28.11.2014 Views

Effect of pH on corrosion behavior of CuCrZr in solution without and ...

Effect of pH on corrosion behavior of CuCrZr in solution without and ...

Effect of pH on corrosion behavior of CuCrZr in solution without and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Manuscript<br />

Click here to view l<strong>in</strong>ked References<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> corrosi<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>in</strong><br />

soluti<strong>on</strong> <strong>without</strong> <strong>and</strong> with NaCl<br />

C.T. Kwok 1 , P.K. W<strong>on</strong>g 1 , H.C. Man 2 , F.T. Cheng 3*<br />

1<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electromechanical Eng<strong>in</strong>eer<strong>in</strong>g, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Macau, Ch<strong>in</strong>a<br />

2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Industrial & Systems Eng<strong>in</strong>eer<strong>in</strong>g, 3 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Physics,<br />

The H<strong>on</strong>g K<strong>on</strong>g Polytechnic University, Ch<strong>in</strong>a<br />

Abstract<br />

<strong>CuCrZr</strong> is a high copper alloy widely used as electrical <strong>and</strong> thermal c<strong>on</strong>duct<strong>in</strong>g<br />

material, especially <strong>in</strong> heat exchangers <strong>in</strong> nuclear reactors. In this respect, the physical<br />

<strong>and</strong> fatigue properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> have been extensively studied. The electrochemical<br />

<strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong>, <strong>on</strong> the other h<strong>and</strong>, has not been adequately <strong>in</strong>vestigated. In the<br />

present study, the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the corrosi<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>in</strong> aqueous soluti<strong>on</strong>s<br />

<strong>without</strong> <strong>and</strong> with chloride (0.6 M NaCl) was studied. The <str<strong>on</strong>g>pH</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>s is found to<br />

exert significant <strong>in</strong>fluence <strong>on</strong> the corrosi<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong>. In acidic soluti<strong>on</strong>s<br />

<strong>without</strong> chloride, the corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> is ascribed to active dissoluti<strong>on</strong> with soluble<br />

products. In neutral <strong>and</strong> alkal<strong>in</strong>e soluti<strong>on</strong>s <strong>without</strong> NaCl, the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxides <strong>on</strong> the<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> leads to a noble shift <strong>in</strong> corrosi<strong>on</strong> potential <strong>and</strong> passivati<strong>on</strong> results <strong>in</strong><br />

<strong>in</strong>creased corrosi<strong>on</strong> resistance. In chloride soluti<strong>on</strong>s at various <str<strong>on</strong>g>pH</str<strong>on</strong>g> values, the chloride<br />

i<strong>on</strong>s <strong>in</strong>fluence the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the surface layers <strong>and</strong> the anodic dissoluti<strong>on</strong> process<br />

dur<strong>in</strong>g polarizati<strong>on</strong>. At high <str<strong>on</strong>g>pH</str<strong>on</strong>g>, <strong>CuCrZr</strong> shows significant passivity <strong>and</strong> high corrosi<strong>on</strong><br />

* Corresp<strong>on</strong>d<strong>in</strong>g author:<br />

F.T. Cheng, Email: apaftche@polyu.edu.hk Tel: 852 2766 5691, Fax: 852 2333 7629<br />

1


esistance due to the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu 2 O/Cu(OH) film which h<strong>in</strong>ders further dissoluti<strong>on</strong><br />

whereas at low <str<strong>on</strong>g>pH</str<strong>on</strong>g> the corrosi<strong>on</strong> resistance is lowered due to active dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu.<br />

Keywords: Metals <strong>and</strong> Alloys; <strong>CuCrZr</strong>; Corrosi<strong>on</strong>; <str<strong>on</strong>g>pH</str<strong>on</strong>g>; Chloride<br />

1. Introducti<strong>on</strong><br />

High copper alloy <strong>CuCrZr</strong> is age-hardenable, beryllium-free <strong>and</strong> dilutely alloyed<br />

with Cr <strong>and</strong> Zr. Its advantages <strong>in</strong>clude excellent electrical <strong>and</strong> thermal c<strong>on</strong>ductivities,<br />

high strength, ease <str<strong>on</strong>g>of</str<strong>on</strong>g> fabricati<strong>on</strong>, high fatigue resistance <strong>and</strong> radiati<strong>on</strong> resistance, <strong>and</strong><br />

low toxicity. Through age-harden<strong>in</strong>g, the mechanical <strong>and</strong> tribological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

alloy can be enhanced while high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> electrical c<strong>on</strong>ductivity can be preserved [1].<br />

<strong>CuCrZr</strong> has extensive applicati<strong>on</strong>s such as overhead c<strong>on</strong>tact wires for electric railway,<br />

electrodes <strong>and</strong> holders for weld<strong>in</strong>g, electrical comp<strong>on</strong>ents work<strong>in</strong>g under mechanical<br />

stress <strong>and</strong> spark, lead frame for <strong>in</strong>tegrated circuit, moulds <strong>and</strong> dies for c<strong>on</strong>t<strong>in</strong>uous<br />

cast<strong>in</strong>g metals, <strong>and</strong> heat s<strong>in</strong>ks for nuclear power reactors. The applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong><br />

may <strong>in</strong>volve acidic, alkal<strong>in</strong>e <strong>and</strong> chloride-c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g envir<strong>on</strong>ments. Although copper is<br />

a noble metal, it reacts readily <strong>in</strong> oxygen-c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g envir<strong>on</strong>ment, with the anodic<br />

dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper electrochemically balanced by oxygen reducti<strong>on</strong> [2, 3]. It was<br />

reported that the corrosi<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> copper is <strong>in</strong>fluenced by the <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>and</strong> has the lowest<br />

value <strong>in</strong> slightly alkal<strong>in</strong>e soluti<strong>on</strong>s. The corrosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>in</strong> adverse work<strong>in</strong>g<br />

c<strong>on</strong>diti<strong>on</strong>s, for <strong>in</strong>stance, <strong>in</strong> polluted atmosphere <strong>and</strong> <strong>in</strong> nuclear reactors with different<br />

water chemistries [4], is critical for determ<strong>in</strong><strong>in</strong>g the lifetime <strong>and</strong> reliability <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

eng<strong>in</strong>eer<strong>in</strong>g comp<strong>on</strong>ents.<br />

2


In the literature, some studies were focused <strong>on</strong> the dealloy<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> copper alloys with<br />

high c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr [5, 6] <strong>and</strong> Zr [7]. It is found that dechromisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu-47%Cr [5]<br />

<strong>and</strong> Cu-50.54%Cr-0.42%Ni-1.34%Al [6] <strong>in</strong> acidic media occurs at the <strong>in</strong>terface<br />

between the Cr-rich phase <strong>and</strong> the Cu-rich phase, <strong>and</strong> gradually extends to the Cr-rich<br />

phase until Cr is completely dissolved. Lu <strong>and</strong> his coworkers studied the corrosi<strong>on</strong><br />

<strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Cu–Zr alloys with 15%, 30%, <strong>and</strong> 66% <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr <strong>in</strong> 0.1 M HCl [7]. The<br />

results revealed that Cu–15%Zr has the highest corrosi<strong>on</strong> resistance <strong>in</strong> the potential<br />

regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> selective dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr while the Zr c<strong>on</strong>tent has little effect <strong>on</strong> the selective<br />

dissoluti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr when it is above 30%. On the other h<strong>and</strong>, report <strong>on</strong> the corrosi<strong>on</strong><br />

<strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high copper alloys micro-alloyed with Cr <strong>and</strong> Zr is scarce. Zhang <strong>and</strong> his<br />

co-workers reported the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> chloride c<strong>on</strong>centrati<strong>on</strong> (0.01 to 1 M) <strong>on</strong> the corrosi<strong>on</strong><br />

<strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CuCr, CuZr <strong>and</strong> <strong>CuCrZr</strong> [1]. Significant reducti<strong>on</strong> <strong>in</strong> corrosi<strong>on</strong> resistance<br />

was observed with simultaneous micro-additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>and</strong> Zr, compared with additi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cr or Zr al<strong>on</strong>e. It was also shown that the element Zr plays a deteriorat<strong>in</strong>g role to the<br />

Cu 2 O layer while Cr plays an <str<strong>on</strong>g>of</str<strong>on</strong>g>fsett<strong>in</strong>g role [1]. In these reports [1,5-7], the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the corrosi<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> has not been studied, though <strong>CuCrZr</strong> could be<br />

exposed to envir<strong>on</strong>ments with different <str<strong>on</strong>g>pH</str<strong>on</strong>g> values.<br />

The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the present work is to <strong>in</strong>vestigate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> the corrosi<strong>on</strong><br />

<strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> high copper alloy <strong>CuCrZr</strong> compared with Cu, CuCr <strong>and</strong> CuZr <strong>in</strong> soluti<strong>on</strong><br />

<strong>without</strong> <strong>and</strong> with 0.6 M NaCl by open-circuit potential measurement <strong>and</strong><br />

potentiodynamic polarizati<strong>on</strong>. In additi<strong>on</strong>, the morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> the corroded surface was<br />

also <strong>in</strong>vestigated.<br />

3


2. Experimental details<br />

Wrought cyl<strong>in</strong>drical bars <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>-hardened high copper alloy <strong>CuCrZr</strong><br />

(C18150) was selected for present study. Annealed Cu (C11000) <strong>and</strong><br />

precipitati<strong>on</strong>-hardened CuCr (C18200) <strong>and</strong> CuZr (C15000) were <strong>in</strong>cluded for<br />

comparis<strong>on</strong> purpose <strong>and</strong> for explor<strong>in</strong>g the role <str<strong>on</strong>g>of</str<strong>on</strong>g> the alloy<strong>in</strong>g elements <strong>on</strong> the corrosi<strong>on</strong><br />

<strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the alloys. Disc specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 mm <strong>and</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 mm<br />

were prepared by a cut-<str<strong>on</strong>g>of</str<strong>on</strong>g>f mach<strong>in</strong>e with coolant. The Vickers hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

specimens was determ<strong>in</strong>ed us<strong>in</strong>g a microhardness tester at a load <str<strong>on</strong>g>of</str<strong>on</strong>g> 200 g <strong>and</strong> a load<strong>in</strong>g<br />

time <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 s. The designati<strong>on</strong>, chemical compositi<strong>on</strong>s, <strong>and</strong> Vickers hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tested specimens are shown <strong>in</strong> Table 1. Prior to the corrosi<strong>on</strong> tests, the specimens were<br />

mechanically ground by CAMI 800-grit silic<strong>on</strong> carbide paper, degreased <strong>in</strong> alcohol,<br />

r<strong>in</strong>sed <strong>in</strong> distilled water, <strong>and</strong> f<strong>in</strong>ally dried <strong>in</strong> a cool air stream.<br />

To <strong>in</strong>vestigate electrochemical corrosi<strong>on</strong> <strong>behavior</strong>, the specimens were embedded<br />

<strong>in</strong> cold-cur<strong>in</strong>g epoxy res<strong>in</strong>. Epoxy res<strong>in</strong> was also applied at the <strong>in</strong>terface between the<br />

specimens <strong>and</strong> the mount <strong>in</strong> order to avoid crevice corrosi<strong>on</strong> as well as to expose a test<br />

area <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 cm 2 . In order to avoid the <strong>in</strong>fluence due to air exposure, the test soluti<strong>on</strong>s were<br />

freshly prepared by dissolv<strong>in</strong>g 35 g NaCl <strong>in</strong> 965 ml distilled water <strong>and</strong> the <str<strong>on</strong>g>pH</str<strong>on</strong>g> was<br />

varied by add<strong>in</strong>g H 2 SO 4 or NaOH. Open-circuit potential (OCP) measurement <strong>and</strong><br />

potentiodynamic polarizati<strong>on</strong> test <strong>in</strong> the freshly prepared soluti<strong>on</strong>s <strong>without</strong> <strong>and</strong> with 0.6<br />

M NaCl at <str<strong>on</strong>g>pH</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g> 1, 3, 5, 7, 10 <strong>and</strong> 12, open to air at 25±1 o C, were performed <strong>in</strong><br />

a three-electrode cell <strong>in</strong> a water bath us<strong>in</strong>g a PAR VersastatII potentiostat accord<strong>in</strong>g to<br />

ASTM St<strong>and</strong>ard G5-94 [8]. All potentials were measured with respect to a saturated<br />

calomel electrode (SCE, 0.244 V versus SHE at 25 o C) as the reference electrode. Two<br />

parallel graphite rods served as the counter electrode for current measurement. After the<br />

OCP measurement for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 hours, the f<strong>in</strong>al steady OCP was recorded <strong>and</strong> then<br />

4


the potential was <strong>in</strong>creased at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mV s -1 , start<strong>in</strong>g from 0.2 V below the OCP <strong>and</strong><br />

term<strong>in</strong>ated at 1 V. From the polarizati<strong>on</strong> curves, the corrosi<strong>on</strong> current densities (I corr ) <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the alloys <strong>in</strong> various test c<strong>on</strong>diti<strong>on</strong>s were determ<strong>in</strong>ed by the fitt<strong>in</strong>g to the l<strong>in</strong>ear regi<strong>on</strong><br />

us<strong>in</strong>g Tafel extrapolati<strong>on</strong> with the aid <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (PowerCORR, V.2.42).<br />

