29.11.2014 Views

WATER & SOIL - These are not the droids you are looking for.

WATER & SOIL - These are not the droids you are looking for.

WATER & SOIL - These are not the droids you are looking for.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>WATER</strong> & <strong>SOIL</strong><br />

TECHNICAL PUBLICATION<br />

No. 20<br />

Regional Flood Estimation<br />

IN<br />

New Zealand<br />

Water & soil technical publication no. 20 (1982)<br />

,?,.t' :'; ISSN 0110-4144


<strong>WATER</strong> & <strong>SOIL</strong> TECHNICAL PUBLICATION NO. 20<br />

iï<br />

Regional Flood Estimation<br />

in New Zealand<br />

"$'<br />

M.E. BEABLE & A.l. McKERCHAR<br />

Head Office<br />

Water and Soil Science Centre<br />

wãiãtã"d Soil Division Water and Soil Division<br />

MWD<br />

MWD<br />

Christchurch<br />

Wellington<br />

WELLINGTON 1982<br />

Water & soil technical publication no. 20 (1982)


Regional flood est¡mat¡on in New Zealand<br />

M.E. BEABLE & A.l. McKERCHAR<br />

Head Office<br />

Water and Soil Science Centre<br />

Water and Soil Division Water and Soil Division<br />

MWD<br />

MWD<br />

Ìùr'ellington<br />

Christchurch<br />

Water & Soil Technical publication No. 20. t9g2. t32p. ISSN Olt}_4lu<br />

AbsÉract<br />

eastern and western parts of <strong>the</strong> British Isles.<br />

National Llbrary of New Zealed<br />

Cataloguing-in-E ublication data<br />

BEÀBLE, M. E. (Mlchael Eduard), I94Z-<br />

RegionêL flood estj-nation / M.E.<br />

Beabl€ r À-I. McKerchâr. - útellington,<br />

N.Z. : úùater ðd Soll Dlvision Ministry<br />

of Works ed DevoloE[ent <strong>for</strong> <strong>the</strong><br />

Nåtlonal Watêr md SoiI Conservâti,on<br />

oEganisatLon. f992. - I v. - (gtater E<br />

soil technical publícatlon, ISSN OIIO-<br />

4144 ; no. 20)<br />

5s1.4890993I<br />

1. Flæd <strong>for</strong>ecaating. I. McK€lchar, À. I.<br />

Allstalr lan), 1945- . Ir. Tltlê.<br />

III. Series.<br />

O Crown copyrighf 19t2<br />

Published <strong>for</strong> <strong>the</strong> National water and Soil conservation organisation<br />

by <strong>the</strong> vy'ater and soil Division, Ministry of works and Devãlop¡nent,<br />

P.O. Box lz-0/l, tr)Vellington, New Zealand<br />

Water & soil technical publication no. 20 (1982)


I<br />

1.1<br />

1.2<br />

1.3<br />

Contents<br />

¡ntroduct¡on<br />

PageT<br />

Introduction 7<br />

Return period, risk and design life 7<br />

Methods <strong>for</strong> estimating design floods 7<br />

1.3.1 Empirical methods 8<br />

1.3.2 Unit hydrograph methods 8<br />

1.3.3 Simulation methods 8<br />

1.3.4 Regional flood frequency methods 9<br />

2 Gollection of data<br />

2.1 Climate of New Zealand<br />

2.2 Selection of catchments<br />

' 2.3 Sources of data<br />

2.4 Qualityofdata<br />

2.5 Historicalin<strong>for</strong>mation<br />

poge ll ll<br />

ll<br />

ll<br />

ll<br />

ll<br />

3 Regionalflood frequency analysis page 13<br />

3.1 Flood frequency method 13<br />

3.1.1 General 13<br />

3.1.2 Terminology 13<br />

3.1.3 General extreme value distribution 15<br />

3.1.4 Sampling proPerties 16<br />

3.1.5 Types of samPle 17<br />

3.1.6 Plotting 17<br />

3.1.7 Computer Programs<br />

18<br />

3.2 Flood frequencY data l8<br />

3.2.1 Data collection 18<br />

3.2.2 Minimum record length and outliers 19<br />

3.2.3 Lake outflows 19<br />

3.3 Flood frequency regions 19<br />

3.3.1 Regional boundaries 19<br />

3.3.2 Development of regional flood<br />

frequencycurves 24<br />

3.3.3 Bay of PlentY region 37<br />

3.3.4 Final regional curves 39<br />

3.3.5 Consistent regions 39<br />

3.3.6 Sub-regions 39<br />

3.3.7 Generalised flood frequency curves 42<br />

3.4 Flood frequencyaccuracy 4<br />

3.4.1 Accuracy of flood frequency ratio<br />

Qr/Q<br />

M<br />

3.4.2 Datalimitations 48<br />

3.4.3 Definition of flood frequency regional<br />

boundaries 48<br />

3.4.4 HomogeneitYtest 49<br />

3.5 Flood frequencY discussion 49<br />

3.5.1 Regional differences 49<br />

3.5.2 Comparison with <strong>the</strong> British Isles 50<br />

3.5.3 Variation within a region 50<br />

3.5.4 Secular climatic variation 50<br />

3.5.5 Extension method 52<br />

3.5.6 Catchment size 52<br />

3.6 Summary 52<br />

4 Estimat¡on of mean annualflood puge 53<br />

4.1 Introduction 53<br />

4.2 Proposed method 53<br />

4.3 Recôrds used 53<br />

4.4 Collection of characteristics 53<br />

4.5 Analysis of South Island data<br />

4.5.1 Preliminary examination of data<br />

4.5.2 Development of trial<br />

regional estimators<br />

4.5.3 Examination of residuals<br />

4.5.4 Finarl equations <strong>for</strong> South Island<br />

4.6 Analysis of North Island data<br />

4.6.1 Preliminary analysis of data<br />

4.6.2 Development of trial<br />

regi,cnal estimators<br />

4.6.3 Final equations <strong>for</strong> North Island<br />

4.7 Discussion of results<br />

4.E Comparison with o<strong>the</strong>r results<br />

4.9 Estimation of coefficient of variation<br />

4.10 Accuracy crf equations<br />

4.11 Summary<br />

5 Application<br />

5.1 Introduction<br />

5.2 Applicability<br />

5.3 Design straJegy<br />

5.3.1 General<br />

5.3.3 Estimation of <strong>the</strong> flood peak <strong>for</strong> a return<br />

79<br />

79<br />

Nelson <strong>are</strong>a<br />

D Revised 1224 estimates<br />

E Comparison of method with TM61<br />

F Flood frequency analysis <strong>for</strong> Otago<br />

and Southland<br />

F.1 Introduction<br />

F.2 ' Data collection<br />

F.3 Analysis and results<br />

F.4 Conclusions<br />

ReferenceS<br />

58<br />

58<br />

58<br />

63<br />

& 66<br />

6<br />

69<br />

7t<br />

7t<br />

72<br />

72<br />

76<br />

poge77<br />

77<br />

77<br />

77<br />

77<br />

5.3.2 Estimation of <strong>the</strong> mean annual flood (Q)<br />

77<br />

period T (Qr)<br />

5.4 Examples<br />

6 Summary<br />

References<br />

page83<br />

Appendices<br />

A Tests w¡th frequency distdbutions poge87<br />

4.1 Introduction 87<br />

A.2 Gamma distribution 87<br />

4.3 Methods used 87<br />

4.4 Evaluation of <strong>the</strong> frequency<br />

analysis methods 88<br />

4.4.1 General 88<br />

4.4.2 Evaluation criteria and method 88<br />

4.4.3 First test 89<br />

4.4.4 Second test 90<br />

4.4.5 Conclusions 9l<br />

References 92<br />

B Summary of <strong>the</strong> flood peak data used in <strong>the</strong><br />

regionalflood frequency analysis 93<br />

C Summary of <strong>the</strong> new flood peak data in <strong>the</strong><br />

85<br />

r06<br />

107<br />

t22<br />

123<br />

t23<br />

t23<br />

126<br />

126<br />

t26<br />

Water & soil technical publication no. 20 (1982)


Tables<br />

1.1 Risk ofexceedence <strong>for</strong> specified L and T pageT characteristics<br />

ó4<br />

4.E Stepwise regressions <strong>for</strong> all <strong>the</strong> North Island data 67<br />

l6 4.9 Stepwise regressions <strong>for</strong> first trial North lsland<br />

22 regions 67<br />

4.10 Stepwise regressions <strong>for</strong> final North Island regions 69<br />

4.ll Comparable equations <strong>for</strong> o<strong>the</strong>r countries 72<br />

4.12 Prediction errors and equivalent lengths of record 75<br />

5.1 Ranges of catchment <strong>are</strong>as used to derive regional<br />

flood frequency curves and mean annual flood<br />

equations 77<br />

3.1 The relationship between y and T values <strong>for</strong> <strong>the</strong><br />

EVI distribution<br />

Flow stations used<br />

3.2<br />

3.3<br />

3.4<br />

3.5<br />

3.6<br />

3.7<br />

3.8<br />

Calculations <strong>for</strong> extending <strong>the</strong> set of average values<br />

<strong>for</strong> <strong>the</strong> Bay of Plenty region 37<br />

Summary of <strong>the</strong> regional curve characteristics 39<br />

Summary of flow stations in <strong>the</strong> Nelson <strong>are</strong>a 42<br />

Calculations <strong>for</strong> extending <strong>the</strong> sets of average values<br />

<strong>for</strong> <strong>the</strong> generalised curves 42<br />

Summary of <strong>the</strong> cha¡acteristics of <strong>the</strong><br />

generalised curves 44<br />

The regional regression equations <strong>for</strong><br />

estimating Cp 47<br />

3.9 The grouping and <strong>the</strong> group equations <strong>for</strong> estimating<br />

Cp 48<br />

3.10 The CF equations derived <strong>for</strong> <strong>the</strong><br />

generalised curves<br />

48<br />

4.1<br />

54<br />

4.2<br />

56<br />

4.3<br />

l+q<br />

¡1.5<br />

4.6<br />

4,7<br />

South Island catchment characteristics<br />

North Island catchment characteristics<br />

Correlation matrix <strong>for</strong> logs of <strong>the</strong> South Island<br />

characteristics<br />

Stepwise regressions <strong>for</strong> all <strong>the</strong> South Island data<br />

Stepwise regressions <strong>for</strong> <strong>the</strong> South Island regions<br />

Final equations <strong>for</strong> <strong>the</strong> South Island regionJ<br />

Correlation matrix <strong>for</strong> logs of <strong>the</strong> North Island<br />

58<br />

6l<br />

63<br />

g<br />

5.2 Summa¡y of example results using <strong>the</strong> Regional<br />

Flood Estimation method<br />

4.1 Details of <strong>the</strong> flow stations used in <strong>the</strong> first<br />

evaluation test<br />

^.2 Summary of <strong>the</strong> per<strong>for</strong>ma.nce of <strong>the</strong> methods<br />

in <strong>the</strong> first test<br />

4.3 Details of <strong>the</strong> flow stations used in <strong>the</strong> second<br />

evaluation test 90<br />

^.4 Summary of <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> methods in<br />

<strong>the</strong> second test 90<br />

E.1<br />

F.1<br />

F.2<br />

F.3<br />

Comparison of Q.¡ estimates with TM6l estimates<br />

(Qf) and regional flood estimation estimates 122<br />

List of catchments<br />

123<br />

New flood peak data<br />

lu<br />

Co-ordinates from regiona-l frequency curves 126<br />

gz<br />

g9<br />

g9<br />

2.1 Number of water level recorder stations in New<br />

Zealand and time distribution of water level data<br />

page 12<br />

3.1 pdf (part a) and <strong>the</strong> Of (part U)<br />

ution 13<br />

3.2 Fig. 3.1 as a function of its<br />

4<br />

Figures<br />

4.2<br />

4.3<br />

4.4<br />

4.5<br />

4.6<br />

4.7<br />

4.E<br />

4.9<br />

4.t0<br />

4.tl<br />

4.12<br />

5.1<br />

5.2<br />

F.1<br />

F.2<br />

F.3<br />

F.4<br />

F.5<br />

F.6<br />

F.7<br />

F.E<br />

F.9<br />

F.10<br />

!.ocation of <strong>the</strong> North Island catchments 57<br />

Q vs A$.EA, South Island catchments Sg<br />

Distribution of residuals from Equation 4.3 û<br />

Plot of errors (log Q - O.SZ log AREA) vs log<br />

MARAIN <strong>for</strong>Easr Coast Region<br />

Logarithmic residual errors <strong>for</strong> trial South lsland<br />

regional equations 62<br />

Logarithmic residual errors <strong>for</strong> fïnal South Island<br />

legional equations<br />

ó5<br />

Q vs AREA, North Island catchments 6<br />

Trial regions <strong>for</strong> <strong>the</strong> North Island<br />

6g<br />

Final regions <strong>for</strong> <strong>the</strong> North Island 70<br />

Distribution of Cy of annual maxima <strong>for</strong> <strong>the</strong><br />

South Island stations 73<br />

Distribution of Cy of annual maxima <strong>for</strong> <strong>the</strong><br />

North Island stations 74<br />

Flow chart of <strong>the</strong> design strategy using <strong>the</strong> Regional<br />

Flood Estimation method<br />

Water & soil technical publication no. 20 (1982)<br />

Location of <strong>the</strong> Motu catchment above Houpoto g0<br />

Location of catchments 127<br />

Plot of normalised flood frequency data <strong>for</strong> lake<br />

inflows and Shotover River superimposed on <strong>the</strong><br />

West Coast data given in Figure 3.13 l2g<br />

Plot of normalised flood frequency data <strong>for</strong> <strong>the</strong><br />

Pomahaka River and <strong>the</strong> Southland Rivers l}g<br />

Plot of normalised flood frequency data <strong>for</strong> East<br />

Otago rivers superimposed on <strong>the</strong> South Canterbury<br />

datagiven in Figure 3.15<br />

l2g<br />

Average points from Figures F.2, F.3 and F.4<br />

Regions inferred from plots of flood<br />

6l<br />

7g<br />

l2g<br />

frequencydata 130<br />

Frequency analysis of annual maxima derived <strong>for</strong><br />

Clutha river tributaries and <strong>the</strong> lakes, Manuherikia<br />

and Waiau river tributaries. Regional frequency<br />

curves ¿ìre also shown<br />

l3l<br />

Hydrographs of Shotover, Cleddau and Lake<br />

Wakatipu inflow, 197l-1979<br />

l3l<br />

Hydrographs of two stations in <strong>the</strong> Southland<br />

region, 197l-1980<br />

ßz<br />

Hydrographs of three Otago stations, l97l-19g0 132


a<br />

A<br />

â¡, âz<br />

b', bt<br />

c<br />

C¡<br />

Cp<br />

C¡<br />

Cy<br />

Cvj<br />

cs<br />

df<br />

EV<br />

EVI<br />

EV2<br />

EV3<br />

E()<br />

F()<br />

f()<br />

GEV<br />

i<br />

J<br />

K<br />

k<br />

k<br />

L<br />

LP3<br />

M<br />

m<br />

fn<br />

n¡<br />

N<br />

Nc<br />

NU<br />

P()<br />

pdf<br />

Pt<br />

a<br />

Qi<br />

Qr<br />

a<br />

Q..,<br />

Qrn"*<br />

Qmed<br />

Qous<br />

r<br />

R<br />

se<br />

S<br />

S¡<br />

t<br />

T<br />

u<br />

var( )<br />

x<br />

Xa<br />

i<br />

v<br />

YN<br />

a<br />

lL<br />

I<br />

02<br />

Notation<br />

Constant of regression equation<br />

Catchment <strong>are</strong>a (km':)<br />

Constants of regression<br />

Exponents of regression equation<br />

Constant in a standard error equation<br />

3::ü:i:Tl :ÎiiÏ"Ià" or estim<strong>are</strong> or er/Q rrom a curve ror given r<br />

Coefficient of variation of prediction of Q<br />

Coefficient of variation of regression estimate of Q<br />

Coefficient of variation of annual maxima flood series<br />

Coefficient of variation of annual maxima at jth station<br />

Sample coefficient of skew<br />

Distribution function<br />

Extreme value<br />

Extreme value tYPe I distribution<br />

Extreme value type 2 distribution<br />

Extreme value tYPe 3 distribution<br />

Expected value<br />

Distribution function<br />

Probability densitY function<br />

General extreme value distribution<br />

Rank of a flood peak<br />

The additional påriod of record, in years, outside <strong>the</strong> continuous rec¡rrd<br />

Frequency factor<br />

GEV shape parameter (ChaP. 3)<br />

Number of stations in a region (Chap. 4)<br />

Projected lifetime of a structure (Chap. l)<br />

Log-Pearson tYPe 3<br />

Toial length of station years spanned by <strong>the</strong> data in a group<br />

Constant in a standard error equation (Chap. 3)<br />

Number of independent variables in regression equation<br />

Length of record at jth station (years)<br />

Length of record (Years)<br />

Average length of record in a region (yearÐ<br />

Period of recording necessary to estimate Qo6. with <strong>the</strong> same accuracy as Qest $ears)<br />

Probability<br />

Probability density function<br />

iainfall ráte (mm7t¡r) rãi-¿esign storm of duration t equal to time of concentration <strong>for</strong> catchment, and return<br />

period T<br />

Flood peak variate<br />

An individual annual flood Peak<br />

The flood peak estimate <strong>for</strong> a return period T<br />

The mean annual flood<br />

Q estimated from regression equation (m3ls)<br />

Maximúm annual flood Peak<br />

Median of <strong>the</strong> annual flood Peaks<br />

Q estimated from flood record (m'/s)<br />

iltt of one or more floods exceeding Qr in L years<br />

Rainfall factor (Chap. l), Multiple córrelation coefficient (Chaps' 3" 4)<br />

Standard error<br />

Catchmentshapefactor-(Chap'l)Samplestandarddeviation(Chaps'3'4)<br />

Standard error of logroQest<br />

Student "t" statistics<br />

Return period (Years)<br />

GEV location Parameter<br />

Population variance<br />

Variate<br />

Quantile estimate of variate x<br />

Sample mean of variate x<br />

Redúced variate <strong>for</strong> <strong>the</strong> EVI distribution<br />

Reduced variate <strong>for</strong> <strong>the</strong> Normal distribution<br />

GEV scale Parameter<br />

Population mean<br />

Intärstation correlation between annual maxima<br />

Population Variance<br />

Water & soil technical publication no. 20 (1982)


Preface<br />

Water & soil technical publication no. 20 (1982)


1 lntroduction<br />

1 .1 lntroduction<br />

Many works and structures associated with natural<br />

waterways <strong>are</strong> subject to flooding. <strong>These</strong> range from small<br />

farm dams and culver'-s on minor roads, through flood<br />

protection works and. major bridges, to major dams. In<br />

designing <strong>the</strong>se works, engineers have to estimate <strong>the</strong><br />

magnitude of <strong>the</strong> flood which is to be withstood during <strong>the</strong><br />

projected life of <strong>the</strong> structure. An appropriate estimate of<br />

this "design flood" is fundamental to ensuring that<br />

economic engineering designs with adequate standards of<br />

safety <strong>are</strong> acheived.<br />

Flood estimation <strong>for</strong> design purposes can be carried out<br />

using ei<strong>the</strong>r <strong>the</strong> deterministic concept of a "maximum probable<br />

flood" <strong>for</strong> a particular catchment, or with <strong>the</strong><br />

statistical concept of a "flood magnitude with a probability<br />

of exceedence". The <strong>for</strong>mer (Dalrymple 1964) is used<br />

where exceedence of <strong>the</strong> design level could lead to<br />

catastrophic failure. The object is to estimate <strong>the</strong> flood that<br />

is unlikely to be exceeded. The method first estimates a<br />

maximum rainfall <strong>for</strong> <strong>the</strong> catchment and <strong>the</strong>n <strong>the</strong> corresponding<br />

flood peak assuming <strong>the</strong> catchment to be in a<br />

condition which would lead to maximum runoff. Since<br />

nei<strong>the</strong>r <strong>the</strong> maximum rainfall nor <strong>the</strong> maximum runoff <strong>for</strong><br />

known rainfall can be estimated with certainty, <strong>the</strong> word<br />

probable is used when no specific probability is given. In<br />

contrast, statistical methods attach specific probabilities to<br />

flood magnitudes.<br />

Recent decades have seen <strong>the</strong> widespread use of benefitcost<br />

analysis methods <strong>for</strong> assessing <strong>the</strong> relative merits of<br />

different projects competing <strong>for</strong> capital resources. For projects<br />

where flood magnitude is a design pararneter it is<br />

necessary to attach specific probabilities to this magnitude.<br />

Then <strong>the</strong> expected cost of flood damage can be balanced<br />

against <strong>the</strong> cost of providing enhanced protection.<br />

1.2 Return Period, Risk and<br />

Design Life<br />

In New Zealand <strong>the</strong> need to ensure <strong>the</strong> safety of major<br />

hydro-electric developments stimulated an early interest in<br />

flood estimation methods. Benham (1950) introduced a<br />

statistical flood estimation method that has been used ever<br />

since. In this method <strong>the</strong> design flood Q1 is defined as <strong>the</strong><br />

flood which is exceeded on average once in T years; T is<br />

termed <strong>the</strong> return period, and Q.¡ is termed <strong>the</strong> T-year<br />

flood which has a probability of exceedence in any one year<br />

of l/T. Il <strong>the</strong> projected life of <strong>the</strong> structure is L years and<br />

assuming independence of annual maxima, <strong>the</strong> risk r of at<br />

least one T-year flood occuring in L years is;<br />

r=l-(l-l/T)L<br />

This expression is evaluated <strong>for</strong> a range of L and T<br />

values in <strong>the</strong> Table l.l (it is presented graphically by<br />

Ministry of Works and Development (1979) ).<br />

10<br />

50<br />

100<br />

20,0<br />

Table 1.1 Risk of exceedence <strong>for</strong> specified L and T.<br />

T=10 T=50 T=10O<br />

0.651<br />

o.995<br />

1.OOO<br />

1.OO0<br />

0.1 83<br />

o.636<br />

o.867<br />

o.982<br />

o.096<br />

o.395<br />

o.634<br />

o.866<br />

T=<br />

1000<br />

o.o10<br />

o.o49<br />

0.095<br />

o.181<br />

Thus, <strong>for</strong> example, <strong>the</strong> probability of <strong>the</strong> lü) year flood<br />

being exceeded at least once in a ten year period is 0.096' in<br />

50 years 0.395, and in 100 years 0.634. This reasoning ap-<br />

plies to one river, and <strong>the</strong> probability ofexceedence during<br />

a specified time inl.erval at any one of a number of rivers is<br />

much greater. If say l0 independent river basins and a l0<br />

year period <strong>are</strong> considered, <strong>the</strong> probability of at least one<br />

100 year flood being exceeded in any one of <strong>the</strong> l0 basins is<br />

0.634 and <strong>the</strong> protrability of at least one 1000 year event is<br />

0.095. Thus large floods <strong>are</strong> <strong>not</strong> remote events <strong>for</strong> consideration<br />

by a feur specialists, but real possibilities of concern<br />

to <strong>the</strong> whole community. Risk is a difficult concept to<br />

convey to <strong>the</strong> wider community which is easily lulled into a<br />

false attitude of complete safety. The risk of flooding to a<br />

community is perhaps best conveyed by comparison with<br />

<strong>the</strong> risk of o<strong>the</strong>r hazards that <strong>are</strong> tacitly accepted. Examples<br />

include <strong>the</strong> risks of earthquake damage, traffic accidents<br />

and nuclear power plant accidents. Pilgrim and<br />

Cordery (1974) and Burns (1977) provide useful discussion<br />

and fur<strong>the</strong>r refere:nces on this subject.<br />

In practice, r and L <strong>are</strong> often unstated and a fixed value<br />

<strong>for</strong> T is used <strong>for</strong> a particular class of works. Thus in New<br />

Zealand hydro-electric earth and rockfill dams, and dams<br />

subject to <strong>the</strong> risk of progressive failure on overtopping,<br />

have been designed to pass <strong>the</strong> 1000 year flood, while concrete<br />

dams <strong>not</strong> sutrject to <strong>the</strong> risk of progressive failure on<br />

overtopping <strong>are</strong> dersigned <strong>for</strong> <strong>the</strong> 500 year flood. Similarly,<br />

state highway bridges <strong>are</strong> designed to pass <strong>the</strong> 100 year<br />

flood, while culverts <strong>for</strong> state highways <strong>are</strong> generally<br />

designed to pÍrss <strong>the</strong> l0 year flood without heading-up and<br />

<strong>the</strong> 100 year flood with heading-up to a maximum level of<br />

0.5m below <strong>the</strong> road surface. For some smaller structures<br />

no clear standards exist and in some cases <strong>the</strong>re is a lack of<br />

rationality. Situations exist where authorities with<br />

statutory responsiìoility <strong>for</strong> one part of a catchment adopt<br />

higher design stanclards than a second authority in <strong>the</strong> same<br />

catchment <strong>for</strong> <strong>the</strong> same class of work (Heiler 1975).<br />

Selection of a design recurrence interval is a subject<br />

deserving c<strong>are</strong>ful attention. For <strong>the</strong> credibility of designers,<br />

its interpretation as a socially tolerable risk is in<strong>for</strong>mation<br />

that should be c<strong>are</strong>fully explained.<br />

1.3 Methods <strong>for</strong> Estimating<br />

Desiç¡n Floods<br />

The engineer must estimate a design flood in a range of<br />

design situations. This design flood is a hypo<strong>the</strong>tical flood<br />

which results from a design rainfall over a catchment,<br />

usually assumed to be in an average state of wetness. It is a<br />

quantity with a probabilistic meaning defined in <strong>the</strong><br />

previous section and must be distinguished from <strong>for</strong>ecasts<br />

of actual floods which result from real rainstorms over a<br />

catchment and whose magnitudes will depend on <strong>the</strong> prior<br />

states of wetness of <strong>the</strong> catchment. This distinction is important<br />

because


annual flood Q (<strong>the</strong> mean of <strong>the</strong> annual peaks). Q<br />

may be estimated from measured catchment and<br />

climatic characteristics. This is <strong>the</strong> method used in<br />

this study. It is also known as <strong>the</strong> index flood<br />

method. A<strong>not</strong>her version of <strong>the</strong> method relates Q1<br />

directly to catchment and climatic characteristics.<br />

It is pertinent to review <strong>the</strong> development of all <strong>the</strong>se<br />

techniques in <strong>the</strong> New Zealand context.<br />

1.3.1 Empirical Methods<br />

Early flood estimation methods involved fitting an<br />

envelope curve to observed extremes <strong>for</strong> a region to give an<br />

empirical estimate of a maximum flood, usually with catchment<br />

<strong>are</strong>a as a parameter (Schnackenberg, 1949). Envelope<br />

curve methods have been largely replaced by empirical<br />

methods involving probability; of <strong>the</strong>se <strong>the</strong> best known <strong>are</strong><br />

<strong>the</strong> Rational Method and Technical Memorandum No. 6l<br />

(TM6l) (NWASCO l97s).<br />

Although <strong>the</strong> Rational Method is in wide use, it is <strong>not</strong> an<br />

accurate deterministic description of <strong>the</strong> way in which a<br />

catchment modifies rainfall to yield <strong>the</strong> peak runoff<br />

(French et al. 1974). An alternative and useful interpretation<br />

of <strong>the</strong> Rational Method is statistic¿l. Here <strong>the</strong> method<br />

links runoff rates of given frequencies with rainfall rates of<br />

<strong>the</strong> same frequencies as follows:<br />

Qr = C.Pt. A/3.6<br />

where<br />

qt: peak discharge rate of return period T (m¡,zs)<br />

Pt = <strong>the</strong> design rainfall rate (mm/hr) <strong>for</strong> a storm of return<br />

period T and duration t equal to <strong>the</strong> time of concentration<br />

<strong>for</strong> <strong>the</strong> catchment<br />

A = <strong>the</strong> catchment <strong>are</strong>a (km,)<br />

C = an empirical coeffìcient which provides <strong>the</strong> link between<br />

peak runoff and peak rainfall. It embodies <strong>the</strong><br />

net effect of catchment losses, storage effects, etc.<br />

French et al. (1974) showed that <strong>the</strong> coefficient C increases<br />

somewhat with <strong>the</strong> return period T, and gave<br />

typical values <strong>for</strong> central and south-east New South Wales.<br />

Aitken (1975) found this ratio <strong>for</strong> a catchment to be<br />

essentially constant <strong>for</strong> different return periods. For urban<br />

catchments Schaake et al. (1967) suggested C could be<br />

estimated as a function of <strong>the</strong> portion of impervious <strong>are</strong>a in<br />

<strong>the</strong> catchment and <strong>the</strong> slope of <strong>the</strong> main channel.<br />

The second quantity requiring estimation is <strong>the</strong> duration<br />

of <strong>the</strong> design rainstorm. The critical duration is closely approximated<br />

by <strong>the</strong> minimum tirne of rise <strong>for</strong> a number of<br />

hydrographs, <strong>These</strong> <strong>are</strong> <strong>not</strong> available <strong>for</strong> ungauged catchments<br />

and traditional time of concentration <strong>for</strong>mulae <strong>are</strong><br />

<strong>not</strong> reliable. Heiler (1974) developed an estimator <strong>for</strong> this<br />

time constant <strong>for</strong> catchments of peninsular Malaysia. Once<br />

a duration is established, storm rainfall can be estimated,<br />

and in Heiler's case C was estimated as a function of rainfall<br />

intensity; application of <strong>the</strong> method was restricted to<br />

catchments with <strong>are</strong>as in <strong>the</strong> range I km, to 100 kmr. Adaptation<br />

of this statistical interpretation of <strong>the</strong> Rational<br />

Method <strong>for</strong> New Zealand conditions would be a valuable<br />

contribution.<br />

A<strong>not</strong>her well-known empirical method in New Zealand<br />

is known by its publication number, TM6l (NWASCO<br />

1975) and is an adaptation of various American methods.<br />

It is recommended <strong>for</strong> catchment <strong>are</strong>as up to 1000 kmr.<br />

The method is;<br />

Qr = 0.0139 CRSA%<br />

where<br />

C = coefficient dependent on <strong>the</strong> physiography of <strong>the</strong><br />

catchment,<br />

R = rainfall factor dependent on <strong>the</strong> design storm,<br />

S = catchment shape factor,<br />

A : catchment <strong>are</strong>a (km'z),<br />

The factor C is determined as <strong>the</strong> product of two factors<br />

ìV¡s and Ws. Wlc is determined from a table which has soil<br />

type and surface cover as parameters, and W5 is obtained<br />

from a graph having channel length and slope as<br />

parameters. R is <strong>the</strong> ratio of <strong>the</strong> design rainfall <strong>for</strong> <strong>the</strong> catchment<br />

to <strong>the</strong> adjusted standard rainfall at Kelburn, Wellington.<br />

As with <strong>the</strong> Rational Method, <strong>the</strong> rainfall duration<br />

must be determined by an empirical time of concentration<br />

<strong>for</strong>mula. The shape factor is a function of <strong>the</strong> catchment<br />

<strong>are</strong>a and length. The development of <strong>the</strong> method is discussed<br />

by Campbetl (1959). When first introduced in 1953 this<br />

method met an urgent need <strong>for</strong> a standard procedure <strong>for</strong><br />

flood estimation <strong>for</strong> ungauged catchments. Its value was<br />

greatly enhanced by <strong>the</strong> publication of a probability<br />

analysis of high intensity rainfalls (Robertson 1963).<br />

1.3.2 Un¡t hydrograph methods<br />

The unit hydrograph method developed in <strong>the</strong> 1930's has<br />

become a widely used hydrological tool. The unit<br />

hydrograph (UH) is <strong>the</strong> flow record from a saturated catchment<br />

when a unit of rainfall falls uni<strong>for</strong>mly <strong>for</strong> unit time.<br />

As part of each storm is required to saturate <strong>the</strong> soil, <strong>the</strong><br />

UH represents only <strong>the</strong> "quickflow".<br />

The quickflow from a rainfall excess of various amounts<br />

over a succession of time units is calculated by superposition<br />

of <strong>the</strong> set of unit hydrographs that correspond to <strong>the</strong><br />

rainfall excess. Thus <strong>the</strong> catchment is assumed to respond<br />

linearly, in that runoff from a particular portion of storm<br />

rainfall is unaffected by concurrent runoff from o<strong>the</strong>r portions<br />

of <strong>the</strong> storm. <strong>These</strong> assumptions have been tested in<br />

numetous studies and <strong>for</strong> small and medium sized catchments<br />

have been found adequate <strong>for</strong> most engineering<br />

design purposes. With a UH determined from a number of<br />

storms and <strong>for</strong> average ratios of excess to total rainfall,<br />

design floods <strong>for</strong> a catchment can be estimated from design<br />

storms of <strong>the</strong> same probability. An important advantage of<br />

this versatile method over those described previously is that<br />

<strong>the</strong> shape of <strong>the</strong> flood hydrograph is calculated, and <strong>not</strong><br />

merely <strong>the</strong> peak rate of flow; this is of importance in<br />

routing studies, in drainage design and in o<strong>the</strong>r situations<br />

where it is necessary to know <strong>the</strong> length of time <strong>the</strong> water<br />

level is above a particular stage. Possibly <strong>the</strong> main limitation<br />

of <strong>the</strong> method is <strong>the</strong> subjectivity in determining <strong>the</strong><br />

volume and distribution of <strong>the</strong> rainfall excess. Where <strong>the</strong><br />

lack of flow records prevent <strong>the</strong> derivation of <strong>the</strong> UH, procedures<br />

have been developed <strong>for</strong> syn<strong>the</strong>sising typical UH<br />

curves by relating characteristics of <strong>the</strong> hydrograph shape<br />

to catchment characteristics. <strong>These</strong> procedures include <strong>the</strong><br />

well-known Snyder method and <strong>the</strong> US Soil Conservation<br />

Service dimensionless hydrograph (Linsley et al. 1975),<br />

<strong>These</strong> methods have been used successfully within two<br />

regions of similar hydrological characteristics (Hoffmeister<br />

1976). Also <strong>the</strong> Snyder method gave satisfactory results <strong>for</strong><br />

ungauged tributaries <strong>for</strong> <strong>the</strong> Waikato and Clutha Rivers<br />

(Jowett and Thompson 1977), although Coulter (1961)<br />

queries <strong>the</strong> wide applicability of <strong>the</strong> methods.<br />

A guide to <strong>the</strong> order of loss rates that should be used is<br />

given by Pilgrim (1966), who summarised published loss<br />

rate in<strong>for</strong>mation in New Zealand,. As most loss rates were<br />

low (5090 of loss rates were less than 2.5 mm/hr and 8090<br />

were less than 5.1 mm/hr), it was concluded that <strong>the</strong> inaccuracies<br />

in transferring <strong>the</strong>se values from one region to<br />

a<strong>not</strong>her should cause only very small errors in design<br />

floods. Never<strong>the</strong>less, more work is needed on loss rate<br />

estimation in New Zealand as loss rates <strong>are</strong> important in<br />

situations where flow <strong>for</strong>ecasts <strong>are</strong> required. For tributaries<br />

in <strong>the</strong> Motueka catchment Beable (1976) found loss rates to<br />

be related to antecedent wetness, storm intensity and <strong>the</strong><br />

portion of catchment in exotic <strong>for</strong>estry.<br />

1.3.3 Simulation methods<br />

Under this heading is grouped a variety of methods <strong>for</strong><br />

representing catchment response to precipitation. Cat-<br />

Water & soil technical publication no. 20 (1982)


chments <strong>are</strong> simulated with "models" that <strong>are</strong> simplified<br />

representations of complex real-world systems. Models can<br />

be (a) physical, (b) analogue, or (c) ma<strong>the</strong>matical.<br />

Ma<strong>the</strong>matical models represent <strong>the</strong> behaviour of a catchment<br />

by a set of equations and logical statements expressing<br />

relationships between hydrological variables and model<br />

parameters, with an input of precipitation and o<strong>the</strong>r<br />

climatic nneasurementq and an output of stream discharge.<br />

Such models can be classified as: "lumped" or<br />

"distributed" depending upon whe<strong>the</strong>r variations in processes<br />

over <strong>the</strong> catchment <strong>are</strong> considered; "time variant"<br />

or "time-invariant" depending upon whe<strong>the</strong>r variations in<br />

time of <strong>the</strong> model <strong>are</strong> considered; "stochastic" or "deterministic"<br />

depending on whe<strong>the</strong>r probabilistic <strong>not</strong>ions <strong>are</strong><br />

included; and "conceptual" or "empirical" depending on<br />

<strong>the</strong> structuring of <strong>the</strong> model.<br />

Extensive reviews of <strong>the</strong>se models <strong>are</strong> given by Clarke<br />

(1973) and Chapman and Dunin (1975). One use of such<br />

models is <strong>the</strong> extension of a record of streamflows given a<br />

record of precipitation. At present <strong>the</strong> model parameters<br />

<strong>are</strong> usually estimated by fitting a predicted output<br />

hydrograph to an observed output hydrograph over a<br />

period of concurrent rainfall and flow records. Future<br />

developments <strong>are</strong> aimed at enabling <strong>the</strong> estimation of<br />

model parameters from observed physical characteristics of<br />

<strong>the</strong> catchment without <strong>the</strong> need <strong>for</strong> a period of observed<br />

flow record <strong>for</strong> model calibration.<br />

1.3.4 Regional flood frequency methods<br />

Regional flood frequency methods have been applied<br />

widely, <strong>for</strong> example in North America (Thomas and Benson<br />

1970), in'<strong>the</strong> British Isles (NERC 1975), and in<br />

Malaysia (Heiler and Chew 1974). The index flood approach<br />

used in this study averages <strong>the</strong> chance sampling<br />

variation in flood frequency in a region, while preserving<br />

<strong>the</strong> variation due to differences in catchment<br />

characteristics. Development of <strong>the</strong> method involves:<br />

(Ð collecting annual maxima <strong>for</strong> a number of flow stations<br />

in <strong>the</strong> <strong>are</strong>a thought to be homogenous;<br />

(ü) drawing frequency-magnitude curves <strong>for</strong> each station<br />

(Qr/Qvs T);<br />

(iii¡ drawing a frequency-magnitude curve giving a<br />

general Q1/Qvs T relationship <strong>for</strong> use in <strong>the</strong> region;<br />

(iv) obtaining a regression relationship to estimate <strong>the</strong><br />

mean annua.l (or index) flood Qfrom measurable catchment<br />

and climatic Parameters.<br />

The regression relationship can- <strong>the</strong>n be applied at<br />

ungauged locations to estimate Q. Knowing Q<br />

' <strong>the</strong><br />

regional frequenc¡' curves (iii) can be applied to determine<br />

Q1 <strong>for</strong> a specified return period T. This method is one way<br />

of extending a data base from a number of sites to cover a<br />

region. Design flood estimates have to be made <strong>for</strong> many<br />

more sites than can ever be gauged. This is justification <strong>for</strong><br />

developing <strong>the</strong> method in New Zealand, where it should be<br />

<strong>not</strong>ed that no quantitative in<strong>for</strong>mation is available on <strong>the</strong><br />

accuracy of currently used empirical methods. It has <strong>not</strong><br />

previously been applied on a New Zealand-wide basis. It<br />

has <strong>the</strong> advantage that it is based directly on flood records<br />

whereas empirical and unit hydrograph methods rely on <strong>the</strong><br />

trans<strong>for</strong>mation of rainfall into runoff'<br />

With <strong>the</strong> quantity of new data available by <strong>the</strong> middle of<br />

<strong>the</strong> 1970's it was c,cnsidered feasible to develop <strong>the</strong> regional<br />

flood frequency method. Regional inferences about flood<br />

frequencies were made to provide a design flood estimation<br />

method <strong>for</strong> catchments having little or no recorded data.<br />

The frequency dirstribution which is most generally applicable<br />

to <strong>the</strong> annual maxima series has been determined.<br />

<strong>the</strong> first step was to assemble and check records of annual<br />

ma¡


Water & soil technical publication no. 20 (1982)


2 Gollection of Data<br />

2.1 Climate of New Zealand<br />

The climate and rainfall patterns <strong>are</strong> strongly influenced<br />

by <strong>the</strong> location and geography of <strong>the</strong> country.<br />

A useful summarv is given in <strong>the</strong> New Zealand Year<br />

Book (1978). In particular <strong>the</strong> chain of mountains extending<br />

from south-west to north-east through <strong>the</strong> length of<br />

<strong>the</strong> country is a barrier to prevailing moist westerly winds.<br />

The effect is to produce much sharper climatic contrasts<br />

from west to east than in <strong>the</strong> north-south direction. The<br />

summary also indicates typical wea<strong>the</strong>r patterns that lead<br />

to heavy rain.<br />

2.2 Selection of catchments<br />

Details of <strong>the</strong> criteria <strong>for</strong> choosing <strong>the</strong> catchments used<br />

in <strong>the</strong> two sections of <strong>the</strong> study <strong>are</strong> given in Chapters 3 and<br />

4 respectively. Initially all available annual maxima from<br />

rural catchments with four years record and with flows<br />

largely free from <strong>the</strong> effects of impoundments were considered.<br />

Catchment <strong>are</strong>as were required to be greater than<br />

0,1 km', but more restrictive ranges <strong>for</strong> <strong>are</strong>a were imposed<br />

later (See Chapters 3 and 4).<br />

Lake inflows <strong>are</strong> <strong>the</strong> sum of flows from a number of<br />

small catchments that contribute to <strong>the</strong> lake. Because of <strong>the</strong><br />

lesser channel routing effects in small catchments, <strong>the</strong> summed<br />

instantaneous peak inflow may differ from <strong>the</strong> peak<br />

flow from a single catchment of <strong>the</strong> same <strong>are</strong>a subject to<br />

<strong>the</strong> same storm. Although Gilbert (1978) describes a data<br />

processing technique that ensures that lake inflows<br />

calculated from level and outflow records have realistic<br />

values, his work was <strong>not</strong> available at <strong>the</strong> time that <strong>the</strong><br />

criteria <strong>for</strong> data selection were determined. Lake inflows<br />

were <strong>not</strong> used because <strong>the</strong> necessary calculation was believed<br />

prone to error. However, recent work on <strong>the</strong> data<br />

calculated by Gilbert's method shows that it con<strong>for</strong>ms to<br />

<strong>the</strong> same regional pattern as river flow data.<br />

2.3 Sources of data<br />

Although earlier developments were promising, <strong>the</strong> recent<br />

progress in New Zealand in revising and developing<br />

flood estimation methods outlined above has been disappointing<br />

in comparison with o<strong>the</strong>r countries. Some of <strong>the</strong><br />

iag can be attributed to a lack of suitable data. Recognition<br />

of <strong>the</strong> lack of data led to <strong>the</strong> implementation of <strong>the</strong><br />

Representative Basin programme under which more than<br />

70 flow gauging stations were established with digital<br />

recorders in <strong>the</strong> 1960's and'early 1970's. <strong>These</strong> stations,<br />

toge<strong>the</strong>r with improved instru<br />

rs,<br />

have recorded large quantities<br />

ata<br />

<strong>are</strong> available from files of <strong>the</strong><br />

ent<br />

Data) hydrological archiving system which has been<br />

developed by <strong>the</strong> Ministry of Works and Development<br />

(MWD).<br />

Inspection of <strong>the</strong> data held in this system (Figure 2'l)<br />

showi that relatively few records were available be<strong>for</strong>e<br />

1950, and that after 195ó an extremely rapid increase occured<br />

in numbers of records a four-fold increase occurred<br />

over <strong>the</strong> decade 1960-70. More than 400 records were<br />

-<br />

available from TIDEDA in 1978; many more were <strong>not</strong><br />

entered into<br />

of<br />

recorders ope<br />

an<br />

MWD report<br />

i9d<br />

ln-<br />

of recording,<br />

dicates whe<strong>the</strong>r <strong>the</strong> data <strong>are</strong> held in <strong>the</strong> TIDEDA system.<br />

With approximatel'y 700 water level recorders on lakes and<br />

rivers listed in this index, inadequate flow data should <strong>not</strong><br />

constrain regional hydrological analyses as it has in <strong>the</strong><br />

past.<br />

Annual series da:a were collected from MWD and catchment<br />

authority ftow stations. At <strong>the</strong> time of data collection,<br />

comments were obtained on <strong>the</strong> accuracy of <strong>the</strong> data<br />

and on <strong>the</strong> nature and conditions of <strong>the</strong> catchments from<br />

<strong>the</strong> people in chargr: of <strong>the</strong> streamflow data processing, and<br />

<strong>the</strong>ir advice was hr:eded in <strong>the</strong> acceptance or rejection of<br />

data.<br />

Where streamflow in<strong>for</strong>mation was stored on <strong>the</strong><br />

MWD's TIDEDA system, plots of <strong>the</strong> streamflow were obtained.<br />

Each plot vvas <strong>the</strong>n scrutinised <strong>for</strong> <strong>the</strong> reliability of<br />

<strong>the</strong> streamflow record be<strong>for</strong>e <strong>the</strong> annual flood peaks were<br />

extracted from <strong>the</strong> record.<br />

2.4 Oualfty of <strong>the</strong> data<br />

The standards o I accuracy of data will undoubtedly vary<br />

considerably front one catchment to a<strong>not</strong>her. Records<br />

from a number of smaller catchments monitored at fixed<br />

control structures may be expected to be of good standard<br />

of accuracy <strong>for</strong> all flow conditions. For larger catchments<br />

where <strong>the</strong> control lLs a natural river channel section, <strong>the</strong> accuracy<br />

of estimat() of annual maxima will depend on <strong>the</strong><br />

stability of <strong>the</strong> cross-section, <strong>the</strong> frequency of gauging, <strong>the</strong><br />

range of flows overr which gaugings have been carried out,<br />

and <strong>the</strong> general standards to which <strong>the</strong> recorder is<br />

operated. Even if a good record has been maintained, conversion<br />

of a recor,l of water levels into discharge requires<br />

maintenance of a rating curve. In cases where <strong>the</strong> river has<br />

large sediment loa.ds this is a difficult task. Judgement is<br />

needed to decide how to extrapolate a rating curve, often<br />

defined only <strong>for</strong> rredium or low flows, into a high flow<br />

regime. Although greater confidence can be placed in<br />

rating curves which include some flood gaugings, such<br />

gaugings <strong>are</strong> <strong>not</strong> zrlways available.<br />

Although Ibbitt (1979) describes a data processing<br />

technique that ensures extrapolation of ratings to flood<br />

stage is <strong>not</strong> upset by channel changes, this technique was<br />

<strong>not</strong> <strong>the</strong> general practice when <strong>the</strong> flood data were assembled.<br />

The inconsistency in flood flow ratings on <strong>the</strong> Rakaia<br />

River prior to lbbitt's work (and illustrated in Fig' 5 in his<br />

paper) <strong>are</strong> presumrably typical of <strong>the</strong> hydrometric practice<br />

used to derive all <strong>the</strong> flood estimates used.<br />

2.5 Historical in<strong>for</strong>mation<br />

Where possible. historical in<strong>for</strong>mation was collected <strong>for</strong><br />

those flow stations with annual series data. In<strong>for</strong>mation on<br />

historical floods, occurring both inside and outside <strong>the</strong><br />

period of continuous record, was obtained from: MWD,<br />

õatchment authorities; reports; and from <strong>the</strong> publication<br />

"Floods in New Zl,ealand l92O-53" (SCRCC 1957). The in<strong>for</strong>mation<br />

consisted of an estimate of <strong>the</strong> historical flood<br />

peak toge<strong>the</strong>r witlh <strong>the</strong> period of time over which <strong>the</strong> peak<br />

was known to be <strong>the</strong> largest, second largest, etc. Advice on<br />

<strong>the</strong> au<strong>the</strong>nticity o1i many of <strong>the</strong> earlier historical flood peak<br />

estimates was sought from <strong>the</strong> relevant data collection<br />

agencies. The methods by which this additional in<strong>for</strong>mati,on<br />

was used in <strong>the</strong> frequency analysis <strong>are</strong> described in<br />

Chapter 3.<br />

Water & soil technical publication no. 20 (1982)<br />

ll


Doto ovoiloble on<br />

TIDEDA<br />

Figure 2'1 Number of water level recorder stetions<br />

Water in & New soil technical Zealand and publication time d¡str¡bution no. 20 (1982) of water level data filed on TIDEDA.<br />

l2


3. Regional flood frequency analysis<br />

3.1 Flood frequencY method<br />

3.1.1 General<br />

Frequency analysis is a method of inferring <strong>the</strong> magnitude<br />

of a design event from a given sample of recorded<br />

events. The method is statistical and involves <strong>the</strong> fitting of a<br />

frequency distribution to a sample of recorded events. The<br />

resulting frequency curve is <strong>the</strong>n usually extrapolated in<br />

order to estimate <strong>the</strong> design event. In <strong>the</strong> case of a frequency<br />

analysis of floods, <strong>the</strong> sample consists of flood<br />

peaks taken from a streamflow record. The sample may<br />

also contain some historical flood peaks, if this type of in<strong>for</strong>mation<br />

is available. Provided <strong>the</strong> streamflow record<br />

from which <strong>the</strong> sample is taken is sufficiently long, flood<br />

frequency analysis is generally regarded as <strong>the</strong> most accurate<br />

method of estimating a design flood peak.<br />

A flood frequency curve may be used <strong>for</strong> a catchment<br />

where <strong>the</strong>re is little or no streamflow record by a regional<br />

flood frequency analysis procedure. Inherent in such a procedure<br />

is <strong>the</strong> concept of a flood frequency region, i.e., in a<br />

region which is reasonably homogeneous in terms of climate,<br />

topography and soil characteristics and within which<br />

catchments display similar flood frequency properties.<br />

The regional analysis method employed in this study is of<br />

<strong>the</strong> Index-Flood type, pioneered by <strong>the</strong> US Geological Survey<br />

(Dalrymple 1960) and used by NERC (1975); it averages<br />

<strong>the</strong> chance sampling variation in individual streamflow records<br />

<strong>for</strong> a region, while preserving <strong>the</strong> variation due to differences<br />

in catchment and climatic variables. An essential<br />

part of <strong>the</strong> method involves <strong>the</strong> combining of <strong>the</strong> flood<br />

peak data <strong>for</strong> a region to produce an average or regional<br />

flood frequency curve, This regional curve is assumed to be<br />

generally applicable to catchments in <strong>the</strong> region and may be<br />

applied to both gauged and ungauged catchments. Because<br />

<strong>the</strong> regional curve is based on a number of records from <strong>the</strong><br />

region, it provides a more reliable basis <strong>for</strong> extrapolation to<br />

estimate a design flood peak than an individual frequency<br />

curve fitted to a relatively short record.<br />

Several frequency distributions have been proposed <strong>for</strong><br />

flood frequency analysis, but no single distribution has<br />

been universally accepted. The fitting of a distribution may<br />

be done ei<strong>the</strong>r graphically, i.e., by fitting a curve by eye to<br />

<strong>the</strong> plotted data sample and <strong>the</strong>n extrapolating that curve to<br />

estimate <strong>the</strong> design flood, or analytically, i.e., by estimating<br />

<strong>the</strong> distribution's parameters from statistical characteristics<br />

of <strong>the</strong> data sample. The anal¡ical approach, involving <strong>the</strong><br />

General Extreme Value distribution, was used in this study.<br />

3.1.2 Terminology<br />

A fundamental concept in flood frequency analysis is<br />

that of a statistical population. The population is made up<br />

of flood peak items, where each occurs in a separate partition<br />

in time of <strong>the</strong> streamflolv at a site. <strong>These</strong> partitions <strong>are</strong><br />

Ù c.<br />

ô<br />

x<br />

\<br />

E<br />

ë<br />

l!<br />

or<br />

f(x)<br />

= dF(x)<br />

dx<br />

F(x) = ¡x-f(x)dx<br />

where, by definition<br />

F(-) : Il- f(x)dx = t<br />

Characteristics of <strong>the</strong> two functions, and <strong>the</strong> relationship<br />

between <strong>the</strong>m, <strong>are</strong> illustrated in Figure 3.1 using<br />

<strong>the</strong> well-known Normal distribution. As shown in<br />

Figure 3.1, F(x), <strong>the</strong> df, is <strong>the</strong> probability of a variate<br />

value (x, in Figure 3.1) <strong>not</strong> being equalled or exceeded'<br />

It may be expressed generally as<br />

F(x) : P(Xsx) 33<br />

P(xsxJ =/j'lt'lo-<br />

Vor¡ole x<br />

Port (o)<br />

partitions in <strong>the</strong> total population. The variable value of a<br />

hood peak in <strong>the</strong> flood record is called a random variable<br />

or variate x.<br />

The probability distribution of <strong>the</strong> variate x may be described<br />

by ei<strong>the</strong>r:<br />

(i) f(x), its probability density function (pdf), which gives<br />

<strong>the</strong> probability or relative frequency of occurrence of<br />

x; or<br />

(ii) F(x), <strong>the</strong> corresponding cumulative or distribution<br />

function (df).<br />

Vor¡ole r<br />

Port (bl<br />

P(xs xt)<br />

Flguro 3.1 Charaster¡st¡cs of <strong>the</strong> pdf (Part al and <strong>the</strong><br />

The two functions <strong>are</strong> related bY<br />

df (Part b) using a Normal distr¡bution.<br />

Water & soil technical publication no. 20 (1982)<br />

l3


P=45<br />

O= 15<br />

x4<br />

(l)<br />

'=<br />

o<br />

o<br />

t.25 2'.O ¡b zs sb loo rooo T<br />

-z.o -t'o 2.O 3.O<br />

o.f o.3 0.5 0.7 0.9 0.95 o.9986<br />

YH<br />

F(x)<br />

Figure 3.2 The plot of <strong>the</strong> df in Fig. 3.1 as a function of its ¡educed variate,<br />

F(x) =l-P(X>x)<br />

34<br />

where P(<br />

ote <strong>the</strong> probability of<br />

non-exce<br />

respectively.<br />

Allied with<br />

dence is <strong>the</strong> <strong>not</strong>ion of<br />

recurrence interval or return period, which is <strong>the</strong> reciprocal<br />

of <strong>the</strong> probability of exceedence in a time unit. For instance,<br />

if a flood peak is exceeded on average 20 times in<br />

every 100 years, it has a return period of 5 years, or a probability<br />

of exceedence in any one year of 0.20. Thus<br />

P(X>x) = I T<br />

which, from Equation<br />

F(x) = I<br />

3.4, gives<br />

_l<br />

T<br />

whereT = returnperiod.<br />

The curvatu<br />

35<br />

36<br />

and <strong>the</strong> reliability of <strong>the</strong> extrapolation when <strong>the</strong> fitted frequency<br />

line is straight ra<strong>the</strong>r than curved. A straight line<br />

<strong>for</strong> <strong>the</strong> df can be obtained by rescaling <strong>the</strong> F(x) axiJ with a<br />

on <strong>the</strong> F(x) axis, using <strong>the</strong> relationship between y and F(x)<br />

and Equations 3.3-3.6. In this way different probability<br />

papers, e.g., Normal and Gumbel, can be constructed to<br />

produce straight line plots of <strong>the</strong>ir corresponding distribution<br />

functions. Figure 3.2 illustrates <strong>the</strong> use of a reduced<br />

yariate (y¡) <strong>for</strong> <strong>the</strong> Normal distribution shown in Figure<br />

3.1. In accordance with convention, Figure 3.1 has been realigned<br />

in Figure 3.2, so that <strong>the</strong> variate scale is now on <strong>the</strong><br />

ordinate and <strong>the</strong> probability and reduced variate scales <strong>are</strong><br />

on <strong>the</strong> abscissa; future mention of frequency curves is with<br />

reference to this type of plot. The actual application of a reduced<br />

variate is explained fully in section 3.1.3 with reference<br />

to <strong>the</strong> Gumbel distribution.<br />

typical ofthat Despite <strong>the</strong> use of a reduced variate, a straight line will<br />

<strong>for</strong> a Normal<br />

<strong>are</strong> plotted to <strong>not</strong> give a good fit when <strong>the</strong> data sample does <strong>not</strong> con<strong>for</strong>m<br />

natural scales.<br />

curvature <strong>for</strong>, to <strong>the</strong> assumed distribution. However, it may still be possible<br />

to obtain a good fit with a straight line by first trans-<br />

when fitting ã<br />

sferred to as a<br />

relative frequency or simply a frequency distribution) to a <strong>for</strong>ming <strong>the</strong> data sample. The most common trans<strong>for</strong>mation<br />

is <strong>the</strong> changing of each sample item to its logarithm.<br />

data sample, it is easier to visually assess <strong>the</strong> goodness-of-fit<br />

Water & soil technical publication no. 20 (1982)<br />

l4


3.1.3 General extreme value distribution<br />

Of <strong>the</strong> frequency distributions used in flood hydrology,<br />

many belong to ei<strong>the</strong>r <strong>the</strong> Gamma distribution family or<br />

<strong>the</strong> General Extreme Value (GEV) distribution. In this<br />

study <strong>the</strong> GEV distribution is used <strong>for</strong> fitting <strong>the</strong> regional<br />

data. This choice was supported by tests in which several<br />

distributions were fitted to flood peak samples. The distributions,<br />

<strong>the</strong> tests, and <strong>the</strong> results <strong>are</strong> described in Appendix<br />

A.<br />

Although <strong>the</strong> GEV was found to give a good fit to <strong>the</strong> regional<br />

data, it appe<strong>are</strong>d from <strong>the</strong> tests that <strong>the</strong> log-Pearson<br />

Type 3 (LP3) distribution (also known as <strong>the</strong> three-parameter<br />

log-Gamma distribution) may well have given an<br />

equally good description of<strong>the</strong> regional trend. Aspects that<br />

influenced <strong>the</strong> choice in favour of <strong>the</strong> GEV distribution<br />

were <strong>the</strong> following:<br />

(i) In a comprehensive comparative examination of <strong>the</strong><br />

GEV and LP3 distributions, NERC (1975 pp. 135-60)<br />

found that <strong>the</strong> GEV per<strong>for</strong>med more consistently in<br />

<strong>the</strong> various goodness-of-fit tests.<br />

(ii) The GEV distribution had been found by NERC<br />

(1975) to describe <strong>the</strong>ir empirically derived regional<br />

curves "remarkably well".<br />

(lii) The fact that <strong>the</strong> GEV distribution had already been<br />

used by NERC (1975) enabled a direct comparison of<br />

jresults between that study and this one.<br />

(lv) The GEV distribution af<strong>for</strong>ded <strong>the</strong> more tractable<br />

solution e.g., <strong>the</strong>re was no equation available <strong>for</strong> <strong>the</strong><br />

LP3 that is analogous to Equation 3.14, wherein <strong>the</strong><br />

three-parameter distribution is expressed in terms of<br />

<strong>the</strong> reduced variate <strong>for</strong> its corresponding two-parameter<br />

(in this case log-Normal) distribution.<br />

The pdf <strong>for</strong> <strong>the</strong> GEV distribution may be written as<br />

f(x) = _t tl -k(x- u)/a|rk-ts-{l-k(x-u)/a}r/k .....3.7<br />

ct<br />

where u : alocationparameter,<br />

d: ascaleparameter,<br />

k = ashapeparameter,<br />

and <strong>the</strong> corresponding df is<br />

F(x): s-{r-k(x-u)/ø}k<br />

Like <strong>the</strong> Gamma distribution, <strong>the</strong> GEV distribution describes<br />

a family of distributions, each member of which is<br />

characterised by <strong>the</strong> value of <strong>the</strong> shape parameter, in this<br />

case k. The GEV distribution may be divided into three<br />

types of extreme value (EV) distribution depending on<br />

whe<strong>the</strong>r k is equal to, less than, or greater than zero. The<br />

three types, and <strong>the</strong> corresponding range <strong>for</strong> which <strong>the</strong> pdf<br />

(Equation 3.7) is non-zero, <strong>are</strong> defined as follows:<br />

(¡) if k = 0, <strong>the</strong> rlistribution is type I (EVl) and <strong>the</strong> pdf is<br />

non-zero <strong>for</strong> x>0;<br />

(¡i) if k < 0, <strong>the</strong> distribution is type 2 (Ev2) and <strong>the</strong> pdf is<br />

non-zero<strong>for</strong>u + S . * < *;<br />

K<br />

38<br />

and EV3 is also known as Weibull. The three types <strong>are</strong> also<br />

called Fisher-Tippett type I, type2, and type 3.<br />

Since k = 0 <strong>for</strong> <strong>the</strong> EVI distribution, <strong>the</strong> distribution is<br />

only a two-param€rter one and <strong>the</strong> pdf simplifies to<br />

(Ð=å<br />

exp [ - (x - u)/o - e-(x- u)/a¡ 39<br />

while <strong>the</strong> df reducr:s to<br />

F(x) : s¡t [-e-(t -u),za¡<br />

If a reduced varÍate y is now introduced <strong>for</strong> <strong>the</strong> EVI distribution<br />

such that<br />

or<br />

,, _ x-u<br />

a<br />

X:U+cry<br />

<strong>the</strong>n <strong>the</strong> df may be written as<br />

and<br />

F(x) = s-e-r<br />

x: u +f,tr-r-url<br />

Using Equation 3.14 it is possible to distinguish between<br />

<strong>the</strong> three types of EV distribution by plotting <strong>the</strong>m on an<br />

x- y probability plot (see Figure 3.3), o<strong>the</strong>rwise known as<br />

Gumbel probability paper.<br />

The EV2 has a lower bound but no upper bound; conversely<br />

<strong>the</strong> EV3 has an upper bound and no lower bound,<br />

while <strong>the</strong> EVI iS unbounded.<br />

If required, return periods and associated probabilities<br />

can be scaled on <strong>the</strong> abscissa axis in Figure 3.3 by recalling<br />

from Equation 3.ór that<br />

and by substituting <strong>for</strong> F(x) in Equation 3.13. This produces<br />

T- I<br />

l-<br />

l-e-e-Y<br />

Y: -rn ('- rn(t-å, )<br />

310<br />

3ll<br />

3t2<br />

313<br />

which gives rise to <strong>the</strong> name of double exponential distribution<br />

<strong>for</strong> EVl.<br />

Because Equations 3.ll and 3.12 describe a linear relationship<br />

between x and y, <strong>the</strong> df <strong>for</strong> <strong>the</strong> EVI distribution is<br />

given as a straight line on an x - y plot.<br />

The GEV distritrution may also be expressed in terms of<br />

<strong>the</strong> reduced variate y by <strong>the</strong> following equation derived by<br />

Jenkinson (1955)<br />

F(x):l-l<br />

T<br />

314<br />

315<br />

316<br />

(ili) if k > 0, <strong>the</strong> distribution is type 3 (EV3) and <strong>the</strong> pdf is<br />

non-zero<strong>for</strong>-æ


Êv2<br />

( ko)<br />

Reduced Voriote y<br />

I'O<br />

t1<br />

50 too<br />

ttl<br />

5to20<br />

, Return Period, yeors<br />

Figure 3.3 Differentiation of <strong>the</strong> three types of extreme value d¡stribution.<br />

I<br />

200<br />

Table 3.1 The relationship between y and T values <strong>for</strong> <strong>the</strong> EVI<br />

distribution.<br />

Equations similar to 3.15 and 3.16, but this time relating<br />

y and <strong>the</strong> probability of exceedence, may be obtained by<br />

substituting P(X > x), as given in Equation 3.5, into <strong>the</strong> two<br />

equations. This results in<br />

1.O1<br />

2.OO<br />

2.33<br />

5<br />

10<br />

20<br />

30<br />

50<br />

100<br />

200<br />

500<br />

1000<br />

- 1.53<br />

0.37<br />

o.58<br />

1.50<br />

2.25<br />

2.97<br />

3.38<br />

3.90<br />

4.60<br />

5.29<br />

6.21<br />

6.91<br />

-2.O<br />

- 1.5<br />

- 1.O<br />

-0.5<br />

o<br />

o.5<br />

1.O<br />

1.5<br />

2.O<br />

2.5<br />

3.0<br />

3.5<br />

4.O<br />

4.5<br />

5.0<br />

5.5<br />

6.0<br />

6.5<br />

7.O<br />

1.OO<br />

1.01<br />

1.O7<br />

1.24<br />

1.58<br />

2.20<br />

3.25<br />

5.OO<br />

7.90<br />

12.69<br />

20.59<br />

33.62<br />

55.1 0<br />

90.52<br />

148.9<br />

245.2<br />

403.9<br />

665.6<br />

1 097<br />

and<br />

P(X>x) = I -6-e-I<br />

y = -fn(- fn(l-P(x>x))) .....3.18<br />

3. I .4 Sampling properties<br />

317<br />

The data sample, from which a flood frequency analysis<br />

infers a design flood magnitude, must possess <strong>the</strong> following<br />

properties if <strong>the</strong> analysis is to make <strong>the</strong> proper inferences<br />

about <strong>the</strong> population's distribution.<br />

Sufftcient Length The data sample should be sufficiently<br />

long, i.e., it should contain a large number of items. Often<br />

l0 annual flood peak items <strong>are</strong> considered sufficient (Neill<br />

1973; Beard 1977), though even <strong>the</strong>n <strong>the</strong> sample is of limited<br />

use in design (Linsley et al, 1975) unless supplemented<br />

with additiongl hydrological in<strong>for</strong>mation, €.g., a correlation<br />

with a longer streamflow record from a nearby station.<br />

t6<br />

Water & soil technical publication no. 20 (1982)


Never<strong>the</strong>less, data samples of about l0 years in length <strong>are</strong><br />

common and <strong>are</strong> often <strong>the</strong> only data available.<br />

Completeness The data sample should be complete, i.e.,<br />

it should be taken from a continuous streamflow record.<br />

Gaps in <strong>the</strong> record do <strong>not</strong> matter provided it is certain that<br />

<strong>the</strong> maximum flood peak in <strong>the</strong> corresponding time unit<br />

was recorded. However, where flood peak sample items <strong>are</strong><br />

missing as a result of gaps in <strong>the</strong> record, <strong>the</strong> time units containing<br />

<strong>the</strong> gaps shortid be only a small proportion of <strong>the</strong><br />

total sample length. And ra<strong>the</strong>r than concatenating <strong>the</strong> various<br />

recorded sequences toge<strong>the</strong>r, it is preferable instead to<br />

omit altoge<strong>the</strong>r <strong>the</strong> streamflow record <strong>for</strong> <strong>the</strong> time units<br />

with <strong>the</strong> gaps (e.g., omit whole years <strong>for</strong> an annual flood<br />

peak sample) and to treat <strong>the</strong> sample as having a correspondingly<br />

shorter length.<br />

Homogeneity The sample should be homogeneous, i.e.,<br />

all <strong>the</strong> items should have occurred under <strong>the</strong> same conditions.<br />

Factors which.can affect <strong>the</strong> homogeneity of a sample<br />

include: man's activity (e.g., construction of reservoirs,<br />

land use changes, stopbanking, channel realignment, flow<br />

regulation, and diversions); faulty records; and changes in<br />

gauging control conditions that re-rating has <strong>not</strong> accounted<br />

<strong>for</strong>. Only samples which represent relatively stable catchment<br />

conditions should be used. The homogeneity of a<br />

large sample may be checked by splitting <strong>the</strong> sample into<br />

two parts and comparing <strong>the</strong> frequency curve fitted to each<br />

(Beard 1974, 1977).<br />

Rondomness The time unit must be long enough that each<br />

flood peak item in <strong>the</strong> sample is from a different flood<br />

event, so that it is reasonable to assume <strong>the</strong>re is no serial<br />

correlation between successive flood peak items.<br />

Reliability The sample items taken from <strong>the</strong> streamflow<br />

record should be reliable measurements or estimates' Measurement<br />

errors <strong>are</strong> generally small in relation to <strong>the</strong> year-toyear<br />

variance in <strong>the</strong> sample items and can <strong>the</strong>re<strong>for</strong>e usually<br />

be neglected. The errors that <strong>are</strong> of concern result from<br />

large extrapolations of <strong>the</strong> stage-discharge rating curve and<br />

from <strong>the</strong> existence of an unstable gauging control. <strong>These</strong> errors<br />

reduce <strong>the</strong> reliability of <strong>the</strong> data sample and, consequently,<br />

<strong>the</strong> reliability of <strong>the</strong> fitted frequency curve, and<br />

thus a record needs to be checked <strong>for</strong> <strong>the</strong>ir presence.<br />

Representativeness The data sample should be representative<br />

of <strong>the</strong> long-term or population distribution of items.<br />

Clearly this is difficult to assess because <strong>the</strong> population is<br />

unknown. However, <strong>the</strong> representativeness of <strong>the</strong> sample<br />

can be tested statistically if <strong>the</strong>re is a long-term streamflow<br />

record <strong>for</strong> a similar catchment nearby (McGuinness and<br />

Brakensiek 1964). Where tests show conclusively that <strong>the</strong><br />

sample is unrepresentative on a long-term basis, <strong>the</strong>re<br />

*ould be no point in applying frequency analysis methods;<br />

<strong>the</strong> resulting frequency curves would have little predictive<br />

value.<br />

3.1.5 Types of samp¡e<br />

In general three types of flood sample may be identified.<br />

Annual Series The most usual <strong>for</strong>m of a data sample is<br />

<strong>the</strong> annual series, which consists of <strong>the</strong> maximum flood<br />

peak <strong>for</strong> each year of<br />

Pling generally<br />

produces items<br />

However,<br />

it is claimed that a d<br />

sample is<br />

that it may ignore some large flood peaks and emphasise<br />

smaller ones.<br />

Peaks Over a Threshold Series An alternative type of<br />

sample is <strong>the</strong> partial duration series, which seeks to overcome<br />

<strong>the</strong> disadvantage of <strong>the</strong> annual series by containing all<br />

flood peaks above an arbitrarily chosen base level. Sample<br />

items chosen in this way need to be checked much more<br />

closely <strong>for</strong> serial correlation than an annual series, because<br />

large floods often contain more than one peak above <strong>the</strong><br />

base level.<br />

Historical Series l{istorical in<strong>for</strong>mation on flood events is<br />

often available. rùy'hen it is reliable it should be used in conjunction<br />

with <strong>the</strong> data sample taken from <strong>the</strong> continuous<br />

streamflow record. The resulting data sample is called a historical<br />

series. The inclusion of historical in<strong>for</strong>mation often<br />

significantly increases <strong>the</strong> length of a sample, <strong>the</strong>reby improving<br />

<strong>the</strong> reliabitity of <strong>the</strong> frequency analysis. Moreover,<br />

<strong>the</strong> in<strong>for</strong>mation herlps to fix <strong>the</strong> top end of <strong>the</strong> frequency<br />

curve, <strong>the</strong> end in u¡hich <strong>the</strong>re is generally most interest.<br />

In this study <strong>the</strong>: basic data sample used was an annual<br />

series, which consisted of <strong>the</strong> maximum instantaneous discharge<br />

<strong>for</strong> each year of record; historical in<strong>for</strong>mation was<br />

also included where possible. The partial duration series<br />

was <strong>not</strong> used, even though it contains more items than <strong>the</strong><br />

annual series <strong>for</strong> a given length of record. It was excluded<br />

because its advantage over <strong>the</strong> annual series is only when<br />

<strong>the</strong> design return period is less than l0 years (NERC 1975;<br />

Chow 1964, pp.8-i!.2,23). Fur<strong>the</strong>rmore, <strong>the</strong>re is no guarantee<br />

that it is better than <strong>the</strong> annual series simply because it<br />

contains more data. As has been pointed out by NERC<br />

(1975, section 2.2.4 and section 2.1\ and by Cunnane<br />

(1975), <strong>the</strong> dictum "more data, better estimates" is <strong>not</strong> universally<br />

true, and in certain circumstances estimates from<br />

an annual series can be more efficient statistically than<br />

those from a partiial duration series taken from <strong>the</strong> same<br />

record.<br />

3.1.6 Plotting<br />

The probability plot, i.e., <strong>the</strong> x-y plot of <strong>the</strong> sample<br />

data, is an integral part of hydrological practice. Despite<br />

<strong>the</strong> numerous statistical goodness-of-fit tests now available,<br />

few engineers who have to make decisions which <strong>are</strong> based<br />

on <strong>the</strong> analytical fitting of <strong>the</strong>oretical distributions to sample<br />

data would do so without first inspecting <strong>the</strong> fit of <strong>the</strong><br />

frequency curve on a probability plot.<br />

In order to construct a probability plot, it is necessary to<br />

know <strong>the</strong> return period or plotting position of each sample<br />

item. Various fonnulae <strong>are</strong> available <strong>for</strong> calculating plotting<br />

positions, witlh <strong>the</strong> following one <strong>the</strong> Weibull <strong>for</strong>m-<br />

-<br />

ula<br />

- being <strong>the</strong> nrost popular: 319<br />

T -N+l rP - __<br />

i<br />

where Tp<br />

and i<br />

Water & soil technical publication no. 20 (1982)<br />

N<br />

<strong>the</strong> return period plotting position of a<br />

fJood peak, in years;<br />

<strong>the</strong> length of record in years (e.9., <strong>the</strong><br />

number of annual peaks <strong>for</strong> an annual<br />

sr:ries);<br />

= <strong>the</strong> rank of <strong>the</strong> flood peak in <strong>the</strong> series<br />

(r:.g., I <strong>for</strong> <strong>the</strong> largest and N <strong>for</strong> <strong>the</strong> smal-<br />

Iest of an annual series).<br />

The <strong>for</strong>mula has gained wide acceptance, largely because<br />

of its simplicity and <strong>the</strong> fact that it gives results one would<br />

intuitively expect. For example, <strong>the</strong> largest peak in an annual<br />

series has a c,alculated plotting position only one year<br />

greater than <strong>the</strong> length of record. This is consistent with<br />

Gumbel's (1943) reasoning that <strong>the</strong> largest item in a sample<br />

of N items should <strong>not</strong> have a return period significantly<br />

greater than N, However, <strong>the</strong>re is statistical evidence<br />

against such an inl.uitive line of thought. For example, Cunnane<br />

(1978), in a comprehensive review of plotting positions,<br />

has shown statistically that <strong>for</strong> samples of size N belonging<br />

to <strong>the</strong> EVI distribution, <strong>the</strong> largest item in <strong>the</strong> sample<br />

has a return ¡reriod in <strong>the</strong> p<strong>are</strong>nt population of about<br />

