28.11.2014 Views

Fusion: Creating a Star on Earth - General Atomics Fusion Education

Fusion: Creating a Star on Earth - General Atomics Fusion Education

Fusion: Creating a Star on Earth - General Atomics Fusion Education

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g>: <str<strong>on</strong>g>Creating</str<strong>on</strong>g> a <str<strong>on</strong>g>Star</str<strong>on</strong>g> <strong>on</strong> <strong>Earth</strong><br />

Produced by<br />

<strong>General</strong> <strong>Atomics</strong><br />

in C<strong>on</strong>juncti<strong>on</strong> with<br />

Schools in the San Diego area<br />

2


Why is <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Important?<br />

4


Alternative Energy Sources<br />

• Hydroelectric Power<br />

• Wind<br />

• Geothermal<br />

• Solar<br />

9


Fossil Fuel Energy Sources -<br />

Advantages and Disadvantages<br />

Advantages<br />

Disadvantages<br />

Coal • Abundant • Burns dirty<br />

• Causes acid rain<br />

and air polluti<strong>on</strong><br />

Oil • Flexible fuel source • Finite supply<br />

with many derivitives • Causes air polluti<strong>on</strong><br />

• Transportable<br />

Natural Gas • Burns cleanly • Finite supply<br />

• Transportable<br />

• Dangerous to handle<br />

10


Energy Source<br />

Advantages and Disadvantages<br />

Energy Sources Advantages Disadvantages<br />

Fissi<strong>on</strong> • Clean, no CO 2 • Waste disposal is difficult<br />

(Nuclear Power) • Does not produce • Safety c<strong>on</strong>cerns<br />

immediate polluti<strong>on</strong><br />

Hydroelectric • Clean, no CO 2 • Dam c<strong>on</strong>structi<strong>on</strong><br />

destroys habitats<br />

• Geographically limited<br />

Wind • Clean, no CO 2 • Huge numbers of<br />

windmills required for<br />

adequate power generati<strong>on</strong><br />

• Geographically limited<br />

Geothermal • Clean, no CO 2 • Geographically limited<br />

Solar<br />

• Clean, no CO 2 • Huge number of solar<br />

cells required for<br />

adequate power generati<strong>on</strong><br />

• Geographically limited<br />

11


World Fossil Reserves<br />

Amount of Fossil Fuels<br />

Milli<strong>on</strong>s<br />

of<br />

Years<br />

Hundreds<br />

of<br />

Years<br />

1900 2200<br />

12


<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Energy<br />

The fossil fuel era is almost over. If we c<strong>on</strong>tinue<br />

to burn fossil fuels for energy, they will last <strong>on</strong>ly<br />

another few hundred years. At our present rate of use,<br />

experts predict a shortfall in less than fifty years.<br />

Energy c<strong>on</strong>sumpti<strong>on</strong><br />

(billi<strong>on</strong> barrels of<br />

oil equiv. per year)<br />

400<br />

300<br />

200<br />

Assumes world populati<strong>on</strong><br />

stablizes at 10 billi<strong>on</strong>,<br />

c<strong>on</strong>suming at 2/3 U.S. 1985 rate<br />

World energy<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Shortfall must be<br />

supplied by<br />

alternative sources<br />

100<br />

Energy available<br />

(fossil, hydro,<br />

n<strong>on</strong>-breeder fissi<strong>on</strong>)<br />

0<br />

1900<br />

2000 2100 2200 2300<br />

Now<br />

Shortfall begins<br />

Year (A.D.)<br />

13


Fossil Fuel is Envir<strong>on</strong>mentally Costly<br />

1000 MW electric plant<br />

• It provides electricity for 1 milli<strong>on</strong> U.S. people (1.4 kW/pers<strong>on</strong>)<br />

• We need at least 3 plants this size for San Diego<br />

• We need at least 30 for California<br />

• A coal plant this size c<strong>on</strong>sumes 8,600 t<strong>on</strong>s of coal per day.<br />

• This produces 32,000 t<strong>on</strong>s of CO 2 per day<br />

• This is 64 pounds of CO 2 for every American per day<br />

14


In a typical fissi<strong>on</strong> process used as a source<br />

of energy, a neutr<strong>on</strong> strikes a uranium nucleus causing<br />

it to split into fragments. As in the fusi<strong>on</strong> process, there is a<br />

difference in mass that is released as energy<br />

Neutr<strong>on</strong>s<br />

n+U<br />

fissi<strong>on</strong> fragments + neutr<strong>on</strong>s + energy<br />

17


Fissi<strong>on</strong><br />

Atom<br />

+<br />

ENERGY<br />

Large Atom<br />

Atom<br />

18


<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g><br />

Atom<br />

+<br />

ENERGY<br />

Atom<br />

Large Atom<br />

19


<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> vs. Fissi<strong>on</strong><br />