For specimens show<strong>in</strong>g pitt<strong>in</strong>g corrosi<strong>on</strong> <strong>behavior</strong> at high <str<strong>on</strong>g>pH</str<strong>on</strong>g>, the pitt<strong>in</strong>g potentials <strong>and</strong><br />

passive currents were also recorded.<br />

The microstructure, morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> the corroded surface, <strong>and</strong> chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the corrosi<strong>on</strong> products <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> were <strong>in</strong>vestigated by scann<strong>in</strong>g<br />

electr<strong>on</strong> microscopy (SEM, Hitachi S-3400N) <strong>and</strong> energy dispersive X-ray<br />

spectroscopy (EDX, Horiba EX-250).<br />

3. Results <strong>and</strong> discussi<strong>on</strong><br />

3.1 Microstructure<br />

The microstructure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> equiaxed, tw<strong>in</strong>ned gra<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> alpha copper<br />

solid soluti<strong>on</strong> as shown <strong>in</strong> Fig. 1. Typically it had been cooled rapidly so the Cr <strong>and</strong> Zr<br />

rema<strong>in</strong>ed <strong>in</strong> solid soluti<strong>on</strong>. The precipitati<strong>on</strong> treatment allowed the Cr <strong>and</strong> Zr to<br />

precipitate out <str<strong>on</strong>g>of</str<strong>on</strong>g> the solid soluti<strong>on</strong>, form<strong>in</strong>g a dispersi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>and</strong> Zr precipitates<br />

throughout the matrix. The precipitates <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>and</strong> Zr are too f<strong>in</strong>e <strong>and</strong> <strong>in</strong>visible at low<br />

magnificati<strong>on</strong>.<br />

5


3.2 Open-circuit potential measurements<br />

The plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP aga<strong>in</strong>st time for <strong>CuCrZr</strong> <strong>and</strong> Cu <strong>in</strong> soluti<strong>on</strong>s at various <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

<strong>without</strong> <strong>and</strong> with chloride are shown <strong>in</strong> Figs. 2 to 5. The steady values are summarized<br />

<strong>in</strong> Table 2 <strong>and</strong> plotted aga<strong>in</strong>st the <str<strong>on</strong>g>pH</str<strong>on</strong>g> values as shown Fig. 6. In general, the OCPs for<br />

<strong>CuCrZr</strong> <strong>and</strong> Cu <strong>in</strong> 0.6 M NaCl soluti<strong>on</strong> are more active than those <strong>in</strong> the soluti<strong>on</strong>s<br />

<strong>without</strong> chloride. For <strong>CuCrZr</strong> <strong>in</strong> 0.6 M NaCl soluti<strong>on</strong>, the OCP peaks at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7 while <strong>in</strong><br />

soluti<strong>on</strong>s <strong>without</strong> NaCl, the OCP peaks at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 5 (Fig.6(a)). On the other h<strong>and</strong>, the OCP<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cu <strong>in</strong> 0.6 M NaCl soluti<strong>on</strong> <strong>in</strong>creases m<strong>on</strong>ot<strong>on</strong>ically with <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>in</strong> the range <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 to 12,<br />

while <strong>in</strong> soluti<strong>on</strong> <strong>without</strong> NaCl, the OCP peaks at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 5 (Fig. 6(b)).<br />

The Pourbaix diagrams for Cu, Cr <strong>and</strong> Zr <strong>in</strong> water at 25 °C shown <strong>in</strong> Fig. 7<br />

provides a thermodynamic basis for expla<strong>in</strong><strong>in</strong>g the phenomena <str<strong>on</strong>g>of</str<strong>on</strong>g> dissoluti<strong>on</strong> <strong>and</strong> oxide<br />

formati<strong>on</strong> <strong>in</strong> aqueous soluti<strong>on</strong>s under different electrochemical c<strong>on</strong>diti<strong>on</strong>s [9]. Am<strong>on</strong>g<br />

these elements, Cu is the noblest but it dissolves as Cu + /Cu 2+ <strong>in</strong> acidic soluti<strong>on</strong> <strong>and</strong><br />

oxidizes to Cu 2 O/CuO/Cu(OH) 2 <strong>in</strong> neutral <strong>and</strong> alkal<strong>in</strong>e soluti<strong>on</strong>s <strong>in</strong> aerated oxidiz<strong>in</strong>g<br />

c<strong>on</strong>diti<strong>on</strong>s. Cr shows corrosi<strong>on</strong> resistance by passivity due to the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> protective<br />

oxide which is stable at <str<strong>on</strong>g>pH</str<strong>on</strong>g> values above 3. Zr corrodes <strong>in</strong> acidic (<str<strong>on</strong>g>pH</str<strong>on</strong>g> < 3.5) <strong>and</strong> alkal<strong>in</strong>e<br />

(<str<strong>on</strong>g>pH</str<strong>on</strong>g> > 13) soluti<strong>on</strong>s <strong>and</strong> the area <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide stability lies between <str<strong>on</strong>g>pH</str<strong>on</strong>g> 3.5 <strong>and</strong> 13. Zr has<br />

the lowest redox potential which <strong>in</strong>dicates a large chemical driv<strong>in</strong>g force for corrosi<strong>on</strong>.<br />

If passivati<strong>on</strong> does not <strong>in</strong>tervene, Zr will react violently with the surround<strong>in</strong>g chemical<br />

species such as chloride, oxygen <strong>and</strong> water <strong>and</strong> be c<strong>on</strong>verted to its i<strong>on</strong>ic form.<br />

Compared with Cu, the difference <strong>in</strong> st<strong>and</strong>ard electrode potentials <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>and</strong> Zr <strong>in</strong> acidic<br />

medium is quite large. From Fig. 7b <strong>and</strong> 7c, the immunity regi<strong>on</strong> for Cr <strong>and</strong> Zr is<br />

located at lower potential regi<strong>on</strong>s. When the applied anodic potential is between the<br />

redox potentials <str<strong>on</strong>g>of</str<strong>on</strong>g> Zr/Zr 3+ /ZrO 2+ , Cr/Cr 2+ /Cr 3+ <strong>and</strong> Cu/Cu + /Cu 2+ , the dissoluti<strong>on</strong> is<br />

attributed to the preferential removal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr or Zr atoms <strong>in</strong> the alloys at low <str<strong>on</strong>g>pH</str<strong>on</strong>g>. The<br />

6


preferential dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr / Zr atoms may take place accompanied with hydrogen<br />

evoluti<strong>on</strong> due to their high electroactivity:<br />

Cr + H 2 O + H + Cr 2+ + H 2 + OH - (1)<br />

Zr + H 2 O + 2H + ZrO 2+ + 2H 2 (2)<br />

When selective dissoluti<strong>on</strong> occurs, the topmost layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the alloy surface is depleted <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the active elements (Cr or Zr), <strong>and</strong> preferentially enriched <strong>in</strong> the more noble element<br />

(Cu). Dealloy<strong>in</strong>g is largely dependent <strong>on</strong> the difference between the electrode potentials<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> major c<strong>on</strong>stituent elements, atomic percent compositi<strong>on</strong> <strong>and</strong> <strong>on</strong> the k<strong>in</strong>etics <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

solid-state diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the alloyed elements [10]. Although <strong>CuCrZr</strong> c<strong>on</strong>ta<strong>in</strong>s a small<br />

amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>and</strong> Zr (lower than 1.5 wt%), dealloy<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> still occurs at low <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> the selective dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>and</strong> Zr accord<strong>in</strong>g to the Pourbaix diagrams.<br />