1.8N. In fact NEIìC (1915, p.67) and Cunnane have made<br />

<strong>the</strong> point that <strong>the</strong> Weibull <strong>for</strong>mula gives biased plotting<br />

positions, which, on average, leads to an over-estimation of<br />

flood peaks <strong>for</strong> high return periods.<br />

Cunnane emphrasised <strong>the</strong> need to distinguish between <strong>the</strong><br />

plotting position of a sample item and that item's actual ret7


turn period. A plotting position <strong>for</strong>mula merely gives <strong>the</strong><br />

position at which <strong>the</strong> item should be plotted in order to<br />

assess <strong>the</strong> goodness-of-fit of <strong>the</strong> frequency distribution.<br />

The actual return period of <strong>the</strong> item should be inferred<br />

from <strong>the</strong> fitted distribution.<br />

TP N + 0.12<br />

i-0.4<br />

Equation 3.20 also gives a reasonable approximation of<br />

<strong>the</strong> unbiased plotting positions <strong>for</strong> a GEV distribution displaying<br />

small or moderate curvature. It was <strong>the</strong>re<strong>for</strong>e used<br />

in this study <strong>for</strong> <strong>the</strong> calculation of plotting positions <strong>for</strong> <strong>the</strong><br />

methods involving EV distributions. It is possible to calculate<br />

exact plotting positions <strong>for</strong> <strong>the</strong> EVI distribution <strong>for</strong><br />

small values of N but in practice, <strong>for</strong> N ) 35, <strong>the</strong> calculation<br />

is overwhelmed by ro<br />

a<br />

,N<br />

" a' iD=, 321<br />

320<br />

S).<br />

(section<br />

where Q¡ an individual annual flood peak, and<br />

N <strong>the</strong> length, in years, of <strong>the</strong> annual series.<br />

A dimensionless probability plot was <strong>the</strong>n obtained <strong>for</strong><br />

The annual flood<br />

3.2.1) <strong>for</strong> each flow s ¡sionless<br />

<strong>for</strong>m by dividing through by <strong>the</strong> corresponding mean annual<br />

flood Q, defined as <strong>the</strong> arithmetic mean of <strong>the</strong> annual<br />

series. Thus<br />

mean annual flood Q standardises <strong>the</strong> series, permitting a<br />

direct comparison of <strong>the</strong> plot of one series with a<strong>not</strong>hèr.<br />

Significant differences between plots <strong>are</strong> interpreted to<br />

mean that <strong>the</strong> corresponding ftow stations belong to different<br />

flood frequency regions.<br />

volved, namely whe<strong>the</strong>r<br />

(D <strong>the</strong> historical floods occurred outside <strong>the</strong> annual series;<br />

or<br />

(ii) tne historical floods occurred inside <strong>the</strong> annual series.<br />

Dealing first with <strong>the</strong> type (i) series, consider an annual<br />

period of J years,<br />

to have occurred,<br />

seri<br />

dur<br />

givi<br />

fN+Jyears.In<br />

this<br />

nnual seiies were<br />

based on a record length of N years, as be<strong>for</strong>e, while <strong>the</strong><br />

plotting positions of <strong>the</strong> historical floods were based on <strong>the</strong><br />

th of N + J years. Hence, <strong>for</strong> exorical<br />

flood had a return period plotby<br />

TP :(N + J) + 0.12 =<br />

i-o.4<br />

(N+J) + 0.t2 322<br />

0.56<br />

For <strong>the</strong> type (ii) series, consider <strong>the</strong> largest flood peak in<br />

<strong>the</strong> annual series, of length N years, which also is known to<br />

be <strong>the</strong> largest over a longer period of N + J years. Here <strong>the</strong><br />

t8<br />

plotting position of <strong>the</strong> largest peak was based on <strong>the</strong> length<br />

of <strong>the</strong> historical series N + J years, giving a return period<br />

as indicated by Equation 3.22. The o<strong>the</strong>r flood peaks in <strong>the</strong><br />

annual series were <strong>the</strong>n treated as <strong>the</strong> 2nd, 3rd largest etc. in<br />

N years.<br />

In <strong>the</strong> special case where <strong>the</strong>re were two historical floods,<br />

one outside and one inside <strong>the</strong> annual series of length N<br />

years, <strong>the</strong> plotting positions of <strong>the</strong>se two floods were based<br />

on N + J years. Again <strong>the</strong> ordinary annual flood peaks<br />

were considered as <strong>the</strong> 2nd, 3rd largest etc. in N years.<br />

3. 1.7 Computer programs<br />

In this study flood frequency analyses were per<strong>for</strong>med<br />

analytically using a computer program called FRAN<br />

(Maguiness et al. in prep.). The methods included in <strong>the</strong><br />

program <strong>are</strong> outlined in Appendix A. A<strong>not</strong>her program<br />

called FRANCES (Appendix A) was developed ro analyse<br />

<strong>the</strong> historical series data, which typically comprised an annual<br />

series and an additional period of unknown record in<br />

which one or more large, <strong>not</strong>able, and hence historical<br />

floods, occurred. The program FRANCES per<strong>for</strong>ms a frequency<br />

analysis of a censored sample, which may be defined<br />

as a sample which contains unknown flood peaks that<br />

all lie on one side of a given threshold value or censoring<br />

point. An historical series may often be regarded as a censored<br />

sample, where <strong>the</strong> unknown peaks <strong>are</strong> those which<br />

occurred outside <strong>the</strong> annual series and which were less than<br />

<strong>the</strong> known historical flood peaks. In using <strong>the</strong> program, it<br />

is necessary to specify <strong>the</strong> historical flood peaks and to<br />

assume that none of <strong>the</strong> unknown peaks exceeded <strong>the</strong> censoring<br />

point, which must be set at a value less than <strong>the</strong> historical<br />

peaks.<br />

same method.<br />

3.2 Flood frequency data<br />

3.2.1 Data collect¡on<br />

The collection of annual series data was restricted to<br />

thosè flow stations which satisfied <strong>the</strong> following conditions:<br />

(i) <strong>the</strong> catchment land use had <strong>not</strong> changed significantly<br />

over <strong>the</strong> period of record;<br />

(ii) <strong>the</strong> annual flood peaks were <strong>not</strong> substantially regulated<br />

or affected by impoundments, swamps or diversions<br />

within <strong>the</strong> catchment;<br />

(iii) <strong>the</strong>re were eight or more annual flood peaks available;<br />

(iv) when historicat flood peak in<strong>for</strong>mation was available,<br />

<strong>the</strong>re were also at least five annual flood peaks;<br />

(v) <strong>the</strong> catchment was rural, or predominantly so;<br />

(vl) <strong>the</strong> catchment <strong>are</strong>a was greater than 20 kmr.<br />

The first two conditions <strong>are</strong> consistent with <strong>the</strong> normal<br />

requirements <strong>for</strong> data samples (section 3.1.4). The third<br />

condition of only 8 or more years of record is slightly less<br />

than <strong>the</strong> l0 years that is generally recommended as <strong>the</strong><br />

minimum sample length required <strong>for</strong> a typical flood frequency<br />

analysis. However, this study was concerned, <strong>not</strong> so<br />

much with flood frequency analyses <strong>for</strong> individual stations,<br />

as with <strong>the</strong> derivation of regional curves from mass plots of<br />

all <strong>the</strong> data <strong>for</strong> <strong>the</strong> regions (section 3.1.5). The reduction in<br />

this study of <strong>the</strong> minimum sample length to 8 years allowed<br />

<strong>the</strong> data <strong>for</strong> an extra 25 ftow stations to be used. It appe<strong>are</strong>d<br />

that <strong>the</strong>se extra data would rein<strong>for</strong>ce <strong>the</strong> definition<br />

of <strong>the</strong> lower end of <strong>the</strong> regional curves.<br />

The fourth condition, specifying five or more annual<br />

flood peaks, was needed so that <strong>the</strong> mean annual flood Q<br />

could be calculated, thus permitting <strong>the</strong> station,s historical<br />

peaks Q to be expressed in <strong>the</strong> <strong>for</strong>m of Q/Q and included<br />

in <strong>the</strong> mass data plot <strong>for</strong> <strong>the</strong> region. Unless <strong>the</strong>re were eight<br />

Water & soil technical publication no. 20 (1982)


or more annual peaks, however, <strong>the</strong> annual peaks <strong>the</strong>mselves<br />

were <strong>not</strong> considered <strong>for</strong> <strong>the</strong> mass plot.<br />

Condition (v) was necessary because <strong>the</strong> flood estimation<br />

method sought was intended <strong>for</strong> rural catchments, <strong>not</strong> urban<br />

ones.<br />

Condition (vi) was imposed in <strong>the</strong> belief that flood frequency<br />

characteristics of <strong>the</strong> very small and <strong>the</strong> larger<br />

catchments would be markedly different. It was anticipated<br />

that <strong>the</strong> effect of catchment storage in dampening <strong>the</strong> flood<br />

hydrograph would be less in <strong>the</strong> very small catchments,<br />

producing a steeper frequency curve of Q/Q than that <strong>for</strong> a<br />

laiger catchment with <strong>the</strong> same rainfall excess. An <strong>are</strong>a of<br />

20 kmt was chosen as <strong>the</strong> lower limit on <strong>the</strong> size of a catchment.<br />

It was later found, however, that catchments of<br />

smaller size could have been included in some of <strong>the</strong> regions<br />

(section 3.5.6).<br />

An exception to <strong>the</strong> lower limit of 20 km'z was made <strong>for</strong><br />

<strong>the</strong> Northland-Auckland <strong>are</strong>a. In this part of <strong>the</strong> country<br />

<strong>the</strong>re <strong>are</strong> relatively few large catchments, and without a relaxation<br />

on <strong>the</strong> minimum catchment size any flood estimation<br />

method would have only limited application. Moreover,<br />

<strong>the</strong> presence of swamps had caused <strong>the</strong> rejection of a<br />

number of annual series samples <strong>for</strong> flow stations in <strong>the</strong><br />

<strong>are</strong>a. There<strong>for</strong>e, to ensure that a reasonable amount of<br />

flood peak data was obtained <strong>for</strong> <strong>the</strong> <strong>are</strong>a and to enhance<br />

<strong>the</strong> practicability of <strong>the</strong> resultant flood estimation method,<br />

<strong>the</strong> lower limit on catchment size was reduced in <strong>the</strong> Northland-Auckland<br />

<strong>are</strong>a to 2 km'.<br />

The data samples collected were plotted on Gumbel<br />

probability paper and, after checks were made of <strong>the</strong>ir repiesentativeness<br />

(section 3.2.2), samples <strong>for</strong> 152 stations<br />

were finally accepted <strong>for</strong> use. For 148 of <strong>the</strong>se stations<br />

-<br />

96 in <strong>the</strong> North Island and 52 in <strong>the</strong> South Island<br />

-<br />

<strong>the</strong> annual<br />

series was eight years or longer; <strong>the</strong> remaining four stations<br />

had historical in<strong>for</strong>mation and an annual series of between<br />

fltve and seven years in length. Five of <strong>the</strong> stations<br />

were later omitted <strong>for</strong> <strong>the</strong> derivation of <strong>the</strong> regional curves<br />

(see Table 3.2 and Appendix B). The location of all <strong>the</strong> staiions,<br />

and <strong>the</strong>ir associated catchments, <strong>are</strong> shown <strong>for</strong> <strong>the</strong><br />

North and <strong>the</strong> South Islands in Figures 3.4 and 3.5, respectively.<br />

In<strong>for</strong>mation on <strong>the</strong> stations is listed in Table 3.2'<br />

grouped according to <strong>the</strong> regions into which <strong>the</strong> stations<br />

were initially classified (section 3.3.1). The annual flood<br />

peak data <strong>for</strong> <strong>the</strong> stations, statistics of <strong>the</strong> data, and comments<br />

on <strong>the</strong> data and <strong>the</strong> catchments <strong>are</strong> summarised in<br />

Appendix B, again according to <strong>the</strong> initial regional classification.<br />

Attempts to extend short records by correlation<br />

with adjacent longer records <strong>for</strong> a sample of stations in <strong>the</strong><br />

nor<strong>the</strong>rn half of <strong>the</strong> South Island were unsuccessful and <strong>the</strong><br />

approach was <strong>not</strong> Pursued.<br />

3.2.2 Minimum record length and outliers<br />

ferent distribution'<br />

on <strong>the</strong> use of an outlier <strong>are</strong> given by Irish and Ashkanasy<br />

<strong>are</strong> as follows:<br />

Water & soil technical publication no. 20 (1982)<br />

(i) lf 5


'o ,l\,<br />

I<br />

zl<br />

l-<br />

I<br />

Water & soil technical publication no. 20 (1982)


l'<br />

cooxi:<br />

i-<br />

i - --l- ii<br />

'___-T---<br />

ô¡<br />

sì<br />

c<br />

o<br />

6<br />

ø<br />

ì<br />

-9<br />

It c66<br />

E 5o<br />

al,<br />

ro<br />

Gt<br />

a¡<br />

-É ¡t<br />

I<br />

I<br />

---<br />

ri<br />

| _,+ --<br />

\<br />

\<br />

t<br />

Water & soil technical publication no. 20 (1982)


Table 3.2 Flow stat¡ons used.<br />

SITE NO.<br />

FLOW STÀTION<br />

CÀTCHME{T ÀREÀ (KN2)<br />

NO. ANNUÀI, (ÀND<br />

HISTORICÀI) FI¡OD PEÀI(S<br />

NORTHERN NORTH<br />

REGTOIV<br />

3506 Maungap<strong>are</strong>rua Rl-ver at Tyrees Ford<br />

3819 Waiharakeke River at will@ Bank<br />

49OI Ngunguru River at Dugmorers Rock<br />

5809 Waiarohia River at RusselL Road<br />

8501 wairoa River at !{eir<br />

9101 waitoa River at [ihakahoro Bridge<br />

9108 Piako Rj-ver at whalahoro Road<br />

9203 waihou River at Puke Brjdge<br />

9204 ohinemuri River at criærion Bridge<br />

9213 Ohinenui River at KarangahåÌe<br />

9223 Waihou River at Shaftesbuly<br />

930I Kauaeræga River at Snithrs<br />

14627 Waiari River at Muttons<br />

43803 Papakura River at S.H. Bridge<br />

45702 waiwhiu River at Done shadow<br />

4661I Kaihu River at corge<br />

46618 Megal(ahia River at corge<br />

46625 Hikurangi River at Kæ-Hikurangi Bridge<br />

46632 Whakapara River at S.H. Bridge<br />

46660 Puketurua River at PuketiÈoi<br />

47527 Opahi River at Pond<br />

Ib.<br />

NORTH ISLAND WEST' COAST REGTON<br />

33IOl Whangaehu River at Kauangaroa<br />

33103 llhangaehu River at S.H. 3 Bridge<br />

33107 Whangaehu River at Karioi<br />

33111 Mangawhero River at Ore Ore<br />

33114 Waitangi River at Tangiwai<br />

33U5 l.,langaetoroa River at School<br />

33II7 ¡{akotuku River at s.H. 49À Bridge<br />

33301 fdanganui River at paetawa<br />

33302 Wanganui River at Te Maire<br />

33309 f.,fanganui-o-te-ao at Àshworth<br />

33313 Ohura River at Tokori.m<br />

33316 Ongarue River at Taringmutu<br />

33320 WhakaIEIÉ River at Foot¡ridge<br />

33338 l.langanui River at Matapuna<br />

3600I Punehu River at pihila *<br />

39501 Waitara River at Tarata<br />

39504 ¡,tanganui River at Tariki F.oad<br />

43433 WaiIÞ River at VthaÈawhata<br />

43435 WaipalÞ River at Ngarona Road<br />

LO43427 Mangakino River at Dillonrs Road<br />

1043461 longariro River at Upper Dan<br />

1043466 Vlaihohonu River at Desert Road<br />

Lc.<br />

MANAI,/A1I.'-RANîITIKEI RE1ION<br />

31903 Otaki River at hlapaka<br />

32502 Manawatu River at Fitzherbert Bridge<br />

32503 Manawatu River at Weber Road<br />

32514 Oroua River at Almadale<br />

32526 Mangahao River at Ballance<br />

32529 lirawea Rive! at Ngaturi<br />

3253I t4angatainoka River at Suspension Bridge<br />

32563 Oroua River at Kawa Idool<br />

32576 pohangina River at Mais Reach<br />

3270L Rangitikei River at Kåkariki<br />

32702 Rangitikei River at Manqaweka<br />

32708 Rangitikei River at Springvale<br />

32723 Maungaraupi River at porewa Road *<br />

32732 Moawhango River at Waiouru<br />

32735 Rangitawa River at Halcombe<br />

32739 Tutaenui River at Hmond Street<br />

Id.<br />

SOUTHERN NQRTE ISLAND REGION<br />

292OL Ru4ahanga River at wardells<br />

29202 Ruanahanga River at Waihenga<br />

29224 Waj-ohine River aÈ Gorge<br />

29231 Taueru River at Te Weraiti<br />

29242 Atíw}lakatu River at Mt Holdsworth Road<br />

29244 Whangaehu River at waihi<br />

29808 Hutt River at Kaitoke<br />

29818 HuÈt River at BirchviLLe<br />

2. BAY OF P¡NNTY REGTON<br />

11. I<br />

229<br />

L2.5<br />

L6.2<br />

L2.7<br />

433<br />

528<br />

1606<br />

308<br />

287<br />

984<br />

L22<br />

69.9<br />

57<br />

s.03<br />

tt6<br />

246<br />

I89<br />

L62<br />

2.4e<br />

r0.6<br />

t9t7<br />

I968<br />

492<br />

539<br />

63.5<br />

33.2<br />

20. I<br />

6643<br />

22I2<br />

332<br />

668<br />

1075<br />

184<br />

97L<br />

29.5<br />

725<br />

80<br />

2926<br />

r37<br />

373<br />

L74<br />

88<br />

301<br />

3916<br />

713<br />

3L2<br />

266<br />

734<br />

452<br />

570<br />

4'11<br />

3595<br />

27A7<br />

583<br />

25.6<br />

245<br />

62.4<br />

47 -7<br />

637<br />

2340<br />

ts3<br />

373<br />

38. B<br />

36 .3<br />

88. g<br />

427<br />

49<br />

10<br />

10<br />

I<br />

LO plus I hlstorical<br />

I5<br />

17 (includes I histolical)<br />

L7(<br />

19(<br />

13 plus<br />

L7<br />

L2<br />

18<br />

historl.cal<br />

t0<br />

I<br />

10<br />

I plus I hlstorícal<br />

17 (includes I hlstorical)<br />

I<br />

L7<br />

L2<br />

L2<br />

I plus I historical<br />

l0<br />

13<br />

9<br />

ó<br />

19<br />

L4 plus I hÍstoricaL<br />

t5<br />

I5<br />

14 plus I historical<br />

L7<br />

I plus I historical<br />

I<br />

I (includes I historica¡-)<br />

L2<br />

I3<br />

T4<br />

L7<br />

L4<br />

18 plus I historical<br />

(includes !. historicaL plus l)<br />

22<br />

24<br />

24<br />

24<br />

24 plus I historical<br />

lo<br />

I<br />

5 plus 3 historical<br />

(includes I historical pLus t)<br />

l0<br />

7 plus I historical<br />

L7<br />

I2<br />

22<br />

2L<br />

22<br />

I<br />

9<br />

9<br />

9<br />

6 plus I historical<br />

L4610 Utuhina River at S.H. 5 Bridge<br />

14614 KaiÈuna River at Te lltatai<br />

14628 ¡,tangorewa River at Saunderrs Fam<br />

15408 RangitaÍki Rjver at ¡turupara<br />

33307 l,llanganui River at Headwaters<br />

33324 Mangatepopo River at Ketetahi<br />

33347 Wanganui River at Te porere<br />

43472 Waiotapu River at Reporoa<br />

1043419 Pokaiwhenua River at puketurua<br />

1043428 Tahunaatara River at OhakurL Road<br />

:043459 Tongariro River at TurÐgi<br />

!043460 Tongariro River at puketarata<br />

),<br />

57<br />

958<br />

L79<br />

II84<br />

8I .3<br />

3t<br />

24.2<br />

22A<br />

448<br />

2LO<br />

772<br />

495<br />

Water & soil technical publication no. 20 (1982)<br />

I6<br />

20<br />

L7<br />

9<br />

2l<br />

9<br />

(includes I historlcal)<br />

II<br />

I<br />

IO<br />

(includes I historíctl)<br />

13<br />

L2<br />

(includea 2 historicat)<br />

('


SITE NO.<br />

FI¡W STÀîION<br />

CÀTCHT.{ENT ÀNEÀ (KN2)<br />

t¡o. ÀÀ¡NuÀf, (À¡¡D<br />

HISTORICÀT,) FI¡OD PEÀKS<br />

3. NORTH TST'AìID EAST COAST REGION<br />

15410 Whirinaki River at Galatea<br />

15432 Rangitaiki River at Kopuriki<br />

I55II waima River at vlaimÐa Gorge<br />

I55I4 Í¡hakatane River at whakatane<br />

15536 wainana River at Ogilvies Bridge<br />

15901 Waioeka River at Gorge cablesay<br />

I97ol waipaoa Rive' at Kanakanaia Bridge<br />

19?09 wh<strong>are</strong>kopae River at Killarney<br />

I97tI waingaronia River at Terrace<br />

2I80I Mohaka River at RauPunga<br />

21803 Moha](a River at Glenfalls<br />

22802 E,sk River at WaiPunga Bridge<br />

4. CEI\¡?RÀ¿ HAWKES BAY REG¡ON<br />

23OOl lutaekuri River at PuketaPu<br />

23002 Tutaekuri.River at Redclyffe<br />

23102 Ngaruroro Rive! at Fernhill<br />

23104 Ngaruroro River at KuriPaPango<br />

23106 Taruarau River at TaihaPe Road<br />

2320f Tukitui


e process of examining <strong>the</strong> simtrend<br />

was repeated. Adjoining<br />

d a similar trend were combined<br />

toge<strong>the</strong>r to <strong>for</strong>m a flood frequency region. In this way ll<br />

regions were built up.<br />

In constructing <strong>the</strong> regions due recognition was taken of<br />

<strong>the</strong> many factors that would influence <strong>the</strong> floods in <strong>the</strong> different<br />

catchments. Attention was given to <strong>the</strong> climat€, topography<br />

and soils of <strong>the</strong> catcr,ments, and <strong>the</strong> aim was to<br />

have catchments with similar flood-producing characteristics<br />

located in <strong>the</strong> same region. The construction was<br />

guided by maps that showed countrywide climatic and physiographical<br />

patterns, e.g., a Meteorological Service ãvei-<br />

Survey topographical maps.<br />

The ll flood frequency regions that were fîrst decided<br />

upon <strong>are</strong> shown in Figures 3.6 and 3.7. Four of <strong>the</strong>se regions,<br />

Regions la-ld, were later combined into one (section<br />

3.3.2). The list of stations within each region is given in<br />

Table 3.2.<br />

3.3.2 Development of reglonat flood frequency<br />

cutves<br />

The y values that were used in <strong>the</strong> regional plots were ob_<br />

tained in <strong>the</strong> following ma¡ner:<br />

(i) For flood records less than or equal to 35 years in<br />

length, <strong>the</strong> y values were <strong>the</strong> exact ones <strong>for</strong> <strong>the</strong> unbiased<br />

plotting positions <strong>for</strong> <strong>the</strong> EVI distribution and<br />

<strong>the</strong>y were taken from a table in NERC (1975, pp.g2_<br />

3).<br />

(¡i)<br />

0.5 class intervals, and an average e/Q and y value was calculated<br />

from <strong>the</strong> data points falling within each class. This<br />

averaging process was <strong>the</strong> same procedure as that used by<br />

NERC (1975) and it produced a smooth trend in <strong>the</strong> regional<br />

data.<br />

The GEV distribution, namely<br />

In <strong>the</strong> second case no constraint was placed on <strong>the</strong> value <strong>for</strong><br />

k, so that in general a GEV fit was obtained. However, because<br />

of <strong>the</strong> relatively small size of many of <strong>the</strong> data samples<br />

used, and in view of <strong>the</strong> findings in <strong>the</strong> evaluation tests<br />

(Appendix A) relating to small samples, <strong>the</strong> EVI fit was regarded<br />

as <strong>the</strong> regional curve unless <strong>the</strong> GEV fit produced a<br />

significant reduction (10 percent or more) in <strong>the</strong> sum of<br />

squ<strong>are</strong>s.<br />

It was <strong>not</strong> always practical, however, to fit Equation 3.14<br />

to a regional set of average values. Because of <strong>the</strong> limited<br />

amount of flood peak data available <strong>for</strong> some of <strong>the</strong> regions,<br />

<strong>the</strong> averaging process sometimes produced an unrepresentative<br />

or biased set of average values <strong>for</strong> a region,<br />

where <strong>the</strong> average values <strong>for</strong> low class intervals of y were<br />

based on many data points while <strong>for</strong> higher class intervals<br />

<strong>the</strong>y represented only one or two points. To reduce <strong>the</strong> possibility<br />

of obtaining unrepresentative regional curves,<br />

Equation 3.14 was only fitted to a s€t of average values<br />

when:<br />

(l) <strong>the</strong> total number of flood peaks <strong>for</strong> a region was<br />

greater than lü); and<br />

(ll) <strong>the</strong>re was no more than one average value <strong>for</strong> <strong>the</strong> region<br />

that was based on one data point.<br />

When <strong>the</strong>se criteria were <strong>not</strong> satisfied, <strong>the</strong> regional curve<br />

was defined instead by fitting Equation 3.14 in <strong>the</strong> manner<br />

described ea¡lier to all <strong>the</strong> plotted data <strong>for</strong> a region.<br />

Except <strong>for</strong> <strong>the</strong> Bay of Plenty (see section 3.3.3), <strong>the</strong> regional<br />

curves were obtained from <strong>the</strong> procedures outlined<br />

above and <strong>are</strong> given in Figures 3.8-3.16. tilhere a regional<br />

curve wÍrs dehned from a set of average values, <strong>the</strong> plot of<br />

<strong>the</strong> curve fitted to <strong>the</strong>se values is shown along with <strong>the</strong> corresponding<br />

regional probability plot, which contains all <strong>the</strong><br />

flood peak data <strong>for</strong> <strong>the</strong> region. (The historical peaks in a regional<br />

plot <strong>are</strong> indicated with circles and <strong>the</strong> corresponding<br />

site numbers <strong>are</strong> given alongside). Where average valuei<br />

were <strong>not</strong> used, only <strong>the</strong> regional plot with <strong>the</strong> regional curve<br />

superimposed is shown.<br />

The regional curves derived <strong>for</strong> <strong>the</strong> North Island West<br />

Coast regions, i.e., Regions la-ld, <strong>are</strong> plotted toge<strong>the</strong>r in<br />

Figure 3.17. Although <strong>the</strong>re <strong>are</strong> differences in <strong>the</strong> trends of<br />

<strong>the</strong> data in <strong>the</strong> corresponding regional plots, it can be seen<br />

from Figure 3.17 that <strong>the</strong> flrtting of <strong>the</strong> straight-line EVI<br />

distribution to <strong>the</strong> data of each region masked <strong>the</strong>se differences<br />

in close agree_<br />

ment.<br />

seeme<br />

<strong>the</strong> curveS, it<br />

ction between<br />

four regions<br />

<strong>for</strong> <strong>the</strong> com-<br />

. Vy'est Coast<br />

region. Averages of<strong>the</strong> pooled data were calculated <strong>for</strong> <strong>the</strong><br />

x=Q/Q<br />

= u*9(l-e-tv¡<br />

k<br />

3t4<br />

24<br />

a :a<br />

=U*oy 323<br />

Support <strong>for</strong> pooling <strong>the</strong> data from several regions toge<strong>the</strong>r<br />

is given by Stevens and Lynn (lg8) who used three<br />

statistical tests to analyse <strong>the</strong> variation amongst <strong>the</strong> regional<br />

curves derived by NERC (1975). They concluded that <strong>the</strong><br />

curves <strong>for</strong> some regiôns of Great Britain, while <strong>not</strong> necessarily<br />

identical, were certainly very similar. On <strong>the</strong>se<br />

grounds <strong>the</strong>y pooled <strong>the</strong> data <strong>for</strong> <strong>the</strong> regions with similar<br />

curves to obtain more stable estimates of floods at high return<br />

periods. The data were pooled into two groups, one<br />

<strong>for</strong> <strong>the</strong> fïve south-east regions of Great Britain and one <strong>for</strong><br />

<strong>the</strong> five north-west regions. A frequency curve was <strong>the</strong>n fitted<br />

to <strong>the</strong> data of each group and extended to <strong>the</strong> lüXÞyear<br />

return period.<br />

Water & soil technical publication no. 20 (1982)


I<br />

Fþuru 3.6 North lsland flood frequency regions.<br />

Water & soil technical publication no. 20 (1982)<br />

25


Iì_<br />

t_<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

I<br />

t-.<br />

I<br />

I<br />

tñ<br />

I<br />

LÓ.<br />

I<br />

t¡l<br />

l\-'<br />

LØC'<br />

I<br />

South lslând west Coast<br />

l<br />

_l<br />

I<br />

T.-<br />

t-l-l<br />

\<br />

\<br />

i<br />

l<br />

\-<br />

\<br />

\<br />

\<br />

\<br />

Flguro 3.7 South lsland flood frequencV regions.<br />

Water & soil technical publication no. 20 (1982)<br />

26


NORTHERN<br />

to<br />

o<br />

o<br />

ñ'<br />

Þ<br />

o<br />

.,¡'<br />

c<br />

e. !:r<br />

NORTHERN<br />

NEIUNN FERIOD ÍYEFRS)<br />

N.I. BEGIONßL CUBVE<br />

.50 2.25 3.00<br />

REOUCEO Y VRFIRTE<br />

¿. t! É rb zb rb so z's roo<br />

RETUNN PEßIOO fYEÊNS)<br />

, Fþure 3.8 Region la: <strong>the</strong> regional plot and curve.<br />

27<br />

Water & soil technical publication no. 20 (1982)


Þ<br />

I"IEST COFST<br />

0<br />

o<br />

I<br />

E<br />

6o<br />

o<br />

o<br />

25 3,00<br />

NEOUCEO Y VFñIRÎE<br />

r.btl 23t Ë tô 20 30 so ?5 loo<br />

REÍUNN PENIOO fIERñSI<br />

NEST COFST N. I . BEG I ONÊL CUBVE<br />

o<br />

o<br />

o<br />

lo<br />

g<br />

o<br />

6<br />

o<br />

i.so ¿."s i.oo<br />

NEOUCEO Y VFNIßTE<br />

É r'o zi s'o Eo ?-6 lôo<br />

RETUNN FEN¡OO (TEFFSI<br />

28<br />

Figun 3.9 Region lb: <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)


MßNRI,.¡RTU-RßNGITIKEI BEGIONIRL CURVE<br />

o<br />

a<br />

";<br />

o<br />

";<br />

o<br />

Ð<br />

"i<br />

l@<br />

G oo<br />

";<br />

o<br />

I<br />

BEOUCED 'I VRH I ßTE<br />

5102030<br />

RETUBN PEBIOD (YEHFs)<br />

Flgurc 3.1O Region lc: <strong>the</strong> regional plot with <strong>the</strong> curvo superimposed.<br />

Water & soil technical publication no. 20 (1982)<br />

29


SOUTHEBN<br />

REDUCEO Y VRBIßTE<br />

NETURN PEBIOD (YEHNSI<br />

o<br />

SOUTHEBN N. I. BEGISNRL CUBVE<br />

Þ<br />

o<br />

Þ<br />

o<br />

Þ<br />

o<br />

lø<br />

@<br />

o<br />

è<br />

o<br />

t,50 2.?s i.oo<br />

BEOUCED Y VFRIFTE<br />

s rò ao 3b sb ;'s röo ãõo<br />

RETUBN PEBIOO (YEFBS)<br />

30<br />

Fþuru 3.11 Region ld: <strong>the</strong> reg¡onal plot and curve.<br />

Water & soil technical publication no. 20 (1982)


CORST<br />

BEG I ONÊL<br />

CUBVE<br />

REOUCEO I VRBIRTE<br />

l.ort 2.33 5 l0 20 30 50 .75 t00 200<br />

BETUNN PEFIOD (IERHS)<br />

Fþure 3.12a Region 3: <strong>the</strong> regional plot w¡th <strong>the</strong> curvo superimposed.<br />

CENTBFL HRhIKES BßY BEGIONFL CUBVE<br />

l.so 2.2s 00<br />

FEOUCEO Y VRBIRTE<br />

r.ótt 2'33 s to zo 30 so ?s lo0 ¿00<br />

BETUBN PENIOO (YEFNS)<br />

Fþur 3.12b Region 4: <strong>the</strong> regional plot with th€ curve superimposed.<br />

Water & soil technical publication no. 20 (1982)<br />

3l


SOUTH ISLFND HEST COFST I]ÊTR<br />

èo<br />

d'<br />

o<br />

I<br />

.ü'<br />

lct<br />

o oè<br />

o<br />

b<br />

.50 ¿.25 3.OO<br />

NEDUCEO Y VFNIâTE<br />

NETUNN FEBIOB (YERBs¡<br />

Þ<br />

SOUTH<br />

ISLÊND 1,,IEST COÊST BEGIONRL CUBVE<br />

Þ<br />

o<br />

è<br />

o<br />

IG<br />

oo o<br />

o<br />

Þ<br />

0<br />

REOUCEO Y VFNIFTE<br />

NETUNil PEN¡OO fYERBS¡<br />

32<br />

Fþurc 3.13 Region 5: <strong>the</strong> rog¡onal plot and curve.<br />

Water & soil technical publication no. 20 (1982)


SOUTH<br />

I SLRNT]<br />

o<br />

ê<br />

Þ<br />

Þ<br />

Þ<br />

lo<br />

Go o<br />

Þ<br />

o<br />

00 3.75 {,50 5.25<br />

FEOUCEO Y VRNIFTE<br />

l.otl ?,9t s ¡0 20 lo s0 75 100 200<br />

BETUßN PEBIOO (IERFS¡<br />

SOUTH ISLÊND EÊ5T COÊST REGIONßL CUßVE<br />

.so 2.2s 3.00<br />

REOUCEO I VßNIRTE<br />

Ë l'o io !'o so ?3 róo<br />

RE'TURN PEBIOO (YERNSI<br />

F¡gur.3.14 Regbn 6: <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

33


SOUTH CÊNTERBURY DRTÊ<br />

NEOUCEO Y VßFIFTE<br />

l.ott 2,33 s ¡0 20 30 s0 7s 100 200<br />

RETURN PEßIOO (YEÊNS}<br />

o<br />

SOUTH CÊNTERBI-JRY BEG I ONF]L CURVE<br />

t<br />

o<br />

o<br />

Þ<br />

G'<br />

oo<br />

o<br />

o<br />

t<br />

r.so 2.2s 3.00 3.75 q.so<br />

NEDUCED Y VÊNIRTE<br />

2.93 5 ¡0 20 30 50 7s 100<br />

RETUBN PER¡OD (IEß85)<br />

34<br />

Flgure 3.15 Region 7: <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)


OTFGO_SOUTHLÊND BEG I ONFL CUßVE<br />

s0 -75 00<br />

BEDUCEO Y VßBJßTE<br />

00 q.50 s.zs<br />

l.0ll 2.33 5 lo 20 30 s0 ?s<br />

RETURN PEBIOO {YEßBSI<br />

Flgure 3.16 Region 8: <strong>the</strong> regional plot with <strong>the</strong> curve superimposed.<br />

N. I . I,'IE5T CORST BEG I ONRL CUBVES<br />

r00 200<br />

2.31<br />

00 3.75 r¡.50<br />

REOUCEO Y VFRINTE<br />

10 20 J0<br />

NETURN PENTOO --- (YERRS)<br />

50 7ri 100 200<br />

Flgure 3.17 Summary of <strong>the</strong> regional curves <strong>for</strong> Regions 1a-1d.<br />

Water & soil technical publication no. 20 (1982)<br />

35


COMB I NED<br />

,,IE5T CORST DRTR<br />

o<br />

rt<br />

€o<br />

o<br />

o<br />

NEOUCEO Y VFBIRTE<br />

?5 r¡.50 5.25<br />

t-0¡¡ 2.93 s t0 zo 30 so ?'5 róo eú¡<br />

BETIJñN PEBTOO (YEßñS¡<br />

j<br />

COMB I NED N. I . I^IEST COÊST ßEG I8NÊL CURVE<br />

o<br />

Þ<br />

a;<br />

o<br />

ê<br />

Þ<br />

ø<br />

rct<br />

o<br />

o<br />

o<br />

D<br />

o<br />

50 -'.75 1.50 2.25 3.00 3.75 r¡.50 5.25<br />

SEDUCED Y VßNIRTE<br />

t.oll 2.1! 5 t0 ¿0 !o 50 75 r00 200<br />

NETUNN FEBIOO (IEflNsI<br />

Figure 3.18 Region 1 <strong>the</strong> regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

36


3.3.3 Bay of Plenty region<br />

Missing from Figures 3.8 to 3.16 is <strong>the</strong> plot of <strong>the</strong> regional<br />

curve <strong>for</strong> <strong>the</strong> Bay of Plenty region (Region 2). In defining<br />

<strong>the</strong> average curve <strong>for</strong> this region it was found that<br />

four large historical floods appe<strong>are</strong>d to produce an unrealistically<br />

high degree of upwards curvature at <strong>the</strong> top end of<br />

<strong>the</strong> fitted curve. Fitting a curve to all <strong>the</strong> plotted data instead<br />

of just <strong>the</strong> average values made very little difference.<br />

There<strong>for</strong>e in an ef<strong>for</strong>t to obtain a more realistic regional<br />

curve, an extension method was employed (NERC 1975,<br />

pp.l7t-2).<br />

The method involved splitting <strong>the</strong> dimensionless flood<br />

peak data <strong>for</strong> <strong>the</strong> region into three groups (Table 3.3a).<br />

Each group contained <strong>the</strong> data <strong>for</strong> stations whose catchments<br />

were <strong>not</strong> close neighbours, so that it could be assumed<br />

that a group's sample items were statistically independent.<br />

The largest four Q/Q values in each group, irrespective<br />

of station, were <strong>the</strong>n treated as <strong>the</strong> four largest<br />

values in a random sample of size M, where M was <strong>the</strong> total<br />

number of station years spanned by <strong>the</strong> data in a group,<br />

and <strong>not</strong> simply <strong>the</strong> total number of flood peaks <strong>for</strong> <strong>the</strong> stations<br />

in a group. Hence, where <strong>the</strong>re was an historical series<br />

containing a flood peak known to be <strong>the</strong> largest in N + J<br />

years, <strong>the</strong> number of station years <strong>for</strong> this particular station .<br />

was N * J years, <strong>the</strong> historical record length. In <strong>the</strong> special<br />

case where <strong>the</strong> historical series did <strong>not</strong> contain <strong>the</strong> largest<br />

historical peak in N + J years but, say, only <strong>the</strong> second or<br />

third largest in that period, <strong>the</strong> number of station years was<br />

<strong>not</strong> so straight<strong>for</strong>ward and an equivalent length in years<br />

had to be determined. The return period of <strong>the</strong> second or<br />

third largest historical peak was calculated using <strong>the</strong> Gringorten<br />

<strong>for</strong>mula (Equation 3.20) and substituted back into<br />

<strong>the</strong> <strong>for</strong>mula, this time using a rank of one instead of two or<br />

three as be<strong>for</strong>e. The value of N resulting from this back<br />

substitution was taken as <strong>the</strong> equivalent length of station<br />

years.<br />

The number M varied from group to group, but an attempt<br />

was made to keep it reasonably constant. Values <strong>for</strong><br />

y were calculated <strong>for</strong> <strong>the</strong> four largest Q/Q values in each<br />

group by taking M as <strong>the</strong> record length and using <strong>the</strong> Gringorten<br />

<strong>for</strong>mula and Equation 3.16 (Table 3.3b). The 12<br />

pairs of Q,zQ values and <strong>the</strong>ir corresponding y values, i.e.,<br />

<strong>the</strong> four pairs from each of<strong>the</strong> three groups, were averaged<br />

over <strong>the</strong> 0.5 class intervals of y (Table 3.3c), and <strong>the</strong> three<br />

largest averages were plotted along with those obtained<br />

from <strong>the</strong> original flood peak data. There is some statistical<br />

dependence between <strong>the</strong> two types of average values, but it<br />

was thought that, with M being fairly large <strong>for</strong> each group,<br />

<strong>the</strong> dependence would be small. Finally <strong>the</strong> regional curve<br />

was defined by fitting Equation 3.14 to <strong>the</strong> combined set of<br />

original and new average values.<br />

The probability plot of <strong>the</strong> regional data is shown in Figure<br />

3.19 (<strong>the</strong> four historical flood peaks <strong>are</strong> indicated with<br />

circles and <strong>the</strong> corresponding site numbers <strong>are</strong> given alongside).<br />

Also shown is <strong>the</strong> regional curve that resulted from<br />

fitting Equation 3.14 to <strong>the</strong> original and new average<br />

values. The latter values <strong>are</strong> indicated with squ<strong>are</strong>s.<br />

It was difficult to finalise <strong>the</strong> Bay of Plenty's sou<strong>the</strong>rn<br />

boundary line which, from <strong>the</strong> probability plots, appe<strong>are</strong>d<br />

to lie somewhere near <strong>the</strong> mountains in <strong>the</strong> volcanic plateau<br />

<strong>are</strong>a of <strong>the</strong> North Island. Besides <strong>the</strong> problems caused by<br />

<strong>the</strong> geology and <strong>the</strong> uncertain Ìvea<strong>the</strong>r pattern in this <strong>are</strong>a,<br />

<strong>the</strong>re were also complicatións arising from <strong>the</strong> Tongariro<br />

Power Development Scheme which had altered <strong>the</strong> natural<br />

flow of some of <strong>the</strong> rivers. While <strong>the</strong> chosen sou<strong>the</strong>rn<br />

boundary is reasonably consistent with <strong>the</strong> geology of <strong>the</strong><br />

<strong>are</strong>a and with <strong>the</strong> trend in <strong>the</strong> probability plots <strong>for</strong> <strong>the</strong> stations<br />

concerned, some fur<strong>the</strong>r definition of <strong>the</strong> boundary<br />

line may be necessary at some later stage.<br />

The definition of <strong>the</strong> Bay of Plenty on its eastern boundary<br />

posed a problem of a quite different nature. The probability<br />

plots clearly indicated that <strong>the</strong> eastern boundary line<br />

TaHe 3.3 Calculatk¡ns <strong>for</strong> extending <strong>the</strong> set of average values<br />

<strong>for</strong> <strong>the</strong> Bay of Plenty region.<br />

(a) Grouping of statio,ns<br />

Group 1 Group 2 Group 3<br />

Mangatepopo @<br />

Ketetahi<br />

t=8<br />

Utuhina @<br />

S.H. 5 Bridge<br />

r=9<br />

Tongariro @<br />

Turangi<br />

t=26<br />

Waiotapu @<br />

Reporoa<br />

f=38<br />

Wanganui @<br />

Te Porere<br />

l=10<br />

Kaituna @<br />

Te Matai<br />

r=21<br />

Tongariro @<br />

Puketarata<br />

t--26<br />

Tahunaatara @<br />

Ohakuri<br />

t=12<br />

Wanganui @<br />

Headwaters<br />

( = 11<br />

Mangorewa @<br />

Saunders Farm<br />

f=9<br />

Rangitaiki @<br />

Murupara<br />

t-_38<br />

Pokaiwhenua @<br />

Puketurua<br />

¿ = 13<br />

M=81 M=69 M=71<br />

/ = <strong>the</strong> length in ye,ars spanned by <strong>the</strong> data <strong>for</strong> a station.<br />

M = <strong>the</strong> total length of station years spanned by <strong>the</strong> data ¡n a<br />

group.<br />

(bl The maximum O/O and y values<br />

Group 1 Group 2 Group 3<br />

o/o o/o O/o y<br />

2.870 4.972<br />

2.464 3.941<br />

2.044 3.440<br />

1.746 3.104<br />

2.649 4.811 2.994 4.840<br />

2.462 3.780 2.261 3.809<br />

2.008 3.277 1.993 3.306<br />

1.944 2.940 1.960 2.969<br />

(c) Classification and averages of <strong>the</strong> maximum O/O and y values.<br />

y interval<br />

4.5 - 5.O<br />

4.O - 4.5<br />

3.5 - 4.O<br />

3.O - 3.5<br />

2.5 - 3.O<br />

Water & soil technical publication no. 20 (1982)<br />

No. of values Average O/O Average y<br />

3<br />

3<br />

4<br />

2<br />

2.84<br />

2.40<br />

1.95<br />

1.95<br />

4.87<br />

3.84<br />

2.28<br />

2.96<br />

should be near th€ Rangitaiki River, with <strong>the</strong> catchments<br />

ei<strong>the</strong>r side of <strong>the</strong> river displaying a <strong>not</strong>iceably different<br />

flood frequency trend. Support <strong>for</strong> this difference in trend<br />

can be found in <strong>the</strong> geology of <strong>the</strong> <strong>are</strong>a. The <strong>are</strong>a west of<br />

<strong>the</strong> river is a pumice and rhyolite zone, whereas <strong>the</strong> <strong>are</strong>a to<br />

<strong>the</strong> east comprises sedimentary rocks, e.g., sandstones and<br />

greywackes. The dividing line between <strong>the</strong> two geological<br />

<strong>are</strong>as is abrupt and coincides almost exactly with <strong>the</strong> line of<br />

<strong>the</strong> Rangitaiki River: The problem <strong>the</strong>n was <strong>not</strong> so much<br />

where to locate <strong>the</strong> boundary line, but in which region to<br />

put <strong>the</strong> flow stations <strong>for</strong> <strong>the</strong> Rangitaiki River itself, since<br />

<strong>the</strong> flow in <strong>the</strong> riverr represents <strong>the</strong> integral effect of <strong>the</strong> two<br />

geological <strong>are</strong>as on <strong>the</strong> runoff process. However, <strong>the</strong> trends<br />

in <strong>the</strong> probability plots <strong>for</strong> three stations on <strong>the</strong> river (i.e.,<br />

sites 15408, 15410 and 15432) were consistent with <strong>the</strong> flood<br />

frequency trend of one of <strong>the</strong> regions ei<strong>the</strong>r side of <strong>the</strong><br />

river, and <strong>the</strong> bourrdary line was drawn such that each station<br />

was included in <strong>the</strong> most appropriate region.<br />

The same approach could <strong>not</strong> be applied to a fourth flow<br />

station on <strong>the</strong> river at Te Teko (site 15412), which is downstream<br />

of <strong>the</strong> o<strong>the</strong>¡ three stations. The trend of <strong>the</strong> Q/Q<br />

probability plot <strong>for</strong> this station lay in between <strong>the</strong> trends exhibited<br />

in <strong>the</strong> Bay of Plenty and North Island East Coast regional<br />

plots. This was presumably because <strong>the</strong> peak flow at<br />

<strong>the</strong> station contains very significant contributions from<br />

37


BÊY OF PLENTY DRTF<br />

o<br />

o<br />

o<br />

NEOUCEO Y VRBIßTE<br />

s r0 ¿0 30 50 7s r00<br />

FETUFN PEHIOO (YEßRS)<br />

BÊY ÚF PLENTY BEGIONÊL CUBVE<br />

o<br />

o<br />

lo<br />

o<br />

Þ<br />

Þ<br />

è<br />

t.so 2.25 3.00 3.75<br />

NEOUCEO Y VRNIßTE<br />

r.ô¡r 2.3! s ro ¿o !o 50 75 ¡oo 2oo<br />

nETUBq FEnI00 tYERnS)<br />

Flgure 3.19 Region 2: regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

38


Tablo 3.4 Summary of <strong>the</strong> regional curve characteristics.<br />

Region Regional Curve Ordinates Regnl. Parameter Values<br />

<strong>for</strong> Eq. 3.14 or 3.23<br />

O, sglO O¡/O O,o/õ Oro/O O.o/õ O,oo/O OrooiO<br />

Regional Cuwe<br />

Equation,OO =<br />

NORTH ISI.AND<br />

1. Combined N.l. West Coast 1.OO<br />

2. Bay of Plenty 0.96<br />

3. N.l. East Coast 1.OO<br />

4. Central Hawke's Bay 1.OO<br />

SOUTH ISI.AND<br />

5. S.l. West Coast O.99<br />

6. S.l. East Coast 1.OO<br />

7. South Canterbury 1.OO<br />

8. Otago-Southland O'98<br />

1.30 1.55<br />

1.31 1.62<br />

1.43 1.78<br />

1.49 1.89<br />

1.22 1.41<br />

1.31 1.56<br />

1.52 1.95<br />

1.33 1.62<br />

1.78 2.09<br />

1.96 2.46<br />

2.12 2.56<br />

2.27 2.77<br />

1.59 1.82<br />

1.80 2.12<br />

2.39 2.94<br />

1.89 2.25<br />

2.32 2.55<br />

2.87 3.33<br />

2.89 3.21<br />

3.14 3.51<br />

1.99 2.16<br />

2.35 2.58<br />

3.44 3.91<br />

2.51<br />

0.804 0.330<br />

0.762 0.325<br />

0.726 0.469<br />

0.696 0.s32<br />

0.846 0.249<br />

0.809 0.335<br />

o.689 0.529<br />

o.762 0.380<br />

O.8O4 +O.33Oy<br />

-O.142 1.53O+2.292exp<br />

lO'142Y1<br />

O.726 +0.469y<br />

0.696 +O.532y<br />

O.846 +0.249y<br />

0.8O9 +o.335y<br />

-O.O52 -9.545+10.234<br />

exp (O.O52y)<br />

0.762 +O.38Oy<br />

both regions, and to have included it in ei<strong>the</strong>r regional plot<br />

\r/ould bias <strong>the</strong> resulting regional curve; down\ryards in <strong>the</strong><br />

case of <strong>the</strong> Bay of Plenty curve and upwards <strong>for</strong> <strong>the</strong> North<br />

Island East Coast curve. The Te Teko station was <strong>the</strong>re<strong>for</strong>e<br />

omitted from <strong>the</strong> derivation of <strong>the</strong> regional curve <strong>for</strong> both<br />

regions.<br />

Clearly, in deciding which regional curve to use <strong>for</strong><br />

points on <strong>the</strong> Rangitaiki River system, consideration needs<br />

to be given to such factors as which region contains <strong>the</strong><br />

greater proportion of <strong>the</strong> catchment <strong>are</strong>a, and whe<strong>the</strong>r <strong>the</strong><br />

western or eastern part of <strong>the</strong> catchment contributes most<br />

to <strong>the</strong> peak flows at <strong>the</strong> point in question (see also section<br />

5.2\.<br />

The number of stations near <strong>the</strong> eastern boundary of <strong>the</strong><br />

Bay of Plenty region permitted such a detailed examination<br />

ofihe boundary line. In general, however, <strong>the</strong>re were insufficient<br />

stations to be able to do this' Most lines were subjectively<br />

defined and <strong>the</strong>y should be regarded as broad dividing<br />

iines between regions. To define <strong>the</strong> regional boundarils<br />

more precisely will require more flow stations with<br />

more flood peak data.<br />

3.3.4 Final rog¡onal curves<br />

The final regional flood frequency curves that were derived<br />

<strong>are</strong> summarised in Figure 3'20. In general' <strong>the</strong> curves<br />

The excePtion is <strong>the</strong><br />

minimal amount of<br />

gional curve Past 100<br />

years, and <strong>the</strong> curve is tentative only.<br />

The ordinates Q'¡/Q <strong>for</strong> <strong>the</strong> final regional curves <strong>are</strong><br />

listed in Table 3.4 <strong>for</strong> selected return periods. As well, <strong>the</strong><br />

<strong>the</strong> eastern South Island <strong>are</strong>a identical to <strong>the</strong> annual flood<br />

regions defined f,or estimating Q (section 4.5). Regional<br />

plots correspondirng to <strong>the</strong> flood regions in <strong>the</strong> <strong>are</strong>a were<br />

constructed, but <strong>the</strong> data showed substantially greater variability<br />

than was evident in <strong>the</strong> plots <strong>for</strong> <strong>the</strong> original flood<br />

frequency regions, i.e., Regions 6, 7 and 8 in Figures 3'14-<br />

3.16. Still pursuing <strong>the</strong> possibility of having consistent regions,<br />

all of <strong>the</strong> flood peak data <strong>for</strong> <strong>the</strong> three flood frequency<br />

regions were subsequently pooled toge<strong>the</strong>r, <strong>for</strong>ming<br />

a combined region known as <strong>the</strong> Eastern South Island region.<br />

The regional plot that was obtained <strong>for</strong> this <strong>are</strong>a, and<br />

<strong>the</strong> resulting regional curve, <strong>are</strong> shown in Figure 3'21. A<br />

comparison of this plot with those <strong>for</strong> <strong>the</strong> original three<br />

flood frequency regions (Figures 3.14-3.16) shows that <strong>the</strong><br />

variability in <strong>the</strong> data <strong>for</strong> <strong>the</strong> combined region is much<br />

greater. This is borne out by <strong>the</strong> standard error equation<br />

developed <strong>for</strong> <strong>the</strong> regional curve of <strong>the</strong> combined <strong>are</strong>a<br />

which gave a C¡ I'alue at <strong>the</strong> 100-year return period, <strong>for</strong> example,<br />

that was 25 percent greater than that given by <strong>the</strong><br />

group equation (llable 3.9) <strong>for</strong> <strong>the</strong> original regions (see section<br />

3.4.1). This greater variability was <strong>not</strong> surprising in<br />

view of <strong>the</strong> range in <strong>the</strong> ordinates of <strong>the</strong> regional curves <strong>for</strong><br />

<strong>the</strong> three regions. For instance, at <strong>the</strong> lü)-year return period<br />

<strong>the</strong> difference between <strong>the</strong> South Canterbury and South<br />

Island East Coast regional curve ordinates is l.l8' or 50<br />

percent of <strong>the</strong> ordinate <strong>for</strong> <strong>the</strong> latter curve. Because of this<br />

iange, and <strong>the</strong> greater variability in <strong>the</strong> regional plot <strong>for</strong> <strong>the</strong><br />

combined <strong>are</strong>a, tlhe curves <strong>for</strong> <strong>the</strong> three original regions offer<br />

a more accurate estimate of Q/Q <strong>for</strong> sites in <strong>the</strong> <strong>are</strong>a<br />

and <strong>the</strong> three regions were <strong>the</strong>re<strong>for</strong>e retained as <strong>the</strong> flood<br />

frequency regions.<br />

3.3.5 Consistent regions<br />

For th<br />

<strong>the</strong> resul<br />

made of<br />

3.3.6 Sub-reglons<br />

It will be <strong>not</strong>ed that two small <strong>are</strong>as in Figures 3.6 and 3.7<br />

have been specially identifl¡ed as sub-regions. The first is<br />

that <strong>are</strong>a around Mt Egmont in <strong>the</strong> combined North Island<br />

West Coast region (see Figure 3'6). Flood peak data were<br />

available <strong>for</strong> onìly two stations in <strong>the</strong> <strong>are</strong>a, although each<br />

was associated u¡ith a representative basin. The catchment<br />

<strong>for</strong> <strong>the</strong> station on <strong>the</strong> east of <strong>the</strong> mountain (site 39504,<br />

Manganui River at Tariki Road) was included in <strong>the</strong> North<br />

Island West Coast region after its flood peak data were<br />

found to con<strong>for</strong>m very well with <strong>the</strong> regional flood frequency<br />

tr€nd. The second station (site 36001, Punehu River<br />

at Pihama) was located on <strong>the</strong> sou<strong>the</strong>rn side of <strong>the</strong> mountain.<br />

Its flood peak data displayed distinct upwards curvature<br />

on a probability plot, a trend markedly different from<br />

<strong>the</strong> regional one,, Because it was uncertain whe<strong>the</strong>r this was<br />

ase ofaPPlication of a real trend, or simply <strong>the</strong> result of using a short record<br />

an examination was (eight years), <strong>the</strong> sou<strong>the</strong>rn <strong>are</strong>a of Mt Egmont was excluded<br />

frequencY regions in from <strong>the</strong> North ltsland West Coast region' More flood peak<br />

Water & soil technical publication no. 20 (1982)<br />

39


NOBTH ISLRND ßEGIONÊL CUBVES<br />

1.50 2.?S 3. OO<br />

REDUCED Y VRBIßTE<br />

2,33 sl02030<br />

BETUBN FERIOO (YE8BS)<br />

50 75 r00<br />

Flgure 3.2Oa Summary of North lsland regional cury€s.<br />

SOUTH iSLÊND REGIONÊL CURVES<br />

1.50 2-25 3.(<br />

BEOUCED Y VRBIFTE<br />

s r'o ¿'o g'o<br />

RETUNN PEBIOO IYERNS)<br />

1t.50 5.2S<br />

so 7s t00 200<br />

4<br />

Fþure 3.2Ob Summary of South lsland regional curves.<br />

Water & soil technical publication no. 20 (1982)


EßSTEBN SÚUTH ISLÊND OÊTÊ<br />

00 3.75 q.50<br />

FEOUCEO I VFFIFTE<br />

l.Oll ?,33 s t0 20 30 50 75 rO0<br />

NETUFN FEFI OO f YERFS'I<br />

EßSTEBN SOUTH ISLßND REGIONÊL CUBVE<br />

o<br />

1.50 2.25 3.00<br />

BEOUCEO Y VRBIBTE<br />

5r02030<br />

NETUHN PEHIOO (IERBS)<br />

q.50 5. ?5<br />

s0 ?s r00 200<br />

Figure 3,21 Eastern South lsland regional plot and curve.<br />

Water & soil technical publication no. 20 (1982)<br />

4l


data <strong>for</strong> this <strong>are</strong>a <strong>are</strong> required be<strong>for</strong>e a decision can be<br />

made whe<strong>the</strong>r to make <strong>the</strong> <strong>are</strong>a a region in itself or to include<br />

it in <strong>the</strong> surrounding region.<br />

The second sub-region identified is <strong>the</strong> <strong>are</strong>a south-west of<br />

Nelson in <strong>the</strong> South Island West Coast region (see Figures<br />

3.7 and 3.22). lt was of interest in that <strong>the</strong> flood peall data<br />

<strong>for</strong> two flow stations (sites 57008 and 57101) in <strong>the</strong> <strong>are</strong>a did<br />

<strong>not</strong> con<strong>for</strong>m at all to <strong>the</strong> regional flood frequency trend;<br />

<strong>the</strong>se stations were omitted from <strong>the</strong> derivation of <strong>the</strong> regional<br />

curve. The non-con<strong>for</strong>mity of <strong>the</strong> data was thought<br />

to be due to <strong>the</strong> fact that <strong>the</strong> <strong>are</strong>a is in a rain-shadow, caused<br />

mainly by <strong>the</strong> Sou<strong>the</strong>rn Alps to <strong>the</strong> west, and receives<br />

significantly less rainfall than <strong>the</strong> o<strong>the</strong>r parts of <strong>the</strong> region.<br />

<strong>These</strong> factors encouraged a detailed look at <strong>the</strong> flood frequency<br />

behaviour in <strong>the</strong> whole <strong>are</strong>a,<br />

The flood peak data that were collected <strong>for</strong> <strong>the</strong> <strong>are</strong>a according<br />

to <strong>the</strong> criteria in sections 3.2.1 and 3.2.2,toge<strong>the</strong>r<br />

with extra data that did <strong>not</strong> meet <strong>the</strong>se criteria but were<br />

never<strong>the</strong>less thought to be of some use here, were pooled<br />

toge<strong>the</strong>r to <strong>for</strong>m a probability plot <strong>for</strong> <strong>the</strong> <strong>are</strong>a. All <strong>the</strong> data<br />

used in <strong>the</strong> plot <strong>are</strong> summarised in Table 3.5, while <strong>the</strong> extra<br />

data <strong>are</strong> listed in full in Appendix C.<br />

The probability plot that was obtained <strong>for</strong> <strong>the</strong> Nelson<br />

<strong>are</strong>a, and <strong>the</strong> curve that was fitted to <strong>the</strong> plotted data, <strong>are</strong><br />

shown in Figure 3.23. Despite <strong>the</strong> inadequacies with <strong>the</strong><br />

data and <strong>the</strong> small number of flow stations used it would<br />

seem, both from <strong>the</strong> trend in <strong>the</strong> probability plot and from<br />

<strong>the</strong> large difference between <strong>the</strong> fitted curve and <strong>the</strong> South<br />

Island West Coast regional curve (shown as <strong>the</strong> dashed line<br />

in Figure 3.23), that <strong>the</strong>re is some justification <strong>for</strong> treating<br />

<strong>the</strong> <strong>are</strong>a south-west of Nelson as a separate sub-region, and<br />

<strong>not</strong> part of <strong>the</strong> surrounding region. A greater amount of re-<br />

Iiable data is needed to confirm this point and to define <strong>the</strong><br />

<strong>are</strong>a's own regional curve with confidence. In <strong>the</strong> meantime,<br />

however, it is suggested that <strong>the</strong> regional curve <strong>for</strong> <strong>the</strong><br />

South Island East Coast region should be used <strong>for</strong> <strong>the</strong> <strong>are</strong>a<br />

ra<strong>the</strong>r than <strong>the</strong> one <strong>for</strong> <strong>the</strong> South Island West Coast region.<br />

The <strong>for</strong>mer region is drier and has a steeper frequency<br />

curve and hence is more in keeping with <strong>the</strong> Nelson <strong>are</strong>a.<br />

3.3.7 General¡sed flood frequency curves<br />

From all <strong>the</strong> flood peak data assembled <strong>for</strong> this study,<br />

two generalised flood frequency curves extending to high<br />

return periods were developed. In recognition of <strong>the</strong> differences<br />

in <strong>the</strong> characteristics of <strong>the</strong> regional curves <strong>for</strong> <strong>the</strong><br />

west and east of New Zealand, one generalised curve was<br />

developed <strong>for</strong> <strong>the</strong> western <strong>are</strong>as (Regions I and 5) and one<br />

<strong>for</strong> <strong>the</strong> eastern <strong>are</strong>as (Regions 2,3, 4,6, 7 and 8). The development<br />

was based on <strong>the</strong> principle utilised by Stevens<br />

and Lynn (1978) of pooling regional data toge<strong>the</strong>r to obtain<br />

more stable flood estimates <strong>for</strong> high return periods. With<br />

<strong>the</strong> large base of pooled data <strong>for</strong> each generalised curve, it<br />

was hoped that <strong>the</strong> curves could be extended to <strong>the</strong> 1000-<br />

year return period with sufficient accuracy to be useful in<br />

design.<br />

<strong>These</strong> curves incorporated many of <strong>the</strong> historical flood<br />

peaks that were excluded from <strong>the</strong> regional analyses under<br />

Rule (lli) of section 3.2.2. ln general, this rule was invoked<br />

in a regional analysis because a flood peak was an extreme<br />

outlier and <strong>the</strong> available length of flood record at <strong>the</strong> station<br />

concerned was insufficient <strong>for</strong> <strong>the</strong> computation of a<br />

plausible return period <strong>for</strong> that flood peak. However, <strong>the</strong>re<br />

were good reasons <strong>for</strong> including here some of <strong>the</strong> previously<br />

excluded historical peaks: <strong>the</strong> large base of data <strong>for</strong><br />

each curve, toge<strong>the</strong>r with <strong>the</strong> use of <strong>the</strong> extension method,<br />

would help to prevent <strong>the</strong>se peaks from exerting undue bias<br />

on <strong>the</strong> shape of <strong>the</strong> curves; and as <strong>the</strong> curves were to be extended<br />

to <strong>the</strong> 1000-year return period, <strong>the</strong> flood peaks with<br />

return periods approaching this limit should be used, where<br />

possible.<br />

All but four of <strong>the</strong> previously excluded extreme peaks<br />

were considered suitable <strong>for</strong> <strong>the</strong> development of <strong>the</strong> generalised<br />

curves, The remaining four peaks were truly extreme<br />

events, and even tbe large bases of data associated with <strong>the</strong><br />

generalised curves were insufficient to enable realistic return<br />

periods to be ascribed to <strong>the</strong>m. Two of <strong>the</strong> peaks occurred<br />

in <strong>the</strong> same storm in 1938 in <strong>the</strong> adjacent Mohaka<br />

Table 3.6 Calculations <strong>for</strong> extending <strong>the</strong> sets of average values<br />

<strong>for</strong> <strong>the</strong> generalised curves.<br />

(a) The Maximum O/O and y values.<br />

Western New Zealand<br />

Group 1 Group 2 Group 3 Group 4<br />

o/o<br />

4.58 7.13<br />

2.94 6.11<br />

2.91 5.61<br />

2.74 5.28<br />

o/o<br />

4.84 7.O7<br />

2.62 6.O5<br />

2.59 5.55<br />

2.45 5.22<br />

yo/OyO/Oy<br />

M= 7OO 661 659<br />

No. of Stat¡ons<br />

: 23 15<br />

Eastern New Zealand<br />

2.99 7.O7 3.90 7.13<br />

2.58 6.05 3.25 6.1 1<br />

2.46 5.55 2.81 5.61<br />

2.40 5.22 2.49 5.28<br />

700<br />

Group 1 Group 2 Group 3 Group 4<br />

o/o o/o o/o o/o<br />

3.12 6.68<br />

2.87 5.65<br />

2.74 5.15<br />

2.54 4.42<br />

4.31 6.68<br />

4.06 5.66<br />

3.65 5.1 6<br />

3.55 4.83<br />

4.62 6.69 3.85 6.83<br />

3.82 5.66 3.75 5.80<br />

2.99 5.17 3.53 5.31<br />

2.A7 4.83 3.06 4.98<br />

M= 444 448 450 517<br />

No. of Stations<br />

= 14<br />

19<br />

(bl Classification and averages of <strong>the</strong> maximum O/O and y values.<br />

t5<br />

t3<br />

Table 3.5 Summary of flow stations in <strong>the</strong> Nelson a¡ea.<br />

Site No. Flow Station Catchment No. Annual<br />

Area (km'zl (and historical)<br />

flood peaks<br />

56901 Riwaka River at Moss Bush<br />

57002 Motueka River at Baton Br.<br />

57006 Wangapeka River at Swing Br.<br />

57OOB Motueka River at Gorge<br />

57009 Motueka River at Woodstock<br />

571O1 Moutere River at Old House Rd.<br />

571OG Stanleybrook River at Barkers<br />

48<br />

'1647<br />

373<br />

163<br />

1750<br />

60.7<br />

81<br />

10<br />

18<br />

I<br />

9<br />

8<br />

10<br />

7<br />

y lnterval<br />

Wefem NZ:<br />

7.O - 7.5<br />

6.5 - 7.0<br />

6.0 - 6.5<br />

5.5 - 6.0<br />

5.0 - 5.5<br />

Eaetem NZ:<br />

6,5 - 7.O<br />

6,0 - 6.5<br />

5.5 - 6.0<br />

5.0 - 5.5<br />

4.5 - 5.O<br />

No. of values Average O/O Average y<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4<br />

4.O8<br />

2.85<br />

2.69<br />

2.52<br />

3.98<br />

3.63<br />

3.23<br />

3.O2<br />

7.10<br />

6.08<br />

5.58<br />

5.25<br />

6.72<br />

569<br />

520<br />

487<br />

42<br />

Water & soil technical publication no. 20 (1982)


7009<br />

o<br />

ELSON<br />

57tO6<br />

LOCALITY PLAN<br />

Scole O 5 lO 15 20 25 km<br />

Figwe 3.22 Some flow stations in <strong>the</strong> Nelson <strong>are</strong>a.<br />

generalised curves'<br />

The development of each geleralised curve involved <strong>the</strong><br />

calculation of <strong>the</strong> average Q/Q and y values, <strong>for</strong> <strong>the</strong> 0'5<br />

class intervals of y, from all <strong>the</strong> pooled data <strong>for</strong> <strong>the</strong> <strong>are</strong>a<br />

concerned. Additional average values were <strong>the</strong>n obtained<br />

using <strong>the</strong> same extension method as employed <strong>for</strong> <strong>the</strong> tsay<br />

of Plenty regiorr (section 3.3.3). This time, however, four<br />

groups of staticlns were considered fo-r each curve, with<br />

each group again comprising all <strong>the</strong> Q/Q values <strong>for</strong> <strong>the</strong> stations<br />

whose catchments were <strong>not</strong> close neighbours. A summary<br />

of <strong>the</strong> foul largest Q/Q values <strong>for</strong> each group is given<br />

in Table 3.6a. It will be <strong>not</strong>ed from this table that <strong>the</strong> number<br />

of stations rvithin each group and also M, <strong>the</strong> number<br />

of station years spanned by <strong>the</strong> data in a group, were kept<br />

reasonably constant. The four Q/Q values per group ìvere<br />

treated as being <strong>the</strong> four largest in a sample of record length<br />

M, and <strong>the</strong>ir corresponding y values were calculated accordingly<br />

using <strong>the</strong> Gringorten <strong>for</strong>mula (Equation 3'20)<br />

and Equation 11.16. The resulting sixteen pairs of Q/Q<br />

values <strong>for</strong> each curve and <strong>the</strong> corresponding y values, i.e.,<br />

<strong>the</strong> four pairs fiom each of <strong>the</strong> four groups, were subsequently<br />

averaged over <strong>the</strong> 0.5 class intervals of y (Table<br />

3.6b). <strong>These</strong> new averages were later plotted on <strong>the</strong> same<br />

probability plot as <strong>the</strong> original averages. Finally, Equation<br />

Water & soil technical publication no. 20 (1982)<br />

43


NELSON REGIONFL CURVE<br />

BEOUCEO Y VRRIÊTE<br />

FETUNN PEBIOO (YEHRS)<br />

Figure 3.23 Mass probability plot and fitted curve <strong>for</strong> <strong>the</strong> Nelson a¡ea.<br />

3.14 was fiued ro rhe combined set of original and new 3.4 FlOod ffequency acculacy<br />

averages using <strong>the</strong> optimisation technique.<br />

Figures 3.24 and,3.25 show, <strong>for</strong> <strong>the</strong> combined western 3.4.1 Accuracy of flood frequency tat¡o Or/õ<br />

and eastern <strong>are</strong>as, respec<br />

was fitted to <strong>the</strong> two types<br />

<strong>the</strong> extension method arç<br />

tern generalised curve id<br />

marised in Table 3.7.<br />

T¡ble 3.7 Summary of <strong>the</strong> characteristics of <strong>the</strong> generalised<br />

curves.<br />

al curve, it is<br />

of statistical<br />

sets of flood<br />

peak data used to define <strong>the</strong> curye _ if different sets<br />

of records of equal length had been available <strong>the</strong> curve<br />

would be different; and<br />

(b) tne spatial variation due to <strong>the</strong> curve being taken as an<br />

of <strong>the</strong> flood frequencv relation-<br />

ï"t#iltriiLt iJerage<br />

Since in this study a regional curve is interpreted as <strong>the</strong><br />

o./o_<br />

o,o/_o<br />

Oro/O<br />

O.o/õo,@/_o<br />

O'æ/Q<br />

O¡æ/O-<br />

Oroo/O<br />

u=<br />

o= k:<br />

General<br />

Eq;ation:<br />

4<br />

Western N.Z.<br />

1.18<br />

1.42<br />

1.67<br />

2.O4<br />

2.36<br />

2.71<br />

3.23<br />

3.68<br />

0.788<br />

o.234<br />

-o.1s6<br />

O/O = -0.714+<br />

1.502 exp (0.1 56yl<br />

o/o<br />

Eastern N.Z.<br />

1.49<br />

1.87<br />

2.23<br />

2.71<br />

3.06<br />

3.42<br />

3.88<br />

4.24<br />

o.724<br />

0.509<br />

=O.724+<br />

O.6O9y<br />

var (a.b) = E(a),.var(b) + E(b),.var(a) 324<br />

where E ( ) de<strong>not</strong>es <strong>the</strong> expected value and var ( ) <strong>the</strong> variance.<br />

Errors of estimation in Q can be considered statistically<br />

independent of errors of estimate in <strong>the</strong> regional curve ordinate<br />

Q.¡/Q. Hence, applying <strong>the</strong> expansìon in Equation<br />

Water & soil technical publication no. 20 (1982)


1^IESTEBN NEhI ZEÊLRND DRTR<br />

Þ<br />

o<br />

Þ<br />

o<br />

t<br />

Þ<br />

ro<br />

ooo<br />

o<br />

ê ê<br />

l.0r t<br />

ê<br />

2.33<br />

hESTEBN<br />

1.50 2.25 3- 00<br />

BEOUCED Y VRRIRTE<br />

s<br />

t0<br />

ßEIURN PEN¡OD (YERNS)<br />

NEI,,I ZERLÊND GENERRL I SED CURVE<br />

o<br />

t<br />

o<br />

to<br />

ot<br />

E<br />

t<br />

I - 50 2.25 3.00 3.75 {,50 5.25 6,00 l. ?¡<br />

BEDUCED Y VRSIRTE<br />

r.ort 2.t3 s l0 20 30 so 7s ir00 eoo 600 t000<br />

NETURN PEñIOD<br />

Water & soil technical publication (YEÊRS}<br />

no. 20 (1982)<br />

Flgute 3.24 Western New Zealand: <strong>the</strong> mass probability plot and <strong>the</strong> generalised curve.<br />

45


46<br />

EÊSTEFìN NEI,,I ZEFLÊND DÊTIì<br />

o<br />

Þ<br />

o<br />

o<br />

di'<br />

o<br />

tct<br />

a oê<br />

.ü'<br />

€<br />

o<br />

o<br />

è<br />

t.0tr<br />

t .50 2.25 3.00 3. ?5 r¡.50<br />

BEDUCEO Y VRßIRTE<br />

2,33 S r0 ?0 30 S0 7s r00 200<br />

BETUNN PERIOO fYEÊNS)<br />

EÊSTERN NEI^I ZEÊLRND GENEI-IRL I SED CUßVE<br />

o<br />

,to -.rr . s0 2.2s 3.00 !,75 lr. s0 25 6.00 a.?S<br />

NEOUCEO Y VFRIRTE<br />

l.otr 2.!t s t0 20 !0 60 75 t00 200 s00 ¡000<br />

BETUNN FENIOO ÍYEFñ5I<br />

Water & soil technical publication no. 20 (1982)<br />

Figure 3.25 Eastern New Zealand: <strong>the</strong> mass probability plot and <strong>the</strong> generalised curve.


