0 2k B T),<br />

however, from <strong>the</strong> 2 / value <strong>in</strong> Table I and Fig. 8 it is clear<br />

that <strong>the</strong> fit is very poor.<br />

When we use <strong>the</strong> quadratic <strong>de</strong>pen<strong>de</strong>nce on <strong>the</strong> gap parameter<br />

n 1/2 2 (0) better quality fits can be obta<strong>in</strong>ed. For<br />

all our data <strong>the</strong> quadratic equation generates better fits than<br />

<strong>the</strong> l<strong>in</strong>ear equation which appears to contradict with <strong>the</strong> conditions<br />

expla<strong>in</strong>ed <strong>in</strong> Sec. III B 5 and Ref. 53, which states<br />

that <strong>the</strong> l<strong>in</strong>ear equation should apply at low temperatures<br />

(1 K for NbSe 2 ) and <strong>the</strong> quadratic equation for higher<br />

temperatures.<br />

The limits <strong>of</strong> <strong>the</strong> DT mo<strong>de</strong>l are more complex see Eq.<br />

16 and <strong>the</strong> mo<strong>de</strong>l <strong>in</strong>volves one extra unknown parameter,<br />

<strong>the</strong> constant C <strong>in</strong> Eq. 13. This implies that this mo<strong>de</strong>l cannot<br />

be fitted over <strong>the</strong> entire range for which we have obta<strong>in</strong>ed<br />

data <strong>in</strong> <strong>the</strong> vortex state, which is partly responsible for<br />

<strong>the</strong> larger value <strong>of</strong> 2 /. In particular <strong>the</strong> region close to<br />

TABLE I. Results <strong>of</strong> fitt<strong>in</strong>g m b (0) us<strong>in</strong>g <strong>the</strong> different <strong>the</strong>oretical<br />

mo<strong>de</strong>ls to <strong>the</strong> experimental data for NbSe 2 with <strong>the</strong> magnetic<br />

field titled by 68.6° from <strong>the</strong> c-axis. The column labeled 2 /<br />

measures <strong>the</strong> quality <strong>of</strong> <strong>the</strong> fit.<br />

Mo<strong>de</strong>l m b (0) (m e meV 2 /<br />

MSWS Eq. 10 0.360.01 1.04<br />

MMG Eq. 12 0.060.01 1.62<br />

NMA Eq. 18 0.090.02 4.19<br />

DT Eq. 16 0.800.02 2.49


57 QUANTITATIVE INVESTIGATION OF THE <strong>de</strong> HAAS- . . .<br />

11 707<br />

TABLE II. Measured <strong>effect</strong>ive mass and calculated band mass<br />

obta<strong>in</strong>ed from <strong>the</strong> band structure calculation for NbSe 2 . The last<br />

column lists <strong>the</strong> mass-enhancement factor which is given by<br />

m /m b 1.<br />

m (m e ) m b (m e ) <br />

Corcoran Ref. 3 0.610.01 0.52 0.17<br />

B c2 , when (B 0 ) 0 1 , is not <strong>in</strong>clu<strong>de</strong>d. In our data analysis<br />

<strong>the</strong> extra parameter C was kept fixed.<br />

2. Band mass <strong>in</strong> NbSe 2<br />

The cyclotron mass measured from <strong>the</strong> temperature <strong>de</strong>pen<strong>de</strong>nce<br />

<strong>of</strong> <strong>the</strong> dHvA amplitu<strong>de</strong> yields an <strong>effect</strong>ive mass<br />

which <strong>in</strong>clu<strong>de</strong>s <strong>the</strong> <strong>effect</strong>s <strong>of</strong> electron-electron and electronphonon<br />

<strong>in</strong>teractions. However, <strong>the</strong> unrenormalized or band<br />

mass appears to enter <strong>in</strong>to <strong>the</strong> <strong>the</strong>oretical mo<strong>de</strong>ls <strong>de</strong>scribed <strong>in</strong><br />

Sec. III B. A knowledge <strong>of</strong> <strong>the</strong> correct band mass is one <strong>of</strong><br />

<strong>the</strong> major uncerta<strong>in</strong>ties <strong>in</strong> our comparison between <strong>the</strong>ory<br />

and experiment.<br />

Corcoran et al. 3 have performed a self-consistent band<br />

structure calculation for NbSe 2 <strong>in</strong> <strong>the</strong> normal noncharge<strong>de</strong>nsity-wave<br />

state us<strong>in</strong>g a full potential l<strong>in</strong>earized augmented<br />

plane wave FLAPW method. From this calculation<br />

a band mass 62 <strong>of</strong> m b 0.52 m e was obta<strong>in</strong>ed when <strong>the</strong> magnetic<br />

field is aligned at 70° from <strong>the</strong> c axis, <strong>in</strong>dicat<strong>in</strong>g a mass<br />

enhancement factor (m /m b 1), 0.17 See Table<br />

II. In <strong>the</strong> case <strong>of</strong> V 3 Si, no <strong>de</strong>tailed Fermi surface calculations<br />

are available, we <strong>the</strong>refore compared <strong>the</strong> calculated<br />

<strong>de</strong>nsity <strong>of</strong> states with <strong>the</strong> measured specific heat coefficient.<br />

Apply<strong>in</strong>g this method to NbSe 2 , with exp 18.5<br />

mJ mol 1 K 2 Ref. 63 and calc 6.7 mJ mol 1 K 2<br />

Ref. 3, suggests an overall mass-enhancement factor <br />

1.77.<br />

3. Superconduct<strong>in</strong>g gap parameter <strong>in</strong> NbSe 2<br />

With <strong>the</strong> above value <strong>of</strong> m b and <strong>the</strong> fitted values <strong>of</strong><br />

m b (0) for <strong>the</strong> different <strong>the</strong>oretical mo<strong>de</strong>ls listed <strong>in</strong> Table I<br />

we can obta<strong>in</strong> <strong>the</strong> superconduct<strong>in</strong>g gap parameter <strong>in</strong> each<br />

case which are listed <strong>in</strong> Table III. In <strong>the</strong> second row <strong>of</strong> Table<br />

III we have <strong>in</strong>clu<strong>de</strong>d <strong>the</strong> superconduct<strong>in</strong>g gap parameters<br />

when <strong>the</strong> measured <strong>effect</strong>ive mass is used. We note that<br />