Alloys c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g Zr are expected to be more susceptible to dealloy<strong>in</strong>g than the alloys<br />

c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g Cr because <str<strong>on</strong>g>of</str<strong>on</strong>g> the larger difference <strong>in</strong> electrode potentials. The Pourbaix<br />

diagrams can provide <strong>in</strong>formati<strong>on</strong> for the thermodynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> metal dissoluti<strong>on</strong> <strong>in</strong><br />

aqueous envir<strong>on</strong>ment but the <strong>in</strong>formati<strong>on</strong> about the dissoluti<strong>on</strong> k<strong>in</strong>etics will be<br />

discussed based <strong>on</strong> the potentiodynamic polarizati<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>in</strong> the next<br />

secti<strong>on</strong>.<br />

3.3 Polarizati<strong>on</strong> <strong>behavior</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 to 5<br />

The potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>and</strong> Cu <strong>in</strong> acidic soluti<strong>on</strong>s<br />

<strong>without</strong> <strong>and</strong> with chloride NaCl (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1, 3 <strong>and</strong> 5) are showed <strong>in</strong> Figs. 8 <strong>and</strong> 9 respectively<br />

<strong>and</strong> the values <str<strong>on</strong>g>of</str<strong>on</strong>g> I corr are listed <strong>in</strong> Table 2. In the soluti<strong>on</strong>s <strong>without</strong> <strong>and</strong> with chloride,<br />

the anodic current density <strong>and</strong> I corr <strong>in</strong>crease <strong>and</strong> the corrosi<strong>on</strong> potential decreases with<br />

7


<strong>in</strong>crease <strong>in</strong> acidity. In soluti<strong>on</strong>s at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 3 to 5 <strong>without</strong> chloride, a narrow l<strong>in</strong>ear porti<strong>on</strong> <strong>in</strong><br />

the anodic regi<strong>on</strong> is observed. The l<strong>in</strong>ear regi<strong>on</strong> is attributed to diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper i<strong>on</strong>s<br />

<strong>in</strong> oxide films. In the chloride soluti<strong>on</strong>s at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 to 5, no clear anodic Tafel regi<strong>on</strong> <strong>and</strong><br />

no active-passive transiti<strong>on</strong> is observed, show<strong>in</strong>g that anodic dissoluti<strong>on</strong> was not <strong>in</strong> an<br />

activati<strong>on</strong> regime. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stable surface oxides is impossible <strong>and</strong> dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

copper is dom<strong>in</strong>ant. Feng et al. reported that the oxide film tends to dissolve <strong>in</strong> acidic<br />

soluti<strong>on</strong> <strong>and</strong> the film thickness decreases rapidly when the <str<strong>on</strong>g>pH</str<strong>on</strong>g> value is lower than 4 [11].<br />

In the acidic soluti<strong>on</strong>s <strong>without</strong> chloride, the ma<strong>in</strong> anodic reacti<strong>on</strong> that takes place is<br />

active dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu to Cu + at the corrosi<strong>on</strong> potential:<br />

Cu Cu + + e - (3)<br />

The reacti<strong>on</strong> rate is driven by the cathodic reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen <strong>in</strong> acidic soluti<strong>on</strong>:<br />

O 2 + 4H + + 4e - 2H 2 O (4)<br />

Comb<strong>in</strong><strong>in</strong>g (3) <strong>and</strong> (4),<br />

4Cu + O 2 + 4H + 4Cu + + 2H 2 O (5)<br />

In the soluti<strong>on</strong> with chloride i<strong>on</strong>s, the potential <str<strong>on</strong>g>of</str<strong>on</strong>g> the cathodic-anodic transiti<strong>on</strong><br />

regi<strong>on</strong> is shifted <strong>in</strong> the active directi<strong>on</strong>. Higher I corr (i.e. corrosi<strong>on</strong> rates) are recorded<br />

<strong>and</strong> peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> anodic current density are also observed. When the applied anodic<br />

potential is higher than the dissoluti<strong>on</strong> potential <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu, dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu occurs through<br />

the mass-transfer c<strong>on</strong>trolled step <strong>in</strong> the Tafel regi<strong>on</strong> [12]. The <strong>in</strong>itial reacti<strong>on</strong> is the<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> less soluble CuCl solid [13]:<br />

Cu + Cl − CuCl (s) + e − (6)<br />

8


Moreover, copper oxidizes to cuprous chloride complexes <strong>and</strong> the rate is dependent <strong>on</strong><br />

chloride c<strong>on</strong>centrati<strong>on</strong> but <strong>in</strong>dependent <strong>on</strong> <str<strong>on</strong>g>pH</str<strong>on</strong>g> [14].<br />

Cuprous i<strong>on</strong>s can diffuse through solid state CuCl until they meet with chloride<br />

i<strong>on</strong>s, <strong>and</strong> then the follow<strong>in</strong>g reacti<strong>on</strong> takes place:<br />

Cu + + Cl − CuCl (s) (7)<br />

As the potential is further <strong>in</strong>creased, the anodic curves exhibit small peaks due to<br />

the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CuCl film at a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> about -0.05 V. At chloride c<strong>on</strong>centrati<strong>on</strong>s<br />

higher than 0.3 M (0.6 M <strong>in</strong> the present study), the <strong>in</strong>soluble CuCl layer transforms <strong>in</strong>to<br />

a soluble CuCl − 2 complex [1] <strong>and</strong> then CuCl − 2 hydrolyzes to form a passive Cu 2 O layer<br />

<strong>and</strong> so a decrease <strong>in</strong> the corrosi<strong>on</strong> rate can be observed.<br />

3.4 Polarizati<strong>on</strong> <strong>behavior</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7 to 12<br />

The potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>CuCrZr</strong> <strong>and</strong> Cu <strong>in</strong> the near-neutral<br />

soluti<strong>on</strong> (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 7) <strong>and</strong> alkal<strong>in</strong>e soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 <strong>and</strong> 12) with <strong>and</strong> <strong>without</strong> NaCl are shown<br />

<strong>in</strong> Figs. 10 <strong>and</strong> 11 respectively <strong>and</strong> the corrosi<strong>on</strong> parameters are extracted <strong>and</strong><br />

summarized <strong>in</strong> Table 2.<br />

In the soluti<strong>on</strong> <strong>without</strong> chloride at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, passivati<strong>on</strong>-like <strong>behavior</strong> is observed <strong>in</strong><br />

<strong>CuCrZr</strong> <strong>and</strong> Cu at higher anodic potentials. However, they do not passivate <strong>in</strong> chloride<br />

soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7. It has been reported that the polarizati<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> the<br />

Tafel regi<strong>on</strong> <strong>in</strong> chloride soluti<strong>on</strong>s is not activati<strong>on</strong>-c<strong>on</strong>trolled but is a mass<br />

transport-k<strong>in</strong>etics process; thus dissoluti<strong>on</strong> is c<strong>on</strong>trolled by the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> diffusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

