29.11.2014 Views

Electrochemistry & Ionic equilibrium - Shailendra Kumar Chemistry

Electrochemistry & Ionic equilibrium - Shailendra Kumar Chemistry

Electrochemistry & Ionic equilibrium - Shailendra Kumar Chemistry

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

join<br />

FOUNDATION/TARGET BATCH<br />

to grab TOP rank in<br />

IIT-JEE / AIEEE / AIPMT<br />

CHEMISTRY<br />

Through most innovating teaching style by:<br />

<strong>Shailendra</strong> <strong>Kumar</strong><br />

consult for<br />

Meq. Approach<br />

FREE CRASH COURSE<br />

For: AIPMT (Mains) / AIEEE - 2012<br />

Our best rankers of 2011<br />

2613<br />

Ashnil Kr.<br />

4088<br />

Rahul Kr.<br />

IIT-JEE<br />

booklet of ELECTROCHEMISTRY and IONIC EQUILIBRIA<br />

www.shailendrakrchemistry.wordpress.com<br />

SCIENCE<br />

TUTORIALS<br />

PIN POINT<br />

STUDY CIRCLE<br />

6431<br />

Harshit<br />

10310<br />

Jayati<br />

10537<br />

Shahid Perwez<br />

AIEEE<br />

713<br />

Asim Ahmad<br />

983<br />

Navin Kr.<br />

AIPMT<br />

# CELL: 9386594202, 9334217743<br />

[kqnk c['k ykbczsjh ds lkeus] v'kksd jktiFk] iVuk<br />

gkml ua0&5A/65, egqvy dksBh ds lkeus] bUVjus'kuy<br />

Ldwy ds cxy esa] vYiuk ekdsZV] iVuk


Knowledge of thermodynamics, reaction quotient and<br />

redox reaction are very important for solving the problem<br />

of electrochemistry<br />

RULE TO SOLVE PROBLEM OF ELECTROCHEMISTRY<br />

§ Rule (1)<br />

A<br />

B<br />

A +2 + 2e ∆G 1<br />

= –0.2kcal ....(i)<br />

B +2 + 2e ∆G 2<br />

= +0.4 kcal ....(ii)<br />

According to the rule of spontaneity, reaction (i) is<br />

spontaneous but reaction (ii) is non-spontaneous. To<br />

gain full cell reaction, we convert non-spontaneous<br />

reaction into spontaneous reaction.<br />

Same : A A +2 + 2e; ∆G 1<br />

= –0.2kcal<br />

Change : B +2 + 2e B; ∆G 2<br />

= –0.4 kcal<br />

A + B +2 A +2 + B ∆Grxn<br />

∆Grxn = ∆G 1<br />

+ ∆G 2<br />

= (–0.2kcal) + (–0.4 kcal)<br />

= – 0.6 kcal<br />

To Calculate Emf of reaction<br />

§ Rule (2)<br />

∆G = – nFE E = –∆G/nF<br />

If both half cell reactions are non-spontaneous, then<br />

we convert more non-spontaneous reaction into<br />

spontaneous reaction to gain full cell reaction.<br />

A A +2 + 2e ∆G 1<br />

= +0.2 kcal ....(i)<br />

B B +2 + 2e ∆G 2<br />

= +0.5 kcal ....(ii)<br />

Reaction (i) is less non-spontaneous and reaction (ii) is<br />

more non-spontaneous.<br />

Change : B +2 + 2e B ∆G 2<br />

= –0.5 kcal<br />

Same : A A +2 + 2e ∆G 1<br />

= +0.2 kcal<br />

B +2 + A B + A +2 ∆Grxn<br />

∆Grxn = ∆G 1<br />

+ ∆G 2<br />

= (–0.5) + (0.2) kcal = –0.3 kcal<br />

* Spontaneity from ∆G<br />

4<br />

3<br />

2<br />

1<br />

0<br />

–1<br />

–2<br />

–3<br />

Non-spontaneoity<br />

increases<br />

∆G = 0 (Rxn is at <strong>equilibrium</strong>)<br />

Spontaneoity<br />

increases<br />

–4<br />

Greater the positive value (+ve) of free energy<br />

greater will be non-spontaneity.<br />

Greater the negative value (–ve) greater will be<br />

spontaneity<br />

2for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

§ Rule (3)<br />

If both half cell reactions are spontaneous then we<br />

convert less spontaneous reaction into nonspontaneous<br />

reaction.<br />

A A +2 + 2e ∆G 1<br />

= –0.5 kcal (more spontaneous)<br />

B B +2 + 2e ∆G 2<br />

= –0.2 kcal (less spontaneous)<br />

Same : A A +2 + 2e ∆G 1<br />

= –0.5 kcal<br />

Change : B +2 + 2e B ∆G 2<br />

= +0.2 kcal<br />

§ Rule (4)<br />

A<br />

A + B +2 B + A +2 ∆Grxn<br />

∆G rxn = – 0.5 kcal + 0.2 kcal = – 0.3 kcal<br />

B<br />

A +2 + 2e ∆Gº 1<br />

= –0.2 kcal ...(i)<br />

B +2 + 2e ∆Gº 2<br />

= +0.5 kcal...(ii)<br />

If ∆Gº given in the half cells then spontaneity of the<br />

reaction not determined by ∆Gº. We convert ∆Gº into<br />

∆G by following equation.<br />

∆G = ∆Gº + RT ln Q<br />

If Q = 1 , then ∆G = ∆Gº<br />

∆G 1<br />

= ∆Gº 1<br />

+ RT ln [A +2 ] .......(i)<br />

∆G 2<br />

= ∆Gº 2<br />

+ RT ln [B +2 ] .......(ii)<br />

§ Rule (5)<br />

If emf of the half cell given in the problem then we predict<br />

the spontaneity of reaction by emf.<br />

∆G = – nFE<br />

* Spontaneity from E<br />

Greater the reduction potential greater will be<br />

ease of reduction. Greater the oxidation potential greater<br />

will be ease of oxidation.<br />

§ Rule (6)<br />

A<br />

B<br />

4<br />

3<br />

2<br />

1<br />

0<br />

–1<br />

–2<br />

–3<br />

–4<br />

Spontaneoity<br />

increases<br />

E = 0 (Rxn is at <strong>equilibrium</strong>)<br />

Non - spontaneoity<br />

increases<br />

A +2 + 2e Eo.p = –0.2 Volt (non-spontaneous)<br />

B +2 + 2e Eo.p = +0.5 Volt (Spontaneous)<br />

Same : B B +2 + 2e EO.P. = +0.5 Volt<br />

Change: A +2 + 2e A ER.P. = +0.2 Volt<br />

B + A +2 B +2 +A Ecell<br />

Ecell = EO.P + ER.P = 0.5 + 0.2 = 0.7 Volt


§ Rule (7)<br />

A<br />

B<br />

A +2 + 2e EO.P. = +0.5 Volt (more spontaneous)<br />

B +2 + 2e EO.P. = +0.3 Volt (Less spontaneous)<br />

Same : A A +2 + 2e EO.P. = +0.5 Volt<br />

Change: B +2 + 2e B ER.P. = –0.3 Volt<br />

A + B +2 B + A +2 Ecell<br />

Ecell = EO.P. + ER.P. = +0.5 – 0.3 Volt = +0.2 Volt<br />

§ Rule (8)<br />

A<br />

B<br />

A +2 + 2e EO.P.= – 0.5 Volt (more spontaneous)<br />

B +2 + 2e EO.P. = – 0.2 Volt (Less spontaneous)<br />

Same : B B +2 + 2e EO.P. = –0.2 Volt<br />

Change: A +2 + 2e A ER.P. = +0.5 Volt<br />

A + B +2 B + A +2 Ecell<br />

Ecell = EO.P. + ER.P. = –0.2 + 0.5 Volt = +0.3 Volt<br />

§ Rule (9)<br />

A<br />

B<br />

A +2 + 2e EºO.P. = +0.5 Volt.....(i)<br />

B +2 + 2e EºO.P. = –0.2 Volt.....(ii)<br />

Spontaneity of reaction not determined by standard emf<br />

it is determined by following equation.<br />

E E n A<br />

E E n B<br />

Ο + 2<br />

= − (0.0592 )log[ ]<br />

O . P . O . P .<br />

Ο + 2<br />

O . P .<br />

=<br />

O . P .<br />

− (0.0592 )log[ ]<br />

Greater the O.P. greater will be ease of oxidation.<br />

HIT AND TRIAL METHOD<br />

We determined spontaneity of reaction by Eº value,<br />

however it is not correct. These are two possible result<br />

one is correct and other is incorrect. If Emf of the cell is<br />

+ve then our result is correct, but Emf of the cell is –ve,<br />

then our result is incorrect, to gain correct result we<br />

convert oxidation half cell into reduction half cell and<br />

reduction half cell into oxidation half cell.<br />

Rule for converting oxidation half cell into<br />

reduction half cell and vice-versa<br />

* A A +2 + 2e EO.P. = –0.2 Volt<br />

If you want to gain reduction half cell then<br />

A +2 + 2e A ER.P. = +0.2 Volt<br />

* B B +2 + 2e EO.P. = +0.5 Volt<br />

If you want to gain reduction half cell then<br />

B +2 + 2e B ER.P. = –0.5 Volt<br />

§ Rule (10) :<br />

A A +2 + 2e EO.P. = 0.2 Volt<br />