3.?A, <strong>the</strong> variance of <strong>the</strong> flood peak estimate Q.¡ may be<br />

given as (NERC 1975, p.184)<br />

var(Qr) : var_(Q.Qr/Q) _<br />

= E(Q)'.var(Qr/_Q)<br />

+ E(Qr/Q)'?.var(Q)<br />

325<br />

The quantity var(Q ) on <strong>the</strong> right han_d side of Equation<br />

3.25 depends on <strong>the</strong> manner in which Q is estimated (see<br />

Chapter 4). In practice Q is substituted <strong>for</strong> E(Q ) and, similarly,<br />

QrlQ <strong>for</strong> E(Q1/Q). This leaves only <strong>the</strong> quantity<br />

var (Qr/Q) unaccounted <strong>for</strong>. It is <strong>the</strong> variance of <strong>the</strong> regional<br />

curve ordinate Q.¡/Q at return period T and is <strong>the</strong><br />

type (b) variation mentioned previously.<br />

The quantity var (Q1/Q ) was calculated as <strong>the</strong> variance<br />

of <strong>the</strong> individual station flood frequency curves <strong>for</strong><br />

T=2.33,5, 10,20,30, 50 and 100 years. Given this variance,<br />

<strong>the</strong> coefficient of variation (Cp) of individual station<br />

curves about <strong>the</strong> regional curve is defined as<br />

c¡ = (var (Qr/Q) )k/(Qr/Q) 326<br />

and is a measure of <strong>the</strong> type (b) variation above'<br />

Regression analyses of C¡ against <strong>the</strong> return period T,<br />

and also fnT, were carried out and it was found that <strong>the</strong> relationships<br />

between C¡ and /nT were approximately linear.<br />

Regression equations of <strong>the</strong> <strong>for</strong>m<br />

Cp=(c+m./nT)/100 321<br />

were <strong>the</strong>re<strong>for</strong>e obtained, where c and m <strong>are</strong> constants <strong>for</strong> a<br />

reglon.<br />

The regression equations <strong>for</strong> <strong>the</strong> various regions <strong>are</strong> summarised<br />

in Table 3.8. The squ<strong>are</strong> of <strong>the</strong> correlation coefficient<br />

R was in <strong>the</strong> range of 0.946 to 0.992 in all cases but one,<br />

indicating that generally <strong>the</strong> equations explained at least<br />

9490 of <strong>the</strong> variation in C¡. The exception was <strong>the</strong> equation<br />

<strong>for</strong> <strong>the</strong> Bay of Plenty region where <strong>the</strong> R'z value was only<br />

0.380. This low R' value was presumably <strong>the</strong> result of <strong>the</strong><br />

regional curve having a different trend from some of <strong>the</strong><br />

frequency curves <strong>for</strong> <strong>the</strong> individual stations where <strong>the</strong>re was<br />

historical flood in<strong>for</strong>mation. Fur<strong>the</strong>r, <strong>the</strong> Bay of Plenty region<br />

was <strong>the</strong> only one where <strong>the</strong> equation <strong>for</strong> CF was <strong>not</strong><br />

statistically significant at <strong>the</strong> l9o level.<br />

While <strong>the</strong> statistical properties listed in Table 3'8 indicate<br />

that <strong>the</strong> equations would generally be satisfactory <strong>for</strong> estimating<br />

C¡ <strong>for</strong> a regional curve, some of <strong>the</strong> regions did <strong>not</strong><br />

contain sufficient stations to enable truly representative<br />

equations to be determined. For instance, in three of<strong>the</strong> regiòns<br />

less than l0 stations were used. Since <strong>the</strong> equations<br />

were only a measure of <strong>the</strong> type (b) variation and were intended<br />

to convey only an order of magnitude of<strong>the</strong> standard<br />

error associated with an estimate of Q'¡/Q obtained<br />

from a regional curve, it was decided to pool toge<strong>the</strong>r <strong>the</strong><br />

individual station estimates of Q1/Q <strong>for</strong> different regions<br />

into larger groups and to derive a new C¡ equation <strong>for</strong> each<br />

group. <strong>These</strong> grou¡r equations could <strong>the</strong>n be taken as <strong>the</strong><br />

estimating equatiorrs <strong>for</strong> C¡ <strong>for</strong> <strong>the</strong> regions <strong>the</strong>y represented.<br />

However, prior to <strong>the</strong> pooling of estimates, it was<br />

necessary to dividr: <strong>the</strong> individual station estimates of<br />

Qr/Q bv <strong>the</strong> corresponding regional curve ordinates.<br />

Group C¡ values were <strong>the</strong>n calculated <strong>for</strong> <strong>the</strong> pooled estimates<br />

<strong>for</strong> <strong>the</strong> return period concerned.<br />

Two groups of regions were considered <strong>for</strong> each of <strong>the</strong><br />

North and South Islands, with one group representing <strong>the</strong><br />

western and <strong>the</strong> o<strong>the</strong>r <strong>the</strong> eastern regions. Grouping <strong>the</strong> regions<br />

in this mannen is supported by <strong>the</strong> overall trend in <strong>the</strong><br />

value <strong>for</strong> <strong>the</strong> slope m of <strong>the</strong> regional regression equations<br />

(Table 3.8), with <strong>the</strong> value generally being greater on <strong>the</strong><br />

east of an island than on <strong>the</strong> west. This trend indicates that<br />

<strong>the</strong> variance of <strong>the</strong> estimates of <strong>the</strong> regional ordinates<br />

Q-¡/Q is greater on <strong>the</strong> east than on <strong>the</strong> west, and it also reflects<br />

<strong>the</strong> greater variability in <strong>the</strong> flood peak data <strong>for</strong> <strong>the</strong><br />

eastern regions (see also section 4.9). Fur<strong>the</strong>r justification<br />

<strong>for</strong> this grouping of regions is given by <strong>the</strong> trend in <strong>the</strong><br />

characteristics of ttre regional curves (section 3.3.2).<br />

The way in which <strong>the</strong> individual station estimates <strong>for</strong> <strong>the</strong><br />

regions were pooled toge<strong>the</strong>r into groups is shown in Table<br />

3.9. The estimates <strong>for</strong> <strong>the</strong> Bay of Plenty region were <strong>not</strong><br />

used in <strong>the</strong> derivation of <strong>the</strong> group equations. The C¡ equation<br />

<strong>for</strong> this region was <strong>not</strong> meaningful in view of <strong>the</strong> low<br />

R2 value and it thurs seemed inappropriate to use <strong>the</strong> data<br />

<strong>for</strong> this region in deriving a useful equation <strong>for</strong> its group <strong>for</strong><br />

estimating C¡. The combined North Island West Coast and<br />

South Island West Coast regions <strong>are</strong> <strong>the</strong> only regions in<br />

<strong>the</strong>ir respective groups, and thus <strong>the</strong>ir regional C¡ eQuations<br />

(Table 3.8) automatically became <strong>the</strong> corresponding<br />

group equations.<br />

Table 3.9 gives thre regression equations that were derived<br />

<strong>for</strong> <strong>the</strong> groups andt it also lists <strong>the</strong> regions to which each<br />

equation applies. The tabulated statistical properties indicate<br />

that <strong>the</strong> equa,tions <strong>are</strong> statistically acceptable, with<br />

each being significant at <strong>the</strong> l9o level. Table 3.9 gives <strong>the</strong><br />

100-year C¡ value as computed from each group equation.<br />

The 1OO-year values range from 0.13 to 0.19 <strong>for</strong> <strong>the</strong> western<br />

groups and from O.24to 0.25 <strong>for</strong> <strong>the</strong> eastern groups. They<br />

comp<strong>are</strong> very favourably with <strong>the</strong> value of 0.32 as given by<br />

<strong>the</strong> corresponding Cp equation recommended by NERC<br />

(1975, p.183) <strong>for</strong> use with all its regional curves.<br />

Each group equation was derived from station estimates<br />

<strong>for</strong> return periods only up to 100 years, even though most<br />

regional curves extend to <strong>the</strong> 2(Ð-year return period. Normally<br />

it is recommended that an equation should <strong>not</strong> be applied<br />

outside <strong>the</strong> range of data from which it was derived.<br />

However, in this case it was preferred to allow each equation<br />

to be applied up to <strong>the</strong> 2D-year return period, ra<strong>the</strong>r<br />

Table 3.8 The regional regression equations <strong>for</strong> estimated CF'<br />

REGION<br />

Coefficient<br />

c<br />

S ope<br />

m<br />

R2<br />

s.E.<br />

Est.<br />

No. ol<br />

Stat¡ons<br />

NORTH ISTAND<br />

1. Combined N.l. West Coast<br />

2. Bay of Plenty<br />

3. North lsland East Coast<br />

4. Central Hawke's Bay<br />

o.94<br />

6.19<br />

-2.21<br />

o.25<br />

3.93<br />

o.91<br />

6.O1<br />

5.38<br />

0.997<br />

0.617<br />

o.972<br />

o.989<br />

o.993<br />

0.380<br />

o.946<br />

o.979<br />

27.O* O.OO145<br />

1.75 0.Oo518<br />

9.32* 0.00645<br />

14.9* 0.00361<br />

65<br />

12<br />

12<br />

8<br />

SOUTH ISI-AND<br />

5. South lsland West Coast<br />

6. South lsland East Coast<br />

7. South Canterbury<br />

8. Otago-Southland<br />

2.46<br />

-o.37<br />

4.53<br />

-o.40<br />

2.25<br />

4.59<br />

5.90<br />

4.19<br />

0.996<br />

o.996<br />

0.981<br />

o.982<br />

o.992<br />

0.992<br />

0.963<br />

o.965<br />

25.2* o.oo244<br />

24.6* O.OO508<br />

1 1 .4* 0.10410<br />

11.7* O.OO974<br />

21<br />

14<br />

9<br />

t)<br />

NOTE:<br />

The regression is of <strong>the</strong> <strong>for</strong>m C¡ = (c + m.fnT)/lOO<br />

* ¡ndicates significance at <strong>the</strong> 196 level<br />

S.E. Est. is <strong>the</strong> standard error of est¡mate of C¡<br />

Water & soil technical publication no. 20 (1982)<br />

47


Table 3.9 The grouping and <strong>the</strong> group equations <strong>for</strong> est¡mation CF.<br />

GROUP<br />

West N.l.<br />

East N.l.<br />

West S.l.<br />

East S.l.<br />

NOTES:<br />

Regions whose<br />

Data were<br />

Regions Represented<br />

Pooled Toge<strong>the</strong>r by <strong>the</strong> Group<br />

1<br />

3,4 2. Bay of Plenty<br />

3. North ls. East Coast<br />

4. Central Hawke,s Bay<br />

5 5. South ls. West Coast<br />

6, 7, I 6. South ls. Easr Coast<br />

7. South Canterbury<br />

L Otago-Southland<br />

Group<br />

C¡ Equation,<br />

C.=<br />

1. Combined N.l. West Coast (O.94+3.93/nT)/1OO<br />

(- 1.25 +5.74fnTl<br />

/100<br />

12.46 +2.25tnTll1OO<br />

(2.61 +4.54/nT)/1OO<br />

+ indicates significance at <strong>the</strong> 1 7o level<br />

S.E. Est. is <strong>the</strong> standard error of estimate of C¡<br />

No. of stations is <strong>the</strong> total number used in <strong>the</strong> derivation of <strong>the</strong> group equation.<br />

S.E.<br />

R2 t Est.<br />

o.993 27.O* O.OO15<br />

0.984 17.7' O.O0g2<br />

0.992 25.2+ O.OO24<br />

o.985 18.1* 0.0068<br />

No. of C¡ value<br />

Stations <strong>for</strong>T=1OO<br />

65<br />

20<br />

2'l<br />

29<br />

o.1 I<br />

o.25<br />

o.1 3<br />

o.24<br />

than to obtain individual estimates of er/Q beyond a re_<br />

turn period of 100 years, which would have involved a gross<br />

extrapolation with several of <strong>the</strong> records.<br />

C¡ equations <strong>for</strong> estimating standard errors associated<br />

with <strong>the</strong> application of <strong>the</strong> generalised curves were also de_<br />

rived, and in exactly <strong>the</strong> same manner and with <strong>the</strong> same<br />

data as that used <strong>for</strong> <strong>the</strong> regional C¡ equations. Details of<br />

<strong>the</strong> resulting CF equations <strong>are</strong> given in iable 3.10.<br />

From a comparison of <strong>the</strong> coefficients of f nT in <strong>the</strong><br />

le 3.<br />

can be seen that<br />

<strong>for</strong><br />

rve produces CF<br />

thin<br />

given by <strong>the</strong> twô<br />

that<br />

<strong>are</strong>a. This result<br />

was <strong>not</strong> surprising, since a generalised curve <strong>for</strong> an <strong>are</strong>a<br />

represent<br />

that <strong>are</strong>a,<br />

and so it<br />

erages <strong>the</strong><br />

scatter in<br />

plo-ts. Be_<br />

cause of<br />

d that <strong>the</strong><br />

Never<strong>the</strong>less, some of <strong>the</strong> curves and <strong>the</strong> associated regional<br />

boundaries can<strong>not</strong> be regarded as definitive because<br />

of small data samples, a lack of samples, and a poor <strong>are</strong>al<br />

distribution of <strong>the</strong> flow stations' catchmenti (section<br />

3.4.3). In fact, <strong>the</strong> study exposed a number of <strong>are</strong>as where<br />

ef<strong>for</strong>ts to acquire flood peak data should be concentrated<br />

in <strong>the</strong> future.<br />

In <strong>the</strong> South Island <strong>the</strong>re were very few flow stations on<br />

<strong>the</strong> coastal plains of <strong>the</strong> east coast. Here <strong>the</strong>re <strong>are</strong> practical<br />

difficulties in estabtishing flow stations because <strong>the</strong> alluvial<br />

3.4.3 Definition of flood frequency<br />

reg¡onal boundaries<br />

As mentioned in section 3.3. I , use was made of available<br />

3.4.2 Data limitations<br />

most<br />

ever<br />

data<br />

rves.<br />

Island regions. A difference in <strong>the</strong> flood frequency trend<br />

between <strong>the</strong> North Island stations in <strong>the</strong> west änd those in<br />

<strong>the</strong> east was also evident.<br />

Table 3.1O The C¡ equations derived <strong>for</strong> <strong>the</strong> generalised curves.<br />

Area<br />

Western NZ<br />

Eastern NZ<br />

cF<br />

cF<br />

Equation<br />

S.E.<br />

R R2 t est.<br />

= (2.06+3.59fnT)/1OO 0.991 O.9Bt 16.3* 0.0060<br />

= (1.79 +4.84hrV1OO 0.996 0.992 26.8* O.OO49<br />

Water & soil technical publication no. 20 (1982)<br />

No. of<br />

stations<br />

86<br />

61<br />

48


The regions that were chosen initiatly reflect <strong>the</strong> difference<br />

in rainfall behaviour in New Zealand, and each region<br />

can generally be distinguished by its own rainfall characteristics.<br />

Where <strong>the</strong>re <strong>are</strong> pronounced regional rainfall characteristics,<br />

and where <strong>the</strong>re <strong>are</strong> sound topographical reasons<br />

<strong>for</strong> this, <strong>the</strong> boundary line between regions was easily decided<br />

upon. For instance, in <strong>the</strong> South Island West Coast<br />

region, where <strong>the</strong> rainfall is greatest and is dominated by<br />

<strong>the</strong> orographic influence of <strong>the</strong> Sou<strong>the</strong>rn Alps, <strong>the</strong> ridge<br />

line of <strong>the</strong> Alps was <strong>the</strong> obvious dividing line between this<br />

region and <strong>the</strong> o<strong>the</strong>r South Island regions. However, it is<br />

probable that <strong>the</strong> effect of <strong>the</strong> West Coast rainfall extends<br />

somewhat east of <strong>the</strong> ridge line, as indicated by <strong>the</strong> probability<br />

plots <strong>for</strong> <strong>the</strong> Shotover and upper Wairau catchments.<br />

The actual boundary line <strong>for</strong> <strong>the</strong> South Island West<br />

Coast <strong>the</strong>re<strong>for</strong>e includes <strong>the</strong>se catchments and some eastern<br />

headwater catchments in <strong>the</strong> Alps, e.g., <strong>the</strong> catchments of<br />

<strong>the</strong> Wilkin, Makarora and Matukituki Rivers.<br />

While <strong>the</strong> rainfall characteristics of different parts of<br />

New Zealand helped to identify <strong>the</strong> regions, <strong>the</strong> actual definition<br />

of <strong>the</strong> regional boundaries was <strong>not</strong> always as<br />

straight<strong>for</strong>ward as in <strong>the</strong> South Island West Coast example<br />

<strong>the</strong> topographical features were <strong>not</strong> always as dominant<br />

-<br />

as <strong>the</strong> Sou<strong>the</strong>rn Alps in influencing <strong>the</strong> rainfall. ln addition,<br />

<strong>the</strong>re was sometimes a poor <strong>are</strong>al distribution of flow<br />

stations, so that often <strong>the</strong> definition of <strong>the</strong> regional boundaries<br />

was ra<strong>the</strong>r subjective.<br />

A striking outcome of <strong>the</strong> regionalisation work was <strong>the</strong><br />

small number of flood frequency regions. In earlier work<br />

Toebes and Palmer (19ó9) divided <strong>the</strong> country into 90<br />

hydrological regions according to climatological, geological<br />

and topographical factors. However, in this study eight regions<br />

were considered adequate to define <strong>the</strong> variation in<br />

flood frequency behavioui in <strong>the</strong> country. This is an order<br />

of magnitude less than <strong>the</strong> number used by Toebes and<br />

Palmer, and suggests that climate is <strong>the</strong> dominant factor influencing<br />

floods in New Zealand and that geology and topography<br />

generally play relatively minor roles.<br />

3.4.4 Homogene¡ty test<br />

Some flood regionalisation studies have used <strong>the</strong> statistical<br />

test described by Dalrymple (1960) to identify <strong>the</strong> stations<br />

that <strong>for</strong>m a hydrological homogeneous region. This<br />

homogeneity test involves <strong>the</strong> graphical or analytical fitting<br />

of a frequency distribution to each station's flood peak<br />

data and <strong>the</strong> estimation of peak discharge values <strong>for</strong> <strong>the</strong><br />

2.33 and lO-year return periods, i.e., Qt ,, and Q,o respectively.<br />

The ratio of Q,o/Q, ,¡ is <strong>the</strong>n <strong>for</strong>med, which is an index<br />

of <strong>the</strong> straightJine slope of <strong>the</strong> fitted frequency curve between<br />

<strong>the</strong> two return periods. The test places confidence<br />

limits on <strong>the</strong> ratio Q'o/Q, ¡¡ and stations with ratios lying<br />

within <strong>the</strong> limits <strong>are</strong> taken as being part of <strong>the</strong> homogeneous<br />

region.<br />

Although <strong>the</strong> test Provides a quant<br />

ing a region, it was <strong>not</strong> relied uPon a<br />

insensitive when tested on South Is<br />

served that <strong>the</strong> test was unable to detect even major differences<br />

in individual frequency curves past <strong>the</strong> lO-year return<br />

period. This deficiency of<strong>the</strong> test was also <strong>not</strong>ed by Benson<br />

(r962a\.<br />

3.5 Flood frequencY discussion<br />

3.5. I Regional d¡fferences<br />

The most prominent characteristic of <strong>the</strong> regional curves<br />

is that <strong>the</strong> curves <strong>for</strong> <strong>the</strong> western regions of an island have a<br />

Water & soil technical publication no. 20 (1982)<br />

regions receive more rainfall more regularly than <strong>the</strong>ir eastern<br />

counterparts. Thus, <strong>the</strong> ratio of runoff to rainfall is<br />

comparatively high <strong>for</strong> <strong>the</strong> western catchments and does<br />

<strong>not</strong> vary markedly <strong>for</strong> <strong>the</strong> storms that produce <strong>the</strong> annual<br />

floods. The mean annual flood is <strong>the</strong>re<strong>for</strong>e fairly large and<br />

<strong>the</strong>re is little variability in <strong>the</strong> annual flood peak data (section<br />

4.9). As a consequence, <strong>the</strong> difference between <strong>the</strong><br />

100-year and mean annual flood is <strong>not</strong> very great, e.g., in<br />

<strong>the</strong> curves <strong>for</strong> <strong>the</strong> two western regions <strong>the</strong> 100-year flood<br />

peak is less than 2.35 times <strong>the</strong> mean annual flood.<br />

On <strong>the</strong> o<strong>the</strong>r hanLd, <strong>the</strong> catchments in <strong>the</strong> eastern regions<br />

<strong>are</strong> usually drier and have a lower runoff to rainfall ratio.<br />

The mean annual Ilood <strong>for</strong> an eastern catchment is <strong>the</strong>re<strong>for</strong>e<br />

less than that <strong>for</strong> a western one of <strong>the</strong> same size (section<br />

4.5). There is eLlso a greater range in <strong>the</strong> runoff to rainfall<br />

ratio fo¡ an eastern catchment and this is reflected in<br />

<strong>the</strong> greater variability of <strong>the</strong> annual flood peak data <strong>for</strong><br />

such a catchment (section 4.9). The difference between <strong>the</strong><br />

100-year and <strong>the</strong> rnean annual flood is <strong>the</strong>re<strong>for</strong>e significantly<br />

greater than that <strong>for</strong> a western catchment, as is borne<br />

out by eastern regional curves being steeper than <strong>the</strong> western<br />

curves. It is worth <strong>not</strong>ing that <strong>the</strong> wettest region (<strong>the</strong><br />

South Island West Coast region) has <strong>the</strong> flattest regional<br />

curve and one of <strong>the</strong> driest regions (<strong>the</strong> South Canterbury<br />

region) has <strong>the</strong> steepest curve.<br />

While <strong>the</strong> slope of a regional curve is an indication of <strong>the</strong><br />

variability in <strong>the</strong> individual data samples <strong>for</strong> <strong>the</strong> region, <strong>the</strong><br />

curvature may be taken as an index of <strong>the</strong> skewness in <strong>the</strong><br />

samples. As indicated by NERC (1975, p.42,47), <strong>the</strong> EVI<br />

distribution has a coefficient of skew of 1.14, and skew<br />

values greater or ler;s than this figure correspond to <strong>the</strong> EV2<br />

and EV3 distributions respectively. The majority of <strong>the</strong> regional<br />

curves in this study <strong>are</strong> described by <strong>the</strong> straight-line<br />

EVI distribution, implying that <strong>the</strong> average skewness in <strong>the</strong><br />

data samples <strong>for</strong> <strong>the</strong>se regions was small. This in fact was<br />

<strong>the</strong> case: <strong>for</strong> <strong>the</strong> regions with straight-line fits to <strong>the</strong> data<br />

<strong>the</strong> average skew of a region's annual flood peak samples<br />

was in <strong>the</strong> range 0.39 (S.I. West Coast) to 1.09 (Central<br />

Hawke's Bay) and <strong>the</strong> EVI distribution was found to give a<br />

good approximation to <strong>the</strong> regional data up to <strong>the</strong> 200-year<br />

return period. In <strong>the</strong> Bay of Plenty, South Canterbury and<br />

Otago-Southland regions <strong>the</strong> average skew of a region's<br />

data samples was greater than 1.2. For <strong>the</strong> first two of <strong>the</strong>se<br />

regions, <strong>the</strong> EV2 dtistribution was found to give a good fit<br />

to <strong>the</strong> regional dat¡1. Because of <strong>the</strong> smaller number of data<br />

samples <strong>for</strong> <strong>the</strong> third region, however, less significance can<br />

be attached to <strong>the</strong> average skew (1.23) of <strong>the</strong> region's data<br />

samples, and <strong>the</strong> IlVl distribution approximated <strong>the</strong> data<br />

satisfactorily up to <strong>the</strong> 100-year return period.<br />

It is interesting to <strong>not</strong>e that <strong>the</strong> two regions with EV2 regional<br />

curves can both be regarded as dry <strong>are</strong>as; <strong>the</strong> South<br />

Canterbury region because of its low rainfall, and <strong>the</strong> Bay<br />

of Plenty region because of its absorbent pumice soils (see<br />

also section 4.6.2) and its relatively low rainfall in comparison<br />

with its regional neighbour to <strong>the</strong> west.<br />

The pooling of <strong>the</strong> regional flood peak data to construct<br />

<strong>the</strong> generalised curves produced mass probability plots<br />

(Figures 3.24 and 3.25) that show very little scatter in <strong>the</strong><br />

data up to about <strong>the</strong> l0-year return period. Beyond this <strong>the</strong><br />

scatter is greater, but <strong>not</strong> excessively so, and is due in part<br />

to some of <strong>the</strong> uncertainty associated with <strong>the</strong> historical<br />

flood peaks. The averaging of <strong>the</strong> pooled data and <strong>the</strong><br />

application of <strong>the</strong> extension method (NERC 1975) clearly<br />

defined <strong>the</strong> flood frequency trend <strong>for</strong> <strong>the</strong> fitting of each<br />

generalised curve. rühile <strong>the</strong> curves require some refinement<br />

using more and especially longer flood records, <strong>the</strong>y<br />

should still provide <strong>the</strong> designer with a reasonable guide as<br />

to <strong>the</strong> magnitude of flood peaks past <strong>the</strong> 2(Ð-year return<br />

period, <strong>the</strong> maximLum upper bound of <strong>the</strong> regional curves.<br />

An assessment of <strong>the</strong> reliability of each curve can be made<br />

from an inspectiorr of <strong>the</strong> scatter in <strong>the</strong> corresponding mass<br />

probability plot eLnd by applying <strong>the</strong> appropriate North<br />

Island group CF equation (section 3.4.1).<br />

49


allowing curves ra<strong>the</strong>r than just straight lines to be fitted to<br />

<strong>the</strong> regional data with confidence. In this New Zealand<br />

curve and <strong>the</strong> eastern curve is <strong>the</strong> straight-line EVl. This is<br />

d generalised curves<br />

ynn (1978) <strong>for</strong> Creat<br />

given in Figure 3.26.<br />

curve and <strong>the</strong> corresponding regional ones, results from in_<br />

clusion in <strong>the</strong> development of <strong>the</strong> generalised curve of some<br />

of <strong>the</strong> extreme flood peaks which had been excluded from<br />

<strong>the</strong> derivation of <strong>the</strong> corresponding regional curves. While<br />

<strong>the</strong>re is a valid argument <strong>for</strong> <strong>the</strong> inclusion of <strong>the</strong>se extreme<br />

e still been too<br />

<strong>the</strong>reby weightperiods.<br />

been described<br />

New Zeatand curves bear a remarkabl|t','"tJJr:i*t;tÏ::<br />

to <strong>the</strong>ir Great Britain counterparts.<br />

Although <strong>the</strong> two countries have broadly similar cli_<br />

mates, New Zealand has greater extremes of wet and dry.<br />

That <strong>the</strong> New Zealand curves do <strong>not</strong> reflect this with túe<br />

western and eastern curves be<br />

-<br />

tively, in relation to <strong>the</strong> corre<br />

- is possibly due to <strong>the</strong> ave<br />

ment of <strong>the</strong> curves, i.e., <strong>the</strong> i<br />

treme wet or dry climates is largely nullified by <strong>the</strong> lumping<br />

toge<strong>the</strong>r of <strong>the</strong>se <strong>are</strong>as with o<strong>the</strong>rs which <strong>are</strong> <strong>not</strong>iceãblt<br />

drier or wetter, respectively. The fact that <strong>the</strong> western New<br />

was used to describe <strong>the</strong> generalised curve.<br />

ntinuity between<br />

Oing generalised<br />

"<br />

. ;;,f.tïi'l"i::;<br />

expectation. This may be viewed as taking a weighted aver_<br />

age of <strong>the</strong> estimates.<br />

3.5.3 Vadation within a reg¡on<br />

3.5.2 Compar¡son with rhe Br¡t¡sh lsles<br />

;<br />

f<br />

<strong>the</strong>se curves reveals some remarkable similarities with <strong>the</strong><br />

curves obtained in this New Zealand study.<br />

First of all, <strong>the</strong> British Isles regional curves display <strong>the</strong><br />

same trend of an increase in <strong>the</strong> slope of <strong>the</strong> curves between<br />

those <strong>for</strong> <strong>the</strong> western regions and those <strong>for</strong> <strong>the</strong> eastern re_<br />

gions <strong>the</strong> curve <strong>for</strong> <strong>the</strong> western-most<br />

- region, <strong>the</strong> whole of<br />

Ireland, has <strong>the</strong> smallest slope, whereas <strong>the</strong> curve <strong>for</strong> <strong>the</strong><br />

eastern-most region, East Anglia, has <strong>the</strong> greatest,<br />

Fur<strong>the</strong>r, <strong>the</strong> range of <strong>the</strong> ordinates of <strong>the</strong> British Isles<br />

and New Zealand curves is almost <strong>the</strong> same at high return<br />

periods. For example, <strong>the</strong> South Island West Coast regional<br />

curve, which has <strong>the</strong> smallest slope of all <strong>the</strong> New Zéaland<br />

very dry in relation to<br />

is likely to be steeper<br />

catchment which is ve<br />

tend to have a flatter<br />

An extension of this argument leads to <strong>the</strong> concept of<br />

sub-regions which, although geographically part of a làrger<br />

surrounding region, display a e/Q frequency trend of thiir<br />

is<br />

E<br />

b<br />

50<br />

3.5.4 Secular climatic variat¡on<br />

-In th9 regionalisation procedure described by Dalrymple<br />

(19@), it is recommended that all <strong>the</strong> flood records should<br />

be brought to a common base length by correlating <strong>the</strong> re-<br />

Water & soil technical publication no. 20 (1982)


o<br />

SOUTH AFRICA<br />

to<br />

o<br />

,s.E. BRtTAtN<br />

.,,'<br />

EASTERN N.Z.<br />

WESTERN N.Z.<br />

-N.W. BRITAIN<br />

23<br />

Reduced Voriote<br />

567<br />

2.33 5to2050<br />

-ffi<br />

roo 200 500 rooo<br />

Return Period ! yeors<br />

Figure 3.26 Comparison of <strong>the</strong> New Zealand generalised curves with those f rom <strong>the</strong> British lsles and South Af rica.<br />

-<br />

cords with <strong>the</strong> longest reliable one. The aim of this correlation<br />

is to remove <strong>the</strong> effect of any climatic variation that<br />

might exist amongst <strong>the</strong> records of differing length. However,<br />

<strong>the</strong> correlations <strong>are</strong> often so poor that <strong>the</strong>re appears<br />

to be very little advantage in attempting this <strong>for</strong>m of extension.<br />

Fur<strong>the</strong>r it is uncertain at <strong>the</strong> present time whe<strong>the</strong>r<br />

<strong>the</strong>re <strong>are</strong> significant climatic trends in annual flood peak<br />

records (ICE 1975, pp.76-80). For example, Cunnane<br />

(NERC 1975, pp.l25-32) per<strong>for</strong>med a number of statistical<br />

tests on 28 long records of annual flood peaks. The tests<br />

suggested that <strong>the</strong> peaks were largely random, and <strong>the</strong>re<strong>for</strong>e<br />

contained no <strong>not</strong>iceable climatic trend. A similar con-<br />

clusion was reaclned by Beard (1977) in an analysis of annual<br />

flood peaks in 300 long records <strong>for</strong> stations in <strong>the</strong><br />

United States.<br />

In this New Ze:aland study it was assumed that <strong>the</strong>re was<br />

no climatic trend in <strong>the</strong> annual flood peak records. This<br />

same assumptiorn was made by NERC (1975), and in<br />

Beard's (1977) flood frequency analysis work <strong>for</strong> <strong>the</strong> U.S.<br />

Water Resources Council. The possibility of <strong>the</strong>re being climatic<br />

variations in <strong>the</strong> flood records is <strong>not</strong> ruled out, but<br />

this is an <strong>are</strong>a ol'hydrology that requires fur<strong>the</strong>r research<br />

be<strong>for</strong>e proper account can be taken of such variation in a<br />

regional study like this.<br />

Water & soil technical publication no. 20 (1982)<br />

5l


3.5.5 Extension method<br />

The NERC (1975) extension method proved very useful<br />

in developing <strong>the</strong> Bay of Plenty regional curve and <strong>the</strong> generalised<br />

curves. However, it was <strong>not</strong> considered necessary<br />

to use <strong>the</strong> method <strong>for</strong> <strong>the</strong> development of every regional<br />

curve. For instance, in a test on <strong>the</strong> South Island tr)Vest<br />

Coast regional data, <strong>the</strong> extension method produced a<br />

curve almost identical with that obtained by <strong>the</strong> usual<br />

curve-fitting procedure (section 3.3.2). There was also uncertainty<br />

in <strong>the</strong> method concerning <strong>the</strong> statistical dependence<br />

between <strong>the</strong> original and <strong>the</strong> new set of average values.<br />

In a sense it appe<strong>are</strong>d that <strong>the</strong> same in<strong>for</strong>mation on <strong>the</strong><br />

large Q/Q values was being used twice. This would weight<br />

<strong>the</strong> curve-fitting process in favour of <strong>the</strong> historical flood<br />

peaks, <strong>the</strong> estimat€s of which <strong>are</strong> generally less reliable than<br />

those <strong>for</strong> <strong>the</strong> annual flood peaks. In addition, <strong>the</strong>re is considerable<br />

difficulty in grouping <strong>the</strong> stations of a region such<br />

that neighbouring catchments <strong>are</strong> <strong>not</strong> represented in a<br />

group. While this condition can normally be satisfied, <strong>the</strong>re<br />

<strong>are</strong> necessarily some catchments represented which <strong>are</strong> in<br />

close proximity to one a<strong>not</strong>her, which raises doubts about<br />

treating <strong>the</strong> flood peak data of a group as independent sample<br />

items.<br />

3.5.6 Catchment s¡ze<br />

Catchments less than 20 km'? were omitted from <strong>the</strong><br />

study, except in <strong>the</strong> Northland-Auckland <strong>are</strong>a, on <strong>the</strong> prior<br />

belief that <strong>the</strong>y would have steeper flood frequency curves<br />

than <strong>the</strong> larger catchments (section 3.2.1). This was found<br />

to be true at times, especially <strong>for</strong> <strong>the</strong> very small catchments<br />

of <strong>the</strong> order of I km' in <strong>are</strong>a. However, <strong>the</strong> initial curve <strong>for</strong><br />

<strong>the</strong> Nor<strong>the</strong>rn North Island region (Figure 3.8) refutes <strong>the</strong><br />

general argument against <strong>the</strong> omission of small catchments.<br />

The curve was based on <strong>the</strong> flood peak däta <strong>for</strong> catchments<br />

ranging in <strong>are</strong>a from 2.48 to 1606 km':(see Table 3.2), yet it<br />

is <strong>not</strong> steep nor does <strong>the</strong> corresponding regional probability<br />

plot show greater scatter than that <strong>for</strong> o<strong>the</strong>r western regions.<br />

The curve is a typical western one and flatter than<br />

any eastern regional curve.<br />

While it was quite evident that <strong>the</strong> flood peak data <strong>for</strong><br />

some small catchments could <strong>not</strong> be tolerated in <strong>the</strong> derivation<br />

of a regional curve, it does appear from <strong>the</strong> Nor<strong>the</strong>rn<br />

North Island example that small catchments could possibly<br />

have been considered in <strong>the</strong> derivation of some of <strong>the</strong><br />

curves.<br />

3.6 Summary<br />

Eight flood frequency regions have been defined <strong>for</strong> New<br />

Zealand, and an average Q/Q vs T curve derived <strong>for</strong> each.<br />

It is suggested that <strong>the</strong>se regional curves can be used to estimate<br />

Qr/Q <strong>for</strong> rural catchments within <strong>the</strong> region concerned<br />

<strong>for</strong> return periods up to 200 years. An exception is<br />

<strong>the</strong> Otago-Southland curve; it is only tentative and should<br />

<strong>not</strong> be extrapolated beyond <strong>the</strong> 100-year return period. For<br />

return periods exceeding <strong>the</strong> recommended upper limit of<br />

<strong>the</strong> regional curve, one of <strong>the</strong> two generalised curves developed<br />

<strong>for</strong> <strong>the</strong> east and <strong>the</strong> west of New Zealand can aid<br />

<strong>the</strong> estimation of Q1/Q. With all <strong>the</strong> curves it is important<br />

that <strong>the</strong>y <strong>are</strong> <strong>not</strong> applied to catchments whose <strong>are</strong>as <strong>are</strong> too<br />

far outside <strong>the</strong> range of <strong>are</strong>as used in <strong>the</strong> derivation of <strong>the</strong><br />

curve concerned. An indication of <strong>the</strong> reliability of a Q1/Q<br />

estimate taken from a curve is provided by standard error<br />

equations, which give values somewhat less than a similar<br />

equation determined by NERC (1975) <strong>for</strong> use with <strong>the</strong> British<br />

Isles curves.<br />

The most <strong>not</strong>able characteristic of <strong>the</strong> curves is that those<br />

<strong>for</strong> <strong>the</strong> east have steeper slopes than those <strong>for</strong> <strong>the</strong> west, reflecting<br />

<strong>the</strong> greater variability in <strong>the</strong> annual flood peak data<br />

<strong>for</strong> <strong>the</strong> eastern catchments. The same characteristic is evident<br />

in <strong>the</strong> British Isles regional curves. Also of <strong>not</strong>e is that<br />

<strong>the</strong> two New Zealand generalised curves resemble <strong>the</strong>ir<br />

Great Britain counterparts (Stevens and Lynn 1978).<br />

52<br />

Water & soil technical publication no. 20 (1982)


4 Estimation of mean annual flood<br />

4.1 lntroduction<br />

This chapter covers estimation of <strong>the</strong> mean annual flood<br />

1Q¡ tor sites with no flood record. A procedure is presented<br />

which estimates Q as a function of catchment and climatic<br />

characteristics. Where necessary, Q so estimated is designated<br />

Q "s<br />

distinguishing it from Q o5, calculated from<br />

observed flood records.<br />

The flood records used to derive <strong>the</strong> procedure were selected<br />

as outlined below. This selection was based on <strong>the</strong><br />

length of record, <strong>the</strong> size and type of catchment, and <strong>the</strong><br />

quality of record. Selection of <strong>the</strong> characteristics and <strong>the</strong>ir<br />

abstraction from maps and o<strong>the</strong>r published in<strong>for</strong>mation <strong>are</strong><br />

detailed. It was found that improved estimates of Q were<br />

obtained by <strong>for</strong>ming regions. Delineation of <strong>the</strong>se regions<br />

and obvious boundary problems <strong>are</strong> discussed. Catchments<br />

with records <strong>not</strong> fitting into regional patterns <strong>are</strong> identified<br />

and reasons <strong>for</strong> some anomalies <strong>are</strong> suggested. Best fitting<br />

equations <strong>are</strong> summarised with accompanyinig standard error<br />

estimates.<br />

4.2 Proposed method<br />

The relation between Q and measurable catchment characteristics<br />

was assumed to have <strong>the</strong> fo¡m of<br />

Q: a X' b'X, b' 4t<br />

where a, b,, b, ... <strong>are</strong> constants to be estimated and X', X,<br />

... <strong>are</strong> characteristics of <strong>the</strong> catchment having an influence<br />

on <strong>the</strong> mean annual flood.<br />

After taking logarithms, log a, b,, b, ... were estimated<br />

by standard multiple linear regression. There is good precedent<br />

in <strong>the</strong> literature <strong>for</strong> this type of multiplicative function<br />

(NERC 1975; Benson 1962b); thus o<strong>the</strong>r possible <strong>for</strong>ms<br />

were <strong>not</strong> investigated.<br />

4.3 Records used<br />

Catchments used in <strong>the</strong> study were selected from those<br />

having an <strong>are</strong>a within <strong>the</strong> range 0.22 to I 100 km'. The three<br />

smallest catchments have <strong>are</strong>as 0.22, 0.52 and 2.18 km'.<br />

Smaller catchments were excluded because flood discharges<br />

from very small (often ephemeral) catchments result from<br />

short duration rainfalls and <strong>are</strong> sensitive to infiltration and<br />

vegetation effects (Campbell 1962). The upper bound was<br />

imposed because estimates of mean rainfalls over large catchments<br />

can be unrealistic. In any case, since most large<br />

catchments in New Zealand <strong>are</strong> monitored, most ungauged<br />

catchment estimation problems occur in relatively small<br />

catchments.<br />

Records <strong>for</strong> catchments with significant impoundments<br />

or diversions were <strong>not</strong> used. This meant excluding a number<br />

of lake outflow records. However, outflows from all<br />

larger lakes <strong>are</strong> monitored <strong>for</strong> hydroelectric purposes and<br />

flood estimates <strong>for</strong> <strong>the</strong>m <strong>are</strong> best derived directly from<br />

<strong>the</strong>se records. Urban catchments, and o<strong>the</strong>rs with <strong>are</strong>as of<br />

limestone country, or permanent snowfields or glaciers,<br />

were also excluded.<br />

Four years of re_cord were considered <strong>the</strong> minimum necessary<br />

to estimate Qou, md with <strong>the</strong> above constraints, data<br />

<strong>for</strong> 63 South Island (Figure 4. I and Table 4.1) and 97 North<br />

Island (Figure 4.2 atd Table 4.2) catchments were assembled<br />

<strong>for</strong> <strong>the</strong> study. The distribution of <strong>the</strong>se catchments<br />

throughout <strong>the</strong> country was reasonable, except that <strong>the</strong>re<br />

were too few in <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> South Island'<br />

Tables 4.I and 4.2 contain <strong>the</strong> data used in this chapter.<br />

<strong>These</strong> <strong>are</strong> <strong>the</strong> mean annual flood Qo6, , <strong>the</strong> coefficient of<br />

variation Cu of annual maxima, <strong>the</strong> length of record, catchment<br />

<strong>are</strong>a, and o<strong>the</strong>r catchment and climatic characteristics.<br />

Generally, flow data <strong>are</strong> complete to <strong>the</strong> 1976 or 1977<br />

calendar year.<br />

4.4 Collect¡on of character¡st¡cs<br />

A number of indiLces can be used as characteristics X,, X,<br />

... in Equation 4.1. However, if <strong>the</strong> relation to be developed<br />

is to be useful as a design procedure, <strong>the</strong> cha¡acteristics<br />

must be rea'dily obtainable from published in<strong>for</strong>mation<br />

such as maps, climate summaries, etc. The characteristics<br />

can be subdivided into two groups; those which<br />

cha¡acterise <strong>the</strong> phvsical catchment, and those representing<br />

<strong>the</strong> climate over <strong>the</strong> catchment. The physical characteristics<br />

included <strong>the</strong> size arnd shape of <strong>the</strong> catchment and <strong>the</strong> embedded<br />

stream channel, <strong>the</strong> vegetation, and <strong>the</strong> hydraulic<br />

properties of <strong>the</strong> soil. The NZMS I (l:63360) map series is<br />

<strong>the</strong> most detailed map series giving a national coverage and<br />

was used to providr: measurements of <strong>the</strong> <strong>are</strong>a, mean elevation,<br />

channel density, main channel length and slope, and<br />

percent <strong>for</strong>est cover. Hydraulic properties of <strong>the</strong> soil (e.g.<br />

permeability) <strong>are</strong> less easily defined; <strong>the</strong>se depend on soil<br />

type, surface slope, vegetation rooting characteristics and<br />

underlying geology, and vary widely over most catchments.<br />

Much of this latter in<strong>for</strong>mation is now available nationwide<br />

from <strong>the</strong> National Land Resource Inventory Iùy'orksheets<br />

which <strong>are</strong> plotted at <strong>the</strong> same scale as <strong>the</strong> NZMS I map<br />

series, but this was <strong>not</strong> available when <strong>the</strong> present study was<br />

undertaken.<br />

Climatic data available in Meteorological Service reports<br />

and maps include rnean annual rainfall, rainfall intensity of<br />

specified probability, distance of <strong>the</strong> catchment from important<br />

meteorological barriers, and measures related to<br />

<strong>the</strong> time and rate of snowmelt. Snowmelt is generally <strong>not</strong> an<br />

important flood-producing mechanism in New Zealand and<br />

in this study two rainfall parameters were used: mean annual<br />

rainfall <strong>for</strong> <strong>the</strong> catchment, and <strong>the</strong> 2-year return<br />

period 24-hour duration rainfall estimated <strong>for</strong> <strong>the</strong> catchment.<br />

Thus <strong>the</strong> following characteristics were estimated <strong>for</strong><br />

each catchment:<br />

Catchment <strong>are</strong>a.<br />

Water & soil technical publication no. 20 (1982)<br />

(i)<br />

(it) Main channel length.<br />

(iii) Main charurel slope.<br />

(iv) Mean catchment elevation.<br />

(v) Stream frequency.<br />

(vi) Percentagecatchment<strong>for</strong>ested.<br />

(vii) Mean annual rainfall over catchment.<br />

(viil) 2-year return period, 24-hour duration rainfall.<br />

The first six of <strong>the</strong>se <strong>are</strong> physical and vegetation characteristics<br />

which were extracted from <strong>the</strong> NZMS I maps.<br />

Although recent nraps in this series <strong>are</strong> photogrammetric<br />

maps, earlier maps <strong>are</strong> based on survey records and plane<br />

table sketch surveys. O<strong>the</strong>rs <strong>are</strong> provisional without contours,<br />

so channel slope and mean elevation could <strong>not</strong> be defined<br />

<strong>for</strong> every catchment. The considerable variation from<br />

one map to a<strong>not</strong>hcr in <strong>the</strong> definition of streams meant that<br />

estimates of <strong>the</strong> sl:ream frequency, that is, <strong>the</strong> number of<br />

stream junctions lper unit <strong>are</strong>a, were unlikely to be consistent<br />

from one <strong>are</strong>a to a<strong>not</strong>her. It was felt important to<br />

utilise all available in<strong>for</strong>mation so stream frequency was included<br />

but, in <strong>the</strong> event, it did <strong>not</strong> assist in explaining <strong>the</strong><br />

variation of Q between catchàents'<br />

The procedures <strong>for</strong> estimating <strong>the</strong> physical characteristics<br />

which were adapted from Benson (1962b, 1964) and Newsom<br />

(1975), and acronyms by which <strong>the</strong>se cha¡acteristics<br />

will subsequently be known <strong>are</strong> given here.<br />

(i)<br />

Catchment <strong>are</strong>a: (AREA) (km')<br />

Catchment boundaries were drawn on maps and <strong>the</strong><br />

enclosed at'ea measured by planimeter. <strong>These</strong> <strong>are</strong>as<br />

<strong>are</strong> normally available with recording station in<strong>for</strong>mation.<br />

53


Table 4.1 South lsland catchment characteristics.<br />

1rì<br />

11<br />

2It<br />

2(¡<br />

27<br />

28<br />

21<br />

30<br />

51<br />

32<br />

51<br />

Jlr<br />

55<br />

l5<br />

37<br />

38<br />

lq<br />

h0<br />

41<br />

lr2<br />

ll'¡<br />

qq<br />

b5<br />

46<br />

lr7<br />

q8<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

6l<br />

o ^.-<br />

STATIoN tm{il<br />

5?tì16 tlÏ-.nni<br />

5 7008 l¡37.00<br />

57106 6S.20<br />

5750! 83t.00<br />

59001 77.nr\<br />

6fìl 10 1161 .74<br />

601tli 260.00<br />

6fì1I6 59.f10<br />

62!.0t 133.f'n<br />

62104 -1.6.80<br />

621rì5 187.fllì<br />

64t01 524.n0<br />

6460C 89.2fì<br />

64610 1I.30<br />

651n4 540.00<br />

65q02 56.n0<br />

66409 0,27<br />

6660J 1.05<br />

66604 1,42<br />

67601 lt.?0<br />

6Î001 35.00<br />

68806 108.00<br />

69506 260.00<br />

696I lr 25 0 .00<br />

61 618 I 20 .00<br />

61621 72,7i<br />

717î2 tJ.0n<br />

7!LO3 11 2. 70<br />

71106 91.60<br />

71109 100,I0<br />

71116 227 .nn<br />

7lr2t 67.5tì<br />

71f22 7,Jtt<br />

lLlz? 16.10<br />

711 29 2b . nn<br />

711t5 6l .fio<br />

7!702 148.0n<br />

73501 37,80<br />

7rr5l,h 55,2rì<br />

TttSItE 22.F,rt<br />

74t5i 2.87<br />

7tt7Ol ,1-0.00<br />

75259 22.20<br />

7527 6 ll5 6. 0 n<br />

7850-\ t0.00<br />

73625 46.60<br />

78801 5.09<br />

80201 18.70<br />

th701 5h9,00<br />

86802 3725.00<br />

906 0tt 2132.0î<br />

90605 27 .iî<br />

91101 1588.00<br />

911102 lq.10<br />

9!lr0h 692.00<br />

91407 119tì.00<br />

9!206 1680.00<br />

91207 460.00<br />

9t'2on 7rB.no<br />

932u 974.00<br />

91212 196.00<br />

932t7 181.00<br />

94502 1 251 .flo<br />

cv<br />

0.1n<br />

0.85<br />

0.79<br />

0.tfj<br />

o.7n<br />

o.lrb<br />

0,¡0<br />

0 .10<br />

0.55<br />

0 .95<br />

n.lr8<br />

0.70<br />

0.27<br />

| ,17<br />

ll.t!7<br />

0.70<br />

1.54<br />

1.1i<br />

I .01<br />

0.fi8<br />

0.5'r<br />

0.71r<br />

0.75<br />

0¡98<br />

r.l5<br />

0.61<br />

0.81<br />

0.77<br />

0.58<br />

0.1 I<br />

n.5lr<br />

I .14<br />

o.70<br />

0.h7<br />

0,11<br />

n.75<br />

1.nt<br />

0.1 1<br />

n,56<br />

0.59<br />

r) .96<br />

0.30<br />

o.26<br />

0.lrl<br />

0.1)0<br />

0.81<br />

n.78<br />

o .2P,<br />

0.!.6<br />

0.10<br />

o.2tl<br />

0 .15<br />

o.2t<br />

o .27<br />

0.r4<br />

0.40<br />

0.28<br />

0.59<br />

o .?.7<br />

0.20<br />

o.32<br />

l-ength<br />

Record<br />

(yrs)<br />

8<br />

6<br />

15<br />

5<br />

16<br />

25<br />

11<br />

18<br />

5<br />

73<br />

t2<br />

10<br />

3<br />

10<br />

It<br />

5<br />

t2<br />

I2<br />

6<br />

16<br />

I<br />

40<br />

lll<br />

10<br />

5<br />

1l<br />

(;<br />

6<br />

L2<br />

7<br />

6<br />

q<br />

11<br />

10<br />

6<br />

72<br />

10<br />

10<br />

L3<br />

7<br />

7<br />

11<br />

7<br />

It<br />

ll<br />

7<br />

9<br />

6<br />

9<br />

1l<br />

11<br />

13<br />

IJ<br />

16<br />

11<br />

5<br />

AREA MARAIN 1224 LENGTH 51O85<br />

{km'¿) {mm) (mm} (kml (m/m)<br />

5lEû0 287r !.10 16.50 0.0198<br />

161.00 2100 Rl 25.10 0.(tr00<br />

B1 .60 1140 81 20,50 0.0134<br />

1164.00 1500 124 16.50 0. CI79<br />

_l1,fta 7620 9t 6.50 0,n210<br />

76b.00 14Lo 3t G1.so oi'riis<br />

505.00 L6L0 69 4C.00 0.0118<br />

192.00 24!0 69 29.40 0.0140<br />

q9?.00 1570 76 68.90 0.0092<br />

2n.00 7200 76 9.rlo 0.0600<br />

440.00 L720 7l) st.tO 0.0097<br />

464 .00 L23\ Lt2 49. q0 0.0109<br />

7r,.60 4300 7ß L7.tt} 0.0290<br />

41.60 030 74 10,50 0.0120<br />

1070.00 2000 0t 76.10 o;00i2<br />

tlz.2o 7\0 77 li,40 0.0270<br />

o.22 L4C0 8l O.lO 0.20r¡0<br />

?.13 1GO 63 2.50 0.1280<br />

1,2t |to GJ 2.70 0.1ir0<br />

5.20 l.rr00 !.04 Z.trO 0.1t¡00<br />

16r; .0 0 1100 6 9 10 .7 0 O, (07 9<br />

q?1.q0 L35o 6c 54.90 0.0140<br />

t20.00 1010 80 t,6.BO o.oijO<br />

456.00 1075 61 r¡6.40 0.0262<br />

41 2 .0 0 777 61 tti .ZO 0 .010 6<br />

2?.\9 800 52 7.eo UNDEF<br />

78.70 ejo q1 2t: (o úi¡óEÊ<br />

899.00 720 48 62.30 uilDEF<br />

150.00 s70 q1 29.50 0.0070<br />

23,7i lr30 3\ 9.10 0.0470<br />

11.40 tz(J bi 10.10 0.0160<br />

122.00 [00 J5 25.t0 0.0420<br />

108C .00 7022 75 06.00 0.005 6<br />

1!!.90 1010 rrr 2e.10 0.0020<br />

109.00 10t0 51 17.10 0.01ió<br />

36.80 10r!0 b6 17.!.0 0.0030<br />

, u 1.90 lt t0 66 L7 .70 0,0070<br />

155.00 6520 520 16,30 o:fì'riõ<br />

842.00 6920 tO2 7rr,00 0.0168<br />

152.00 731,0 ttl ,1.40 lt.0290<br />

3.99 1500 18s 5.20 0.0560<br />

99q.00 5700 226 65.90 0.0067<br />

_lq.qq 27\3 104 8.90 0.0190<br />

642.00 4010 81 66.s0 o.noõé<br />

790.00 l¡1r70 8l 62.50 0.OOBO<br />

99e.00 3580 81 69,50 0.0082<br />

254.00 2520 81 15.60 o,ollo<br />

980.00 2990 64 95.00 0.0091<br />

E:7.SS i250 64 75.20 0.0120<br />

-2!!.gg 1610 6b<br />

1e8.00<br />

2t.Eo ö:diii<br />

t070 64 th.1o 0:ótÉ,,<br />

694.00 \720 LS2 116-10 0.0170<br />

FOREST<br />

{%)<br />

4t<br />

4t<br />

62<br />

57<br />

22<br />

7<br />

19<br />

2<br />

0<br />

1<br />

2<br />

5<br />

25<br />

1<br />

32<br />

0<br />

0<br />

0<br />

9<br />

0<br />

11<br />

0<br />

0<br />

0<br />

1<br />

0<br />

0<br />

0<br />

0<br />

0<br />

3<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

29<br />

0<br />

0<br />

0<br />

8<br />

0<br />

2<br />

0<br />

0<br />

99<br />

26<br />

49<br />

2f<br />

78<br />

56<br />

16<br />

76<br />

58<br />

76<br />

77<br />

7t<br />

72<br />

76<br />

67<br />

77<br />

STMFCY ELEV<br />

(km-'z) (m)<br />

0.16 Ln'<br />

0.48 1019<br />

0.89 52tt<br />

0 .71 587<br />

0.80 594<br />

0.87 785<br />

0 .2\ 1 qll<br />

0,21 t392<br />

0.62 1510<br />

0.02 11q0<br />

0,r5 1200<br />

0,72 500<br />

0,27 rb20<br />

0.41 5t5<br />

0. b6 960<br />

0.55 UNDEF<br />

0 .0 9¡¡5<br />

0.0 2E'1<br />

0.0 r18<br />

1 .60 t 0ll<br />

0.78 647<br />

0 .1¡r 100O<br />

0,51 .820<br />

o.ql 917<br />

0 .25 5lr0<br />

].10 UNDEF<br />

1.80 UNDEF<br />

O. 85 UNDEF<br />

l.tt 827<br />

L .72 1128<br />

0.85 12b0<br />

0.46 l0llr<br />

0.11 840<br />

o.25 970<br />

o.22 lt85<br />

0 .3t 1l¡90<br />

1 . 1O UI,¡DE F<br />

0. t5 288<br />

1 ,71 83t<br />

r.r1 913<br />

2 .62 3lr 2<br />

5. (l) L75<br />

L.3t 1t68<br />

0.28 tt88<br />

0,08 50<br />

1 .05 38'<br />

0.0, 69<br />

o.z\ 162<br />

0.15 8b0<br />

0,¡2 1050<br />

0.56 1150<br />

0.0 2\0<br />

0 . 74 8l+t<br />

1.08 L\2<br />

0.17 7 20<br />

0.21 710<br />

0.t3 610<br />

0 .26 860<br />

tr zE 'TtÌ<br />

0.25 971¡<br />

0.50 679<br />

0.2[ 1168<br />

0.50 700<br />

(ii)<br />

(iii)<br />

(iv)<br />

Chsnnel length: (LENGTH) (km)<br />

The main channel of <strong>the</strong> stream was defined and extended<br />

to <strong>the</strong> catchment divide, and its length meas_<br />

ured with an opisometer.<br />

Channel slope: (51085) (m/m)<br />

Two points were chosen at l0 per cent and g5 per<br />

cent of <strong>the</strong> channel length from <strong>the</strong> outlet. Channel<br />

slope was determined by dividing <strong>the</strong>ir difference in<br />

elevation by % of <strong>the</strong> channel length.<br />

Catchment mesn eleyrtion: (ELEV) (m)<br />

A grid was overlaid on <strong>the</strong> map, <strong>the</strong> grid size being<br />

selected such that at least 20 points lay within <strong>the</strong><br />

catchment boundary. The elevation of each point<br />

within <strong>the</strong> <strong>are</strong>a was <strong>not</strong>ed and <strong>the</strong> mean of <strong>the</strong>se<br />

elevations was taken as <strong>the</strong> catchment mean elevation.<br />

(v) Stream frequency: (STMFCY) (tns/km,)<br />

The number ofjunctions <strong>for</strong> all stream channels de_<br />

fined on <strong>the</strong> catchment map was counted and expressed<br />

as <strong>the</strong> number per unit <strong>are</strong>a.<br />

(vi) Forest cover: (FOREST) (Vo)<br />

The <strong>are</strong>a of catchment defined as <strong>for</strong>est on <strong>the</strong><br />

NZMS I maps was measured and expressed as a percentage<br />

of <strong>the</strong> total <strong>are</strong>a.<br />

54<br />

(vii¡ Me¡n annual rainfall: (MARAIN) (mm)<br />

Mean annual rainfall <strong>for</strong> <strong>the</strong> catchment was estimated<br />

from records <strong>for</strong> rainfall stations within and<br />

adjacent to it. Where catchments had no such rainfall<br />

records, mean values were obtained by planimetry<br />

from l:500 000 isohyetal maps of l94l-1.} annual<br />

rainfall normals (NZ Met. Ser. (1977) ..Mean<br />

annual rainfall maps (1941-70),' unpublished). In<br />

mountainous <strong>are</strong>as having few raingauges and large<br />

rainfall gradients, <strong>the</strong> isohyets <strong>are</strong> believed to indicate<br />

only general trends and do <strong>not</strong> provide accurate<br />

estimates of catchment rainfall, particularly in <strong>the</strong><br />

catchments draining <strong>the</strong> Main Divide of <strong>the</strong><br />

Sou<strong>the</strong>rn Alps.<br />

(vüi) Rainf¡ll intensity: (1224) (mm)<br />

At <strong>the</strong> time of <strong>the</strong> study <strong>the</strong> most recent source of<br />

published rainfall intensity data <strong>for</strong> New Zealand<br />

was Robertson (1963). This provides frequency analyses<br />

of rainfall intensity in<strong>for</strong>mation available in<br />

<strong>the</strong> early 1960's, using data <strong>for</strong> 46 recording rainfall<br />

stations and 468 daily-read stations. As <strong>the</strong>re were<br />

relatively few records from recording gauges available<br />

to provide short period rainfall data, <strong>the</strong> <strong>are</strong>al<br />

extrapolation of this in<strong>for</strong>mation to catchments<br />

remote from gauges was considered unwise. It was<br />

Water & soil technical publication no. 20 (1982)


Cobb.<br />

5291ó '\<br />

Stonley Bkr \<br />

57011. \<br />

Moluckor \ 7<br />

57008 '. ¡.<br />

rWo i¡oo<br />

'P7so2<br />

I<br />

I<br />

I<br />

lnonoohuor \ \<br />

93266 'r \'<br />

liåî";--- )-l<br />

lnonoohuo- \<br />

932Õ7 -:-<br />

er96iyt- )<br />

Eîidt" tn--<br />

Toromokou<br />

9lrol --:<br />

Butchers Ck :<br />

90ó05 \<br />

Hokitiko:<br />

?9ó04 \:<br />

-/<br />

óó4O9 Hur Ck--<br />

71.129 torksr - :<br />

Fiï!Ë'" t'., 'r_ f<br />

- Io-llie. '. \<br />

7t135 \.<br />

ffiåä'"n..<br />

"...!<br />

'r'<br />

I t 59003<br />

\ao,r,no<br />

'<br />

( \ óono'<br />

twoi¡ou<br />

\ óoìl¡<br />

\ \wo¡rou<br />

,- r óOlló<br />

r \. rConwoy<br />

\. ó4301-<br />

\ \<br />

'Achoron acha¡an<br />

\ ó2103<br />

I I \Sronton<br />

i r \ ó4ólo<br />

ì r i r'Áls9re ¡Ribblc<br />

'-<br />

ì !¡ ó2104<br />

\ L-Clo.cnce<br />

\ ó2105<br />

-Weko Ck<br />

t\- v¿ 6s902 ava<br />

*, -- coshme¡e<br />

- óóó03<br />

- sHoon Hov<br />

\ \- óóól 66601<br />

\ s.r*y.^R'vi#Éi<br />

Srh<br />

lwo¡hooo¡<br />

Rowollonburn /<br />

80201 \<br />

e ',<br />

\ wo¡hooo i<br />

78sOc<br />

- gå3g5'<br />

Fþure 4,1 Location of <strong>the</strong> South lsland catchments.<br />

Water & soil technical publication no. 20 (1982)<br />

55


I<br />

2<br />

t<br />

l¡<br />

5<br />

5<br />

7<br />

I<br />

9<br />

l0<br />

t1<br />

,12<br />

I5<br />

1{<br />

l5<br />

l6 t7<br />

18<br />

19<br />

20<br />

2t<br />

22<br />

23<br />

2lt<br />

25<br />

26<br />

27<br />

28<br />

29<br />

t0<br />

t1 t2<br />

t,<br />

5\<br />

t5<br />

56<br />

,7<br />

t8<br />

39<br />

¡0<br />

¡1 tt2<br />

Irt<br />

4h<br />

Ir5<br />

It5<br />

47<br />

|l8<br />

It9<br />

50<br />

51<br />

52<br />

51<br />

5lr<br />

55<br />

56<br />

s7<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

6lr<br />

65<br />

66<br />

57<br />

68<br />

69<br />

70<br />

7t<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

8t<br />

82<br />

It<br />

84<br />

fì5<br />

86<br />

87<br />

B8<br />

89<br />

90<br />

91<br />

92<br />

g3<br />

fth<br />

.,5<br />

96<br />

97<br />

TaHe 4.2 NoÉh lsland catchment characteristics.<br />

_<br />

L€ngrth<br />

065¡ ^ Roco¡d AREA MARATN 1224 LENGTH s1085<br />

STATION lm¡s-r) (,v lyrs| (kmrl lfnm) (mm) (km) (m/ml<br />

t506 57.80 0.29 10 11.10 2250 105<br />

5819<br />

7.00 0.0260<br />

107.00<br />

11901<br />

0.¡4 10 229.00 1510<br />

83.90 0, l+lr<br />

109 ¡10.10 0.0014<br />

I 12.5 0 19 q0<br />

5809<br />

l2t+ 4.60 0.0091r<br />

63.30 0.67 10 16.20 l7 00<br />

8501<br />

102 7.L0 0.0510<br />

tL.20 0.55 15 t2.70 17 90<br />

s10t<br />

74 8.50 0.0150<br />

q2 .10 0.4s t7 455.00 15 00<br />

9108<br />

69 75.00 0.0010<br />

tl0.00 0.64 L7 528.00 L230<br />

9201¡<br />

71 43.50 0.0020<br />

[92.00 0.28<br />

92QB<br />

t3 t08.00 ztr0 119 ,5 . lr0 0 .0010<br />

t 5. t¡0 1.05 7 7.90 t9 20<br />

9501 519.50 0. r+2<br />

llf 4.00 0.17 20<br />

18 l22.OO 5090<br />

15901<br />

8q 21.80 0.0177<br />

5.06 1.20 6 2.95 15r 0<br />

Ur6l0 20.t0 0.t8<br />

10tl t.80 0,01+50<br />

I 57.00 150 0<br />

Ltt627<br />

86 16.90 0.0100<br />

¡rt.40 o.37 10 69.90 2L20 104 2\.20 0.0170<br />

10528 147.00 0.52 I 179.00 22tt0 108<br />

151r10<br />

31.50 0.01q0<br />

120 .50 O.75<br />

15511<br />

25 53t¡.00 L730 84<br />

t87.00 0.60<br />

55.t0 0.010rr<br />

25 q¡0.00 17 90<br />

l55rl¡<br />

12ì+ l0.2o 0.0130<br />

2.11 0.65 10 2.59 l5 t0<br />

15556<br />

95 2.66 0.0515<br />

218.10 0.46<br />

15901<br />

8 207.00 20¡0<br />

819.00 0,65<br />

lztt 28,70 0.02b3<br />

19t09<br />

19 640.00 217 î 91 50.70 0.0088<br />

14rr.00 0.29 t2 lst.30 1¡0 0<br />

19711<br />

79 21r.10 0.0216<br />

t70 .00 0,65<br />

21601<br />

11 175.t0 llr00 8l 27.tO 0.0158<br />

59.60 0.52<br />

218 05<br />

l0 20 .60 142 I lztt 7.00 0.02!8<br />

45 9.00 o<br />

22802<br />

.52 13 997 .00 22tO<br />

216.00 o.77<br />

99 72 .50 0 .0060<br />

23002<br />

13 25t¡.00 15 01r<br />

501.00 0.64<br />

99 31.60 0.0150<br />

2too5<br />

10 826.00 154 0 92 67.10 0.0070<br />

1,51 0.40<br />

2tl0tt<br />

10 0.52 2605 86 0.50 0.01180<br />

209.00 0.32<br />

2tL06<br />

t3 570.00 1450 9lr 62.10 0.0080<br />

66,30 0.48<br />

21209<br />

t0 259.00 160n 70 t4.60 0,0110<br />

10.50 0.90<br />

232LO<br />

t2 24.10 955<br />

48.70 0.57<br />

66 7.60 0.0086<br />

10 54.q0 t277<br />

2920t<br />

t02 t'.30 0.0040<br />

{29.00 o.27<br />

29224<br />

22 6t7.00 16 60 66 5q.60 0.0080<br />

532.00 0. 28<br />

29211<br />

22 185 .00 \t+7o<br />

156.00<br />

rrl<br />

99<br />

292\2<br />

I<br />

58.00 0.0210<br />

t|t .O0<br />

89.00 0.40 '9<br />

1110 7tt 68.10 0.00t1<br />

58.80 Ir00ll<br />

2921t4<br />

6l+<br />

27.60 0.111<br />

16:70 0.0410<br />

I 56.t0 1090<br />

29250<br />

76<br />

31.70 0.87<br />

15.50 0.0064<br />

7 15.50 18 40<br />

29808<br />

107 5.70 UNoEF<br />

254.00 0 .t2 9 88 .80 2410<br />

29818<br />

99 14.60 0.02110<br />

546.00 0.28<br />

t0516<br />

6 427.00 2700<br />

7.86 0.112 B<br />

79 38.1¡ 0.0050<br />

0.t5 10t n<br />

,180t<br />

69<br />

1027.00 0.15<br />

7.60 0.0102<br />

l8 50r.00 2670<br />

t2so3 539.00 0 . ¡ll<br />

102 ¡9.90 0.0116<br />

32526<br />

22 71t.00 15 r0<br />

719.00 0. l¡0<br />

78 67 . t0 0. 0050<br />

24 266.00 2tt7<br />

12529 262.00 0 . ltg<br />

î 100 65 .20 0. 0060<br />

24 7t lr .00 15 70 6h 5t . l0 0.0010<br />

t25rt b3r.00 0.37 2\ [52.00 1780 8J 55.t0 0.00110<br />

t2565 18¡.00 0.26 10 570.00 12 60 60 92.00 0.0100<br />

32576 5t7.00 0.56 8 bt1.00 15 70 79 56. ¡0 0.0160<br />

12708 522.60 0.t2 10 58t.00 2t 00 76 76.00 0.006t<br />

52721 21.70 0.¡t 7 25.60 t1 l0 52 9.5 0 0.01t9<br />

32712 106. 00 0,35 17 285.00 2260 5l ,t.00 0.0140<br />

32711 182.00 0.]5 5 650.00 178 0 55 70.00 0.0110<br />

,273\ 5 .11 0.16 15.00 I 701 51 8.20 0.0550<br />

t2735 t2.\0 0.67 8 62. [0 920 55 20.90 0.0100<br />

J27t9 18.70 0. b8 t2 47 .70 I 100 52 1t.50 0.0087<br />

,5707 96.5 0 0,19 l0 1192.00 1650 58 51. .00 0.OL72<br />

3t111 240.00 0.35 lt 5t9.00 157 0 69 59.70 0.0168<br />

t1114 lr,18 0.18 9 6t.50 1101 55 15.20 0.0110<br />

StlLs 19.70 0.17<br />

ltll7 t3.20 1568 66 8. 20 0.0b70<br />

25.10<br />

ttt07<br />

0.51 I 21.04 2160<br />

h0.70 0.¡5<br />

7t 20.90 0.0400<br />

11 81.5u 2¡¡00 toz 7.70 0.0901<br />

3tt09 t21.00 0 .26 15 132.00 2220 7t t8.00 0.0326<br />

35tlL 265.00 0.11 15 207.00 219 0 89 60.00 0.0058<br />

35112 350.00 0.69 6 256.00 19 40 7\ 26.90 0.0159<br />

t33t3 268 .00 0 .5 0 15 668 .00 180 0 19 82 .40 0.0018<br />

5t316 259.00 0.24 14 1075.00 7770 74 72.00 0.0049<br />

31320 0.28 L7 181¡.00 1220 t02 2a.L0 0.0519<br />

tt324 '82.00 41.60 o.52 8 tl .00 2592 102 16.00 0.0417<br />

55538 512.00 0.15 I 971.00 2160 8lr 66.!0 0.0172<br />

31t47 125.00 0.20 5 207.00 18t 0 89 5tr.l0 0.0025<br />

50.90 0 .46 10 28 .00 2rt0 90 tq .60 0.0650<br />

'tttt7 ,6001 t8.90 0 .60 f 29.50 23L0 79 25.60 0.01110<br />

19501 572.00 0.29 8 725.00 2280 97 l[0.00 0.0005<br />

10504 175.00 0.12 t2 80.00 ,582 104 28.60 0.0298<br />

39508 (t7.2O 0.51 4 11.t0 1582 104 17.50 0.0580<br />

rl 07 0l 5 .24 0.2t 7 15.60 207 0 74 5.00 0.0280<br />

41601 7.\3 o.52<br />

t+3ttt5<br />

5 9.10 15 90 611 11.60 0.0520<br />

45 .20 î-25 t1 157.00 195 0 81 10.40 0.0502<br />

\1472 21.1 0 0. 61 16 228.00 t270 76 21.60 0.0050<br />

10¡3419 27.60 o.52 73 446.00 1500 66 q1.80 0.0120<br />

1043\27 58.90 0.1 7 14 t7t.oo 1880 72 t7 .3ît 0, 0102<br />

10¡t428 44.90 0.t4 72 210.00 1q00 90 21r.50 0.0100<br />

104tlt5lr 5.68 0.70 I 22.00 1¡t 0 76 11.50 0.0250<br />

1043459 î.82 20 772.00 2270 88 62,80 0.0120<br />

104t461 '65.01 241.01r 0.29 t7. 174.00 2980 89 11.80 0.0187<br />

104tt66 [7.50 0.25 25 88.00 5580 76 b.90 0.1010<br />

11113408 0.01 0.23 7 0.17 16 60 80 0.51 0.1500<br />

Llttt\zz 5 . tio 0.68 6 5.11 2000 66 lù.50 0.0820<br />

7145t+28 4,10 0. 44 B 17 .1¡0 llr 60 66 5.70 0.00llr<br />

\3602 2r.50 1.32 9 17.60 lt60 75 5.70 0.0092<br />

Ir3805 t9.90 0.66 I 52.60 1r4 0 69 18.50 0.0050<br />

45102 t2.70 0.lr8 10 8.00 15 70 109 5.70 0.0t20<br />

¡!6611 153 .00 0 .32 8 116 .00 16 20 117 22.70 0. 0190<br />

46618 4l+7.00 0.46 17 2[6.00 195 0 ll7 26.80 0.0190<br />

Ir6625 221.90 0.28 I 189.00 l5t 0 101 2t .20 0 .0040<br />

\6612 189. lr0 0.52 t7 162.00 lB20 1tl7 20.90 0.0070<br />

46660 9.72 0.t9 L2 2. b8 1540 t00 2.70 0.0210<br />

45662 2.t1 0.r5 r0 0.t9 11r 90 117 0.60 0. 1000<br />

tt7527 41.90 0.98 t2 10.60 I 800 llb 6 .00 0.0102<br />

FOREST STMFCY<br />

(%l (km{}<br />

0 0.90<br />

29 0. 45<br />

¡8 1. E4<br />

6¡ 1.70<br />

100 5. l0<br />

5 0.r1<br />

0 0.50<br />

tt5 2.10<br />

t00 1.t9<br />

82 2.t0<br />

0 2.00<br />

b5 I .00<br />

55 1.50<br />

57 0. 92<br />

95 UNDÊF<br />

89 UNDEF<br />

0 t.50<br />

100 l¡.70<br />

79 UNDEF<br />

O UNDEF<br />

2 1.91r<br />

o 2.13<br />

50 UNOEF<br />

12 UTIDEF<br />

5 0.90<br />

lOO UNDEF<br />

[¡ 0.E0<br />

Irl 0.80<br />

5 UNDEF<br />

o 2.\0<br />

14 0.16<br />

78 0.62<br />

t 1.00<br />

65 0, 49<br />

0 1,00<br />

l0 7.50<br />

q5 1.50<br />

55 L.rl<br />

0 2.10<br />

90 0.58<br />

5 U¡IDEF<br />

51 0. 66<br />

2 UNDEF<br />

t2 0.10<br />

7 0 .116<br />

22 0. lt7<br />

l8 0.59<br />

2 0i98<br />

7 L.1L<br />

5 1,t5<br />

tf 5.50<br />

0 0.69<br />

I 1.15<br />

t5 0.81<br />

2t t.'l<br />

0 0.6t<br />

E7 5 .50<br />

59 0.76<br />

L2 0.96<br />

56 L.77<br />

85 0.96'<br />

51 1.70<br />

28 r.61<br />

27 0.79<br />

E 1.62<br />

0 t.l¡8<br />

ql L.27<br />

58 0.71<br />

0 1 .1r2<br />

tt 0.q6<br />

59 1 .50<br />

2t 1.19<br />

51 0¡62<br />

16 1.10<br />

0 0.55<br />

55 0.65<br />

5 I UNDEF<br />

57 UNDEF<br />

¡t 0,t8<br />

t9 1.10<br />

16 2.45<br />

3L UNNEF<br />

50 2.05<br />

! 2.65<br />

0 2.70<br />

7 0.t2<br />

0.52<br />

0 1.20<br />

6 1.50<br />

57 r.00<br />

llr 1.5t<br />

ll 0.92<br />

16 0 .80<br />

[0 1.50<br />

0,0<br />

0 0.0<br />

8 0. lr7<br />

ELEV<br />

(m)<br />

2.50<br />

tL2<br />

180<br />

16t<br />

zilt<br />

80<br />

86<br />

275<br />

510<br />

3ro<br />

110<br />

t99<br />

lll6<br />

,72<br />

UNDE F<br />

48lt<br />

1t0<br />

660<br />

6q0<br />

450<br />

,20<br />

l¡ ¡r<br />

UNDEF<br />

UNDEF<br />

t92<br />

10 10<br />

1121<br />

965<br />

220<br />

200<br />

,0tr<br />

726<br />

265<br />

672<br />

280<br />

UNDE F<br />

6tr0<br />

t+7\<br />

ztt0<br />

55'<br />

8trI<br />

Ir 66<br />

UNDEF<br />

29r<br />

1.95<br />

568<br />

10 ¡rf<br />

285<br />

11 70<br />

992<br />

119 0<br />

180<br />

2tl<br />

959<br />

680<br />

825<br />

5<br />

970<br />

869<br />

831<br />

392<br />

492<br />

581<br />

474<br />

1108<br />

861<br />

726<br />

t22<br />

111 0<br />

510<br />

286<br />

427<br />

778<br />

280<br />

200<br />

487<br />

4 5l¡<br />

160<br />

527<br />

4lrl<br />

l+60<br />

970<br />

L202<br />

900<br />

610<br />

[00 l0<br />

50<br />

ft<br />

270<br />

t10<br />

t52<br />

155<br />

105<br />

80<br />

100<br />

2t6<br />

Water & soil technical publication no. 20 (1982)<br />

56


Ooohi 17527'<br />

Mongåkohio 46618'-<br />

Koihu 16611" )<br />

Puketuruo 4óóóOl<br />

& Pukewoengo 4óóó2<br />

(z'<br />

,Woiwhiu<br />

a<br />

45 702<br />

,Kouoerongo 93Oì<br />

a 7/ ¡woit- gtol<br />

Pìoko 9l08-<br />

Ohote 1143428- - -<br />

Pokoiwhenuo lO43419- -<br />

\ Te Tohi 1143427-. -<br />

Oteke 4ìó0'l1 \-<br />

& Purukohukohu 'l143408<br />

-Woimono l55l I<br />

,Woimono ì553ó<br />

/'<br />

/ / Woioeko 15901<br />

Popokuro 43803'-<br />

Woiroo 85Ol- -<br />

Woitongi 13602'-<br />

- - -Woiotopu 43172<br />

-whirinok¡ l54lo<br />

--T<br />

- - -Woingoromiq ì97I<br />

- - -Whorekogoe l97O<br />

,1',/<br />

lO43¿59<br />

rL<br />

Y- - - -Tongoriro<br />

:--<br />

- .- --Tohekenui 2lóOl<br />

- --Wongonui<br />

-=ln --_-t<br />

333¡7<br />

- - -Mongolepopo 33324<br />

- - Whokopopo 33320<br />

It-L-<br />

\t-<br />

Mokotuku 33.l17 /<br />

Woipopo 4343* -<br />

Mongokowhoi 4O7O3- -<br />

Tohunootoro 1013128- -<br />

Mongokino 1C,13427-- -<br />

Ongorræ3331ó - -<br />

Mongoroo3334l---<br />

Ohuro 333ì3- - -<br />

Tongorokou 333 I l- -<br />

Woitoro 39501 --;<br />

Mongonui 39504--<br />

Mongonui 39508-- -<br />

Punehu3óOOl - - -<br />

Wongonui 33338- -.<br />

ñeørute 3g312/<br />

Mongonui-o-te-oo 33309/ -.<br />

,'<br />

Mångowhero 33lll/ ./<br />

üu-h""ã*h, 33107/ - -\,<br />

MoungorouPi 32723¿,/t<br />

Tuloenur 32739' /<br />

Rongilowo 32735/<br />

Mongohoo 32526- -<br />

Mcngoloinoko 32531-'<br />

ì,fhonqoehu 29211- -<br />

Oroki 3ì803- -<br />

Monooloroo 33ì15 /<br />

-( j-îftx,t-t-\-<br />

--<br />

--O,rouo 325ó3<br />

-Ti¡oumco 32529<br />

Aliwhokolu 29242<br />

ì,--loueru2923l<br />

\- --Woiohine29221<br />

/ -: -\Hutt 29808<br />

-:- --Hurt 29818<br />

-- - Ruohokopotuno 2'?250<br />

'rv\iil ck 3o5tó<br />

---<br />

Rro-oho-ngo2.92Ol<br />

Êigutø 4.2 Location of <strong>the</strong> North lsland catchments'<br />

Water & soil technical publication no. 20 (1982)<br />

51


decided instead to use estimates of <strong>the</strong> 24-hour dura_<br />

tion 2-year return period rainfall derived from <strong>the</strong><br />

more extensive net$,ork of daily_read gauges, since<br />

<strong>the</strong>se could be extrapolated to remotè catchments<br />

with greater confidence.<br />

The use,of a 2-year recurrence interval seemed ap_<br />

propriate because <strong>the</strong> mean annual flood has a rècurrence<br />

interval only slightly greater than 2 years,<br />

2.33 years if <strong>the</strong> annual ma,rimã con<strong>for</strong>m to <strong>the</strong> extreme<br />

value Type I (Gumbel) distribution. Estimates<br />

of this parameter (without <strong>the</strong> application of an<br />

<strong>are</strong>al reduction factor) were made from Robertson's<br />

data <strong>for</strong> each catchment using rainfall stations with_<br />

in, or near to, <strong>the</strong> catchment. <strong>These</strong> estimates were<br />