CuCl - 2 species from the electrode surface across a diffusi<strong>on</strong> layer whose c<strong>on</strong>centrati<strong>on</strong><br />

9


gradient is determ<strong>in</strong>ed by the electrode potential [15-17]. As the potential is further<br />

<strong>in</strong>creased, the anodic curves exhibit small peaks c<strong>on</strong>sistent with the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a CuCl<br />

film [16, 17] at a potential <str<strong>on</strong>g>of</str<strong>on</strong>g> about -0.05 V. Bey<strong>on</strong>d the peaks, limit<strong>in</strong>g-current<br />

<strong>behavior</strong> is observed <strong>and</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> anodic reacti<strong>on</strong> is c<strong>on</strong>trolled by the formati<strong>on</strong> <strong>and</strong><br />

dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CuCl film [16]. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the reacti<strong>on</strong> is probably driven by the cathodic<br />

reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen <strong>in</strong> neutral soluti<strong>on</strong>:<br />

O 2<br />

2H<br />

2<br />

O 4e<br />

4( OH )<br />

(7)<br />

In chloride soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, the I corr <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu <strong>and</strong> <strong>CuCrZr</strong> are the lowest (Fig. 11). It seems<br />

their polarizati<strong>on</strong> <strong>behavior</strong>s <strong>in</strong> chloride soluti<strong>on</strong>s are dom<strong>in</strong>ated by the dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

copper to soluble cuprous chloride i<strong>on</strong> complex CuCl 2 - .<br />

For <strong>CuCrZr</strong> <strong>in</strong> soluti<strong>on</strong> <strong>without</strong> chloride at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 10, passivati<strong>on</strong> is observed <strong>and</strong> the<br />

passive range (-0.1 to 0.25 V) is wider than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7 <strong>and</strong> Cu at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 10<br />

(Fig. 10). Their passive current densities are <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> A/cm 2 . A th<strong>in</strong> <strong>and</strong> dense<br />

Cu 2 O layer formed <strong>on</strong> the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>and</strong> Cu results <strong>in</strong> sp<strong>on</strong>taneous passivati<strong>on</strong>.<br />

Whereas, the polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>and</strong> Cu show active <strong>behavior</strong> <strong>in</strong> choride<br />

soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 <strong>and</strong> are similar to those at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7 (Fig. 11). The curves for <strong>CuCrZr</strong> <strong>and</strong><br />

Cu <strong>in</strong> 0.6 M NaCl start with similar active regi<strong>on</strong>s followed by active–passive transiti<strong>on</strong><br />

that occurs at comparable potentials. The sudden <strong>in</strong>crease <str<strong>on</strong>g>of</str<strong>on</strong>g> anodic currents at higher<br />

potentials is due to film breakdown, be<strong>in</strong>g accompanied by corrosi<strong>on</strong>.<br />

It has been shown that the potentiodynamic <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> slightly alkal<strong>in</strong>e<br />

soluti<strong>on</strong> exhibits anodic peak associated with the electro-formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu 2 O <strong>and</strong> CuO.<br />

Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu 2 O occurs through:<br />

2Cu + H 2 O → Cu 2 O + 2H + + 2e - (9)<br />

10


<strong>and</strong> subsequent oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu 2 O to CuO film at higher potentials, accord<strong>in</strong>g to:<br />

Cu 2 O + H 2 O → 2CuO + 2H + + 2e - (10)<br />

Thus, passivity breakdown at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 occurs with the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu 2 O for <strong>CuCrZr</strong> at<br />

lower potential <strong>and</strong> with the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> CuO film for Cu at higher potential. This is<br />

attributed primarily to the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> H + i<strong>on</strong>s at the electrode surface [18].<br />

For <strong>CuCrZr</strong> <strong>and</strong> Cu <strong>in</strong> the soluti<strong>on</strong> <strong>without</strong> chloride at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12, the <strong>behavior</strong> at the<br />

active regi<strong>on</strong> appears to be <strong>in</strong>fluenced by high alkal<strong>in</strong>ity. The noticeable Tafel regi<strong>on</strong><br />

shows a large slope <strong>and</strong> wide passive range. The CuO layer formed <strong>and</strong> its thickness<br />

<strong>in</strong>creases rapidly due to high alkal<strong>in</strong>ity. The polarizati<strong>on</strong> curves (Fig. 10) exhibit a<br />

passive regi<strong>on</strong> with an anodic peak which corresp<strong>on</strong>ds to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu(OH) /<br />

Cu 2 O layer [19, 20] through the follow<strong>in</strong>g reacti<strong>on</strong>s:<br />

2Cu + 2OH - → Cu 2 O + H 2 O + 2e - (10)<br />

<strong>and</strong> subsequent oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu 2 O to Cu(OH) 2 film at higher potentials, accord<strong>in</strong>g to:<br />

Cu 2 O + 2OH - + H 2 O → Cu(OH) 2 + 2e - (11)<br />

In chloride soluti<strong>on</strong>, the film stability <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>and</strong> Cu is lower but the curves<br />

still show c<strong>on</strong>siderable passive ranges (Fig. 11). As the potential is <strong>in</strong>creased above the<br />

pitt<strong>in</strong>g potential, breakdown becomes evident. The polarizati<strong>on</strong> curves show two<br />

passive regi<strong>on</strong>s with two anodic peaks. The first peak corresp<strong>on</strong>ds to the formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the Cu(OH) / Cu 2 O layer. The sec<strong>on</strong>d peak is more complex <strong>and</strong> <strong>in</strong>volves the formati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> Cu(OH) / Cu 2 O <strong>and</strong> Cu(OH) 2 / CuO [21].<br />

3.5 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> I corr<br />

11


The plots <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> rates (reflected by I corr ) aga<strong>in</strong>st the <str<strong>on</strong>g>pH</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>s<br />

are shown <strong>in</strong> Fig. 12. The corrosi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>and</strong> Cu are the highest <strong>in</strong> chloride<br />

soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 <strong>and</strong> lowest at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7. Dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> oxide films takes place when the <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

is lower than 5. Between <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7 <strong>and</strong> 10, Cu 2 O film is formed <strong>and</strong> the film is not so<br />

protective. When <str<strong>on</strong>g>pH</str<strong>on</strong>g> is greater than 10, CuO film starts to form <strong>and</strong> excellent passivity<br />

is observed.<br />

3.6 <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>and</strong> Zr <strong>on</strong> corrosi<strong>on</strong> <strong>behavior</strong><br />

The polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>and</strong> Cu are compared with those <str<strong>on</strong>g>of</str<strong>on</strong>g> CuCr <strong>and</strong><br />