B +2 + 2e B ER.P. = 0.5 Volt<br />

Ecell = ?<br />

3for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

To calculate Ecell we convert all the half cell reactions<br />

are in same type (either oxidation half or reduction half)<br />

(i) Convert both reaction into oxidation half<br />

A A +2 + 2e EO.P. = 0.2 Volt<br />

B B +2 + 2e EO.P. = –0.5 Volt<br />

(ii) Convert both reaction into reduction half cell<br />

A +2 + 2e A ER.P. = –0.2 Volt<br />

B +2 + 2e B ER.P. = 0.5 Volt<br />

Same : B +2 + 2e B ER.P. = 0.5 Volt<br />

Change : A A +2 + 2e EO.P. = +0.2 Volt<br />

B +2 + A<br />

A +2 + B<br />

Ecell = 0.7 Volt<br />

§ Rule (11) :<br />

For following type half cell reaction hybrid reaction<br />

quotients (mixture of Qp and Qc) used in place of Qc or<br />

Qp<br />

« H 2<br />

2H + + 2e (no. of electron used = 2)<br />

Q<br />

Hybrid<br />

=<br />

+ 2<br />

[ ] /<br />

H mol litre<br />

( P ) atm<br />

H2<br />

« 1/2H 2<br />

H + + 1e (no. of electron used = 1)<br />

Q<br />

Hybrid<br />

+<br />

[ H ]<br />

=<br />

( P )<br />

1/2<br />

H 2<br />

« Cl 2<br />

+ 2e 2Cl – (no. of electron used = 2)<br />

Q<br />

Hybrid<br />

− 2<br />

[ Cl ]<br />

=<br />

( P )<br />

Cl 2<br />

« Cl – Cl 2<br />

+ 1e (no. of electron used = 1)<br />

Q<br />

Hybrid<br />

§ Rule(12) :<br />

( P )<br />

=<br />

[ Cl − ]<br />

1/2<br />

Cl 2<br />

Emf is mass or mole independent property (intensive<br />

property), but free energy is mass or mole dependent<br />

property (Extensive property)<br />

H 2<br />

2H + + 2e; EO.P. = x volt, ∆G = – 2Fx<br />

1/2H 2<br />

H + + 1e; EO.P. = x volt, ∆G = – Fx<br />

Emf of the reaction not depends on stoichiometry coeff.<br />

Example : 2X+ 3y 5 A Ecell = x volt<br />

X+ y A Ecell = x volt<br />

§ Rule (13) :<br />

If reaction is spontaneous in forward direction then nonspontaneous<br />

in reverse direction and vice-versa.<br />

Magnitude of Emf and ∆G are same but sign is reverse.<br />

A A +2 + 2e; EO.P. = X volt , ∆G = – 2FX<br />

A +2 + 2e A ∆G = +2 FX, ∆G = – nFE<br />

∆G = – nFER.P.<br />

ER.P. =<br />

∆G/–nF =2FX / –2F = –X volt


§ Rule (14) :<br />

If two half cell (no. of electron same or different)<br />

produces full cell reaction then for simplicity we add<br />

directly emf of half cell not ∆G. Addition of ∆G gives<br />

same result but process is lengthy.<br />

A A +2 + 2e E 1<br />

B +2 + 2e B E 2<br />

B +2 + A A +2 + B Ecell = E 1<br />

+ E 2<br />

If we proceed this problem by ∆G then.<br />

A A +2 + 2e ∆G 1<br />

= –2FE 1<br />

B +2 + 2e B ∆G 2<br />

= –2FE 2<br />

B +2 + A A +2 + B ∆Grxn = ∆G 1<br />

+ ∆G 2<br />

–2FEcell = –2FE 1<br />

– 2FE 2<br />

Ecell = E 1<br />

+ E 2<br />

If no. of electron involved and apparent in<br />

reaction then reaction is half cell. But if no. of electron<br />

involved but not apparent in the reaction then reaction<br />

is full cell reaction.<br />

Example:<br />

« Fe Fe +3 + 3e oxidation half cell, n=3<br />

« Fe +3 + 1e Fe +2 reduction half cell, n= 1<br />

« 2Fe +3 + 3I – 2Fe +2 –<br />

+I 3<br />

full cell rxn, n=2<br />

«<br />

–<br />

MnO 4<br />

+ 4H + +3e 2H 2<br />

O+MnO 2<br />

reduction half cell, n = 3<br />

« Fe +2 Fe +3 + 1e oxidation half cell, n=1<br />

If two half cell reaction having different no. of<br />

electron provide full cell reaction then we also add Emf<br />

for simplicity.<br />

Example :<br />

2× (A A +3 +3e) E 1<br />

, ∆G 1<br />

= –6FE 1<br />

3× ( B +2 + 2e B) E 2<br />

, ∆G 2<br />

= –6FE 2<br />

2A + 3B +2 2A +3 +3B, ∆Grxn = –6FE 3<br />

∆Grxn = ∆G 1<br />

+ ∆G 2<br />

= –6FE 1<br />

– 6FE 2<br />

= –6FE 3<br />

E 3<br />

= E 1<br />

+ E 2<br />

§ Rule (15) :<br />

If two half cell produces third half cell then we should<br />

not added Emf directly. To calculate emf of third half<br />

cell we add ∆G,<br />

A A +3 + 3e ; E 1<br />

, ∆G 1<br />

= –3FE 1<br />

B +2 + 2e B ; E 2,<br />

∆G 2<br />

= –2FE 2<br />

A + B +2 A +3 + B + 1e E 3<br />

¹ E 1<br />

+ E 2<br />

∆G 3<br />

= ∆G 1<br />

+ ∆G 2<br />

–1FE 3<br />

= –3FE 1<br />

+ (–2FE 2<br />

)<br />

E 3<br />

= 3E 1<br />

+ 2E 2<br />

§ Rule (16) :<br />

For writing shorthand notation or cell representation of<br />

electrochemical cell following conventions are used.<br />

A A +2 + 2e EO.P = 0.5 volt<br />

B +2 + 2e B ER.P = 0.2 volt<br />

A + B +2 B + A +2 Ecell = 0.7 volt<br />

4for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

This electrochemical cell represented as follows.<br />

Note :<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

(e)<br />

A | A || B | B<br />

14243 14243<br />

+ 2 + 2<br />

[ C1] [ C<br />

2]<br />

. . . R. H . S .<br />

L H S<br />

Oxidation half cell always represented in L.H.S<br />

and reduction half cell always represented in<br />

R.H.S.<br />

Single vertical line placed in L.H.S denote<br />

anode and R.H.S denote cathode<br />

Cathode is known as +ve terminal but anode is<br />

known as –ve terminal in electrolytic cell.<br />

C 1<br />

denotes concentration of A +2 and C 2<br />

denotes<br />

concentration of B +2 .<br />

Reaction quotient of this representation is:<br />

Q =<br />

+ 2<br />

[ A ][ B ]<br />

+ 2<br />

[ A][ B ]<br />

(f) Flow of electron takes place from left to right<br />

(anode to cathode), but flow of current takes<br />

place from right to left (cathode to anode)<br />

(g) No. of electron involved = 2<br />

(h) Ecell for this representation calculated as follows<br />

E = E −<br />

0 0.0592<br />

cell cell log Q<br />

2<br />

CONCEPT OF SPONTANEITY<br />

For the complete study of reaction knowledge of<br />

thermodynamics and chemical kinetics are essential.<br />

Thermodynamics tell us about spontaneity of<br />

reaction (Reaction is spontaneous or not). Chemical<br />

kinetics tells us about the rate of reaction (Reaction is<br />

fast or slow). Spontaneity of the reaction is determined<br />

by thermodynamic parameter like ∆G, ∆S (universe) and<br />

value of emf (For oxidation, Reduction or Redox<br />

Reaction)<br />

Entropy Change (∆S)<br />

Entropy is thermodynamic state quantity that is measure<br />

of randomness or disorder of the molecule of the<br />

system.<br />

Explanation of entropy on the basis of probability<br />

left<br />

bulb<br />

right<br />

bulb<br />

no. of molecule relative prob. of finding all<br />

molecules in left bulb<br />

A (1 molecule) PA = ½ = (½) 1<br />

A,B (2 molecules) PAB = PA×PB = (½) 2<br />

A,B,C....(n molecules) PABC...... = (½) n<br />

6.023 × 10 23 (½) 6.023× 1023 –6.023× 1023<br />

= 2


PA = Probability of finding molecule A<br />

PB = Probability of finding molecule B<br />

PA ×PB = Probability of finding molecule A and B at<br />

the same time<br />

In probability × denotes ‘AND’<br />

+ denotes ‘OR’<br />