<strong>the</strong>se values are consistent with <strong>the</strong> values published <strong>in</strong> earlier<br />

work. 3 The formation <strong>of</strong> <strong>the</strong> low-temperature charge<strong>de</strong>nsity<br />

wave is not <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> <strong>the</strong> band structure calculations<br />

and likely to alter m b . As a result <strong>the</strong> values <strong>of</strong> (0)<br />

would change proportionally for each mo<strong>de</strong>l.<br />

From Table III we observe that <strong>the</strong> MMG mo<strong>de</strong>l grossly<br />

overestimates <strong>the</strong> attenuation <strong>of</strong> <strong>the</strong> oscillations <strong>in</strong> <strong>the</strong> mixed<br />

state. Similarly <strong>the</strong> NMA mo<strong>de</strong>l results <strong>in</strong> a value <strong>of</strong> (0)<br />

which fall well short <strong>of</strong> <strong>the</strong> literature value. The DT and<br />

MSWS mo<strong>de</strong>ls result <strong>in</strong> values <strong>of</strong> (0) which are closest to<br />

<strong>the</strong> literature value <strong>of</strong> 1.1 meV.<br />

4. Orientation <strong>de</strong>pen<strong>de</strong>nce study<br />

A common feature <strong>of</strong> all <strong>of</strong> <strong>the</strong> <strong>the</strong>oretical mo<strong>de</strong>ls <strong>de</strong>scribed<br />

above is that <strong>the</strong> attenuation <strong>of</strong> <strong>the</strong> dHvA oscillations<br />

<strong>in</strong> <strong>the</strong> mixed state is a function <strong>of</strong> <strong>the</strong> superconduct<strong>in</strong>g gap<br />

(0). Measurements performed as a function <strong>of</strong> orientation<br />

() can <strong>the</strong>n <strong>in</strong> pr<strong>in</strong>ciple yield <strong>the</strong> orientation <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong><br />

<strong>the</strong> orbitally averaged superconduct<strong>in</strong>g gap. We note that <strong>the</strong><br />

<strong>de</strong>term<strong>in</strong>ation <strong>of</strong> <strong>the</strong> gap <strong>in</strong> this way is mo<strong>de</strong>l <strong>de</strong>pen<strong>de</strong>nt: <strong>in</strong><br />

or<strong>de</strong>r to be specific we use <strong>the</strong> MSWS mo<strong>de</strong>l which provi<strong>de</strong>s<br />

<strong>the</strong> best <strong>de</strong>scription <strong>of</strong> our NbSe 2 data. In or<strong>de</strong>r to <strong>de</strong>term<strong>in</strong>e<br />

<strong>the</strong> orientation <strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> <strong>the</strong> gap we need to know <strong>the</strong> <br />

<strong>de</strong>pen<strong>de</strong>nce <strong>of</strong> 1 0 and m b . Unfortunately, due to <strong>the</strong> large<br />

anisotropy <strong>of</strong> B c2 () we are unable to collect data <strong>in</strong> <strong>the</strong><br />

normal state for all orientations. The Fermi surface <strong>of</strong> NbSe 2<br />

is an oblate ellipsoid 3 with k c 0.05 Å and k a 0.338 Å.<br />

Figure 9 summarizes our results for NbSe 2 . The upper panel<br />

<strong>of</strong> Fig. 9 shows <strong>the</strong> mean free path l mfp () F 0 ().<br />

The solid l<strong>in</strong>e is a fit assum<strong>in</strong>g <strong>the</strong> mean free path has <strong>the</strong><br />

same symmetry as <strong>the</strong> Fermi surface expressed by l mfp ()<br />

l mfp (0)/1cos 2 () which is used <strong>in</strong> our computation<br />

<strong>of</strong> (0). The middle panel <strong>of</strong> Fig. 9 shows m (), <strong>the</strong> solid<br />

l<strong>in</strong>e is a fit assum<strong>in</strong>g m is proportional to <strong>the</strong> Fermi surface<br />

cross sectional area. We fur<strong>the</strong>r assume that <strong>the</strong> renormalization<br />

parameter relat<strong>in</strong>g m and m b , ()0.17. Fitt<strong>in</strong>g <strong>the</strong><br />

MSWS mo<strong>de</strong>l for each orientation to <strong>the</strong> measured R s (B)<br />

<strong>the</strong>n yields <strong>the</strong> gap variation <strong>in</strong> <strong>the</strong> lower panel <strong>of</strong> Fig. 9. The<br />

large errors <strong>in</strong> <strong>the</strong> f<strong>in</strong>al po<strong>in</strong>ts are due to <strong>the</strong> uncerta<strong>in</strong>ties <strong>in</strong><br />

<strong>the</strong> normal state scatter<strong>in</strong>g rate, band mass and Fermi velocity.<br />

Our results are not <strong>in</strong>consistent with a constant gap, however<br />

<strong>the</strong>re may be an <strong>in</strong>crease <strong>in</strong> (0) for larger .<br />

Recently, Sanchez et al. 64 have performed specific heat<br />

measurements on NbSe 2 <strong>in</strong> high magnetic fields up to 12 T<br />

and found that <strong>the</strong>ir results could only be expla<strong>in</strong>ed by assum<strong>in</strong>g<br />

an anisotropic gap parameter given by<br />

0 0 01 2 cos 2 .<br />

23<br />

is <strong>the</strong> angle between <strong>the</strong> wave vector and <strong>the</strong> c axis,<br />

0 (0)1.6 meV and 2 0.6. In or<strong>de</strong>r to compare this<br />

gap with our dHvA results, we have to calculate <strong>the</strong> orbital<br />

average <strong>of</strong> (0) with respect to our extremal Fermi surface<br />

orbit, which can be <strong>de</strong>f<strong>in</strong>ed as 28<br />

TABLE III. Superconduct<strong>in</strong>g gap parameters for NbSe 2 obta<strong>in</strong>ed from m b (0) for <strong>the</strong> different <strong>the</strong>oretical<br />

mo<strong>de</strong>ls <strong>in</strong> Table I and m b <strong>in</strong> Table II. The last row lists <strong>the</strong> values for (0) when <strong>the</strong> experimentally<br />

measured <strong>effect</strong>ive mass is used.<br />

(0) meV<br />

m b (m e ) MSWS MMG NMA DT BCS<br />

Corcoran 0.52 0.690.02 0.120.02 0.170.04 1.500.04 1.1<br />

measured m 0.61 0.590.05 0.100.03 0.140.03 1.320.03 1.1


11 708 T. J. B. M. JANSSEN et al.<br />

57<br />

FIG. 9. a l mfp as a function <strong>of</strong> orientation. is <strong>the</strong> angle<br />

between <strong>the</strong> magnetic field and <strong>the</strong> a axis. The solid l<strong>in</strong>e is a fit<br />

assum<strong>in</strong>g a simple anisotropic form for <strong>the</strong> impurity scatter<strong>in</strong>g see<br />

text. b The measured <strong>effect</strong>ive mass versus . The open square is<br />