CuZr <strong>in</strong> chloride soluti<strong>on</strong>s at extreme <str<strong>on</strong>g>pH</str<strong>on</strong>g> values (1 <strong>and</strong> 12) as shown <strong>in</strong> Fig. 13. The<br />

anodic current densities <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong>, CuCr, CuZr <strong>and</strong> Cu at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 do not vary much due<br />

to active dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu. On the c<strong>on</strong>trary, at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12, Cu, <strong>CuCrZr</strong> <strong>and</strong> CuCr exhibit a<br />

wide passive range <strong>and</strong> high pitt<strong>in</strong>g potentials (≥ 0.5 V) whereas CuZr shows very<br />

narrow passive range <strong>and</strong> localized film breakdown occurs at relative low anodic<br />

potential (-0.04 V). The additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more active Zr deteriorates the corrosi<strong>on</strong> resistance<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> CuZr significantly at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12. Zhang <strong>and</strong> his coworkers reported that Zr plays a<br />

deteriorat<strong>in</strong>g role to the Cu 2 O layer while Cr plays an <str<strong>on</strong>g>of</str<strong>on</strong>g>fsett<strong>in</strong>g role <strong>in</strong> 1 M NaCl<br />

neutral soluti<strong>on</strong> [1]. In the b<strong>in</strong>ary alloys (CuCr <strong>and</strong> CuZr), the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> the element Zr is<br />

markedly str<strong>on</strong>ger than that <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr <strong>in</strong> chloride soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12. However, no significant<br />

reducti<strong>on</strong> <strong>in</strong> pitt<strong>in</strong>g corrosi<strong>on</strong> resistance is observed when both Cr <strong>and</strong> Zr are present <strong>in</strong><br />

<strong>CuCrZr</strong>. It is may be attributed to its lower Zr c<strong>on</strong>tent (0.12 wt%) compared with CuZr<br />

(0.25 wt%). Based <strong>on</strong> the value <str<strong>on</strong>g>of</str<strong>on</strong>g> E pit , the pitt<strong>in</strong>g corrosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> the alloys is<br />

ranked as:<br />

CuZr


3.7. SEM <strong>and</strong> EDX analyses<br />

The SEM micrographs <str<strong>on</strong>g>of</str<strong>on</strong>g> corroded <strong>CuCrZr</strong> <strong>in</strong> chloride soluti<strong>on</strong>s at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 <strong>and</strong> 12<br />

with EDX spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> the corrosi<strong>on</strong> products are shown <strong>in</strong> Fig. 14. SEM exam<strong>in</strong>ati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<strong>CuCrZr</strong> corroded <strong>in</strong> chloride soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 reveal uniform corrosi<strong>on</strong> with corrosi<strong>on</strong><br />

products cover<strong>in</strong>g the entire surface (Fig. 14(a)). Small discrete pits are observed for<br />

<strong>CuCrZr</strong> corroded <strong>in</strong> chloride soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 as shown by the arrows <strong>in</strong> Fig. 14(b). It<br />

is observed that the degree <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> damage is more severe <strong>in</strong> <strong>CuCrZr</strong> <strong>in</strong> chloride<br />

soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1. EDX results <str<strong>on</strong>g>of</str<strong>on</strong>g> the corroded surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>in</strong> chloride soluti<strong>on</strong> at<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 c<strong>on</strong>ta<strong>in</strong>s relatively high Cl <strong>and</strong> O with a t<strong>in</strong>y amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Cr. It is likely that the<br />

corrosi<strong>on</strong> product c<strong>on</strong>sists ma<strong>in</strong>ly <str<strong>on</strong>g>of</str<strong>on</strong>g> copper chlorides. On the other h<strong>and</strong>, the corroded<br />

surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>in</strong> chloride soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 c<strong>on</strong>ta<strong>in</strong>s more O, <strong>and</strong> the corrosi<strong>on</strong><br />

product c<strong>on</strong>sists ma<strong>in</strong>ly copper oxides. In additi<strong>on</strong>, some Cr(OH) 2 or Cr 2 O 3 could also<br />

be formed.<br />

4. C<strong>on</strong>clusi<strong>on</strong>s<br />

1. The open-circuit potentials for <strong>CuCrZr</strong> <strong>and</strong> Cu <strong>in</strong> 0.6 M NaCl soluti<strong>on</strong> are more<br />

active than those <strong>in</strong> the soluti<strong>on</strong>s <strong>without</strong> chloride.<br />

2. The open-circuit potentials for <strong>CuCrZr</strong> <strong>and</strong> Cu shifted to active directi<strong>on</strong> as acidity<br />

<strong>in</strong>creases <strong>without</strong> <strong>and</strong> with chloride due to active dissoluti<strong>on</strong>.<br />

3. The corrosi<strong>on</strong> rates (reflected by I corr ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong> <strong>and</strong> Cu are the highest <strong>in</strong> NaCl<br />

soluti<strong>on</strong> at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 <strong>and</strong> the lowest at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7.<br />

13


4. The corrosi<strong>on</strong> rates (reflected by I corr ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong>, Cu, CuCr <strong>and</strong> CuZr at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 do<br />

not differ significantly as at this low <str<strong>on</strong>g>pH</str<strong>on</strong>g> corrosi<strong>on</strong> is c<strong>on</strong>trolled by active<br />

dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu.<br />

5. On the c<strong>on</strong>trary, at <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12, <strong>CuCrZr</strong>, Cu, <strong>and</strong> CuCr exhibit significant passivity <strong>and</strong><br />

high pitt<strong>in</strong>g potentials (≥ 0.5 V) whereas CuZr shows very narrow passive range<br />

<strong>and</strong> localized film breakdown occurred at relative low anodic potential (-0.04 V).<br />

Acknowledgements<br />

The work described <strong>in</strong> this paper was fully supported by a research grant from the<br />

Fundo para o Desenvolvimento das Ciencias e da Tecnologia (FDCT 018/2008/A) <strong>and</strong><br />

the Research Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Macau (Project no.<br />

RG064/07-08S/KCT/FST). Support from the <strong>in</strong>frastructure <str<strong>on</strong>g>of</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Macau <strong>and</strong><br />

the H<strong>on</strong>g K<strong>on</strong>g Polytechnic University is also acknowledged.<br />

References<br />

[1] Y.N. Zhang, J.L. Zi, M.S. Zheng, J.W. Zhu, Corrosi<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper with<br />

m<strong>in</strong>or alloy<strong>in</strong>g additi<strong>on</strong> <strong>in</strong> chloride soluti<strong>on</strong>, J. Alloys Comp. 462 (2008) 240-243.<br />

[2] M. Metikos-Hukovic, R. Babic, I. Paic, Copper corrosi<strong>on</strong> at various <str<strong>on</strong>g>pH</str<strong>on</strong>g> values<br />

with <strong>and</strong> <strong>without</strong> the <strong>in</strong>hibitor, J. App. Electrochem. 30 (2000) 617-624.<br />

[3] Y. Feng, K.S. Siow, W.K. Teo, K.L. Tan, A.K. Hseih, Corrosi<strong>on</strong> mechanisms <strong>and</strong><br />

products <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> aqueous soluti<strong>on</strong>s at various <str<strong>on</strong>g>pH</str<strong>on</strong>g> values, Corrosi<strong>on</strong> 53 (1997)<br />