From above example, it is clear that as no of molecules<br />

increases probability (chance) of finding of molecule at<br />

the one place decrease.<br />

According to 2nd law of thermodynamics entropy of<br />

universe always increase in spontaneous process.<br />

Surrounding : The rest part of the universe other than<br />

the system is called surrounding.<br />

System<br />

Example :<br />

Melting of ice at 10ºC. ∆S universe = +ve<br />

Melting of ice at 0ºC ∆S universe = 0<br />

Melting of ice at –10ºC ∆S universe = –ve<br />

For spontaneous process :<br />

∆Ssystem + ∆Ssurrounding = ∆Suniverse<br />

(+ve or, –ve) (+ve or –ve) (always +ve)<br />

∆G = ∆H – T∆S .................. (1)<br />

∆G = Free energy, ∆H = Heat enthalpy<br />

∆S = Change in entropy<br />

Eq. (1) is multiplied by –(1/T)<br />

∆G ∆H T ∆Ssys<br />

∆H<br />

− = − − = − + ∆S<br />

T T −T T<br />

∆G<br />

⎛ ∆H<br />

− = ∆ S + ∆ S = ∆S ⎜Q<br />

− = ∆S<br />

T<br />

⎝ T<br />

sys<br />

surro sys universe surro<br />

⇒ ∆ G = −T ∆ Suniverse<br />

V. V.<br />

I<br />

« Consider The melting of Ice<br />

H 2<br />

O (s) + heat → H 2<br />

O (l)<br />

∆H = 6.03 × 10 3 J/mol<br />

∆S system = 22.1 J/K mol<br />

Condition (1) melting of ice at –10ºC (Below M.P.)<br />

Temp = 263 K; ∆H = 6.03 × 10 3<br />

∆S system = 22.1 J/K<br />

∆S surro = –∆H/T =–6.03 × 10 3 / 263 = – 22.9 J/K ∆<br />

universe = ∆S sys + ∆S surro = 22.1–22.9 = –0.8 J/K<br />

∆S universe is –ve hence process is not spontaneous<br />

∆G = – ∆Suniverse × T = – (– 0.8) × 263 = 2.1 × 10 2 J<br />

∆G is +ve hence process is non–spontaneous.<br />

we can calculate ∆G from eq. ∆G = ∆H – T∆S also,<br />

∆G = 6.03 × 10 3 – 263 × 22.1 = 2.1 × 10 2 J<br />

⎞<br />

⎟<br />

⎠<br />

S<br />

5for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

Condition (2) melting of ice at 0ºC (at M.P.)<br />

Temp = 273 K; ∆H = 6.03 × 10 3<br />

∆G = ∆H – T∆S = 6.03 × 10 3 – 263 × 22.1 = 0<br />

∆G =0 (process is at <strong>equilibrium</strong>)<br />

∆Suniverse = ∆Ssystem + ∆Ssurro<br />

= 22.1 – (6.03 × 10 3 /273) = 0<br />

Condition (2) melting of ice at 10ºC (above M.P.)<br />

Temp = 283 K; ∆H = 6.03 × 10 3<br />

∆G = ∆H – T∆S = 6.03 × 10 3 – 263 × 22.1<br />

= –2.2 × 10 2 Joule<br />

Process is spontaneous.<br />

Q : By which statement we can say confirmly process<br />

is spontaneous.<br />

(a) ∆S system is +ve (f) ∆S universe is –ve<br />

(b) ∆S system is –ve (g) ∆G is +ve<br />

(c) ∆S surro is +ve (h) ∆G is –ve<br />

(d) ∆S surro is –ve (i) EMF is +ve<br />

(e) ∆S universe is +ve (j) EMF is –ve<br />

Ans: (e), (h) and (i)<br />

* Relation of ∆G with emf is ∆G = –nFE<br />

* Relation of ∆G with ∆Suniverse is ∆G = –T∆Suniverse<br />

§ Conditions for Spontaneity<br />

(a)<br />

condition ∆G ∆Suniverse EMF<br />

Spontaneous<br />

reaction<br />

Non-spontaneous<br />

reaction<br />

Reaction is at<br />

<strong>equilibrium</strong><br />

– ve<br />

+ve<br />

0<br />

THERMODYNAMIC EQUILIBRIA<br />

On the basis of free energy<br />

∆G = ∆Gº + RT lnQ (Q may be Qp and Qc)<br />

At <strong>equilibrium</strong> condition Q = 0, ∆G = 0<br />

∆Gº = –RT lnK (K may be Kp or Kc)<br />

0 0<br />

−∆G<br />

⎛ −∆G<br />

⎞<br />

lnK = ⇒ K = anti ln⎜ ⎟<br />

RT<br />

⎝ RT ⎠<br />

( −∆G 0 / RT )<br />

⇒ K = e<br />

+ ve<br />

–ve<br />

Equilibrium constant (Kp or Kc) can be<br />

calculated by above equation.<br />

0<br />

+ ve<br />

– ve<br />

0


(b)<br />

(c)<br />

On the basis of entropy<br />

∆S reaction = ∆Sº reaction – RlnQ<br />

At <strong>equilibrium</strong> Q = K, ∆S reaction = 0<br />

∆Sº reaction = R lnK<br />

0 0<br />

−∆S<br />

⎛<br />

reaction<br />

−∆S<br />

⎞<br />

reaction<br />

lnK = ⇒ K = anti ln<br />

R<br />

⎜<br />

R ⎟<br />

⎝ ⎠<br />

0<br />

( reaction / )<br />

⇒ K = e ∆S R<br />

Equilibrium constant (Kp or Kc) can be<br />

calculated by above equation.<br />

On the basis of electromotive force for<br />

Oxidation, Reduction and Redox reaction.<br />

∆G = ∆Gº + RT ln Q ........(1)<br />

also, ∆G = – nFE and, ∆Gº = – nFEº<br />

eq. (1) can be also written as<br />

–nFE = –nFEº + RT ln Q........(2)<br />

eq. (2) is divided by nF<br />

RT<br />

nF<br />

0<br />

E = E − lnQ<br />

At 25ºC this equation changes into<br />

0 0.0592 E = E − lnQ<br />

n<br />

At <strong>equilibrium</strong>, Q = K and E = 0.<br />

REACTION QUOTIENT<br />

When reactants and products of a given<br />

chemical reaction are mixed it is useful to know whether<br />

the mixture is at <strong>equilibrium</strong>, and if not, in which direction<br />

the system will shift to reach <strong>equilibrium</strong>.<br />

If the concentration of one of the reactants or<br />

product is zero, the system will shift in the direction that<br />

produces the missing component. However, if all the<br />

initial concentrations are non zero, it is more difficult to<br />

determine the direction of the move toward <strong>equilibrium</strong>.<br />

To determine the shift in such case, we use the reaction<br />

quotient (Q). The reaction quotient is obtained by<br />

applying the law of mass action, using initial<br />

concentrations instead of <strong>equilibrium</strong> concentration.<br />

Reaction quotient in the term of pressure known<br />

as Q p<br />

and reaction quotient in the term of concentration<br />

known as Q C<br />

.<br />

N ( g) + 3 H ( g) 2 NH ( g)<br />

Q<br />

c<br />

2 2 3<br />

2<br />

2<br />

[ NH3<br />

]<br />

( PNH<br />

)<br />

3<br />

= and QP<br />

=<br />

[ N ][ H ] ( P )( P )<br />

3 3<br />

2 2<br />

N2 H2<br />

Qc and Qp is defined at any concentration and at any<br />

pressure respectively.<br />

6for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

If at any time Q < K, the forward reaction must occur to<br />

a greater extent than the reverse reaction for <strong>equilibrium</strong><br />

to be established. This is because numerator of Q is<br />

too small and the denominator is too large.<br />

Reducing the denominator and increasing the<br />

numerator requires forward reaction until <strong>equilibrium</strong> is<br />

established.<br />

If Q > K, the reverse reaction must occur to<br />

greater extent than the forward reaction for <strong>equilibrium</strong><br />

to be reached. When Q = K, the system is at <strong>equilibrium</strong>,<br />

so no further net reaction occurs.<br />

Conclusion:<br />

Q < K Forward reaction predominates<br />

until <strong>equilibrium</strong> is established.<br />

Q = K System is at <strong>equilibrium</strong>.<br />

Q > K Reverse reaction predominates<br />

until <strong>equilibrium</strong> is established.<br />

Prob. 1 For the synthesis of ammonia at 500ºC, the<br />

<strong>equilibrium</strong> constant is 6.0 × 10 –2 L 2 /mol 2 . Predict the<br />