<strong>the</strong> result obta<strong>in</strong>ed <strong>in</strong> this work, <strong>the</strong> filled triangles are taken from<br />

Ref. 5. The solid l<strong>in</strong>e is a fit assum<strong>in</strong>g m F. c Orientation <strong>de</strong>pen<strong>de</strong>nce<br />

<strong>of</strong> <strong>the</strong> energy gap (0) <strong>de</strong>rived from <strong>the</strong> MSWS mo<strong>de</strong>l<br />

Eq. 10. The solid l<strong>in</strong>e is <strong>the</strong> result from Eq. 24.<br />

2 0dt 2 0/ F dk<br />

2 0<br />

<br />

, 24<br />

dt 1/ F dk<br />

which is shown as <strong>the</strong> solid l<strong>in</strong>e <strong>in</strong> Fig. 9c. Note that we<br />

have used 2 <strong>in</strong> this calculation as this is <strong>the</strong> quantity which<br />

enters <strong>in</strong> Eq. 10. From <strong>the</strong> comparison <strong>of</strong> our values <strong>of</strong><br />

(0) with those calculated from <strong>the</strong> result by Sanchez<br />

et al. 64 it is difficult to discrim<strong>in</strong>ate between ei<strong>the</strong>r an anisotropic<br />

or constant gap over <strong>the</strong> Fermi surface. The recent<br />

<strong>in</strong>creases <strong>in</strong> <strong>the</strong> upper field atta<strong>in</strong>able us<strong>in</strong>g superconduct<strong>in</strong>g<br />

magnets will allow more discrim<strong>in</strong>at<strong>in</strong>g results to be obta<strong>in</strong>ed<br />

<strong>in</strong> future.<br />

C. V 3 Si<br />

FIG. 10. a dHvA oscillations <strong>in</strong> V 3 Si at 20 mK with <strong>the</strong> magnetic<br />

field parallel to 001. b Amplitu<strong>de</strong> a 1 (B i ) calculated us<strong>in</strong>g<br />

<strong>the</strong> procedure <strong>de</strong>scribed <strong>in</strong> Sec. V A and corrected for <strong>the</strong> <strong>effect</strong> <strong>of</strong><br />

field modulation. c Amplitu<strong>de</strong> plot similar to Fig. 7.<br />

The experiments on V 3 Si were performed us<strong>in</strong>g <strong>the</strong> same<br />

s<strong>in</strong>gle crystal used <strong>in</strong> <strong>the</strong> pulsed field experiments <strong>of</strong> Corcoran<br />

et al. 8 Details can be found <strong>the</strong>re. A series <strong>of</strong> dHvA<br />

oscillations for <strong>the</strong> magnetic field parallel to 001 and T<br />

20 mK are shown <strong>in</strong> Fig. 10, toge<strong>the</strong>r with <strong>the</strong> Fourier<br />

transform <strong>of</strong> <strong>the</strong> signal which gives a dom<strong>in</strong>ant frequency<br />

component at F15605 T correspond<strong>in</strong>g to approximately<br />

10% <strong>of</strong> <strong>the</strong> Brillou<strong>in</strong> zone. Exam<strong>in</strong>ation <strong>of</strong> <strong>the</strong> signal<br />

<strong>in</strong>dicates that a small beat<strong>in</strong>g envelope is present, which is<br />

supported by <strong>the</strong> spectral analysis giv<strong>in</strong>g two low amplitu<strong>de</strong><br />

peaks at 1300 and 1410 T. The renormalized quasiparticle<br />

masses <strong>of</strong> <strong>the</strong>se orbits were <strong>de</strong>term<strong>in</strong>ed as 1.520.03 m e for<br />

F1560 T, 1.30.3 m e for F1300 T, and 1.70.4 m e for<br />

F1410 T. In this work we will concentrate on <strong>the</strong> ma<strong>in</strong><br />

frequency <strong>in</strong> <strong>the</strong> dHvA signal, although <strong>the</strong> two m<strong>in</strong>or frequencies<br />

were <strong>in</strong>clu<strong>de</strong>d <strong>in</strong> <strong>the</strong> fitt<strong>in</strong>g <strong>of</strong> <strong>the</strong> dHvA signal to<br />

<strong>de</strong>term<strong>in</strong>e <strong>the</strong> amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> ma<strong>in</strong> frequency. The calculated<br />

amplitu<strong>de</strong> po<strong>in</strong>ts a 1 (B i ) corrected for field modulation<br />

are shown <strong>in</strong> panel c <strong>of</strong> Fig. 10.<br />

The maximum field <strong>in</strong> our field modulation experiment is<br />

13.5 T which is consi<strong>de</strong>rably below B c2 <strong>of</strong> 18.5 T for V 3 Si.<br />

Therefore, we cannot apply <strong>the</strong> method used for NbSe 2 Sec.<br />

VB to compile <strong>the</strong> R s (B 0 ) values <strong>in</strong> <strong>the</strong> vortex state. Instead,<br />

we have analyzed data from a separate pulsed field<br />

experiment up to 25 T on <strong>the</strong> same crystal, yield<strong>in</strong>g a<br />

normal-state damp<strong>in</strong>g 0 1 1.22 meV. In addition, we<br />

have allowed for <strong>the</strong> different sensitivities <strong>in</strong> both experiments<br />

by match<strong>in</strong>g <strong>the</strong> amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> modulation field<br />

data to <strong>the</strong> pulsed field data at 13.5 T. The result<strong>in</strong>g R s (B 0 )<br />

values are plotted <strong>in</strong> Fig. 11 toge<strong>the</strong>r with <strong>the</strong> R s (B 0 ) values<br />

from <strong>the</strong> pulsed field experiment. For <strong>the</strong> pulsed field data<br />

we have checked that <strong>the</strong> amplitu<strong>de</strong> <strong>of</strong> <strong>the</strong> dHvA oscillations<br />

was not <strong>effect</strong>ed by heat<strong>in</strong>g as a result <strong>of</strong> <strong>the</strong> large dB/dt<br />

generated <strong>in</strong> such experiments. However, <strong>the</strong> sensitivity <strong>in</strong>