<strong>not</strong> adjusted <strong>for</strong> effects of altitude.<br />

<strong>These</strong> eight characteristics were estimated <strong>for</strong> each catchment<br />

(Table 4.1 and 4.2 <strong>for</strong> <strong>the</strong> SI and NI respectively). For<br />

those catchments <strong>not</strong> contoured, channel slópe and mean<br />

elevation were undefined; <strong>the</strong>re were 5 such bouth Island<br />

catchments and 7 North Island catchments.<br />

4.5 Analys¡s of South lsland data<br />

4.5.1 Preliminary examinat¡on of data<br />

table shows that <strong>the</strong> highest correlations of Q <strong>are</strong> with<br />

AREA and LENGTH, but that signifìcant correlations also<br />

occur with all o<strong>the</strong>r characteristics except STMFCy. Fur<strong>the</strong>r<br />

strong correlations occur between AREA and<br />

LENGTH, between MARAIN andl2}4andalso MARAIN<br />

and FOREST. <strong>These</strong> <strong>are</strong> all physically plausible. Significant<br />

negative correlations occur between Sl0B5 and AREA and<br />

<strong>not</strong> well determined.<br />

The results of applying a, stepwise multiple regression<br />

program to <strong>the</strong> data <strong>are</strong> summarised in Table 4.4. The best<br />

fit equation is that involving <strong>the</strong> three variables AREA,<br />

I2A and FOREST and is<br />

Q = 4.40 x l0{ AREAÙ.¿'12241.27 (l +FOREST/lcf|/)t 6'<br />

.....4.3<br />

The coefficient of determination indicates that glgo of<br />

of errors of estimate is given in section 4.10.<br />

quently. For <strong>the</strong> present <strong>the</strong> data <strong>are</strong> considered as one.<br />

with AREA (Figure 4.3),<br />

rs of magnitude <strong>for</strong> Q <strong>for</strong><br />

approximate equation <strong>for</strong><br />

south of <strong>the</strong> island, and strongly positive residuals on <strong>the</strong><br />

Q = I.9SAREAo eo 42<br />

where Q is in_m3ls. The linear correlation coefficient (R)<br />

between loe (Q) and log (AREA) is 0.85, and <strong>the</strong> stand;rá<br />

error-of_estimate of logarithms of Q is 0.45. Although this<br />

correlation is highly significant, <strong>the</strong> standard errorls too<br />

large <strong>for</strong> Equation 4.2 to be of much value, an obvious con_<br />

clusion when <strong>the</strong> scatter <strong>for</strong> Q <strong>for</strong> any given AREA is con_<br />

sidered (Figure 4.3). Equation 4.2 demonstrates two im-<br />

this systematic residual variation may be due to variation in<br />

<strong>the</strong> precipitation regime across <strong>the</strong> island <strong>not</strong> fully represented<br />

by <strong>the</strong> estimates of 1221.<br />

4.5.2 Development of tdal rcgionalest¡mators<br />

into four regions is<br />

of <strong>the</strong> high rainfall<br />

<strong>the</strong> Sou<strong>the</strong>rn Alps is<br />

des <strong>the</strong> Nelson <strong>are</strong>a<br />

with <strong>the</strong> \Vest Coast. The division of <strong>the</strong> East Coast is more<br />

tenuous, but is supported by <strong>the</strong> consistent underestimation<br />

of Q <strong>for</strong> <strong>the</strong> small catchments along <strong>the</strong> coast (Figure 4.4),<br />

and by <strong>the</strong> knowledge that some of <strong>the</strong> morè intenie<br />

from cyclonic<br />

inland. Specia<br />

third inland<br />

part comprises<br />

T¡He 4.3 Correlation matrix <strong>for</strong> logs of South lsland characteristics.<br />

MARAIN STMFCY s1 085. ELEV*<br />

o<br />

AREA<br />

MARAIN<br />

1224<br />

LENGTH<br />

FOREST<br />

STMFCY<br />

s1085.<br />

ELEV'<br />

l.OOO<br />

.846<br />

.612<br />

.448<br />

.799<br />

.464<br />

-.078<br />

-.473<br />

.383<br />

1.OO0<br />

.2e3<br />

.045<br />

.978<br />

.163<br />

,010<br />

-.673<br />

.460<br />

l.OOO<br />

.753<br />

.228<br />

.647<br />

-.390<br />

-.o51<br />

.ioz<br />

l.OOO<br />

.o23<br />

.424<br />

-.314<br />

.181<br />

.o98<br />

l.OOO<br />

.155<br />

.oo7<br />

-.733<br />

.424<br />

l.OOO<br />

-.259<br />

-.134<br />

-.092<br />

l.OOO<br />

-,049<br />

-.o47<br />

l.OOO<br />

.10,4<br />

1.OO0<br />

I lncomplete Sample<br />

58<br />

Water & soil technical publication no. 20 (1982)


I ]n<br />

e<br />

d qgoinst CATCHMENT AREA <strong>for</strong> South Istond x<br />

64<br />

x+O<br />

¡XOs<br />

Xt<br />

x<br />

o<br />

74314 Toieri<br />

1é<br />

x V,/est CoqsT<br />

+ Eqst Coost<br />

O Intond Morlborough/<br />

Conterbury<br />

O Mqckenzie, Inlqnd Ofogo,<br />

Southlond<br />

10<br />

Iotch me n I<br />

100<br />

A¡e u (kmz)<br />

1000 10000<br />

Fþure 4.3 O vs AREA, South lsland catchments.<br />

<strong>the</strong> inland hill country of Marlborough and Canterbury.<br />

The sou<strong>the</strong>rn part includes <strong>the</strong> Waitaki River basin, inland<br />

Otago and most of Southland. This division is made on <strong>the</strong><br />

basis that with <strong>the</strong> exception of coastal Southland, <strong>the</strong><br />

sou<strong>the</strong>rn part is a low rainfall <strong>are</strong>a <strong>for</strong> which Q rvas overestimated<br />

by <strong>the</strong> equation.<br />

The regional division is evident in Figure 4.3. When <strong>the</strong><br />

catchments were identified according to <strong>the</strong> region including<br />

<strong>the</strong>m, it was found that data <strong>for</strong> West and East Coast<br />

regions tend to lie in an upper band. Those <strong>for</strong> Inland Ma¡lborough/Canterbury<br />

tend to lie in a central band, whereas<br />

those <strong>for</strong> Inland Otago and Southland tend to lie in a lower<br />

band.<br />

The data were grouped according to <strong>the</strong>se regions and regional<br />

stepwise regressions were calculated (Table 4.5). In<br />

all cases AREA is <strong>the</strong> most important variable, although in<br />

all regions additional variation in log Q is explained by<br />

o<strong>the</strong>r variables. In <strong>the</strong> West Coast, and Inland Otago and<br />

Southland, rainfall intensity (I2Z)'signifïcantly improves<br />

<strong>the</strong> fit of <strong>the</strong> estimating equations.<br />

For <strong>the</strong> East Coast, MARAIN is <strong>the</strong> second most important<br />

variable. The reason this is more important than I2Z is<br />

<strong>the</strong>re<strong>for</strong>e preferred.<br />

Water & soil technical publication no. 20 (1982)<br />

<strong>not</strong> obvious. It naay be that, because <strong>the</strong> East Coast catchments<br />

<strong>are</strong> relatively small (<strong>the</strong> largest, Station 64301 is<br />

464 km'z), <strong>the</strong> 2-hour storm intensity may be more important<br />

than <strong>the</strong> Z4-hour figure used. However, such in<strong>for</strong>mation<br />

was <strong>not</strong> generally available. The appropriateness of<br />

annual rainfall <strong>for</strong> estimating a flood parameter is open to<br />

question, but it is supported by Figure 4.5. This figure<br />

shows that, with <strong>the</strong> exception of Station 65Ð2, <strong>the</strong>re appearsto<br />

be a linear relationship between log MARAIN and<br />

<strong>the</strong> residual of log Q, after <strong>the</strong> effect of AREA is removed.<br />

This is <strong>the</strong> justification <strong>for</strong> including MARAIN in <strong>the</strong> estimating<br />

equation.<br />

For Inland Marlborough/Canterbury FOREST appears<br />

as significant in <strong>the</strong> best-fit equation. However, this is a little<br />

deceptive since only 4 of <strong>the</strong> 15 of <strong>the</strong> catchments in this<br />

region <strong>are</strong> more than l09o <strong>for</strong>ested and <strong>the</strong> ma¡


\Í<br />

l{<br />

I<br />

t,<br />

ìj(<br />

Fþurc 4.4 Distribution of residuals from Equation 4,3.<br />

Water & soil technical publication no. 20 (1982)<br />

60


3.1<br />

z<br />

Í ¡.0<br />

=<br />

t:'<br />

o<br />

2-9<br />

2-8<br />

2.7 --4 .2<br />

'l+<br />

.ó<br />

(roc õ-.sz LoG AREA)<br />

Figure 4.5 Plot of log MARAIN vs (bg õ -.92 log AREA) <strong>for</strong> East Coast Region.<br />

Table 4.4 Stepwise regressions <strong>for</strong> all South lsland data,<br />

No, Var. Name<br />

Coef<br />

br<br />

se<br />

of coef<br />

R2<br />

se<br />

€8t<br />

Const<br />

log a<br />

Muhiplier<br />

a<br />

1 AREA<br />

2 AREA<br />

1224<br />

3 ABEA<br />

1224<br />

FOREST<br />

4 AREA<br />

1224<br />

FOREST<br />

STMFCY<br />

5 AREA<br />

1224<br />

FOREST<br />

STMFCY<br />

MARAIN<br />

6 AREA<br />

1224<br />

FOREST<br />

STMrcY<br />

MARAIN<br />

LENGTH<br />

0.90<br />

0.88<br />

1.58<br />

o.85<br />

1.27<br />

1.65<br />

o.85<br />

1.34<br />

1.75<br />

o.44<br />

o.82<br />

1.O4<br />

1.34<br />

o.54<br />

o.39<br />

o.95<br />

o.99<br />

1.35<br />

0.53<br />

0.41<br />

-o.25<br />

o.073<br />

o.046<br />

o,169<br />

0.041<br />

o.162<br />

o.364<br />

0.040<br />

0.163<br />

0.360<br />

o.229<br />

o.o42<br />

o.222<br />

o.412<br />

o.230<br />

o.202<br />

o.202<br />

o.236<br />

o.414<br />

o.232<br />

o.204<br />

o.373<br />

12.4',<br />

19,8*<br />

9.3*<br />

20.6*<br />

7,8*<br />

4.5"<br />

21 .O*<br />

8,2*<br />

4.91<br />

1.9<br />

19.6*<br />

4.7'<br />

3.2*<br />

2.4*<br />

1.9 -<br />

4.7'<br />

4.2*<br />

3.3*<br />

2.3'<br />

2.O'<br />

-o.7<br />

o.846<br />

o.940<br />

0.954<br />

0.956<br />

o.959<br />

o.716<br />

0.884<br />

0.910<br />

o.914<br />

o.920<br />

o.450<br />

o.292<br />

0.256<br />

o.252<br />

o.249<br />

o.0333<br />

- 2.866<br />

-2.351<br />

-2.571<br />

-3.195<br />

1.O8<br />

1 .36 x 1O-s<br />

4.46 x 1O-3<br />

2.69 x 1O-2<br />

6.38 x 1O<<br />

o.958 0.918 o.262 -3.071 8.49 x 1O{<br />

' Significam at 5% level.<br />

Note: 1 The fitted relation is õ = a Xr h Xz b ...<br />

2 The multiple correlation coefficient (R) and standard error of ostimato quoted 8re <strong>for</strong> tho logarithmic <strong>for</strong>m<br />

Water & soil technical publication no. 20 (1982)<br />

logO = loga + br logXr + bzlogX¡ * .,,


62<br />

Fþurc 4,6 Logarithmic rcsidual errors <strong>for</strong> trial South lslend regional equat¡ons.<br />

Water & soil technical publication no. 20 (1982)


4.5.3 Examlnstion of residuals<br />

The geographic distribution of <strong>the</strong> logarithmic errors of<br />

<strong>the</strong> regional equations is shown in Figure 4.6. Except <strong>for</strong><br />

some possible clustering of positive residuals at <strong>the</strong> sou<strong>the</strong>rn<br />

end of <strong>the</strong> island, <strong>the</strong> errors appear to be randomly distributed.<br />

Be<strong>for</strong>e <strong>the</strong> regional equations were finalised, <strong>the</strong> more<br />

extreme errors were examined to see whe<strong>the</strong>r <strong>the</strong>y could be<br />

attributed to known causes. Errors greater than t0.25 a¡e<br />

shown in Figure 4.6 <strong>for</strong> Stations 57008 (Motueka at Gorge),<br />

64ó06 (Waiau at Malings Pass), 65902 (Weka Creek at Antills<br />

Bridge), 68806 (Ashburton South at Mt Somers'),7ll02<br />

(Otekaieke at Stock Bridge), 71122 (Maryburn at Mt<br />

McDonald), 74314 (Taieri at Patearoa-Faerau Bridge),<br />

78625 (Otapiri at McBrides Bridge), 9ll0l (Taramakau at<br />

Gorge), atd9l4O2 (Sawyers Creek at High Street Bridge).<br />

The following reasons <strong>are</strong> advanced as possible explanations<br />

<strong>for</strong> some of <strong>the</strong>se and o<strong>the</strong>r lesser outliers.<br />

(Ð Cstchment in wrong region<br />

For Station 64ó06 (V/aiau at Malings Pass) <strong>the</strong> error is<br />

0.32. This small catchment (74.6 km') is adjacent to<br />

<strong>the</strong> Main Divide and subject to <strong>the</strong> same heavy rainfalls<br />

that cause many rWest Coast rivers to reach flood<br />

levels. The West Coast region'should be extended<br />

slightly to <strong>the</strong> east of <strong>the</strong> Main Divide to include this<br />

catchment. Two o<strong>the</strong>r catchments (60114 and 60116)<br />

lie near, but <strong>not</strong> generally as close to <strong>the</strong> Main Divide<br />

and do <strong>not</strong> on <strong>the</strong> basis of <strong>the</strong>ir residual errors justify<br />

inclusion in <strong>the</strong> West Coast region. This adjustment of<br />

regions is supported by a ra<strong>the</strong>r abrupt cut-off of<br />

north-westerly rainfall which seems to occur a short<br />

distance to <strong>the</strong> east of <strong>the</strong> Main Divide. Also, Figure<br />

4.3 suggests that Station 64606 fits better with <strong>the</strong> West<br />

Coast catchments than with <strong>the</strong> inland catchments of<br />

<strong>the</strong> Inland Marlborough/Canterbury region.<br />

(it) Unreli¡ble e¡tlm¡te of Q from excessively short record<br />

The error <strong>for</strong> Station 65902 (Weka Creek at Antills<br />

Bridee) at 0,6 is <strong>the</strong> higlrest <strong>for</strong> all 63 stations. As an<br />

error of about 0.33 would occur if <strong>the</strong> bounda¡y between<br />

<strong>the</strong> East Coast and <strong>the</strong> Inland regions was<br />

shifted slichtlv to include <strong>the</strong> catchment in <strong>the</strong> Inland<br />

region, it-is óoncluded that Qo6, <strong>for</strong> this catchs€nt<br />

ba--sed on only fóùr'years of recdiã is an unreiiable estìmate<br />

and <strong>the</strong> station is <strong>not</strong> used in <strong>the</strong> subsequent analysis.<br />

(lil) Catchments wlth large pondlng effects<br />

The frrtted equations seriously ov€r-estimate Q <strong>for</strong> stations<br />

68806 (Ashburton South at Mt Somers) and Station<br />

71122 (Maryburn at Mt McDonald). Part of <strong>the</strong><br />

Ashburton South catchment and all <strong>the</strong> Maryburn<br />

Region<br />

1 West Coast, Nelson 1<br />

Number Variable<br />

Variables Name<br />

2<br />

faHe 4.5 Stepwise regressions <strong>for</strong> South lsland regions.<br />

AREA<br />

AREA<br />

1224<br />

Coef<br />

br<br />

se<br />

of coef<br />

0.87 0.103 8.5*<br />

o.91 0.063 14.3*<br />

o.90 0.165 5.4*<br />

2 East Coast 1 AREA 0.92 0j42 6.5*<br />

2 AREA o.91 0.081 11.2*<br />

MARAIN 2.58 0.559 4.6'<br />

AREA 0.96 0.108 8.9t<br />

1224 1.62 0.557 2.9*<br />

AREA 0.93 0.083 1 1.2*<br />

1224 o.58 0.566 1.O<br />

MARAIN 2.O7 0.14A 2.8*<br />

3 lnland Marlborough/<br />

Canterbury<br />

4 Mackenzie, lnland<br />

Otago, Southland<br />

+ Designated beet fit equation<br />

* Significant at 5% level.<br />

Notes: 1<br />

1<br />

2<br />

AREA<br />

AREA<br />

FOREST<br />

AREA<br />

FOREST<br />

1224<br />

AREA<br />

1224<br />

AREA<br />

MARAIN<br />

o.85 0.049 17.5*<br />

0.83 0.042 19.9'<br />

2.58 1.OO2 2.6'.<br />

o.82 0.044 18.4*<br />

2.58 1.032 2.5'.<br />

-o.23 0.402 0.6<br />

o.84 0.052 16.2*<br />

-o.22 0.4A2 0.5<br />

o.85<br />

0.34<br />

o.o47 18.z',<br />

0.238 1,4<br />

o.899<br />

0.964<br />

R2<br />

se<br />

est<br />

Const Muhiplier<br />

loga<br />

a<br />

o.81 0.2A7 0.560 3.60<br />

O.93 0.181 -'l .381 4.16x1O-'z+<br />

0.899 0.81 0.359 0.1 1 1 '.|.29<br />

0.968 O.94 0.216 -7.600 2.51 x 10{ +<br />

0.946 O.9O 0.235 -2'891<br />

1 .29 x 1O-3<br />

0.971 0.94 0.177 -7.149 7'1O x 1O{<br />

0.979 0.96 0.175 0.0363 1.O9<br />

0.986 0.97 0.152 0.O212 1.O5<br />

0.987 0.97 0.129 0.455 2.45<br />

0.980 0.96 0.162 0.454 2'84<br />

0.982 0.96 O,1 51 - 1 .O3 9'33 x 1O-2<br />

AREA 1.O2 0.131 7.8' o.89s 0.80 0.257 -0.706 1.97 x 1O{<br />

1<br />

2 AREA o.91 0.098 9.3* 0.947 O.9O O.1A7 -2.A97 1.27 x1O4 +<br />

1224 1.40 0.367 3.8*<br />

AREA 1.38 0.249 5.6* 0.957 0.92 O.180 -2'122 7.55x1O-3<br />

t224 1.13 0,357 3.2'<br />

LENGTH -o.93 0.460 -2.O<br />

The <strong>for</strong>m of fitted relation is O = a ¡¡'¡b' (Xzlb' "'<br />

2 The multiple cor¡elation coefficient and standa¡d error quoted <strong>are</strong> fo¡ <strong>the</strong> lcgarithmic <strong>for</strong>m<br />

log O = log a + br log Xr + br log Xz '..<br />

3 FOREST computed as (1 +FOREST/IOOl<br />

Water & soil technical publication no. 20 (1982)<br />

63


Table 4.6 Final equations <strong>for</strong> South lsland regions.<br />

Region<br />

West Coast. Nelson<br />

East Coast<br />

lnland Marlb, Canty<br />

McK, lnland Otago, Sthld<br />

No.<br />

Stns<br />

19<br />

11<br />

13<br />

15<br />

õ<br />

õ<br />

õ<br />

õ<br />

B€st Fh Equations R2<br />

Se<br />

est<br />

= 0,0233 AREAo...l224o.e¡<br />

= 1,1 1 x lo-e AREAo ¡e MARA|N3.o<br />

= 0.964 AREAo.¡o<br />

=o.oo1 90 AREAo.el 12241,3<br />

o.971<br />

o.989<br />

0.992<br />

o.963<br />

0.94<br />

o.98<br />

0.98<br />

o.93<br />

Factorial<br />

se €8t<br />

0.1 48 1 .41<br />

0.117 1.30<br />

0.1 09 1 .28<br />

o.1 46 1 .40<br />

catchm€nt drain <strong>for</strong>mer glacial moraines on s,hich <strong>the</strong><br />

surface drainage network is ill-defined. Considerable<br />

surface storage occurs in swamps and, in <strong>the</strong> case of<br />

<strong>the</strong> South Ashburton, <strong>the</strong> drainage divide with Lake<br />

Heron is ill-defined. There<strong>for</strong>e, flood-flow levels <strong>are</strong><br />

expected to be substantially reduced and it is uûeal_<br />

istic to use data from <strong>the</strong>se catchments to estimate<br />

flows <strong>for</strong> o<strong>the</strong>r catchments where similar ponding does<br />

<strong>not</strong> occur. On this basis <strong>the</strong> data <strong>are</strong> omitted from <strong>the</strong><br />

final analysis.<br />

The central <strong>are</strong>a of <strong>the</strong> Taieri catchment (Station<br />

74314) is a flat plain through which <strong>the</strong> river channel<br />

follows a meandering course. The recording station is<br />

situated downstream of a narrow gorge in which flood<br />

waters back up and inundate large <strong>are</strong>as of <strong>the</strong> plain.<br />

This ponding occurs to a much greater extent thãn on<br />

most o<strong>the</strong>r catchments. The resulting reduction in<br />

peak discharge is reason <strong>for</strong> rejecting data from this<br />

catchment in <strong>the</strong> final analysis. Note that this catch_<br />

ment is an outlier in <strong>the</strong> Q against AREA plot in Fig_<br />

ure 4.3<br />

(iv) Station wlth unreliable rating<br />

Because flow records <strong>for</strong> Station 9ll0l (Taramakau at<br />

Gorge) were derived using a <strong>the</strong>oretical rating <strong>the</strong> re_<br />

cord qualìty was expected to be only fair andihe esti_<br />

mate of Qo6, subject to more error than most values<br />

<strong>for</strong> most o<strong>the</strong>r stations. As <strong>the</strong> value used appears to<br />

result in a large error, <strong>the</strong> station is excludeã in <strong>the</strong><br />

final analysis.<br />

(v) Remaining outliers<br />

(vi) Snowmelt<br />

Although snowmelt is <strong>not</strong> an important flood-producing<br />

mechanism in New Zealand, when it combines with<br />

rainfall it may cause floods greater than would occur<br />

through rain alone. However, snowmelt catchments do<br />

<strong>not</strong> appear aniongst <strong>the</strong> catchments listed earlier as<br />

outliers. Although data on <strong>the</strong> extert, depth, and<br />

water-producing capabilities of snowpack <strong>are</strong> sparse in<br />

New Zealand, it is known that in <strong>the</strong> Fraser catchment<br />

(Station 75259) five of seven annual flood maxima<br />

us€d in this study occurred in October, November or<br />

Decernber, and <strong>are</strong> likely to have been associated with<br />

snorvmelt. This may account <strong>for</strong> any underestimation<br />

of Q <strong>for</strong> this catchment (residual error equal to 0. 16).<br />

Snowmelt may also be a contributory factor to <strong>the</strong><br />

underestimation of Q <strong>for</strong> o<strong>the</strong>r catchments in <strong>the</strong><br />

island, paticularly 71116 (Ahuriri at South Diadem)<br />

and75276 (Shotover at Bowens peak).<br />

The final estimation equations were derived after shifting<br />

<strong>the</strong> boundary between <strong>the</strong> West Coast and Inland Marlborough/Canterbury<br />

regions slightly lo include <strong>the</strong> catchment<br />

<strong>for</strong> Station 64ó06 in <strong>the</strong> West Coast region, and excluding<br />

Stations 65902, 68806, 71122,74314 and 9ll0l <strong>for</strong> <strong>the</strong> reasons<br />

stated.<br />

4,5.4 Final equations <strong>for</strong> South lsland<br />

estimate is decreased comp<strong>are</strong>d with <strong>the</strong> first trial equations<br />

in Table 4.5.<br />

The geographic distribution of residual errors <strong>for</strong> <strong>the</strong> fin_<br />

4.7. Yery good fit has been<br />

Inland Marlborough/Cantrs<br />

<strong>are</strong> +0.22, and <strong>the</strong>ir disdom.<br />

The fÏt <strong>for</strong> <strong>the</strong> W€st<br />

Coast and Inland Otago and Southland regions is satisfactory;<br />

one error exceeds 0.30 and t$¡o more exceed O.A.<br />

Although most errors appear randomly distributed in<br />

sDace, several positive errors clustered in <strong>the</strong> sou<strong>the</strong>rn part<br />

of <strong>the</strong> Inland Otago and Southland region suggest ihat<br />

some consistent underestinnation of Q has occuried <strong>the</strong>re.<br />

Table 4.7 correration malrix <strong>for</strong> rogs of North rsrand charact€rist¡cs.<br />

o<br />

AREA<br />

MARAIN<br />

t224<br />

LENGTH<br />

FOREST<br />

STMFCY*<br />

s1 085*<br />

€LEVT<br />

1.OOO<br />

o.830<br />

o.294<br />

o.2ö7<br />

o.815<br />

o.342<br />

-o.117<br />

-0.413<br />

o.247<br />

AREA MARAIN LENGTH FOREST STMFCY. S1085. ELEV'<br />

1.0O0<br />

o.040<br />

-o.110<br />

0.944<br />

0.189<br />

-o.121<br />

-o.576<br />

0.303<br />

l.OOO<br />

0.296<br />

o.o44<br />

0.506<br />

o.o69<br />

0.332<br />

0.454<br />

l.OOO<br />

-o.101<br />

o.312<br />

o.o60<br />

o.o09<br />

-0.149<br />

l.OOO<br />

0.191<br />

-o.187<br />

-0.598<br />

o.278<br />

1.000<br />

o.178 l.OOO<br />

o.o77 o.196<br />

0.348 o.157<br />

l.OOO<br />

0.348<br />

l.OOO<br />

¡ lncomplete Sample<br />

&<br />

Water & soil technical publication no. 20 (1982)


West Coast<br />

õ= 0.0233 AREAeo I;?<br />

(R2=.la , se=0'148)--'<br />

I n land Marlborougþ/Canterbury<br />

õ = O'9ó4AREAo'88<br />

(i2=o're , se =Q'lQP|<br />

Mackenzie, lnland Otago, Southland<br />

õ=o.ootgAREA:to Ill,<br />

(.R2= o.rs, se =o.r4ó)"-<br />

East Coast<br />

õ = t. n x lo-ten¡Ätt¡nmAlN3'o<br />

(n'= 'ra , se=0.il7)<br />

Nole: R= Multiplle correlotion coefficient<br />

se= $1q.¿.rd error of estimote <strong>for</strong><br />

logorithms<br />

Water & soil technical publication no. 20 (1982)<br />

Fþu]|'4.TLogarithmicresidualerrors<strong>for</strong>finalsouthlslandregionalequations'<br />

65


I<br />

++<br />

++<br />

*<br />

E<br />

4.6 Analysis of North lsland data<br />

4.6.1 Preliminary analysis of data<br />

10 100<br />

[otchmenf Areo ( kmz)<br />

Figure 4.8 O vs AREA, North lsland catchments.<br />

a : 1.87 AREA o sr<br />

(R': = 0.69, se = 0.442)<br />

44<br />

As with section 4.5 <strong>the</strong> object of this section is to devise<br />

estimators of Q ttrat <strong>are</strong> better than Equation +.+ Uy using<br />

variables besides AREA, and by choosìng a number of re_<br />

grons.<br />

Stepwise regression results<br />

_<br />

<strong>for</strong> all 97 stations <strong>are</strong> tab_<br />

ulated in Table 4.8. The best fit equation obtained is<br />

a = 1.37 x l0-'AREA1 t3l2z4t,EeMARAIN¡ o?<br />

(R'? = 0.81, se = 0.348)<br />

45<br />

Examinati<br />

errors from<br />

which berter<br />

followed is s<br />

tion of residual<br />

it ïå'å:ì#i<br />

and.<br />

4.6.2 Development of trial regional estimators<br />

tween MARAIN and 1224 (0.30 comp<strong>are</strong>d with 0.75). phys_<br />

ically this may be a reflection of <strong>the</strong> sparseness Water òf & <strong>the</strong> soil net_ technical publication no. 20 (1982)<br />

66


Table 4.8. Stepwise regressions <strong>for</strong> all North lsland data.<br />

No. Var. Name<br />

Coef<br />

br<br />

se<br />

of coef<br />

R2<br />

se<br />

est<br />

Const<br />

log a<br />

Multiplier<br />

a<br />

1<br />

2<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

o.81<br />

0.84<br />

2.33<br />

o.83<br />

1.89<br />

1.O7<br />

o.o56<br />

0.048<br />

o.377<br />

o.045<br />

o.368<br />

o.270<br />

14.5<br />

17.7<br />

6.2<br />

18.6<br />

5.1<br />

4.O<br />

0.829<br />

o.882<br />

o.900<br />

o.687<br />

o.778<br />

o.810<br />

o.442<br />

o.372<br />

o.348<br />

0.271 1 .87<br />

-4.263 5.46 x 1O-õ<br />

- 6.862 1 .37 x 10'<br />

Table 4.9 Stepwise regressions <strong>for</strong> first trial North lsland regions<br />

Region<br />

Number Variable<br />

Variables Name<br />

Coef<br />

b'<br />

se<br />

of coef<br />

R2<br />

se<br />

est<br />

Const Mult¡plier<br />

loga a<br />

Non-Pumice<br />

(84 catchments)<br />

1<br />

2<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

o.74 0.049<br />

o.77 0.037<br />

2.13 0.271<br />

o.76 0.034<br />

1.77 0.262<br />

0.78 0. 1 91<br />

'15.2 0.861 0.74 0.341<br />

20.7 0.925 0.86 0.257<br />

7.9<br />

22.4 0.939 0.88 0.234<br />

6.8<br />

4.1<br />

0.507 3.21<br />

- 3.63 2.33 x 1O-a<br />

- 5.49 3.24 x 1O-o<br />

Pumice<br />

( 1 2 catchments)<br />

1<br />

2<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

o.84 0.22<br />

0.90 0.11<br />

3.88 0.64<br />

o.79 0.o9<br />

2.41 0.73<br />

1.74 0.64<br />

3.8 0.765<br />

8.5 0.958<br />

6.1<br />

8.9 0.978<br />

3.3<br />

2.7<br />

o.59 0.359 -O.310 0.490<br />

O.92 0.168 -7.806 1.56 x 1O-8<br />

0.96 O.142 - 10.36 4.39 x 1Oi1<br />

of which catchments lay within it, presented difficulty.<br />

Several catchments (<strong>for</strong> example 9101, Waitoa; 21803,<br />

Mohaka) have <strong>the</strong>ir headwaters in this pumice country, but<br />

most of <strong>the</strong>ir <strong>are</strong>as lie outside <strong>the</strong> pumice region. O<strong>the</strong>rs<br />

(e.g., 15410, Whirinaki) <strong>are</strong> mainly pumice but have a substantial<br />

<strong>are</strong>a outside <strong>the</strong> region. In still o<strong>the</strong>r catchments<br />

(those lying mainly on <strong>the</strong> slope of <strong>the</strong> central North Island<br />

volcanoes) <strong>the</strong> mantle of soil over rock is minimal and its<br />

hydrological influences were <strong>not</strong> known. After several<br />

trials, <strong>the</strong> pumice region was defined as comprehending<br />

three of <strong>the</strong> hydrological regions set out by Toebes and<br />

Palmer (1969). <strong>These</strong> were Taupo Pumice, Taupo Rhyolite,<br />

and East Raetihi which made up a discontinuous region including<br />

a total of 13 catchments, seven tributary to <strong>the</strong><br />

Waikato River, four draining to <strong>the</strong> Bay of Plenty, and two<br />

tributary to <strong>the</strong> Wanganui River. Closer inspection of <strong>the</strong><br />

data <strong>for</strong> <strong>the</strong>se l3 catchments showed that 11432108 (Purukohukohu)<br />

was a distinct outlier in having <strong>the</strong> smallest<br />

catchment <strong>are</strong>a and <strong>the</strong> least Q (by almost two orders of<br />

magnitude) <strong>for</strong> all 97 North Island catchments. For this<br />

reason, and because it was ephemeral, it was excluded from<br />

subsequent analyses.<br />

Taking two regions, pumice and non-pumice, trial regressions<br />

were undertaken. Stepwise results <strong>are</strong> given in<br />

Table 4.9 and <strong>the</strong> distribution of residual errors <strong>for</strong> <strong>the</strong> best<br />

fit equations is shown in Figure 4.9. This figure shows that<br />

within <strong>the</strong> pumice region <strong>the</strong> residuals seem randomly distributed<br />

with generally low values, but <strong>the</strong> remainder of <strong>the</strong><br />

island contains very large residuals, some exceeding I 0.50.<br />

The sou<strong>the</strong>rn part of <strong>the</strong> island including tributary catchments<br />

to <strong>the</strong> lower Rangitikei, all <strong>the</strong> Manawatu, Wairarapa<br />

and Wellington <strong>are</strong>a catchments, have, with one small<br />

exception, positive residuals meaning that Qo5, <strong>for</strong> this <strong>are</strong>a<br />

is underestimated. Similarly, positive residuals occur over<br />

much of <strong>the</strong> Northland and Auckland <strong>are</strong>as. The fact that<br />

tropical cyclone events tend to produce flooding in this<br />

<strong>are</strong>a, and also <strong>the</strong> Coromandel and East Cape <strong>are</strong>as, may<br />

be a tentative basis <strong>for</strong> a region including <strong>the</strong>se <strong>are</strong>as. Negative<br />

residual values occur in <strong>the</strong> central part of <strong>the</strong> island<br />

outside <strong>the</strong> pumice region. This suggests a division of <strong>the</strong><br />

Water & soil technical publication no. 20 (1982)<br />

island into four regions, and if <strong>the</strong> central part is divided<br />

between east and west coasts, into five regions, whose tentative<br />

boundaries <strong>are</strong> drawn dashed on Figure 4.9. <strong>These</strong><br />

five regions <strong>are</strong> taken as a basis <strong>for</strong> fur<strong>the</strong>r study.<br />

A number of trials were undertaken with <strong>the</strong>se regions to<br />

determine where boundaries should be placed. Catchments<br />

which appe<strong>are</strong>d as outliers were checked, both <strong>for</strong> <strong>the</strong> correctness<br />

of data and <strong>for</strong> any features of <strong>the</strong> catchment<br />

which might influence flood peaks. Seven of <strong>the</strong> larger residuals<br />

could be attributed to special conditions of <strong>the</strong> catchment<br />

and were excluded from <strong>the</strong> final analysis.<br />

<strong>These</strong> were as follows:<br />

(i) C¡tchments with large ponding effects<br />

Serious over-estimates were made <strong>for</strong> Q <strong>for</strong> 9l0l<br />

(Waitoa) and 9108 (Piako). Two possible causes <strong>for</strong><br />

this <strong>are</strong>, firslly that <strong>the</strong> headwaters <strong>for</strong> <strong>the</strong>se catchments<br />

lie in <strong>the</strong> pumice region, and secondly that <strong>the</strong><br />

catchments have amongst <strong>the</strong> lowest channel slopes of<br />

all <strong>the</strong> North Island catchments, and have a very flat<br />

topography with peaty soils and swamps in <strong>the</strong> lower<br />

reaches. This second factor also causes attenuation of<br />

flood hydrographs. Thus <strong>the</strong>se two catchments were<br />

excluded frorn fur<strong>the</strong>r analysis. O<strong>the</strong>rs having large<br />

negative residuals in Figure 4.9 were 33307 (Wanganui<br />

at Headwaters) and 1143428 (Ohote); <strong>the</strong>se also were<br />

excluded on <strong>the</strong> basis that large parts of <strong>the</strong> catchments<br />

<strong>are</strong> swamps.<br />

(ii) C¡tchment in l¡mestone <strong>are</strong>a<br />

Catchment 40703 (Mangakowhai), which drains Waitomo<br />

limestone country, also had a large negative residual<br />

and was subsequently excluded on <strong>the</strong> basis that<br />

<strong>the</strong> catchment topographic <strong>are</strong>a may <strong>not</strong> be <strong>the</strong> true<br />

catchment <strong>are</strong>a.<br />

(iii) Catchment with short record<br />

Catchment 39508 (Manganui) had only four years of<br />

record. It was excluded on <strong>the</strong> basis that <strong>the</strong> estimate<br />

of Q may have excessive sampling error.<br />

67


Non Pumice =<br />

õ = 3-24xto'6 AREA'7ó lr,o''" MARA|No'78<br />

( R2= 9.g3,- se= 0.228 I<br />

Pumice<br />

[ = a.39 ^<br />

ro ll AREATe \r1'^' MARATNI'24<br />

( R'= O'9ó , se<br />

= O.lO5 )<br />

Figure 4.9 Trial North lsland regions.<br />

68<br />

Water & soil technical publication no. 20 (1982)


ln <strong>the</strong> trials undertaken <strong>for</strong> <strong>the</strong> provisional regions<br />

shown dashed in Figure 4.9 both 13901 (Mangawhai) and<br />

15534 (Wairere) showed as outliers in <strong>the</strong> regions to which<br />

<strong>the</strong>y were initially assigned. As <strong>the</strong>y fitted best into <strong>the</strong><br />

adjacent pumice region, <strong>the</strong>y were placed <strong>the</strong>re <strong>for</strong> <strong>the</strong> final<br />

analysis. This required extension of <strong>the</strong> pumice region into<br />

<strong>the</strong> coastal Bay of Plenty <strong>are</strong>a; in terms of <strong>the</strong> hydrological<br />

regions of Toebes and Palmer (1969) it includes Tauranga<br />

and Opotiki regions. This assignment is tentative because<br />

<strong>the</strong> soils in <strong>the</strong>se catchments <strong>are</strong> <strong>not</strong> pumice to <strong>the</strong> extent of<br />

o<strong>the</strong>rs in <strong>the</strong> Rotorua/Taupo <strong>are</strong>a. Their better fit with <strong>the</strong><br />

pumice region could be <strong>the</strong> result of inaccurate rainfall intensity<br />

statistics.<br />

4.6.3 Final equations <strong>for</strong> North lsland<br />

Table 4.1O Stepwise regressions <strong>for</strong> final North lsland regions.<br />

After a number of trials, final equations were developed<br />

<strong>for</strong> <strong>the</strong> regions shown in Figure 4.10. The stepwise regression<br />

results <strong>are</strong> givern in Table 4. 10. In all but one case <strong>the</strong><br />

best fit equation includes AREA and one or two of <strong>the</strong><br />

rainfall statistics. The exception is <strong>the</strong> Manawatu/WairarapalWellington<br />

region were <strong>the</strong> equation including AREA,<br />

1224 and FOREST provides a very good fit. However,<br />

when MARAIN is substituted <strong>for</strong> FOREST in <strong>the</strong> equation<br />

it is almost as good; this is preferred as it should provide a<br />

more robust estimator. The table shows that <strong>for</strong> every region<br />

<strong>the</strong> accuracy of estimate can be improved by including<br />

a rainfall statistic in addition to AREA, and also, that o<strong>the</strong>r<br />

catchment parameters with <strong>the</strong> possible exception of FOR-<br />

EST in one region <strong>are</strong> <strong>not</strong> of importance. It is possible that<br />

FOREST does <strong>not</strong> directly influence flood size; ra<strong>the</strong>r it<br />

does so indirectly to <strong>the</strong> extent that correlations occur between<br />

FOREST and <strong>the</strong> rainfall statistics (Table 4.7). For<br />

<strong>the</strong> Manawatu/Wairarapa/Vr'ellington region where FOR-<br />

EST was most dominant in <strong>the</strong>se regional equations, <strong>the</strong><br />

Region<br />

Northland/<br />

Coromandel/<br />

East Cape<br />

{21 catchments}<br />

Pumice Land<br />

( 1 4 catchments)<br />

East Coast<br />

(1 1 catchments)<br />

Manawatu/<br />

Wairarapa/<br />

Wellington<br />

( 1 9 catchments)<br />

West Coast<br />

(25 catchments)<br />

Number Variable<br />

Varìables Name<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

1<br />

2<br />

AREA<br />

AREA<br />

MARAIN<br />

AREA<br />

MARAIN<br />

ELEV<br />

AREA<br />

MARAIN<br />

ELEV<br />

LENGTH<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

AREA<br />

t224<br />

MARAIN<br />

FOREST<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

AREA<br />

FOREST<br />

AREA<br />

FOREST<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

AREA<br />

AREA<br />

t224<br />

AREA<br />

t224<br />

MARAIN<br />

AREA<br />

t224<br />

MARAIN<br />

FOREST<br />

Coef<br />

bl<br />

se<br />

of coef<br />

R2<br />

SE<br />

est<br />

o.70 0.06 10.8+ 0.927 0.86 0.237<br />

0.64 0.o3 19.5* 0.983 0.97 0.1 19<br />

2.33 0.31 7.6*<br />

0.62 0.o3 18.7* 0.986 0.97 0.1 10<br />

2.O1 0.33 6.2*<br />

o.22 0.11 2.O<br />

o.84 0.16 5.2* 0.988 0.98 0.107<br />

2.O3 0.32 6.4*<br />

o.21 0.11 2.O<br />

-o.39 0.28 -1.4<br />

Const Multipl¡er<br />

loga a<br />

0.807 6.42<br />

-6.66 2.18 x 10'+<br />

- 6.OB 8.24 x 'l O-7<br />

-6.06 8.71 x 1O'<br />

0.67 0.12 5.5* o.a44 0.71 0.348 0.0933 1.24<br />

0.83 0.06 13.5* O.971 O.94 O.161 -7.94 1.15x1O-8<br />

4.O2 0.60 6.7*<br />

o.74 o.06 12.2* 0.984 O.97 Oi2A - 10.51 3.Og x 'l O{1 +<br />

2.54 o.72 3.5*<br />

1.75 0.64 2.7 *<br />

O.88 O.O9 9.9* 0.989 O.98 O.111 -11.94 1.15x1O{'?<br />

3.16 0.70 4.5*<br />

1.80 0.56 3.2*<br />

-o.17 0.o9 -2.O<br />

o.80 0.o8 10.6*<br />

0.76 0.o3 27.4*<br />

2.24 0.29 7.8*<br />

0.90 0.1 3 6.9*<br />

o.72<br />

0.46<br />

o.82<br />

1.53<br />

o.94<br />

0.06 12.2*<br />

o.o5 8.9-<br />

o.74 0.o4 16.7*<br />

o.34 0.o5 6.7*<br />

1.22 0.33 3.7*<br />

o.o5 15.8*<br />

o.19 4.O*<br />

o.39 4.9*<br />

o.85 0.o8 1 1.3*<br />

o.az 0.o5 16.7*<br />

2.18 0.38 5.8*<br />

o.82 0.o5 17.7*<br />

1.67 0.44 3.8*<br />

0.78 0.39 1.9<br />

o.79 0.o5 16.1 *<br />

1.6'l O.42 3.8*<br />

0.80 0.37 2.1<br />

0.1 1 0.06 1.8<br />

0.963 0.93 0.227<br />

0.996 0.99 0.082<br />

o.858 0.74 0.341<br />

0.978 0.96 0.144<br />

0.988 0.98 0.107<br />

0.982 0.96 0.1 18<br />

o.974 0.95 0.157<br />

0.977 0.96 0.1 50<br />

0.296 1.98<br />

-4.O5 8.84 x 10{ +<br />

0.232 1.70<br />

o.1 58 1.44<br />

-2.O5 8.99 x 1O-"<br />

-5.51 3.12x10-6 +<br />

0.920 0.85 0.258 0j82 1.52<br />

0.969 O.94 O.1 67 - 3.83 1 .48 x 1O-1 +<br />

- 5.41 3.87 x 10-6<br />

-5.51 3.13x10-6<br />

* significant at 5olo level<br />

+ preferred equation<br />

Water & soil technical publication no. 20 (1982)<br />

69


Northlond f C"ro^ondel f Eost Cope<br />

ö = 2.18 x lo z tRtlo'ó4 MARAIN2'33<br />

( R'= O'97 , se<br />

= O.ll9 )<br />

West Coost<br />

_Á<br />

Q = l.48xlO '<br />

( R2- o.94 ,<br />

AREÁ t' \r1''"<br />

se<br />

= 0'167 )<br />

Eost Coost<br />

õ g.g4 7ó<br />

= x lo-saREAo<br />

\rl'ro<br />

Pumice<br />

( R2= O.99 , se = 0.082 )<br />

õ = 3.o9 x td't' IREA.''o lrrl- t',<br />

MARAT N<br />

( R'= O.97 , se = O-nB )<br />

Monowotu /Woiroropo / Wellington<br />

Q = s.ts * ldo t" RREA' Irr''t MARAIN o'e1<br />

(R2=9.96 , se=O.ll8 )<br />

Figure Water 4.10 & soil Final technical North publication lsland regions. no. 20 (1982)<br />

70


correlations between (logs oÐ FOREST and 1224, and<br />

FOREST and MARAIN were 0.90 and 0.65 respectively;<br />

this was one region where estimates of l2?A were suspected<br />

to be unreliable.<br />

The preferred equations of Table 4.10 <strong>are</strong> shown in Figure<br />

4.10 with <strong>the</strong>ir appropriate regions, and also <strong>the</strong> residual<br />

errors <strong>for</strong> logarithms. In general <strong>the</strong> equations seem<br />

more reliable in <strong>the</strong> north and east of <strong>the</strong> island, a situation<br />

also <strong>not</strong>ed in <strong>the</strong> South Island. The distribution ofresiduals<br />

generally appears reasonably random in space. The region<br />

<strong>for</strong> <strong>the</strong> West Coast includes a number of catchments tributary<br />

to <strong>the</strong> Wanganui River and a number originating on<br />

<strong>the</strong> slopes of <strong>the</strong> central North Island volcanoes. Many of<br />

<strong>the</strong> larger residuals <strong>for</strong> <strong>the</strong> island <strong>are</strong> clustered here, presumably<br />

because of <strong>the</strong> variety of soil types, including pumice,<br />

and <strong>the</strong> sparse coverage of rainfall intensity measurements.<br />

The equations <strong>for</strong> <strong>the</strong> East Coast and West Coast regions<br />

suggest that <strong>the</strong>y should be combined into one, but<br />

doing so resulted in regional biases. Hence <strong>the</strong> separate regions<br />

should be maintained.<br />

4.7 Discussion of results<br />

The equations derived in sections 4.5 and 4.6 <strong>are</strong> intended<br />

<strong>for</strong> application to rural catchments where flood<br />

storage is <strong>not</strong> excessive or where o<strong>the</strong>r dampening effects<br />

<strong>are</strong> <strong>not</strong> dominant. All <strong>the</strong> nine regional equations use catchment<br />

<strong>are</strong>a, and all but one use <strong>are</strong>a and one or two of <strong>the</strong><br />

rainfall statistics; o<strong>the</strong>r physical catchment characteristics<br />

used in this study appear to be of little consequence. This is<br />

an important finding, since results obtained in overseas<br />

countries (see section 4.8) have suggested that <strong>the</strong>se o<strong>the</strong>r<br />

physical characteristics <strong>are</strong> relatively important. The<br />

dominance of rainfall statistics is possibly due to <strong>the</strong><br />

generally steep nature of New Zealand catchments (see section<br />

4.8). The two sets of rainfall statistics considered in <strong>the</strong><br />

study have a large range of values; both cover more than<br />

one order of magnitude in <strong>the</strong> South Island, though <strong>the</strong><br />

range is less in <strong>the</strong> North Island.<br />

Since this study was completed, an updated analysis of<br />

rainfall intensity data has become available (Tomlinson<br />

1980; Coulter and Hessell 1980). Tomlinson used 16000<br />

years of data from 940 manual daily raingauges and 3500<br />

years from 180 recording raingauges. Comparison of revised<br />

1224 estimates with those from Robertson (1963) <strong>for</strong> a<br />

sample of 87 stations did <strong>not</strong> reveal statistically significant<br />

differences. This suggested that <strong>the</strong> revised estimates may<br />

also be used <strong>for</strong> estimating 1224. Sirce <strong>the</strong> revision used<br />

more than twice <strong>the</strong> number of stations, more accurate estimates<br />

of 1224 lor individual catchments should be possible.<br />

For convenience, revised 1224 estimates <strong>for</strong> <strong>the</strong> 94O daily<br />

gauges used by Tomlinson <strong>are</strong> included as Appendix D.<br />

- The revised intensity data were also mapped by Tomlinson.<br />

However, in high altitude <strong>are</strong>as, especially along <strong>the</strong><br />

Sou<strong>the</strong>rn Alps, use of <strong>the</strong> mapped values is <strong>not</strong> recommended.<br />

In mapping, rainfall is assumed to increase with<br />

altitude, This increase was <strong>not</strong> allowed <strong>for</strong> when catchment<br />

estimates <strong>for</strong> l2A were made, so <strong>the</strong> maps will give catchment<br />

estimates of 1224 greater than <strong>the</strong> estimates used in<br />

deriving <strong>the</strong> equations <strong>for</strong> Q. Thus inflated Q estimates<br />

may result from<br />

The 2-year rec<br />

uration intensitY<br />

estimated from<br />

auges was used<br />

principally because of <strong>the</strong> better national coverage of daily<br />

iead manual gauges <strong>for</strong> observing this duration rainfall<br />

comp<strong>are</strong>d with shorter duration rainfall statistics estimated<br />

from automatic rainfall recorder data.<br />

As <strong>not</strong>ed in section 4.4, estimates of catchment mean annual<br />

rainfall have a low accuracy <strong>for</strong> many South Island<br />

and this is possibly why inclusion of mean annual rainfall<br />

improves <strong>the</strong> estimate in three of <strong>the</strong> five North Island regional<br />

equations.<br />

Little can be saicl of <strong>the</strong> physical significance of <strong>the</strong> exponents<br />

<strong>for</strong> <strong>the</strong> regional equations. Whilst values of <strong>the</strong> intensity<br />

exponent around unity <strong>for</strong> two of <strong>the</strong> South Island<br />

regions might have some physical interpretation, <strong>the</strong> meaning<br />

of exponents of <strong>the</strong> rainfall statistics which exceed 2.0 is<br />

unclear, even though <strong>the</strong>ir statistical significance is undoubted.<br />

Obviousl),, in using <strong>the</strong> equations, particular c<strong>are</strong><br />

must be given to <strong>the</strong> estimation of rainfall statistics, because<br />

estimates outside of <strong>the</strong> range of <strong>the</strong> values of <strong>the</strong><br />

sample used in developing <strong>the</strong> equations could result in<br />

severe errors in estimates of Q. Tables 4.1 and 4.2 <strong>are</strong> a<br />

guide to typical valtues of <strong>the</strong> rainfall statistics.<br />

Where a catchment lies near a regional boundary and<br />

each regional equation gives different estimates, <strong>the</strong> precise<br />

location of<strong>the</strong> boundary is bound to create difficulties. For<br />

some regions, dominant flood-producing wea<strong>the</strong>r patterns<br />

<strong>are</strong> thought to apply, and a decision about which region a<br />

catchment fits into could be based on <strong>the</strong> wea<strong>the</strong>r conditions<br />

which <strong>are</strong> believed to produce <strong>the</strong> most flooding.<br />

An example is a number of Marlborough and Canterbury<br />

rivers in <strong>the</strong> Inland region, where <strong>the</strong> flood-producing<br />

wea<strong>the</strong>r conditions <strong>are</strong> possibly sou<strong>the</strong>rly. Their headwaters<br />

near <strong>the</strong> divide flood in nor'westerly wea<strong>the</strong>r condi<br />

tions and fit in <strong>the</strong> West Coast region. The rivers flow<br />

through <strong>the</strong> East Coast region where flood-producing wea<strong>the</strong>r<br />

patterns <strong>are</strong> thought to be easterly.<br />

In <strong>the</strong> case of <strong>the</strong> North Island Pumice region, catchments<br />

have been included where pumice was thought to<br />

have a dominant influence on <strong>the</strong> flood hydrology, but two<br />

coastal Bay of Plenty catchments were tentatively included<br />

here because this was where <strong>the</strong>y fitted best, even although<br />

pumice is <strong>not</strong> dominant on <strong>the</strong>se small catchments. rÙVithin<br />

<strong>the</strong> Pumice region, <strong>the</strong>re appears to be a gradation in <strong>the</strong> effect<br />

of <strong>the</strong> pumice. For instance, pumice lies to great depths<br />

on <strong>the</strong> Kaingaroa Plateau within which much of <strong>the</strong> catchment<br />

of <strong>the</strong> Rangitaiki River lies. The 28 years of record <strong>for</strong><br />

this river at Murupara (AREA : ll84km', Station<br />

15408), but which was <strong>not</strong> used because it exceeds<br />

ll00 km', gives_a Qous : 41.6 m'/s but <strong>the</strong> estimate from<br />

<strong>the</strong> equation is Q"rt = 202 m3/s, representing a residual error<br />

of - 0.69. Clearly, <strong>the</strong> dampening effects of pumice <strong>are</strong><br />

severe in this case.<br />

The annual flood regions delineated in this chapter <strong>are</strong>'<br />

in general, very similar to <strong>the</strong> flood frequency regions defined<br />

in Chapter 3. An exception to this is in <strong>the</strong> eastern<br />

<strong>are</strong>a of <strong>the</strong> South Island (see Figure 4.7). From a design<br />

characteristics, on <strong>the</strong> o<strong>the</strong>r hand, is also concerned with<br />

<strong>the</strong> coefficients of variation and skewness of <strong>the</strong> flood record,<br />

and <strong>the</strong>se can be regarded as <strong>the</strong> slopes and curvatures<br />

respectively of <strong>the</strong> individual dimensionless-magni-<br />

There<strong>for</strong>e it was <strong>not</strong> unexof<br />

<strong>the</strong> flood frequencY chargions<br />

that differed in Places<br />

from <strong>the</strong> set deveioped <strong>for</strong> estimating Q.<br />

4.8 Compar¡son with o<strong>the</strong>r results<br />

Similar equations<br />

given in Table 4.ll l.<br />

favourably in terms<br />

ent of determination<br />

this needs to be balanced against <strong>the</strong> use of a relatively<br />

small range of catchment <strong>are</strong>as (0'2 to ll00 km'); poorer<br />

fits may be obtained if larger catchments <strong>are</strong> used' The<br />

o<strong>the</strong>r <strong>not</strong>able feature of Table 4'll is <strong>the</strong> range of expon-<br />

estimated with reasonable accuracy <strong>for</strong> <strong>the</strong> North Island, ents <strong>for</strong> AREA. The values tend to be less than <strong>the</strong> values<br />

Water & soil technical publication no. 20 (1982)<br />

7l


Table 4.11 Comparable equations <strong>for</strong> o<strong>the</strong>r countries,<br />

Est¡mat¡ng eqn R2 SC<br />

est<br />

Region<br />

Area Range (km,)<br />

Min. Max.<br />

Reference<br />

o<br />

o<br />

= 0.56 1 AREA 8s<br />

: 0.0765 AREAi o€ S1O85o s' o.841<br />

o.922<br />

o.1 94<br />

o.142<br />

New England<br />

New England<br />

: 2.42 AREA ss<br />

Texas and Sthn<br />

= o.o589 AREA 68110241 New Mexico<br />

50<br />

250OO Benson ('l 962b)<br />

90000 Benson (1 964)<br />

O :a AREAb<br />

0.267


Pooled<br />

Pooled<br />

Poo led<br />

Cy = 0.98<br />

Cy = O'óó<br />

Cv = o'3ó<br />

Figure Water 4.11 & soil Distr¡but¡on technical publication of Cv of annual no. 20 maxima (1982) <strong>for</strong> South lsland stations'<br />

73


Poo led<br />

cv<br />

Pooled<br />

o.40<br />

F¡guro 4.12 D¡stfibut¡on<br />

Water of & cv soil of technical annuar maxima publication <strong>for</strong> North no. 20 rsrand (1982) stat¡ons.<br />

74


Draper and Smith 1966). ln our case, <strong>the</strong> true value of <strong>the</strong><br />

dependent variable Qnu. is <strong>not</strong> known with certainty. It is<br />

subject to time sampling error and can only be estimated<br />

from <strong>the</strong> period of flow record available. The relative magnitudes<br />

of time sampling errors <strong>are</strong> indicated by <strong>the</strong> pooled<br />

Cy values in Figures 4.8 and 4.12.<br />

A second difficulty is that within a region some adjacent<br />

catchments may be subject to <strong>the</strong> same storms of large <strong>are</strong>al<br />

extent and a pair of series of annual maxima <strong>for</strong> such catchments<br />

is likely to be cross correlated: errors in estimates of<br />

Qo6, will <strong>the</strong>re<strong>for</strong>e <strong>not</strong> be random, but will also be correlated.<br />

In this situation regression analysis is still permissible,<br />

but estimation of <strong>the</strong> prediction error is more complex.<br />

An analysis of <strong>the</strong> situation is provided by Matalas<br />

and Gilroy (1968), and some practical examples <strong>are</strong> given<br />

by Hardison (1971).<br />

When a regional regression of log'o Q is calculated on a<br />

set of m catchment parameters, <strong>the</strong> standard deviation of<br />

<strong>the</strong> log,o Q about <strong>the</strong> regression expressed in log,o Q units<br />

is de<strong>not</strong>ed by Sp. lf <strong>the</strong>se deviations of <strong>the</strong> log,o Q from <strong>the</strong><br />

regression <strong>are</strong> normally distributed, <strong>the</strong>n <strong>the</strong> coefficient of<br />

variation of <strong>the</strong> untrans<strong>for</strong>med Q about <strong>the</strong> regression, C¡,<br />

is given by<br />

Cä = .*p (2.303 SR)' - I 47<br />

When Q is estimated from a flood record that is N years<br />

long, and <strong>the</strong> coeffìcient of variation of <strong>the</strong> annual maxima<br />

is de<strong>not</strong>ed Cy, <strong>the</strong> estimate of Q will differ from <strong>the</strong> population<br />

value (that would be obtained from a very long record)<br />

with a coel'ficient of variation of CylN.l.<br />

ci : ci /N"<br />

When Q is predicted using <strong>the</strong> regional regression it will As <strong>the</strong> quantity Nu could provide a useful guide <strong>for</strong> using<br />

differ from <strong>the</strong> population value, and <strong>the</strong> coefficient ofvar- <strong>the</strong> regression equations, it is evaluated <strong>for</strong> each of <strong>the</strong> reiation<br />

of <strong>the</strong> difference averaged over k sites, de<strong>not</strong>ed by gions toge<strong>the</strong>r with Cp <strong>for</strong> each region (Table 4.12). Esti-<br />

Table 4.12 Prediction errors and equivalent lengths of record.<br />

Cp, is calculated from Equation 4.8, which is derived from<br />

Hardison (1971).<br />

c'p : ch(t - + -<br />

tf+-, ) + ci (2q - r)/N6..... 4.8<br />

where p is <strong>the</strong> average cross-correlation between annual<br />

maxima series from pairs oi catchments in <strong>the</strong> region, and<br />

Nç is <strong>the</strong> average length of record. When <strong>the</strong>re <strong>are</strong> many<br />

uncorrelated records such that sampling errors tend to cancel,<br />

and <strong>the</strong> average record is short (k large, p small, N6<br />

small), <strong>the</strong>n Cþ can be less than CilNc, so rhat a better<br />

estimate is obtained from <strong>the</strong> regression at a site than from<br />

<strong>the</strong> record at a site.<br />

Note that Cp is an average prediction error, and will<br />

over-estimate errors on predictions <strong>for</strong> ungauged catchments<br />

whose parameters <strong>are</strong> near <strong>the</strong> mean value used in<br />

calculating <strong>the</strong> regression, and conversely. In New Zealand,<br />

no estimates of<strong>the</strong> interstation correlation coefficient q <strong>are</strong><br />

available, but typical values may reasonably be expected<br />

within <strong>the</strong> range 0.2 to 0.8. Three values of p (0.2, 0.5 and<br />

0.8), were <strong>the</strong>re<strong>for</strong>e used in evaluating Equation 4.8.<br />

Given <strong>the</strong> coefficient of variation of <strong>the</strong> prediction error<br />

Cp, ân estimate can be made of <strong>the</strong> length of record necessary<br />

to estimate Q with <strong>the</strong> same degree of accuracy as is<br />

given by <strong>the</strong> regression equation. If Nu is this equivalent<br />

length of record, anLd <strong>the</strong> prediction error is expressed as a<br />

percentage, <strong>the</strong>n<br />

49<br />

Region S¡<br />

(<strong>for</strong> regression<br />

of logarithms)<br />

Cvkm<br />

(no. of (no. of<br />

stations) regression<br />

variables)<br />

Nca<br />

(av length<br />

record)<br />

cR cP<br />

(Eqn 4.7) (Eqn 4.8)<br />

l"l,\ l"/"1<br />

N, Typical<br />

(Eqn 4.9) Nu<br />

(yrs)<br />

(yrs)<br />

Northland/<br />

Coromandel/<br />

East Cape<br />

Pumice<br />

East Coast Nl<br />

Wairarapai<br />

Manawatu/<br />

Wellington<br />

West Coast Nl<br />

West Coast Sl<br />

o.119<br />

o.128<br />

0.082<br />

o.118<br />

o.1 67<br />

0.148<br />

o.54<br />

o.54<br />

o.54<br />

o.40<br />

o.40<br />

0.36<br />

21<br />

14<br />

t1<br />

19<br />

25<br />

t9<br />

1 1.6<br />

12.O<br />

13.O<br />

13.5<br />

110<br />

9.4<br />

o.2<br />

o.5<br />

0.8<br />

o.2<br />

o.5<br />

o.8<br />

o.2<br />

0.5<br />

o.8<br />

o.2<br />

o.5<br />

o.8<br />

o.2<br />

o.5<br />

o.8<br />

o-2<br />

0.5<br />

o.8<br />

27.9<br />

21 .9<br />

27.9<br />

29.9<br />

29.9<br />

29.9<br />

1 9.1<br />

1 9.1<br />

1 9.1<br />

27.7<br />

27.7<br />

27.7<br />

39.9<br />

39.9<br />

39.9<br />

35.O<br />

35.O<br />

3 5.O<br />

27.5<br />

30.1<br />

32.5<br />

33.7<br />

35.8<br />

37.7<br />

19.4<br />

22.6<br />

25.4<br />

30.0<br />

31.1<br />

32.3<br />

41.6<br />

42.6<br />

43.6<br />

37.1<br />

38.1<br />

39.3<br />

39<br />

3.2<br />

2.3<br />

2.6<br />

2.3<br />

2.1<br />

7.8<br />

5.7<br />

4.5<br />

1.8<br />

1.7<br />

1.5<br />

o.9<br />

o.9<br />

0.9<br />

0.9<br />

o9<br />

o.8<br />

lnland<br />

Marlborough/<br />

Canterbury<br />

East Coast Sl<br />

Mackenzie/<br />

lnland Otago/<br />

Southland<br />

o.1 09<br />

o.1 05<br />

o.146<br />

0.66<br />

o.98<br />

o.66<br />

13<br />

1'l<br />

'I 5<br />

18.0 0.2<br />

0.5<br />

o.8<br />

8.4 0.2<br />

o.5<br />

o.8<br />

89 02<br />

o5<br />

o8<br />

25.O<br />

25.O<br />

25.O<br />

24.5<br />

24.5<br />

24.5<br />

34.5<br />

34.5<br />

34.5<br />

24.4<br />

27.2<br />

29.8<br />

12.5<br />

29.O<br />

39.1<br />

34.6<br />

38.6<br />

42.2<br />

7.3<br />

5.9<br />

4.9<br />

61.6<br />

11 .4<br />

6.3<br />

3.7<br />

2.9<br />

2.4<br />

Water & soil technical publication no. 20 (1982)<br />

75


mates of Cp typically range between 2OVo and 44go <strong>for</strong> different<br />

regions. They <strong>are</strong> generally somewhat greater than<br />

Cp, and <strong>are</strong> generally <strong>not</strong> greatly influenced by <strong>the</strong> values<br />

assumed <strong>for</strong> p.<br />

Values estimated <strong>for</strong> Nu given in <strong>the</strong> right-hand column<br />

of Table 4.12 range from one year <strong>for</strong> <strong>the</strong> West Coast of<br />

both islands to about seven years <strong>for</strong> <strong>the</strong> East Coast of <strong>the</strong><br />

South Island. Such results <strong>are</strong> in accord with intuition.<br />

Where <strong>the</strong> Cy is low_(as on <strong>the</strong> West Coast) a reasonably accurate<br />

estimate of Qo5, may be obtained from a relatively<br />

short period of rec<br />

on<br />

is of limited valu<br />

is<br />

greater, a longer<br />

to<br />

estimate Qo6. with<br />

on<br />

equation estimate, and <strong>the</strong> regression equations may be of<br />

greater utility.<br />

tühere only a short period of record is available <strong>for</strong> a site<br />

<strong>for</strong> which a design flood estimate is required, a decision<br />

var (Q)<br />

weights <strong>for</strong> combin<br />

in a best estimate. If<br />

its variance can be e<br />

_l<br />

var (Qo6.)<br />

I<br />

var (Q.,x)<br />

4t0<br />

4.11 Summary<br />

_ The country was divided into nine regions lbr estimating<br />

Q using regression analysis. The physical justification lor<br />

<strong>the</strong>se regions was discussed. Apart from <strong>the</strong> south of <strong>the</strong><br />

South lsland, <strong>the</strong> study used a good distribution ol catchments,<br />

and <strong>the</strong> range of values covered <strong>for</strong> Q, <strong>are</strong>a, and<br />

o<strong>the</strong>r parameters was very large.<br />

The results demonstated that generally catchment <strong>are</strong>a<br />

and <strong>the</strong> rainfall parameters considered <strong>are</strong> sufficient to predict<br />

large differences in flood magnitudes within <strong>the</strong> nine<br />

regions delineated and that <strong>the</strong> o<strong>the</strong>r physical characteristics<br />

used <strong>for</strong> <strong>the</strong> catchments do <strong>not</strong> improve that prediction.<br />

Apart from <strong>the</strong> Sou<strong>the</strong>rn Alps of <strong>the</strong> South lsland,<br />