direction in which the system will shift to reach<br />

<strong>equilibrium</strong> in each of following case. Reaction for<br />

synthesis of NH 3<br />

is N ( g) + 3 H ( g) 2 NH ( g)<br />

2 2 3<br />

(a) [NH 3<br />

] 0<br />

= 1 × 10 –3 M, [N 2<br />

] 0<br />

= 1 × 10 –5 M<br />

[H 2<br />

] 0<br />

= 2 × 10 –3 M<br />

(b) [NH 3<br />

] 0<br />

= 2 × 10 –4 M, [N 2<br />

] 0<br />

= 1.5 × 10 –5 M<br />

[H 2<br />

] 0<br />

= 3.54 × 10 –1 M<br />

Ans: (a) Q C<br />

= 1.2 × 10 7 L 2 /mol 2<br />

Q C<br />

> K C<br />

Hence back reaction predominates.<br />

(b) Q C<br />

= 6.0 × 10 –2 L 2 /mol 2<br />

Q C<br />

= K C<br />

Reaction is at <strong>equilibrium</strong>.<br />

Your Problem in chemistry<br />

Now a days, mostly<br />

students suffer trouble and<br />

fear in vital topic like Acid<br />

Base Titration, Indicator,<br />

Double Indicator, Redox<br />

Titration, <strong>Ionic</strong> Equilibria,<br />

E l e c t r o c h e m i s t r y ,<br />

Thermodynamics, Chemical<br />

Equilibria and Chemical Kinetics. Our main<br />

motto to relate all topic with highly advanced,<br />

accurate and easy concept. Problem asked in<br />

Exam like C.B.S.E. (Mains), B.C.E.C.E.<br />

(Mains), AIEEE and IIT are not chapter wise<br />

problem but concept based problem.<br />

-<strong>Shailendra</strong> <strong>Kumar</strong>


→<br />

New Concepts of<br />

<strong>Ionic</strong> Equilibria<br />

1. CONCEPT OF MILLIEQIVALENT.<br />

No of equivalent = wt<br />

eq.wt<br />

wt × 1000<br />

No of milliequivalent =<br />

eq.wt<br />

wt × 1000 No of meq<br />

N = =<br />

eq.wt × V(ml) V(ml)<br />

No of meq = N × V(ml)<br />

No of mol =<br />

wt<br />

mol.wt<br />

, No of milli mol =<br />

No of milli mol = M × V(ml)<br />

CONVERSION FACTOR<br />

M × V.F (Valence Factor) = N<br />

No of mol × V.F = No of eq.<br />

No of milli mol × V.F = No of meq.<br />

No of eq =<br />

mol.wt<br />

V.F<br />

2X + 3Y X 2<br />

Y 3<br />

(By Meq Method)<br />

Milliequivalent<br />

befor reaction<br />

Milliequivalent<br />

after reaction<br />

MAIN OBJECTIVES<br />

Changed<br />

X + Y X 2<br />

Y 3<br />

10 6 0<br />

4 0 6<br />

wt × 1000<br />

mol.wt<br />

No need of<br />

balanced equation<br />

(Suppose)<br />

Meq of X Reacted = 6<br />

Meq of Y Reacted = 6<br />

Meq of X 2<br />

Y 3<br />

formed = 6<br />

During reaction equal meq of reactant reacted and equal<br />

meq of product formed.<br />

Species<br />

V.F<br />

K + 1<br />

–2<br />

SO 4<br />

2<br />

Al +3 3<br />

Ca +2 2<br />

CaSO 4<br />

2<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

7<br />

1. Concept of Milliequivalent.<br />

2. Auto ionisation of pure water.<br />

3. PH Calculation of strong acid<br />

and strong base.<br />

4. PH Calculation of weak acid and<br />

weak base.<br />

5. PH Calculation of weak acid and<br />

weak base in the present of its salt.<br />

6. Common Ion effect.<br />

7. Buffer Solution.<br />

8. Salt hydrolysis.<br />

9. Solubility Product Principle<br />

H 2<br />

SO 4<br />

2<br />

AlCl 3<br />

3<br />

Al 2<br />

(SO 4<br />

) 3<br />

6<br />

COOH<br />

COOH 2H O 2<br />

2<br />

K 2<br />

SO 4<br />

Al 2<br />

(SO 4<br />

) 3<br />

24H 2<br />

O 8<br />

2 When 4.9 gm of H 2<br />

SO 4<br />

mixed with 4 gm of<br />

NaOH. What is the<br />

(a) Wt of NaOH reacted.<br />

(b) Wt of H 2<br />

SO 4<br />

reacted.<br />

(c) Mol of Na 2<br />

SO 4<br />

formed.<br />

H 2<br />

SO 4<br />

+ NaOH Na 2<br />

SO 4<br />

+ H 2<br />

O<br />

Meq befor 4.9 × 1000 4 × 1000<br />

reaction<br />

0 0<br />

49 40<br />

(100) (100) 100 100<br />

Meq after<br />

reaction 0 0<br />

(a) Wt of NaOH completely reacted in this reaction,<br />

Hence wt of NaOH reacted is 4 gm.<br />

(b) H 2<br />

SO 4<br />

completely reacted in this reaction, hence wt<br />

of H 2<br />

SO 4<br />

reacted is 4.9 gm.<br />

(c) No of meq of Na 2<br />

SO 4<br />

formed is 100<br />

No of milli mol of Na 2<br />

SO 4<br />

=<br />

100<br />

2<br />

No of milli mol of Na 2<br />

SO 4<br />

= 50<br />

No of mol of Na 2<br />

SO 4<br />

= 50 × 10 –3<br />

∗<br />

= 5 × 10 –2 mol<br />

Dilution<br />

means addition of solvent (generally H 2<br />

O)<br />

During dilution, wt of solute → remains constant<br />

Mol.wt of solute → ”<br />

Mol of solute → ”<br />

Milli mol of solute → ”<br />

No of millimol = M × V(ml)<br />

During dilution MV = constant<br />

M 1<br />

V 1<br />

= M 2<br />

V 2<br />

or<br />

N 1<br />

V 1<br />

= N 2<br />

V 2<br />

During dilution millimol of solute remains<br />

constant.


→<br />

→<br />

2 Calculate wt of AgCl formed when 200 ml of 5 N<br />

HCl reacted with 1.7 gm AgNO 3<br />

Solution : Write unbalanced reaction<br />

AgNO 3<br />

+ HCl → AgCl + HNO 3<br />

Milliequivalent 1.7 × 1000<br />

befor reaction 170<br />

200 × 5 0 0<br />

(10) (1000)<br />

Milliequivalent<br />

after reaction 0 990 10 10<br />

Meq of AgCl formed = 10<br />

wt × 1000<br />

143.5<br />

=10<br />

Wt = 1.435 gm<br />

2. AUTO IONISATION OF PURE WATER<br />

(a) H 2<br />

O H + + OH –<br />

or<br />

H 2<br />

O + H 2<br />

O H 3<br />

O ⊕ + OH<br />

(b)<br />

(c) Q.<br />

K ionization =<br />

K ionization [H 2<br />

O] = [H + ] [OH – ]<br />

Kw = [H + ] [OH]<br />

1× 10 –14 = [H + ] [OH – ]<br />

Value of Kw = 1× 10 –14 at 25º C<br />

Ionisation or Dissociation of H 2<br />

O is Endothermic<br />

reaction. Hence if temp is increased value of Kw<br />

also increase.<br />

Value of Kw at 25º C is 1× 10 –14 .<br />

Kw is known as ionic product of water.<br />

PH scale (0–14) valid for Kw (value equal to<br />

1× 10 –14 )<br />

At certain temp (temp greater than 25º C) Value<br />

of kw is 1× 10 –13 What is its neutral point and what<br />

is its PH scale.<br />

Solution : PH scale ( 0–13)<br />

Its neutral point is 6.5<br />

Kw = [H + ] [OH – ]<br />

1× 10 –13 = x.x<br />

x 2 = 1× 10 –13<br />

x = 1× 10 –6.5 = [H + ] = [OH – ]<br />

Hence PH at neutral point is 6.5<br />

(d)<br />

[H + ] [OH – ]<br />

[H 2<br />

O]<br />

[H + ] [OH – ] → solution is Neutral<br />

[H + ] > [OH – ] → solution is Acidic<br />

[H + ] < [OH – ] → solution is Basic<br />

3. PH CALCULATION OF STRONG ACID AND<br />

STRONG BASE<br />

Actual Method for PH Calculation.<br />

Calculate PH for 1× 10 –2 M HCl<br />

H 2<br />

O H + + OH –<br />

x<br />

HCl H + + Cl –<br />

Common ion effect 10 –2<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

8<br />

Kw = [H + ] [OH – ]<br />

Kw = (x + 10 –2 )x<br />

1× 10 –14 = (x + 10 –2 )x<br />

After solving quardatic equation value of H + provided<br />

by H 2<br />

O is very less in comparison to H + provided by<br />

HCl, Hence H + provided by H 2<br />

O is neglected.<br />

Hence [H + ] = 10 –2<br />

PH = 2<br />

∗ In pure water molarity of [H + ] is 10 –7 M but in acidic<br />

medium value of H + provided by H 2<br />

O is less than 10 –6 M due<br />

to common ion effect, But in rough calculation we also take<br />

molarity of [H + ] is 10 –6 M in acidic solution.<br />

∗ If [H + ] produced by acid is less than 10 –6 M or equal<br />

to 10 –6 M then [H + ] produced by H 2<br />

O is not neglected.<br />

∗ If [H + ] produced by acid is greater than 10 –6 M then<br />

[H + ] produced by H 2<br />

O is neglected.<br />

∗ [H + ] [OH – ] = Kw = 10 –14 (At 25º C)<br />

taking log both side.<br />

log [H + ] [OH – ] = Kw<br />

PH + POH = PKw = 14<br />

Strong acid (like HCl, HNO 3<br />

, H 2<br />

SO 4<br />

etc) and strong<br />

base (like NaOH, Ca(OH) 2<br />

, Mg(OH) 2<br />

etc) are completely<br />

dissociated.<br />

Meq of S.A = Meq of H +<br />

Meq of S.B = Meq of OH –<br />

2 Calculate Molarity of H + and Normality of H + in<br />

1 M H 2<br />

SO 4<br />

H 2<br />

SO 4<br />

Neglected<br />

↑<br />

⊕ –2<br />

2 H + SO 4<br />

100% dissociated<br />

H 2<br />

SO 4<br />

H + –2<br />

+ SO 4<br />

Meq befor D. 1× 2 × V 0 0 Let volume<br />

(2V)<br />

of solution<br />

Meq after D.<br />

is V(ml)<br />

0 2V 2V<br />

Meq of H + = 2V<br />

Normality of H + =<br />

2V<br />

V<br />

Millimol of H + = 2V (V.F = 1) = 2<br />

2V<br />

[H + ] = V<br />

= 2<br />

Molarity of H + = Normality of H +<br />

∗ Molarity of H + and Normality of H + is equal, and<br />

meq of H + and millimol of H + is equal because valence<br />

factor is 1.<br />

∗ Molarity of OH – = Normality of OH – (V.F =1)<br />

Meq of OH – = Millimol of OH – (V.F =1)<br />

∗ Meq of strong acid = Meq of H ⊕=Millimol of H⊕<br />

N× V(ml) N× V(ml) M× V(ml)<br />

Normality of strong acid=Normality of H + =Molarity of H +<br />

Conclusion : If we want to calculate PH of strong acid then


→<br />

→<br />

we convert molarity acid into normality of acid, which is directly<br />

equal to molarity of H +<br />

2 Calculate PH of 1× 10 –2 M H 2<br />

SO 4<br />

.<br />

Molarity of H 2<br />

SO 4<br />

= 1 × 10 –2 M<br />

Normality of H 2<br />

SO 4<br />

= 2 × 10 –2 N<br />

Normality of H + = 2 × 10 –2<br />

Molarity of H + = 2 × 10 –2<br />

PH = –log [H + ]<br />

PH = – log (2 × 10 –2 )<br />

2 Calculate PH 100 ml of 1 × 10 –2 M H 2<br />

SO 4<br />

.<br />

Solution : PH of the solution independent on volume. It<br />

depends upon normality of acid.<br />

Method (1)<br />

⊕<br />

Normality of H 2<br />

SO 4<br />

= Normality of H = Molarity of H +<br />

1 × 10 –2 × 2 = Molarity of [H + ]<br />

2 × 10 –2 = Molarity of H +<br />

PH = 2 – log2<br />

Method (2)<br />

Meq of H 2<br />

SO 4<br />

= Millimol of H +<br />

100 × 10 –2 × 2 = 100 × [H + ]<br />

[H + ] = 2 × 10 –2<br />

PH = 2– log2<br />

2 Calculate PH of 0.5 × 10 –2 M Ca (OH) 2<br />

.<br />

Normality of Ca (OH) 2<br />

= Molarity of (OH – )<br />

0.5 × 10 –2 × 2 = [OH – ]<br />

1 × 10 –2 = [OH – ]<br />

POH = 2, PH = 12<br />

2 Calculate PH of the solution when 100 ml of 1 ×<br />

10 –3 M HCl, 100 ml of 1 × 10 –4 M HNO 3<br />

and 100 ml of 1 ×<br />

10 –2 N H 2<br />

SO 4<br />

mixed.<br />

Solution :<br />

∑ Meq of H + = meq of H + provided by HCl + meq H + provided<br />

by HNO 3<br />

+ meq of H + provided by H 2<br />

SO 4<br />

∑ Meq of H + = meq of HCl + meq of HNO 3<br />

+ meq of H 2<br />

SO 4<br />

100 × 10 –3 + 100 × 10 –4 + 100 × 10 –2<br />

ε millimol of H + =0.1 + 0.01 + 1<br />

300 × M = 1.11<br />

M = 1.11<br />

300<br />

PH is determined by equation<br />

PH = – log<br />

1.11<br />

300<br />

2 Calculate PH of 10 2 M HCl.<br />

PH = –2 But this is not true, practically PH of this<br />

solution is near to zero.<br />

2 Calculate PH of 1M HCl.<br />

PH = 0 this solution is most acidic. Greater the<br />

[H + ] greater will be acidity and lesser will be PH.<br />

Note : If PH of more concentrated acid is less than 0 (–ve)<br />

then PH of this concentrated acid is taken as zero.<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