57 QUANTITATIVE INVESTIGATION OF THE <strong>de</strong> HAAS- . . .<br />

11 709<br />

TABLE IV. Results <strong>of</strong> fitt<strong>in</strong>g m b (0) us<strong>in</strong>g <strong>the</strong> different <strong>the</strong>oretical<br />

mo<strong>de</strong>ls for <strong>the</strong> 1560 T orbit <strong>in</strong> V 3 Si.<br />

Mo<strong>de</strong>l m b (0) (m e meV 2 /<br />

MSWS Eq. 10 6.160.23 5.7<br />

MMG Eq. 12 1.400.06 1.1<br />

NMA Eq. 18 6.600.35 1.3<br />

DT Eq. 16 4.050.12 1.2<br />

quality fit for V 3 Si over <strong>the</strong> entire field range. The NMA<br />

<strong>the</strong>ory gives a reasonable fit. F<strong>in</strong>ally, <strong>in</strong> <strong>the</strong> DT mo<strong>de</strong>l we<br />

have aga<strong>in</strong> kept <strong>the</strong> constant C <strong>in</strong> Eq. 13 fixed. In contrast<br />

to NbSe 2 , (B 0 ) is much larger for V 3 Si allow<strong>in</strong>g, <strong>in</strong> this<br />

case, <strong>the</strong> DT mo<strong>de</strong>l to be fitted to <strong>the</strong> entire range for which<br />

we have obta<strong>in</strong>ed data <strong>in</strong> <strong>the</strong> vortex state, result<strong>in</strong>g <strong>in</strong> a fairly<br />

good fit.<br />

FIG. 11. Experimentally <strong>de</strong>term<strong>in</strong>ed values <strong>of</strong> R s (B 0 ) for V 3 Si<br />

for B(001). In each panel <strong>the</strong> l<strong>in</strong>es are <strong>the</strong> predictions <strong>of</strong> <strong>the</strong><br />

<strong>the</strong>oretical mo<strong>de</strong>ls <strong>de</strong>scribed <strong>in</strong> text. Dashed l<strong>in</strong>es: mo<strong>de</strong>l predictions<br />

calculated us<strong>in</strong>g <strong>the</strong> literature value <strong>of</strong> <strong>the</strong> superconduct<strong>in</strong>g<br />

gap and band mass. Solid l<strong>in</strong>es: mo<strong>de</strong>l predictions fitted to <strong>the</strong> data<br />

allow<strong>in</strong>g m b (0) to vary.<br />

modulation field experiments is much larger than <strong>in</strong> pulsed<br />

field experiments result<strong>in</strong>g <strong>in</strong> larger errors for <strong>the</strong> R s (B 0 )<br />

values <strong>de</strong>rived from <strong>the</strong> latter.<br />

1. Comparison with <strong>the</strong>ory<br />

As for NbSe 2 we can compare R s (B 0 ) with <strong>the</strong> different<br />

<strong>the</strong>oretical mo<strong>de</strong>ls given <strong>in</strong> Sec. III B. Figure 11 shows <strong>the</strong><br />

comparison <strong>of</strong> R s (B 0 ) with <strong>the</strong> four <strong>the</strong>oretical mo<strong>de</strong>ls.<br />

Aga<strong>in</strong> <strong>in</strong> each panel <strong>the</strong> dashed l<strong>in</strong>es show <strong>the</strong> predictions <strong>of</strong><br />

<strong>the</strong> mo<strong>de</strong>ls us<strong>in</strong>g (0)2.6 meV, <strong>the</strong> literature value 65 for<br />

<strong>the</strong> superconduct<strong>in</strong>g gap and m b 0.9 m e discussed below.<br />

The solid l<strong>in</strong>es are <strong>the</strong> result <strong>of</strong> fitt<strong>in</strong>g each mo<strong>de</strong>l to R s (B 0 )<br />

and allow<strong>in</strong>g m b (0) to float. The results are shown <strong>in</strong><br />

Table IV.<br />

In contrast to <strong>the</strong> result for NbSe 2 , <strong>the</strong> MSWS <strong>the</strong>ory<br />

applied to V 3 Si gives a ra<strong>the</strong>r poor fit. In particular, <strong>the</strong><br />

mo<strong>de</strong>l does not fit <strong>the</strong> pulsed field data po<strong>in</strong>ts shown as<br />

filled squares <strong>in</strong> Fig. 11 above 13.5 T, although <strong>the</strong> fit<br />

through <strong>the</strong> data po<strong>in</strong>ts obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> modulation field experiment<br />

shown as open squares is much better. This could<br />

be caused by errors <strong>in</strong> match<strong>in</strong>g <strong>the</strong> data <strong>of</strong> two separate<br />

experiments, however, <strong>the</strong> o<strong>the</strong>r <strong>the</strong>oretical mo<strong>de</strong>ls do not<br />

appear to support this. The MMG <strong>the</strong>ory provi<strong>de</strong>s <strong>the</strong> best<br />

2. Band mass <strong>in</strong> V 3 Si<br />

In <strong>the</strong> case <strong>of</strong> V 3 Si no direct calculations <strong>of</strong> <strong>the</strong> band mass<br />

for specific Fermi surface orbits are available. However, a<br />

number <strong>of</strong> calculations <strong>of</strong> <strong>the</strong> <strong>de</strong>nsity <strong>of</strong> states have been<br />

reported 66–68 from which we can compute <strong>the</strong> l<strong>in</strong>ear specific<br />

heat coefficient. Compar<strong>in</strong>g <strong>the</strong>se with <strong>the</strong> measured l<strong>in</strong>ear<br />

specific heat coefficient 66 results <strong>in</strong> <strong>the</strong> total mass enhancement<br />

factor which we use to obta<strong>in</strong> <strong>the</strong> band mass from <strong>the</strong><br />

measured <strong>effect</strong>ive mass. Table V lists <strong>the</strong> different parameters<br />

and band masses, which are <strong>in</strong> good agreement with<br />

each o<strong>the</strong>r.<br />

3. Superconduct<strong>in</strong>g gap parameter <strong>in</strong> V 3 Si<br />

The calculation <strong>of</strong> Mat<strong>the</strong>iss 68 is <strong>the</strong> most recent and extensive<br />