<strong>the</strong> mean annual rainfall can be estimated with reasonable<br />

confidence from isohyetal maps. Rainfall intensities were<br />

estimated from data available in Robertson's (1963) publication.<br />

Updated intensity data <strong>are</strong> now available (Tomlinson<br />

1980; Coulter and Hessell 1980) and, with more extensive<br />

intensity in<strong>for</strong>mation, better estimation equations <strong>are</strong><br />

anticipated.<br />

Preliminary results of <strong>the</strong> study enabled identification ol<br />

catchments which did <strong>not</strong> fit into regional trends. Where<br />

reasons <strong>for</strong> anomalies could be identified, <strong>the</strong> catchments<br />

were excluded from <strong>the</strong> final analyses since <strong>the</strong>ir inclusion<br />

could have led to biased results. About 790 of catchments<br />

were in this category. Designers should be aw<strong>are</strong> of factors<br />

likely to modify flood peaks and if in doubt seek specialisr<br />

advice.<br />

16<br />

Water & soil technical publication no. 20 (1982)


5 Application<br />

5.1 lntroduction<br />

This chapter collates <strong>the</strong> applicable results and findings<br />

from <strong>the</strong> preceding two chapters and <strong>for</strong>mulates <strong>the</strong>m into<br />

what is subsequently reierred to as <strong>the</strong> Regional Flood Estimation<br />

(RFE) method. Rules <strong>for</strong> <strong>the</strong> applicability of <strong>the</strong><br />

RFE method <strong>are</strong> given, a design strategy <strong>for</strong> estimating <strong>the</strong><br />

T-year flood peak is suggested and a number of examples<br />

<strong>are</strong> given which demonstrate <strong>the</strong> use of <strong>the</strong> method.<br />

The RFE method is intended as a procedure to be used<br />

<strong>for</strong> estimating design flood magnitude in situations where<br />

insufficient flood records <strong>are</strong> available <strong>for</strong> conventional<br />

fiequency analysis. It is one of several design flood estimation<br />

methods in such situations and o<strong>the</strong>r methods should<br />

be used and comp<strong>are</strong>d with it. It has been derived from<br />

tlood records by:<br />

(¡) defining regional flood frequency curves of Q1/Q vs<br />

T, where Q1 is a design flood with return period T and<br />

Q is <strong>the</strong> mean annual flood; and<br />

(ii) developing a set of equations <strong>for</strong> estimating Q based<br />

on catchment <strong>are</strong>a and measures of rainfall.<br />

A comparison with Technical Memorandum No' 6l<br />

(TM 6l) is reported in Appendix E.<br />

5.2 Applicability<br />

The applicability of <strong>the</strong> RFE method is necessarily constrained<br />

by <strong>the</strong> restrictions that were applied to <strong>the</strong> data<br />

used in deriving <strong>the</strong> method. The following constraints<br />

<strong>the</strong>re<strong>for</strong>e apply.<br />

The method should only be used <strong>for</strong> rural catchments.<br />

The method should <strong>not</strong> be applied to catchments in<br />

which snowmelt, glaciers, springs, lake storage or<br />

ponding significantly affect <strong>the</strong> flood peak characteristics.<br />

The ranges of catchment <strong>are</strong>as <strong>for</strong> which <strong>the</strong> regional<br />

flood frequency curves and <strong>the</strong> regional mean annual<br />

flood equations were derived <strong>are</strong> listed in Table 5.1.<br />

<strong>These</strong> <strong>are</strong> a guide <strong>for</strong> <strong>the</strong> size of catchment to which<br />

<strong>the</strong> method should be applied.<br />

Because of <strong>the</strong> subjective and ra<strong>the</strong>r broad definition of<br />

regional boundaries, it is suggested that, <strong>for</strong> catchments<br />

near boundaries, floöd frequency curves and annual flood<br />

equations <strong>for</strong> <strong>the</strong> regions ei<strong>the</strong>r side of <strong>the</strong> lines.should be<br />

used in estimating Q1/Q and Q respectively. As in a design<br />

situation where different methods yield different estimates,<br />

<strong>the</strong> different Q1/Q and Q estimates <strong>the</strong>n need to be 'comp<strong>are</strong>d',<br />

i.e., <strong>the</strong> merits of each should be assessed and <strong>the</strong><br />

choice of an estimate should be made after a rationalisation<br />

of <strong>the</strong> relevant facts. Alternatively, a belief probability can<br />

be attached to each estimate and <strong>the</strong>ir expectation calculated,<br />

which is akin to taking a weighted average of <strong>the</strong> estimates.<br />

5.3 Design Strategy<br />

5.3.1 General<br />

The strategy <strong>for</strong> <strong>the</strong> use of <strong>the</strong> RFE method in design is<br />

dependent on two main factors: N, <strong>the</strong> length in years of<br />

<strong>the</strong> flood record if a record is available, and T, <strong>the</strong> design<br />

return period. The influence of <strong>the</strong>se factors on <strong>the</strong> two<br />

parts of <strong>the</strong> RFE method (i.e. <strong>the</strong> regional mean annual<br />

flood equations and <strong>the</strong> regional flood frequency curves) is<br />

explained in <strong>the</strong> two following sections and summarised in<br />

Figure 5.1 .<br />

5.3.2 Estimat¡on of O<br />

(¡) N(Nu<br />

Where <strong>the</strong>re is a flood record and its length N is less than<br />

Nu, which is <strong>the</strong><br />

is equivalent to <strong>the</strong><br />

prãcision of <strong>the</strong> r<br />

on (see Table 4. l2)'<br />

<strong>the</strong> mean annual<br />

imated from <strong>the</strong> regional<br />

equation and <strong>the</strong> available flood record. In applying<br />

<strong>the</strong> equation it is particularly important to estimate values<br />

<strong>for</strong> <strong>the</strong> rainfall variables 1224 and MARAIN in a similar<br />

manner and from <strong>the</strong> same data base as used in <strong>the</strong> equation's<br />

derivation. Specific points to <strong>not</strong>e in estimating<br />

values <strong>for</strong> 1224 and MARAIN <strong>are</strong> outlined below.<br />

1224 Estimates ol <strong>the</strong> 1224 rainfall intensity statistic used<br />

in deriving <strong>the</strong> equations <strong>for</strong> Q were obtained by taking <strong>the</strong><br />

arithmetic mean of <strong>the</strong> 2-year 24-hour data listed by Robertson<br />

(1963, Table 9) <strong>for</strong> rainfall stations located within,<br />

or near to, <strong>the</strong> catchment concerned. Estirrates can be<br />

made from <strong>the</strong> tabular results (Appendix D) obtained by<br />

Tomlinson (1980) in a recent revision of <strong>the</strong> frequency an-<br />

Table 5.1 Ranges of catchment <strong>are</strong>as used to derive regional flood frequency curves and mean annual<br />

flood equations.<br />

Flood frequency<br />

reglon<br />

(Fis. 3.6, 3.7)<br />

Combined N.l.<br />

West Coast<br />

Central Bay of PlentY<br />

N.l. East Coast<br />

Central Hawke's Bay<br />

S.l. West Coast<br />

S.l. East Coast<br />

South Canterbury<br />

Otagoi Southland<br />

Catchment <strong>are</strong>a<br />

(km2)<br />

(Table 3.2)<br />

fntn max<br />

2.5 6643<br />

28.2 2893<br />

171 2370<br />

24.3 2424<br />

48 6350<br />

74.6 3430<br />

22.4 899)<br />

lo9<br />

)<br />

18321<br />

Mean annual flood<br />

feglon<br />

(Fig.4 7,4.1O)<br />

Northland/Coromandel/<br />

East Cape<br />

West Coast<br />

Manawatu/WairaraPa/<br />

Wellington<br />

Pumice<br />

Northland/Coromandel/<br />

East Cape<br />

East Coast<br />

West Coast<br />

lnland Marlborough/<br />

Canterbury<br />

East Coast<br />

(Mackenzie, lnland<br />

(Otago, Southland<br />

(East Coast<br />

Water & soil technical publication no. 20 (1982)<br />

Catchment <strong>are</strong>a<br />

(km')<br />

(Tables 4.1, 4.2)<br />

min max<br />

o4 640<br />

3.1 1075<br />

9.4 734<br />

2.6 534<br />

o.4 640<br />

o5<br />

997<br />

4.O 998<br />

o.2 1070<br />

2.2 464<br />

36.8 1088<br />

2.2 464


-J<br />

æ<br />

'll<br />

o Eo<br />

!¡<br />

Assemble llood prák dåta<br />

lncludlng âll hletoslcat<br />

flood ln?ornatlon.<br />

lrha¿ lr th. I.ngÈh N of th. evallsblr flood rscord?<br />

.õ<br />

-3<br />

J<br />

!<br />

o<br />

{<br />

o t<br />

o<br />

f<br />

o*æ<br />

o<br />

CL<br />

o<br />

2.<br />

c¡ f<br />

Øñ<br />

o<br />

@<br />

c<br />

2.<br />

f<br />

(o<br />

è<br />

o<br />

Ðo<br />

e.<br />

o<br />

to,<br />

f!<br />

o<br />

cl<br />

m<br />

ø<br />

d.<br />

:t<br />

0t<br />

4.<br />

o<br />

f<br />

o ê<br />

, oo.<br />

Apply <strong>the</strong> Generallsed Curve<br />

Esttnato0arauelghtad<br />

o? tho âstlnãtls fron3<br />

I Calculating th€ n€an ol<br />

avall¿ble annual serleo (<br />

graphically interpolatlng<br />

0¡.¡¡ fron an histo¡ical<br />

:cri ee )<br />

2 Applylng <strong>the</strong> roglonal<br />

squation<br />

Ooes I<br />

exc.ed th! llnlt<br />

of th6 Rsglonal<br />

Cu¡ve?<br />

obtaln 0t snd<br />

det€rñiñs <strong>the</strong> stãndg¡d<br />

arror ol oltlnata<br />

NsNu<br />

Apply <strong>the</strong> RBglonåI Cu¡ve<br />

N>Nu<br />

E¡tlnate D ¡¡ th¡ arlthfr.tlc<br />

taån o? th¡ annual ae¡L¡s<br />

fo¡m e frequency anelysia ui<br />

tuo-Farsm6tsr distributioñs<br />

except <strong>for</strong> sitEÊ j.n rhe South<br />

CanteEbuDy snd 8ay of Plsnty<br />

flood l'¡6au€ncy rBgioñs. uhers<br />

I.<br />

hl6torlca¡ ftood p.ak<br />

infq¡ñatlon 6våilablo<br />

Is<br />

N ¿20<br />

o!<br />

1>100<br />

?<br />

EeÈlnate õ uy grephic;Ily<br />

lnt!¡pol3t¡ng Ê¡.¡¡ frm<br />

th. historlcal s.¡l3s<br />

Per<strong>for</strong>n a frequgñcy enalysis<br />

ulth tuo and th¡3e-paranrtsF<br />

di BtriSuti,oñ3<br />

ConpBr€ ths frsqu6ncy analyale rs6ult! uith ths rstinatr<br />

obtafn€d from <strong>the</strong> R€gional Curv¡ (o¡ <strong>the</strong> Gener€lla6d Curva<br />

\¡hen I excs€ds <strong>the</strong> reglonaÌ curve llnlt) ônd obtðin<br />

s uelghted flood p.!k ..tlnatr' .Epeclslly ll I > 2N<br />

Water & soil technical publication no. 20 (1982)


alysis of <strong>the</strong> country's rainfall intensity data. As this revision<br />

used data <strong>for</strong> twice <strong>the</strong> number of stations used by<br />

Robertson, more accurate estimates of 1024 <strong>for</strong> individual<br />

catchments should be possible using Tomlinson's results.<br />

Note that an <strong>are</strong>al reduction factor should <strong>not</strong> be applied<br />

to an 1224 estimate. Fur<strong>the</strong>r, <strong>the</strong> rainfall stations used in<br />

<strong>the</strong> estimation of 1224 should <strong>not</strong> necessarily be <strong>the</strong> ne<strong>are</strong>st<br />

but should be <strong>the</strong> ones that record wea<strong>the</strong>r patterns that <strong>are</strong><br />

of most relevance to <strong>the</strong> catchment.<br />

In <strong>the</strong> Sou<strong>the</strong>rn Alps, Tomlinson's (1980) maps of rainfall<br />

intensity assume that <strong>the</strong> intensity increases with altitude.<br />

This increase was <strong>not</strong> considered in <strong>the</strong> estimates of<br />

1224 used to obtain <strong>the</strong> regional mean annual flood equations.<br />

Thus <strong>the</strong> use of <strong>the</strong> estimates of rainfall intensity in<br />

<strong>the</strong> equations may lead to overestimates of Q <strong>for</strong> catchments<br />

running into <strong>the</strong> Sou<strong>the</strong>rn Alps. There<strong>for</strong>e, when<br />

calculating 1224, poinr estimates of intensity should be<br />

averaged <strong>for</strong> <strong>the</strong> raingauges which receive rainfall typical of<br />

that <strong>for</strong> <strong>the</strong> middle and lower parts of <strong>the</strong> catchment.<br />

MARAIN The mean annual rainfall <strong>for</strong> a catchment may<br />

be estimated directly from rainfall records <strong>for</strong> stations<br />

within, or near to, <strong>the</strong> catchment. Where only short rainfall<br />

records exist, or where <strong>the</strong>re <strong>are</strong> none, estimates of<br />

MARAIN should be obtained from <strong>the</strong> l:500 000 isohyetal<br />

maps of l94l-1970 annual rainfall normals published by<br />

<strong>the</strong> NZ Meteorological Service.<br />

When <strong>the</strong>re is at least one year of flood record available,<br />

we suggest that both <strong>the</strong> available record and <strong>the</strong> regional<br />

equation be used to obtain separate estimates of Q. <strong>These</strong><br />

estimates can <strong>the</strong>n be combined to <strong>for</strong>m a weighted average<br />

estimate of Q , with <strong>the</strong> weighting of <strong>the</strong> Q value estimated<br />

from <strong>the</strong> record being based on <strong>the</strong> length of<strong>the</strong> record relative<br />

to Nr. Hence, <strong>for</strong> example, if N : 3 and N, : 4' <strong>the</strong><br />

weighting factors <strong>for</strong> <strong>the</strong> estimates taken from <strong>the</strong> record<br />

and regional equation should be<br />

3/'7 lì.e.<br />

(ii) N > Nu<br />

NN<br />

N+Nu<br />

N*N,<br />

When <strong>the</strong> flood record length exceeds N' Q may be estimated<br />

as <strong>the</strong> arithmetic mean of <strong>the</strong> annual series. It could<br />

also be estimated f¡om a partial duration series (NERC<br />

1975, pp. 185-213) when N is less than l0 years. In <strong>the</strong> case<br />

where an outlier or historical flood peak Q."* occurs in an<br />

annual series such that Q*"*/Q.e¿ ) 3, it is suggested that<br />

Q be estimated graphically from a probability plot of <strong>the</strong><br />

annual series as <strong>the</strong> flood peak with return period T : 2.33<br />

years.<br />

more flexible frequency curves, it was found in <strong>the</strong> evaluation<br />

tests (Appendix A) that a two-parameter distribution<br />

gives a good approximation to a three-parameter one up to<br />

T : 100 and that it can give more sensible results, even<br />

though it may <strong>not</strong> produce quite as good a fit to <strong>the</strong> annual<br />

senes.<br />

(iii) N > 20<br />

V/ith a flood record of 20 or more years in length, both<br />

two- and three-parameter distributions should be fitted to<br />

tbe annual series <strong>for</strong> <strong>the</strong> estimation of Qr ' A visual inspection<br />

of <strong>the</strong> goodness-of-fit of <strong>the</strong> distributions to <strong>the</strong> series<br />

should <strong>the</strong>n be made and a distribution chosen <strong>for</strong> estimating<br />

Qr . When it is difficult to decide between two or more<br />

fitted distributions, <strong>the</strong> Q.¡ estimate should be determined<br />

by averaging <strong>the</strong> estimates given by <strong>the</strong>se distributions.<br />

In applying frequency analysis methods to estimate a design<br />

flood peak Qt, c<strong>are</strong> should be taken to ensure that<br />

<strong>the</strong>y <strong>are</strong> <strong>not</strong> grossly extrapolated. For example, if N < 20<br />

and <strong>the</strong> two-parameter EVI distribution is fitted to <strong>the</strong> annual<br />

series, its extrapolation past T : 100 years <strong>for</strong> catchments<br />

in some of <strong>the</strong> eastern regions, e.g' South Canterbury,<br />

may lead to an under-estimation of Q1.<br />

It is recommended that <strong>the</strong> fitted distribution should <strong>not</strong><br />

be extrapolated beyond a return period T : 5N' This limit<br />

is less stringent than those often recommended in o<strong>the</strong>r<br />

tests (e.g. a limit of T : 2N is suggested (ICE 1975) <strong>for</strong> <strong>the</strong><br />

NERC (1975) study) and extrapolation beyond it is unwise<br />

on <strong>the</strong> basis of present evidence. The safest course of action<br />

when T exceeds <strong>the</strong> extrapolation limit is to use <strong>the</strong> regional<br />

curve, or <strong>the</strong> appropriate generalised curve when T exceeds<br />

<strong>the</strong> upper limit of <strong>the</strong> regional curve.<br />

Finally, when <strong>the</strong> record length N is sufficiently great to<br />

warrant <strong>the</strong> per<strong>for</strong>ming of a frequency analysis, <strong>the</strong> resulting<br />

Q1 estimates should be comp<strong>are</strong>d with that using <strong>the</strong> regional<br />

(or generalised) curve, with Q being calculated from<br />

<strong>the</strong> annual series. A, decision must subsequently be made as<br />

to which estimate to accept <strong>for</strong> design. This may involve<br />

taking a weighted average of <strong>the</strong> estimate from <strong>the</strong> frequency<br />

analyses of <strong>the</strong> site data and <strong>the</strong> estimate obtained<br />

using <strong>the</strong> regional curve, and this procedure is suggested<br />

when T > 2N. In making this decision on <strong>the</strong> final Q1<br />

value it should be lemembered that variations <strong>are</strong> inherent<br />

in all flood records, especially small ones, so that <strong>the</strong> trend<br />

in <strong>the</strong> probability plot should <strong>not</strong> be over-emphasised, even<br />

though it may depart significantly from <strong>the</strong> regional one.<br />

Instead, <strong>the</strong> emphasis should be placed on <strong>the</strong> regional<br />

curve, <strong>for</strong> it represents <strong>the</strong> trend of all <strong>the</strong> flood peak data<br />

<strong>for</strong> <strong>the</strong> region and its construction involved <strong>the</strong> averaging<br />

out of <strong>the</strong> variations in <strong>the</strong> individual flood records.<br />

5.3.3 Estimation of 01<br />

(i) N


Year<br />

1958<br />

1959<br />

1960<br />

l96r<br />

t962<br />

1963<br />

t9&<br />

r 965<br />

1966<br />

1967<br />

1968<br />

Pe¡k (m¡ls)<br />

2238<br />

562<br />

1506<br />

702<br />

1552<br />

1644<br />

2201<br />

2859<br />

2689<br />

I 802<br />

1082<br />

Year<br />

t969<br />

t970<br />

t91l<br />

1972<br />

1913<br />

1974<br />

1975<br />

t976<br />

1977<br />

1978<br />

Peak (m3ls)<br />

6t3<br />

2387<br />

20t9<br />

t9u<br />

t094<br />

1357<br />

1690<br />

l3l I<br />

865<br />

2875<br />

The following four examples estimate <strong>the</strong> 100_year flood<br />

peak Q,oo and <strong>the</strong> corresponding 68,3g0 confidence limits<br />

lor <strong>the</strong> site, assuming that:<br />

(¡) no flood record is available;<br />

(ii) only <strong>the</strong> first 3 years of record, from l95g to 1960, <strong>are</strong><br />

available;<br />

(¡iD l¿ years of record from 1958 to l97l <strong>are</strong> available;<br />

(iv) <strong>the</strong> full length of record from I 95g to I 97g is available.<br />

5.4.1 Example 1: N:e<br />

e estimated from <strong>the</strong> regional<br />

Figure 4. 10, <strong>the</strong> catchment lies<br />

ellEast Cape flood region and<br />

a = 2. 18 x l0-? AREA o ó1 MARAIN ,3!<br />

Substituting <strong>the</strong> values <strong>for</strong> AREA and MARAIN as given<br />

above produces:<br />

a = 2.18 x l0-? X 13930 64 X 2550, 13<br />

= l94O m'/s<br />

(b) The regional curve ordinate should now be obtained.<br />

The site is in <strong>the</strong> North Island East Coast flood frequency<br />

region, i.e, Region 3 in Figure 3.6, and hence, lrom Table<br />

3.4, <strong>the</strong> regional curve ordinate is:<br />

Q'oo/Q = 2.89<br />

. Alte^rnatively, Q,oolQ can be computed from <strong>the</strong> equa_<br />

tion of <strong>the</strong> regional curve in Table 3.4:<br />

Q/Q = 0.762+0.469y<br />

For T = 100, y given by Equation 3.16 is<br />

y : -ln(-ln(l- I ) )<br />

= 4.60<br />

100<br />

(This result could also have been obtained irom Table 3.1.)<br />

Substituting <strong>for</strong> y in <strong>the</strong> regional curve equation gives<br />

Q'oo/Q : 0.726 + 0.469 x 4.60<br />

: 2.88<br />

(The difference of 0.01 is due to rounding effecrs.)<br />

(c) Combining <strong>the</strong> estimates <strong>for</strong> Q and e,oole produces<br />

Q'oo.<br />

Thus Q,oo = 1944. x 2.89<br />

= 5607 m3,/s<br />

(d) The corresponding standard error of estimate is ob_<br />

tained from Equation 3.25, namely<br />

var(Qr) = E(Q),. var(ea/Q) + E(er/Q),. var(e)<br />

The RHS terms of this equation <strong>are</strong> estimated as follows:<br />

E(Q)<br />

-- l9¿lo<br />

From Equation 3.26<br />

var (Q1/Q) : (Cr .<br />

Qt )'<br />

o<br />

where, from Table 3.9<br />

CF<br />

(_t.zs + 5.74 tnT)/100<br />

= 0.25<br />

Thus var (Qr/Q) = @.25 x 2.89), = 0.522<br />

Also E(Q'/Q) = 2.89<br />

]tr9.ti1a!<br />

term var (Q) is obtained from rhe p estimates in<br />

Table 4.12. lf p is assumed to be 0.5, Cp : b.¡Of <strong>for</strong> <strong>the</strong><br />

Northland,/Coromandel,/East Cape flood- region. Since, by<br />

definition,<br />

cË = uar (Q)/Q'<br />

.'. var(Q)= C'..Q,<br />

: (0.301 x t940)'<br />

= 3.410 x l0'<br />

Reverting to Equation 3.25<br />

var (Q'oo) = 1940'z x 0.522 + 2.89, x 3.410 x 105<br />

= 4.813 x 10.<br />

There<strong>for</strong>e <strong>the</strong> standard error of estimate of e,oo is<br />

Se (Q'oo) = (4.813 * 1gc¡t/z<br />

= 2194 m,/s, which is 39Vo of e,on<br />

Figure 5.2 Location of <strong>the</strong> Motu catchment above Houpoto.<br />

1435 ml/s<br />

Water & soil technical publication no. 20 (1982)<br />

80<br />

5.4.2 Exampte 2: N:3<br />

(l) W¡th N = 3 = Nu, Q should be estimated from both<br />

<strong>the</strong> flood record and <strong>the</strong> regional equation. Using <strong>the</strong> flood<br />

record:<br />

Qobs %Q238 + 562 + 1506)


Using <strong>the</strong> regional equation<br />

Qest<br />

1940 m'ls, as in Example I<br />

Combining <strong>the</strong>se estimates from <strong>the</strong> record and regional<br />

equation, using a weighting factor of 0.5 <strong>for</strong> both (see section<br />

5.2.2), gives<br />

a = 0.5x1435+0.5x194O<br />

1688 m',/s<br />

(b) As N< 10, <strong>the</strong> regional curve should still be applied to<br />

estimate Q,oo. The curve ordinate is unchanged at<br />

Q,oolQ : 2.89<br />

(c) Combining <strong>the</strong> estimates of Q and Q,oolQ results in<br />

Q,oo 1688 x 2.89<br />

= 4878 m!/s<br />

(d) In obtaining <strong>the</strong> standard error of estimate, <strong>the</strong> RHS<br />

terms in Equation 3.25 changed from Example I <strong>are</strong><br />

E(Q) = 1688 m3,/s<br />

and <strong>the</strong> variance of Q estimated from <strong>the</strong> flood record is<br />

given by<br />

E(Q)<br />

and<br />

var(Q)<br />

1704 m'ls<br />

(cu.Q)'<br />

N<br />

= (0.54 x 1704)' = 6.048 x 10.<br />

t4<br />

There<strong>for</strong>e, from Equation 3.25<br />

var(Qroo) l1M' x 0.522 + 2.89' x 6.048 x l0'<br />

= 2.021 x 106<br />

Thus<br />

Se(Q'oo) : (2.021 x106)v,<br />

1422 m3/s which is 2590 of Q,oo<br />

5.4.4 Example 4: N:21<br />

(a) As in Example 3, Q can be estimated directly from <strong>the</strong><br />

annual series.<br />

var(Qo6) - (Cn'Qou')'<br />

2t<br />

N<br />

i]r<br />

where C" :<br />

The Cn <strong>for</strong> <strong>the</strong> 0.54 from<br />

2l years of record is 0.43, which comp<strong>are</strong>s<br />

Figure 4.12<br />

well with <strong>the</strong> regional estimate of C" : 9.54<br />

Thus<br />

var(Qo6) : (0.54 x<br />

(b) Since T ) 5N and N > 20, frequency analyses may be<br />

1435)' : 2.002 x l0'<br />

per<strong>for</strong>med on <strong>the</strong> annual series using two- and three-parameter<br />

distributions. The EVI distribution fitted by <strong>the</strong><br />

3<br />

The variance<br />

maximum<br />

of<br />

likelihood method gives<br />

Q estimated from<br />

a good fit to <strong>the</strong> data<br />

<strong>the</strong> regional equation is<br />

<strong>the</strong><br />

and yields<br />

same as in Example l, i.e.,<br />

var(QesJ = 3.410x105<br />

Q'oo<br />

: 4l7O m'/s<br />

and an approximate standard error of estimate of 800 m',/s.<br />

From Equation 4.10, <strong>the</strong> variance of <strong>the</strong> combined estimate (This<br />

of Q is<br />

standard error is based on a <strong>for</strong>mula used by NERC<br />

(1975, p. 170), assuming Cu : 0.54).<br />

l:l+l<br />

(c) The corresponding estimate using <strong>the</strong> regional curve is<br />

var(Q) var(Qo') var(Q.r¡) 2.002 x l0r Q,oo 1665x2.89:4812m3/s<br />

and <strong>the</strong> associated standard error of estimate is obtained<br />

+<br />

from Equation 3.25 as<br />

3.410 x l0r<br />

var(Q,oo) 1665' x 0.522 + 2.8g'z x<br />

(0'54 x 1665)'z<br />

so that var(Q) = 1.261 x 105<br />

2l<br />

Hence from Equation<br />

1.769 x loó<br />

3.25<br />

so that<br />

var(Qroo) 1688' 0.522 + 2.89'? x 1.261 x 105<br />

: 2.541 x Se(Q'oo) 1330 m3,/s which is 2490 of<br />

106<br />

Q,oo<br />

and<br />

Se(Q,oo) = (2.541 x l0ó)/z<br />

1594 m!/s, which is 2890 of Q,oo<br />

5.4.5 Results Summary<br />

Table 5.2 summarises <strong>the</strong> estimates of Q and Q'oo obtained<br />

in <strong>the</strong> four examples using <strong>the</strong> RFE method.<br />

5.4.3 Example 3: N: 14<br />

The reduction in <strong>the</strong> standard error of estimate in Table<br />

(a) As N > N"( = 3), Q can be estimated directly from <strong>the</strong> 5.2 with increase in record length illustrates <strong>the</strong> value of increasing<br />

lengths of flood record. In Example 4, a second<br />

annual series.<br />

Hence<br />

estimate of Q,oo : 4l7O m'ls (by frequency analysis of <strong>the</strong><br />

l4<br />

2l years ofrecord) is available and a designer would choose<br />

a = I a weighted mean of <strong>the</strong> two.<br />

I ei =1704m',/s<br />

It will be seen that <strong>the</strong> estimate of Q in <strong>the</strong> second example,<br />

obtained by combining <strong>the</strong> estimates from <strong>the</strong> re-<br />

14 i-: I<br />

gional equation and <strong>the</strong> three years of record, is closer to<br />

(b) Applying <strong>the</strong> regional curve produces<br />

<strong>the</strong> Q estimate using <strong>the</strong> full flood record than that in Example<br />

3 which is based on 14 years and, as a consequence,<br />

Q'oo :1704 x2.89<br />

= 4925 m3/s<br />

<strong>the</strong> corresponding Q,oo estimate is also closer to <strong>the</strong> Qroo<br />

estimate determined from <strong>the</strong> full record. Although this<br />

may be a chance result it does emphasise that even a short<br />

(c) The new RHS terms in Equation 3.25 <strong>are</strong><br />

flood record is useful.<br />

Water & soil technical publication no. 20 (1982)<br />

81<br />

a<br />

2t<br />

= I )- Qi:1665m'/s


The estimate of Q from <strong>the</strong> regional equations is as<br />

accurate as an estimate from about three y€ars of record<br />

(Table 4. l2). If <strong>the</strong> typical variability is checked by drawing<br />

samples from <strong>the</strong> Motu data listed earlier, or by considering<br />

<strong>the</strong> standard error of <strong>the</strong> regional equation, it will be seen<br />

that this particular estimate from <strong>the</strong> regional equation is<br />

<strong>for</strong>tuitously close to <strong>the</strong> estimate from 2l years of record.<br />

Table 5.2 Summary of selected results from <strong>the</strong> RFE method.<br />

Example<br />

number<br />

1<br />

2<br />

3<br />

4<br />

Length of<br />

recor.d<br />

(yrsl<br />

o<br />

3<br />

14<br />

21<br />

Estimate<br />

ofO<br />

(m3/s)<br />

39<br />

28<br />

25<br />

24<br />

82<br />

Water & soil technical publication no. 20 (1982)


6 Summary<br />

In New Zealand little progress has been made in flood<br />

estimation techniques over <strong>the</strong> last 25 years despite an upsurge<br />

in <strong>the</strong> amount of streamflow data that has been col-<br />

Iected over this period. This study has attempted to improve<br />

this situation by<br />

al flood frequency<br />

analysis procedu<br />

<strong>the</strong> available<br />

annual and historical flo<br />

I catchments'<br />

The procedure, known as <strong>the</strong> Regional Flood Estimation<br />

(RFË) method, is applicable to both gauged and ungauged<br />

iural catchments which in general <strong>are</strong> greater than 20 km'<br />

in <strong>are</strong>a. Since <strong>the</strong> method was developed by averaging <strong>the</strong><br />

sampling variation that exists in individual flood records, it<br />

should provide a more reliable design flood peak estimate<br />

than that determined by fitting a frequency curve to a relatively<br />

short record.<br />

The RFE method comprises a set of eight regional flood<br />

frequency cu<br />

vs T, and a set of<br />

niné regionat<br />

when <strong>the</strong>re is little<br />

or no flood ¡<br />

S <strong>the</strong> T-Year flood,<br />

and Q is <strong>the</strong> mean annual flood. The most important independent<br />

variables in <strong>the</strong> equations <strong>are</strong> catchment <strong>are</strong>a<br />

and an index of <strong>the</strong> catchment rainfall.<br />

The regional curves may be used up to <strong>the</strong> 200-year return<br />

period to estimate a design flood peak, except in <strong>the</strong><br />

Otago-Southland region where <strong>the</strong> upper limit on return<br />

period is restricted to 100 years because of <strong>the</strong> limited data<br />

in this <strong>are</strong>a that were available <strong>for</strong> analysis. The curves <strong>are</strong><br />

defined by <strong>the</strong> straight-line extreme value type I (EVl) distribution<br />

<strong>for</strong> all but two of <strong>the</strong> regions <strong>the</strong> Bay of Plenty<br />

-<br />

and South Canterbury regions, where <strong>the</strong> extreme value<br />

type 2 (EV2) tlistribution was found to give a better definitión<br />

of <strong>the</strong> regional trend in <strong>the</strong> data. Although <strong>the</strong> general<br />

extreme value (C<br />

gional curves, th<br />

of <strong>the</strong> log-Pears<br />

tion tests carried<br />

that <strong>the</strong> LP3 distribution may well have given an equally<br />

good description of <strong>the</strong> curves.<br />

It is evident, both from <strong>the</strong> regional mass probability<br />

plots and from <strong>the</strong> standard error equations derived <strong>for</strong> <strong>the</strong><br />

iegional curves, that <strong>the</strong> variability in <strong>the</strong> regional Qr/Q<br />

data is well within acceptable limits. A quantitative indication<br />

of <strong>the</strong> confidence that may be placed on values of<br />

Q1/Q estimated fiom a regional curve is obtainable from<br />

<strong>the</strong> standard error equations which give estimates comparing<br />

very favourably with those given by <strong>the</strong> equivalent<br />

NERC (1975) equation.<br />

A feature of this study is <strong>the</strong> dependence of <strong>the</strong> results on<br />

climate. This is illustrated by <strong>the</strong> regions, which <strong>are</strong> partially<br />

consistent with recognised climatic boundaries, and<br />

by <strong>the</strong> difference in slope of <strong>the</strong> western and eastern regional<br />

curves. The latter curves have greater slopes, which<br />

ãre uttributable to <strong>the</strong> greater variability in <strong>the</strong> flood peak<br />

data <strong>for</strong> <strong>the</strong> eastern regions where <strong>the</strong> climate is drier and<br />

<strong>the</strong> antecedent conditions more variable. Fur<strong>the</strong>r indication<br />

of <strong>the</strong> climatic influence is given by <strong>the</strong> regional equations<br />

<strong>for</strong> estimating Q . ¡.lo physical characteristics, o<strong>the</strong>r than<br />

catchment <strong>are</strong>a, <strong>are</strong> included in <strong>the</strong> equations, <strong>the</strong> only<br />

o<strong>the</strong>r important parameters being catchment rainfall estimates.<br />

This suggests that climate may be <strong>the</strong> dominant factor<br />

affecting flood peaks with magnitude equal to or<br />

greater than <strong>the</strong> mean annual flood. O<strong>the</strong>r factors often<br />

considered important, such as geology and topography,<br />

have been accounted <strong>for</strong> to some extent in <strong>the</strong> regionalisation<br />

of <strong>the</strong> country.<br />

The country is divided into two sets of regions' one set<br />

<strong>for</strong> estimating Qr/Q and one <strong>for</strong> estimating Q. <strong>These</strong> <strong>are</strong><br />

very similar<br />

t<br />

tempts were<br />

e<br />

purposes, b<br />

t<br />

regions is a<br />

a<br />

Q1/Q and Q.<br />

The application_of <strong>the</strong> method to a catchment <strong>for</strong> <strong>the</strong><br />

estimation of Q1/Q and<br />

ted<br />

in Chapter 5 with four<br />

<strong>the</strong><br />

advantage, when only a<br />

of<br />

combining <strong>the</strong> estimates<br />

uation<br />

and <strong>the</strong> flood record to obtain a weighted average<br />

"best" estimate of Q . t¡e precision of each equation is expressed<br />

of record and,<br />

àepend<br />

estimate of Q<br />

from a<br />

he error of estimating<br />

od record. Thus<br />

when an important waterway project is being considered, a<br />

recorder should be installed as soon as possible to record<br />

<strong>the</strong> flood peaks.<br />

In addition to <strong>the</strong> regional curves of Q1/Q which extend<br />

up to a maximum of 200 years, generalised curves, one <strong>for</strong><br />

<strong>the</strong> west and one <strong>for</strong> <strong>the</strong> east, <strong>are</strong> given. <strong>These</strong> curves were<br />

derived from all <strong>the</strong> flood peak data collected <strong>for</strong> this<br />

study, excluding four extreme flood events, and <strong>the</strong>y can be<br />

applied from beyond <strong>the</strong> limit of <strong>the</strong> regional curves up to<br />

<strong>the</strong> 1000-year return period. Of interest is <strong>the</strong> marked similarity<br />

of <strong>the</strong>se curves with those derived by Stevens and<br />

ing too many regions. lt is envisaged that as more flood<br />

p.ãk dut" become available, revisions and refinements will<br />

te made to <strong>the</strong> RFE method' especially <strong>for</strong> <strong>the</strong> estimation<br />

of Q.<br />

In all cases, we recommend that o<strong>the</strong>r methods <strong>for</strong> estimating<br />

design flood magnitude also should be used and <strong>the</strong><br />

results comp<strong>are</strong>d be<strong>for</strong>e a final figure is selected'<br />

Water & soil technical publication no. 20 (1982)<br />

83


Water & soil technical publication no. 20 (1982)


References<br />

Adamson, P.T. 1979: Probability distributions of best fit<br />

to South African flood data. Water S.A. 5 (2):70-6.<br />

Aitken, A.P. 1975: Hydrologic investigation and design of<br />

urban stormwater drainage systems. Australian<br />

Vl/ater Resources Council, Technical Paper No. 10.<br />

140 P.<br />

Beable, M.E. 1976: A simulation method <strong>for</strong> predicting<br />

hydrological effecls of land-use change. PhD Thesis<br />

(unpublished). Department of Civil Engineering,<br />

University of Canterbury. 160 p.<br />

Beard, L.R. 1974: Flood flow frequency techniques. Center<br />

<strong>for</strong> Research in Waler Resources, University oÍ<br />

Texas, Austin, Technical Report CRWR-|19.<br />

Guidelines <strong>for</strong> determining flood flow frequency.<br />

US Water Resources Council, Bulletin No.<br />

I7A ol <strong>the</strong> Hydrology Committee.<br />

-19]7: Benham, A.D. 1950: The estimation of extreme flood discharges<br />

by statistical methods. Proceedings of <strong>the</strong><br />

N.Z. Institulion of Engineers 36: 119-65.<br />

Benson, M.A. 1962a: Evolution of methods <strong>for</strong> evaluating<br />

<strong>the</strong> occurrence of floods. US Geological Survey<br />

Water Supply Paper 1580-4.<br />

-1962b<br />

: Factors infl uencing <strong>the</strong> occurrence of fl oods<br />

in humid regions of diverse terrain. US Geological<br />

Survey lltaler Supply Paper 1580-8.<br />

Factors affecting <strong>the</strong> occurrence of floods in<br />

<strong>the</strong> southwest. US Geological Survey Water Supply<br />

Paper 1580-D.<br />

Blom, C. 1958: Statistical Estimates and Trans<strong>for</strong>med<br />

-|964:<br />

Beta variables. John Wiley, New York.<br />

Burns, M.M. 1977: (Chairman) Report to <strong>the</strong> New Zealand<br />

Government of "The Fact Finding Group on Nuclear<br />

Power".<br />

Campbelt, A.P. 1959: Revision of technical memorandum<br />

No. 6l: provisional standard <strong>for</strong> determination of<br />

peak flows in small catchment <strong>are</strong>as. In Hydrology.<br />

Proceedings of a meeting of design engineers<br />

employed on hydrological works. Soil Conservation<br />

and Rivers Control Council, Wellington. pp.2-l to<br />

2-t2.<br />

Flood estimation and channel scour. 1n<br />

Hydrology and Land Management. Soil Conservation<br />

and Rivers Control Council, Wellington. pp'<br />

-1962:<br />

94-100.<br />

Chapman, T.G.; Dunin, F.X. 1975: Prediction in catchment<br />

hydrology. Proceedings of <strong>the</strong> National Symposium<br />

on Hydrology. Australian Academy of<br />

Sciences, Canberra.<br />

Chow, V.T. 1964: Handbook of Applied Hydrologv.<br />

McGraw-Hill, New York.<br />

Clarke, R.T. 1973: A review of some ma<strong>the</strong>matical models<br />

used in hydrology, with observations on <strong>the</strong>ir calibration<br />

and lse. Journal of Hydrology l9: l-20'<br />

Coulter, J.D.; Hessell, J.W.D. 1980: The frequency of high<br />

intensity rainfalls in New Zealand, Part Il, Point estimates.<br />

Meteorological Service Miscellaneous<br />

Publication ^/Z 162.<br />

Cunnane, C. 1915 Proceedings of Flood Studies Conference.<br />

Institution of Civil Engineers, London. pp.<br />

43-6.<br />

Unbiased plotting positions -<br />

a review.<br />

Journal oÍ HYdrologY 37:205-22-<br />

Dalrymple, T. 1960: Flood frequency analyses. Manual of<br />

-1978:<br />

Hydrology: Part 3 -<br />

Flood-flow techniques' US<br />

Geological Survey Water Supply Pøper 1543-4.<br />

French, R.; Pilgrim, D.H.; Laurenson, E.M. 1974: Experimental<br />

examination of <strong>the</strong> rational method <strong>for</strong> small<br />

rural catchments. Transaclions of lhe Institution of<br />

Engineers, (Australia) CE I6 (2):95-102.<br />

Gilbert, D.J. 1978: Calculating lake inf'lows. Journal of<br />

Hydrology (NZ) 17(l): 39-43.<br />

Gringorten, I.L. 1963: A plotting rule <strong>for</strong> extreme probability<br />

paper. Journal of Geophysical Research 68(3):<br />

813-4.<br />

Gumbel, E.J. l94l: The return period of flood flows..4nnals<br />

of Ma<strong>the</strong>matical Statistics 12: 163-90.<br />

On <strong>the</strong> plotting of flood discharges. Trarsoctions<br />

of <strong>the</strong> American Geophysical Union 24(2);<br />

699-719.<br />

-1943:<br />

Statistical <strong>the</strong>ory of extreme values and<br />

some practical applications. US Bureau of Standards,<br />

Applied Ma<strong>the</strong>matics Ser¡es 33: l5-16.<br />

Hardison,<br />

-1954: C.H. l97l: Prediction error of regression estimates<br />

of streamflow characteristics at ungauged<br />

sites. US Geological Survey Professional Paper<br />

750-C. pp. C228-C236.<br />

Heiler, T.D. 1974: Rational method of flood estimation <strong>for</strong><br />

rural catchments in peninsular Malaysia. Hydrological<br />

Procedure No. 5, Drainage and lrrigation Division,<br />

Ministry of Agriculture and Fisheries, Kuala<br />

Lumpur.<br />

Data and methods involved in predicting<br />

flood flow. NZ Engineering j0: 302-5.<br />

Heiler, T.D.; Chew, Hai Hong. 1974: Magnitude and frequency<br />

-1975:<br />

of floods in peninsular Malaysia. Hydrological<br />

Procedure No. 4, Drainage and lrrigøtion Division,<br />

Ministry of Agriculture and Fßheries, Kuala<br />

Lumpur.<br />

Henderson, F.M. 1966: Open channel flow. Macmillan,<br />

New York. 522p.<br />

Hoffmeister, G. 1976: Accuracy of syn<strong>the</strong>tic unit hydrographs<br />

derived from representative basins. Research<br />

Report No. 76/7, Department of Civil Engineering,<br />

U niversity oJ' Canterbury.<br />

Ibbitt, R.P. 1979: Flow estimation in an unstable river illustrated<br />

on <strong>the</strong> Rakaia River <strong>for</strong> <strong>the</strong> period 1958-1978.<br />

Journol of Hydrology (NZ) I8(2): 88-108.<br />

Institution of Civil Engineers 1975: Flood Studies Conference<br />

Proceedings. Institution of Civil Engineers,<br />

London, 7-8 May. 106 p.<br />

Irish, J.; Ashkanasy, N.M. 1977: Flood frequency analysis.<br />

In Australian Rainfatl and Runoff. Chapter 9. The<br />

Institution of Engineers, Australia.<br />

Jenkinson, A.F. 1955: The frequency distribution of <strong>the</strong><br />

annual maximum (or minimum) values of meteorological<br />

elements. Quarterly Journal of Royal Meleorological<br />

Society 87: 158-71.<br />

Jowett, I.G.; Thompson, S.M. 1977: Clutha power development,<br />

flows and design floods. Appendix 2 of<br />

Environmental impact report on design and construction<br />

proposals, Clutha Valley Developments,<br />

Ministry of Vy'orks and Development, Wellington.<br />

Leese, M.N. 1973: The use of censored data in estimated<br />

T-year floods. Proceedings of <strong>the</strong> Madrid Symposium,<br />

Design oÍ Water Resources Proiects with Inadequate<br />

Data, Vol. 2. June 1973. UNESCO-WMO'<br />

IASH. pp.563-75.<br />

Linsley, R.K.; Kohler, M.A.; Paulhus, L.H. 1975: Hydrotogy<br />

<strong>for</strong> Engineers. McGraw-Hill, New York.<br />

McGuinness, J.L.; Brakensiek, D.L. 1964: Simplified techniques<br />

<strong>for</strong> fitting frequency distributions to hydrologic<br />

data. US Agriculturol Handbook No- 25. 42 p.<br />

Maguiness, J.A.; Blackwood, P.l-.; Broome, P.; Beable'<br />

M.E. (In prep a) A report on FRAN, a computer<br />

program <strong>for</strong> <strong>the</strong> frequency analysis of extremes. Min-<br />

Hydrology of flow control. Section 25-l In<br />

Handbook of applied hvdrologv (Edited by V.T.<br />

Chow). McGraw-Hill, New York'<br />

Draper,<br />

-1964:<br />

N.R.; Smith, H. 1968: Applied regression analysis.<br />

John WileY, New York. 407P.<br />

istry of Works and Development, Wellington.<br />

Water & soil technical publication no. 20 (1982)<br />

85


Maguiness, J.A.; Blackwood, P.L.; Beable, M.E. (ln prep<br />

b) A report on FRANCES, a computer program <strong>for</strong><br />

<strong>the</strong> frequency analysis of a censored sample. Ministry<br />

of Works and Development, Wellington.<br />

Matalas, N.C.; Gilroy, E.J. l9ó8: Some comments on regionalisation<br />

in hydrologic studies. Journal of Water<br />

Resources Research 4 (6): 136l-9.<br />

Ministry of Works 1970: Re¡resentative Basins of New<br />

Zealand. llater ond Soil Division, Miscellaneous<br />

Hydrological Publication No. Z. Minisrry of Works,<br />

Wellington.<br />

Ministry of Works and Development 1979: Code of practice<br />

<strong>for</strong> <strong>the</strong> design of bridge waterways. Ministry oÍ<br />

Works and Development, Civil Division publication<br />

CDP 705/C (Prep<strong>are</strong>d by Water and Soil Division).<br />

72 p.<br />

National Water and Soil Conservation Organisation 1975:<br />

Metric version of technical memorandum No. 61.<br />

Ministry of Works and Development, Wellington.<br />

Index to hydrological recording stations in<br />

New Zealand 198O. lVater & Soil Mßcellaneous<br />

Publication No. 18. Ministry of Works and Development,<br />

Wellington.<br />

-¡9El:<br />

NERC 1975: Flood Studies Report, Vol. l. Natural Environment<br />

Research Council, London.<br />

Neill, C.R. 1973: Guide to Bridge Hydraulics. published<br />

<strong>for</strong> Roads and Transportation Association of<br />

Canada by University of Toronto press.<br />

Newson, M. 1975: Mapwork <strong>for</strong> flood studies, part I : Selection<br />

and derivation of indices. Report No. 25, Institute<br />

oÍ Hydrology, Walling<strong>for</strong>d.<br />

Pilgrim, D.H. 1966: Storm loss rates <strong>for</strong> regions with limited<br />

data. Proceedings of <strong>the</strong> American Society of<br />

Civil Engineers 92 (Hy 2): 193-2-06.<br />

Pilgrim, D.H.; Cordery, l. 1974: Design flood estimation<br />

- an appraisal of philosophies and needs. Reporl<br />

No. 140, Vl/ater Research Laboratory, University of<br />

New South Wales.<br />

Robertson, N.G. 1963: The frequency of high intensity<br />

rainfalls in New Zealand. NZ Meteorological Service<br />

Miscellaneous Publication I I 8.<br />

Rosenbrock, H.H. l9ó0: An automatic method of finding<br />

<strong>the</strong> greatest or least value of a function. The Computer<br />

Journal 3: 175-84.<br />

Sangal, B.P.; Kallio, R.W. 1977: Magnitude and frequency<br />

of floods in Sou<strong>the</strong>rn Ontario. Technicol<br />

Bulletin Series No. 99, Inland Waters Directorote,<br />

Waler Planning and Management Branch, Fßheries<br />

and Environment, Canadø.<br />

Schaake, J.C.; Geyer, J.C.; Knapp, J.W. 1962: Experimental<br />

examination of <strong>the</strong> rational method. Proceedings<br />

of lhe American Society of Civil Engineers 93<br />

(Hy 6): 353-70.<br />

Schnackenberg, E.C. 1949: Extreme flood discharges. proceedings<br />

of <strong>the</strong> NZ Institution of Engineers 35<br />

376-427.<br />

Soil Conservation and Rivers Control Council 1957:<br />

Floods in New Zealand, 1920-53. SCRCC, Wellington.<br />

Stevens, M.J.; Lynn, P.P. 1978: Regional growth curves.<br />

Report No. 52, Institute of Hydrology, llalting<strong>for</strong>d.<br />

Thomas, D.M.; Benson, M.A. 1970: Generalisation of<br />

streamflow characteristics from drainage basin characteristics.<br />

US Geological Survey lüater Supply<br />

Paper No. 1975.<br />

Toebes, C.1972l. The surface water resources of New Zealand.<br />

Paper presented at Xll NZ Science Congress,<br />

Palmerston North.<br />

Toebes, C.; Palmer, B.R. I969: Hydrological regions of<br />

New Zealand. Water and Soil Division, Miscellaneous<br />

Hydrological Publication, No. 4. Minisrry of<br />

Works, Wellington.<br />

Tomlinson, A.l. 1980: The frequency of high inrensity rainfalls<br />

in New Zealand, Pact l. Water & Soil Technical<br />

Publication /9. Ministry of Works and Development,<br />

Wellington.<br />

Water & soil technical publication no. 20 (1982)<br />

86


Appendix A : Tests with frequency distributions<br />

4.1 Introduction<br />

The General Extreme Value (GEV) distribution is detailed<br />

in Chapter 3. The Gamma distribution, a<strong>not</strong>her general<br />

distribution from which several o<strong>the</strong>r specific distributions<br />

derive, is outlined below. Then a computer program<br />

(FRAN) is described. This program was developed to<br />

enable an evaluation of different lrequency analysis methods<br />

on New Zealand flood data. It was found that <strong>the</strong> extreme<br />

value type I (EVl) distribution fitted by <strong>the</strong> Jenkinson<br />

method generally fitted <strong>the</strong> data well, but that in many<br />

cases <strong>the</strong> EVI distribution l'itted with Gumbel's method of<br />

leasl squ<strong>are</strong>s also gave satisfactory results.<br />

4.2 Gamma distribution<br />

The three-parameter Camma distribution is <strong>the</strong> same as<br />

<strong>the</strong> Pearson Type 3 distribution. It has <strong>the</strong> pdl<br />

f(x) : I (x-xo¡r-le-(x-xo)/li .....A.1<br />

0rr(r)<br />

which is defined <strong>for</strong> x > xo,<br />

where xo<br />

ù_<br />

l)-<br />

I'(r):<br />

a location parameter,<br />

a scale parameter,<br />

a shape parameter, and<br />

<strong>the</strong> Gamma function, equal to ("y- 1)! <strong>for</strong><br />

positive integer values of -y.<br />

lf "y : ¡, (x) describes an exponential distribution; and if<br />

xo = 0, f(x) describes a two-parameter Gamma distribution.<br />

Like <strong>the</strong> CEV distribution (section 3.1.3), Equation A.l<br />

describes a tämily of distributions, with each member characterised<br />

by <strong>the</strong> value of <strong>the</strong> shape parameter, in this case 7.<br />

This parameter is inversely related to <strong>the</strong> skewness of <strong>the</strong><br />

variate, and as <strong>the</strong> skewness gets smaller, "y increases and<br />

Equation A.l tends to <strong>the</strong> Normal distribution (NERC<br />

1975). When <strong>the</strong> skew is zero <strong>the</strong> symmetrical, two-parameter<br />

Normal distribution applies, with <strong>the</strong> pdf<br />

f(x) : I s- /tl(x- pl/ol'<br />

"F<br />

where ¡,r : a location parameter, and<br />

o : ascaleparameter.<br />

A2<br />

The parameters ¡,t and o <strong>are</strong>, in fact, <strong>the</strong> population mean<br />

and standard deviation, respectively, of <strong>the</strong> variate x.<br />

An analogous situation to that described above applies<br />

tbr <strong>the</strong> three-parameter log-Gamma distribution. This distribution<br />

is <strong>the</strong> same as <strong>the</strong> log-Pearson Type 3 (LP3) distribution<br />

and has a pdf of <strong>the</strong> <strong>for</strong>m<br />

f(x) : I (l'nx- xo)?- I e-(r)nx-xo)/B ..... 4.3<br />

x0zf(r)<br />

which is defined <strong>for</strong> x > e"n.<br />

Like Equation A. I, Equation 4.3 describes a family of<br />

distributions, with each member being described by a particular<br />

value of 'y. When <strong>the</strong> skewness of <strong>the</strong> variate is zero,<br />

<strong>the</strong> two-parameter log-Normal distribution applies, with<br />

<strong>the</strong> pdf<br />

f(x) : I s-<br />

xoF<br />

/,1 (t'nx- p\/ øl'<br />

A4<br />

which is defined <strong>for</strong> x > 0. The parameters p and r <strong>are</strong> now<br />

<strong>the</strong> population mean and standard deviation of <strong>the</strong> natural<br />

logarithms of <strong>the</strong> variate x.<br />

The df <strong>for</strong> Equations A.t to 4.4 must be calculated numerically.<br />

A.3 Methods used<br />

The GEV distribution described in section 3.1.3 and <strong>the</strong><br />

Camma distribution outlined in section 4.2 have up to<br />

three parameters: a location, a scale and a shape parameter.<br />

<strong>These</strong> parameters must be estimatcd in <strong>the</strong> fitting ol a distribution<br />

to a data sample. The various techniques of parameter<br />

estimation, toge<strong>the</strong>r with <strong>the</strong> choice of <strong>the</strong> p<strong>are</strong>nt distribution<br />

that may be used, give rise to <strong>the</strong> dilferent frequency<br />

analysis methods that <strong>are</strong> available.<br />

This study considered seven different frequency analysis<br />

methods. They were chosen on <strong>the</strong> basis of being <strong>the</strong> most<br />

common or <strong>the</strong> most useful, and <strong>the</strong>y were incorporated in<br />

a computer program FRAN (Maguiness ef a/. in prep. a).<br />

(A<strong>not</strong>her computer program FRANCES (section 3.1.7) was<br />

developed <strong>for</strong> use where historical in<strong>for</strong>mation was available<br />

(Maguiness e! al. in prep.b).) The methods used in<br />

FRAN were <strong>the</strong> lollowing:<br />

(1) <strong>the</strong> three-parameter log-Camma or LP3 distribution<br />

fitted by <strong>the</strong> method of moments;<br />

(2', -<br />

<strong>the</strong> three-parameter log-Gamma or LP3 distribution,<br />

with an adjusted coefficient ol skew fitted by <strong>the</strong><br />

method of moments'<br />

-<br />

(3) log-Normal distribution -<br />

fitted by <strong>the</strong> maximum<br />

likelihood method;<br />

(4) GEV distribution -<br />

fitted by <strong>the</strong> maximum likelihood<br />

method;<br />

Water & soil technical publication no. 20 (1982)<br />

(5) EVI distribution fitted by <strong>the</strong> maximum likelihood<br />

-<br />

method;<br />

(ó) EVI distribution -<br />

fitted by <strong>the</strong> least squ<strong>are</strong>s method;<br />

(7) EVI distribution -<br />

using <strong>the</strong> Jenkinson (1969)<br />

method.<br />

Each of <strong>the</strong> methods is briefly described below with reference<br />

to an annual series. In <strong>the</strong> case of methods I and 2,<br />

<strong>the</strong> distribution involved is subsequently referred to as <strong>the</strong><br />

LP3 distribution. For a detailed explanation of <strong>the</strong> seven<br />

methods, refer to <strong>the</strong> report on FRAN by Maguiness e/ a/.<br />

(in prep. a).<br />

Method I This method was recommended by <strong>the</strong> United<br />

States Water Resources Council (1967) to be uni<strong>for</strong>mly<br />

adopted in that country as <strong>the</strong> standard method <strong>for</strong> flood<br />

frequency analysis. The method in effect applies <strong>the</strong> threeparameter<br />

Gamma (Pearson) distribution (Equation A.l)<br />

to <strong>the</strong> logarithms of <strong>the</strong> annual series. The resulting frequency<br />

curve is a flexible one; it can plot concave upwards<br />

or downwards on log-Normal probability paper. It also incorporates<br />

<strong>the</strong> two-parameter log-Normal distribution,<br />

which plots as a straight line on <strong>the</strong> same paper.<br />

The fitting technique is <strong>the</strong> method of moments, which<br />

involves <strong>the</strong> calculation of <strong>the</strong> mean, standard deviation<br />

and <strong>the</strong> coefficient of skew of <strong>the</strong> logarithmically trans<strong>for</strong>med<br />

series. <strong>These</strong> statistics <strong>are</strong> <strong>the</strong>n used in <strong>the</strong> following<br />

equation to obtain <strong>the</strong> desired flood estimate.<br />

log'oX1 : X +K.S<br />

A5<br />

where X1 : flood estimate <strong>for</strong> return period T,<br />

X : mean of <strong>the</strong> trans<strong>for</strong>med series,<br />

S : standard deviation of <strong>the</strong> translormed<br />

series, and<br />

K : afrequencyfactor.<br />

87


The liequency factor K is a function of <strong>the</strong> coefficient of<br />

skew and <strong>the</strong> return period and may be obtained from<br />

tables (e.g., Harter 1969; USWRC 1967). The <strong>for</strong>m of<br />

Equation 4.5, which is based on <strong>the</strong> use of a frequency factor,<br />

is preferred to <strong>the</strong> more <strong>for</strong>mal type of LP3 equation<br />

(e.g., Equation A.3) <strong>for</strong> <strong>the</strong> method of moments fitting<br />

technique, as it makes <strong>the</strong> computations very much easier.<br />

The frequency factor idea has heen propounded by Foster<br />

(1924) and Chow (1951), and <strong>the</strong> derivation of <strong>the</strong> factor<br />

<strong>for</strong> <strong>the</strong> LP3 distribution is explained by NERC (1975, pp.<br />

39-40) and Kite (1976, pp. 198-204,2291.<br />

Method 2 This method is <strong>the</strong> same as Method l, except<br />

that an adjustment is made to <strong>the</strong> computed skew coefficient.<br />

An adjustment is warranted because <strong>the</strong> computed<br />

skew value is likely to be unreliable <strong>for</strong> a data sample of<br />

typical size. Indeed, it has been suggested (Beard and Frederick<br />

1975) that at least 100 sample items <strong>are</strong> needed to obtain<br />

a skew value that is representative of <strong>the</strong> population<br />

statistic. Since most hydrological data samples <strong>are</strong> much<br />

smaller than this, various ef<strong>for</strong>ts have been made to improve<br />

<strong>the</strong> reliability of <strong>the</strong> computed skew value through<br />

<strong>the</strong> use of generalised skew coeflficients (Beard 1977). One<br />

example is <strong>the</strong> use of a regional skew value taken from isolines<br />

of computed skew values.<br />

ln <strong>the</strong> early stages of this New Zealand study, computed<br />

skew values lbr flow stations in <strong>the</strong> top half of <strong>the</strong> South<br />

Island were plotted on a map to determine if <strong>the</strong>re was any<br />

pattern in <strong>the</strong> skew coefficient. None was evident and,<br />

hence, <strong>the</strong> possibility of using generalised skew coefficients<br />

in this study was <strong>not</strong> pursued. Instead, <strong>the</strong> following tactor<br />

Fu, recommended by Bobée and Robitaille (1975), was used<br />

to adlust <strong>for</strong> <strong>the</strong> bias in <strong>the</strong> skew value that is due to <strong>the</strong><br />

length of <strong>the</strong> data sample.<br />

Fo=<br />

where CS = <strong>the</strong> computed skew coefficient, and<br />

n : <strong>the</strong> number of sample items.<br />

The adjustment is made by multiplying <strong>the</strong> computed<br />

skew coefficient by Fu, but only when Equation 4.6 is<br />

applicable i.e., <strong>for</strong> samples with 20 or more items.<br />

Mefhod 3 This method is often referred to as <strong>the</strong> log-<br />

Normal method and uses <strong>the</strong> two-parameter log-Normal<br />

distribution, as distinct from <strong>the</strong> three-parameter one (see<br />

Kite 1976). The method has long been advocated <strong>for</strong> use in<br />

hydrological frequency analysis (e.g., Hazen l9t4), and appeals<br />

because of its simplicity <strong>the</strong> fitted frequency distribution<br />

plots -<br />

as a straight line on log-Normal probability<br />

paper.<br />

The application of <strong>the</strong> method involves <strong>the</strong> same computations<br />

as <strong>for</strong> Method l, except that <strong>the</strong> coefficient of skew<br />

of <strong>the</strong> logarithms of <strong>the</strong> series is set to zero.<br />

Method 4 This uses <strong>the</strong> maximum likelihood (ML)<br />

method to fit <strong>the</strong> CEV distribution to a data sample. This<br />

method of fitting is generally recognised as <strong>the</strong> most efficient<br />

<strong>for</strong> estimating <strong>the</strong> distribution parameters, and its use is<br />

recommended when <strong>the</strong> design events must be extracted<br />

from a small or irregular series (WMO 1969). However, <strong>the</strong><br />

ML method involves equations that have no explicit solution.<br />

The solution is complex and requires <strong>the</strong> use of an<br />

iterative numerical scheme, and is only worthwhile attempting<br />

with <strong>the</strong> aid of a computer.<br />

Method 5 Although <strong>the</strong> GEV distribution incorporates<br />

EVI as a special case, only r<strong>are</strong>ly will <strong>the</strong> application of<br />

Method 4 result in <strong>the</strong> EVI distribution being fitted to a<br />

data sample. To ensure that a fit was obtained with <strong>the</strong> EVI<br />

distribution, this distribution was fitted separately (by <strong>the</strong><br />

ML method) to <strong>the</strong> sample by setting <strong>the</strong> shape parameter k<br />

in <strong>the</strong> CEV distribution to zero.<br />

88<br />

¡ 16-11- *ry i.i,*<br />

.Tì"... ou<br />

Method ó This method is often called <strong>the</strong> "Gumbel<br />

method" after Gumbel (1941, 1954) and is probably <strong>the</strong><br />

one most commonly employed in hydrology. lt has had<br />

wide use in New Zealand and was <strong>the</strong> method adopted by<br />

<strong>the</strong> New Zealand Meteorological Service (Robertson l9ó3)<br />

when determining rainfall depth-duration-f'requency relationships<br />

from New Zealand data.<br />

Melhod 7 This method follows <strong>the</strong> procedure devised by<br />

Jenkinson (1955, 1969) and also described by Samuelsson<br />

(1972). The method emphasises <strong>the</strong> extreme part of annual<br />

series and as shown by Samuelsson, it can be applied as <strong>the</strong><br />

standard one to extreme values which belong to several different<br />

kinds of frequency distribution. A larger series of<br />

S-year maxima is produced from <strong>the</strong> annual series by considering<br />

all possible combinations of items of five in <strong>the</strong><br />

original series. The EVI distribution is <strong>the</strong>n fittcd to rhe<br />

series of 5-year maxima by <strong>the</strong> ML method.<br />

If an annual series is used in a lrequency analysis instead<br />

of a series of 5-year maxima, it is quite possible that <strong>the</strong><br />

series may be non-homogeneous in that, <strong>for</strong> example, <strong>the</strong><br />

smaller items may belong to one distribution (e.g., EV2)<br />

and <strong>the</strong> larger ones to a<strong>not</strong>her (e.g., EV3). Fur<strong>the</strong>r, it can<br />

be shown ma<strong>the</strong>matically (WMO 1969) that <strong>the</strong> lower parr<br />

(37V0) of <strong>the</strong> series may <strong>not</strong> even belong to <strong>the</strong> extreme<br />

value distribution as it is defined. The advantage of <strong>the</strong> Jenkinson<br />

method is that it generally overcornes this problem<br />

of non-homogeneity of data. The use of 5-year maxima can<br />

be thought of an increasing by fivefold <strong>the</strong> degree ol independence<br />

in <strong>the</strong> data, so that <strong>the</strong>se maxinra should <strong>the</strong>n<br />

<strong>for</strong>m a homogeneous set of data that confbrms to EV<br />

<strong>the</strong>ory.<br />

4.4 Evaluation of <strong>the</strong> frequency analys¡s<br />

methods<br />

4.4.1 General<br />

Prior to <strong>the</strong> development of <strong>the</strong> regional curves, two<br />

evaluation tests were carried out on 42 flood records altoge<strong>the</strong>r,<br />

using <strong>the</strong> seven frequency analysis methods described<br />

in section 4.3 and contained in <strong>the</strong> computer program<br />

FRAN. The purpose of <strong>the</strong> tests was twofold:<br />

(¡) to observe, and to indicate to users of FRAN, <strong>the</strong> relative<br />

merits of <strong>the</strong> seven different methods on individual<br />

New Zealand flood records;<br />

(ii) to assist in <strong>the</strong> selection of a frequency distribution<br />

that would adequately describe <strong>the</strong> regional curves.<br />

This section describes <strong>the</strong> tests and discusses <strong>the</strong> results<br />

obtained.<br />

4.4.2 Evaluation criteria and method<br />

Most studies that have attempted to discriminate between<br />

frequency analysis methods have relied, at least to some extent,<br />

on objective goodness-of-fit indices. Recent examples<br />

of such studies <strong>are</strong> those carried out by Benson (1968),<br />

Beard (1974), Kite (1976) NERC (t975), Kopiuke ef ø/.<br />

(1976) and Bobée and Robitaille (1977). However, as is generally<br />

acknowledged (e.g., Benson 1968), <strong>the</strong> classical<br />

goodness-of-fit indices such as Chi-squ<strong>are</strong> and Kolmogorov-Smirnov<br />

<strong>are</strong> <strong>not</strong> sufficiently sensitive or powerful<br />

enough, because of <strong>the</strong> small samples found in hydrology,<br />

to distinguish between <strong>the</strong> worth of different frequency analysis<br />

methods. Moreover, NERC (1975) found that o<strong>the</strong>r<br />

goodness-oi-fit indices had major weaknesses and concluded<br />

that, because of <strong>the</strong> deficiencies ol goodness-of-fìt<br />

indices, a visual inspection must be made of <strong>the</strong> probability<br />

plots. The judgement on <strong>the</strong> per<strong>for</strong>mance of a method is<br />

<strong>the</strong>n a subjective one, "... but <strong>the</strong> objective tests that <strong>are</strong><br />

available <strong>are</strong> so ineffective that <strong>the</strong>ir objectivity alone is insufficient<br />

to recommend <strong>the</strong>m" (NERC 1975).<br />

In <strong>the</strong> evaluation tests, much more emphasis was placed<br />

on <strong>the</strong> probability plots than on <strong>the</strong> Chi-squ<strong>are</strong> value,<br />

which <strong>the</strong> computer program calculated. F-ollowing an ex-<br />

Water & soil technical publication no. 20 (1982)


amination of <strong>the</strong> probability plots <strong>for</strong> each station, <strong>the</strong> perlormance<br />

of each frequency analysis method was classified<br />

into a good, reasonable or poor category according to <strong>the</strong><br />

following four criteria:<br />

(i) <strong>the</strong> frequency curve should fit <strong>the</strong> whole of <strong>the</strong> series<br />

well, but particularly <strong>the</strong> upper half of <strong>the</strong> series;<br />

(¡i) <strong>the</strong> frequency curve should <strong>not</strong> necessarily pass<br />

through <strong>the</strong> very largest items in <strong>the</strong> series, since <strong>the</strong>re<br />

is a far larger sampling variation with <strong>the</strong>se items;<br />

(¡¡¡) <strong>the</strong> frequency curve should appear to produce a good<br />

estimate of <strong>the</strong> 10O-year flood peak;<br />

(iv) <strong>the</strong> Chi-squ<strong>are</strong> value should <strong>not</strong> be abnormally high.<br />

Criterion (iii) needs some explanation. Although a<br />

method could per<strong>for</strong>m well under criterion (i), it could <strong>not</strong><br />

be automatically assumed that <strong>the</strong> method <strong>the</strong>re<strong>for</strong>e gave a<br />

sensible estimate oI <strong>the</strong> 10O-year flood peak. Because of <strong>the</strong><br />

small-sample effect with some of <strong>the</strong> samples used, a method<br />

could produce an extremely good fit to a data sample<br />

but a 100-year value that was only minimally greater (e.9.,<br />

less than l-290) than <strong>the</strong> 2O-year value. One hundred years<br />

was chosen as <strong>the</strong> return period <strong>for</strong> <strong>the</strong> flood peak estimate<br />

on <strong>the</strong> basis of it being <strong>the</strong> most commonly used maximum<br />

value in bridge waterway design (MWD 1979). It follows,<br />

<strong>the</strong>re<strong>for</strong>e, that <strong>the</strong> subsequent evaluations of <strong>the</strong> methods<br />

<strong>for</strong> fitting individual station data <strong>are</strong> with reference to this<br />

maximum return period and <strong>the</strong>y should <strong>not</strong> be interpreted<br />

as being applicable beyond <strong>the</strong> 100-year return period.<br />

Afler <strong>the</strong> classification of <strong>the</strong> per<strong>for</strong>mances of <strong>the</strong><br />

methods <strong>the</strong>y were <strong>the</strong>n quantified, by allotting a score of 2<br />

<strong>for</strong> each good fit, I lor each reasonable fit and 0 <strong>for</strong> each<br />

poor fit.<br />

A.4.3 F¡rst test<br />

The first evaluation test was made midway through <strong>the</strong><br />

data collection phase when all <strong>the</strong> annual flood peak data<br />

had been collected <strong>for</strong> <strong>the</strong> South Island stations. The results<br />

of this test were presented and discussed by Maguiness et al.<br />

(1977). Of <strong>the</strong> 50 stations <strong>for</strong> which data were available, 28<br />

stations were selected <strong>for</strong> <strong>the</strong> test (see Table A. I <strong>for</strong><br />

details). <strong>These</strong> stations were considered to have reasonably<br />

reliable streamflow records and each flood record was l0 or<br />

more years in length. Altoge<strong>the</strong>r <strong>the</strong>re were 377 station<br />

years of rccord, giving an average length of 13.5 years per<br />

station.<br />

The per<strong>for</strong>mance of <strong>the</strong> different methods is summarised<br />

in Table 4.2, which shows <strong>the</strong> number of times each<br />

method gave a good, reasonable and poor per<strong>for</strong>mance. It<br />

also shows <strong>the</strong> final score <strong>for</strong> each method after <strong>the</strong> per<strong>for</strong>mances<br />

were quantified. The adjusted LP3 method is<br />

<strong>not</strong> included in <strong>the</strong> table, since in only one case was <strong>the</strong> record<br />

length long enough (20 years or greater) <strong>for</strong> an adjustment<br />

to be made to <strong>the</strong> coefficient of skew using Equation<br />

4.6.<br />

As can be seen from Table 4.2 <strong>the</strong> Jenkinson method<br />

per<strong>for</strong>med best, scoring 52 out of a possible 56. lt produced<br />

Table 4.1 Deta¡ls of <strong>the</strong> f low stations used in <strong>the</strong> first evaluation<br />

test.<br />

Site No.<br />

56901<br />

57502<br />

60110<br />

60114<br />

621 03<br />

621 05<br />

64301<br />

64602<br />

64606<br />

65104<br />

65107<br />

69302<br />

69506<br />

69614<br />

6961 I<br />

6962 1<br />

71 103<br />

71116<br />

71129<br />

7'l 135<br />

93203<br />

93204<br />

93205<br />

93206<br />

93209<br />

93211<br />

93212<br />

93217<br />

Flow Station<br />

Catchmenl Record<br />

<strong>are</strong>a, km' Length,<br />

Years<br />

Riwaka at Moss bush 48 10<br />

Wairoa at Gorge 464 15<br />

Waihopai at Craiglochart 744 16<br />

Wairau at Dip Flat 505 25<br />

Acheron at Cl<strong>are</strong>nce 997 18<br />

Cl<strong>are</strong>nce at Jollies 44O<br />

'l 3<br />

Conway at Hundalee 47O 12<br />

Waiau-uha at Marble Point 1980 14<br />

Waiau-uha at Malings Pass 74-6 10<br />

Hurunui at Mandamus 1 O7O 1 I<br />

Hurunui at Lake Sumner 342 1 5<br />

Rangitata above Klondyke 1495 10<br />

Orari at Silverton 52O 15<br />

Opuha at Skipton 456 12<br />

Opihi at Rockwood 412 12<br />

Rocky Gully at Rockburn 22.4 10<br />

Hakataramea at M.H. Bridge 899 13<br />

Ahuriri at South Diadem 557 12<br />

Forks at Balmoral 13O<br />

'l 1<br />

Jollie at Mt Cook Station 1 39 10<br />

Buller at Te Kuha 6350 14<br />

Buller at Berlins 5960 16<br />

Buller at Woolfs 4560 11<br />

lnangahua at Land¡ng 1000<br />

'l 3<br />

Maruia at Falls 980 1 1<br />

Matakitaki at Mud Lake 857 13<br />

Mangles at Gorge 284 16<br />

Glenroy at Blicks 198 1 1<br />

377<br />

what were considered good fits on 24 occasions (or more<br />

than 8590 of <strong>the</strong> time) and, significantly, gave no poor fits.<br />

Next in order of per<strong>for</strong>mance were <strong>the</strong> LP3 and <strong>the</strong><br />

Gumbel methods, scoring 4l and 39 respectively. The <strong>for</strong>mer<br />

method gave only slightly more good fits than <strong>the</strong> latter,<br />

and both produced only a minimal number of poor fits.<br />

At <strong>the</strong> lower end of <strong>the</strong> per<strong>for</strong>mance rankings were <strong>the</strong><br />