Advantages and Disadvantages<br />

Energy Sources Advantages Disadvantages<br />

Fissi<strong>on</strong> • Clean, no CO 2 • Waste disposal is difficult<br />

(Nuclear Power) • Does not produce • Safety c<strong>on</strong>cerns<br />

immediate polluti<strong>on</strong><br />

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> • Inexhaustible supply of • Huge research and<br />

water-the fuel of fusi<strong>on</strong> development costs<br />

• Fuel is accessible • Reactor vessel core<br />

worldwide becomes radioactive<br />

• Clean<br />

• <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> reactors are<br />

inherently safe, they cannot<br />

explode or overheat<br />

20


Comparis<strong>on</strong> of<br />

L<strong>on</strong>g-Term Energy Sources<br />

Resources Envir<strong>on</strong>ment Safety Cost<br />

Coal<br />

Large<br />

Very Dirty<br />

Good<br />

Moderate<br />

Today’s<br />

Fissi<strong>on</strong><br />

Small<br />

Waste<br />

C<strong>on</strong>cerns<br />

Active<br />

C<strong>on</strong>trol<br />

Moderate<br />

Advanced<br />

Fissi<strong>on</strong><br />

Large<br />

Waste<br />

C<strong>on</strong>cerns<br />

Passive<br />

Moderate<br />

to High<br />

Solar<br />

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g><br />

Infinite<br />

Infinite<br />

Very<br />

Clean<br />

Clean<br />

Excellent<br />

Inherent<br />

High<br />

?<br />

21


So Why Aren’t <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g><br />

Power Plants Here Now?<br />

22


e<br />

2 orbitals with<br />

2 electr<strong>on</strong>s each<br />

Be<br />

n p p<br />

n p<br />

n n<br />

n<br />

p<br />

e<br />

e<br />

Prot<strong>on</strong>s = Atomic<br />

Number<br />

4<br />

Beryllium<br />

9<br />

e<br />

4 Prot<strong>on</strong>s<br />

5 Neutr<strong>on</strong>s<br />

4 Electr<strong>on</strong>s<br />

Prot<strong>on</strong>s + Neutr<strong>on</strong>s<br />

= Atomic Mass<br />

23


<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Energy<br />

Plasma is sometimes<br />

referred to as the<br />

fourth state of matter<br />

+<br />

–<br />

–<br />

+<br />

–<br />

+<br />

–<br />

+<br />

Cold<br />

Solid:Ice<br />

Warm<br />

Liquid: Water<br />

Hot<br />

Gas: Steam<br />

Hotter<br />

Plasma<br />

24


Plasma Makes up The<br />

Sun & <str<strong>on</strong>g>Star</str<strong>on</strong>g>s<br />

25


Normal Atoms<br />

26


Like Charges Repel<br />

28


Hydrogen<br />

30


Hydrogen = 1H 1 Deuterium = 1H 2 Tritium = 1H 3<br />

1 H1 1 H2 1 H3<br />

31


Therm<strong>on</strong>uclear Reacti<strong>on</strong>s in the Sun<br />

1H 1 + 1 H 1 1 H 2 + 1 e 0<br />

In the first reacti<strong>on</strong>, 2 prot<strong>on</strong>s combine<br />

to form deuterium and a positr<strong>on</strong>.<br />

One of the prot<strong>on</strong>s is c<strong>on</strong>verted into<br />

a neutr<strong>on</strong> and a posit<strong>on</strong><br />

prot<strong>on</strong> neutr<strong>on</strong><br />

positr<strong>on</strong><br />

1H 2 + 1 H 1 2 He 3 + (gamma)<br />

radiati<strong>on</strong><br />

In the 2nd reacti<strong>on</strong> a<br />

prot<strong>on</strong> + deuterium unite<br />

to form the light isotope<br />

of helium, 2 He 3<br />

2He 3 + 2 He 3 2He 4 + 1 H 1 + 1 H1<br />

The first two reacti<strong>on</strong>s must<br />

occur twice for the 3rd<br />

reacti<strong>on</strong> to occur<br />

32


Summary of Solar <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Reacti<strong>on</strong>s<br />