<strong>of</strong> <strong>the</strong> calculations listed <strong>in</strong> Table III and we have<br />

chosen to use this band mass for our <strong>de</strong>term<strong>in</strong>ation <strong>of</strong> <strong>the</strong><br />

superconduct<strong>in</strong>g gap parameter. In Table VI <strong>the</strong> superconduct<strong>in</strong>g<br />

gap parameters are listed for <strong>the</strong> different <strong>the</strong>oretical<br />

mo<strong>de</strong>ls. Aga<strong>in</strong> we have <strong>in</strong>clu<strong>de</strong>d <strong>the</strong> superconduct<strong>in</strong>g gap<br />

parameters calculated us<strong>in</strong>g <strong>the</strong> measured <strong>effect</strong>ive mass<br />

which are <strong>in</strong> agreement with previously published 8,42 values.<br />

From Table VI we observe that <strong>the</strong> MMG mo<strong>de</strong>l aga<strong>in</strong><br />

overestimates <strong>the</strong> damp<strong>in</strong>g <strong>of</strong> <strong>the</strong> oscillations <strong>in</strong> <strong>the</strong> vortex<br />

state. The MSWS and NMA mo<strong>de</strong>l result <strong>in</strong> values for (0)<br />

which are approximately twice as large as <strong>the</strong> literature value<br />

<strong>of</strong> 2.6 meV. For V 3 Si <strong>the</strong> DT mo<strong>de</strong>l gives a value <strong>of</strong> (0)<br />

which is closest to <strong>the</strong> literature value. We note that most<br />

mo<strong>de</strong>ls appear to overestimate <strong>the</strong> value <strong>of</strong> (0).<br />

VI. DISCUSSION<br />

The <strong>de</strong> <strong>Haas</strong>-<strong>van</strong> <strong>Alphen</strong> <strong>effect</strong> has now been observed <strong>in</strong><br />

<strong>the</strong> superconduct<strong>in</strong>g state <strong>of</strong> many different materials. We<br />

TABLE V. Calculated and measured Ref. 66 l<strong>in</strong>ear specific heat coefficients <strong>in</strong> mJ mol 1 K 2 ) for<br />

V 3 Si used to <strong>de</strong>term<strong>in</strong>e <strong>the</strong> unrenormalized band mass via m b m calc / exp . The last column lists <strong>the</strong><br />

mass-enhancement factor.<br />

calc exp m (m e ) m b (m e ) <br />

Jarlborg Ref. 66 37.6 555 1.520.03 1.00.1 0.52<br />

Kle<strong>in</strong> Ref. 67 43.2 555 1.520.03 1.20.1 0.26<br />

Mat<strong>the</strong>iss Ref. 68 34.5 555 1.520.03 0.90.1 0.69


11 710 T. J. B. M. JANSSEN et al.<br />

57<br />

TABLE VI. Superconduct<strong>in</strong>g gap parameters for V 3 Si obta<strong>in</strong>ed from m b (0) for <strong>the</strong> different <strong>the</strong>oretical<br />

mo<strong>de</strong>ls <strong>in</strong> Table IV and m b <strong>in</strong> Table V. The last row lists <strong>the</strong> values for (0) when <strong>the</strong> experimentally<br />

measured <strong>effect</strong>ive mass is used.<br />

(0) meV<br />

m b (m e ) MSWS MMG NMA DT BCS<br />

Mat<strong>the</strong>iss 0.9 6.800.80 1.600.27 7.300.90 4.500.50 2.6<br />

measured m 1.52 4.100.15 0.920.04 4.320.23 2.530.08 2.6<br />

have compared a number <strong>of</strong> <strong>the</strong>oretical mo<strong>de</strong>ls with our experimental<br />

observations. Perhaps <strong>the</strong> simplest <strong>the</strong>ory is that<br />

<strong>of</strong> Miyake which assumes an extremely high GL parameter<br />

1 and thus a constant gap <strong>in</strong> <strong>the</strong> space between <strong>the</strong> vortices.<br />

In both materials studied, this mo<strong>de</strong>l grossly overestimates<br />

<strong>the</strong> attenuation <strong>of</strong> <strong>the</strong> dHvA oscillations suggest<strong>in</strong>g<br />

that <strong>the</strong> spatial variation <strong>of</strong> <strong>the</strong> or<strong>de</strong>r parameter, due to <strong>the</strong><br />

Abrikosov vortex lattice, is responsible for <strong>the</strong> large amplitu<strong>de</strong><br />

<strong>of</strong> <strong>the</strong> observed dHvA oscillations. The MSWS and DT<br />

mo<strong>de</strong>ls which <strong>in</strong>clu<strong>de</strong> <strong>the</strong> spatial variation <strong>of</strong> <strong>the</strong> or<strong>de</strong>r parameter<br />

provi<strong>de</strong> a better <strong>de</strong>scription <strong>of</strong> our observations. We<br />

note that <strong>in</strong> <strong>the</strong>se two mo<strong>de</strong>ls <strong>the</strong> attenuation is a function <strong>of</strong><br />

<strong>the</strong> spatially averaged square <strong>of</strong> <strong>the</strong> or<strong>de</strong>r parameter. From<br />

<strong>the</strong> comparison <strong>of</strong> <strong>the</strong> fitt<strong>in</strong>g results for both materials studied,<br />

it is clear that <strong>the</strong> <strong>the</strong>ory position needs to be clarified.<br />

None <strong>of</strong> <strong>the</strong> <strong>the</strong>ories tested can consistently account for <strong>the</strong><br />

damp<strong>in</strong>g <strong>of</strong> <strong>the</strong> dHvA oscillations <strong>in</strong> both compounds.<br />

We note that <strong>the</strong> major uncerta<strong>in</strong>ty <strong>in</strong> a critical comparison<br />

<strong>of</strong> <strong>the</strong>ory with <strong>the</strong> observed dHvA oscillations is our lack<br />