9<br />

2 Calculate the [Cl – ], [Na + ], [H + ], [OH – ] and PH of<br />

resulting solution obtained by mixing 50 ml of 0.6 N HCl<br />

and 50 ml of 0.3 NaOH.<br />

Meq befor<br />

reaction<br />

Meq after<br />

reaction<br />

HCl + NaOH → NaCl + H 2<br />

O<br />

30 15 0 0<br />

15 0 15 15<br />

Meq of HCl = 15<br />

Meq of H + = 15<br />

15<br />

[H + ] =<br />

100<br />

= .15<br />

PH = –log [H + ] = – log 0.15<br />

PH = 0.8239<br />

[OH – ] [H + ] = 1 × 10 –14<br />

[OH – ] =<br />

1 × 10 –14<br />

= 6.6 × 10 –14 M<br />

0.15<br />

Meq of Cl – = meq of Cl – provided by NaCl + meq of Cl –<br />

provided by HCl.<br />

= 15 + 15<br />

Meq of Cl – = 30<br />

Millimol of [Cl – ] =<br />

30<br />

100<br />

= 0.3 M<br />

Meq of Na + = meq of Na<br />

⊕<br />

provided by NaCl<br />

= meq of NaCl<br />

Millimol Na + = 15<br />

[Na + ] =<br />

15<br />

100<br />

= 0.15 M<br />

4. PH CALCULATION OF WEAK BASE AND<br />

WEAK ACID.<br />

Before<br />

dissociation<br />

BOH B + + OH –<br />

weak base<br />

C 0 0<br />

After<br />

dissociation<br />

C – C α Cα Cα<br />

Kb =<br />

[B + ] [OH – ] Cα . Cα<br />

[BOH]<br />

=<br />

C (1– α)<br />

Dissociation constant of weak base<br />

Kb = Cα 2 (If α is very less)<br />

(1–α) ≈ 1<br />

α =<br />

Kb<br />

C<br />

[OH – ] = Cα = C<br />

Kb<br />

C<br />

= √ Kbc<br />

[OH – ] = (Kbc) ½<br />

POH = – log[OH – ]<br />

= – log(Kbc) ½<br />

(1) POH = ½ (PKb – log c) →V.V.I<br />

(2) [OH – ] = √ Kbc = Cα<br />

(3) α =<br />

√<br />

Kb<br />

C<br />

For weak base


→<br />

→<br />

=<br />

→<br />

=<br />

→<br />

=<br />

=<br />

=<br />

=<br />

PH = ½ (PKa – log c)<br />

[H + ] = Cα = √KaC<br />

α =<br />

√<br />

Ka<br />

C<br />

2 Calculate PH of<br />

(a) 0.002 N acitic acid having 2.3% dissociation.<br />

(b) 0.002 N NH 4<br />

OH having 2.3% dissociation.<br />

(a) [H + ] = 2 × 10 –3 ×<br />

2.3<br />

= 4.6 × 10 –5 M<br />

100<br />

PH = 5 – log 4.6 = 4.3372<br />

2.3<br />

(b) [OH – ] = Cα = 2 × 10 –2 ×<br />

100<br />

= 4.6 × 10 –5 M<br />

POH = 4.3372<br />

PH = 9.6627<br />

5. PH CALCULATION OF WEAK ACID AND<br />

WEAK BASE IN THE PRESENCE OF ITS SALT.<br />

Example 1: If we want to calculate PH of CH 3<br />

– C – OH<br />

(C 2<br />

) in the presence of CH 3<br />

COONa (C 1<br />

) O<br />

CH 3<br />

– COONa CH 3<br />

COO – + Na⊕<br />

B.D C 1<br />

100%<br />

O O<br />

A.D O C 1<br />

C 1<br />

CH 3<br />

COOH CH 3<br />

– C–O – + H⊕<br />

O<br />

B.D C 2<br />

O O<br />

A.D C 2<br />

– C 2<br />

α C 2<br />

α C 2<br />

α<br />

O<br />

Ka =<br />

[CH 3<br />

–C–O – ][H + ]<br />

[CH 3<br />

–C–OH] =<br />

O<br />

Ka =<br />

[C 1<br />

+C 2<br />

α] [H + ]<br />

[C 2<br />

– C 2<br />

α]<br />

Due to common ion<br />

dissociation of CH 3<br />

COOH is<br />

depressed<br />

[C 1<br />

+C 2<br />

α] [C 2<br />

α]<br />

C 2<br />

– C 2<br />

α<br />

[H + ] = Ka . [C 2<br />

– C 2<br />

α]<br />

[C 1<br />

+ C 2<br />

α]<br />

[C<br />

PH = PKa + log 1<br />

+ C 2<br />

α]<br />

[C 2<br />

– C 2<br />

α]<br />

Value of C 2<br />

α is very very less,<br />

hence [C 1<br />

+ C 2<br />

α] = C 1<br />

and [C 2<br />

– C 2<br />

α] = C 2<br />

C<br />

PH = PKa + log 1<br />

C 2<br />

[salt]<br />

PH = PKa + log<br />

[acid] →<br />

→For weak acid<br />

This equation is<br />

not 100% correct<br />

Example 2 : If we want to calculate PH of NH 4<br />

OH (C 2<br />

) in<br />

the presence of NH 4<br />

Cl (C 1<br />

)<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

B.D<br />

A.D<br />

B.D<br />

A.D<br />

⊕<br />

NH 4<br />

Cl NH 4<br />

+Cl –<br />

C 1<br />

100%<br />

O O<br />

O C 1<br />

C 1<br />

NH 4<br />

OH<br />

+<br />

NH 4<br />

+OH –<br />

C 2<br />

O O<br />

C 2<br />

– C 2<br />

α C 2<br />

α C 2<br />

α<br />

[NH<br />

Kb = 4+<br />

][OH – ]<br />

[NH<br />

=<br />

4<br />

OH]<br />

Kb =<br />

[OH – ] = Kb<br />

[C 2<br />

α + C 1<br />

][OH – ]<br />

[C 2<br />

– C 2<br />

α]<br />

POH = PKb + log<br />

POH = PKb + log<br />

[C 2<br />

– C 2<br />

α]<br />

[C 1<br />

+ C 2<br />

α]<br />

Dissociation of NH 4<br />

OH is<br />

depressed due to NH 4<br />

Cl<br />

[C 1<br />

+ C 2<br />

α]<br />

[C 2<br />

– C 2<br />

α]<br />

[C 1<br />

]<br />

[C 2<br />

]<br />

[salt]<br />

POH = PKb + log →<br />

[base]<br />

[C 2<br />

α + C 1<br />

][C 2<br />

α]<br />

[C 2<br />

– C 2<br />

α]<br />

This equation is<br />

not 100% correct<br />

Method for PH Calculation of Following Reaction<br />

Condition 1.<br />

NaOH + CH 3<br />

–C–H CH 3<br />

–C–Na + H 2<br />

O<br />

Meq.B.R 10 5 O 0 O 0<br />

(Suppose)<br />

Meq.A.R 5 0 5 5<br />

If strong acid or strong base present in solution<br />

after reaction then PH is calculated by strong acid or strong<br />

base. Concentration of salt not considered.<br />

Condition 2.<br />

NaOH + CH 3<br />

COOH CH 3<br />

COONa + H 2<br />

O<br />

Meq.B.R 10 10 0 0<br />

(Suppose)<br />

Meq.A.R 0 0 10 10<br />

If solution contains only salt [CH 3<br />

COONa] then<br />

PH calculate by salt hydrolysis.<br />

Condition 3.<br />

NaOH + CH 3<br />

COOH CH 3<br />

–COONa + H 2<br />

O<br />

Meq.B.R 5 10 0 0<br />

Meq.A.R 0 5 5 5<br />

If solution contains weak acid and its salt then PH<br />

is calculated by.<br />

10


PH =PKa + log<br />

[salt]<br />

[acid]<br />

Calculation of PH in the reaction NH 4<br />

OH with HCl<br />

Condition 1.<br />

NH 4<br />

OH + HCl NH 4<br />

Cl + H 2<br />

O<br />

Meq.B.R 10 5 0 0<br />

Meq.A.R 5 0 5 5<br />

Solution contains weak base and its salt.<br />

[salt]<br />

POH = PKb + log<br />

[base]<br />

Condition 2.<br />

NH 4<br />

OH + HCl NH 4<br />

Cl + H 2<br />

O<br />

Meq.B.R 5 10 0 0<br />

Meq.A.R 0 5 5 5<br />

PH is calculated by HCl (strong acid)<br />

Condition 3.<br />

NH 4<br />

OH + HCl NH 4<br />

Cl + H 2<br />

O<br />

Meq.B.R 5 5 0 0<br />

Meq.A.R 0 0 5 5<br />

PH is calculated by salt hydrolysis (NH 4<br />

Cl)<br />

2 Calculate PH of the following mixtures, given that<br />

Ka = 1.8 × 10 –5 and Kb = 1.8 × 10 –5<br />

(a) 50 ml of 0.10 M NaOH + 50 ml of 0.05 M CH 3<br />

COOH<br />

(b) 50 ml of 0.05 M NaOH + 50 ml of 0.10 M CH 3<br />

COOH<br />

(c) 50 ml of 0.10 M NaOH + 50 ml of 0.10 M CH 3<br />

COOH<br />

(d) 50 ml of 0.10 M NH 4<br />

OH + 50 ml of 0.05 M HCl<br />

(e) 50 ml of 0.05 M NH 4<br />

OH + 50 ml of 0.05 M HCl<br />

(f) 50 ml of 0.10 M NH 4<br />

OH + 50 ml of 0.10 M HCl<br />

Solution : (a)<br />

NaOH + CH 3<br />

COOH<br />

Millimol.<br />

B.R<br />

50×0.1 50×0.05<br />

CH 3<br />

–COONa + H 2<br />

O<br />

0 0<br />

Millimol.<br />

A.R 2.5 0 2.5 2.5<br />

Solution after reaction contain strong base (NaOH)<br />

Hence PH determined by NaOH<br />

Meq of NaOH = 2.5<br />

N of NaOH =<br />

2.5<br />

100<br />

= 2.5 × 10 –2 M<br />

[OH – ] = 2.5 × 10 –2<br />

POH = 1.6021<br />

PH = 12.3979<br />

(b) NaOH + CH 3<br />

COOH CH 3<br />

–COONa + H 2<br />

O<br />

Meq.B.R 2.5 5 0 0<br />

Meq.A.R 0 2.5 2.5<br />

Solution after reaction contains weak acid and its<br />

salt, Hence PH determined by the equation<br />

[salt]<br />

PH = PKa + log<br />

[acid]<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

PH = – log Ka + log<br />

[CH 3<br />

COONa]<br />

[CH 3<br />