P<br />

+<br />

P<br />

D<br />

+ e+ + Energy<br />

D<br />

+<br />

P<br />

2He 3<br />

+ gamma radiati<strong>on</strong> + Energy<br />

2He 3<br />

+<br />

2He 3<br />

2He 4<br />

+ P + P + Energy<br />

33


But the Potential Payoff is Enormous<br />

n<br />

He<br />

D T E=mc 2<br />

• The fracti<strong>on</strong> of mass “lost” is just 38 parts out of 10,000<br />

• Nevertheless, the fusi<strong>on</strong> energy released from just 1 gram<br />

of DT equals the energy from about 2400 gall<strong>on</strong>s of oil<br />

34


E = mc 2<br />

Einstein’s equati<strong>on</strong> that equates energy and mass<br />

E = Energy<br />

m = Mass<br />

c = Speed of Light (3 x 108 m/sec)<br />

Example:<br />

If a 1 gram raisin was c<strong>on</strong>verted completely into energy<br />

E = 1 gram x c2<br />

= (10 -3 kg) ( 3 x 108 m/sec) 2<br />

= 9 x 10 13 joules<br />

This would be equivalent to 10,000 t<strong>on</strong>s of TNT!<br />

35


Energy Release E = mc 2<br />

0.008<br />

Hydrogen<br />

0.006<br />

Deuterium<br />

Extra mass per nucle<strong>on</strong><br />

0.004<br />

0.002<br />

0<br />

Tritium<br />

Lithium<br />

Uranium<br />

- 0.002<br />

0 40 80 120 160 200 240<br />

Atomic mass number<br />

36


<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g><br />

Energy Input<br />

We give kinetic energy<br />

(temperature) to<br />

hydrogen<br />

Energy Output<br />

We get back 2000<br />

times more energy<br />

than we put in<br />

37


COAL<br />

OIL<br />

FISSION<br />

FUSION<br />

~2,000,000 TONNES<br />

(21,010 RAILCAR LOADS)<br />

~1,300,000 TONNES<br />

(10,000,000 BARRELS)<br />

~30 TONNES UO 2<br />

(ONE RAILCAR LOAD)<br />

~0.6 TONNES D<br />

(ONE PICKUP TRUCK)<br />

38


Abundant Energy From Sea Water<br />

50 Cups Sea Water<br />

or<br />

2 T<strong>on</strong>s of Coal<br />

Thimble of 2 H (D)<br />

Deuterium<br />

20 T<strong>on</strong>s of Coal<br />

39


Reduced Waste Products<br />

Power<br />

Source<br />

Coal<br />

Fissi<strong>on</strong><br />

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g>:<br />

Today’s Materials<br />

Advanced Materials<br />

Total Waste<br />

(cubic meters)<br />

10,000 (ashes)<br />

440<br />

2000<br />

2000<br />

High-Level<br />

RAD Waste<br />

0<br />

120<br />

30<br />

0<br />

1000 MW(e) Power Plant - 30 year Lifetime<br />

40


Heat Exchanger<br />

Neutr<strong>on</strong><br />

Heat<br />

Exchange<br />

Material<br />

Coolant<br />

Steam Turbine<br />

Electrical<br />

Generator<br />

41


Reacti<strong>on</strong> Igniti<strong>on</strong> Temperature Output Energy<br />

Fuel Product (milli<strong>on</strong>s of °C) (keV) (keV)<br />

D + T<br />

4He + n<br />

P P P n<br />

n<br />

n n n<br />

n P<br />

45 4<br />

17,600<br />

D + 3He<br />

P n<br />

n P Pn<br />

4He + p<br />

P<br />

n<br />

n<br />

P<br />

P<br />

350 30<br />

18,300<br />

3He + n<br />

D + D<br />

P n<br />

P<br />

P<br />

n<br />

n<br />

400 35<br />

~4,000<br />

n<br />

P<br />

T + p<br />

P<br />

n n<br />

P<br />

400 35<br />

~4,000<br />

42


Deuter<strong>on</strong><br />

Energetic<br />

Neutr<strong>on</strong><br />

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Reacti<strong>on</strong><br />

Trit<strong>on</strong><br />

Helium<br />

Nucleus<br />

43


<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Represents an Inexhaustible<br />