<strong>of</strong> knowledge <strong>of</strong> <strong>the</strong> bare or unrenormalized band mass. In<br />

spite <strong>of</strong> this, we have shown how <strong>the</strong> dHvA <strong>effect</strong> may, <strong>in</strong> a<br />

mo<strong>de</strong>l-<strong>de</strong>pen<strong>de</strong>nt manner, yield <strong>in</strong>formation about <strong>the</strong> superconduct<strong>in</strong>g<br />

state.<br />

Dukan and Tešanović 42 argued that <strong>the</strong> dHvA <strong>effect</strong> is a<br />

result <strong>of</strong> <strong>the</strong> presence <strong>of</strong> a small portion <strong>of</strong> <strong>the</strong> Fermi surface<br />

conta<strong>in</strong><strong>in</strong>g a coherent normal band <strong>of</strong> quasiparticles, while<br />

<strong>the</strong> rest <strong>of</strong> it is gapped. In Table VII we have listed <strong>the</strong> mean<br />

free path for both materials. The vortex separation varies<br />

from 200 to 100 Å for fields between 5 and 20 T. Therefore,<br />

for <strong>the</strong> magnetic field range used <strong>in</strong> our experiments<br />

l mfp extends over many vortex lattice unit cells, ensur<strong>in</strong>g<br />

that <strong>the</strong> electron motion is <strong>in</strong><strong>de</strong>ed coherent.<br />

Some <strong>of</strong> <strong>the</strong> mo<strong>de</strong>ls predict that 1 s 2 (B) or<br />

2 (B). Figure 12 shows that our data for NbSe 2 does <strong>in</strong><strong>de</strong>ed<br />

obey this relation very well. On <strong>the</strong> basis <strong>of</strong> this <strong>the</strong> NMA<br />

mo<strong>de</strong>l Eq. 18 must be rejected. In <strong>the</strong> case <strong>of</strong> V 3 Si <strong>the</strong><br />

agreement is not so good. As discussed before <strong>the</strong>re can be<br />

several experimental explanations for this. One <strong>effect</strong> not<br />

consi<strong>de</strong>red by most <strong>the</strong>ories is <strong>the</strong> impurity scatter<strong>in</strong>g rate <strong>in</strong><br />

<strong>the</strong> vortex state. All but <strong>the</strong> <strong>the</strong>ory <strong>of</strong> Dukan and Tešanović<br />

assume 1 0 is constant as a function <strong>of</strong> magnetic field. Dukan<br />

and Tešanović explicitly treat this problem and f<strong>in</strong>d that<br />

1<br />

0 has to be calculated self-consistently result<strong>in</strong>g <strong>in</strong> a<br />

magnetic-field-<strong>de</strong>pen<strong>de</strong>nt 1 (B) given <strong>in</strong> Eq. 14. From<br />

this equation we observe that <strong>the</strong> <strong>effect</strong> <strong>of</strong> 1 (B) for NbSe 2<br />

is small because (B) is small, however, for V 3 Si with a<br />

much larger gap <strong>the</strong> <strong>effect</strong> is sizable, as was shown explicitly<br />

<strong>in</strong> Ref. 42.<br />

VII. SUMMARY<br />

A quantitative study and analysis <strong>of</strong> <strong>the</strong> dHvA <strong>effect</strong> <strong>in</strong><br />

<strong>the</strong> vortex state <strong>of</strong> NbSe 2 and V 3 Si has been presented. We<br />

have shown that, for <strong>the</strong>se materials, <strong>the</strong> additional attenuation<br />

<strong>of</strong> <strong>the</strong> oscillations cannot be expla<strong>in</strong>ed <strong>in</strong> terms <strong>of</strong> <strong>the</strong><br />

macroscopic field variation, or p<strong>in</strong>n<strong>in</strong>g, <strong>of</strong> <strong>the</strong> flux l<strong>in</strong>e lattice.<br />

Thus <strong>the</strong> additional attenuation has a microscopic ori-<br />

TABLE VII. Summary <strong>of</strong> <strong>the</strong> parameters used for NbSe 2 and<br />

V 3 Si <strong>in</strong> <strong>the</strong> comparison <strong>of</strong> R s (B) with <strong>the</strong> <strong>the</strong>oretical mo<strong>de</strong>ls.<br />

NbSe 2 V 3 Si Orig<strong>in</strong><br />

F T 153 1560 experimental<br />

m (m e ) 0.61 1.52 experimental<br />

0.17 0.69 band structure <strong>the</strong>ory<br />

m b (m e ) 0.52 0.9 calculated us<strong>in</strong>g <br />

F (10 5 ms 1 ) 1.75 2.80 calculated us<strong>in</strong>g m b and F<br />

1 0 meV 1.31 1.22 experimental<br />

(0) meV 1.1 2.6 literature values<br />

B c2 T 8.01 18.5 experimental<br />

l mfp Å 841 1555<br />

1<br />

calculated us<strong>in</strong>g 0<br />

14-54 17 literature values<br />

FIG. 12. s 1 as a function <strong>of</strong> 2 (B). (0) has been set to<br />

unity. The open diamonds refer to V 3 Si and <strong>the</strong> open squares to<br />

NbSe 2 and <strong>the</strong> l<strong>in</strong>es are l<strong>in</strong>ear fits <strong>in</strong> each case.


57 QUANTITATIVE INVESTIGATION OF THE <strong>de</strong> HAAS- . . .<br />

11 711<br />

g<strong>in</strong>. The macroscopic field variation and p<strong>in</strong>n<strong>in</strong>g could be <strong>of</strong><br />

importance un<strong>de</strong>r different experimental circumstances or <strong>in</strong><br />

different materials. We have compared various <strong>the</strong>oretical<br />

mo<strong>de</strong>ls with our experimental observations and shown that<br />

mo<strong>de</strong>ls which <strong>in</strong>corporate <strong>the</strong> spatial variation <strong>of</strong> <strong>the</strong> or<strong>de</strong>r<br />

parameter give <strong>the</strong> best results. However, none <strong>of</strong> <strong>the</strong>se mo<strong>de</strong>ls<br />

consistently expla<strong>in</strong> <strong>the</strong> data <strong>in</strong> both materials studied<br />

<strong>in</strong>dicat<strong>in</strong>g that more <strong>the</strong>oretical work is required.<br />