389-398.<br />

14


[4] V. Belous, G. Kal<strong>in</strong><strong>in</strong>, P. Lorenzetto, S. Velikhopolskiy, Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

corrosi<strong>on</strong> behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> structural materials <strong>in</strong> the water coolant <str<strong>on</strong>g>of</str<strong>on</strong>g> ITER, J. Nucl.<br />

Mater. 258-263 (1998) 351-356.<br />

[5] T. Xu, L. Chen, Y. Chen, S.X. Yu, B. Liu, J.H. Liu, Dechromisati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu-Cr alloy<br />

<strong>in</strong> acid soluti<strong>on</strong>s c<strong>on</strong>ta<strong>in</strong><strong>in</strong>g Cl - , Trans. N<strong>on</strong>ferrous Metals Soc. Ch<strong>in</strong>a 14 (2004)<br />

520-524.<br />

[6] C.Y. Yu, L.M. Chang, L.M. Zhou, H.Y. L<strong>in</strong>, Corrosi<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CuCrNiAl<br />

alloy <strong>in</strong> HC1 soluti<strong>on</strong>s, Trans. N<strong>on</strong>ferrous Metals Soc. Ch<strong>in</strong>a 16 (2006) 229–233.<br />

[7] H.B. Lu, Y. Li, F.H. Wang, Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> compositi<strong>on</strong> <strong>on</strong> corrosi<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

as-cast Cu–Zr alloys <strong>in</strong> HCl soluti<strong>on</strong>, Electrochim. Acta 52 (2006) 474-480.<br />

[8] ASTM G5 – 94 (2004) St<strong>and</strong>ard Reference Test Method for Mak<strong>in</strong>g Potentiostatic<br />

<strong>and</strong> Potentiodynamic Anodic Polarizati<strong>on</strong> Measurements, ASTM St<strong>and</strong>ards,<br />

ASTM, Philadelphia, PA, USA.<br />

[9] D.A. J<strong>on</strong>es, Pr<strong>in</strong>ciples <strong>and</strong> preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong>, 2 nd Ed., Prentice-Hall, NJ<br />

(1996) pp. 62-63.<br />

[10] B.G. Ateya, H.W. Picker<strong>in</strong>g, The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> potential <strong>and</strong> k<strong>in</strong>etic parameters <strong>on</strong> the<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> passivat<strong>in</strong>g noble metal rich surface layers dur<strong>in</strong>g the selective<br />

dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> b<strong>in</strong>ary alloys, Corros. Sci. 38 (1996) 1245-1267.<br />

[11] Y. Feng, W.K. Teo, K.S. Siow, G.L. Tan, A.K. Hseih, Corrosi<strong>on</strong> mechanisms <strong>and</strong><br />

products <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> aqueous soluti<strong>on</strong>s at various <str<strong>on</strong>g>pH</str<strong>on</strong>g> values Corrosi<strong>on</strong> 53 (1997)<br />

389-398.<br />

[12] H.P. Lee, K. Nobe, K<strong>in</strong>etics <strong>and</strong> mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu-electrodissoluti<strong>on</strong> <strong>in</strong> chloride<br />

media, J. Electrochem. Soc. 133 (1986) 2035-2043.<br />

[13] L. Stephens<strong>on</strong>, J.H. Bartlett, Anodic Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> Copper <strong>in</strong> HCl, J. Electrochem.<br />

Soc. 101 (1954) 571.<br />

15


[14] H.P. Lee, K. Nobe, A.J. Pearlste<strong>in</strong>, Film formati<strong>on</strong> <strong>and</strong> current oscillati<strong>on</strong>s <strong>in</strong> the<br />

electrodissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu <strong>in</strong> acidic chloride media, 1: Experimental studies, J.<br />

Electrochem. Soc. 132 (1985) 1031-1037.<br />

[15] A.L. Bacarella, J.C. Griess, Anodic dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cu <strong>in</strong> flow<strong>in</strong>g NaCl soluti<strong>on</strong>s<br />

between 25 <strong>and</strong> 175 °C, J. Electrochem. Soc. 120 (1973) 459-465.<br />

[16] D. Tromans, J.C. Silva, Behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> acidic sulfate soluti<strong>on</strong>: Comparis<strong>on</strong><br />

with acidic chloride, Corrosi<strong>on</strong> 53 (1997) 171-178.<br />

[17] D. Tromans, R. Sun, Anodic polarizati<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> aqueous<br />

chloride/benzotriazole soluti<strong>on</strong>s, J. Electrochem. Soc. 138 (1991) 3235-3255.<br />

[18] D. Tromans, R. Sun, Anodic polarizati<strong>on</strong> <strong>behavior</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> weakly alkal<strong>in</strong>e<br />

soluti<strong>on</strong>s, J. Electrochem. Soc. 139 (1992) 1945-1951.<br />

[19] M.R. Gennero de Chialvo, S.L. Marchiano, A.J. Arvia, The mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> alkal<strong>in</strong>e soluti<strong>on</strong>s, J. Appl. Electrochem. 14 (1984) 165-175.<br />

[20] J. G. Beccera, R.C. Salvarezza, A.J. Arvia, The <strong>in</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> slow Cu(OH) 2 phase<br />

formati<strong>on</strong> <strong>on</strong> the electrochemical behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> copper <strong>in</strong> alkal<strong>in</strong>e soluti<strong>on</strong>s,<br />

Electrochim. Acta 33 (1988) 613-621.<br />

[21] H. Wojtas, H. Boehni, Corrosi<strong>on</strong> <strong>and</strong> electrochemical characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidly<br />

solidified Cu-B, Cu-Al-B, Cu-Cr-Zr alloys, Mater. Sci. Eng. A, 134 (1991)<br />

1065-1069.<br />

16


Table <strong>and</strong> Figure capti<strong>on</strong>s<br />

Table 1. Designati<strong>on</strong>, compositi<strong>on</strong>s <strong>and</strong> hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper <strong>and</strong> various copper<br />

alloys.<br />

Table 2. Corrosi<strong>on</strong> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper <strong>and</strong> high copper alloys <strong>in</strong> the soluti<strong>on</strong>s<br />

at various <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>without</strong> <strong>and</strong> with NaCl.<br />

Fig. 1.<br />

SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong>.<br />

Fig. 2. Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1, 3, 5<br />

<strong>without</strong> NaCl.<br />

Fig. 3.<br />

Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1, 3, 5 with<br />

NaCl.<br />

Fig. 4. Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12<br />

<strong>without</strong> NaCl.<br />

Fig. 5.<br />

Fig. 6.<br />

Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12 with<br />

NaCl.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> OCP <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <strong>without</strong> <strong>and</strong> with<br />

0.6 M NaCl.<br />

Fig. 7. Pourbaix diagrams for (a) Cu-H 2 O, (b) Cr-H 2 O <strong>and</strong> (c) Zr-H 2 O systems at 25<br />