Energy Supply for Mankind<br />

• <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> fuels deuterium (D)<br />

and tritium (T) are<br />

hydrogen isotopes<br />

3/4 oz. heavy<br />

water (D 2 0)<br />

• 3/4 oz. of heavy water has<br />

the same energy c<strong>on</strong>tent as<br />

13,000 gall<strong>on</strong>s of oil for<br />

D-D reacti<strong>on</strong>, or 32,000<br />

gall<strong>on</strong>s of oil for D-T reacti<strong>on</strong><br />

1 barrel<br />

(42 gal.)<br />

water<br />

(H 2 0)<br />

•Tritium is made from<br />

n + Li T + He<br />

• Lithium is plentiful both in<br />

the earth’s crust and oceans<br />

45


Methods to Heat<br />

Deuterium-Tritium Fuel<br />

• Compressing the fuel<br />

• Internal Electric Current<br />

• Neutral Particles<br />

• Microwaves<br />

• Lasers<br />

46


<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> can be accomplished in<br />

Three Different Ways<br />

Magnetic<br />

C<strong>on</strong>finement<br />

Nucleus<br />

+<br />

Magnetic<br />

Field<br />

-<br />

Electr<strong>on</strong><br />

Intense<br />

Energy<br />

Beams<br />

Fuel Pellet<br />

SUN<br />

Inertial<br />

C<strong>on</strong>finement<br />

Gravitati<strong>on</strong>al<br />

C<strong>on</strong>finement<br />

47


High Power Lasers can Deliver the Intensity<br />

Required for <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Igniti<strong>on</strong><br />

2 watts of sunlight<br />

About 100 watts/cm2<br />

300°C<br />

Over <strong>on</strong>e hundred<br />

trilli<strong>on</strong> watts<br />

of laser power<br />

100 to 1000 trilli<strong>on</strong><br />

watts/cm2<br />

Tens of milli<strong>on</strong>s<br />

degrees C (10 keV)<br />

48


Inertial C<strong>on</strong>finement <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> C<strong>on</strong>cept<br />

Our ultimate goal is to create a short lived, microminiature star<br />

which will release energy by therm<strong>on</strong>uclear fusi<strong>on</strong> in the same<br />

manner that our sun and the stars produce energy.<br />

Heating<br />

of<br />

ablator<br />

DT<br />

Fuel<br />

Use high power<br />

laser to heat<br />

outer surface of pellet<br />

Ablati<strong>on</strong><br />

and<br />

compressi<strong>on</strong><br />

Outward streaming ablator<br />

material produces an inward<br />

directed, rocket-like<br />

force that compresses<br />

the DT fuel<br />

49


Inertial C<strong>on</strong>finement <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> C<strong>on</strong>cept<br />

(c<strong>on</strong>tinued)<br />

Compressi<strong>on</strong><br />

and heating<br />

Careful tailoring of implosi<strong>on</strong><br />

produces compressi<strong>on</strong> to<br />

several 1000X and 100,000,000°C<br />

Igniti<strong>on</strong> and<br />

Therm<strong>on</strong>uclear<br />

burn<br />

Therm<strong>on</strong>uclear burn of the<br />

DT fuel will produce a fusi<strong>on</strong><br />

yield many times the input<br />

driver energy<br />

50


Toroidal Magnetic<br />

C<strong>on</strong>finement of<br />

Plasma<br />

51


Typical Plasmas<br />

Density<br />

n e (m -3 )<br />

Temperature<br />

T e (eV) °K<br />

Interstellar<br />

10+6<br />

1<br />

104<br />

Solar Cor<strong>on</strong>a<br />

1012<br />

102<br />

106<br />

Therm<strong>on</strong>uclear<br />

1020<br />

104<br />

108<br />

Laser<br />

1026<br />

102<br />

106<br />

Air Density<br />

1025<br />

1/40<br />

294<br />

52


Characteristics of a Plasma<br />

• Particles are charged<br />

• C<strong>on</strong>ducts electricity<br />

• Can be c<strong>on</strong>strained magnetically<br />

53


Unc<strong>on</strong>fined<br />

C<strong>on</strong>fined<br />

I<strong>on</strong><br />

Electr<strong>on</strong>s<br />

Magnetic<br />

Field Lines<br />

54


Where are the Current<br />

Major <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Energy<br />

Research Projects?<br />

56


List of Major Programs/Devices Worldwide<br />

JET from the European Community<br />

JT-60U in Japan<br />

NOVA at Lawrence Livermore Labs in California<br />

TFTR at PPPL in Princet<strong>on</strong>, New Jersey<br />

DIII-D at <strong>General</strong> <strong>Atomics</strong> in San Diego, CA<br />