ACKNOWLEDGMENTS<br />

The authors warmly acknowledge discussions with M. N.<br />

Cuthbert, M. Norman, B. L. Györffy, Z. Tešanović, and R.<br />

Corcoran, which have clarified <strong>the</strong>se issues. The f<strong>in</strong>ancial<br />

support <strong>of</strong> <strong>the</strong> Eng<strong>in</strong>eer<strong>in</strong>g and Physical Sciences Research<br />

Council and <strong>the</strong> Royal Society is gratefully acknowledged.<br />

One <strong>of</strong> <strong>the</strong> authors T.J.B.M.J. would like to acknowledge<br />

f<strong>in</strong>ancial support from <strong>the</strong> Leverhulme Trust.<br />

1 J. E. Graebner and M. Robb<strong>in</strong>s, Phys. Rev. Lett. 36, 422 1976.<br />

2 Y. Onuki, I. Umehara, T. Ebihara, N. Nagai, and T. Takita, J.<br />

Phys. Soc. Jpn. 61, 692 1992.<br />

3 R. Corcoran, P. Meeson, Y. Onuki, P. A. Probst, M. Spr<strong>in</strong>gford,<br />

K. Takita, H. Harima, G. Y. Guo, and B. L. Györffy, J. Phys.:<br />

Con<strong>de</strong>ns. Matter 6, 4479 1994.<br />

4 R. Corcoran, N. Harrison, C. J. Haworth, S. M. Hay<strong>de</strong>n, P. Meeson,<br />

M. Spr<strong>in</strong>gford, and P. J. <strong>van</strong> <strong>de</strong>r Wel, Physica B 206-207,<br />

534 1995.<br />

5 E. Steep, S. Rettenberger, A. G. M. Janssen, W. Joss, W. Bilberacher,<br />

E. Bucher, and C. S. Oglesby, Physica B 206-207, 162<br />

1995.<br />

6 S. Rettenberger, E. Steep, F. Meyer, A. G. M. Janssen, W. Joss,<br />

P. Wy<strong>de</strong>r, W. Biberacher, E. Bucher, and C. S. Oglesby, Physica<br />

B 21, 244 1995.<br />

7 F. Mueller, D. H. Lown<strong>de</strong>s, Y. K. Chang, A. J. Arko, and R. S.<br />

List, Phys. Rev. Lett. 68, 3928 1992.<br />

8 R. Corcoran, N. Harrison, S. M. Hay<strong>de</strong>n, P. Meeson, M. Spr<strong>in</strong>gford,<br />

and P. J. <strong>van</strong> <strong>de</strong>r Wel, Phys. Rev. Lett. 72, 701 1994.<br />

9 N. Harrison, S. M. Hay<strong>de</strong>n, P. Meeson, M. Spr<strong>in</strong>gford, P. J. <strong>van</strong><br />

<strong>de</strong>r Wel, and A. A. Menovsky, Phys. Rev. B 50, 4208 1994.<br />

10 R. G. Goodrich, C. Grienier, D. Hall, A. Lacerda, E. G. Haanappel,<br />

D. Rickel, T. North<strong>in</strong>gton, R. Schwarz, F. M. Mueller, D. D.<br />

Koel<strong>in</strong>g, J. Vuillem<strong>in</strong>, L. <strong>van</strong> Bockstal, M. L. Norton, and D. H.<br />

Lown<strong>de</strong>s, J. Phys. Chem. Solids 54, 1251 1993.<br />

11 M. Hedo, Y. Inada, T. Ishida, E. Yamamoto, Y. Haga, Y. Onuki,<br />

M. Higuchi, and A. Hasegawa, J. Phys. Soc. Jpn. 64, 4535<br />

1995.<br />

12 Y. Inada, M. Hedo, T. Ishida, E. Yamamoto, Y. Haga, and Y.<br />

Onuki, Physica B 230-232, 387 1997.<br />

13 M. He<strong>in</strong>ecke and K. W<strong>in</strong>zer, Z. Phys. B 98, 147 1995.<br />

14 T. Terashima, H. Takeya, S. Uji, K. Kadowaki, and H. Aoki,<br />

Solid State Commun. 96, 459 1995.<br />

15 G. Goll, M. He<strong>in</strong>ecke, A. G. M. Jansen, W. Joss, L. Nguyen, E.<br />

Steep, K. W<strong>in</strong>zer, and P. Wy<strong>de</strong>r, Phys. Rev. B 53, R8871<br />

1996.<br />

16 T. Terashima, C. J. Haworth, H. Takeya, S. Uji, and H. Aoki,<br />

Phys. Rev. B 56, 5120 1997.<br />

17 H. Ohkuni, T. Ishida, Y. Inada, Y. Haga, E. Yamamoto, Y.<br />

Onuki, and S. Takahashi, J. Phys. Soc. Jpn. 66, 945 1997.<br />

18 C. Bergemann, S. R. Julian, G. J. McMullan, B. K. Howard, G.<br />

G. Lonzarich, P. Lelay, J. P. Brison, and J. Flouquet, Physica B<br />

230-232, 348 1997.<br />

19 P. J. <strong>van</strong> <strong>de</strong>r Wel, J. Caulfield, R. Corcoran, P. Day, S. M. Hay<strong>de</strong>n,<br />