COOH]<br />

2.5<br />

[CH 3<br />

COONa] =<br />

100<br />

= 4.74 + log 2.5/100<br />

2.5<br />

, [CH 3<br />

COOH] =<br />

2.5/100<br />

100<br />

PH = 4.74<br />

(c) NaOH + CH 3<br />

COOH CH 3<br />

–COONa + H 2<br />

O<br />

Meq.B.R 5 5 0 0<br />

Meq.A.R 0 0 5 5<br />

If solution contains salt after reaction then PH determined<br />

by salt hydrolysis. Salt hydrolysis discused latter.<br />

Problem (d), (e) and (f) do yourself.<br />

Hints :<br />

(d) PH determined by buffer equation.<br />

(e) PH determined by strong acid (HCl)<br />

(f) PH determined by salt hydrolysis (NH 4<br />

Cl)<br />

6 & 7. BUFFER SOLUTION AND COMMON ION<br />

EFFECT BUFFER SOLUTION AND COMMON<br />

Buffer solution: solution which possess reserve acidic nature<br />

or alkaline nature or solution which resist change in PH<br />

due to dilution or addition of small quantity of acid or alkali<br />

are known as buffer solution.<br />

Example of acidic Buffer →<br />

A weak acid + its salt (CH 3<br />

COOH + CH 3<br />

COONa)<br />

Basic Buffer →<br />

A weak base + its salt (NH 4<br />

OH + NH 4<br />

Cl)<br />

Equation acidic buffer is<br />

[salt]<br />

PH = PKa + log<br />

[acid]<br />

Equation for basic buffer is<br />

[salt]<br />

PH = PKa + log<br />

[acid]<br />

2 Calculate change in PH (∆ PH ) which 0.01 mol<br />

NaOH added into.<br />

(a) 1.0 litre pure water<br />

(b) 1 litre of 0.10M CH 3<br />

COOH<br />

(c) 1litre solution 0.10 M CH 3<br />

COOH and 0.10M CH 3<br />

COONa<br />

(a) In pure water, [H + ] = [OH – ] = 10 –7<br />

Hence PH 1<br />

= 7<br />

After addition of .01 mol of NaOH<br />

[NaOH] =<br />

0.01<br />

= 0.01<br />

1<br />

[OH – ] = 1 × 10 –2<br />

POH = 2, PH 2<br />

= 12<br />

∆ PH = PH 2<br />

– PH 1<br />

= 12–7 = 5<br />

(b) NaOH reacts with acetic acid.<br />

NaOH + CH 3<br />

COOH CH 3<br />

–COONa + H 2<br />

O<br />

Mol.B.R 0.01 0.10 0 0<br />

Mol.A.R 0 (0.01–0.01) 0.01 0.01<br />

0.09<br />

Solution contains weak acid and its salt, Hence<br />

11


=<br />

=<br />

→<br />

→<br />

[salt]<br />

PH 2<br />

= PKa + log<br />

[acid]<br />

0.01<br />

PH 2<br />

= 4.74 + log<br />

0.09<br />

PH 2<br />

= 3.78<br />

PH of 0.1 M CH 3<br />

COOH is<br />

PH 1<br />

1/2 (PKa – log C)<br />

PH 1<br />

= 1/2 (4.74 + 1) = 2.87,<br />

∆ PH = PH 2<br />

– PH 1<br />

= 3.78 – 2.87<br />

∆ PH = 0.91<br />

(c)<br />

[salt]<br />

PH 1<br />

= PKa + log<br />

[acid]<br />

0.10<br />

= 4.74 + log<br />

0.10<br />

PH 1<br />

= 4.74<br />

PH after addition of NaOH<br />

CH 3<br />

COOH + NaOH CH 3<br />

–COONa + H 2<br />

O<br />

Mol.B.R 0.10 0.01 0.10<br />

Mol.A.R (0.10–0.01) 0 (0.10 + 0.01)<br />

[salt]<br />

PH 2<br />

= PKa + log<br />

[acid]<br />

0.11<br />

PH 2<br />

= 4.74 + log<br />

0.09<br />

0.11<br />

∆ PH = PH 2<br />

– PH 1<br />

= log = 0.087<br />

0.09<br />

Conclusion : After addition of NaOH ∆ PH is very less in<br />

buffer solution (mixture of weak acid and its salt).<br />

Preparation of Buffer<br />

I. Acidic Buffer<br />

(a) Mixing weak acid and its salt.<br />

(b) Exess weak acid acid and strong base<br />

CH 3<br />

COOH + NaOH CH 3<br />

–COONa + H 2<br />

O<br />

Meq.B.R 10 5 0 0<br />

Meq.A.R 5 0 5 5<br />

(c) Exess basic salt + HCl<br />

CH 3<br />

COONa + HCl NaCl + CH 3<br />

COOH<br />

Meq.B.R 10 2 0 0<br />

Meq.A.R 8 0 8 8<br />

II.<br />

Basic Buffer<br />

(a) Mixing weak base and its salt<br />

NH 4<br />

OH + NH 4<br />

Cl<br />

(b) Exess NH 4<br />

Cl + HCl<br />

(c) Exess NHaCl + NaOH<br />

PH range of buffer solution<br />

PH = PKa + log<br />

[salt]<br />

[acid]<br />

[salt]<br />

[acid] 0.1 1 10<br />

Best Buffer (most sensitive buffer)<br />

PH range of acidic buffer<br />

[salt]<br />

PH = PKa + log<br />

[acid]<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

12<br />

[salt]<br />

[acid]<br />

ratio vary 0.1 to 10<br />

PH = PKa ± 1<br />

In the same manner POH of range of basic buffer<br />

[salt]<br />

POH = PKb + log<br />

[base]<br />

POH = PKb ± 1<br />

2 A physician or lab technician want to prepare buffer<br />

solution having PH = 5 using CH 3<br />

COOH and CH 3<br />

COONa.<br />

What will be ratio of [CH 3<br />

COONa]<br />

[CH 3<br />

COOH]<br />

(PKa of CH 3<br />

COOH is 4.74)<br />

PH = PKa + log [salt]<br />

[acid]<br />

[CH<br />

5.0 = 7.74 + log 3<br />

COONa]<br />

[CH 3<br />

COOH]<br />

log<br />

[CH 3<br />

COONa]<br />

[CH 3<br />

COOH]<br />

= 0.26<br />

[CH 3<br />

COONa]<br />

[CH 3<br />

COOH]<br />

= anti log 0.26 = 1.8<br />

Note: Buffer has maximum capicity when its acid has<br />

its PKa as close as possible to the target PH.<br />

2 A physician want to prepare buffer solution having<br />

PH = 5 using weak acid and its salt, which of the following<br />

weak acid and its salt would be a good choice.<br />

Acid Salt PKa<br />

(a) H 3<br />

PO 4<br />

–2<br />

H 2<br />

PO 4<br />

2.12<br />

(b) HCOOH<br />

–<br />

HCO 2<br />

3.74<br />

(c) CH 3<br />

COOH CH 3<br />

COO – 4.75<br />

(d)<br />

–2<br />

H 2<br />

PO 4<br />

–2<br />

HPO 4<br />

7.21<br />

Ans = c<br />

2 What mass of sodium acetate (CH 3<br />

COO<br />

Na.3H 2<br />

O,M.W = 136) and what volume of concentrated<br />

acetic acid (17.45 M) should be used to prepare 0.50 L of a<br />

buffer solution at PH = 5.0 that is 0.150 M overall ?<br />

Mass of sodium acetate (hydrated) = 6.6 gm<br />

Volume of Acetic acid = 1.5 ml<br />

8. SALT HYDROLYSIS<br />

Concept Suppose you want to calculate PH of sodium acetate<br />

(basic salt) of certain concentration (c)<br />

O<br />

O<br />

CH 3<br />

–C–ONa CH 3<br />

–C–O – + Na (Any salt is<br />

100%<br />

dissociated)<br />

B.D<br />

A.D<br />

B.R<br />

A.R<br />

C<br />

100%<br />

0 0<br />

0 C C<br />

anionic hydroysis taken place.<br />

CH 3<br />

COO – + H 2<br />

O CH 3<br />

COOH + OH –<br />

C 0 0<br />

C–Cα Cα Cα<br />

CH 3<br />

COO – (Acetate ion) bevaves as weak base


=<br />

=<br />

=<br />

[CH<br />

Kb(CH 3<br />

COO – 3<br />

COOH][OH – ][H + ]<br />

) = [CH 3<br />

COO – ][H + ]<br />

Kw 1 × 10<br />

Kb(CH 3<br />

COO – ) = =<br />

–14<br />

Ka(CH 3<br />

COOH) 1.8 × 10 –5<br />

Kb(CH 3<br />

COO – ) = 5.6 × 10 –10<br />

Kb of (CH 3<br />

–C–O – ) Acetate ion denotes, it is weak base<br />

O<br />

PKb (CH 3<br />

COO – ) = 10 –log 5.6<br />

= 9.25<br />

POH of weak base is denoted by equation<br />

POH = 1/2 (PKb – log c)<br />

POH = 1/2 (PKb (CH 3<br />

COO – )–log c)<br />

Generally α is replaced by h (degree of hydration)<br />

and Kb of CH 3<br />

C–O – is replaced by KH (Hydrolysis constant)<br />

O<br />

MISCONCEPT<br />

Conjugate base of weak acid is strong. It is not<br />

true. Conjugate base of weak acid is also weak.<br />

Example : Ka of CH 3<br />

COOH is 1.8 × 10 –5 (W.A)<br />

Ka of CH 3<br />

C–O – is 5.6 × 10 –10 (W.B)<br />

O<br />

∗ Conjugate acid of weak base is strong →<br />

It is not correct.<br />

Conjugate acid of weak base is also weak.<br />

Example : Kb of NH 4<br />

OH is 1.8 × 10 –5 (W.B)<br />

+<br />

Kb of NH 4<br />

is 5.6 × 10 –10 (W.A)<br />

+<br />

NH 4<br />

+ H 2<br />

O NH 4<br />

OH + H +<br />

[NH 4<br />

OH][H + ][OH – ]<br />

Ka (NH 4+<br />

) = [NH 4+<br />

][OH – ]<br />

Kw 1.0 × 10 –14<br />

= =<br />

Ka(NH 4+<br />