57


NOVA Machine Used Inertial C<strong>on</strong>finement<br />

(Has Not Proved as Successful as<br />

Magnetic C<strong>on</strong>finement)<br />

58


TFTR is located at PPPL<br />

Princet<strong>on</strong>, New Jersey<br />

59


DIII-D is Located at <strong>General</strong> <strong>Atomics</strong><br />

San Diego, CA<br />

60


ITER<br />

(Internati<strong>on</strong>al Therm<strong>on</strong>uclear Experimental Reactor)<br />

• Cooperative effort by Europe, Japan, U.S. and Russia<br />

• C<strong>on</strong>ceptual Design Activity completed<br />

• Engineering Design Activity is underway<br />

– Three sites: San Diego, U.S.A., Garching, Germany<br />

and Naka, Japan<br />

– Detailed engineering and protoype testing<br />

– Cost of $300 M per party over 6 years<br />

• Decisi<strong>on</strong> to proceed with c<strong>on</strong>structi<strong>on</strong><br />

will be made in 1995<br />

61


ITER<br />

(Internati<strong>on</strong>al Therm<strong>on</strong>uclear Experimental Reactor)<br />

30 meters diameter<br />

30 meters tall<br />

62


ITER<br />

63


I<strong>on</strong> Temperature<br />

(M ˚C)<br />

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Experiments Now Approach<br />

Igniti<strong>on</strong> C<strong>on</strong>diti<strong>on</strong>s<br />

500<br />

Q = 1 N<strong>on</strong>-Maxwellian<br />

400<br />

300<br />

200<br />

100<br />

TFTR 90<br />

JT–60U 92<br />

JT–60U 93<br />

TFTR 88<br />

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> Process<br />

TFTR 93 DT TFTR 92<br />

JT–60U 92<br />

Dem<strong>on</strong>strated<br />

TFTR 88<br />

Q = 1<br />

TFTR 87<br />

JET 89<br />

JT–60U 92<br />

JET 88<br />

JET 91 DT<br />

DIII-D 90 TFTR 86<br />

DIII–D 93 JET 91<br />

DIII-D 89<br />

JET 89<br />

JET 89<br />

DIII-D 89<br />

DIII–D 91<br />

DIII-D 89<br />

JET 88<br />

JET 88<br />

DIII-D 89<br />

DIII-D 89<br />

DIII-D 89<br />

JET 86<br />

ALC-C 83<br />

TFTR 86<br />

<str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g> as an<br />

Electrical<br />

Source<br />

Q = ∞<br />

0<br />

10 10 10 10<br />

n e<br />

(0) τ (m–3 E<br />

s)<br />

18 19 20 21<br />

C<strong>on</strong>finement Quality<br />

(Number of particles per cubic meter c<strong>on</strong>fined for <strong>on</strong>e sec<strong>on</strong>d)<br />

64


What Progress Has Been Made<br />

in Magnetic <str<strong>on</strong>g>Fusi<strong>on</strong></str<strong>on</strong>g>?<br />

FUSION POWER<br />

MW th<br />

1,000<br />

100<br />

ITER<br />

POWER<br />

PLANT<br />

kW th<br />

W th<br />

10<br />

1000<br />

100<br />

10<br />

1000<br />

100<br />

10<br />

PLT<br />

PDX<br />

TFTR<br />

JET<br />

JT–60U<br />

TFTR<br />

JET / TFTR<br />

DIII-D<br />

DIII<br />

ALCATOR C<br />

Achieved (DD)<br />

Achieved (DT)<br />

Projected (DT)<br />

HOUSE<br />

LIGHT BULB<br />

1<br />

1970 1980 1990 2000 2010<br />

PLT<br />

PDX<br />

JET<br />

DIII & DIII-D<br />

Princet<strong>on</strong> Large Tokamak<br />

Princet<strong>on</strong> Divertor Experiment<br />

Joint European Torus<br />

<strong>General</strong> <strong>Atomics</strong> Tokamak Experiments<br />

TFTR<br />

ALCATOR C<br />

ITER<br />

JT–60U<br />

Princet<strong>on</strong> Plasma Physics Laboratory<br />

Massachusetts Institute of Technology<br />

Internati<strong>on</strong>al Therm<strong>on</strong>uclear Experimental Reactor<br />

Japanese Tokamak Experiment<br />

65


World Energy Resources Indicate New<br />

Sources of Clean Energy Must be Found<br />

ANNUAL USE 0.3 Q/year<br />

Oil<br />

Fossil<br />

Uranium<br />

Lithium<br />

Deuterium<br />

13<br />

80<br />

9,000<br />

7,600<br />

16,000,000<br />

In units of Q or 1018 BTU<br />

66

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!