W. Hayes, M. Kurmoo, P. Meeson, J. S<strong>in</strong>gleton, and M.<br />

Spr<strong>in</strong>gford, Physica C 235-240, 2453 1994.<br />

20 C. M. Fowler, B. L. Freeman, W. L. Hults, J. C. K<strong>in</strong>g, F. M.<br />

Mueller, and J. L. Smith, Phys. Rev. Lett. 68, 534 1992.<br />

21 G. Kido, K. Komorita, H. Katayama-Yoshida, and T. Takahashi,<br />

J. Phys. Chem. Solids 52, 1465 1991.<br />

22 G. Kido, H. Katayama-Yoshida, and T. Takahashi, Jpn. J. Appl.<br />

Phys., Part 1 7, 247 1992.<br />

23 M. Spr<strong>in</strong>gford, N. Harrison, P. Meeson, and P. A. Probst, Phys.<br />

Rev. Lett. 69, 2453 1992.<br />

24 E. G. Haanappel, W. Joss, I. D. Wagner, P. Wy<strong>de</strong>r, K. Trubenbach,<br />

H. Mattausch, A. Simon, F. M. Mueller, and S. Ashkenazy,<br />

Physica C 209, 391993.<br />

25 E. G. Haanappel, W. Joss, P. Wy<strong>de</strong>r, S. Ashkenazy, F. M. Mueller,<br />

K. Trubenbach, H. Mattausch, S. Simon, and M. Os<strong>of</strong>sky, J.<br />

Phys. Chem. Solids 54, 1261 1993.<br />

26 A. I. Bykov, M. I. Dolotenko, N. P. Kolokolchikov, Yu. B. Kudasov,<br />

V. V. Platonov, O. M. Tatsenko, A. I. Golovashk<strong>in</strong>, O.<br />

M. I<strong>van</strong>enko, and K. V. Mitsen, Physica B 211, 241 1995.<br />

27 D. Shoenberg, Magnetic Oscillations <strong>in</strong> Metals, Cambridge<br />

Monograph on Physics Cambridge University Press, Cambridge,<br />

1984.<br />

28 A. Wasserman and M. Spr<strong>in</strong>gford, Adv. Phys. 45, 471 1996.<br />

29 R. E. Prange and A. Sachs, Phys. Rev. 158, 672 1967.<br />

30 S. Engelsberg and G. Simpson, Phys. Rev. B 2, 1657 1970.<br />

31 J. W. Wilk<strong>in</strong>s, <strong>in</strong> Electrons at <strong>the</strong> Fermi Surface, edited by M.<br />

Spr<strong>in</strong>gford Cambridge University Press, Cambridge, 1980.<br />

32 P. C. Hohenberg and W. Kohn, Phys. Rev. 136, B864 1964.<br />

33 W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 1965.<br />

34 J. M. Delrieu, J. Low Temp. Phys. 6, 197 1972.<br />

35 E. H. Brandt, Rep. Prog. Phys. 58, 1465 1995, and references<br />

<strong>the</strong>re<strong>in</strong>.<br />

36 K. Maki and T. Tsuzuki, Phys. Rev. 139, A868 1965.<br />

37 E. H. Brandt, J. Low Temp. Phys. 73, 355 1988.<br />

38 T. Maniv, R. S. Markiewicz, I. D. Vagner, and P. Wy<strong>de</strong>r, Physica<br />

C 153-155, 1179 1988.<br />

39 T. Maniv, A. I. Rom, I. D. Vagner, and P. Wy<strong>de</strong>r, Phys. Rev. B<br />

46, 8360 1992.<br />

40 T. Maniv, A. I. Rom, I. D. Vagner, and P. Wy<strong>de</strong>r, Physica C 235,<br />

1541 1994.<br />

41 T. Maniv, A. I. Rom, I. D. Vagner, and P. Wy<strong>de</strong>r, Solid State<br />

Commun. 101, 621 1997.<br />

42 S. Dukan and Z. Tešanović, Phys. Rev. Lett. 74, 2311 1995.<br />

43 A. Wasserman and M. Spr<strong>in</strong>gford, Physica C 194-196, 1801<br />

1994.<br />

44 K. Maki, Phys. Rev. B 44, 2861 1991.<br />

45 U. Brandt, W. Pesch, and L. Tweordt, Z. Phys. 201, 209 1967.<br />

46 M. J. Stephen, Phys. Rev. B 43, 1212 1991.<br />

47 M. J. Stephen, Phys. Rev. B 45, 5481 1992.<br />

48 K. Miyake, Physica B 186-188, 115 1993.<br />

49 P. Miller and B. L. Györffy, J. Phys.: Con<strong>de</strong>ns. Matter 7, 5579<br />

1995.


11 712 T. J. B. M. JANSSEN et al.<br />

57<br />

50 S. Dukan and Z. Tešanović, Phys. Rev. B 49, 130171994.<br />

51 M. R. Norman, A. H. MacDonald, and H. Akera, Phys. Rev. B<br />

51, 5927 1995.<br />

52 M. R. Norman and A. H. MacDonald, Phys. Rev. B 54, 4239<br />

1996.<br />

53 M. R. Norman private communication.<br />

54 A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 1972.<br />

55 C. P. Bean, Rev. Mod. Phys. 36, 311964.<br />

56 A. B. Pippard, Philos. Mag. 19, 217 1968.<br />

57 A. L. Lark<strong>in</strong> and Y. N. Ovch<strong>in</strong>nikov, J. Low Temp. Phys. 34, 409<br />

1978.<br />

58 P. R. Bev<strong>in</strong>gton, Data Reduction and Error Analysis for <strong>the</strong><br />

Physical Sciences McGraw-Hill, New York, 1969.<br />

59 A. V. Gold, <strong>in</strong> Solid State Physics: Electrons <strong>in</strong> Metals, edited by<br />

J. F. Cochran and R. R. Hear<strong>in</strong>g Gordon and Breach, New<br />

York, 1968.<br />

60 B. P. Clayton and R. F. Fr<strong>in</strong>dt, Solid State Commun. 18, 1881<br />

1971.<br />

61 D. H. Lee, L. W. Dubeck, and F. Rothwarf, Phys. Lett. 53A, 379<br />

1975.<br />

62 In Ref. 8 a band mass <strong>of</strong> 0.46m e was used to calculate <strong>the</strong> mass<br />

enhancement factor. However, <strong>in</strong> this calculation <strong>the</strong> measured<br />

and calculated dHvA frequencies did not agree. In or<strong>de</strong>r to obta<strong>in</strong><br />

this agreement <strong>the</strong> Fermi energy was shifted by 7 mRyd,<br />

result<strong>in</strong>g <strong>in</strong> a band mass <strong>of</strong> m b 0.52 m e .<br />

63 P. Garoche, J. J. Veyssie, P. Manuel, and P. Mol<strong>in</strong>ie, Solid State<br />

Commun. 19, 455 1976.<br />

64 D. Sanchez, A. Junod, J. Muller, H. Berger, and F. Levy, Physica<br />

B 204, 167 1995.<br />

65 R. Hackle, R. Kaiser, and S. Schicktanz, J. Phys. C 16, 1729<br />

1983.<br />

66 A. Junod, T. Jarlborg, and J. Muller, Phys. Rev. B 27, 1568<br />

1983.<br />

67 B. M. Kle<strong>in</strong>, L. L. Boyer, and D. A. Papaconstantopoulos, Phys.<br />

Rev. Lett. 42, 530 1979.<br />

68 L. F. Mat<strong>the</strong>iss and W. Weber, Phys. Rev. B 25, 2248 1982.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!