) 1.8 × 10 –5<br />

Ka [NH 4+<br />

] = 5.6 × 10 –10<br />

This concept is useful for the solution of problem<br />

of salt hydrolysis.<br />

∗ Weaker the acid stronger its conjugate base .<br />

Weak Acid Ka Cunjugate Kb<br />

Base<br />

HX 1 × 10 –3 X– 1 × 10 –11<br />

HY 1 × 10 –4 Y– 1 × 10 –10<br />

HZ 1 × 10 –5 Z– 1 × 10 –9<br />

Weaker the acid stronger its conjugate base<br />

∗ Weaker the base stronger its conjugate acid.<br />

2 Calculate for 0.01 N solution of sodium acetate.<br />

(a) Hydrolysis constant<br />

(b) Degree of Hydrolysis<br />

(c) PH (Ka = 1.8 × 10 –5 )<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

13<br />

Solution :<br />

(a) Kb (CH 3<br />

COO – ) = KH =<br />

1 × 10<br />

=<br />

–14<br />

1.8 × 10 –5<br />

= 5.6 × 10 –10<br />

Kb(CH<br />

(b) h = 3<br />

COO – )<br />

=<br />

C<br />

= 2.3 × 10 –4<br />

(c) POH = 1/2 (PKb – log c)<br />

= 1/2 (PKb(CH 3<br />

COO – ) – log c)<br />

= 1/2 (9.25 – log 0.01)<br />

= 1/2 (9.25 + 2)<br />

= 5.625<br />

PH = 8.375<br />

2 Calculate the hydrolysis constant of the salt containing<br />

NO 2<br />

–<br />

ions.<br />

Given Ka for HNO 2<br />

= 4.5 × 10 –10<br />

Solution :<br />

Kw 10<br />

KH = = –14<br />

= 2.2 × 10<br />

Ka 5.6× 10 –10<br />

–5<br />

2 What is PH of 0.5 M aqueous NaCN solution PKb<br />

of CN – = 4.70.<br />

NaCN Na + CN –<br />

CN – + H 2<br />

O HCN + OH –<br />

[HCN] [OH – ]<br />

Kb (CN – ) =<br />

[CN – ]<br />

POH = 1/2 (PKb – log c)<br />

POH = 1/2 (4.70 – log 0.5)<br />

POH = 2.5<br />

PH = 11.5<br />

2 Calculate the percentage hydrolysis in 0.003 M a<br />

queous solution of NaOCN.<br />

Ka for HOCN = 3.33 × 10 –4<br />

KH<br />

h = =<br />

C<br />

Kb (OCN – )<br />

C<br />

Kw<br />

=<br />

Ka (HOCN)C<br />

=<br />

h = 10 –4 , % hydrolysis = 10 –2 %<br />

Hydrolysis of Acidic salt (like NH 4<br />

Cl)<br />

B.D<br />

A.D<br />

Befor hydrolysis<br />

After hydrolysis<br />

NH 4<br />

Cl<br />

+<br />

NH 4<br />

+ Cl –<br />

C 0 0<br />

0 C C<br />

Kw<br />

Ka(CH 3<br />

COOH)<br />

5.6× 10 –10<br />

0.01<br />

10 –14<br />

3.33 × 10 –4 × 0.003<br />

NH 4<br />

+<br />

+ H 2<br />

O NH 4<br />

OH + H +<br />

C 0 0<br />

C–Ch Ch Ch


→<br />

Ka (NH 4<br />

+<br />

) = KH =<br />

Kw<br />

=<br />

Kb(NH 4<br />

OH)<br />

1 × 10<br />

Ka(NH 4+<br />

) = –14<br />

= 5.6 × 10<br />

1.8 × 10 –5 –10<br />

+<br />

NH 4<br />

behaves as weak acid.<br />

PH of the weak acid is calculated by the equation.<br />

PH = 1/2 (PKa – log c)<br />

Ka (NH 4+<br />

) = 5.6 × 10 –10<br />

PKa (NH 4+<br />

) = 10 – log 5.6<br />

PKa(NH 4+<br />

) = 9.25<br />

2 Calculate the PH of 0.1 M NH 4<br />

Cl.<br />

KbNH 4<br />

OH = 1.8 × 10 –5<br />

PH = 1/2 (PKa – log c)<br />

= 1/2 (9.25 – log 0.1) = 1/2 (10.25)<br />

PH = 5.12<br />

Note : Hydrolysis of Na and Cl – not taken place because<br />

it comes from strong base and strong acid.<br />

Ka for strong acid is very large.<br />

So Kb of Cl – is very-very small, Hence hydrolysis<br />

of Cl – not takes place. Value of Kb for strong base is very<br />

large, so, Ka of Na + is very low, Hence hydrolysis of Na + not<br />

takes place.<br />

If Hx is weak acid (Ka) then value of conjugate<br />

acid (X – ) is Kb then.<br />

Kw<br />

Kb (x) – =<br />

Ka (Hx)<br />

Kw = Kb (X) – × Ka(Hx)<br />

taking log both side<br />

PKw = PKb + PKa<br />

14 = PKb + PKa<br />

2 A certain buffer solution contains equal concentration<br />

of X – and Hx. Kb for X – is 10 –10 . Calculate PH of<br />

buffer.<br />

Kb for X – = 10 –10<br />

Kw 1 × 10 –14<br />

Kb for Hx =<br />

Kb<br />

= = 1 × 10<br />

1.0 × 10 –10<br />

–4<br />

PKa for Hx = 4<br />

PH = PKa + log<br />

PH = 4<br />

[salt]<br />

[acid]<br />

[NH 4<br />

OH][H + ][OH – ]<br />

[NH 4+<br />

][OH – ]<br />

SOLUBILITY PRODUCT PRINCIPLE<br />

∗ Most compounds dissolve in water to some extent<br />

and many are so slightly soluble that they are called<br />

“ Insoluble ”<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

14<br />

∗ Compounds that dissolve in water to the extent of<br />

0.02 mole per litre or more are classified as soluble.<br />

∗ Slightly soluble compounds are important in many<br />

natural phenomenon. Our bones and teeth are mostly calcium<br />

phosphate Ca 3<br />

(PO 4<br />

) 2<br />

a slightly soluble compound.<br />

∗ Tooth decay involves solubility, when food lodges<br />

between the teeth, acids form that dissolve enamel, which<br />

contain a mineral called hydroxyapatite (Ca 5<br />

(PO 4<br />

) 3<br />

OH).<br />

Tooth decay can be reduced by treating teeth with fluoride.<br />

Fluoride replaces the hydroxide to hydroxyapatite to produce<br />

the corresponding fluorapatite Ca 5<br />

(PO 4<br />

) 3<br />

F and CaF 2<br />

, both<br />

of which are less soluble in acid than original enamel.<br />

SOLUBILITY PRODUCT CONSTANT<br />

Suppose we add one gram of solid BaSO 4<br />

to 1.0<br />

litre of water at 25ºC and stir untill the solution is saturated<br />

very littile BaSO 4<br />

dissolves only 0.0025 gm of BaSO 4<br />

dissolves in 1.0 liter of water, no matter how much more<br />

BaSO 4<br />

is added. Hence BaSO 4<br />

is known as slightly soluble<br />

compound.<br />

BaSO 4<br />

(s) + H 2<br />

O BaSO 4<br />

(aq) Ba +2 + SO –2<br />

(aq) 4 (aq)<br />

Minimize<br />

BaSO 4<br />

(s) + H 2<br />

O Ba +2 + SO –2<br />

(aq) 4 (aq)<br />

K =<br />

[Ba +2 ] eq<br />

[SO 4<br />

–2<br />

] eq<br />

BaSO 4<br />

(s)<br />

100 % (generally)<br />

K × BaSO 4<br />

(s) = [Ba +2 ] eq<br />

[SO 4<br />

–2<br />

] eq<br />

eq denotes <strong>equilibrium</strong><br />

Ksp = [Ba +2 –2<br />

] eq<br />

[SO 4<br />

] eq<br />

In <strong>equilibrium</strong> that involve slightly soluble<br />

compound in water, the <strong>equilibrium</strong> constant is called a<br />

solubility product constant (Ksp). The activity of solid BaSO 4<br />

is one. Hence the concentration of solid is not included in<br />

the <strong>equilibrium</strong> constant expression.<br />

Other Example :<br />

CaF 2<br />

Ca +2 (aq) + 2F – (aq)<br />

Ksp = [Ca +2 ] [F – ] 2 = 4S 3<br />

Bi 2<br />

S 3<br />

(s) 2Bi +3 + (aq) 3S–2 (aq)<br />

Ksp = [Bi +3 ] 2 [S –2 ] 3 = 108 S 5<br />

MyXz(s) yM +2 + (aq) Zx–y (aq)<br />

Ksp = [M +2 ] y [ X –y ] z = (Sy) y x (Sz) z<br />

MgNH 4<br />

PO 4<br />

(s) Mg +2 + NH +<br />

+ PO –3<br />

(aq) 4 (aq) 4 (aq)<br />

Ksp = [Mg +2 –3<br />

] [NH 4+<br />

] [PO 4<br />

] = S 3<br />

Molar Solubility :- Molar solubility of a compound is the<br />

number of mole that dessolve to give one litre of saturated<br />

solution. It is generally respresented by ‘S’.<br />

∗ We frequently use statements such as “ The solution<br />

contains 0.0025 gm of dissolved BaSO 4<br />

”. Which means<br />

0.0025 gm of solid BaSO 4<br />

dissolves to give a solution that


→<br />

–3<br />

contains equal number of Ba +2 –2<br />

and SO 4<br />

ions.<br />

Question : 1.0 liter of saturated BaSO 4<br />

solution contains<br />

0.0025 gm of dissolved BaSO 4<br />

. Calculate the solubility<br />

product constant for BaSO 4<br />

.<br />

Solution :<br />

2.5 × 10<br />

Molar solubility (s) =<br />

233<br />

M<br />

= 6.4 × 10 –9 = 1.1 × 10 –5 M<br />

BaSO4(s) Ba +2 –2<br />

(aq) + SO 4<br />

(aq)<br />

Before<br />