EVl,log-Normal and GEV methods. Little distinction can<br />

be made between <strong>the</strong> EVI and log-Normal methods, with<br />

both giving on average about <strong>the</strong> same per<strong>for</strong>mance. In<br />

comparison, <strong>the</strong> CEV method gave fewer poor fits, but at<br />

<strong>the</strong> same time produced only three good lits -<br />

less than<br />

half <strong>the</strong> number achieved by each of <strong>the</strong> o<strong>the</strong>r two<br />

methods.<br />

The flood records used in this first test were relatively<br />

small samples. Although each record was at least l0 years<br />

long, this is <strong>the</strong> minimum acceptable length <strong>for</strong> a flood frequency<br />

analysis. The average record length of 13.5 years is<br />

only a marginal improvement on this and is still less than<br />

<strong>the</strong> minimum length of l5-20 years recommended by some,<br />

Table 4.2 Summary of <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> methods ¡n <strong>the</strong> f¡rst test.<br />

Method<br />

Per<strong>for</strong>mance<br />

Categories<br />

No. 1<br />

LP3<br />

No. 3<br />

Log-Normal<br />

No. 4<br />

GEV<br />

No. 5<br />

EV1<br />

No. 6<br />

Gumbel<br />

No. 7<br />

Jenkinson<br />

Good<br />

Reasonable<br />

Poor<br />

Number Score Number Score Number Score Number Score Number Score Number Score<br />

16 32<br />

99<br />

30<br />

Total Score:<br />

4'l<br />

27 26<br />

Note: Score calculated as 2 <strong>for</strong> good fit, 1 <strong>for</strong> resonable, O <strong>for</strong> poor fit.<br />

Maximum possible score: 2 x 2a :56<br />

8<br />

'l 6 3 6 11 22 13 26 24 48<br />

11 11 20 20 7 7 13 13 4 4<br />

9 0 5 0 10 0 2 0 0 0<br />

Water & soil technical publication no. 20 (1982)<br />

89


e.9., Linsley et ol. (1915); lrish and Ashkanasy (1977).<br />

There was, in fact, only one station with more than 20 years<br />

of record. However, <strong>the</strong>se relatively small samples reflect<br />

<strong>the</strong> situation <strong>the</strong> design engineer is often faced with<br />

- having<br />

to estimate design figures from records of b<strong>are</strong>ly adequate<br />

length.<br />

Most of <strong>the</strong> findings of <strong>the</strong> test could only be regarded as<br />

preliminary ones pending fur<strong>the</strong>r investigation with larger<br />

samples and covering a great'Jr part of <strong>the</strong> country. The<br />

findings <strong>are</strong> a guide to <strong>the</strong> design engineer using a small<br />

sample in flood frequency analysis, but <strong>the</strong> test itself was<br />

<strong>not</strong> very helpful in <strong>the</strong> choosing of a distribution <strong>for</strong> <strong>the</strong> regional<br />

curves. A second test was <strong>the</strong>re<strong>for</strong>e carried out at <strong>the</strong><br />

end of <strong>the</strong> data collection phase using larger data samples.<br />

4.4.4 Second test<br />

The second evaluation test used annual series data from<br />

14 stations with 20 or more years of record. Details of <strong>the</strong>se<br />

stations <strong>are</strong> listed in Table 4.3. As shown in <strong>the</strong> table, <strong>the</strong>re<br />

was a total of 366 station years of record, giving an average<br />

record length of 26.1 years per station, almost double <strong>the</strong><br />

figure <strong>for</strong> <strong>the</strong> first test.<br />

The per<strong>for</strong>mances of <strong>the</strong> different methods on <strong>the</strong> second<br />

set of data were evaluated in exactly <strong>the</strong> same manner<br />

as tbr <strong>the</strong> first test. The results of <strong>the</strong> evaluation <strong>are</strong> summarised<br />

in Table A.4.<br />

Table A.4 shows that <strong>the</strong> Jenkinson method again per<strong>for</strong>med<br />

best, but this time <strong>the</strong> Cumbel method gave a pertbrmance<br />

that was almost as good. Notably, nei<strong>the</strong>r<br />

method gave any poor fits to <strong>the</strong> data. At <strong>the</strong> second level<br />

of per<strong>for</strong>mance were <strong>the</strong> GEV and LP3 (unadjusted and<br />

adjusted) methods, all with <strong>the</strong> same score of 22. The per<strong>for</strong>mances<br />

of <strong>the</strong> unadjusted and adjusted LP3 methods<br />

were indistinguishable and <strong>the</strong> two methods <strong>are</strong> collectively<br />

referred to as <strong>the</strong> LP3 method. Last were <strong>the</strong> log-Normal<br />

and EVI methods. Both methods gave good fits at least<br />

5090 of <strong>the</strong> time, but also a <strong>not</strong>iceable percentage (2190) of<br />

poor fits.<br />

As in <strong>the</strong> lirst test, <strong>the</strong> Jenkinson method per<strong>for</strong>med <strong>the</strong><br />

best ot'<strong>the</strong> methods, and in this second test could r<strong>are</strong>ly be<br />

faulted. ln <strong>the</strong> one instance where it gave o<strong>the</strong>r than a good<br />

per<strong>for</strong>mance, its frequency curve still fitted <strong>the</strong> data well<br />

and produced a realistic 100-year flood peak estimate.<br />

However, its per<strong>for</strong>mance was reduced because of its Chisqu<strong>are</strong><br />

value, which was high and more than twice that <strong>for</strong><br />

any of <strong>the</strong> o<strong>the</strong>r methods. Some allowance was always<br />

made <strong>for</strong> a higher Chi-si¡u<strong>are</strong> value with <strong>the</strong> Jenkinson<br />

method, but in this particular case <strong>the</strong> value was excessively<br />

high. The higher values <strong>for</strong> <strong>the</strong> method <strong>are</strong> caused by <strong>the</strong><br />

fact that <strong>the</strong> frequency curve does <strong>not</strong> always fit <strong>the</strong> lowest<br />

four items in a series, since <strong>the</strong>se items clo <strong>not</strong> <strong>for</strong>m part of<br />

<strong>the</strong> generated 5-year maxima to which <strong>the</strong> method fits <strong>the</strong><br />

EVI curve.<br />

The Cumbel method improved on its first test ranking<br />

giving an overall per<strong>for</strong>mance almost <strong>the</strong> same as <strong>the</strong> Jenkinson<br />

method. However, a surprising aspect in both tests<br />

Tabþ 4.3 Details of <strong>the</strong> flow stations used in <strong>the</strong> second evaluation<br />

test.<br />

Site No.<br />

Flow Station<br />

Catchment Record<br />

<strong>are</strong>a, km' Length,<br />

yeafs<br />

14614 Kaituna at Te Matai 958 21<br />

1551 1 Waimana at Waimana Gorge 44O 25<br />

1 5514 Whakatane at Whakatane 1 557 20<br />

29201 Ruamahanga at Wardells 637 22<br />

29202 Ruamahanga at Waihenga 2340 21<br />

29224 Waiohine at Gorge 183 22<br />

32502 Manawatu at Fitzherbert 3916 48<br />

32503 Manawatu at Weber Road 713 22<br />

32514 Oroua at Almadale 312 24<br />

32526 Mangahao at Ballance 266 24<br />

32529 Tiraumea at Ngaturi 734 24<br />

601 14 Wairau at Dip Flat 5O5 25<br />

92216 Buller at Lake Rotoiti 195 26<br />

93213 Gowan at Lake Rotoroa 368 42<br />

366<br />

was <strong>the</strong> difference in per<strong>for</strong>mance between <strong>the</strong> Gumbel and<br />

EVI methods. Both fit <strong>the</strong> same distribution (EVl) to a<br />

series yet <strong>the</strong> EVI method did <strong>not</strong> per<strong>for</strong>m as well, presumably<br />

because <strong>the</strong> ML fitting technique, in comparison with<br />

<strong>the</strong> least-squ<strong>are</strong>s technique, puts relatively greater weight<br />

on <strong>the</strong> smaller items in a data series (Gumbel 1966). Consequently,<br />

if <strong>the</strong> upper half of a series exhibited a different<br />

trend. to that <strong>for</strong> <strong>the</strong> lower half, <strong>the</strong> EVI method, especially,<br />

did <strong>not</strong> always produce a good fit to <strong>the</strong> upper half<br />

and its per<strong>for</strong>mance suffered accordingly. In addition, <strong>the</strong><br />

visual inspection of <strong>the</strong> goodness-of-fit of <strong>the</strong> frequency<br />

curves may have given <strong>the</strong> Gumbel method an unfair advantage<br />

over <strong>the</strong> EVI method, since curve-fitting by eye can<br />

be considered as a least-squ<strong>are</strong>s fit (Chernoff and Lieberman<br />

1954, 1956). Thus, although <strong>the</strong> results may indicate<br />

that <strong>the</strong> Gumbel method may be a worthy substitute <strong>for</strong> <strong>the</strong><br />

Jenkinson method when a computer is unavailable, <strong>the</strong><br />

evaluation may have been weighted unfairly in favour of<br />

<strong>the</strong> Gumbel method.<br />

The methods using three-parameter distributions, i.e.,<br />

<strong>the</strong> LP3 and <strong>the</strong> GEV methods, displayed <strong>the</strong>ir greater flexibility<br />

over <strong>the</strong> two-parameter methods by always producing<br />

a curve that fitted <strong>the</strong> data particularly well. However,<br />

occasionally this was to <strong>the</strong>ir detriment, because <strong>the</strong><br />

resulting 100-year flood peak estimate was sometimes <strong>not</strong><br />

very realistic. For example, in <strong>the</strong> case where <strong>the</strong> LP3<br />

method gave a poor per<strong>for</strong>mance, <strong>the</strong> curve fitted <strong>the</strong> data<br />

very well; so well in fact that it was almost horizontal at <strong>the</strong><br />

high return periods. The difference between <strong>the</strong> 20 and<br />

10O-year flood peaks estimated from <strong>the</strong> curve was less than<br />

0.690, indicating an implausible 10O-year flood peak estimate.<br />

Table A.4 Summary of <strong>the</strong> per<strong>for</strong>mance of <strong>the</strong> methods in <strong>the</strong> second test.<br />

Method<br />

Per<strong>for</strong>mance<br />

Categories<br />

No. 1<br />

LP3<br />

No. 2<br />

Adjusted<br />

LP3<br />

No. 3<br />

Log-Normal<br />

No. 4<br />

GEV<br />

No.5<br />

EV1<br />

No. 6<br />

Gumbel<br />

No. 7<br />

Jenkinson<br />

No Score No. Score No, Score No. Score No. Score No. Score No. Score<br />

Good<br />

Reasonable<br />

Poor<br />

9 18 I 18 9 18 8 16 7 ',t4 12 24 13 26<br />

44442266442211<br />

10103000300000<br />

Total Score<br />

22<br />

22 20 ?2 18 26<br />

27<br />

Note: Maximum possible score = 28<br />

Water & soil technical publication no. 20 (1982)<br />

90


In <strong>the</strong> first test <strong>the</strong> GEV method was often affected in<br />

this manner, producing many curves that fitted <strong>the</strong> data<br />

very well but giving 100-year flood peak estimates that were<br />

<strong>not</strong> always sensible. For example, <strong>the</strong> trend in <strong>the</strong> lower<br />

half of <strong>the</strong> series would cause <strong>the</strong> GEV curve to flatten off<br />

at <strong>the</strong> top end, impþing that <strong>the</strong>re was a limit to flood<br />

peaks of about twice <strong>the</strong> mean annual flood. While <strong>the</strong>re<br />

may be an upper limit to flood magnitude, it is certainly<br />

more than <strong>the</strong> figure implied (see Tables 3.3 and 3.6).<br />

In comparison, <strong>the</strong> straight-line fits of <strong>the</strong> Gumbel and<br />

EVI methods were often a good approximation to <strong>the</strong> data<br />

and gave more sensible 100-year flood peak estimates.<br />

However, this better per<strong>for</strong>mance by <strong>the</strong> t$'o-pa¡ameter<br />

methods can be attributed to <strong>the</strong> small samples used<br />

(NERC 1975; pp. 159-60). The fact that <strong>the</strong> Gumbel<br />

method still per<strong>for</strong>med better than <strong>the</strong> GEV method in <strong>the</strong><br />

second test suggests that <strong>the</strong> samples in this test may also<br />

have been small. However, it is also likely that <strong>the</strong> leastsquÍues<br />

fitting technique of <strong>the</strong> Gumbel method influenced<br />

<strong>the</strong> evaluation test in <strong>the</strong> method's favour.<br />

The two-parameter log-Normal method also gave good<br />

approximations to <strong>the</strong> data at times, producing a reasonable<br />

proportion of good fits. However, <strong>the</strong> method assumes<br />

that <strong>the</strong>re is no skew in <strong>the</strong> logarithms of <strong>the</strong> series, an<br />

assumption which was r<strong>are</strong>ly true. Hence <strong>the</strong> method did<br />

<strong>not</strong> per<strong>for</strong>m as well as o<strong>the</strong>rs in <strong>the</strong> test, including its p<strong>are</strong>nt<br />

method, <strong>the</strong> three-parameter LP3.<br />

A.4.5 Gonclusions<br />

The evaluations in <strong>the</strong> two tests involved a good deal of<br />

subjective judgement, but this typifies <strong>the</strong> present situation,<br />

with <strong>the</strong> objective goodness-of-fit indices <strong>not</strong> providing rigorous<br />

enough criteria <strong>for</strong> discriminating between different<br />

frequency analysis methods.<br />

From <strong>the</strong> findings of <strong>the</strong> tests, <strong>the</strong> following conclusions<br />

were reached:<br />

(¡) <strong>the</strong> Jenkinson method was <strong>the</strong> superior method in both<br />

tests and should be used in flood frequency analysis,<br />

especially when <strong>the</strong> sample is small;<br />

(iÐ <strong>the</strong> Gumbel method improved in per<strong>for</strong>mance with increase<br />

in sample size, and should be a satisfactory alternative<br />

to <strong>the</strong> Jenkinson method on <strong>the</strong> larger sam-<br />

Ples;<br />

(ii¡) <strong>the</strong> GEV and LP3 methods were more flexible than <strong>the</strong><br />

two-parameter methods, with <strong>the</strong>ir frequency curves<br />

geneially following <strong>the</strong> trend in <strong>the</strong> data extremeiy<br />

well;<br />

(iv) on small samples, in particular, <strong>the</strong> straight-line fits<br />

from <strong>the</strong> two-parameter methods can give good approximations<br />

to <strong>the</strong> data and sometimes more sensible<br />

results than those obtained from <strong>the</strong>ir p<strong>are</strong>nt threeparameter<br />

methods;<br />

(v) on small samples <strong>the</strong> LP3 method appears to per<strong>for</strong>m<br />

better than <strong>the</strong> GEV method, being influenced less by<br />

<strong>the</strong> trend in <strong>the</strong> lower part of a series;<br />

(vi) on larger samples <strong>the</strong> GEV and LP3 methods can produce<br />

similar shaped curves and give a comparable per<strong>for</strong>mance.<br />

<strong>These</strong> conclusions apply <strong>for</strong> individual records and up to<br />

References<br />

Beard, L.R. 1974: Flood flow frequency techniques. Center<br />

tor Research in Water Rnources, Univercity of<br />

Texas, Austin, Technicøl Report CRVR-|19.<br />

1977: Guidelines <strong>for</strong> determining flood flow frequency.<br />

U.S. Water Resounaes Council, Bulletin No.<br />

I7A of <strong>the</strong> Hydrologlt Committee.<br />

Beard, L.R.; Frederick, A.J. 1975: Hydrologic frequency<br />

analysis. .In Hydrologic Engineering Methods <strong>for</strong><br />

Water Resources Development Vol. 3. The Hydrologic<br />

Engineering Center, U.S. Army Corps of Engineers,<br />

Davis, Cali<strong>for</strong>nia.<br />

Benson, M.A. 1968: Uni<strong>for</strong>m flood-frequency estimating<br />

methods <strong>for</strong> federal agencies. Water Resources Reæørch<br />

4(5):891-908.<br />

Bobée, B.B. Robitaille, R. 195: Correction of bias in <strong>the</strong><br />

estimation of <strong>the</strong> co-efficient of skewness. Wøter Resources<br />

Research I I (6): 841-4.<br />

1977: The use of <strong>the</strong> Pea¡son type 3 and Log-<br />

Pearson type 3 distributions revisited. lfoter Resoutces<br />

Research I 3(2): 427 -41.<br />

Chernoff, H.; Lieberman, G.J. 1954: Use of normal probability<br />

paper. Journøl of <strong>the</strong> Americøn Stotisticol<br />

Associotion 49: 778-85.<br />

1956: The use ofgeneralised probability paper <strong>for</strong><br />

continuous distributions. Annals of Ma<strong>the</strong>moticol<br />

Statistics 27:806-18.<br />

Chow. V.T. l95l: A general <strong>for</strong>mula <strong>for</strong> hydrologic frequency<br />

analysis. Tronsactions of <strong>the</strong> Americøn Geophysicol<br />

Union 32(2): 231-7.<br />

Foster, H.A. l9A: Theoretical frequency curves and <strong>the</strong>ir<br />

applications to engineering. Tronsactiotts of <strong>the</strong><br />

American Society ol Civil Engineen 872 142-73.<br />

Gumbel, E.J. l94l: The return period of flood flows. ánnols<br />

of Ma<strong>the</strong>motical Stotistics 12: 163-X).<br />

1954: Statistical <strong>the</strong>ory of extreme values and<br />

some practical applications. US Bureou of Slondards,<br />

Applied Ma<strong>the</strong>motics Series 33l. 15-16.<br />

l!Xó: Extreme value analysis of hydrologic data.<br />

In Statistical Methods of Hydrology. Proceedings of<br />

Hydrology Symposium No. 5, McGill University,<br />

Canada, Z,-25Februw. pp. 147-69.<br />

Harter, H.L. 1969: A new table of percentage points of <strong>the</strong><br />

Pearson Type III distribution. Technometrics Il(l):<br />

177-81.<br />

Hazen, A. l9l4: Storage to be provided in impounding reservoirs<br />

<strong>for</strong> municipal water supply. Transøctions of<br />

<strong>the</strong> American Society of Civil Engineers 78:<br />

1539-641.<br />

Irish, J.; Ashkanasy, N.M. 1977: Flood frequency analysis.<br />

I¿ Australian Rainfall and Runoff. Chapter 9' The<br />

Institution of Engineers, Australia.<br />

Jenkinson, A.F. 1955: The frequency distribution of <strong>the</strong><br />

annual maximum (or minimum) values of meteoro-.<br />

logical elements. Quorterly Journal of Royal Meteo'<br />

rological Society 87: 158-71.<br />

Statistics of extremes. Iz Estimation of<br />

Maximum Floods. Chapter 5. VMO Technicql Nole<br />

No.98. pp.193-227.<br />

-1969:<br />

Kite, G.W. 1976: Frequency and risk analyses in hydrology.<br />

Inland Waters Directorate, Water Resources Branch,<br />

Dept. of E<br />

Kopittke, R.A.;<br />

e, K.S. 1976: Fre"<br />

quency an<br />

in Queensland. Ia<br />

tion of Enginæn,<br />

Hydrology<br />

Austroliq, Notionsl Co4ference Publication' No.<br />

76/2. pp.2È4.<br />

Linsley, R.K.; Kohler, M.A.; Paulhus, L.H. 195: Hydrology<br />

<strong>for</strong> Engineers. McGraw-Hill, New York.<br />

Water & soil technical publication no. 20 (1982)<br />

9l


Maguiness, J.A.; Blackwood, P.L.; Broome, P.; Beable,<br />

M.E. (In prep. a): A report on FRAN, a computer<br />

program <strong>for</strong> <strong>the</strong> frequency analysis ofextrernes. Ministry<br />

of lVorks and Development, lVellin$on.<br />

Maguiness, J.A.; Blackwood, P.L.; Beable, M.E. (In prep.<br />

b): A report on FRANCES, a computer program <strong>for</strong><br />

<strong>the</strong> frequency analysis of a censored sample. Ministry<br />

of Works and Development, Wellington.<br />

Maguiness, J.A.; McBride, G.B.; Beable, M.E. 1977:<br />

FRAN a computer program <strong>for</strong> <strong>the</strong> frequency analysis<br />

of extremes. Presented at <strong>the</strong> New Zealand Hy-<br />

-<br />

drological Society Annual Symposium, Christchurch,<br />

November. l6p.<br />

Ministry of Works and Development 1979: Code of practice<br />

<strong>for</strong> <strong>the</strong> design of bridge waterways. Ministry o!<br />

Works and Development, Civil Dìvision publìcatíon<br />

CDP 705/C (Prep<strong>are</strong>d by lVater and Soil Division).<br />

72p.<br />

NERC 195: Flood Studies Rcport Vol. l, Hydrological<br />

Studics. Natural Environmental Resea¡ch Council,<br />

London.<br />

Robertson, N.G. 1963: The frequency of high intensity<br />

rainfalls in New Zqland. New Z¿stand Meteorologicol<br />

Semiæ, Misællaneous publicotion II8.<br />

Samuelsson, B. lï12: Statistical interpretation of hydrometeorological<br />

extreme values. Nordic Hydrologlt<br />

3(4): 19D'-213.<br />

US\VRC 1967: A uni<strong>for</strong>m technique <strong>for</strong> determining flood<br />

flow frequencies. Hydrologt Committee, US llater<br />

Resources Councí|, Eulletin JVa 15. 15 p.<br />

IVMO l%9: Estimation of Ma¡rimum Floods. llorld Meteorologicol<br />

Organisøtion Tæhnicøl Note No. 98.<br />

92<br />

Water & soil technical publication no. 20 (1982)


APPENDIX B<br />

Summary of Flood Peak Data used in <strong>the</strong><br />

Regional Flood Frequency Analysis.<br />

CONTENTS<br />

Nor<strong>the</strong>rn North Island Data<br />

North Island West Coast Data<br />

Manawatu-Rangitikei Data<br />

Sou<strong>the</strong>rn North Island Data<br />

Bay of Plenty Data<br />

North Island East Coast Data<br />

Central Hawke's Bay Data<br />

South Island West Coast Data<br />

South Island East Coast Data<br />

South Canteibury Data<br />

Otago-Southland Data<br />

Prge<br />

93<br />

94<br />

96<br />

97<br />

98<br />

I<br />

100<br />

l0l<br />

103<br />

104<br />

105<br />

NOTE: The rules mentioned <strong>for</strong> some stations concerning<br />

<strong>the</strong> rejection of data refer to those given in Section<br />

3.2.2.<br />

1A. NORTHERN NORTH ISI.AND DATA<br />

srtr 350 6<br />

ClrCÍilll rRE^. s0 t(É =<br />

¡trlEEl o? rf,[urL PEtÍs =<br />

tllB PEr( tElR<br />

1958 q7. S 195c<br />

1912 r¡C.9 l97l<br />

1976 5q.6 197?<br />

iElI =<br />

PEIK<br />

38.9<br />

56. C<br />

36. 6<br />

57. B sTD. Dtlv. =<br />

ntuNGAprRERÍrÀ R IT TynFzs Fonn<br />

11. 1 ilÀP REFEFtT¡CE<br />

1T PEAIOD OP PNC.<br />

YEIR PFTK<br />

1970 69.3<br />

88 . c<br />

19"r¡<br />

YEÀR<br />

1971<br />

197s<br />

¡t l: 39 1555<br />

1968-77<br />

PE¡ K<br />

69. 6<br />

?0. 1<br />

17.0 coFF. oF sXE¡ = C.3?66<br />

S IlE 9101 rÀITOI P TT IISTI(¡HOFO DRIDGF<br />

CtrcElElll lEEt, SQ Kll = 433 llÀP BßPEFDfct = tl53:082804<br />

fUlEE¡ 0P t[Xnrl PEtrS = 17 PEATOD OP PrC. = 1952-6Ê<br />

ts¡R PEÀK TEÀR PEÀK IEAR PBTI( tEÀR PEIX<br />

1952 25.1 t9S3 t¡6.C, rc 5¡ 68.0 1955 20.6<br />

I 956 q1.7 1957 38.5 1958 26.2 t959 22.Ã<br />

I 960 58.0 1961 9q. i '1962 05.0 1C53 10.n<br />

t 96tt 29.5 196s 52,6 1966 11.5 1961 47" 0<br />

1 969 qB.2<br />

IEli =<br />

q3.6 srD. DEV. = 19.5 CoEF. oF SKU¡ = 1.4380<br />

IOTES:<br />

1. îßE 1961 PLOOD Ptf,t( ÍÀS ÎÀKElt THE I.ÀPGEST rI THP<br />

Pfnron 1908-7?-<br />

^S<br />

SITE 9118<br />

Prtio ! À1 38tfl80lo tolD<br />

CÀlcHllPlll ÀREl' s0 l(lt = 528 llP FEIEREtIcE r57:005700<br />

l{UllBER oP riÍûtL PEt(S = 17 PERIOD 0F REc. = 1953-69<br />

YEIR PEÀI fE¡R PBT¡ tEÀ8 PEÀf, YUIN PI¡f<br />

1953 r 1 3.8 195¡t 12,7 1955 35.5 1956 100.9<br />

1957 l¡c,8 19t9 1 33.5 1959 38.1 1960 265.0<br />

1961 295.6 1962 I 28.3 1963 19.6 196¡ 71.2<br />

1965 8f,2 1966 143.2 '1961 2 13.5 1968 10f.0<br />

1969 15,2<br />

IiEt[ = 120,0 STD. DEV. 16.7 cogl. o! sß¿9 = 1. l9l5<br />

¡otEs:<br />

1. THE 1C6I PLOOD PEÀK ¡ÀS ÎÀf,EN ÀS ÎR' LIRGEST ¡' 1¡I<br />

PFnton 1908-77.<br />

SITE 9203<br />

ctTcññEIÎ t8P^, SQ Kll = 1606 ËrP REFEBE¡cr = 153: ll¡9tz<br />

lgIBER oP ¡ùr0ÀL PEÀKs = 1a PTRIoD 0P REc. ¡ 195È76<br />

IETR PTÀi YEÀF PETK YF¡R PBIR rEr¡ Ptlr<br />

t 958 611 1959 652 1960 920 196t 330<br />

1962 637 1 96 I 32C 1964 184 1965 397<br />

1 966 595 1967 283 t968 tr87 1969 290<br />

1 970 260 191 1 397 1912 3¡8 1973 2a1<br />

1974 291 1913 330 1976 736<br />

ñt:Àl¡ = 450 sTD. DEV. =<br />

:1113:-:-!1-::ï-::i::<br />

2C0 COEP. OF SXtl - 0.7068<br />

tolEs:<br />

1. TffE'1960 PLOOD P?Àr ¡àS TrKEll 15 lEE L¡RGn5î rl lEl<br />

PERTOD 1929-76.<br />

sI?t<br />

38 19<br />

TTIHÄRIKEXP R ÀT |ILIOI BIIIi<br />

5II E<br />

OIIIf,ÈIORT R 11 CRITEIIOT II<br />

cÀTcRlE[T rBEr, SQ K11 =<br />

IUÉBER oP tflN0ÀL PElKs =<br />

IEIS PF.AK IPÀ R PEÀK<br />

t968 201.0 1969 6?.5<br />

1912 115. 1 l97l ?4.0<br />

1916 97. 0 .t911 81. 0<br />

tEtr = 1c7,3 sîD. DEV, =<br />

srTE<br />

q901<br />

IBT¡ PETÍ IBTE PE¡Í<br />

1910 31 . 6 1971 69, rl<br />

1 9tr 62.6 1975 121 .5<br />

lBll = 83.9 sTD. DEv. =<br />

srts 5S09<br />

229<br />

1a<br />

llAP REPERtI¡cE = ll1:,:52936]<br />

PliRIoD oP FFc. = 1968-77<br />

YEIR SEÀK YEIR PEÀ¡<br />

1970 54, s 1971 163.5<br />

197tt 1t!2.5 1915 11 . O<br />

47.7 COEP. OP sÍE¡ = 0.9620<br />

IIGUIIGORTI 8 TT DÛGIIORES ROCX<br />

cÀrcñ;Exr ÀREr, s0 I(ll = 12.5 rAP REFBREIICE = r20:9q2120<br />

IftãBER OP tr¡0ÀL pElÍS = I PESIoD oF FEc. = 1910-11<br />

IEÀR PETK ÍETN PEIK<br />

'1972 4a.1 1913 I 13.0<br />

1916 I 31 . 1 1911 94. 6<br />

36.5 coEP. oP sKE¡l E -0.0788<br />

Tï:ï1_:_1I_ l::::11-l9ll<br />

CttCEüELl tBEt, S0 [i = 16.2 llÀP REPEREIICP<br />

v20.a279a2<br />

f0rBr8 oF lrlotl PEÀÍS = 10 PERIoD 0F FEC. = 1958-6"<br />

IITE PTIÍ I?IR PEÀ¡ rltR PEtx YE¡N PEÀX<br />

1958 73.3 1959 4C.2 1960 113.9 19n l 66.5<br />

1962 63,1 t96l 23.6 1964 16.8 1965 14,6<br />

1966 146.7 1961 87.5<br />

iE¡i = 64.6 ST¡. DEl. = tr3'3 COEP. oP SrEr = 0.6302<br />

TOT'S:<br />

1. lEE t956 ¡LOOD PEltr OP 210 cÛllEcs<br />

LI¡GEST Ir TEE P9RroD 1850-1967.<br />

sITt 8501<br />

rts Tl(E[ rs TflE<br />

TIIROÀ R À1 ¡EIR<br />

CtTCriEIl tREt, sO lá 12.6? rlP REPEFPTICB X4€:631301<br />

roqrtn oF r¡roir, p¡rrs = 15 PERToD oP REc' = 1960-74<br />

T!À¡ PEIi TETR PET( YETR P8¡K II'TR PE¡X<br />

iioo 37.q 1961 3o.s 1962 33.2 1963 21,1<br />

ti¡c 33.8 1965 26.r ß66 5?. I 196? 15.4<br />

1968 19.5 1969 11.9 1970 J2-'t 1"11 9' 6<br />

1972 1 3. 6 1,9ai 22-5 1914 36.6<br />

iBtI = 31.2 sfD. DEl. = 17.0 COEP. oF SKEI - l'l'382<br />

ctT:ñtEl¡T tBE[, sQ Kll =<br />

ll0liBEF 0P t[¡Uf,L PEtXs =<br />

IEIR PSTK<br />

195rr 619<br />

1959 656<br />

1963 300<br />

1968 538<br />

lEÀI = 112<br />

308<br />

1l<br />

ütP BB?EREÍcs = I53: ttt95t<br />

PERIoD 0! 8Ec. - t95l-68<br />

fEtt PElf rt¡t Pllr<br />

r 9 5? ?.55 1950 515<br />

l96t c56 1962 501<br />

1966 592 1967 33¡<br />

taoTEs:<br />

1. lEE 1036 FLOOD FElr, ESlrllllED T0 BE e9? CUiECS, l¡5<br />

lIKEII ÀS TF¡ LTRGEST III TIII PESIOD 18?5-196E.<br />

2. [O DrTr CÀS tVArttALE P5R 1955 lltl 1951'<br />

sfrE 9211<br />

IETN PPTK<br />

'1951 218<br />

1961 112<br />

1965 120<br />

196 9 rrTd<br />

197 3 ?o5<br />

IBÀf, =<br />

r¡l5<br />

fEI R PEIÍ<br />

1956 53F<br />

1 96 ! 52tt<br />

1965 31q<br />

STD. DEY. =<br />

cÀÎctillEflT ÀREr, S0 Kll<br />

rauü8ER oF rù[[ÀL PEtKS<br />

YEIR<br />

195I<br />

1962<br />

19 66<br />

1 I'C<br />

= :87<br />

PTIIK<br />

q63<br />

50c<br />

67C<br />

184<br />

STD. ftnv. = 1? 1<br />

loTEs:<br />

1. îfiF 1916 FLOoD PEAK OP 9r¡C C0ñECS<br />

LtFGESî rÙ lHE FERTOD 1875-1977.<br />

srlE 9221<br />

crlcElllfl rall, s0 rl =<br />

¡olBlR oF lliûlL Pltf,S =<br />

Water & soil technical publication no. 20 (1982)<br />

IEIB PETtr IEI R PETi<br />

196q 10 1965 130<br />

1968 124 1969 12C<br />

1972 14¡ 19711 142<br />

trlt . t53 sro. oÉs. =<br />

98q<br />

12<br />

130 CO!F. OP sßll = -0.1680<br />

oHrrPinF¡ n lr f,t¡llGlllil<br />

itP Rf,PgFrtacE = Ã5322OA922<br />

PFFIoD ol RqC. = 1951-73<br />

YEIR PEÂT IEIS<br />

1959 61¡ i960<br />

1 96f 2c0 t 961<br />

1967 336 1968<br />

rq? r 6'11 1912<br />

coEr. oF srE¡ = -0.0389<br />

cls TlÍEx ts TnE<br />

PtlI<br />

¡50 g0<br />

650<br />

357<br />

cttEou R rT s8ÀPlFsBt¡Rt<br />

lÀP RErBnlXc¡ I57:263663<br />

PERIOD OP REc. = 1960-76<br />

TEÀR PE¡X TEÀR PETf,<br />

1966 l?C t967 200<br />

1970 16C 1971 155<br />

1975 135 t976 200<br />

28 COE!. oP sl(P¡ = 0.7875<br />

tolBs:<br />

t. î[t t960 PLOOD PEIK 0l 250 C0llECS l¡S TIXEN rS T¡rE<br />

LIBGESÎ Il llB PESTOD 1960-1976.<br />

2. to t¡¡otL PEtÍ 9¡S ItlrLÀBLE FOR 1973,<br />

93


sltt 930 t [rûltRÀict ¡ l? s;¡tts S IlE q66 25 IIfr¡rltcI ¡ ¡1 rrro-Írrot¡tsI<br />

cl?cttttl rllt, sQ ft<br />

tuiDt¡ o? l¡fnll PEris '<br />

ttln Pttf Il¡¡ pt¡(<br />

t959 598 1960 533<br />

t96l 8?6 t96r 213<br />

t96t 759 '1968 151<br />

tgtt 507 1972 1t5<br />

t9?5 5¡8 1976 623<br />

lltf - 087 sîD. D?t, -<br />

lolls:<br />

'122<br />

t8<br />

ItlP ¡E?lRlIcE ! f¡9:088235<br />

ÞEIIOD o? Flc. - l95q-76<br />

IB¡N PBIÍ ITTA PDIÍ<br />

1961 366 1962 120<br />

1965 355 1966 59C<br />

1969 284 1910 339<br />

1973 326 197¡ 259<br />

200 COEF. OP SßEÍ = 0.09¡5<br />

t, rtB 1936 PLOOD PAlf, Op 98C CtrrECS tts Trlrt ts TRE<br />

stcofD Llf,otlir rt îEE pEnroD 1899-1977.<br />

c¡lcctltf trEf,, sQ ft - 189 ltP ¡Et.!nBfCr Ê !19:553051<br />

tltfDtfF Ol lrloll Þulis . I P?¡IOD DP rtc. . t96l-60<br />

ttl¡ Prtr fElR PEtf( YBts Ptl¡ tlln Plri<br />

195 1 2.t3 1962 211 1963 113 r96t t?l<br />

I 965 212 1966 285 196t 27! 1968 2t5<br />

iltl = 222 sTD. DZu. = 6t colr. ol srP¡ - -0.5óll<br />

slrr 46612 fíl¡lPl¡t R lI st B¡ÍD6E<br />

CÀÎC¡liElT tREt¡ SQ Íll = t62 irP AEltEElCl - a20z102l92<br />

fúiBEn OP rll0ÀL PEtrS = 11 PE¡IOD Ot PUc, . t960-76<br />

:I::______::::l<br />

¡¡IttI B tî ioTtots IE¡R PETf, rglR PETI( IEÀ8 PETT ttl¡ Pt¡f<br />

1960 I 1r¡ 196 1 I 1¡ 1962 t28 t!t63 r05 ¡<br />

Cltctllll lRll, sQ Íi Ê<br />

196¡t â9 t965 1tt 1966 29t t967 103<br />

69.9 lllP ¡EIEFE¡cE<br />

l0llr¡ oÈ trl0rl, DE¡ßS .<br />

¡67:799¡30 1968 2t2 196 9 235 1970 111 l9r I 3t9<br />

r0 PEaIOD oF FPC. = t967-76 1972 15¡ I 973 370 197r¡ tr9 1975 159<br />

1976 ?50<br />

ttlt PEIR tBln PEtÍ IETR PETT IIIR PETX<br />

1967 58 1968 70 '1969 2g 1970 q6 lizll STD, DEf. -<br />

1971 30 1972<br />

= 184<br />

97 cogl. oP sREt - 0.6lll<br />

36 l9?3 25 t97rt 38<br />

1975 38 1976 55<br />

ill!. ¡13 sfD. Dll. . 16 CO8F. OP SÍE¡ . 0.?¡65<br />

sIlE 4666C<br />

PUtrElO¡OT R ¡T PTÍITI'TOT<br />

ClTcñtlElll<br />

s¡!t<br />

tR?1, s0 Ãll<br />

PIPIIIIRT 2.08 llÀP BEP?REllc?<br />

& = f19:5830(2<br />

T1 SE BIIDGE ItrllBER ol tllfttll PE¡I(S = 12 PERIOD Op REC, . f965-76<br />

IE¡R PETI( YBI R<br />

CltC[lltl llltr<br />

PBT( TETR PEIX<br />

S0 f,i ¡<br />

I!¡¡ PBIÍ<br />

51 ãlP nElraEIct I<br />

f 965 9.77 I 966<br />

rûill¡ 8.rr7 1961<br />

OF lllorL Pl¡Ís .<br />

t¡?:¡23382<br />

10.75 t96B ¡,70<br />

PEnIoD oF R?c. = 1970-77 1969 1,18 't 9"0 17,28 t9?t 5.72 1972 8.76<br />

t 973 6. Ê5 I 97q 1<br />

tll¡ Itlr tE¡R<br />

1.65 t9?5<br />

Pttß<br />

15.81 1976 9.05<br />

lEtn ÞEÀr IE¡F PETT<br />

I 970 ¡9.8 't971 ¡1.9 1912 35.0 1973 2¡.<br />

15.t<br />

I lElI<br />

t975 95.0<br />

' 9,72 STD. DEv. .<br />

I 97r<br />

3,7< COBF. OP sXEc<br />

1976 ¡6.5<br />

= 0.912t<br />

1977 11.2<br />

iBll - 39.9 sTD. Dtv. - 26.3 coBp. o! sßEr . 1.317¡<br />

!t152'l<br />

0Pr8r R rî Poffi<br />

srrt t5702 ¡lrrSIIt R ÀT Dollt S¡lDOr<br />

cllc¡il¡Î tREt, s0 Í! - 8.03 nrp REFEAE¡CE - ¡3q:tt?209<br />

l0;¡l¡ ot llfltll P!¡fS t l0 PERIOD Op aEc, = 196¡-?7<br />

fEl[ PEtÍ tBta Pllß IEIN PETR tEf,R DETK<br />

t968 27,70 1969 29,35 r9?0<br />

1972 tt2.60<br />

21.35 19"1 St, tto<br />

1973 2a.20 197¡1 8. 80 1975 38.20<br />

1976 67,r0 1977 26.60<br />

tllf . 32,73 STD. DPl. = 15.7¡t coFp, oF sKE¡ ' 0.936ß<br />

torts ?<br />

l. LttD ûst cEltgtD It 19?¡ ?ROr cB¡Ss 10 Exorlc loRasl<br />

ottt rBo0l 601 o? TE? c¡ÎC8iErt, lBB EptRCI O! TEÉ<br />

PO¡ISÎ 0f Tf,t ?Lot ?toÁ 191tt-77 ¡Às ltoT cofsIDERFD<br />

10 Et slctl?IcrrT,<br />

Cllc8it¡T tREl, sQ ft¡ = 10.6 ñtp FE?EFEIICE =<br />

IlrllBER oP t¡lltÀL PPÀXS = 12 pErIoD ,p iEc. .<br />

il5:2 313¡E<br />

1966-71<br />

IEÀR PETÍ fEI R PEIT IETR PEÀß<br />

'1956 lEtn Pttr<br />

t63.3 146? 4q,5 t968 51. r t969 10.5<br />

1970 28.9 tg?l 2r¡,5 1912 25,9 1971 10.9<br />

t97¡ lq. c 1975 56. I 1976 26.1 ,t971 19. 5<br />

lEttl = r¡1.9 STD. DEv. É 41ì, I CO?p. OF Sßpt - 2.7595<br />

ÙoTES:<br />

l. THE 1q66 pLOoD nEltr ta¡s Io? pLoTlEfì ol|DÌp nûLE xo.2,<br />

BÛ1 rts IÙcLttDpD II îHE !ìEFM'IIOI CF lEn GttlRtl,rsDD<br />

CUEÍE POR îNE I8PI.<br />

18. NORTH ISI-AIID WEST COAST DATA<br />

slrr 166 I 1<br />

f,¡rEo R rT Gotcr slrt 3310t<br />

cEltGrEEt F t1 ñÀütIcÀRo¡<br />

cllc¡lltT r¡lr, Se rr = r16 årp REI9EEXCE . rt9:206912<br />

lolBtn Ot rtfoÀL PE¡ÃS E I pE¡toD op Frc, ¿ lg?,Û-'7<br />

ÍEIS PEIK IEÀR PITI(<br />

1972 203.3 r9?3 151.4<br />

1976 100.0 1911 1 0?.5<br />

ll¡¡ PEt[ tBt¡ PEIR<br />

19rO 181.6 1971 138.3<br />

t97r 65.3 1975 89.3<br />

iltr ¡ 139,6 STD. DEy. . ¡l¡,8 COEF. OF SiEt = -0,¡271<br />

totts:<br />

l. tEE t962 ?¡,OQD pElK Or 303 CLËECS CtS ltxEi tS TíE<br />

LTRCZSI ¡f TflE PERTOD ß61-77.<br />

c¡lclr8lî ¡nl¡. s0 ri . 19rt<br />

lútBtl o? ttfttÀL pzrÍs - ß<br />

tzt8 PEt[ IIIE PE¡Í<br />

1970 467 t971 ¡8¡<br />

t97t 6¡8 t9?5 640<br />

llll ¡ q85 STD. DE..<br />

l¡P BEPEREIICE . tr1:lF:?9087q<br />

PE¡IoD 0F REc. - 1970-77<br />

IEIR PEIß TETR PE¡r<br />

1912 326 1973 t3e<br />

t976 558 1971 316<br />

127 COP,?. OP 'sREr - -0. 0f95<br />

totts:<br />

l. t¡t t96t FLq)D pE¡r Op l¡08 coiEcs tls ÎÀKEI tS<br />

în? LÀrcEsT r¡ Îf,E PttIOD 1936-?7.<br />

sITt 466 18 itf,crKl¡trt R lt €olBt srrr 33103<br />

TÍI|G¡EIII' R ÀT SN .ì BRII'GE<br />

cr?cHiEùr r8Dr, sQ Kt =<br />

luiBPn oP rftotl PPtK:i =<br />

IEIR PEIÍ<br />

1961 0¡7<br />

1965 40t<br />

t969 48?<br />

1 9?3 2A9<br />

'1977 3tt2<br />

iBtL = ll5 J<br />

rBt n<br />

1962<br />

1q56<br />

19rC<br />

l97q<br />

PPIÍ<br />

961<br />

808<br />

395<br />

378<br />

246<br />

11<br />

¡rP REFERTICT f19s366077<br />

PPRfoD 0F REC. = 1961-71<br />

YEIR PEIi IttE Ptlf<br />

1963 2r7 19ór tó8<br />

196t 190<br />

19?t 382 .1972 t968 ¡t6<br />

t29<br />

1975 643 19t6 t80<br />

sTD. DEl. = 21\ coEP. oP srtt . l.ttt¡<br />

lolBs:<br />

l. ?n9 t962 ?L(þD pEÀf, tls T¡f,Ef ts 1[r L¡8GESÎ<br />

If TID PERÍOD 1959-77.<br />

94<br />

CllcBllll tllt, sQ ri s t968 l¡P AEPIRE|CE . ìrr¡3:689t76<br />

ll¡lll¡ Ol Àrrt¡L PEIIS = 7 PE¡IOD ol REc. = 19?0-?6<br />

tlt¡ Pllt IP¡N PEÀK IEÀR EETT IBTR PEÀtr<br />

t9?0 50t 1971 rt56 7972 3t1 r9?3 ¡33<br />

19?t 680 r9?5 722 197ó 5û9<br />

lEtl ! 522 SîD. DEt. = t¡3 coBr. or strE¡ E 0.1212<br />

tolts i<br />

1. lrt 1961 tLooD pt¡tr op 1168 ctiEcs rts TtrE[ ts<br />

lil LrnçtsÎ tt lEl p!ÌIoD t935-77. otDla BûLE ro.1<br />

otlt t[¡3 ptlt tot T¡¡s stTE ¡ls oslD tt lEr<br />

¡to¡ottL PLor ¡lD It ?Et DERITÀTIOi Ot ÎñE<br />

cErlttl¡stD ct¡tD tot rEB lnBr,<br />

Water & soil technical publication no. 20 (1982)


stlt 33101<br />

crtcltttr<br />

lûtBlD Ol<br />

t¡El, s0 Ír<br />

llfoll. PEIf,S<br />

=<br />

=<br />

539 tÀP RA?ÊRE¡CB = rlll:?78308<br />

13 PERIoD 0F REC. r 19ó3-75<br />

SIlE 3l3lr<br />

CEI|GIEXI' I TT ÍIRIOI 3f109<br />

CrICE;llÎ r¡lr' sQ rl =<br />

fltltl¡ oF lft0ll Pll[S =<br />

q92 ItlP ¡EFEREICt = I131:965389<br />

10 PEnIOD oP REc. = 1963-76<br />

tll¡ Pg¡f, rtla PElf fEÀR PBTÍ IBIA PBIT IU IR PlTÍ<br />

196¡ 83.80 r96¡ t20.35 1965 112.19 1966 97. ¡9<br />

t96r 't21. 35 1968 86.8e r969 65.06 1970 82.84<br />

t97t 93,90 1976 r01.50<br />

tlll = 96.54 SlD. DEr. - 17.93 colP. or srEt = -0.0964<br />

::::--_-- _::: ll<br />

I|ITGICNPEO R IT ORB ORE<br />

tt¡t PEtr<br />

t963 r{9.35<br />

7967 296.00<br />

19?t 208.00<br />

t9t5 345.00<br />

llrr = 2¡0.28 stD, DBY, =<br />

:r::_-____::1::<br />

CtlCElErT lEtr' S0 I! 63.5<br />

lolDl¡ Ol llllt¡l Pltfs = 9<br />

IITD PBTtr fE¡R PEIK<br />

t968 5.69 t969 3. ¡9<br />

1972 5. t0 1973 3.39<br />

t976 4.O7<br />

lll¡ = 4, t8 SÎD. DEv. =<br />

srtt 311 15<br />

IEIR PEIß<br />

t964 207.00<br />

1968 162.00<br />

1972 153.36<br />

CItCE;llT tBBt, 50 frll 33.2<br />

fltlBEl oF tltttll, PPÀrS = B<br />

ftl8 PEtÍ rEI¡ PETK<br />

1969 9.2tt 1970 I 8. C0<br />

f9?1 1¡-49 1970 22.97<br />

iEtf = 19.68 S?D. DSV. =<br />

srtt<br />

3lt t7<br />

¡IITÀXGI R TT TIIGIÍII<br />

C^TCEitlll rREf,r 5Q Kú =<br />

ItiBFR OP tittÀL PÞt[s =<br />

c¡lcnllExî tREt, s0 Ktr =<br />

¡I'IIB?R OF TT[UÀI, PETKS =<br />

TEIR PT¡T YEI R PE¡K<br />

SIÌT 333 16<br />

c¡TcftfFlt? rREÀ, SQ Kü =<br />

IIUiBPR OP ÀÙXI'ÀI, PEIÀS =<br />

tu ÀR P9Âf<br />

PETK<br />

1962 3tt¡.66 'EIR 1963 168,88<br />

1965 zit.92 1957 393.39<br />

1970 27A.57 1911 31q.71<br />

197q 365.00 1975 3s6.00<br />

lEtX = 324.77 sTD. DEv. =<br />

J32<br />

15<br />

it¡€tlol-o-Tz-to E lt ¡!¡¡ortt<br />

ll¡P RE?ERrlcE t12't.72t621<br />

PEnIoD oP nEc. = 1962-76<br />

YEIR PEIÍ IITR DIII<br />

19611 463.47 1965 q10.35<br />

1968 317.57 t9ó9 r93.t8<br />

1912 266.59 19?3 2t.t.90<br />

1976 332,00<br />

82.61 COPP. OP sil¡ ! -0.2315<br />

IBTR PETf, lBln PErr(<br />

668<br />

1965 256.00 1966 204.00<br />

l5<br />

r969 1t5.75 r9?0 29 3. 00<br />

1973 112.21 1974 362.00<br />

YPÀR PEIÍ<br />

1962 .251,61 r96l 190,87 19 ó4 402. r¡8<br />

r 966 229 .',10 1961 20C .7C 1968 259.79<br />

8r¡.73 CoEF. OP StrEr -- 0.2112 t9?0 213.35 19a1 233.1¡ 1912 233.10<br />

1914 239. R3 1975 130.22 1916 207.25<br />

ËE¡il = 268.21 SlD. DEv. -<br />

ËlP nEIERZùcr = t1222011811<br />

PERToD 0P R¡c. - 1968-76<br />

IEIR PEIÍ IETR PEÀK<br />

1970 3.75 1971 {. rl<br />

197q 3.74 19?5 3.90<br />

0.77 coEF. OP sÍEI = f.1780<br />

lllxct?ToRot a tT scflool<br />

lÀP ABPEREIICE = Xl21:743458<br />

PERIoD OF REC. = 1969-76<br />

YEÀR PEIX<br />

PEìß<br />

1911 20.01 'PIR 1912 13.52<br />

1975 28,32 t976 30.50<br />

7.35 COEP. oP sf,E¡ = 0.2075<br />

ñÀKOlI'TÛ R IT SB II9T BRIDGF<br />

CllcEiE¡î rRPl, S0 ri = 21,8 ttlP RETERB|CI = X121:83rt547<br />

IolBlE OP t[X0lL PPI(S = I PEIIOD 0P FEc, = 1969-76<br />

tllB PEri IE¡R PEIX rEtt PllK IETR PETT<br />

1 969 1 8.63 1970 26.49 1f171 21.46 1972 1 8. 50<br />

1973 15. ¡t 't 974 33. 05 1975 16.24 1976 30.8n<br />

lEti = 25.12 sTD. DEg. = ?.70 ConF. OP sR¡r = 0.221q<br />

19n3 412<br />

1967 2!A<br />

1 971 1C6<br />

1975 32tt<br />

ãElL = 259<br />

r7t 8<br />

196 tr<br />

196n<br />

191 2<br />

197 6<br />

oE0m R lr Îofo¡Itì<br />

r¡P iEFEFB¡cE - lt0r:556097<br />

PERIoD OF PEC. ' 1962-76<br />

tEtB Pt¡t<br />

1965 ¡09.2f<br />

1969 t85.2¡<br />

'r973 r 1t.62<br />

80.r¡1 coEP. of sfE¡ = 1.0021<br />

otctRrrE P l1 tl8ltc¡iúlo<br />

1C?5 t1ÀP nBPIREÍCE = tt01:751165<br />

1l¡ PEPIOD CF REC. = t953-76<br />

PEÀf,<br />

24t<br />

224<br />

284<br />

245<br />

STD. D¡9. =<br />

YEIN PEIi YE¡R PIIi<br />

1965 330 1966 2ta<br />

195c 162 1970 21A<br />

1913 21 J 1974 212<br />

6¡ CoEF. oF sf,EÍ = 1.0385<br />

lÌolEs:<br />

1. 1H!'t9r¡0 FLOOD pE¡K OF 525 Cril'ECS CIS IIXFI tS lEE<br />

SECONT, I,ÀPGF5T IlI TIIF PîRIOD IAO5-"".<br />

srtt 3332c IETTIPÄPT R IT POOTBRIDGF<br />

C¡lCBfBlT tBEl¡ sQ Ãl = tBt¡ llÀP RtFPRFI¡CE = N111:960859<br />

ÍtlBER OF Àfi0ÀL gEl¡s = 11 PERIOD oP REc. = l96C-76<br />

IETI PBTi<br />

P?AK TEÀR PETK YEÀF PETÑ<br />

1960 26tr.61 'EI[ 1961 419.05. 1962 296.25 t963 369.56<br />

196¡ ¡63.39 1965 563.00 1966 446.93 t967 532.3¡<br />

't968 ¡12.19 1969 3r8.0C '1970 246.68 1971 5q2.40<br />

1972 417. t4 1971 2q5.J5 19?q 230. 15 1975 259.68<br />

,1976 399.6¡<br />

Illt = 382.08 sTD. DEY. = 108.03 coEP. oP strEI = 0.1963<br />

torts:<br />

1. ¡O COITECS ETS BEEI TDDED 1O ETCE PETK TFTFR 1972 10<br />

IILOT POI lNE EF'ECIS OP lNE ÎOIGTRTRO PO9EE PNOJECT.<br />

31301 ctlctilol R lT Elt?lfl<br />

clfcfillEIT ÀREÀ, 50 Kll =<br />

NUll8rìR oF ÀI¡tttL PEÀKS =<br />

YETR PEÀf<br />

PEÀI<br />

66lll<br />

t9<br />

1958 3960 'BIA 1959 1q80<br />

1962 2330 1963 11?C<br />

1 966 20F0 1957 2610<br />

1910 1r¡80 1971 2390<br />

197t¡ 3100 1975 318C<br />

Ittll = 23!7 sTD. DEÍ. =<br />

ËlP REFEFETc! lt38:56?055<br />

PERIoD 0P FEC. = 1958-?6<br />

PBIf,<br />

PBIÍ<br />

'EIF. 1960 1830 'IIR t96t 22AO<br />

196{ 29 30 1965 33¡0<br />

f968 2840 1969 1040<br />

1912 t8t0 r97! 2630<br />

1975 19ß0<br />

?76 coEr, o! srtl t 0. t601<br />

IOTES:<br />

l. 4C CUIECS 8lS BtEt tDDEt, lo ercn Ptli rPftl 19?0 IO<br />

TLIOU 'OB<br />

TEB EPIBCTS O? lNE ÎOIIGIRIRO POÍBB PI(NIC?.<br />

333 30 ltlcr¡of R lr ËrTtPr¡fl<br />

CrrcEllrf t8lt¡ SQ f,ã 911 ¡¡P RBFEFEHCP 1t101:81510(ì<br />

rotDrB OF tilfrtl PBtf,S = I PDBIoD oP FEc' = 1965-?2<br />

IETi PPIÍ YDIÀ PEÀI( TEIS PETf, tEÀ8 PATÍ<br />

1965 862.95 r966 693.73 196? 659.?9 1968 407.93<br />

1969 258.95 1970 372.06 1911 s71.26 1972 591.26<br />

lErt - 552.99 sTD. DEY, = 196.31 co?P. oP sÍE¡ - -0'0130<br />

IOçt5:<br />

1. ÎÍE ',l9r¡o PL(þD PEtÍ OP 1628 COIBCS ¡ÀS rÀRFr ÀS TfiF<br />

LrRGrSl Ir TEI PIRIOD 1905-77.<br />

2. l0 cùrPcs Rls B9B¡ tItDBD 10 fnE 1972 P?li 10 TLLOY<br />

lOB ÎE' ITTECîS OP TEE IOíGIRIBO POÍEN PBOJBCT.<br />

13t02<br />

srfc¡fot n ¡l 1l lllll<br />

cÀ¡CElE¡r rREÀ, sO Íü 2212 lttP RETEBETCE lt0ls?050ó7<br />

¡lttBEB oP rlt0rL PU rls = 14 PERfoD ot RBc. - 196Þ76<br />

fE¡B PEÀ¡ IEIR PETÍ YEIR PErr ttll Plll<br />

1963 ?l¡9 1964 1160 1965 1213 1966 t00l<br />

196? 869 1968 7q6 f969 r42 l9t0 619<br />

1977 851 1912 7tt9 1973 871 t97a 560<br />

't9?5 843 1916 679<br />

It Eli = 818 sTD. DEv. = 221 co'l. o¡ Sitr . 0.5176<br />

LOTEs 3<br />

1. 40 CUãPCS ÍÀS BEZX ¡DDED 10 E¡Cñ PE¡f, rPrER 1971<br />

?o trlor PoR 188 t?PtClS OP TEIÌ lolclnrRo Poltl<br />

PROJECl.<br />

2. lHE 1940 FLOOD PEltr OF 2294 CtlEcS ¡lS TrfEI lS lll<br />

LÀRGESÍ TT THE PIRTOD 1905-77.<br />

:Iï-____::991<br />

Water & soil technical publication no. 20 (1982)<br />

POIPHI' R ¡T PIEI;T<br />

C¡ÎCEÉtlT ¡BEt, S0 ßl = 29.5 útP BE"EFEIICB Nl28:5C7187<br />

lúlBtn Ot Àttltll PEIIS = I PERIOD o? REc. = 1910'17<br />

ttl¡ PBtf IETS PB¡K IEIA PEIÍ Y¡ÂR PEIÍ<br />

r 9?0 25.3 1971 33.5 1912 21 -3 19''3 l?. 1<br />

t9?¡ 26,7 19?5 ?9.0 1916 64,8 1971 111.8<br />

Íl¡l . 39. 5 STD. DEt, - 2't ' 6 coE?. oP Strt = 1.1{41<br />

¡otts:<br />

1. tSrs sllllol ¡ls rol t¡sED I¡ luB Rlsrortl. lllÀLlsls<br />

BlclttsB ol Drslrlcr 0P¡tRDs cttRYllûnB rÙ 1ÍA<br />

PiOEIBILITÍ PLOÎ, ¡ TREÍD iTBKEDLI DIF'E8EIT TO TEE<br />

RBCTOiTL OlS. r1 tls ûllcll?lr8 lÉETllPR Tñrs l^s ¡<br />

RrlL DIPFEREÍCE, TXD îtrBEEPORE POSSIBLI I¡DICITIVE<br />

ot TEE riPr.ttB¡cE oF lT, Ecloll, on sIiPLr TIR<br />

ttsûLr oP osllc I sroRl RFCoRD-<br />

95


3950't<br />

flrlÀRt R tr îlt¡Ît<br />

;tP RIFEFEICE . Il09:92t805<br />

PlSIoD oP Fle. = 1969-76 stlt 3r801<br />

"ar""r"rn ttrl¡ sQ ßt . 725<br />

tlttt¡ o? trtotl. Pzlks - I<br />

rtlt PEtß ttlR PEIÍ IBTR PETtr TEIB PEIÍ<br />

t969 ¡51 19?0 q90 197 t 9q4 1912 t¡10<br />

l91t 5?8 r97{ 59t 1915 568 1976 114<br />

llll . 593 STD, DEl. = r70 CoEr. oP siEr = t.3ltto<br />

tolt3:<br />

T. ?EI T97I PLOOD PITÍ TI5 TÀilX 15 THF Lf,EGESl<br />

rt iE¡ PErroD 1900-76.<br />

Cl?CElEll l¡El, Sg Íi t 80<br />

IûlBll Ol lllltlt. PBlrs - 12<br />

ttl¡ Pgrf tElR PPIÍ<br />

7962 110.97 1963 16r.09<br />

1966 rf5,7¡ 1961 236,97<br />

t970 203,66 19"1 2tr0.23<br />

llr¡ . 17q.57 sTD. DEv. =<br />

srrE<br />

l¡343-1<br />

cÀlcRiEIT ÀREt, S0 KË =<br />

tolBEA OP ÀIl¡UtL PEÀXS =<br />

YEÀ8 PFTtr<br />

1 970 587<br />

I 9?q 3{0<br />

lEtx = 41?<br />

srrE 43015<br />

TET F<br />

t97t<br />

t9a5<br />

SlD. DEÍ. -<br />

2826<br />

PETT<br />

332<br />

370<br />

cÀlCRlrIT ÀREt. S0 [i = 137<br />

úllllBER oP rñ¡UtL PEÀI(S = 13<br />

IEIR PETK IEI¡ PEÀK<br />

1965 43.9 1966 46.6<br />

1969 25.9 r9"f 55.1<br />

¡973 10,8 r9t0 35.9<br />

1977 55. s<br />

iElf, = q5,2 STD. DtlV. E<br />

F<br />

::t:llT-r_lr_lIII]_::ll<br />

ntP REITREtlcE . ¡10q:0¡3?27<br />

PERIOD 0P lEc. = 1962-13<br />

tFtR PSIß<br />

196q 137.6C<br />

'1968 113.62<br />

1912 141.24<br />

YETP PFTF<br />

r 965 2 69.9 I<br />

rc69 1 33.61<br />

't9?3 78.0c<br />

55.10 COEP. OP SKEI - 1.1907<br />

fllPr ¡ lT tttllttllt<br />

ËlP RETEBE¡CE ' 165:5ó¡¡56<br />

PERIoD oF FEc. ' 1970-77<br />

YE¡N DEIX I'IE ÞI¡f<br />

1972 4t6 f9?3 tS2<br />

1976 576 1977 362<br />

104 coEF. OP SÍEB a 1.2112<br />

lC. IUIAÍTAWATU-RANGITIKEI DATA<br />

c\rcrlrrr t¡rl, so rt -<br />

301<br />

18<br />

lotDtB o? ttttttl. pElfs .<br />

tBr¡ PEtf tEra PEIß<br />

f958 tt25 t959 1t3C<br />

'1962 1360 1963 65r<br />

t956 558 1967 t¡?0<br />

t970 59¡ 1973 991<br />

r9t6 1250 1917 690<br />

lElf . 970 srD, I,EY. =<br />

tolls:<br />

o?lrr I rr rotPtft<br />

ilP lErgBttct 11512119192<br />

PERIOD 0P REc. = 1958-77<br />

IEIR P'Itr IEIP PE¡Í<br />

1960 t0t0 1961 1130<br />

196tt 1 r90 1965 1580<br />

1968 1090 1969 1020<br />

197tt 615 19?5 711<br />

339 COt?. O? sfPl = 0.0865<br />

1. rltu¡¡. tlooD Pstf,s poR tlrE GoRGt srÎE,3t80l, crRE usED<br />

tol lit ÞtRtott 1950-??.<br />

2. 18t t955 pLæD PElf Op 25¡0 C0;ECS lts TrrEi tS ltP<br />

LltGBSl rl ÎfiE PEnIOD 1920-17.<br />

3. lo tr¡oÀL PrtÍs ¡BFE rvrILrBLB roR t971-72.<br />

srtt 32502 itft¡tÎû R l1 FrrzHERBEnl BA<br />

Crlciil¡l lglr, S0 Rl . 3916 ñlP REPERE¡CE x1¡9:115331<br />

IEIEE¡ Ot tflûr'. Petls = 49 PE¡ÎoD oF FEc. = 1929-71<br />

tBt¡ gElf lEli PErß tErR PErt rEln Ptlf<br />

1929 1655 t930 1450 1931 tr50 1932 1795<br />

t933 t 4 t0 1930 1280 1935 1850 1936 2580<br />

t937 755 1938 1625 1939 1850 1940 t280<br />

l9lr 3260 1942 2090 t90l l?t5 190t t2q0<br />

t9¡5 2335 19¡6 1700 1947 2580 19t¡8 2000<br />

t9r9 2'35 1950 2045 195'1 1110 7952 t¡to<br />

1953 r5¡5 t95¡ 1284 1955 1810 t956 3t85<br />

t95? 1565 r95B tq90 1959 1715 t960 950<br />

t96r 2110 1962 950 1963 12¡0 196rt 2580<br />

t965 33¡5 1966 1110 1961 t765 1968 t380<br />

1969 560 1970 1060 19?1 2235 19a2 r33o<br />

t97t 930 t97q 1380 1975 t4t0 1916 2380<br />

1977 1260<br />

cttPtPt I lcl¡otl lolD ll¡l - l7¡8 SÎD. ItEf. = 7¡¡6 COEP. OF SIEÍ = 1.50¡¡2<br />

¡otts:<br />

lltP ¡EltRElcE = tgls 15t820 l. rtt t953 rl(xtD PErf op r¡5rr5 cnãEcs cts TÀfEf ts Tf,E<br />

PEIIoD 0P ¡Ec. ' 1965-77 Lltersl Ir In¿ PBBIOD t88t-1977.<br />

2. t¡t t902 rL(þD PllK ot ttotr cuitcs rts rlrE¡ rs 1ñg<br />

rEÀR PEIÍ rtlR Ptlt stcotD LlteBsr<br />

1967 55.5 t96g<br />

It 181 Pt¡tor, 1881-t977.<br />

31.5 3. llru¡l.<br />

1971 5q. q<br />

?LooD PEtf,s FoE ?f,E<br />

1972 rr.2<br />

¡olflrfE slnEEl SITE<br />

(fo?325801 9ERE oSlD toR TRE<br />

1915 58.5 1976 51.3<br />

pERrOtr 1912-77.<br />

11.2 coFP. oF sßE¡ - -0.1091<br />

srr! 32503 IttlftTrr R À1 IEBES Rotrl<br />

s1îE<br />

r0ql427<br />

CtTCllñPlÎ rREÀ¡ SQ (l =<br />

TOiBER OP TTXf'ÀL PEIKS -<br />

IETR PETI( IEIR<br />

t96q 62. r 1965<br />

1968 58,3 1969<br />

1972 11.A 1973<br />

1976 51. 9 ',1911<br />

iErI -<br />

IAIIGTÍIf,O R TT DTÍLOI IOID<br />

373 ñÀP REPERgIIcE = f8t!22l7tl<br />

'14 PEBIOD 0l AEC. - 196U77<br />

PETÍ tETR PETT<br />

51. 8 1966 6¡. q<br />

Ir1.? 1970 69.0<br />

53,2 197q ¡9.2<br />

65. C<br />

tll¡ Dtlf<br />

196? tl.0<br />

197 I ¡7.3<br />

1975 ót.5<br />

CIlCE¡lfT lRBt¡ SQ Íl * 713 ilP ¡BllREIct = fl50:5?3q91<br />

f0llll ol Àlt0ll EEÀIS . 22 PERIoD Ol REc. . 1955-7?<br />

Ilr¡ PEIK IBI R Etlf ISIR PIIK IEÀ.B PIIÍ<br />

t95s 905 1956 960 1957 ¡95 t958 395<br />

1959 625 1960 255 t96t 560 1962 550<br />

t963 ¡60 196¡ t?5 1965 6t5 1966 530<br />

1967 ¡75 1968 Slao 19?0 225 1971 1015<br />

1912 520 19?3 315 r9?4 ?40 t9?5 320<br />

r9t6 ¡70 1977 4t0<br />

llll - 539 gTD. DlY, = 23¡ coE?. oF sxE¡ = 0.5673<br />

rofts:<br />

1. ¡O lt¡tttl PE¡t ¡rs rtÀILtBLr loR 1969.<br />

srrE 1C03461 lOfEÀRfRO R IT TPPII DI'<br />

3251t¡<br />

OEOTII R ÀT ILIIf,DILE<br />

c¡rcHlBll rAEÀ, S0 Ktl = f7À ¡¡p RB?EREICE - 1112a23672O<br />

llollBFR OP t¡ltt^L PEIÍS . 17 PERIOD Ol RBC. ! 1960-?6<br />

Prtf IEIF PEIT YEII PEri ttll Ertf<br />

198 1951 134 1962 198 t96l 222<br />

350 1965 228 1965 292 19ó? ¡81<br />

1{0 1969 246 1970 260 r97l 252<br />

't32 1973 108 t97¡ 264 1975 224<br />

264<br />

I EÀA<br />

1960<br />

I 964<br />

t 968<br />

1912<br />

1916<br />

IBlt =<br />

241<br />

STD. DEY. = tl cosP, oF s[E¡ - 0.3ó96<br />

cttc¡tttl rtlt, s0 tt =<br />

lplllr Ol llllttl. PBlfs =<br />

tt¡¡ PBrÍ ttrR Pr¡f<br />

t95¡ I t0 1955 155<br />

1958 125 1959 135<br />

1952 t70 t963 225<br />

'1966 190 1967 260<br />

t9?0 215 r97t 220<br />

197a 100 1975 250<br />

ñlll.<br />

lgl STD, DEl. =<br />

293 itP REI'REIICE = f,100:148573<br />

2I PEEToD or PFc. - 1954-77<br />

IEIN PEAT TETR PET¡<br />

1956 32C 195? t45<br />

1960 70 196 r 100<br />

t964 55 re65 325<br />

1969 225 1969 r05<br />

1912 t80 t9?3 135<br />

19?6 17C 1911 r15<br />

89 COEF. oF SKEI . 0.95¡8<br />

srlE<br />

rc43(65<br />

grrfloÍoffr R tT DBsttt lorD<br />

ct?cBiE[Î tRst, s0 ßË = F8 rlÀP RE?ERElcE = t112r221715<br />

¡lliBER Ol t¡rrtÀL PBIÍS - '14 PERToD 0P ¡r:c. . 1962-76 cllc[ll¡Î rlEÀ¡ SQ fl = 266<br />