°C [9].<br />

Fig. 8.<br />

Fig. 9.<br />

Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> acidic<br />

soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1, 3, 5) <strong>without</strong> NaCl.<br />

Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> acidic<br />

soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1, 3, 5) with 0.6 M NaCl.<br />

17


Fig. 10. Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> neutral <strong>and</strong><br />

alkal<strong>in</strong>e soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12) <strong>without</strong> NaCl.<br />

Fig. 11.<br />

Fig. 12.<br />

Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> neutral <strong>and</strong><br />

alkal<strong>in</strong>e soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12) with 0.6 M NaCl.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> I corr <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s at various <str<strong>on</strong>g>pH</str<strong>on</strong>g><br />

<strong>without</strong> <strong>and</strong> with chloride.<br />

Fig. 13. Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> various copper alloys <strong>in</strong> 0.6 M NaCl<br />

soluti<strong>on</strong> at (a) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 <strong>and</strong> (b) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12.<br />

Fig. 14. SEM <strong>and</strong> EDX analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> product for <strong>CuCrZr</strong> <strong>in</strong> chloride soluti<strong>on</strong><br />

at (a) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 <strong>and</strong> (b) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 after polarizati<strong>on</strong> tests.<br />

18


Designati<strong>on</strong> UNS number Hardness (Hv) Compositi<strong>on</strong> (<strong>in</strong> wt%)<br />

Cu Cr Zr<br />

Cu C11000 102.0 Bal. - -<br />

<strong>CuCrZr</strong> C18150 168.8 Bal. 1.4 0.12<br />

CuCr C18200 162.5 Bal. 1.2 -<br />

CuZr C15000 132.8 Bal. - 0.25<br />

Table 1. Designati<strong>on</strong>, compositi<strong>on</strong>s <strong>and</strong> hardness <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper <strong>and</strong> various copper<br />

alloys.<br />

19


OCP<br />

(V)<br />

<strong>CuCrZr</strong><br />

Without NaCl 0.6M NaCl<br />

I corr E pit I pass<br />

OCP<br />

I corr E pit I pass<br />

( A/cm 2 ) (V) ( A/cm 2 ) (V) (A/cm 2 ) (V) ( A/cm 2 )<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 -0.11 0.046 - - -0.29 2.025 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 3 -0.05 0.084 - - -0.27 0.420 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 5 0.05 0.034 - - -0.23 0.139 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 7 -0.05 0.039 0.18 - -0.19 0.043 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 -0.04 0.058 0.25 1.7 -0.21 0.121 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 -0.12 0.131 0.50 10.0 -0.24 0.129 0.53 20<br />

Cu<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 -0.08 0.295 - - -0.27 0.980 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 3 -0.04 0.209 - - -0.25 0.304 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 5 0.05 0.040 - - -0.24 0.414 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 7 -0.03 0.023 0.13 - -0.20 0.025 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 10 -0.11 0.087 0.15 3.1 -0.20 0.130 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 -0.12 0.159 0.70 4.2 -0.19 0.227 0.55 20<br />

CuCr<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 - - - - -0.22 0.202 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 - - - - -0.16 0.271 0.50 20<br />

CuZr<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 - - - - -0.23 0.152 - -<br />

<str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 - - - - -0.17 0.243 -0.04 10<br />

Table 2. Corrosi<strong>on</strong> parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> pure copper <strong>and</strong> high copper alloys <strong>in</strong> the soluti<strong>on</strong>s<br />

at various <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>without</strong> <strong>and</strong> with NaCl.<br />

20


Fig. 1<br />

Fig. 1. SEM micrograph <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>CuCrZr</strong>.


Fig. 2<br />

(a)<br />

(b)<br />

Fig. 2. Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1, 3, 5 <strong>without</strong> NaCl.


Fig. 3<br />

(a)<br />

(b)<br />

Fig. 3. Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1, 3, 5 with NaCl.


Fig. 4<br />

(a)<br />

(b)<br />

Fig. 4. Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12 <strong>without</strong> NaCl.


Fig. 5<br />

(a)<br />

(b)<br />

Fig. 5. Plots <str<strong>on</strong>g>of</str<strong>on</strong>g> OCP vs time for (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12 with NaCl.


Fig. 6<br />

(a)<br />

Fig. 6. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> OCP <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s <strong>without</strong> <strong>and</strong> with 0.6 M NaCl.<br />

(b)


Fig. 7<br />

(a)<br />

(b)


Fig. 7. Pourbaix diagrams for (a) Cu-H 2 O, (b) Cr-H 2 O <strong>and</strong> (c) Zr-H 2 O systems at 25 °C [9].<br />

(c)


Fig. 8<br />

(a)<br />

(b)<br />

Fig. 8. Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> acidic soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1,<br />

3, 5) <strong>without</strong> NaCl.


Fig. 9<br />

(a)<br />

(b)<br />

Fig. 9. Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> acidic soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 1,<br />

3, 5) with 0.6 M NaCl.


Fig. 10<br />

(a)<br />

(b)<br />

Fig. 10.<br />

Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> neutral <strong>and</strong><br />

alkal<strong>in</strong>e soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12) <strong>without</strong> NaCl.


Fig. 11<br />

(a)<br />

(b)<br />

Fig. 11.<br />

Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> neutral <strong>and</strong><br />

alkal<strong>in</strong>e soluti<strong>on</strong>s (<str<strong>on</strong>g>pH</str<strong>on</strong>g> 7, 10, 12) with 0.6 M NaCl.


Fig. 12<br />

(a)<br />

(b)<br />

Fig. 12.<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>on</strong> I corr <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) <strong>CuCrZr</strong> <strong>and</strong> (b) Cu <strong>in</strong> soluti<strong>on</strong>s at various <str<strong>on</strong>g>pH</str<strong>on</strong>g> <strong>without</strong><br />

<strong>and</strong> with chloride.


Fig. 13<br />

(a)<br />

(b)<br />

Fig. 13.<br />

Potentiodynamic polarizati<strong>on</strong> curves <str<strong>on</strong>g>of</str<strong>on</strong>g> various copper alloys <strong>in</strong> 0.6 M NaCl<br />

soluti<strong>on</strong> at (a) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 <strong>and</strong> (b) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12.


Fig. 14<br />

Element<br />

O K<br />

Cl K<br />

Cr K<br />

Cu K<br />

Weight %<br />

20.22<br />

14.48<br />

0.26<br />

65.04<br />

(a)<br />

Element<br />

O K<br />

Cl K<br />

Cr K<br />

Cu K<br />

Weight %<br />

33.57<br />

3.31<br />

0.23<br />

62.89<br />

(b)<br />

Fig. 14. SEM <strong>and</strong> EDX analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> corrosi<strong>on</strong> product for <strong>CuCrZr</strong> <strong>in</strong> chloride soluti<strong>on</strong><br />

at (a) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 1 <strong>and</strong> (b) <str<strong>on</strong>g>pH</str<strong>on</strong>g> 12 after polarizati<strong>on</strong> tests.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!