dissociation<br />

1.1 × 10 –5 M 0 0<br />

After dissociation<br />

at <strong>equilibrium</strong><br />

0 1.1 × 10 –5 M 1.1 × 10 –5 M<br />

Ksp = (1.1 × 10 –5 ) (1.1 × 10 –5 )<br />

Ksp = 1.2 × 10 –10<br />

Reaction Quotient in precipitation Reation<br />

used in ionic<br />

Qsp<br />

Qsp →<br />

No necessarily<br />

<strong>equilibrium</strong><br />

Q →Qc<br />

K Qc<br />

at <strong>equilibrium</strong><br />

used in<br />

Qp<br />

Qp<br />

→<br />

chemical<br />

used in chemical <strong>equilibrium</strong><br />

<strong>equilibrium</strong><br />

Necessarily at<br />

→<br />

<strong>equilibrium</strong>.<br />

Qsp also known as ion product.<br />

If Qsp < Ksp Forward process is favored. No<br />

precipitation occure, more solic can<br />

dissolve.<br />

Qsp = Ksp Solution is just saturated, reaction is at<br />

<strong>equilibrium</strong><br />

Qsp > Ksp Reverse process is favored, precipitation<br />

occures.<br />

Question : If 100 mL of 0.00075 M Na 2<br />

SO 4<br />

and 50.0 mL of<br />

0.015 M BaCl 2<br />

solution are mixed, will a precipitate form ?<br />

Ksp of BaSO 4<br />

is 1.1 × 10 –10<br />

0.015 × 50 × 2<br />

[Ba +2 ] =<br />

= 5 × 10<br />

2 × 150<br />

M<br />

–2<br />

[SO 4<br />

] =<br />

100 × 0.00075 × 2<br />

150 × 2<br />

= 5 × 10 –4 M<br />

Qsp = 2.5 × 10 –6<br />

Qsp > Ksp<br />

Solid BaSO 4<br />

precipitated untill [Ba +2 –2<br />

] [SO 4<br />

] just<br />

equal to Ksp of BaSO 4<br />

Common Ion Effect in solubility Calculation :<br />

Example : The molar solubility of MgF 2<br />

is 1.2 × 10 –3 M in<br />

pure water at 25ºC. Calculate the molar solubility of MgF 2<br />

is 0.10 M NaF.<br />

MgF 2<br />

(s) + H 2<br />

O Mg +2 + 2F –<br />

Ksp = [Mg +2 ] [F – ] 2 = S. (2S) 2 = 4S 3<br />

= 4 × (1.2 × 10 –3 ) 3<br />

→<br />

→<br />

→ →→<br />

for free theory, questions, e-books and videos, visit: www. shailendrakrchemistry.wordpress.com<br />

15<br />

NaF Na + + F –<br />

100% 0.1<br />

H 2<br />

O + MgF 2<br />

(s) Mg +2 + (aq) 2F– (aq)<br />

–S +S +2S<br />

Ksp = (S) (2S + 0.1) 2 , (2S + 0.1) = 0.1<br />

6.4 × 10 –9 = (0.1) 2 × S<br />

Neglected<br />

S = 6.4 × 10 –9 × 10 2<br />

= 6.4 × 10 –7 M<br />

Hence solubility of MgF 2<br />

is decreased in NaF in<br />

comparision to pure water due to common ion (F – ) which is<br />

provided by NaF.<br />

Relative Solubilities<br />

A salt’s Ksp value gives as information about its<br />

solubility. They are two possible cases :<br />

(1) The salts being compared produce the same number<br />

of ions. For Example,<br />

Consider :<br />

AgI (s) Ksp = 1.5 × 10 –16<br />

CuI (s) Ksp = 5.0 × 10 –12<br />

CaSO 4<br />

Ksp = 6.1 × 10 –5<br />

Ksp = S 2<br />

S = √ Ksp = Solubility<br />

In this case we compare the solubilities for these<br />

solid by comparing the Ksp values :<br />

CaSO 4<br />

(s) > CuI(s) > AgI (s)<br />

Most soluble<br />

largest Ksp<br />

(2) The salts being compared produce different<br />

numbers of ions. For Example,<br />

Consider :<br />

CuS (s) Ksp = 8.5 × 10 –45<br />

Ag 2<br />

S (s) Ksp = 1.6 × 10 –49<br />

Bi 2<br />

S 3<br />

(s) Ksp = 1.1 × 10 –73<br />

These salt prodeces different numbers of ions when<br />

they dissolve. The Ksp values connot be compared directly<br />

to determine relative solubility.<br />

Relative solubility measured by above mentioned<br />

Rule<br />

* Remember that relative solubility can be predicted<br />

by comparing Ksp value only for salts that produce the same<br />

total numbre of ions.<br />

For CuS For Bi 2<br />

S 3<br />

S 2 = Ksp<br />

108 S 5 = Ksp<br />

S = √ Ksp S =<br />

For : Ag 2<br />

S<br />

4S 3 = Ksp<br />

S =<br />

Ksp<br />

4<br />

1<br />

/ 3<br />

→<br />

Least soluble<br />

smallest Ksp<br />

Ksp<br />

108<br />

Due to common<br />

ion reaction<br />

shifted towards<br />

left<br />

1<br />

/ 5


AIEEE (2011)<br />

Nadim Hassan<br />

IIIT<br />

(Allahabad)<br />

10989<br />

AIPMT & BCECE - 11<br />

Suman Saurabh Hritik Raushan Rahul Kr. Rituraj Kr. Siddhartha kr.<br />

829 (B. Arch)<br />

15606 (B. Tech) 15187<br />

30787 31266<br />

Best Rankers of 2010<br />

Arvind Kr.<br />

2191<br />

(AIPMT)<br />

Kundan Kr.<br />

2764<br />

(AIPMT)<br />

Satyam Kr. Anish Kr. Mishra Digvijay Kr. Dhananjay kr.<br />

IIT-3759<br />

AIEEE- 5832<br />

AIEEE-12594 BCECE(Med.)-18<br />

AFMC-91<br />

CPMT-60<br />

AIPMT-564<br />

Rohan Raj<br />

IIT-8811<br />

AIEEE- 9998<br />

Abhishek Kr.<br />

168 (BC)<br />

222<br />

(BCECE Med.)<br />

Kamlesh Kr. Raja<br />

(Gen.)<br />

(BCECE Med.)<br />

Nitish Kr. Vivek Kr. Sanjay Kr. Rishabh Raj Vivek Anand<br />

AIEEE-21651 AIEEE-22961 AIEEE-22553<br />

NIT (Patna)<br />

AIEEE-30214<br />

Authenticity of Result<br />

Power of Quality Education<br />

free demo classroom video<br />

available on<br />

www.youtube.com/user/shailchemistry<br />

eqf'dysaa ges'kk gkjrh gS]<br />

la?k"kZ djus Okkys ges'kk thrrs gSaA<br />

a<br />

Shazid Akbal Lalit Vijay Abhishek Gunjan Mukesh Kr. <strong>Kumar</strong>i Suruchi<br />

Safdarjang-16<br />

BCECE(Med.)-85<br />

Safdarjang-43 BCECE(Med.)-66 BCECE(Med.)-77 BCECE(Med.)-98<br />

Our Previous<br />

years Toppers<br />

162<br />

RAUSHAN RANJAN<br />

AIPMT - 2009<br />

RANK : 162<br />

47<br />

SANTOSH KR. SINGH<br />

BCECE (Med.) - 2009<br />

RANK: 47(Gen.)<br />

1035<br />

SHEEBA PERWEEN<br />

AIPMT - 2009<br />

RANK: 1035<br />

11<br />

ABHAY KR.<br />

BCECE (Med.)-2008<br />

RANK : 11(Gen.)<br />

PHOTO<br />

NOT<br />

AVAILABLE<br />

20<br />

PAWAN KUMAR<br />

BCECE(Med.)-2008<br />

RANK : 20(Gen.)<br />

21<br />

DINANATH SINGH<br />

BCECE (Med.) - 08<br />

RANK: 21(Gen.)<br />

23<br />

RAMBABU SAHU<br />

BCECE (Med.) - 08<br />

RANK: 23(Gen.)<br />

46<br />

AJEET KUMAR<br />

BCECE (Med.) - 08<br />

RANK: 46(Gen.)<br />

05<br />

RAHUL RANJAN<br />

BCECE(Med.) - 07<br />

RANK - 05(Gen.)<br />

12<br />

MANISH KR.<br />

BCECE(Med.)-07<br />

RANK : 12(Gen.)<br />

24<br />

KUMARI RASHMI<br />

BCECE (Med.) - 07<br />

RANK: 24(Gen.)<br />

52<br />

NAVIN KUMAR<br />

JCECE (Med.) - 07<br />

RANK: 52(Gen.)<br />

361<br />

RAHUL RANJAN<br />

AIPMT - 2007<br />

RANK - 361<br />

1118<br />

NEEBHA KUMARI<br />

AIPMT - 2007<br />

RANK: 1118<br />

08<br />

KUMARI PALLAVI<br />

BCECE(Med.) - 06<br />

RANK : 08(Gen.)<br />

09<br />

JAINENDRA KR.<br />

AIPMT(06) - 468<br />

BCECE (Med.) - 26<br />

UTTAM KR.<br />

BCECE(Med.) - 06<br />

RANK : 09(Gen.)<br />

26<br />

27<br />

694<br />

51<br />

51 52 1220<br />

SHAMBHU PRASAD SIDHNATH KR. MITHILESH KUMAR ANAND KISHOR KUMARI ANAMIKA PRAMOD KUMAR<br />

JCECE (Med.) - 27 (Gen.) BCECE (Med.) - 51JCECE (Med.) - 2006 AIPMT - 2006 AIPMT - 2006 BCECE (Med.) - 2005<br />

VMCC(2006) - 34(Gen.) AIPMT(2006) - 829 RANK: 52(Gen.) RANK : 694 RANK: 1220 RANK - 51(Gen.)<br />

906<br />

NISHA KUMARI<br />

AIPMT - 2005<br />

RANK : 906<br />

1215<br />

RITU VERMA<br />

AIPMT - 2005<br />

RANK: 1215<br />

04<br />

PUNAM PATEL<br />

WARDHA<br />

RANK: 04(Gen.)<br />

150<br />

1192<br />

RAVIKANT GUPTAPRAVEEN PRAKASH<br />

AIPMT<br />

IIT (JEE)<br />

RANK: 150 RANK: 1192<br />

1215<br />

RITU VERMA<br />

AIPMT - 2005<br />

RANK: 1215<br />

3345<br />

A. D. ANAND<br />

IIT (JEE)<br />

RANK : 3345

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!