Iolll¡ Ol llloll PE¡[s = 24<br />

I ttR l,ETÍ TBTR PEII( rErR PnÀÍ tÄn Pllt<br />

t962 46.0 1963 10.2 1965 09.3 1966 37.5 lltl P'If IEÀR PEAK<br />

I 96? 55.1 'to68 ¡r9.9 1969 1973 53.8 19?0 7t0 1955 26.4<br />

39.0<br />

1 95¡<br />

152C<br />

1971 62 5 1972 q6.8<br />

t9?¡ 28.9 I 950 385 1959 1305<br />

1975 53.6 tq?6 63. q 1962 705 1953 685<br />

1 966 580 1961 720<br />

iBli = l¡7.5 STn. ÞPY. . 11.8 COPF. Ot SfSl - -0,5\22 t 9?0 a20 1971 7ss<br />

I 97r 730 1975 600<br />

IOlES !<br />

I. TO ITf,UÀL PETi TTS ÀVAILÀBLE IOR 196I¡.<br />

lllf. 719 SrD. DEr. =<br />

96<br />

srll<br />

t2326<br />

Water & soil technical publication no. 20 (1982)<br />

IÀIIGIEÀO R ÀT BILL¿¡CD<br />

ItlP REI¿REICE lt49:2?0251¡<br />

PE¡IoD Op RÌC. = io54-77<br />

PETÍ YgTR PETÍ<br />

'E¡R 1956 235 1957 620<br />

1960 89C 1961 305<br />

1964 10!C 1965 60n<br />

1968 FlS r96q 6?0<br />

1972 9tC l9t3 110<br />

1976 7U5 1911 ¡¡50<br />

29d coEP. oP srB¡ = o'961R


SIlE 12 5 2!ì frRÀotll R ¡1 tc¡lnt¡r 3270ß RÀIGIITTEf B AT SPRTIGVALE<br />

cÀÎcñlu¡l tR?I, s0 Kr =<br />

xutlEFR 0P À[ilúIL PErxS =<br />

P¡ÀK TEIE<br />

IETR<br />

l95r¡<br />

1 95€<br />

1962<br />

t 966<br />

1 9?0<br />

1 974<br />

ItEIX =<br />

734<br />

PEII<br />

1rr5 1955 310<br />

250 t959 315<br />

160 1q63 195<br />

265 1967 325<br />

295 191'1 350<br />

315 1975 295<br />

262 sTD. DEY. =<br />

IttÞ REP?8EICE . l1¡9:392215<br />

PEIIOD oF ¡Sc. = 195¡-t7<br />

IEÀR PETI ttlR Ptlf<br />

1956 10 1957 155<br />

1960 s5 r961 610<br />

196ra ¡30 't965 335<br />

1968 215 1969 75<br />

1912 t50 1973 2ts<br />

1916 370 1971 310<br />

128 coEF. O? SKEÍ . 0.3?¡8<br />

cltcÍlBllT t[EÀ¡ SQ fl = 583 lllP EEPEREIICE , [123:50?q16<br />

rttBlB oP Àittttl PEtfs = t0 PBEIOD 0P RFc. = 1964-71<br />

IIIR PEIf, TEIR PEIÍ IEIR PEIX YEIR PEIII<br />

t96q 530. r0 1965 30f.0û 1966 382.20 1967 rr3?.31<br />

19ó6 249.2A 1969 203. Í5 1910 30 t. 01 1911 284.66<br />

1972 3r0.58 t97l r9?.33<br />

lBrf = 322.6? stD, DEv. = torr.24 cotP. OP SÍlc = 0.79?¡<br />

srtt 32723<br />

rro¡cÀRrûPr R rf Pont¡t RotI)<br />

2\<br />

rll¡<br />

s Ilr<br />

325f1<br />

ClrCEiE[1 rREÀ' SQ Kl tt52<br />

ùlrlBER oP rxIûll ÞElf,S = 24<br />

IETR PP¡I( YETR PEÀK<br />

1954 Cr¡o 19,


S ITI 29202 RuNttiltcl I ¡t tllEttet<br />

cllcE;!¡I tnEl, S0 fi È 23qC rtP REtERFtCt r t16t:91¡t29<br />

llu;Bl¡ O? lfllttL PEIßS ! 2l PPRIOD OF REC. . lt57-71<br />

IETR PEIÍ IEIN P'TÍ YEÀR Ptf,f tllt ?tlt<br />

195? 630 1958 1025 1959 765 t960 lr0<br />

1961 t050 1962 82C 1961 7¡5 t96t rt!0<br />

t965 1075 1966 tllC 1967 850 t960 r00<br />

1969 .585 1970 t02C 1971 1 r80 1972 97J<br />

1973 6q0 r97q 935 r9?5 980 1976 965<br />

1971 t t60<br />

ñEltl = 896 sTD. DEv. = 211<br />

CorF. OP Sßlr . -0.619¡<br />

2.<br />

stll<br />

BAY OF PITTTY OATA<br />

It6t0<br />

crtcEllt¡Î t¡tÀ, sQ fi l0llDlF ot llloll PE¡fs .<br />

tEl¡ PPtx frt¡<br />

r960 r1.58<br />

1972 18.2r<br />

1976 27,35<br />

iEll. 2C.10<br />

PEtf<br />

1969 13.95<br />

t 973 r 3.85<br />

SrD. Dtl. .<br />

57<br />

9<br />

nllrtlrt ¡ lt s¡5 ¡ttDel<br />

ñtP ¡EttRttcl . 176t71O032<br />

PERIoD Ct l;C. = 196;-76<br />

YglR P;lf rrll ztll<br />

197C 21 .18 1971 23.t2<br />

1974 35. ¡6 t9t3 t3. t¡<br />

7.81 cOtF. O? 3ßlr . 0.r0t6<br />

s rlE<br />

2922r<br />

CtlcEllllÎ rEEl, S0 Íi . 183<br />

XttrBER oP rrlútl PEtrS = 22<br />

IBIR<br />

1 955<br />

'1959<br />

r963<br />

1967<br />

197 1<br />

1975<br />

ñE¡I =<br />

P¡|IK<br />

PIÀÍ<br />

223 'E¡B 1956 81r<br />

?30 1960 42tt<br />

'.37 tq64 ¡71<br />

110 1968 555<br />

42t4 197? 322<br />

400 1976 566<br />

532 STD. DEc. E<br />

srrr 29231<br />

¡troBrtE ¡ ¡1 €otel<br />

lltP REPEnEtcE I161:90?508<br />

PEFIOD Ot REC. . 1955-76<br />

ÍPÀR PBrtr tt¡t Ptlf<br />

1957 156 1958 l9r<br />

1961 ¡¡56 t962 68t<br />

1965 531 1966 7r0<br />

1969 537 t970 r?3<br />

19?3 662 197¡ ¡56<br />

'147 coEP, ot StrEt . 0. 1738<br />

T¡OERO R IT ÎN TIRIIîT<br />

s¡1t l¡6 r¡<br />

ctlciltf? rMr s0 Ít ¡<br />

tüllB¡ Ot ¡ltorl PEIÍS B<br />

tEtB PEtf ttt¡ Pt¡¡<br />

958<br />

21<br />

ftrlllr¡<br />

R rt tl tlttl<br />

ilP ¡trt¡ErcE . t67ttt2¡59<br />

P'BTOD o? tEc, . 1956-76<br />

frl¡ PEtt( ttlt ¡lll<br />

1956 22a 1957 69 t958 t'r 't93' l?a<br />

1960 102 196 r 98 1962 368 1963 77<br />

t96¡ 12 1965 96 1966 86 1967 27O<br />

196e 116 1969 12C 1970 187 19?t r!0<br />

1912 150 19?3 12 r97¡r 122 tyts 96<br />

1975 r r0<br />

lllt - ll9 STD. DEt. È 74 coEl. oF SÍEl . 1.t:mt<br />

toÎts:<br />

l. TtE OüÎttî pBOi Lr[t ¡o10r1l rs 38,8Ri opslrrlr.<br />

CllC8ltfl tllr¿ SQ lf -<br />

r¡t{llr Ot tlloll PIIIS .<br />

tttt Pll¡ IEIR<br />

t9t0 r15.0 191 I<br />

'19?¡t 211.0 1975<br />

.llll ' 156.0<br />

sttr 29212<br />

STD.<br />

PIÀÍ<br />

3?3 llP REItREIIcE = ll62:239578<br />

I PERIoD 0P FEc. - 1910-'11<br />

YETS<br />

203.0 1972<br />

t?t. c 1916<br />

Pttf<br />

41.9<br />

173.0<br />

;trGoREr¡ R rT slúrDtlJ tllt<br />

IETR PE¡I<br />

t973 87.9<br />

19?7 225.0 c¡lcÍill ¡Elr sQ fl ¡ 179 rllP lltlPBlcE . 167r8l6¡ta<br />

¡ltlBtR Ot ltl0ll PE¡fs = 9 PrRfoD or ¡Ec. - 196ç76<br />

ttl¡ PEtf fB¡n PETf tt¡R PEt( rtll Pt¡¡<br />

t969 292,0 1969 86.0 r9?0 t57.0 1971 86.0<br />

1972 10¡.5 19?3 53. 0 r97¡ rç0-0 1975 12t.0<br />

t976 222.0<br />

rll¡tlrtflt R rT iÎ Eo¡,DStORlt llt¡ Ê l¡6.5 sTD. Dtt. ¡<br />

76.7 COll. oP sfll . o.totl<br />

ctlclltfÍ rr!t, S0 fi c 38.8<br />

l0ilE¡ O? ¡lf[rl PSIIS q<br />

=<br />

ttll ?ltf ttlR PEtÍ<br />

ttó? 63.9 '1968 r0.5<br />

r9?1 76.8 1972 t 55.2<br />

t975 173.2<br />

rl¡l .<br />

srtr 292¡f<br />

89.0 Sllr. DlV. r<br />

cllclittT r¡ll, s0 tt .<br />

tltl¡t¡ o? ltfoll. Pr¡3s.<br />

36. 3<br />

9<br />

lt¡t tEtf tttt PBI¡<br />

t968 2t.20 1969 7. {9<br />

1972 2t.80 1973 ?9. 80<br />

19t6 2a.29<br />

Itll . 27.56 srD. D!t. .<br />

itP BIFEREICE = !158:022696<br />

PEI¡OD oP ¡lc. . 1967-75<br />

ttr¡ PEtr YtlR<br />

1969 62.5 t9t0<br />

1913 6¡. t t974<br />

¡3.9 COE'. Ot SÍll -<br />

PETi<br />

84. I<br />

50. 6<br />

1. ¡687<br />

¡f,¡.¡GttEo I tÎ ¡lIRl<br />

l¡P REllEExcE r158:25577lt<br />

PE¡IoD oP aEc, . 1968-76<br />

tEtB Ptlf ll¡R PEltr<br />

1970 25.20 1971 ¡7. ¡0<br />

197¡ 29.60 1975 39.30<br />

11.25 COEP. O! sÍtl. 0.lt6t<br />

5r1l 15008<br />

ctrctlltll rREÀ, sQ fl llg¡<br />

IolBt¡ oP t¡f0tl, PEr[s . 28<br />

IDIR PETi IEII PEII<br />

t9{9 3t.8 t950 19.t<br />

1953 3a,2 195tr 26.0<br />

1957 27.3 r9s8 58,5<br />

r96t 21,0 1962 ¡7.9<br />

1965 63.8 t966 ¡9.0<br />

1969 3C.9 1970 60,9<br />

197! 26.8 19?¡ 36.¡<br />

ñEtl r ¡r.6 SrD, DEt. ..<br />

slrt<br />

r5¡1?<br />

RlrGIlÀ¡f,I ¡ lt tot¡tlt¡<br />

itP tarBBatct<br />

PII¡OD OF REC.<br />

?tlR Pttñ<br />

1951 2r.6<br />

1955 26.8<br />

1959 ¡9.8<br />

1963 3?.5<br />

196? t2r. I<br />

19?t ¡6.5<br />

t975 36.8<br />

¡ tl6: ll!51¡a<br />

. t9l!F76<br />

tllt PItr<br />

1952 ¡9.O<br />

1956 a2.7<br />

t960 29.9<br />

196¡ rO.0<br />

1968 15.6<br />

1912 36.7<br />

r9t6 56.2<br />

20.2 colP. oF srBl. 2.6gla<br />

¡oTts:<br />

l, ÎÍE tq67 TLOOD PEIK r¡s rE! FESULÎ Or CICIO¡E DItl[ ltD<br />

rls TtrBx Às llrF Ltnctsr r¡ î88 pERIoD 19¡0-77.<br />

8[rGIlÀIfI B tî 1r ttto<br />

c¡tclllr? lrll, sg ¡! 89.8<br />

lu¡lll Ot rllull. Pllf3 . 9<br />

ftll Pllr rllt PtlÍ<br />

1968 38r t969 28r<br />

1972 329 1913 15'l<br />

1976 255<br />

Ittf ¡ ?Sa sTD. Dlt. .<br />

rrrr 298 18<br />

tm? R tÎ Í¡r10Ítt<br />

ilP lE?ltgrcl . 1t61r71630?<br />

gIllOD ot ¡lC, . t9ó0-7ó<br />

llln Prtr tät Pt¡[<br />

't9t0 19t r9tt 327<br />

197¡¡ 20r 't975 171<br />

8l COll. ol sfEl ! 0,2¡¡l<br />

H011 R l? ttlctttltt<br />

cllc¡illT rIEt, sQ ll = 2091 ltP EEPEREICE = l7?:2aâ153<br />

¡ltltllR ot ÀIfolL PE¡Ís ! t6 PEsroD oF lEc. . l95t-66<br />

llt¡ PErfr fErR PEIß rDrn Þtrk ttl¡ Dtlt<br />

t95t 309 1952 t9t 1953 33 I 195¡ tt9<br />

1955 t89 1q56 212 1931 370 r95t 3t9<br />

t959 219 1960 t9t 196t 235 1962 37t<br />

1963 190 196¡ 272 1q65 595 19ó6 2t;<br />

Ilrl . 293 SîD. DEl. . tl1 Co!t, or slEs - 1.62¡2<br />

torBs:<br />

l. TÍE 19tq pLOOD pttr op 784 CUiBcs rts Ttfli rs T8r<br />

IIFC'ST tX |!|llB D?RloD 1925-66.<br />

2. T[tS S1¡lrol fls tot rsED Ir TRt 8lcrotÀL rtrLtsls,<br />

BECÀûS! TEERE tnF SIGirPfCtIl ptRrs o? THp crîc[;?tÎ<br />

III BOTII IEÌ: BIT OP PLT¡ÎY IID XOBfB :SLIFD EIST COAS'<br />

RFGIOilc, ttlD !H!: lBEilD rX Tfi! pROSrBtllûy pLoT ¡,lt<br />

lx-EETrEEr TÍOS! PoR ÎñE lfo B'GIOIS.<br />

cllctlltr rlll¡ 30 ri - 027 irP nErlnlrcl t r1ól!52r¡40<br />

l0llll ol ¡ltttll PtIIS ! 6 PB¡¡oD 0? ¡Ec. . l97t-76 slr! 33307<br />

¡llctiol R rr f,EtfrÍllBts<br />

t¡lt Ptlr rlt¡ Pl¡f IEf,f P?l[ rttt Pf,IT<br />

19?t t26 1972 636 197! 329 r97¡ 837<br />

19t5 39r r9t6 636<br />

Crlclllll rllr' S0 ñl - 81.3 llP nl?zRt¡cE - I1l2:0899q0<br />

f0lllt ot lfr0rl PEtrs . 1l PERIOD 0t REC, . 1960-10<br />

rl¡l . lto 51n. Dll. . t3¡ Cott. Ol Sfll - 0.6212 IEI¡ PEÀß I'I¡ PEII YI¡R PIÀi IETR PBTT<br />

tolrl:<br />

1960 ¡6.7 t961 ) 97.5 1962 32,a 1963 2a.2<br />

1. ltt t9¡t ?L(þD Dl¡f ot 1237 cortcs rts llrtr ¡s Ρt l96t ?1.8 t965' t¡2.8' t966 5T.8 196? 69. B<br />

l'llelst It ttr P¡¡loD 19¡0-77. ûrrlrR RnLE fo, I orlt 196t ¡r.9 1969 :16.6 r9t0 21.3<br />

ttrg Dt¡¡ ?o¡ tE¡s sÎll ll3 oslD li lFr BEGrollL Prol. il¡t - 09.7 STD. I'EY. . 22.2 coll, oP SFES É 1.0221<br />

98<br />

Water & soil technical publication no. 20 (1982)


sllt 333 2[ i¡[e¡TEPOPO I It rElEltfir 3. ÍIOßTH IsI¡ITD tr¡sT COAST DATA<br />

CÀtCEtElT rBEr, SQ fl = 31<br />

llliBER OF tffttll PEtfS r I<br />

I8¡8 PETf, TE¡R PEIf,<br />

1960 ¡9.79 1961 8{.9q<br />

t96¡ 35.42 r965 29.79<br />

il¡t = ¡1.56 s?D. DEv. =<br />

srlr 33307<br />

itP BEIERltcD = I1122062921<br />

PEBIoD cF FEC. - 1960-67 t54 t0<br />

IETB PE¡Í IBTR PPTI(<br />

1962 21.25 r 963 1 6.50<br />

1966 42.84 1967 51.97<br />

21.63 coPF, OF srEt = 1.0182<br />

¡IIGÀIUT R IT TB POAERE<br />

crfcEiEfT rntt, sQ rt = 28,2 lltÞ SElBlE¡CE - ¡112:087904<br />

l¡tlDlr ol rlfûrl PEÀÍS = 1n PBBIOD oP REC. . t967-?6<br />

rlt¡ PEtr<br />

PEIK<br />

IBIR PEIÍ<br />

1967 5A,O2 'EIR 1968 31.53 1969 26.20 t9?0 11.20<br />

1 971 r0. ¡9 1912 16.01 19?3 r¡9.39 1974 1R-22<br />

t 975 21.6t 1916 29.69<br />

lEtl . 30.86 SrD. DEY. = 14.33 coEP. oP slEr = 0.8759<br />

tE^n PEtß<br />

srtr 43112<br />

clTcFrgtT tBlt, s0 rr = 228 ItP REtEnE¡cl . f,85:r101680<br />

folBl8 Ot ll!ûÀL PEltrs = 16 PEnIoD oP RBc, = l'161-76<br />

rtlt PEtr tElR pElf, IETR PBIX TEIR PBIf IETR<br />

196r t6.2 1962 36.5 1961 11.4 t964 12. 1 I 967<br />

1965 33.5 1966 19.9 1967 1 1,2 1968 17.1 197 t<br />

t9ó9 19.1 1970 L2.7 191 t 21,9 1972 11.2 197 5<br />

t9?3 17.O 1974 26.2 1915 lq.3 1976 15. 6<br />

¡Etf{ =<br />

15.2 CoEF, OF sRE¡ = 2.1165<br />

llll = 2¡.8 sfD. DEv. =<br />

rotts:<br />

1. TEB 1967 PLOOD PPÀr 9ÀS rFE RESÛ¡,Î 0P CICLO¡E DrlÀft À¡D<br />

tÀs Tl[ut Às ?EE LtacEsr rx rtE PEBToD 1940-77.<br />

q48<br />

tl<br />

CIlcllllE¡T lnsl¿ SQ Il =<br />

X0lBß8 OP ltltrlL PBIÍS =<br />

IETR PEI( fE¡R<br />

1953 67.3 195C<br />

1957 r¡9.7 1959<br />

1961 27,t 1962<br />

1965 33C.0 1sC,6<br />

1969 59.7 1970<br />

1973 54.1 19"4<br />

1977 5?.0<br />

IrrorrPr R rr REPoBoÀ srtE 15¡32<br />

srrE t0¡34 19 POf,II¡ñEÙUT R TT PUKEÎIIROÀ<br />

cllc8lltl lf,Er, sQ Ki =<br />

ItlBES 0? ¡ftnÀL PEtÍs =<br />

IEIi PEIß IB¡R PEàK<br />

1951 20.0 t96s 62.3<br />

t968 12.7 1969 11.9<br />

1972 21.8 1973 18.3<br />

1976 33.7<br />

iB¡Í = 27.6 SID. DEV. =<br />

srlE 1003428<br />

--------ï-----<br />

IIIS PBTÍ<br />

1965 3¡.0 'EÀR 1956<br />

1969 31.2 t970<br />

1973 59.0 197tr<br />

CÀTCFÉEII! TRET, SQ RII =<br />

IUIBEF OP r¡fûrl. PE¡KS =<br />

lltP RE¡zREIICE = ¡75:213145<br />

PEEIoD oP REC. = 1964-76<br />

fEÀR<br />

19 66<br />

1 970<br />

19 74<br />

PETf, fÈTA PBÀK<br />

15,2 1967 41.6<br />

24.6 l9?t 32.0<br />

19,3 19?5 \0.7<br />

14.4 COPP. oF sßE¡ = 1.1932<br />

CllCSllrT lEll¡ SQ f{ll = 210 lltP FEPPREIICE = n85:54t802<br />

¡0!BER Ol Àltûrl PEIÍS = 12 PERIoD 0F REc. = 1965-76<br />

NOlES:<br />

1. lHS 1958 FLOOD PE¡Í I'¡S 18E ITRGZST III lFE PI¡IOD<br />

t870-1977. 11 ¡als EICLI'DED PROË TIE Àüf,LtSrS olDt¡<br />

R0Lt ¡o.3. 8tt1 ¡ts rfcLttDED rr r¡B DE¡lvlrro¡ ol<br />

r8E GEIIERILISED COFYE PCR 188 TREA,<br />

2. TRE 1964 FLOOD PEIK tts PROBIELI 1f,8 SECOID LlSCtS? fl<br />

üE¡OR!. IT ¡ÀS lttElr ÀS lnt SECOID LTRGEST l¡Oi 1905<br />

(¡flB[ TBE rtfE RFCORDES ¡ÀS TITSTILLED) TO 1977<br />

If,CLT'SIYE.<br />

53¡<br />

25<br />

¡EIRIrtiI I rr cllt:tl<br />

tlP BETBRI¡C! Ê 186:191C23<br />

PEnIoD 0F RBc. - 195Þt?<br />

PEIÍ TE¡R PEItr ÍITR<br />

64.9 1955 52.6 1936 'III 79.6<br />

211.1 1959 ?r.9 1960 5?.t<br />

113.2 1963 64.8 t96a t33.0<br />

183.1 1961 310.{ 1968 t3t.?<br />

306.9 t97t 1t7.3 1972 66.3<br />

.8ß.4 1975 65.1 .r9t6 tt6.0<br />

ËEt[ s 120.5 STD. DÊy. . 90.9 COEp. Ot S¡!¡ - 1.!rt8<br />

¡rrG¡r¡I¡I I ¡1 ¡ODûlt¡I<br />

CtrcllEf,T lREr. sQ Kll = 2318 irP altl8Efct . a862222A22<br />

NUIBEn oP lf¡ûÀL PEÀI(S = 10 PERIOD 0t lzc. r t96?-?6<br />

PEI (<br />

498<br />

325<br />

147<br />

260<br />

tEtF PSIX<br />

1968 185<br />

1972 112<br />

1976 339<br />

SÎD. DEÎ, =<br />

CÀTctrlllll¡ ÀlEt¡ SQ Kll =<br />

IIU;8ER OP ÀT¡OT.L PEIKS =<br />

I ETR PIIK TDTS<br />

jt<br />

951 262 1952<br />

1 955 272 1 956<br />

1959 283 1q60<br />

1963 1111 1964<br />

1967 !c9 1968<br />

1971 3F6 191?<br />

1 975 450<br />

ctlcBl!|Î ÀRErr sQ Il . 207<br />

llllDll O? tlto¡L P¡lf,S E I<br />

ttl¡ PEIR ttlB PEtr<br />

1969 327 1970 385<br />

1973 62 1970 rs5<br />

illl - 218 STD. DBY. =<br />

YEIR PElf rtlR tt¡l<br />

1969 9t 1970 t95<br />

1913 117 19t¡ 212<br />

148 coEl. oP sflÍ = 0.7157<br />

:11ïl-:_l:_::*:l_1:::<br />

l¡rl0 lÀP nEFEnElcE - ¡?8:17¡076<br />

25 PERIoD oP FEc. = r95t-75<br />

PEÀT IEÀR<br />

219 1953<br />

258 r95?<br />

136 196t<br />

616 1965<br />

289 t969<br />

1tt7 19?3<br />

PETK PII¡<br />

1 rto 'ETN t95¡ 2¡0<br />

160 1958 tt7<br />

3?C 1962 2t2<br />

19c 't 966 76a<br />

"?0<br />

t970 t93<br />

2c¡ t9?4 t2â<br />

TT8O8AÀTTRÀ F TT OEÀXfTRI R'ì IEII = ?Bt STD. DEV. = 234 coEF. oP sflB = 1,50t2<br />

PEII YEIR PFAI( IBII<br />

17.9 1961 F2.5 1968<br />

42.9 19"1 28,C 191?_<br />

ò8.6 1915 30.8 1976<br />

PEIf<br />

35. 0<br />

47. c<br />

54.1<br />

iEIl = q4.9 STD. DAg. = 15. 1 CoEF. oP sXEí '= 1.4881<br />

srrB 1C4345C TOIGIRIRo I l? ltttltcl<br />

112<br />

2C<br />

lilP ¡ElERPfCr . it02:30000¡<br />

PERToD oP REc. = 1937-76<br />

Pll¡<br />

280<br />

1225<br />

3t5<br />

r20<br />

J27<br />

IEIR PEIK ?BTR PEÀf, ÎETR PEIÍ I'I¡<br />

1957 2tt' 1958 1915 1959 245 1960<br />

1961 270 1962 345 1963 300 t96¡<br />

1965 54C 1966 r¡',t0 1967 826 1968<br />

1969 110 1970 457 1971 188 1972<br />

f973 230 1974 386 1975 :113 1976<br />

;BÀII = 497 sTD, DEv. . r¡07 CoEF. oP SklÍ . 2.735a<br />

srlE 1043460 loHclnrEo F rr Pûfll¡lltl<br />

SITI<br />

155tq<br />

8lIÀf,tTtÍE I t1 8ñtr¡?tIF<br />

C¡lClü811 lll¡r S0 Kll = 1557 llÀP nEF¿nEilCE =<br />

¡ltllgl O? ll¡t f,I. PEIKS = 20 PERIOD C! nEc, =<br />

flt¡<br />

I 957<br />

1961<br />

I 965<br />

1 969<br />

197:t<br />

ll78:43619¡¡<br />

't9 5t-76<br />

ÞETf IE¡8 PEAI YEÀR PB IR tElR PStü<br />

638 1958 1166 1959 367 r96C 657<br />

27t 1962 8',r6 1963 r¡90 1964 2110<br />

22\O 1 966 550 1967 r 711 1968 520<br />

620 19t0 2C6A 197t 1 289 1912 642<br />

350 197tt 580 1975 1t5 19?6 7¡0<br />

lEtl = 9¡3 SÎD. DDV. - 639 coEF. oF skrc = 1.2069<br />

sltt 15536<br />

¡¡I;ltrt I tT oGILtIts EnIDca<br />

rlP REFBREIICE = i8?:55r818'<br />

PEIÍOD 0P REC, = 1969-16<br />

PEÀT tIÀR PETR<br />

'BÀI 1971 196 1972 142<br />

r9?5 187 1976 251<br />

101 COEF. OF SKE9 = 0.334¡<br />

CtTCSllE¡î ìRBt, SQ Íll ll95 ttP BgFERBTCE - 1112:31i1910<br />

IUTBPA oP Àxtfttl. PEIßS = 11 PERIoD oP REc. á 1960-t6<br />

YEIR PE¡f<br />

PE¡i IEÀR PTTf, ttl¡ Elll<br />

1960 212 'EIR t96l 181 1962 2g I 1963 21'<br />

t 96{ 869 1965 619 1966 302 1961 ?09<br />

1968 261 196q 272 1970 370 1t71 2a9<br />

1972 3C6 1973 192 1914 3 19 tt?s 260<br />

1976 360<br />

lltf = 353 STD. DE!, - 19q coEP. o? sßlr ' 1.7tlg<br />

lrofES !<br />

r. ÎÍE 196¡ PLOOD PEIÍ f¡S îtßEr lS SECO|D Lrloltt ll lll<br />

p?Rron 1905-77 (SEE tOlPS POR Srft l0r¡3t59t.<br />

CllGllllr llllr SQ ftl =<br />

lûllll ot llt¡llL PEIrS =<br />

ttll Ptrtr tttR<br />

t95t 1068 1959<br />

t9n2 800 1961<br />

1956 555 1961<br />

1970 r î57 r97r<br />

t97l . 660 1975<br />

PEII<br />

256<br />

475<br />

2058<br />

705<br />

617<br />

llll - 920 SrD. DEl. .<br />

6q0 t9<br />

lÀlOERl R tT GoRCE C¡rBLBllr<br />

ItP BtPlFEllcB f?8:7 37921<br />

PERIOD oP RBc. = 1958-t6<br />

tPÀR PETÍ IETR PSIK<br />

1 960 6\2 196't 209<br />

1964 217A 1965 t0t5<br />

1968 5?6 1969 tr26<br />

1972 8r¡3 r9r3 342<br />

1976 920<br />

529 COPP. OF S¡Er = 1.6132<br />

Water & soil technical publication no. 20 (1982)<br />

99


ïI-'_____ ::19:<br />

lt¡IPt0r n À1 i¡¡lÍt¡lrt BF 4. CENTRAL HAWKE'S BAY DATA<br />

c¡lClllll t¡ll, S0 rl =<br />

totll¡ Ol lllotl' Pllfs .<br />

1580 itP sEPlaExcr t89:268623<br />

15 PERIoD oP REc. = 1960-7q<br />

PEItr IEII PETÍ<br />

1750 1963 568<br />

976 196? 11tt<br />

r 1t5 r97t r4¡5<br />

517<br />

llr¡ PElt ttrn PEr( rEtn<br />

1960 28s0 1961 tqts ß62<br />

t96t 550 1965 1820 1966<br />

t968 1100 t969 qt6 l97o<br />

1972 998 1973 t239 197tt<br />

llÀt . 1167 slD. DEv. = 6ql COEF. ot sf,E¡ = 1.2631<br />

¡otts:<br />

l. tt! 1876 ¡tD t9¡8 TLOOD pEtÍs OF 3058 trD 3172 C0iECS,<br />

¡lsPtctltl¿t.rERz ltftf ls lEp 1¡O LlncESr pBtÍs<br />

¡¡ TÍB Pr¡IOD't876-19?7.<br />

SITE<br />

23001<br />

cÀÎc8íEIT tREr, S0 Ktt = 193<br />

lluãBEF OP t¡¡UÀL PETKS = I<br />

IETR PETK fETs PE¡T<br />

1969 n5 1970 298<br />

1973 365 1914 f q I<br />

T0lrBÍ0RI R tÎ ÞrftllPo<br />

llP ¡ETERE;CE . t134:21t367<br />

PEAIOD 0P RBc. = 1969-76<br />

YEÀ8 PU ÀÍ<br />

1971 805<br />

19?5 771<br />

IETR PETÍ<br />

1912 250<br />

1976 811<br />

ItEÀtl = 47 2 STfi. f)Ey, = ?87 coEF. oP srEr = 0.2559<br />

sIll<br />

C¡qcllBft llEl¡ S0 il = 18t<br />

IOltlS or ll¡orl PE¡rS = 12<br />

trl¡ Ptt[ tE¡a PElr(<br />

r955 r9!.29 t966 117.60<br />

1969 95.33 r9?0 rq2.09<br />

1973 1t2.71 r97[ 175.73<br />

rlrt = 'l¡¡.01 STD. DE9. -<br />

r8¡REEOPII R ¡T ÑfLLTR¡EI<br />

llP REFEnEßCE = i97:061529<br />

PARIOD 3P REC. - f965-76<br />

YEAR PET(<br />

I 967 127 . 10<br />

1971 1¡1. c2<br />

1975 t¡3. 1 1<br />

tEta PEti<br />

1968 142,4t<br />

1912 90.38<br />

1976 226.20<br />

38.79 COEF. OF SkEg = 0.7724<br />

SIlE ?3C02 lOT¡EXÛRT I TT REDCLII?E<br />

cllcBlEìtT AnEÀ, S0 fl - 826.1 Ëtp RE?ERElcE ¡t3¡t:255320<br />

ttlBER oP tùtûf,L PETIS = 3t PERIOD f,p FEC, .t92¡-65<br />

=<br />

srtt<br />

t9711<br />

C¡lClllfT tlBr' S0 Íl = 171<br />

lúiDtR Ol tllltll PtlÍS =<br />

IETI PETT TETR PB¡R<br />

1965 335.?? 1966 138.51<br />

1959 103.64 19r0 336.01<br />

l97t tq8.62 1974 4e.22<br />

Í¡IiGIROIIII R TT lBRRTCF<br />

ËÀP aEPEBEICE 'tt [89:325746<br />

PERIoD oF nEc. = 1965-75<br />

IEIB PE¡T IETR PETtr<br />

1967 97. 00 196A 221 .9?.<br />

1971 285.61 1912 125.91<br />

t975 I 9.09<br />

lll¡ - 169.85 STD. DEg. . 1t0.92 COEP. ôp sßF¡ = O.¡q76<br />

218 íì I iontxÀ R tÎ nloPûfel<br />

C¡lCHllBlll tREt, S0 KË = 237î ðtp nEFEFEXCE = ¡tt5:5¡t2895<br />

NCüBnP oF llrutL PEAÍS = 19 pERtoD op FEc. = t95g-?6<br />

YETR PXÀX I?IF PEÀK IETR PEAR IEIR P'Ti<br />

195S 926 1959 ?16 1960 1229 t961 36ß<br />

1ç62 q35 t963 495 1964 450 1965 120<br />

1966 l1¡5 t967 14t9 1968 768 t969 ¡03<br />

1 970 6 t0 1911 163 1972 {01 1973 920<br />

1974 t 397 t9?5 4tO 1916 t¡48<br />

ItEl¡ È 818 STD. Dgs. = 167 coEP. oP sxEr . 0.¡t701<br />

TOTES:<br />

l rBB t93A FLOOD pFÀK rts FS?rrtî8D rT 5371 C0'DCS. r1 t¡s<br />

FICLTIDFD pROt lFp ¡tatLtsrs 0¡tDER Rtt¿E to.3, r;D ?BOtl lir<br />

DERIfIIIOII O! IIIP GEf,E¡II,IsED CITRYE POR T8E T¡lI.<br />

:l:_"______3ll 9:<br />

TIOHTßI E ÀT GLE'?ILLS<br />

cÀîcEÍEIÎ r¡Pr, S0 iñ = 9q7 ñtP nEPEREI¡CB 1114:072775<br />

lUlBFn oP Àf,IûIL PE^¡S = t3 PERIoD oP REC. = 1961-76<br />

PFIK IEI R PEÀT IEIR PPIX lErl Pl¡f<br />

q03 t96 5 tút2 1966 511 1967 6a2<br />

tc0 t 969 t3c 1970 62A 1971 290<br />

tF7 1 971 316 197¡1 606 1975 290<br />

q 34<br />

I ¡t8<br />

1 96¡<br />

t96B<br />

1912<br />

1976<br />

ItBt i =<br />

05 9<br />

22s02<br />

crScHÍEiÎ rREt, s0 Rt -<br />

LûlBF8 oF ttfutl PEtfS =<br />

rEta PEIX t?t¡ Prtß<br />

sTD. DA9. 240 COEr, Or SkBt - 0.7261<br />

25tt<br />

1l<br />

BSr R lr srlPutel trIDet<br />

FIP EE'ERBICB z t124.241523<br />

PE¡iOD oP REc. = t96t-?6<br />

rBrn PErÍ ttlR Pllf<br />

1966 125.21 r967 213.5t<br />

r970 126. 30 1971 372.06<br />

r974 rt99.98 1975 91.72<br />

't96¡r 27.Ctt 1965 2¡2. ¡6<br />

r968 528.90 1969 31. tq<br />

1912 q2. ?1 1973 1?0, ¡8<br />

1976 281.30<br />

lEtl = 215.63 sTD, DEr. E 164.90 cOtF. op sxrr E 0.06t6<br />

IOIES:<br />

l. lEt 1938 pL(þD pEt( ¡ls tSTrñtlED 10 BE tr Erclss o!<br />

1931 Ctrttcs. Iî 9¡s lxcLoDlD FBO! TßÌ tttltsrs ûtD!¡<br />

altlE fo.3, ttD ptot tÍB flERrttTror op tfp GBIEBILTSID<br />

contE ?ot rllP ¡REl.<br />

üEtI = 614 SÎD. DEV.


slrt 2¡201<br />

lOf,ITO(T R IT 8ED BRIDGE<br />

ioîûtRt F IT tooDsfocr(<br />

CllcÍlltr rBll¡ SQ Il =<br />

lúlBg¡ Ot rl!ûll. Pll¡s =<br />

tt¡t Pttf tE¡B PEIÍ<br />

1923 l\12 1924 1727<br />

1927 2265 1928 t 161<br />

1912 1tt12 1933 1172<br />

1936 2548 1937 I 161<br />

19¡7 931 19118 1897<br />

1951 þ3q 1952 1076<br />

'1955 1\12 1956 2237<br />

't960 1019 1961 1359<br />

195{ !l¡ 1965 1557<br />

1969 333 1910 1090<br />

r9t3 626 1911 2500<br />

iBll = 1380 sTD. DEv. '<br />

srlE 5690 1<br />

cÀlcfillEllT tREl, S0 fr =<br />

IIÛ;BER OP ¡XÍI'ÀL PEÀKS =<br />

IEÀN PEÀK YEIN<br />

1967 19 1 958<br />

197f ttl 1912<br />

1975 s3 1976<br />

59 SrD. DEY. '<br />

2380 q¡<br />

rÀP !E!EnZÍCE = Ít30:338119<br />

PEBIoD 3F PEc. = 1921-16<br />

IEIR PETT IETR PBIÍ<br />

1925 1112 1926 2432.<br />

1929 291f 1931 178ü<br />

193rt 1133 1935 198?<br />

't 9 38 2e13 19q4 8q9<br />

19q9 2898 19511 2690<br />

1953 1115 t95r¡ 1q16<br />

1957 1218 1959 1415<br />

1962 764 1963 't472<br />

1966 1tt1 1968 1695<br />

1971 2243 1972 5A2<br />

1915 1 585 1916 1244<br />

837 cOEr. oP SIE¡ = 0.ltlll5<br />

tolEs:<br />

t. tttotl Ptl(s mR TEE BLICi BRTDGE SÍTE([O.232i{21 íERR<br />

nsED POA Î[E lEl85 1923-60.<br />

2. TEt rlfûll FLOOD Pgrf,S POR 18S lEtns 1939-46(EXCLllDrllG<br />

191¡{l rtD 1958 ¡EBE f,to¡r rO BE LBSS T¡lt¡ 283 C0iECS<br />

(1OO0O CUSBCS¡ rrD 'EFE<br />

rSSBIED rO BE 255 C0iECS (9000<br />

c[srcsl. TIESE PBlfs IERE 0sED rf, T8E FRBogBrCt tl{lLYSrS<br />

POB lRE SiTE BI'T ¡OT III lII' BEGIOIIII ÞLOT.<br />

3. fo tirûll PEtßs ¡lRE lrtILIBLE FoR 1930 tfD 1967.<br />

t. TRS 1917 PLOOD PPtf, OF 3964 CUüACS lls TÀf,EÙ lS lRE<br />

LIBGBSÎ fr rñE PERTOD 1868-1976.<br />

srlE<br />

232Cq<br />

OTÀI¡E I Iî GLE'DOT<br />

c^TcftiSl¡T AREÀ,5Q (ü = 24.3 ürP nEPEFEÍCE . [141:015921<br />

Nlt;BER OP ÀilUnÀL PEAKS = 12 PEaIOD 0P ¡EC. = 1965-76<br />

YEAR<br />

1 965<br />

1 969<br />

1 973<br />

¡Etil = 1ñ.51 slD.0!Y. =<br />

SrrE<br />

PEÀT YEI R PEÀK ÍFTR PETß<br />

1.19 1966 15.0C 1961 6.89<br />

4. 11 1970 \.51 1971 16.5c<br />

7,86 1974 37,31 1975 7.06<br />

2321î<br />

IEIS PP¡K IEIR PEÀI(<br />

1966 43. t1 1967 r¡1.57<br />

1970 14.75 1911 95.53<br />

1974 115.40 19?5 24.88<br />

ItEtX = 48.71 STD. DEV. =<br />

IEIR PETI<br />

1968 9.68<br />

1972 1.53<br />

1916 8,32<br />

9.qq CoEP. oF srE¡ - 2.3603<br />

crTcfiiEìT ÀREt, 5Q KË 5q.{ rÀP BETEnENCB<br />

llUlBER 0P t¡|flûÀL PEIKs = 1C PEaroD ot REc.<br />

YEÀR PTiÀK<br />

1968 55.83<br />

1912 r9.87<br />

5. SOUTH ISLAND WEST COAST DATA<br />

srrE<br />

s2916<br />

CÀlCfltlEllT IREt, s0 Kl = 5C.8<br />

X0iBEF 0P ÀtlNoÀL PEIKS =<br />

B<br />

IEIN PEÀK ÍEIR PETK<br />

1969 61.7 1970 B3.q<br />

1911 110. 1 1974 15e.0<br />

oËIKERE r lT POSDlf,t<br />

= 1106:'l¡1751<br />

= 1966-75<br />

IEAR P'IR<br />

1969 31.8t<br />

t9?3 t¡.55<br />

t2.71 coEP. OP SKES - 1.2578<br />

coBE B lî TSILOtrlE<br />

lllP REFEREIICE = St3:020¡82<br />

PERÎoD oP R?c. = 196976<br />

reÀR Pfrx IEIE PEIÍ<br />

1911 98.0 1972 94.3<br />

1975 142,5 1976 131. 5<br />

lEÀX = 110.1 SÎD, DEV. = 32. q CoAP, oF SßB¡ = 0. l3lt<br />

ËDt¡<br />

sri¿<br />

s7009<br />

ctTcHl:IT À88À, SQ Kll =<br />

llUltBEn oP ¡.ù[0ÀL PFÀxS =<br />

P EÀÍ<br />

6tt<br />

46<br />

74<br />

ÌETF PEÀK YEIP PEIT<br />

1968 r¡13 t96q 255<br />

1972 392 19?3 112<br />

1976 163<br />

ËBrI =<br />

345 5T¡. D¿V. =<br />

t¡8<br />

tc<br />

163<br />

FrcrKt R lT toss BosB<br />

ItAP REEFRPIIçE = S13:307569<br />

PEnroD oF PBc. = 1961-76<br />

YEAR PEAR<br />

1969 60<br />

1913 19<br />

fttR PEli<br />

1970 6¡<br />

t9?¡ 4¡<br />

21 coEP. oF sFEc = -0.3054<br />

IIOTODKI R If GORGB<br />

irP REF F¡:{CE = 526:288863<br />

PERIoD 0F BEc. = 1968-?6<br />

YEÀR PDÀT ÍEIR PITÍ<br />

1910 16C 1971 ?00<br />

1a"4 95? 1915 233<br />

176 coEF. oP sKE¡ . 1.1262<br />

IOTES :<br />

1. TTIIS STITTOÙIS PSOBÀBiLIFY PLOT DTD ilOT COTFORII 1O TÍE<br />

SOUTH ISLÀND IEST COÀST REGIONÀL ?RPIID. I1 ÍAS O'TITID<br />

PFO| lHE DtRMÎlO¡¡ O? ?UE nEsIOIIL CT RVP lllD lls usaD<br />

INSTFÀD IO IiJEPTil' À ¡IELSON Sf'B-FFGIOI{.<br />

Crlc¡lttr lRElr sQ Kll =<br />

totBt8 0? l¡Í0ll, PEtrs =<br />

t¿t¡ PEtf tttn PEÀr<br />

1969 145 1970 ?99<br />

1973 1054 197t¡ 1 600<br />

lE¡l = l01B sTD. D!Y. =<br />

Srll 57101<br />

17 50<br />

I<br />

CllCElltT ÀRErr SQ Il = 60.7<br />

|UIIBEE OF lt¡lrÀL PEIÍS = l0<br />

PETtr IETB PEÀT<br />

ttl¡<br />

1967<br />

t 971<br />

1 975<br />

96 1968 95<br />

39 1972 toq<br />

29 1976 153<br />

llAP REPEF¡ilcF = s13:21232C<br />

PERIoD 0P REc. = 1969-76<br />

1EÀR<br />

r971<br />

1915<br />

PETK f?Tß PEAI(<br />

?83 1972 1223<br />

n81 1976 1062<br />

288 COEF, 0P Sf,Bt = 1.2661<br />

IOOÎE¡E N ÀT OLD HOÍISE ND.<br />

ilP BEPER!¡CB = s1l¡:37?347<br />

PBRIOD oF RPc. = 196?-76<br />

IE¡R PEÀX YEIR PEIT<br />

1969 9 1970 5.3<br />

1973 5 19711 18<br />

llll ' 68 SID. DEV. = ¡ú6 COEF, oP s[El = 0.2¡45<br />

toîts:<br />

1. r Dri ¡rs cotstRttcTBD oPslnBti oP ÎÍE sTrrrot r[ 1973<br />

801 I1 IS COtS¡DlBtD 10 ntVE FO SrCIrPrC¡ìfr EPFlCl<br />

ol lEB ttrtrt¡' FLooD PEtÍs.<br />

2. IEIS StttloÍis PB0BIBlLIlt PL01 DID lfol ColPoRli 10 Tñt<br />

so018 lsllft ¡Esr eolsT SEc<strong>for</strong>fÀL TBBnÞ. r! cls o;rTlED<br />

?RO' lEI DEBI'IIIOII OP ÎñE REGIO¡¡L CIIRY9 À[D ¡¡S ÛS?D<br />

I¡SIETD 1O DB?T¡T ¡ IELSOII SOB-REGIOII.<br />

3It! 51502<br />

I'ÀIROI R AT GOBGE<br />

cllctrEr? ltEr¡ sQ rr = ¡6¡¡ ilP SEtERE¡cE S20:¡93149<br />

tl¡tBll Ot lll0¡L PPÀf,s = t5 PERIOD oP REc. = 1962-16<br />

ttr¡ PEIf, rElt PEII IETR PEÀF IUIR PEI¡<br />

195 2 879 1 963 7527 1954 1016 1965 ¡¡t5<br />

I 966 7t3 1961 t002 1968 1 102 1969 720<br />

1970 86t 1971 l¡46 1912 1003 1973 316<br />

197¡ ?00 1975 887 1916 852<br />

llll -<br />

302 COEP. OP SÍEr = 0.2891<br />

srlt<br />

â33 sfD. DEg. =<br />

601 l lt<br />

cltcf,ttlt tREl, sQ K; =<br />

¡ÀIRTO R À1 DIP PLT'<br />

505 iÀP BBFEFE¡CE = S33:29054t<br />

t¡tlltB Ol ¡¡ltll' PE¡f,S = 25 PERfoD 0F REc. = 1952-76<br />

IE¡¡ PET( IEI R PEÀ[ ÍETR PEItr tEtn PrÀK<br />

1952 12,{ 1 953 223 1954 211 1955 320<br />

t956 16S I 957 ¡30 195S 273 1959 280<br />

.t<br />

1 960 60 196',r 270 1962 305 1963 116<br />

I 96¡ 262 1965 190 1966 ',l8f 1967 244<br />

1968 30q 196 9 202 19a0 309 1911 231<br />

1972 237 I 973 248 1914 348 19?5 451<br />

1976 249<br />

llll "<br />

sltt<br />

260 STD. DEV.<br />

'<br />

601 16<br />

CrÎCEtlll rlll¡ SQ f,l =<br />

¡tllll ol rttoll PllRs =<br />

tEl¡ PBt¡ fttÊ<br />

t966 43<br />

1970 62<br />

197¡ 59<br />

illl = 61<br />

rotts:<br />

PEIß<br />

192<br />

11<br />

78 COEP, oF srEI = 0.7396<br />

ctrRlû R lT ltELLs GllÊ<br />

ItP REPERFTCT = s¡0:26535?<br />

PeBIoD 0F REc. = 1966-76<br />

YEIR<br />

f968<br />

1912<br />

1916<br />

sTD. DEV. = ¡EtX = 5tt 9<br />

121 cOE¡. ot sfiE¡ = 0.6130<br />

PEÀ( fEIN PETß<br />

1967 5l<br />

65 1969 {c<br />

'191 1 51<br />

51 1 973 43<br />

1975 100<br />

88<br />

sTD. DEV. = l8 CoBF. OP Sf,Ec = 1.3649<br />

1, 18' I97$ PETT ¡IS TTf,E¡ àS ÎIIE LIRGgST TN ¡88 PERIOD<br />

1951-76.<br />

sltl 15276 sgolovEn R tT Borxlrs PElx<br />

crtcEtlrr t¡lÀ, s0 fü<br />

ioiElE E<br />

OF llfltlt. PElf,s =<br />

10 8S<br />

I<br />

l!ÀP REPEREùCr = S132!589786<br />

PEnIoD oP REc. = tc68-75<br />

tElB PBIÍ IE¡R PETK YETE PBIÍ fEÀR PTÀX<br />

I 968 569.7 t969 60q.0 1970 371.0 1911 291.4<br />

1972 39¡.0 l97l 210.0 19?4 rt58.5 r9?5 508. n<br />

Ittl = q3¡.8 SrD. DEY. = 121.8 CoFF. or s(Bc = 0.039C<br />

S IIE B4f0t<br />

CLEDDTO P 11 fIILIORI)<br />

CtTcStlEllT ¡REÀ, sQ Xr =<br />

ÍUIIBEF OT INIÛIL PEÀKS =<br />

155 tllP RflFEFEllcE = Sr13:908106<br />

11 PE¡IOD OF REC. = 1965-?5<br />

lulR PPA K YEÀR PEIK YEAR PEIf, YEIR PEÂf,<br />

1966 422 1967 1\7<br />

1 965 u23<br />

1958 400<br />

t969 5q0 197C 512 19?r 572 1912 533<br />

197 3 52U 1974 675 19?5 461<br />

Water & soil technical publication no. 20 (1982)<br />

t0l


9100r<br />

GNE? R ¡T DOBSO| s¡18 93207<br />

IXÀllclllltt n ÀT Bl.Àcrs Potli<br />

CllctiEll rREl, SO Xtl - 3830 llÀP RE'EFEIICE :<br />

¡ûllln<br />

crlcñiltr rlEl, S0 [ü 23q I'tÀP<br />

oF lI¡[lL pFÀf,S<br />

S¡¡:8tOO?7<br />

REPFnE[cE s38:340281<br />

= 9 PERIOD 0P RBc. - t96O-?6 lolEER oP tlitÀL ÞEtÍs = 11 PBRIoD oF FEc. = 1965-?5<br />

IEIR PETT IEIE PEÀK tElR<br />

t968<br />

PrtÍ<br />

36s0<br />

tElR IEI¡ PP¡I P8If, fEÀR PPTi<br />

PEÃr<br />

1969 qr13<br />

Pr¡f<br />

1965 272 'E¡8 1966 290 1967 428 'ETR 1968 q34<br />

1972 lt0s0<br />

r9?0 q800 t971 233S<br />

t9?3 3935 1974 1969 579 1970 412 .t9?1<br />

1976<br />

3695 1975 aO38<br />

338<br />

33S0<br />

1912 l8?<br />

1973 498 1974 975 19?5 534<br />

iEtt . 37?8 STD. DFv. = 669 coSP. op SÍEt = -.1.02f7 lB¡l = 073 SID. DEV. = 193 cogp. OF Sl(Et = i.BBrtF<br />

xolEs:<br />

l. TFE iql6 pEil( totts:<br />

or 6660 cuüEcs frs ÎtÍEf ts TnE<br />

rr<br />

Ltnclsr 1. TEE 19?4<br />

TIF<br />

PEIÍ fÀS T¡IEII IS TilB<br />

PE8IOD LrrCESl If<br />

1900-76.<br />

lNE ÞEFIOT)<br />

1<br />

2. TIE lq40 pErx<br />

887- 1976 .<br />

oF 5300 CÛrlECS ¡tS Ρttl¡ Às lEE rErBD<br />

LTPGSSI TT TÍE ST'E PESIOD.<br />

srlB 93209<br />

iIßOIA R TT PILLS<br />

s¡ 1? I 140?<br />

lll:: l_:_11-::::1<br />

cllcflllT<br />

cttCf,iEiT<br />

rBBl, S0 [l . 980<br />

l8rt,<br />

irP RETEFEICE<br />

sQ Kr l¡P<br />

= S32:683596<br />

?90 RE¿'nErcE S¡5:2Ot9Orl ¡otEBa o! tlfttll, PPtf,s<br />

¡û;E?R OF tt¡otr. = 13 PERIoD o! REc.<br />

PBIIS = PllIoD ' r96q-76<br />

9 oP REC. = f96B-76<br />

IEI¡<br />

IIIS<br />

P?IX<br />

PBTß IEIB PPTÍ TEIR<br />

IEIR<br />

PETß fETR PETÍ<br />

PBÀr<br />

1968<br />

YEÀR<br />

1700<br />

PEIÍ<br />

PrT[ 196t g¡7 1965 277 1966 ¡6 r 1967 758<br />

t969 1051<br />

1972<br />

1970 1260 'ETR t971 589 19ó8<br />

lc2q<br />

995 1969 808 1970 10r¡1<br />

1973<br />

1971 6¡?<br />

t{09<br />

t9t6 .r7¡<br />

1974 1039 19?5 t3r6 1972 8¡¡ 1973 685 197¡ 836 1q75 855<br />

1976 667<br />

iEll = 1199 STD. D¡ìy. = 328 cosF. oP sÍpt - -O.aZS2 lgtl s 7¡8 sTD. DBt, - 207 CoE?. OP sf,EI = -0.9q91¡<br />

toTts:<br />

l. lrr t9q0 p,tìtÍ oF 2320 cullDcs cÀs ÎÀKEr ls rEE sBCOtD<br />

L¡RC?ST rf ΡE PPRTOD rEtO_19?6.<br />

srrt 932t1 Ë¡ftßITtÍt R tT ilnD LÀf,F<br />

srTl 9320 l<br />

B0LL!RRrlr!foÍr cllclltlT lttl, s0 fi = 857 irp RErtFtfcE s32:?4r6tl<br />

llllBl¡ O? rfloll Pltfs E 13 PERIOD OP RSc. = 1964-?6<br />

C¡lClllEXT tBEt, 5Q fl<br />

635C ñÀP BEpERUItcE s3t:lAt629 III¡ PI¡f IEIB PEIT ÍEIR PETÍ YETR PETI(<br />

¡oltlll OF ¡¡ù[tL PFIñS = tq PEBIOD O? RDc. =<br />

196tr 843<br />

1963-?5<br />

t965 q48 1966 575 1967 7A1<br />

1968 981 1969 518 1970 1655 1971 1095<br />

IEI¡ PFTI( TET¡ PETK rEÀR PEIR rBlN PrIf 1972 1430 r9?3 818 1974 8Ê4 1975 ttt66<br />

1963 {qol 1964 359C 1965 2150 t9ã6 t976 r 161<br />

1950<br />

1967 ogôC t968 5800 1969 4745 1970 E23O<br />

t97t r¡7-


S ITE 91211 GLEIIROI R 11 ELICÍS<br />

cÀTcfËr¡Î tRPt, 5Q Kll = 198 rlÀP REPBFE¡cE s39:?5335¡ ctlc¡tlll lllt¡ SQ r! '1980 i¡P REPERBICE s54:1r¡2602<br />

llolBER oP tNllg¡.L PErf,S = PERIoD 0P REc. = 1967-77<br />

Itllt¡ O? lllttll' Prlfs = l¡ PEBIoD 0P REc, = 1962-75<br />

IIIR P:[ß YEIR PE¡X TBÀR PEIß TEIR PlIf tll¡ PEIÍ IET¡ PEIÍ IETR PEItr IE¡R PEIT<br />

1961 159 1968 208 1969 1¡16 1970 t96<br />

t962 855 1963 tt?tt 196q 10¡1 t965 633<br />

1911 180 1972 183 1973 131 t9?|[ t¡5 l9ó6 771 !961 1300 1968 19q6 1969 661<br />

1975 197 1976 178 1971 262<br />

t970 1555 t97t 1073 1972 1423 1973 l1 19<br />

I 9?r 1120 1975 1436<br />

lEÀI = 18 1 srD. nEv. = 36 coEF. oP sÍ?¡ = 0.8ó08<br />

lllf - lt5t sTD. DEf. . 365 coEP. oP sKEe = C.512?<br />

tolls:<br />

1. IIB 1968 PLOOD PEIÍ ¡TS lf,fEX IS TEÈ L¡FGFST II¡ îIIE<br />

Pr¡roD 195?-75.<br />

lt<br />

stlt 61602 gÀIln-ÚÍt R 11 ttSBL¿ PT.<br />

S IIE<br />

¡lltÛ-0fft R tT itl.rlcs PÀss<br />

6. SOUTH ISLAND EAST COAST DATA<br />

SIlE 601 08 ¡lfRtn R 11 TtttttRrtÀ<br />

C^lCFxEllT ÀREÀ, S0 Kü = 3431 llÀP REPÞFBI|CE = 522.253077<br />

NúllBER 0P À[t¡UÀL PEIiS = 3¡l PPRIoD 0P RtC. = 193ó-t5<br />

TEIR PEIK IEÀN PEII(<br />

1 935 r 920 1 93? 1754<br />

1940 1 100 1942 209tt<br />

19ft5 125tt 1947 tq24<br />

1 950 1 8?0 1 95 1 2494<br />

1955 3q-1C 1956 20J7<br />

1959 1213 ',1962 3qCC<br />

1 965 1 030 1 966 1412<br />

1969 2 380 1970 354a<br />

1974 2830 1915 436C<br />

¡ElI = 212" sTD. DEV. =<br />

IOTES:<br />

fETR P¡:¡Í ÍEIR PE¡I<br />

t938 2011 t939 3396<br />

19rt3 1330 19¡¡t 1510<br />

1948 208n 1909 2010<br />

1953 t613 t95¡ 3820<br />

'1937 2201 1958 192q<br />

1963 3000 196¡ t800<br />

1967 3113 tq68 3000<br />

1971 192C 1972 25AO<br />

923 coF?. OP Srgr = 0.1919<br />

1. STX ÀIINUIL PEItrS CTl8TN THE IBOVE SFPIES CERE T.PSS lEIi<br />

1000 cuËEcs ìID SESE ÀssÛiED Âs 900 cil¡Ecs. TEE ¡sslttED<br />

PEÀt( VAL0ES rERF 0SED r[ 1ñE FSEoUBICI tìrÀLySIS ?On TnE<br />

STTE BI'T C¡FE ¡¡OT PLOTTFD TÌ DENIYTilG TNÈ RPGIO¡II<br />

CIIRYE.<br />

CAICItIIEII' ÀREÀ, S0 KF = ?t¡4,4<br />

NÛIBEP oP ¡¡¡g¡¿ Pg¡¡5 = 16<br />

fEÀR PEIK YE¡ F PEÀ¡(<br />

t 96 1 250 1962 69-<br />

t965 lt¡l 1966 525<br />

1969 .144 197C 53:<br />

1973 2C3 t97rr 139<br />

ItEÀl¡ = 462 sT9. DEV, =<br />

srlB 6 21 03<br />

srlE 62105<br />

CltC¡lltÎ l¡B¡, S0 ßÍ rl40<br />

t¡¡¡BEl Ol rlIUrL PEIrS = 13<br />

tBti Ptf,; rBlB Psrf<br />

t96¡ 95 1965 126<br />

t968 310 1969 52<br />

1972 r5r 19?3 109<br />

t975 20r¡<br />

lElf = 187 STD. DZ9. =<br />

cÀrfloPrr R tT cRllcloc¡t81<br />

FAP RtÌPFnqùcE S28:99¡865<br />

FERIoD oF RPc. = '1961-76<br />

YEÀR PETK YETR<br />

1q63 395 196¡<br />

196a 707 1 968<br />

1911 214 1q72<br />

1975 8C? 1976<br />

PEAK<br />

3 3t¡<br />

45q<br />

432<br />

531<br />

2C.l colP. oF srEl = 0.2385<br />

ÀcfiEROF n À1 CLtFr:ùCE<br />

clrcñ;BlT tBEt, 50 f,t = 991 IÀP RE?ER!IIC!<br />

54?: :119961<br />

¡0tEzB Ol ll¡otL PEIIS = t8 PERIOD OP R¿C. = 1959-76<br />

IETR PEIK tuÀR PEtÍ ÍEIA PEIK IEIE PEIF<br />

t959 2AO 1960 202 1961 117 1952 236<br />

1963 198 1964 22C 1965 171 1966 308<br />

1967 378 1968 736 1969 321 1970 356<br />

1971 361 1912 365 1973 201 197¡ ¡87<br />

1975 199 1976 26i<br />

lBtr = 33 3 sTD. DEg. = 182 coEP. oP sKEc = 1.5906<br />

sr?r<br />

6430 I<br />

CLÀREIICP R IT JOLLTgS<br />

flP REFEREIICE = s41=265862<br />

PERIoD O! REC. = 19611-76<br />

rEIR<br />

1 966<br />

1970<br />

19?0<br />

PEAK tEÀR PEIX<br />

320 1961 121<br />

150 1971 152<br />

266 1915 166<br />

91 COEP. OP sKE¡ = 0.4401<br />

colr¡Àt R À1 ltfrÍDlLtt<br />

CllCEil¡T lBlr¡ sQ fl ¡6r¡ ttP RBFERE¡cE s55:7166?7<br />

l0lBll Ot ¡tl0rl PEIrS = lt PERIoD oP REc. = 1956-66<br />

ttls Pllf, rElE PEtf YEIR ÞEÀÍ ÍBTB PE¡I(<br />

t956 540 1937 355 1958 210 1959 720<br />

t960 , 670 t96r ssc 1962 122 1963 1300<br />

t96r 58 1965 580 1966 1000<br />

ttll - 555 sTD. DPl. - 373 COEP. oP SIEI - 0.6019<br />

tolts:<br />

l- tEr 1923 rLooD PE¡f Ol 1700 C0IECS ¡ÀS Ttf,Er ¡s r¡B<br />

Lr¡Glsl rr lFE PIIIOD 1A69-1971.<br />

cllc¡lllT ¡¡lt, S0 f,l - 70.6 ltP REPEREÙCP = 540:018154<br />

f0lllf Ot ItlOlL PEIf,S = 10 PIBIOD oP REC. = 1966-15<br />

ITI¡ . PE¡f IE¡R PEIÍ YEÀR PEIß TEÀF PEAÍ<br />

1966 66.5 196? 86.2 1960 11q.0 1969 66.9<br />

t970 98.0 197 1 17 .6 1972 86.7 1973 82.0<br />

t97¡ 93. ¡ 1915 123.7<br />

llll = 89.3 sTD. DEv. = 18.9 CoEP. oF SßEf = 0.5772<br />

slrr 6510¡ E0Rol¡ilr R l? itIDtËfts<br />

Ctlcliltl Àßllr.S0 [Ë = 1070 ;lP BEFERE¡CB = 56l:932u62<br />

l0lBll Ol llttll PEtfS = 19 PEIIoD CP REc. = 1957-75<br />

ttlB Ptlr ItlR PETI IETA PEI¡ IETR PEÀÍ<br />

t95t r1¡5 1958 562 1959 611 1960 r¡47<br />

t96 1 559 1962 192 1963 665 196tr 465<br />

t965 291 1966 241 1967 q60 t968 67|¡<br />

1 969 2¡¡ 1970 858 1971 585 1972 83r<br />

1 973 175 1974 5r1 1975 743<br />

lElt = 500 srD. DE9. 253 COEP. oF sf,EI = 0.¡1991<br />

S ITE<br />

65107<br />

crtcEllElIT ÀREAr SQ Kll = 3tt2<br />

llUltBER oF À¡¡llllÀL PEIKS = 15<br />

tETR PPTK YEì8 PEIK<br />

1937 2t 2 1958 160<br />

1961 ql 1C62 78<br />

1 965 92 1966 56<br />

1 969 12t 1 a7C 235<br />

iErÍ = 138 SîD. DEY. =<br />

SITE 66401<br />

8ûRoFrr: R rT LÀrZ Sotttn<br />

lltP SElEnBllCE = s53:6855¡9<br />

PEBIoD 0F RBc. = 1957-71<br />

ÍETR P'¡R PI¡i<br />

1959 120 'B¡B 1960 122<br />

19 63 1tt 196¡ 135<br />

1961 163 t968 t8?<br />

19?t 176<br />

56 CoEF, OF SÍz¡ . 0.q875<br />

¡Àr¡lxt8t8: F Àr oLD E.t,<br />

cÀtcflllElT rREt, sO Kl 3210 iÀP BE?EREÍCE = 576:020?02<br />

IolBER oP t¡iotl PEt[s = 46 PEBIoD 3P BBC. . 1930-75<br />

PPIK IEIF PETÍ YEIR PEtf tEt¡ Pll[<br />

'EIR 1 930 I 33 t 193 I 2039 1932 1303 1933 2209<br />

1934 1501 1915 1303 1936 3112 1937 2209<br />

1938 2t11 1939 l01q 1900 3738 t9tl 1612<br />

19q2 1699 l9¡l 1076 t9q4 1 303 t9¡5 1¡¡¡<br />

19¡6 1614 19117 2095 1948 1812 t9¡9 t359<br />

1950 3C87 1951 2095 1952 1 218 1953 1303<br />

1950 161¡t 1955 2322 1956 2209 1957 3993<br />

1958 1044 1959 10q8 1960 1 388 t961 963<br />

1962 tl.rr 1963 1214 t96rr 1416 1965 1232<br />

t966 850 1967 2o5lt 1q6S 1Cl8 1969 ',1100<br />

19?0 2501 1971 1190 1912 1676 t973 t000'<br />

1974 1121 1975 1773<br />

iEtl = 1694 sTD. DEY. = 709 coEP. o! SRB! = 1.5790<br />

XOTES:<br />

I. lSE 1957 PI,OOD PE¡Í fIS lTÍE¡ TS lNE LÀRGEST Tf lEB<br />

PERTOD 1¡159-1977.<br />

srlE 661102 rtlñÀf,tRtBr a tr 6('¡61<br />

ctlcftEllT AREÀ, S0 rñ =<br />

xurBER oP lIÍoÀL PEÀKS = 2C<br />

rEIR PBÀÍ IT:TR PDÀf,<br />

1953 1 3Cl 195q 1586<br />

1957 42q7 1958 906<br />

1961 934 1962 1303<br />

1965 12tr6 1966 ll89<br />

1969 16q2 lc?tl 26A5<br />

iElI =<br />

168? ST¡. DEv. =<br />

2r¡ 6C<br />

llP nEFEFEIICE 575:089775<br />

PERIoD o? REc. = 1951-72<br />

ÍEÀ8 PEI( TETB PIIf,<br />

1955 2319 1956 2350<br />

1959 1 557 1960 l¡¡r¡<br />

1963 t303 196¡[ 195¡<br />

1C67 2605 1968 1869<br />

1911 1611 1972 2209<br />

534 COEF. OF s(rl = 0.¡231<br />

TOlES:<br />

1. ?88 1c5? PLOOD PEÀK CrS TrKEh tS T8E ¡,tnGESf lr l¡E<br />

PEnron tg69-1977.<br />

Water & soil technical publication no. 20 (1982)<br />

r03


6800 1<br />

sBlrri R tT SrITEC¡,tttS 6Itt 696 r8 oPrñr I ÀBorE Roct¡ooD<br />

Ctlclãlll ll9l¡ SQ [l -<br />

lt itB¡ or tffoll PEtfs .<br />

r ttt<br />

196 t<br />

t 965<br />

| 969<br />

I 97¡<br />

l6¡ t6<br />

i¡P ¡lrERlrcE 3 S7a:3t96t9<br />

PE¡IoD 0F REc, = 196t-76<br />

ÍETR PETi rB¡R PIIÍ<br />

1963 r6r,8 1964 39.5<br />

196? 66.0 1968 ¡8.3<br />

197 I 3?. ¡ 1972 t73.0<br />

1975 79.2 1976 6t. r<br />

PTTT TETF PEIT<br />

r84. 0 1962 37.6<br />

t85,0 1966 12.C<br />

1 r. ¡ 1970 58.8<br />

52.1 197¡ 96.2<br />

;Dtl " 85.11 StD. Dtt. 57.? CoEP. OF srEB - 0.891¡<br />

ClTcÍiE¡1 lREtr SQ ill =<br />

¡lllBEF ot t¡lotl PEIßs ¡<br />

III¡ PPIÍ IDTR PP¡i<br />

t96t t7t t968 9C<br />

19tt 65 1972 167<br />

19t5 ¡5<br />

iEtl . lt8 StD, D¡:V. -<br />

s ttg rt9t 02<br />

tsFEoRlor SlE R tt iT. so;rns<br />

RÀIcIltll R tBot! fLotDt¡r<br />

CltcllllEl? tnsr. SO ft ' l¡cs itp ÀEppFBrcE<br />

lüi0EB 59t:752290<br />

oF tffott. pEtfs - l0 pEETOO oi n¡è. = ßG1_i6<br />

?ttt Plrt tEtt PEt¡ YEIF P¿If<br />

1967 tq29<br />

IE¡R<br />

t96S<br />

DIIi<br />

639 1969 tt15<br />

t97t 3.tt<br />

19?0 t599<br />

1912 517 1973 1201<br />

1975 t 159<br />

r9t¡<br />

1976 75¡<br />

576<br />

lEtl = 959 StD. DEr. = r¡29 CoEF. Op SrEt = 0. f253<br />

toTls:<br />

601 ¡ÀP RE!EnErCE . s8r:820{tt<br />

9 PEnroD 0F FDc. = 1957-75<br />

ÍEIR PFTI( 'EIR<br />

PrI¡<br />

1969 ?9 197A 204<br />

19?-ì 5t tc?¡ 96<br />

58 CoEP. OP St(El = 0.6t80<br />

t. lrt tqSt ploon pttk op 1950 au;Ecs ets ltrEt rs T8!<br />

L|RC!5T tf ?f,t PEFTOD 1936_?7.<br />

cl?c[;Ex? lB!1, sQ fr ¡ ¡12 rrP nEtr8zfcE = Stct:5t2792<br />

IttBtR o? tt¡[t[ PPr¡s : 41 PEIIoD CP ¡tC. - 1936-76<br />

II¡R PETtr TEIR<br />

't9¡6<br />

PETÍ TEIR PEIÃ tE^R PEtf<br />

t41 1937 62 1938 80 1939 33<br />

1910 121 19¡l 126 1942 r03 1943 t19<br />

19¡¡t 120 t9t5 663 1946 ¡3 r9¡7 33<br />

t9r8 39 t9C9 50 1950 50 r95t 562<br />

1952 200 1953 ó¡¡ 1954 69 1955 29<br />

r95ó 69 1957 227 1958 1 19 1959 11<br />

1960 t19 1961 466 1962 ?¡ 1963 28¡<br />

t96¡ ¡0 t965 tt73 1966 t¡t 1967 10t<br />

t968 15¡ 1969 65 t970 1 18 1971 92<br />

1972 162 1973 39 1974 166 1975 t¡8<br />

t976 61<br />

ll¡l = 15¡ sÎD. DEV, È 151 COEP. OP Sf,Et -<br />

lorts:<br />

1. 1¡I PLOOD PETTS P¡¡O¡ TC 1965 ¡ERE DBRIY'D P¡OII OLD<br />

II?EÊ-LE'EL IECORDS. |IO ¡ÍICI I COITRI?ED R¡TI¡G<br />

COT'B CTS ¡PPLIED.<br />

2. T¡t 19t5 rfD 1951 ?r,ooD pE¡is ¡B8E ît[Et tS lnr LlrcEsr<br />

ItD SBCO|D Lt86ES1, RESPBCTTyEL!. It îfl8<br />

1902-76.<br />

pERTOD<br />

s¡tt 69621<br />

ROCtrf COLLT P ¡1 ¡OCiBU¡r<br />

ttlgllu!î t¡El, s0 ¡r . 22.0 i¡p REprBrrce slrc:367601<br />

lolDll O! ¡ttolL PEIIS - r¡ pE¡IoD oF ¡Ec. = 1966-76<br />

Itr¡ PEtr rBtS PEli tu ta PEIÍ tEtS PEtf<br />

19ó6 to.z 1967 tr.l 1968 19.3 t9?O j.2<br />

lltl 7.3 1972 51.6 1973 3.9 r9?q 9.¡<br />

1 975 7,8 1976 9.6<br />

llll | 12.7 STD. Dll. . ltr.q COE!. Ot S¡EC - 2,63¡0<br />

lotls:<br />

1. 1!! 1972 plooD pPttr sts 6.0 ftrEs Tf,r t¿Dltt rttorl,<br />

?LOOD PITT I¡D ¡IS îEB¡ETO¡E<br />

ptollttlM<br />

O;IITED FROi<br />

pLot<br />

l8g<br />

ttDsB noLE ro.2. f,o¡ztER, rT<br />

II3 ITCLIIDED ¡I î!E DENTVIIIOi O' TIE<br />

oltt¡lllstD cÛErE POR 1ñg lREr.<br />

2. to tfltttl pElr gf,s ¡vÀILIBLE ron 1969.<br />

7. SOUTH CANTERBURY DATA<br />

ïï______u:9:<br />

cttclttlr l¡lt, so i; =<br />

tolltt ot Ittrrll 9E¡rs =<br />

l8t¡ Ptl¡ rE¡B<br />

t96¡ tl. 52 1965<br />

r968 32t.53 t969<br />

19?2 296.83 1973<br />

1976 5r.56<br />

PETI<br />

t2 1. 14<br />

63.98<br />

98.16<br />

llll . tl2.?0 sTD. DE . .<br />

srlE 69506 onÀRr n 11 srLvEltot<br />

crlcÍiErT t8Et, SQ fi . 520 lltP REPEnETCE<br />

TO'IE8 O? IIIOIL 591:730081<br />

PE¡ÍS E 15 PtRIoD o? RBc. = 1960-tt sltt 7rrt6<br />

tEli PDil( tÊtn PPri rE^t<br />

1960 r70<br />

PEttr fElr P!¡f,<br />

196 I 4SC 1962 I<br />

1961<br />

lC<br />

l¡0<br />

1963 ¡t95<br />

f965 1tt7 1966<br />

1968<br />

63<br />

2t9<br />

1967<br />

cltcRtrfl t¡!1, s0 rl .<br />

29a<br />

t96ç 5: 197C<br />

1972 ¡t5<br />

317 197i lolllR or tttûll PE¡Ís<br />

98<br />

=<br />

1973 125 '1974 263<br />

tll¡ PEtÍ Ittn<br />

iEl¡ . 26" sTD. DEY, 196¡t tB¡<br />

" 197 COEF. OP SrEt É l..tO?2<br />

1965<br />

t968 1¡5 1969<br />

to?Es:<br />

1972 t86 197 3<br />

l. tfit to¡5 ?Læn ntti op lo0o.cfrtEcs gts llfpf, ts ?nE<br />

L¡¡GEST III THE PERIOD 1871-1976.<br />

llrl = 227 StD. DEl. .<br />

PEIf<br />

234<br />

380<br />

228<br />

899<br />

13<br />

557<br />

12<br />

IllllIlïl-:-11-l:I:l:<br />

iÀP ¡ElEnBict - Sltß:125t12<br />

PB¡IoD ot [Ec. = 196¡t-t6<br />

f 8IR PE¡T P'II<br />

1966 41.21 'Ef,R 1967 65,77<br />

1970 65.20 t971 q8. r0<br />

t97¡¡ r10.0¡ 1975 lOr.06<br />

93.13 COZ'. O? sÍ!¡ . 1.7422<br />

lto¡r¡I R tÎ sottîf lrItDEi<br />

llP IEPEFE|CP = Sl0ß:¡50406<br />

PE¡IOD Ot ¡BC. = 196¡t-?5<br />

fE¡A<br />

1 966<br />

1 970<br />

t97ll<br />

PEIß TEIF PETÍ<br />

259 t967 39¡<br />

262 t971 t05<br />

13? r9?5 208<br />

90 COPI. OP s(Et = 0.8171<br />

sIrE 596 t¡<br />

crTcf,is¡r t¡rt, sQ ft =<br />

lofBEP O? tftutl PElf,s:<br />

rlr¡ PEtf tEtR<br />

¡56<br />

oc<br />

oPoÍt F lDotE stlDlot<br />

lltP RE¡ERn¡C! = s10t:54t902<br />

PEnIOD 9P n!c, r 1917-76<br />

I¡IR PRTß IETR PElT<br />

1939 s0 194C !23<br />

19f¡3 1a2 19¡rt 218<br />

1947 q0 19¡8 216<br />

1951 666 1952 5ó5<br />

1955 111 t956<br />

1959 50<br />

230 1960 124<br />

1963 542 1964 t3<br />

1967 293 1968 It9<br />

1971 175 1912 306<br />

t9?5 30? 1916 147<br />

PEII(<br />

r9l7 25 1938 19ll<br />

l9¡l 36â t9¡2 46(<br />

t9¡5 e¡t t9¡6 91<br />

t9¡9 r90 t960 5q:<br />

r95t ¡00 t95¡ t52<br />

1957 , 666 1958 2(,¡t<br />

196t 36t 1962 69<br />

1965 520 t966 7t<br />

1969 127 197C 321<br />

lgtt ¡5 19t¡ 1¡'<br />

l¡¡f = 270 ST'!. ¡Et, = 2C2 COp.p. Op SiE¡ - t.Ol57<br />

TOT'S:<br />

1. T[9 lqIfs PRIOF T: T965 IERE DERTVEÞ FROIi OT.D<br />

fllEF-LEttL 'LOOD RECORfTS, TO rFrCfl t collRrvEn Rlrrtl6<br />

crttv? fls tPPLIS¡.<br />

2. .ilr l1¡5, t,rst rxD 195t FLOOD pEtKs fpnF lrf,pI ts !8t<br />

7T:?ST, S'COllD tttÞ 1fiIÂfi L¡Rersl pEtf,s. REspEcTIvELt,<br />

Ix .rfF PSR:OD 17C2-16.<br />

71128<br />

IRISIIIX CREEI IT 3ITDT RIDGP<br />

CtlclillT ll¿t, sQ ti = 1tt2 lllP REPERBICB = St00ro92880<br />

tûlllR ol tflûtl PEttS E 9 PEBIOD oF RDC. = 1963-71<br />

tll¡ Pttf rE¡t PEIÍ<br />

1963<br />

IETR P¡ITT<br />

31. t '196¡<br />

PE¡T<br />

18.4<br />

1967<br />

1965 20. 5<br />

79.3<br />

'ETR 1966 11. r<br />

1968 31,2 1969 c6.5<br />

r97t 197C 73.0<br />

t3.3<br />

¡Btl ¡ 36. I srD. DEr. - 25.2 COEP. OF SXE¡ = 0.95rc<br />

srrr 71129<br />

FORßs P I? BILttORTt.<br />

c¡lcnlllT lllt¿ sQ f! = tr0 itP ¡DIERricE = sR9:035017<br />

lÚltll o? ttttttl PP¡rs s tt PESIOD Ol R!c. ' 1965-75<br />

lll¡ Ptrf, tttn P!ÀK .'EIR PEÀÍ<br />

't965 16.7<br />

tslR PEtr<br />

t966 25.q 1961 50. I<br />

1969<br />

t968 19.1<br />

12.6 1970 3¡.0 1971 12.6 1972 22.3<br />

t9t3 20.6 t97¡ 12.0 19?5 r8.5<br />

lE¡l . 2¡.0 STD. Dtt, - lt.z COEP. Ot SrE¡ =<br />

104<br />

Water & soil technical publication no. 20 (1982)<br />

.i.


71t35<br />

JOLLTE R lT 11, coox slllfo¡ SIIE 7850't<br />

clIcElBrT [R?1, SO tr¡ = 139 lllP REIEnFICE = s89:8tl1164 ctICHiEllT tBEr, sQ xí 160<br />

tOiDlR OP ltt0ll PEIÍS E t0 PERIoD oF REc' = 1966-75 t{0llBEF OF tlllûtl PETKS = I<br />

trlE Ptl( fEl¡ PElf tETR PET( YETR PETI( IETR PPIK IEIN PETI<br />

1966 97 1967 106 1968 49 196q g0 1958 r¡l.C 1969 26,6<br />

t9?o 72 1971 31 1972 ¡9 1973 62 1912 55.7 1973 19.8<br />

r9t¡ 30 1915 60<br />

liPttl = 10.0 S1D. DEY. =<br />

rBll = 6¡ SrD. DEf' = 25 COE?. OP SrE¡ s 0.t¡152<br />

8. OTAGO.SOUTHIAND DATA<br />

sltr ?¡337 trlEB0Rll À l1 ll.E'B.<br />

cltcttrrrl llEr, sQ fl =<br />

IÛIEEB Ol t¡ittll, PB¡ÍS =<br />

376<br />

I<br />

ËrP REPERUfcE = sll5:935593<br />

pEBIOD Op EEc. = 1969-?6<br />

rll¡ Pt¡i rElR PEIÍ<br />

t969 13.2 1970 22.6<br />

19t3 23,6 197¡ ll3. ¡<br />

ll¡f . 4t.5 STD. DEv. =<br />

tEÀB PEIK IEIR PETT<br />

1971 79.5 1912 ó4.4<br />

t975 t10.5 1976 62.1<br />

23,2 coE?. or sf,E¡ = 0.1372<br />

srrE 14625<br />

ctTc¡tiEltl ¡nBr, sQ Íl =<br />

I0IBEB OF txiûl¡, PEÀÍS =<br />

rrta PEtf lEtl<br />

1964 21,3 1965<br />

1958 84.5 1 969<br />

1972 65.5 1973<br />

1976 ¡r3.1<br />

lEt¡ = 45.9 sTD.<br />

srlE 78633<br />

PETf<br />

30. I<br />

59. l<br />

25, e<br />

1C9<br />

t3<br />

ctT¡roPtr I tr fPftrfcfot<br />

IIP nEttREllC? = Sl77:4310r¡5<br />

PElIott ol nEc. = 1968-75<br />

IEIS PEIf, I'TB PEIÍ<br />

1970 25,0 r97l 17.1<br />

197r¡ 31.9 1975 22.O<br />

12.8 cogî. oF sit¡ = r.3586<br />

:11::11_l_ll-:"'ll3ll l!:<br />

lÀP BllERPrcE s169:122516<br />

PEnroD 0r ABc, = t96¡-?6<br />

rE¡n P¿lÍ rt¡R Ptlf<br />

1966 30,2 1967 32.O<br />

1970 67.8 t971 t2.ø<br />

1974 34.5 1 975 33.2<br />

18,5 coPP. oP SÍEI = 0.8196<br />

ilÍ¡BBcr B tr l¡EEurl6 lÍs.8.<br />

slll 7t3 r6<br />

I.OGTIBI'8¡ I ¡T PÀERIO cttcfltrfl rBrt' sQ ri 13q0<br />

loiBER ot lfl0l¡. PEIRS = 9<br />

iBlt = 359 sTD. DEY. = 2tl9 coBP. oF sfBt = 2.3010<br />

Cr!CI!E¡T l¡rl, s0 trã r5O rtP AEFSRE¡CE Slq4:624217 IETB PEàf IETS PEIi<br />

rutB!! oF r¡¡sít isrrs = 10 PErroD cP nEc. = 1967-76 1968 ¡t1.0 1969 t7q.7<br />

1972 269.2 1973 tlr6. I<br />

r!18 Pltf rEta PEIÍ rEtR PEIX fE!! PElr<br />

i,at s.r t96s 20.6 le6e 12.2 le?o<br />

1976 248.0<br />

22.e<br />

t9t1 35.5 1912 50.1 1973 21.8 197q 15' 6 rEtI = 216.5 sTD. DEv, =<br />

1975 26.5 1976 15.8<br />

rrll = 22.6 sID. DtY. = 12.7 cog?' oF SiEl = r'0925<br />

srll 75212<br />

POIITHIXT R ÀT BÛNÍES PORTI<br />

CllcÍrErT lRElr SQ Kl 1332<br />

tûrErB oP rlroll PE¡rs = 13<br />

Ílp gEpERt¡cE s,11.1.22t¿r12<br />

PBRIOD o! FEc. = t963-75<br />

tlIT PEII<br />

PEÀÍ f8ÀR PttÍ tLlR Pllß<br />

1963 337 'gIR 1964 8¡ 1965 310 1966 276<br />

1967 ¡66 1968 536 1969 2t9 l97C 255<br />

1971 370 19a2 1068 1973 170 1974 201<br />

't975 318<br />

tolBs:<br />

I. TIB 1972 FLOOD PEÀI( ¡TS ?88 LTREBST IÍ TgE PEEIOÍ)<br />

1958-?5. fT CÀS OirrTED FROü TEB lItLrSfs ttllDlR<br />

BÚLB TO.!, BOT ÍIS IIICLI¡DED 1I¡ lEE OERTYTÎIOX OF<br />

lEE GEXBATLTSED CURVE FO8 lBE IRET.<br />

itP REtEREXct S177:331139<br />

PDSloD o? RUc. = 196C-76<br />

tEÀA PETK IBIE PIIß<br />

1970 168,4 1971 201.2<br />

1974 1:t5, ¡¡ t975 t9¡1. 1<br />

05.1 coEP. o? slBt. 1.605¡<br />

Water & soil technical publication no. 20 (1982)<br />

105


APPENDIX C<br />

Summary of tho data <strong>for</strong> <strong>the</strong><br />

Nelson <strong>are</strong>a<br />

NETSON DATA<br />

srlt 57002<br />

tloÎUErt n l1 8¡10t BIIDOT<br />

c¡IaEllE¡r ¡8Et, sq [ü 164"<br />

¡úiBEA OP trtotL pEtis = iB<br />

ll!! PEIK rErR PErf<br />

!!93 7s7 reso s83<br />

!?18 s83 tese 75c<br />

1963 561 1966 325<br />

!?!? s6r<br />

1973<br />

rsze izt<br />

r 159 197¡1 2622<br />

ItElll = 1078 stD. DFv. = '<br />

lloTES:<br />

lllP SEP9REÍCz . St9:2O33OO<br />

PEAIOD OP REC. r lg5¡-l¡<br />

ïiìt i3|T üi; !¡äT<br />

i¡ï ,¡33 t3:3 iil;<br />

t9?t<br />

t. ¡o-rtrltolL pEtßs ¡aERp tvìrLtBrE poR r956,1960,<br />

1964 tID 1965.<br />

2. olrlt of,E ?¡r¡îÀîM R¡ÎIÙc c089E I5 tvtrf,lB¡,E,<br />

s16 1972 rjes<br />

70t¡ COEP. OF SÍEt = -t.6331<br />

IÀIGTPEÍ¡ N IT SIIIG ERIDGD<br />

c¡1c8llE¡1 rREt, SO Ftt - 373<br />

IU||EPB OP ÂXllftÀL PEIÍS ¿ o<br />

!9!R P¡At( rErR PErf<br />

!9qt 467 1e62 467<br />

1966 q7 196? 3¡0<br />

1970 2â9<br />

lllP REFEREnCE = Slo:072t¡l<br />

PERIOD 3P REC. - 1961-?0<br />

iiåi 'ååi i3åt "åi5<br />

1960 607 re6e iì ¡<br />

ËÈtl¡ = 39¡ STD. DEv. =<br />

l¡oTES:<br />

174 coEP. o? sßFt = -0.24?5<br />

l. io--Àrilut¿ pE¡t( 9ÀS ÀVtILtBL? ro8 1965.<br />

-'. ôtrLr o[E TFrrtrrvE FÀTfrc coav¡: ¡i-ii¡rrrg¡,g,<br />

srtt 57106<br />

slrrLtfBROOR I tî BtErr¡s<br />

cllcãttEÙT ¡RBÀ, SO K[ = 81<br />

¡ollBDR oP Àùt{rrtL PE¡KS = 7<br />

M!<br />

P ¡ÀK rR¡ F FnrÍ<br />

!?10 48,r¡ tq?l c8.s<br />

197tt 96.8 t97q 3n, c<br />

iEt[ = 60,6 sTD. DEV, -<br />

IAP REfpRt:t{cE = St9:2Og2tF<br />

PERIOD 0p FEC, = t97O-76<br />

ïll! PPrr rE¡R PErrl<br />

l?1? 103,6 te73 it. t<br />

ta76 50.0<br />

27.9 COEF. ot sÍEt = 0.9692<br />

106 Water & soil technical publication no. 20 (1982)


24 HOUR Í(AINFALL P OF RETI.R,N PERIOD 2 YEARS AND ITS STANOARD ERROR' E (III4I<br />

NUMB ER<br />

Nur'IBER<br />

-o<br />

ãt<br />

f.<br />

Ø<br />

CL<br />

ñ NÞ<br />

Þ !!m<br />

z I-<br />

x I<br />

É? r-r' a, Âa 8e 12 t2 f{ÄñGnNUl I{ANGOf\¡UI<br />

43950L 34 59 173 t2 r01 1?<br />

HAIHARARA<br />

439201 34 51 l7J 12<br />

87 e r{AiAmi- BnY- 35 2 t-t3 53 999<br />

856 RANGIT IHI 531301 35 6 L7? 2A 9t 1l<br />

KAITAIA AERODRDTTE 530201 35- 4---113 17<br />

triËîmilunr- -- ---si67az-tt<br />

z--îrtr<br />

ìîiiåìä--u u rv'r'-- -nl-zît- :z {'i- -irã-fz-- eo--i 2<br />

ruaffi o r 35 I 173 30<br />

--91-TT<br />

AI{I PARA --sallt¡f -- t5-Tõ-T¡t<br />

5a28ll 35 13 L73 52 L5¿ 15 KÉRI KER.I 532SOt. 3' L4 173 5?<br />

el I<br />

g¡¡g¡1P0LL5328L13513L73?_1--L5¿15KtsKIl\trKL)2L7wLJ¿!-LlJ'l<br />

-¡to<br />

TÃ-rrAN-Gl rdRE-si- - - -542õor ãá-i'ç -i1e 137 t3<br />

--llggl- i: l: ìl: i: ee L5<br />

RUSSELL 542LO1 35 1ó L-t4 q -<br />

108 1 HERÊKINÛ<br />

532202 35 1ó L73 13<br />

EEOIõÍõOD-- ltzzli ;,; i¿ ltz-2T---ca 1ó<br />

- 523502 35 l8 113 33 89 13<br />

-uHnwenr-¡¡o.z<br />

OKAIHAU 53319t --il zl-<br />

TaI- -1-i OPONONI<br />

534402 35 29 173 ?6<br />

KAIKOHE AERODROMI ME<br />

----8151ùI--a-;<br />

5348ii1 35 27 L73 t3 49 l?? 13<br />

ti- Ir14 t6 r35 6<br />

PUH I PUH I<br />

a462A2 35 36 174 150 Zl sANDsTWHANGAREI AREÂ 546411 15 36 l7+ 26 1?0 30<br />

HIKUR ANG I<br />

RUDER9{ OVRE --5767I t-- -$ -17--1ar4l- -- --12õ-"0- -TÍ-EFñCF;¡FANGARÊr. 53óó11 35 38 173 te t2r 13<br />

TÃImTElrlÚI---_-strtoT_35=ila77?ã---t'iÀIr'tAT¿ruÚ<br />

I{AIPOUA FORËST 536501 uJv t 35 39 L-t7 la a75 GLENBERVIE FOREST 54ó3C,1 35 39 L14 2l 139 9<br />

5 369ü ;óüi 1 zò I,¡ t13 5e-- - e5 ro ----P-Úk-rTÚRÙA NoRTHLAND 546<br />

5 91 r4<br />

a tâ<br />

-PIPI--FÃT_ RUATANGATA \ NO.2 N0.2 ja62o3 35 4t 11! I 3988 THË GLEN N PAKÙTAI<br />

537801 35 43 L?l 49 90 11<br />

^- - -- .'---' ¿<br />

531aç¡ a5 41- l-7-1 51' -- 1ô5 -1¿ -<br />

-T-4i-õ6T-3r-45--74<br />

T rTo-i


oæ ON LAT. STATION NA ATION LAT.<br />

NUHBER<br />

NUI{BER<br />

ÇWIER I5LAND<br />

EKUf,[-FOTñT----- TIRI TTRI LIGHTHOUSE - ó4ó901 3ó I74 54 85 ð64'1102<br />

_,461a2-364I__I14_43-__-_B7-I1_-__trtjoDFitl-'.FoREs-T--Ã<br />

15 DAIRY FLAT 646602 36 4L L74 39 82 .- ¿. 9- 6 9<br />

36 45 L74 43 100 12<br />

ALBANY<br />

65-47-ft---36-27--T7r-4-T Trr-l24-'--*--r.Ã-r-R-r¡r¡¡- --r+s3ET-<br />

l{ûoD-FiLl-<br />

RI VER,HEAI<br />

AL B ERT PAW--ã6-íI--F[4--86 rîr 9--- --Ãuü(fÃñD-cTrv-----6trS7ffi<br />

IIECHANI CS BAY 648702 3ó 51 L74<br />

829<br />

41 73 1 HËNDER,SON<br />

;ñn--- ersuY¡ ó48óOt '" 36 '-a-jLffaa---ji*<br />

174 38 8ó 14<br />

rl¡^<br />

^llÊrrr ONEHUNGA^<br />

649702 36 55 L14 41 '1<br />

84 g ONEHUNGA ö4e7Ð+ 64970+ 36 A6 56 L74 47<br />

rr^-trÃ;T'u-cK-tÃñD------64r8-cr--l6-T1--r14- 8g L2<br />

5z--- -t¡---¿---__ Fr_rcRtÃxD- ÀTR-po-RT.-- ä;;: 'r7 'i i#oå Þ-t ó<br />

ffi<br />

-7ã010''-- ir- T-f74 -5e--<br />

KINGSEAT ?4laaz 37 I 17+ 48 lt4 24 PITKEKoHE<br />

TffiEFõ.- -- --152-oo-t-- 74zsa3 3? t3 LT4 i4 69 6<br />

3TT5_-TIE--r- ----ÐÃfù --------<br />

l,tAIoRo FORËST 1437At<br />

7-4¿6ùI--7Tre<br />

37 2t tTL 43 93 6<br />

'Frir{fTsr-riFu rfi sT{isT<br />

SANDY BAY<br />

Ti{ANGAPOUA FOREST<br />

ROCKV BAYTI{AIKEKE<br />

TAItsUA<br />

THA14ES<br />

TAIRUA ronesTl,lARA¡TARUA__EQR<br />

EST<br />

O{EIIHERO<br />

P<br />

TE KAUI{HATA<br />

65540L<br />

ó 57ó0 ID.6 5800 I<br />

750802<br />

36 32 t75 27<br />

36 46 L75 36<br />

36 175 4<br />

37 'O 0 L75 5r<br />

75 1502 37 I L75 37<br />

75tBO2 37 t0 175 51<br />

_ _ -751_2_ol__3_7_L_8__t7_1 15_-<br />

74390L 37 20 174 57<br />

75t60L a7<br />

754L02 37 25<br />

t7t 34<br />

L32 t4<br />

102 18<br />

, 153 2¡_<br />

95 L2<br />

L23 9<br />

786<br />

99 18<br />

99<br />

879<br />

COROI,IANDEL<br />

CHILTERN<br />

HHITIANGA<br />

997<br />

at6<br />

6r7rot 36 46 t'rs 30 L6g 27<br />

ó58501 36 49 t75 32 L66 26<br />

ó58702 76 5t L75 42 t29 2L<br />

KAUAERANGA FORESI__311_é9.¿_j 1?5 38 134 "<br />

18<br />

ITHAREKAI{^ 751801 t7 9 L75 51 153 20<br />

TURUA<br />

-t525tt 37 t4 L75 34 115 24<br />

trEBE?-F,I1I<br />

GLENIFFER,oNÈ}THERo<br />

}IA IH I BEA CH<br />

1_s_3sol_ _gl_r_g L75 33 87 l5<br />

74394? 37 ?L t74 54 88 L2<br />

753 I<br />

754901 175 56 t50 28<br />

ll^lrlgf :rl ^..^ ^ --- !7:79\ 1! 29 L75 47 1o2 e -- Hoe-o-rArNur 175 24 t LL' r.e 3L<br />

Tr 754bo2 2l<br />

?t-29-L!Þ +o 15 E_Lsro_H 755óor 3z 31 rr,- 7s 90 13<br />

te rnoxÀ ----------- 755?ol--n z{ 175 43 ñ7-z---äî-rür¡ =ffiftn-ffi<br />

HAITQA _ 756602 ?l 36 L?5 t6 -r_o_ó__ 88 15<br />

ffi-?5ó<br />

ffi<br />

Water & soil technical publication no. 20 (1982)


TE PI'NA 766002 37 40 176 4 123 l8 TAURANGA AERODROI{E 16620I I7 4A 1?6 L2 TOO 6<br />

RIVER R0AD _llé!_qz 37 4r t75 LL ----<br />

8e-13-- NGAß-uA--- 7s670l 3-7-ri-r- 175 42 87 )6<br />

KIITITAHI 1575Ot 37 44 L75 ?4 97 l7 I{HAKAHARAT¡IA ?ó7OOl 37 44 17ó 0 L66 27<br />

TAU¡fHARE 757401 3? 45 t75 2? 94 15 DUNROBIN,OKAUTA 757801 37 46 175 51 115 l?<br />

È{AKETU T674OL '7<br />

46 L76 27 I18 21 RUAKURATHAMILTON 7s'ttfJl 37 47 175 le 69 5<br />

RAGLAN 748801 37 48 174 53 e2 l? HORRINSVILLE DAH 758503 11 48 L15 15 96 L7<br />

758ó01 37 48 t't' 4A_____!49 18 -- TE PUKE 7ó8302 37 48 l7ó 19 ll5 L2<br />

758001 31 49 175 5 83<br />

? itaTÂHÀ1Â f,tATAr,tATA 758703 A1 11 49 t't5 L75 46 107 1ó ló<br />

PoNGAKATaA 76840L ?1 19 176 29 L25- 20 RUKUHTA 758301 37 50 I75 l8 69 4<br />

TE PUKE NO.z 7ó8303 37 50 L76 29 135 L2 I¡IANI ÂTUTU 768402 A7 5L t76 2'l r3l 2l<br />

HAIIILTON AÊRODRCIHE 758302 5? T75 20<br />

716203 3? '1 57 t75 L4<br />

85 15<br />

81 13<br />

t{HITEHALL'CAf{ERIDGE 758501 t7 52 115 3+ 93 15<br />

CAHBRIDGË- 75940,4 37 s4 176 29 89 l?<br />

76920t t7 54 17ó tô L53 L2 ROTOEHU FOREST 76e50L 7? 54 t76 ?1 130 9<br />

THORNTON 769601 31 '6<br />

176 52 9' I<br />

74 52 ?5 lt KUIIANUI 76eSO2 t7 5T 176 51 108 l4<br />

EDGECUI,IBE 7tsso3<br />

-¡t =8 -TÈ 48 9E ll I{HAKATANE 166<br />

ROTO-O RANGI<br />

Tiño-EiTF<br />

75e401 37 5e<br />

iÈ ieio HunsEni eoo_gq ?? 4 lI9 1? l3-9 ?l HAIN9I'I{HAKATANE 9?9901 1l =2 IJI =1 llt }g<br />

TAUi{ANA @ 3s T lre ¡o loo 11<br />

KAI'HIA 840801 38 4 L14 49 78 t? NGUTUNUT 850003 38 4 1?5 5 Lze L29 2L 2l<br />

ffi--8-66oéi-'aã-=5- -rTr-2T------RAnEmu --<br />

ffi---Ér4õr-18-1- -ii<br />

ARApUNI pohÉR sTN. 85có01 3g 4 ?8 5 NootrGltnxA 8ó0101 38 4 17ó. 10 132 lô<br />

OpOURIAo s?oocz 3s 5 LT7 o 1?ó 4u LA{E aKATAlx¡- 8ó1401 38 6 1?6 26 l2l l2<br />

ROTORUA AERODROHE 8ó130t 78 , 7 175 le 114 16 LllHFIElQdglfepRU 8518Û1 38 I 175 50 e9 17<br />

8?1003 38 e L77 5 110 e<br />

ÎARAIIERA FOREST 8ó1óOI 38 8 176 39 L49 1ó }IA IHANA<br />

-G[EñERõõR- -Bl7zfi+ 18 f0 175 t2 - ---?5 -t-t---<br />

I,IAIAHINA 8ól7cl 38 l0 -T-zr-- 1l-t6 +7<br />

-wnã(ÃEEx¡ RE¡¡A -_------ 86 12õã- 38 To Tt-r 6- lr0 9<br />

r50 zo HATAHT 8?2102 38 ró rJ? .<br />

re<br />

? rÍ1<br />

r)0<br />

?=r<br />

|TATPAPA PoþrER ffi fB 1?5 41 90 13<br />

s6?4a2 38 18 176 24 lIe 24 0PoKoTUTAR.IRUA 8ó3803 38 18 l?ó 50 L24 23<br />

ROTOIIAHANA<br />

-mmTTOlo --8t3ãõT- as 2o<br />

GRANT RttTKOPURTKI 863!02 38 2L<br />

ã ffi---E4tð01---38 2-<br />

TAIOÎAPU FOREST 8ó3401 38 19 176 25 8l 7 TË KUITI 853104 3g 20 175 s 66 5<br />

176 48 LZ3 24 NGAKURU<br />

só3I02 j8 22 t7ó 10 eo t3<br />

KAINGAR0A_ F_orq9_r 9q1æl 29 2-l 17c 5Z- - -tl -<br />

Water & soil technical e- AT TAI{UR I POWER sTN. 864003 38 24 17ó 1 IO8 I5<br />

r_7_6_ 3_! j publication no. 20 (1982)<br />

\). ?!_ - ___quMEl4!_rProPIo ,=_ 844801 1s-4¡ L-t4 5t tol e


o<br />

NUI,IBER<br />

HHAKAIIARU 854801 38 L7'<br />

EIIITEI-<br />

--T-646s1 '36-25'<br />

48 93 13 OHAKURI POI{ER STN. 8ó4002 38 25 176 5 97 I-E<br />

tT<br />

4t-----r,T8 21- -.- --ùun-uprnÃ<br />

8ó470t ,8 21 l7ó 42 t4l 30<br />

GALATEATNO.2 8ó+704 38 28 t?ó +6 9ó 1ó PUREI]R,A FOR,Ë ST 855501 38 31 1?5 33 195<br />

L-t4 52 91 I llA I RERÉ 855002 t8 ,2<br />

rA¡RAPUKAO FOREST<br />

LT'<br />

8ó5501 38 32 l?ó 34 91 6 TAHORAKUR I<br />

865202 38 14 1?6 L4 e9 ló<br />

PT.INI¡IA¡ ARIA<br />

85500 I ?8 35<br />

-TfmFEI¡F¡nU<br />

t75 0 78 e HAIRAKFIT <strong>SOIL</strong>.CON.RFSgóó102<br />

-ao6-e-01, tB- 37 Í71-5T - -ttä2_t- --- -nu-aT-- 38 31 17ó 7 97 l4<br />

A<br />

sóóeoz 3¿ 37 17ó 58 -64-6_ 8l<br />

¡IA¡RAKEI POIIER STI-I. 8óó1OI 3838<br />

l4<br />

l?6 ó 8t 1 TAÜHARA FÛREST 8662A1 38 38 176 t3 96 L4<br />

ffi-85E9õT<br />

'<br />

z6- r-irt-ET- -- -E.4 f 5- ---- -- riI-ñõrNuT-FÐ'{ESr 8óó701 38 39 L76 44 887<br />

lAUPO 86ó002 38 4l t76 4 75 ó TAUPO<br />

8ó6001 38 4t 176 5 óó4<br />

IIO{AKAT INO STN,I.IOKAU<br />

ffi__-<br />

847601<br />

86 8001<br />

38<br />

38<br />

43<br />

57<br />

174 37 94<br />

t76 5 t21<br />

14<br />

Tç-<br />

I{AIMIHIA FÛREST 8ó8201 38 50 17ó 1ó 81<br />

ilAPTER ilITD DISTRICÍ<br />

LOTll{ POINT<br />

-IIÃT-ARTU--<br />

IIAUlOTARA<br />

GATE ST ATION<br />

RUTÎORIA<br />

HHAKATANE<br />

-rmmR-EIlü-sTÃT1-oNiloTU'<br />

IAIFASA<br />

-7¡r-ó-0öf<br />

785101 ?1 33 t78 10 tló 15<br />

-3-t-4: -1-?€---E - -T3r -6---<br />

7812A2 37 43 178 14 180 16<br />

-7EE-00r 37-5T--178-5- - -T4r-T0-<br />

78e301 31 54 178 19<br />

tO8 lt<br />

TË ARAROA 78ó301 37 38 178 20 ttz 9<br />

- E-Ã S f-e ÃÞ E- [T-GFTt.|o u_s tr_ 7-s750T--îT- 42 - -TT8-5T -----TT5-T<br />

KATOA,hHAKAANGIANGI 787303 37 43 178 18 150 9<br />

--TíÃRÃEMII-S.CEOEI- T- st ,¿ Lrt 5> llr z,<br />

?8e201 t7 57 178 L2 112 15<br />

TAOROÀ STATION<br />

769eO3 J1 58 L76 57 100 I OPOT<br />

-88trI-0-1-<br />

IKI 8702û3<br />

ãB -3- t-7-B<br />

-l0_ - -If7-T7- .----fE-ÞltÌÃ-SÞ.qr¡ùGS --- 38 0 L77 t7 rO0 ?<br />

--BB-03-0f -ãE-t-r-7FT9- --TtT-Tr<br />

sl2505 38 16 tTt 33 115 t4 ITAN6ATU<br />

-TE_<br />

Ftq,EST 812904<br />

T7-I7î--r-¿ - -EÃî¡U-r-ÎÃr-Tõ¡t<br />

------EE3-0-o-t- 38 r7 r77 51 847<br />

67T8'0r<br />

38 18 t78 I rrTr<br />

IIANGAfUNA I TOLAGA 8AY 88320t 38 te 178 16 1û2 L2 t.IATAT{A I<br />

873501 18 2t t77 32 t03 I<br />

KORANGA STAT¡ON<br />

--RTFõT;ÎE[ãGÃ_B-AY-<br />

PT.tHA<br />

' ñõR-^-IRAU r Þ¡rÄqÂs<br />

IIA IHIRERE, BEC KINGTON<br />

HAERÉNGA O KURI<br />

GISBORNE HARBOUR,<br />

874301 38 25<br />

B$4ãUI- 36 25<br />

874841 38 28<br />

884201 3e 28<br />

815903 38 35.<br />

t77 20<br />

-f7gre--<br />

L11 50<br />

'<br />

l?8- 15<br />

L17 56<br />

87ó801 38 41 l-?7 48<br />

88ó001 38 41 t?8 I<br />

PARIKANAPA 811701 __ 38 _4å_J77__!?_ _-_ .<br />

oNEPOT0TItAIKARET,TOANA 878lOt 38 48 L11 1<br />

PIHANGA 878401 38 48 L77 26<br />

--89---E---<br />

131 2t<br />

586<br />

846<br />

?89<br />

102 7<br />

824<br />

11ó l5<br />

lL4 I<br />

108 l5<br />

I,IOANUI STATION<br />

ðT-ol(E-- -<br />

TË KARAKA<br />

EãsTI{ooD HILL<br />

GI SBORNE AÊRODROI¡IE<br />

IlANUTUKÊ T GI SBORNE<br />

EREPET I<br />

874342 38 25 L77<br />

814-d0Z- 1E-2-7 ---TT?<br />

e74805 3A Z8 L77<br />

8?t701- -38 34 - 171<br />

s76902 38 40 L77<br />

876803 38 4t<br />

9?7301 38 44<br />

TUAI 878102 38 48<br />

Í,IARUMARU 8?95û2 ag 54<br />

36<br />

52<br />

43<br />

59<br />

L-t? 53<br />

L44 2l<br />

90 tl<br />

83 12<br />

- B¿ TO-<br />

775<br />

8l ó<br />

177 l8 eO 9<br />

177 48 L3t 25<br />

t77 9 109 14<br />

L77 ?2 L46 23<br />

Water & soil technical publication no. 20 (1982)


8??20! ,3-q-<br />

--E[-LLçB.E-SI-ÂBD-K-EE,|,I- -5Þ !17 r-! I09 1-3 _TARE_!,,A_-<br />

-cr.voesAH(rrnl5ÈãrlwN s7s4Ù2 38 5't L71 2e<br />

- 8-?-e-q9? ---33--19- W -+9--.-r-8-6-28<br />

144 ZL rcÀNeAfo¡o siñrtronrnç sleltz 38 57 L77 47 L68 2e<br />

HAUI{GAlAN I}IHA _8þ9-9_L?_ V8 59 L76 es-I2---- FRASERTOHN'IIAIROA 91O4O2 39 O _ L71 24 LL' L5<br />

'4 126 1 HAIHUA VALLEY e7}20t a9 3 L77 14 11ó 15<br />

HAIROAT HA IPUTAPIJTA 9?0301 39 1 1?7 19<br />

HAIRoA __- e70403<br />

-L3-]- -!fl-ZE ---<br />

-93 þ _8AUzuNGÀ --9-?q!q1- !?--.1_'-L-71--8 123 18<br />

ll-2- l?_---=-SLENEAÊE-d!olEt'lÀqBt-lfqg93--- 3e---2 r71 2 L4? lr,.<br />

t16 29 Ll7 24<br />

116 42 ll8 9<br />

L76 ?3 L47 22<br />

!7_6L2_ L38 L3<br />

rE RANGr_[AUxqAHA3VßU9-éoqqL-:-9 BEA6H l-VLz?--_<br />

e?osol 19 5-171 s¿--- is tz BLAcK sTur.tp srATroN eó1401 3e 1Û<br />

'AH'A BAIRNSDALE eó2502 3e t? 1J9 19 --<br />

eó 16<br />

---<br />

ESK FOREST eó27o2 3e 15<br />

TAREHA e(,zsoz ?9-16 L76 i{-- tot zz fË I{ATRERE e62501 39 17<br />

TRELII!X_0_E__- - ?6-?1OL 19-t7 -t-t-e +5 - lr-s -1â -t¡l!golq---- ?óæ-Q-2---39--l-s<br />

çL$'¡qÂBB-Y-SIAf'-I-0-IL<br />

- --e-éÏol 4? r38 -3-e--L-e- -1-26--<br />

_p!BT!Â!p__Isrô!l_D__ __9_?380I - 3e 18<br />

-]11 2+<br />

82 I4<br />

?l<br />

-T-E NGARU eó3801 j9 19 l?6 50 L49 L9<br />

¡TA IHITI<br />

9ó4?10 39 22 1-T6 4' t39 24<br />

4301 t9<br />

IÉ HAU<br />

9ó4501 3e t76 34 IOL \?<br />

ESKDALE<br />

9ó4803 ?9 24 L76 t13<br />

RrssIxg-IoN -- -lé4191_--.7-e--21,,11þ -!3-'--115 l7 16<br />

- _-N4P¡E8lE-8qp8eË-E--- I{A IHHARE<br />

e644tl 27 "4 1?ó 29 114 l8<br />

5A<br />

eó4801 '9 3?,-2Q- t?6 52 8L 6<br />

SHERETþEN ____2-þ5Lo-L 3e 39 -Lf-g:9----l-u--1-q ---NA_?I.E&<br />

--9q??91--?e-99- r?ó 55 81 5<br />

*HANAI.HANA e654ot t9 3t-:,:.(, z6--__-104-tã cor-onsri Þooío 39 35 176 30 e0 1ó<br />

x¡ururu qoszgl 3g ¡¡ llg !9 lo3 20 TE KATAÎA eóó3ol 3e 37 L76 23 82 LO<br />

RosE H¡LL s665o? ffi s4 Lt xlsr¡nc,s -<br />

9óó8oL 3q 39 1?ó 5l ó8 o<br />

HAvEL_ocK N_o¡¡Tll_-- -e66soe<br />

3e 40 L16 it 82 I<br />

---- eó6901--3-e-41- l7ó 55 - ?3 5<br />

-IE-x¡I4dÂll-E-LocK<br />

r{HA_r(A.!uô_ _ e6!29t ?2 !? }I9 ?-5 eo 11 7e 44 t76 27 83 5<br />

TIHAKARA<br />

Illâl\^ñA tvtLvL ¿' -'<br />

----EI-A!¡-s--Eg-tsËlT-<br />

-?6!!9t<br />

HoKoPEKA _- e91?9? le 46 17ó 5ó Lze z4<br />

GHAvAs þlAvå)<br />

cl'tlõt ;<br />

--<br />

::::ll * i3 ,aA Eo o? A<br />

j-rqrq¡N-D- --<br />

jt-r9- ãi s---<br />

-11É- - -J7- -- ¡rA-rrAB¡-lA e68eol 2-e-4e L16 5e et 6<br />

--e6Bó03<br />

TLL 9ó8410 39 5l L16 22 90 ló S ILL<br />

9ó8802 39 l7ó<br />

BLACKB N<br />

232<br />

71<br />

A1<br />

9ó8 39 16<br />

92lJ 57 14<br />

liiirjårñU__' _ ____qqlgf-jg a \16 32--þt--!-<br />

HAK<br />

HOUNT VERNON<br />

|{ATPUKURAU<br />

---9ó<br />

968303 39 5l L76 23 89 l5<br />

s3<br />

lo3 l7<br />

9<br />

969<br />

39 I<br />

CLIN ó0502 400 L76 32 72 13<br />

rA¡?UKURAU6A5g340c1?633--TIgROTOI|AIóo?o24o0t?ó43e',15<br />

FOROALE<br />

ôu 6o7d6--1Í fu+<br />

120 t9 RANGITApU óOB1l 40 2 L76 49 Lz't 24<br />

Pt KERANGT _-_ TTZ-TiffiTATION ó0602 q<br />

KopuA q 11_ __i__z_ _ _TËHpLEts ILAT_- __- _ 60?ró _ aa---5 ---!1Q-iL<br />

t32 le<br />

Water & soil technical publication no. 20 (1982)<br />

-<br />

-


l9<br />

AT<br />

NU¡IB ËR<br />

AR',tËtlANA ÂRAIIOANA<br />

ó1801 40 9 176 50 90 t3 RED OAKSTFLËMTNGTE¡I<br />

1õ<br />

6L4O2 4A<br />

ñ<br />

-i----a1-î<br />

10 1?ó<br />

l+6 TË rF RE|IUNGA RFí{uNc z 7 69 l0<br />

-arooi 626a2 40 -----


955902 39 32 I75 5T 54 7 MAUNGANUI IVIOAþIHANGO<br />

-TIf_fa'_=9-ã' -T14-1I------¿I-1--6 -- _-- o-FÃFtr----- - e55801 !9 t4 175 5l 578<br />

s+szo-r tT 7'---T74-TZ 64t<br />

955?01 i9 t5 l'75 47 ó0 9 KOHHAI HLSIPUKÉOKAHU<br />

95ó701 3e 40 LT:2 +2<br />

- -5e<br />

eóóoûL 1? -3-7^JLó_=¡.^-- 70 J9,<br />

I HITFI'TAIHAÞE. Þ1636i- '17 -lí---1,75-ÈÕ: - 54 3<br />

HÊSSElTrlAûR0A e5?eot ae 42 L75 55 64 LO<br />

95640L 79 4l L75 25 ó4 10<br />

UTIKU SLIP<br />

e57S10 19 44 1?5 50 óo 6<br />

PAßI},IAÜHAU<br />

957ZOl 39 43 115 14 78 13<br />

Ërltr<br />

947402 39 +5 r74 28 90 L4 UPOKOPOITO s57to2 39 45 1?5 9 78 tl<br />

F.^VZÁ<br />

foqtç EsrArEs<br />

ffio = ??I?gi gsleoz a2 1+_+++__:+ *__ __:++t*:1ËË¿t¡uc_HuK_s-e4z4o!- 39 47 L7, 59 67 lO ?7ffi<br />

GL EN}IOOD eó8211 3e 52 t?6 l2 206 ?5<br />

TAf,UA<br />

ìffi;ööil"^': _jésspz=_ _zZ_iz _Lal 7s<br />

--, --i-.a-<br />

J-, -- -o-xl-Qrr- eÞsf,-o-l -19_-51- -175 20<br />

----<br />

IAterilul<br />

-9-59OOl<br />

ic SO L75 3 54 4 OKOIAT|TANGAONE<br />

nARToN FTLTEBITA¡ToN 50407-- +0<br />

-rÐ-- --<br />

IURAKINA<br />

O¡¡Vgrf Sft¡'flnfOH<br />

FE¡ ùp¡NG<br />

- - - ,- 525AL-- 40 13<br />

--L1Þ-33 --- 14 l-2-<br />

50501 -4a<br />

12 LL<br />

2 L75 tt 67 I<br />

uÄ8Â!A- -lq-gQ-!- 40 L L75 LL 66 ,?<br />

KOI{AKO 509A2 40 5 17, 55 81 L2<br />

TE AHA 51?q,!, 40 I r75 4? 48 3<br />

OHAKEA 52101 +O 17 17' 23 ,74<br />

FAI-TÄIÁP-IJ--- 52tO2 40 lL4_ 175 Le 4s 2<br />

--<br />

WHARTTE PEÂK TV SIN!- 529-9?----40 lf-- J-7¿JL 94 L2<br />

FlEtDlt{G SEHA-EË-?-L4N-I-¡¿å04 40 15 t!2 ?2 1?-12 -<br />

TLoeKHotrsE,BtJLLs-<br />

- izzot 40 16 175 17 50 z gÚÑr.¡yrHonpE- aot ¿o 17 115 38 78 L2<br />

6?.¿r'rr LO ?õ 175 24 6<br />

53ó05 40 23 L75 77<br />

r ^ ^t<br />

t tÊ at<br />

HIIATANGT 54301 40 24 175 t8 58 -6 -- -L¡$]gN--ì$-LrT-@ ia--4--]11-ZÞ-- 7?<br />

54442 40 26 ]31_ 28 51 TIRITEA NO.2 54604 40 26-_ I75 40 92 L?<br />

_3<br />

HILL r L If'rTON 54502 4 o<br />

ielltHeroN {t{D DrsrRrcr<br />

28 175 35 7-7 L3 ilA KOI{AKO 54701 40 28 L75 42 a2 10<br />

4 HAITARERE FOREST 55201 40 33 I75 12 ó6 8<br />

775 I.IANGAT{AIRE<br />

t{ANG^t{uTurPAHIATUa-54801 +o zl tts r'c 55?01 +0 3l L75 45 96 1ó<br />

FltlNl'lmulvtr,{n¿¡<br />

55óot {,o^2. .r? Êr * rr<br />

ËêxE^Hôq-lqHEr<br />

- -r_979? - 'g:+ -++! -l+ l.9 E_AsrRy_5I¡_r_r_9! - ----åóre!_--401!- t1?- ?l--- 7? r2<br />

IIANGAHAO UPPËR Sç+O¿-?O 38 -ttS Zg Lz6 tó LEVIN 5ó?02 40 3e 175 tó ó0 ó<br />

Water & soil technical publication no. 20 (1982)<br />

l1<br />

L?


A ON LAT. STATION NA<br />

NUMBER<br />

AHUNA<br />

5ó701 40 19 t75 +<br />

MOUNT BRUCE<br />

7t 01 1õ 46 175 9 532<br />

I{A TRER HURAUA<br />

I(tPÎHANA STN. IIATATKO 612ÚL 40 47 KOPU<br />

ROSEBANK'BIDEFORD 58891 æ 5l 175 51 69 9 AGSHOT STA<br />

PARAPARAUÍTIU AIRPORT 4990I 40 54 174 5e_ 6ó _5 __ HARANGAI STAÍIÛN<br />

TINUI DOI{NS STATIoN 69AC2 40 5+ 17ó 4 102 1<br />

llAIltcAHA'HAS-IFRT0i\|-- 5q6-04--¿¡--5e - r7'-57----6t 5 --<br />

GLADSTONE,TE KOPI I5O?01 41 L L75 42 69 L2<br />

PAEKAKARTKT Hr LL T4o-06T--4L---T-'r71-'6--só t2<br />

IIOODSIDE<br />

L503A2 4t 5 t15 23 --<br />

TITAHI BAY<br />

ffiunñrFloõf<br />

GLADSTONE IARAHURA<br />

KAPTTI ISLAND<br />

LIlIOEN<br />

AYAI¡0Nr LOI{ER HUTT<br />

IIARTINBOROUGH<br />

IfADD¡NGTON<br />

L4L8A2<br />

I 5tó03<br />

LOI'ER HUTTTTAIIIA ST L4?9TZ 41 13 L74<br />

c - +î-r+ -L-74-<br />

PURUITINcA.t'tARTIN30R. L52501 4I 14 1?5<br />

ffi---I4TeTÇ--fi-Io-I?ã<br />

HIKAUERA t526t? 41 16 t75<br />

KARORI RESERVOI fì<br />

-Offi¡ñõÃ-rA-YcLENBUR,NI<br />

TE I{HARAU<br />

IETCON HILL<br />

BAR¡NG HEAD LIGHl.<br />

STATION<br />

NUT'IBER<br />

57501 40 45 175<br />

5780t 40 TÃ<br />

5 8óOt 40 48<br />

587A2 æ ñ<br />

69001 40 54<br />

t75 7'<br />

I<br />

176<br />

35<br />

FI<br />

40<br />

æ<br />

o<br />

t09 t3<br />

8<br />

a2<br />

CASTLEPOINT LIGHT. ó9201 +A 54 17ó 13 69 t0<br />

¡{A TRARAPA CADEI FARI{ t5Gó01 4t o l7s -€--T-I-T'<br />

r5080t 4L 2 tT5 53 959<br />

1502orc<br />

r15<br />

82 t2 GR€YTOhN<br />

150401 . 41 5 t75 2S 61 10 5<br />

41 6 174 51 _q e q!{L_LÅGFTP0NATAHI 151501 4L 6 t75 33 72 t2<br />

.r 6 l?t 't----a¿<br />

rz- nrn-u-li-(-S¡imi-r----Éiffi-ffi<br />

4l r I75 66 I<br />

4T-E_r.z-zi=T--r3--E--ffi "o @ lll?94 41 7 r75 23 z3 to<br />

t5too4 4t t?5 3 72 e<br />

1l_- _8___1Þ, _1q___ JL l? F_ËR]!__E!EN 1ó1001 41 I 1?6 0 74 L2<br />

43e01 40 51 t74 s6 7t 6 TRENTHAM 15tOO3 4l e tT' 2 - 8? v¿ 15 a¿<br />

f+TEõI---+T-fil--I74 - 76 e ---Iõr'¡oeu-SH ERrñef-Sri,¡. -ffi<br />

r+r"/u) 141905 4L +I II ll rt4 174 56 1þ- 16 5 TAITATLOWER TAITÀ.LOWER HUTT HIJTI 14l9OZ t¿)tqo2 4t tt lL tt I74 Tz¿ 58 qq 93 o", lO rn<br />

- L5t4oz 41 11--T75-e-- aa àr clirvsto¡ L4zsol 4L Lz L74 4e eo t5<br />

-- -!l??07 !!- \2 L't4 51 7_l É I{ATKQUK0U,LONGEUSi{ 1526ü3 4L L2 L15 36 58 s<br />

5+ 18 e hrA¡NuroRU vLY.rNAGATAl526ol +l 13 t7i 4t ?z<br />

--_......:---_<br />

13<br />

,> a+ 9 ËAHAKI t524A4 4l t4 175<br />

306û9<br />

25 57 I<br />

t{AKARA L42143 +L 15 L?4 42 83 9<br />

L4270L 4t 17 174 45<br />

rz3601 4i Ia Í74 tl-<br />

153801 4L le 175 5l<br />

5 s - r 1A-r ¡- -<br />

--fÃTõRmc-õ-,rTT-- r5210r 4r r6 I-75---9<br />

J1 80 14 ¡{AIHOANA TE }II{ARAU L52tO2 4L 1ó t?5 53<br />

9Ce<br />

8C L2<br />

82 13<br />

---TB66T - 4T-26 - T74--5õ ---T a--t-5 -<br />

144891 4t 25 t14 52 78 L7<br />

FAREI'ELL SPIT LIGHT. 35OOI +A 33 N3 L 74 3<br />

-TlITEEnt--- 26401 40 4-I -11-I -z-Ç - 75 -1<br />

tArftA AERODROT4E 28701 40 4q t72 46<br />

lO7 I<br />

ffi - -T2osor-4- T- r - - i-tz-E c- -fr c z s-<br />

llos3 BUSH 120elo 41 3 L72 55 t14 12<br />

Water & soil technical publication no. 20 (1982)<br />

KËLBUTINTWELLINÈTON 142702 4L 17 t?4 46 71 5<br />

noNogr-lr --_ r+aeTe<br />

-a[lg-il{-l! 7l tz<br />

-- ?9 ll<br />

IlÇsEût-H¡ -<br />

__ _ TETLINGTON A¡RPORT 143807 4t 2g L14 +9<br />

8?<br />

EE IZ<br />

ó9ó<br />

CAPE PALLISÉR LIGHT. 156301 41 37 I?5 t8 789<br />

STEPHENS ISLAND LIGHT 4óOOI 40 40<br />

- - aÃlñ¡rIr.r ---r15õt -4O-"6 -<br />

UR,UTHËNUA 29801 40 59<br />

TITIRANGI RAY<br />

RIHAKA VALLÊY<br />

140IOZ +I r 174<br />

L?aeoz 41 3 L72<br />

L74 0 578<br />

t72 3? Leg 25<br />

t72 49 r7l ló<br />

9<br />

55<br />

erTt<br />

133 tó


COBB POTIER STATION<br />

ßIIAKA t IIOTUE KA -- rzl-ttrf<br />

ÎH¡'IROTHERS LIGHT. 1414T1<br />

1 2070t<br />

-6- -LïZ 5F--<br />

_-IûI--t Þ-etKo-KiÑ-l- ---TtI963--41--6--TTT-56-TI-ö-T4-<br />

ffi-T4[OoT-<br />

4I<br />

TESIERN L oTFÅ xqvr Ej' i 1_4 e_q_1<br />

4L<br />

-4-1-<br />

41<br />

5 t12 44 149 ?4 COBB DAH L2l6A2 41 6 L72 41 118 9<br />

6 174 21 69 13<br />

T---T7T-T-_-LTT_N<br />

7L742<br />

41 1ù 112 58 88 e<br />

T4-17- - -- mlrE_ï rurFR-tr--<br />

84<br />

57<br />

ó3<br />

HDTUEKA 131002 4t 1 L73 I 118 1.8<br />

IZ1eO3 4I e L7? 5e<br />

141002 4l 10 L74 2<br />

}.AITARIA 8AY<br />

ïHAHCA¡|OA 2 1315û4 4L 11 t7? 3t t44 ?5 COLLTNS VALLEY 131503 41 rt r73 14<br />

rjffiRTFo_T-22aõr--¿i-rz--_IT2-5o-__T3T2o----__FtanÃKEK-_-13200_T-lT-I'-1?'-_r<br />

TFFIEEY-- ---rrzrol--4Tar-T1a--é----6r--4----TEt-gctr FRo-õRTrr4-F-.-T!2-62ffi<br />

ffi1¡_qKSI4ZOOr<br />

BËNE AG LE<br />

GLENI{AE<br />

SEAVI trll<br />

LZ3 ¿><br />

L54 24<br />

l3ó 1.5<br />

nAI.vALLEy L32501 41 t4 t7a 35 t41 14 THORPÊ L22802 4L 17 112 5L<br />

6t-<br />

NELSON t7¿¡.o1 41 L7 .173 18 6e 4 r.lA ITAI VALLÊY L323A2 4L t7 173 21 141 26<br />

HAVELOCK l327OL 4L 11 173 46 146 24 LIÀ¡KWATÊR<br />

r32Súl 4l t7 171 52 155 26<br />

çT-TT--TTÇ-T---T0-g-¡¡ Dltv-E-õ-A-LE<br />

---LT'EOT-4-I T8 L12 55 7' 6<br />

CANYASTOT{N t33ó03 4L l8 113 40 127 ZO BATON<br />

123701 4L 19 172 43 9t I<br />

-HÃgËLOCI( SUBTJRBAN<br />

- 13l7OI<br />

-<br />

4I ?a L17 46 114 15 oCÉAN 8AY<br />

143101- 41 2t taL -'6 109 TT-<br />

KOROHIKO 133eÛ1 41 21 173 58 153 2L HOUTËRE HILLS 13300L 4L 22 I?35787<br />

HOUTECE NO.4 133OrO 41 22 113 96 10 HCUTERE N0.5 l330ll 4L 22 1?3 5 e? 11<br />

lrlot TERÉ No.I2 133014 4L 22 t73 5 9Û 11 i'IOUTERF NÛ.14<br />

noOine nlven r3?:-g!__+]_22---L7-3- !!-- --. e6 -- ó r33t1 2 41221735979<br />

- - - -- BRIGHTT{ATE-1--- .-. 1331 02 4t ?t t7t I 9l l4<br />

-taffirELD NoJ r¡+oo+ 4L 24 173 3 e5 ç HANGÂPËKA<br />

r'roluPtKo -L-?+:99L 1L ?L t246AZ 4l 26 1?2 38 83 7<br />

L72 4e 18 L-2 _!ta I toa__G-o R_GË_ N<br />

q, 3_ _ !34qLó 1LZl L73__5 *__l_04__té_<br />

HARSHLA[q_9__-_ -.- !41-0-ql--!I 2-1 l-21---9 -89<br />

T¡BlANs itÄttgy 135501 41 31 L1? 35 105 1-9 ASnqQ{N siltr!lNAt!Ä!uru!34éQL tt Lq<br />

10<br />

-]:D- 4r 12? L5<br />

aLEÑHEtt'l AERoDRoMtr 1358ü1 41 3l t7l 5? 55 I<br />

-<br />

_BLEf{HEIr't _.__I-3å_?g¿ - 4L 1r r11 51 5> 3 r2590L 4r ?2 L72 56 108 18<br />

---iiI}lIPANGtl<br />

SEYEilOAKS 135802 +L 72 L73 4e 669 GOLDEN DOIINS FoRÉST 125801 41 33 172 5l 774<br />

FAI Ri{A LL _ 135803 4L-31- ,!73 51 ò5<br />

- - 9<br />

t259or<br />

-lyrrEsFrELD-- - 51,]l- -11_?<br />

!\<br />

13ó701 +r z6 173 45<br />

UGBROOKE r46LA3 4r ?1 r71- -þf<br />

136e40 4L 38 1?3 53<br />

ITAIHOPAI POyIER STN. !1óÞif - 41 4A- -L73-34 -<br />

Lt5 28<br />

554<br />

6_<br />

7<br />

I<br />

79t<br />

93 ll<br />

__L]Þ2Aþ 41 35 -1?3<br />

56 192 19<br />

13ó401 4t 31 177 24 73 e<br />

14ó101 4L 37 L74 9 59 9<br />

BIRCH HILL 13ó201 41 39 I13 11 96 L4<br />

sÉD_qoN 14óOO1- 4! EO- -L74 5.- 7t L6<br />

EAPE,çÂi{e_LËL-L__LIÇl!Ir L-+7 9-t -*-L 1! -L1--+-}1<br />

THE LËATHAM<br />

4L 45 r13 L2 106 t1 rnÊ-H-ll-ooNs 13?9ol 4L 45 173 5e - 84 l8<br />

¡ I lg LÊÃ I I r^r I<br />

rAI rrr \1-!9Q-? 41 45 t74 5 9e \3<br />

AOIEA 137802 4L 47 tlt 4c 77 14 I{URCH I SON 128301 41 48 L12 ?A 653<br />

ÃglE^<br />

- LAKE RoTOITI t2asoz 41 48 L72 5L 1? -J_ - ¿U-UIÅE9!- l387ol +L---]2_ L73 46 85 13<br />

Water & soil technical publication no. 20 (1982)<br />

73 13


â<br />

NUI,IBER<br />

Lü{G.E<br />

ON<br />

NU14EER<br />

I,IURCHIS=ON L¿o,v¿ t283OZ 4L +L 50 )u t tl? t1 ?O 2.9 ó[ ó1 s5 HANGLES VALLEY L284ù2 4L 50 172 24<br />

CHAÍ{CET HARD 14glor 4r ¡o - rz¿ 1r<br />

- -84<br />

ls -- --Srx-rriiE - iããaó+ il-m-iffi;<br />

f.f!99I,.lI4TERE VALLEY 13??91 41 54 L73 34 83 15 r,trpoLE HURST 13e4or 41 5e L73 ?7<br />

xoLEs¡{oRTH<br />

---ZidZdL<br />

CHRISTCHURCH I.iWD DI STRICT<br />

¡IESTPORT AÉRODROI,IE<br />

¡NANGAHU_A _ _ _<br />

II{ANGAHUA LANDIN6<br />

L22lOL<br />

It75A2<br />

I18901<br />

1 1eeo I<br />

4L L5 27<br />

4L 44 fZf aS 784<br />

_41 51 _ l7l 57 s3 ó<br />

4L 55 tzt s¡ ror rr<br />

ERTo}I<br />

I{É STPORT<br />

BERL INS<br />

DUI{FR E ITH<br />

746<br />

776<br />

50?<br />

16802 41 41 l7l 53<br />

117óot 4L 45 171 36 8tå<br />

118001 4l 52 171 50 135 al<br />

22020t 42 4 t72 15 89 ô<br />

REEFION 211801 42 7 l7t 52 78 3 _ REEFTON 211802 42 7 l?t 52 8? 11<br />

LE¡rls PASS 22340L 42 ?3 L72 24 102 e GREyr{ot TH ?L420L 42 27 '1?1 L? 108 t2<br />

OOBSON 21430t 42 27 171 t8 109 1l GREYT.IOUTH 21424? 42 2S t?l L2 100 6<br />

w tt5 tl PAROA 2r5ra2 42 31 171 lO 107 t2<br />

KArrlAÏA 215401 42 32. 171 25 108 9 HAUprRr Z159ol 4? 34 lzt 5ó 99 lO<br />

ffi<br />

HOKITIKA SOUTH 20790t 42 +3 170 57 Lag_ ó _ HOKITTKA AERODROilE 2O7eO! +2 43 t7O 5e LOz ó<br />

LAKE KANIERE 218102 42 48 l7l I 1ó6 2l OTTRA SUB STATION 218501 42 50 l?1 34 183 I<br />

Ko¡aHrrIRANGr No.2 z raoor Tr r:-t7r z t51 21 ROSS 20e801 42 54 170 49 t4? 15<br />

HARI HARI 301502 43 I t?0 33 200 27 HARr HARr 30t503 43 9 t?O 33 L75 25<br />

LO¡|ER llHaTARoA 302301 43 Lz L7o 22 L52 20 wHATARoA 7oz?o3 43 tó L7o zz ztt 2.3<br />

FRANZ JOSEF 303lol +3 23 1?O 11 2"2 19 FOX GLACIER 3O4OO1 4t 28 1?O t 184 23<br />

Fox GLACTER 304002 4? 2S 170 L 215 3? I{AHITAHI 3966c,2 43 38 1ó9 3ó 186 28<br />

3-EmI-<br />

BILLY CAHPTHAASÏ 399301 4? ,6 169 tB ?33 32 MCPERSON CAI'IPrHAAST 3g93OZ 43 57 169 19 L9O 27<br />

ffi-tE116T-4:-4;---T6çm_-FAAS.<br />

M zaóóói 42 I t?3 5e rz¡ ?+<br />

NGAIO DOI{NS____ ?392_A?_42__ 4 _L73 57 L27 28 GRANGE ROADTHAPUKU 2t36OL +2 le L73 4L 158 30<br />

SA¡IYERS DOI{NS 233401 42 27 l?3 29 I3A ?1 KAIKOURA 234701<br />

HAI{I{ER FOREST<br />

---2860T- 47-s-t- TtZ m --zã¡Eõi<br />

COiITIAY FLAT 23ó401 42 39 L?-f 27 101 24 t{A }tKS HOOD ?3ó302<br />

RIYERSIDE ?2180t 42 43 t72 53 -IF---E----FERNIEÐ<br />

548 ISLAND HILLS<br />

sP01sH00D 23730L +2 45 L7t 18 I08 24<br />

LAKËS STATION<br />

Water & soil technical publication no. 20 (1982)<br />

?2750L<br />

22720L<br />

42 25 tÌ,- 42 968<br />

42 36 1?3 le<br />

42 3e L73 20<br />

42 45 172 ,7<br />

42 46 L72 ló<br />

r31 2?<br />

t3,ô' 25


CULVERDEN<br />

GME_E¡V---<br />

2218A? 42 46 r72 61 +a 6 LOWRY HI_ILS STa¡_1s¡¡ 43q!-q!-!L-2L- 1?3 ó 75 L2<br />

gÊ . evL<br />

ãisaoi 4T5r 1E Í9- F- iL sÁL-uoRÃL-FoREsT zzï-tol ãis3o-1 Etsr1B i9- - --f 5- it - sÁL-H0RÃL-F0RESí- zzï-to7- 42 52 t r¿ 1> )+ r<br />

PORÎ ROBINSON 2383a2 4? 5?- L73 18 ?8 13 MASON! FLAT zzes}L 42 54 L72 32 48 ó<br />

¿2ô3V¿ -¿ )._ La2 !v<br />

zzç4d1--12--55--T7Z-26---aZ-iT ARTHURS PASS STORE zresvz +z >6 I rr 5r ¿5v ¿5<br />

?3e_Lgr_ 42_56 _r't! -2 ,-<br />

171<br />

T-l-? -ABr!-r-uLLqël-- -z-!22e,t--!41<br />

t4 183 l?<br />

--<br />

SANDHURST PASS 3207a1 43 1 L72 42 ó0 lt<br />

--r.t-otu-tt-¡-u 'hEKA --¡-e-ooor--11- T 173 5 79_ r'<br />

HouHr rüHIrÊ srArIoN 31oeo1 I{A<br />

-SRT_TÃSIN<br />

1? 1 -111 ?9 ---FuTErÉTf<br />

I P ARA<br />

72A7A2 43 3 L1? 45 548<br />

---9ll<br />

3TT-7c'1 47 I 171 4ó f7 I<br />

cRrfo¡eaunrr FoREST 311702 47 s 171 43 78 I !L'll3¡_Ë q4_L -E__ _ a?LZOL 43 9 tTz 12 7r tI<br />

GLENÏHTRN È 311401 43 tl 171 21<br />

nà ¡r-FER-n-TVE R -- -- -- 91 L2<br />

A].IBÊRLEY<br />

3 21701 43 9 l-tz +3 80 t7<br />

Tõð-u-Fs¡--- 3?ø7õ67- 1-3 lZ -t72 2q- -- 1s-t2<br />

-- :-lT4dT- 6-LT-I71|-2 s 7' lo<br />

CKUKU 322!02 43 14 172 23 67 to<br />

TEf,FO-SFSIATION<br />

KTLt{ARNOCK<br />

-<br />

GLENALLEN 22960t 42 'e<br />

l7z 39 51 I<br />

ciËiñ'-- ttolaz- 43--2-a7T-+5--- -62 -6<br />

CASTLÉ HILL 3r27AL 43 L4 171 43658<br />

-FEIK_HIf,t<br />

_=4ilg--f7T TTT4TT rT--_-TZ-T3------m-0-ur¡rTtRaãssE--------3T3-90T--E-5-TE-TirI- 56 a5s<br />

RAN6¡ORA<br />

t23502 47 le 112 34 66 9 I{OODEND ?23602 43 ?A 172 40 73 ló<br />

L.COLERIDGE HOI{ES TEAD3l350T 43 ?I I71 35 óü7 LAKÊ colÉarocl 713502 43 22 l?l 32 ó1 6<br />

TÃL-ËTHT¡RPE<br />

- --3-13-t-07- -45 -Êfln-e<br />

2A- 171-52 74 l0 wÉlu roresr- - 1z-+7ol +{-24 - 7.72-fr-------6T-T<br />

¡IAII{AKARIRI BRIDGÊ 3246CIL 43 25 LlZ 79<br />

ffi õñ- ---TtTTrJ r - -4t ZT<br />

DARFIÉLD<br />

!24IO2 4l 29 - -¡¡--Ça- 12 15 UPPER, LAKF TIFRON 314110 47 26 171 11 77 tO<br />

---?E--e- - --frcV-Fl-¿ID-S--<br />

L72 I 6.5<br />

Ar¡1PORT 3Z+50L 43 29 172 12 51 7<br />

43<br />

SI{IRLEY 3256A3<br />

-Þ-AFÃRIIÃ-TR-rSOñI-FARE - ã25-{OI - -43-tf<br />

43 3ü L12 40 17 18<br />

-<br />

a7-f28<br />

43<br />

Èrpffi_¡R-rsoñr-F¡Rm -ã25-{oI --43-tr -a7-f28 - EREhHON 3058Ü1 31 170 5? e2 L2<br />

iuoSfof e--.. - 5ó- 11 H0'ìE-RATA |.¡ËsT -3f58or 32 171 51 6-3---T<br />

43<br />

CHRISTCI{URCH 3256t1 +3 32 L72 V7 54 3 BRûFILEY<br />

iI5-óoz tzt +r -<br />

r C<br />

+3<br />

iuosrore---- II5-óOZ +z tl l?1 41 75 - r-{RI STCqURCI'{ 325103 3? 172 42 78 14<br />

1 HoR0RÀTA<br />

- 31i90i 13 L7l 54 ó5 '9<br />

43<br />

HORORATA SUB STATION 315e(i3 43 33 l?t 5e 51 5 WI GRAù{ AE RODc'0i'1E ? 25502 ?3 L72 33 544<br />

I12 4a<br />

HIGIJBANK PÛþ¡Ëì S1\¡. 3L57C2 47 35 17I +4<br />

I,IOUNT PLEASANT 3251A4 43 34 T12 4A 53 543<br />

B<br />

172 GOIILEY H:AD LI\;HT. 325801 43 35 L1? 4g<br />

HOR0TANE 3251A5 43 75 r72 42 71 15<br />

.Eß-E. EltÊ-L-E-L D-S-r Lt t-it1С{-(- 3-r-ó7-QL -43 6 T5 18<br />

? --lU- 4L-_ ó8 I<br />

ALASKA<br />

I<br />

--<br />

3L6505 +3 76 -.-L7L_--3_-1- - - EÞ- - e-<br />

LYTIÊLTON ?261CL 47 ?7 L72 47 84 19<br />

stRilHAH SEþlloE PLÂNT 3263AL 43 31 L17 19 55 9<br />

üE-IHV-EN 1!ó6QL<br />

-<br />

- -43 38 -r?l--ae - -.-<br />

7L L2<br />

-Ë-Esg¿Ol¡tltÀ - --- 3.Ûé901-- 43 39- L79 5-4 tt L?<br />

3 !6tù_? _ +? 19 _ Ll L 27-- __gt- r I<br />

r,rouNT Po99E5!!-o¡L-- 3162C11 +3 32 L7-L- ]! -83 18<br />

ST AVE L ËY<br />

326401 47 ?9 172 28 54 ?<br />

cneesloÈ 3lô8ol 4? 3e t'71 4e 86 t7<br />

L INCOLN<br />

puRAU 3?6'192---43 39 l7Z 45 L25 30 336001 43 4A 1?3 0 96 ?l<br />

SPRINGBURN 3ló403 41 +l --<br />

LTTTLE A(ALOA<br />

171 29<br />

EVAN9ALE -1113-03- 43 83 18 TÊ PIRITA TI{ÊAD 3ró901 43 4t 171 59 62 lO<br />

42 rf I 20 _8/+,18 tI LYg¡iK_ 5T-AI I8N 3q_?J!1 43 _!3._ rla 84 13<br />

- Water & soil technical publication no. 20 (1982)<br />

"4<br />


æ<br />

TATI<br />

¡rouNT sor.tERS 7L740? 43 43 1?1 24<br />

THE HERMITAGE,r1- -c-ooK3o?ro ll¡-++- Ito --- ó<br />

KILLINCHY 3212A2 43 44 t72 L4<br />

EASTHOODTLE FONS 3Ay 33710L 43 45 173 6<br />

SOIfERToN 38992 43 46 tll s5<br />

83 _U______ GRËENPARK__ 3275OL 43 43 L12 3L 453<br />

zag 15 BUCCL EUGH r t¡tT. SOüE R S 317403 43 44 171 29 ?5 t3<br />

5\ -l<br />

TJH I lF RNfìK<br />

3 1710 t 41 45 t?t tô ,A l,<br />

lo0 21 BRAC(LEY, T.IAYFIELD tL73O4 43 +6 171 rrl 25<br />

558<br />

o \ AI-Ë-IÐUVÂUEIJ E l=L E -B¡ Y3eZ9-q!<br />

- 43 46 L'tz 19<br />

56 948<br />

1?_l _35 _ óé _1_r<br />

t{ I NCH tYtOR, S<br />

318803 43 48 171 48 55 I<br />

172 58 t37 27 LOCHA B ÉR<br />

318001 41 5g 171 4 74 tO<br />

171 l5 lI3 ?4 I,IAGNET BAY ___ .128701 43 5l L72 45 65 13<br />

170 28 544 VA LETTA 3L85A2 43 53 171 75 58 I<br />

AKAROA 32890L 4' 49<br />

IrtouNT P EEL 3t5202 43 50<br />

GÛDLEY PEAKSITEKAPO 3O84OI 4! 52<br />

AKARoA HÊAD ____ 728eAZ 4? 57 t7z 59 -___ 8e _2r_ ___!{IDEAI_!!5HAßL __ _L,L?403 !3 54 t7r Z' 78 1?<br />

ASHBURTON 319?01 +3 54 t7L 45 5e j_ __ DEEPBURN 3Oe8Ol 43 56 170 1?O 51_ e8 t5<br />

ORARI GORGE 319206 +3 58 l7l t2 101 T8 BRAEI{AR<br />

309201 43 59 170 12 6? 3<br />

IqJryI- {OHN 30e4or 43 5e r?O 28 +2 4 HrltDs 3te4ot 43 5s 1?l 2ó ó3 7<br />

171 ro sBrr ffi- ;ôó¿õi ¿í-í_jiffi<br />

FORD 410601 44 7L ?6 58 6 HORIIELL s 4007a2 44 2 170 43 Ác å<br />

HIIAST PASS 4eL3A2 44 6 L69 22 t+4<br />

ffiñ+ç-la-<br />

9<br />

LAI4BROO( 4018û1 44 t?O 51 57 4<br />

I t711e óO 7<br />

CûLDSTREAT{ No.3 411503 44 9 l7l 33 ãl ,<br />

.LAKE €IHAU_!_I¡rION +etBfJz +4<br />

s l?l 37 5r t<br />

LO- Lq 49 724 LAKE PUKAKJ NO.z _- 4OI1O2 44 11 17O B 12?<br />

TEHGAIIA I 4O27O2 & 13 l7O t+4 51 7 1ËI,IUKA 4l?204 44 15 171 l? 453¿<br />

iE--<br />

ç9f!=CIEEK'r'lAllARo 403e03 44 l'8 l?0 54 ó8 12 TIIIARU AERoDRot{E 4l31ot 44 lB t?l 14 4? 3<br />

SEADOIIN<br />

RIEBOt{tlü)D __ 493801 44 22 169 51 60 + SilITHFIELD 4lt2o2 ¿* 22 171 15 4' 5<br />

GLENITI RESERVOIR 414104 44 ?4 1.71 ll 51 4 TII{ARU HARBOUR 414202 * 24 171 l5 476<br />

TIñARU 4t4ZOt 44 25 l?t 15 51 t ADAIR 4r4rol 44 26 fm<br />

HAKA ITAKA uuhrNs DOIJNS 5lAlluN STATTON r+(xlóol 404óOl +4 44 26 r70 170 40 +9 3 r{ouNT NIt{RoD 4o4got 44 26 170 53 75 12<br />

oTEXATATA 1062q3 +4 36 1?0 L2 38 3 __IIOANAROA 416101 ¿+4 36 l7t ó 78 l?<br />

¡rA¡KORA 40ó?01 t4 40 l?o 41 ó6 6644 LAKE I{AITAKI<br />

}|A¡HATE SADD-LE ¿07t-t-<br />

40ô401 * 41 t7l) 170 2,<br />

*<br />

47 I<br />

1+ Ií7A<br />

70 59 -----ã- 7 HArrrrATE<br />

FORD HILLS 407?01 44 45<br />

--- nzoói ++ +¿---Îtrt 57<br />

70<br />

46<br />

Water & soil technical publication no. 20 (1982)


\o<br />

ffi ,F----4ezz6z-44-Tr-rETt---18ç--ç---------tîrñÃmr-Eãy--<br />

rARA HrLLs,or{ARAr,rA +929-9\ !1 2! !!9 =2- 2-2 ?<br />

TPFEn-TEG Þo-H-Ed-tÎ-N; 4-ca0õT - 14 5B--<br />

i-oçoõ-i 14-58-- Gç--¡ - --61__--- - -oÃEÃ-[u Ãr-tro-oTsHE--_--4fç06T--1T3î<br />

-¡FTFUFs_To1NT-----,t696ilr'-++-5Ç_-ró8_Zõ---74l4---[ÃÚDER¡TÃ1---_--_'g61<br />

¡TEODERBURN 5OOOO2 45 1 1?O O 42 ó NASEBY FOR,EST 5OOIO2 4, I t?0 6 44 2<br />

TúEEñsfirFr s-õiioiffi----tr-i-ffi---Eirini<br />

G¡BBSTO¡{ 5gggot 4, L68 57 51 7 CROI'IHELL 59O2Ol 45 2 L69 12 39 t<br />

-mTÃK-ANút---- 5to5õ-1 +'s i " l_¿q-¡r-- - 5l -a - o¡¡r-n:: - E-çreor--€-T-a6r-?F------æ-T<br />

--a --raE- 45_- - --4T-l - -RAN-Fu-RTf 50rt01 4, I 170 6 30t<br />

-FTE-TFEER-<br />

581?õi<br />

tfAlPIAlA 501102 45 r01709?83<br />

TË ANAU ÐOHNS 571802 45 ll 1ó7 50<br />

59130r 45Tf-T-6e-TE 365 -- -_x¡T-æR<br />

45<br />

5oró01 45 11 1?0 4l t07 25 -t1ó02<br />

11 l6e<br />

GALLOHAY<br />

59249L 45 13 ló9 79<br />

28<br />

HERBERT FOREsT<br />

IIANORBURN DAlt<br />

-TROTTEFS CRE'EK<br />

TE AtìlAU<br />

45<br />

5-e25A2- 45 L1 T6E-2A- ---24-¿ w-Ãril¡Àîf<br />

- -<br />

- l6zÍdT' -85- r4--f To--E ,32<br />

W ró915 59 ó<br />

ËoRyEN HILLS 4eó501 44 a9 1ó9 30 58 I HILFORD SOUND 47ó901 44 4A L67 55 235 16<br />

T[mm-FosT-EFFr-r-E---4-çzTõrîïEz-:toç:i---6=-7-=E<br />

TTinRE----<br />

-----ZõEE-oI - -44-TE -Fto ¡-o-- 4? -a----TARRAS--- 4e8401 44 ,o lóe 26 ,79<br />

GLEìIORCHY 488301 44 5l ló8 23 78 15 DUNTROON 408601 44 52 170 4l 19 I<br />

49930L 44 54 ló9 19 5ó 10 AL-AßSTONE HILL ¿r999ol ¿l+ )ö ló9 55 40+<br />

TEX'õTGO_-<br />

489801 44 51 169 50 49 3 KNOÐS FLAT _____489001 44 ló8 2 e07<br />

IRROHTOIdN<br />

'8 t?l 5 56 lO<br />

Tf,YD-<br />

KAURUTTHE DASHËR<br />

-mFFSgCC-usF-<br />

5T¿-762 --45 I5-- 1-7O 46 -' -9T-21<br />

30 z<br />

593601 45 22 169 76 t2 1 GLENDALE STATION 503401 45 22 L70 ?7 óo t3<br />

5 03 EOZ - -4T -ZT-TZo--49---' -Tt - 11 ffiD--<br />

574801 45 ?4 1ô7 53 öO E<br />

5141$t 45 25 167 44 5t 5 TE ANAUr(A(APO RD 574802 45<br />

- óî --6<br />

25 ló? 4S 59 ?<br />

-p-ÃEFÄII- --5o490T- -45-25 --L-ô,-e -17 - - RoxtuRdi{- Po-WER<br />

-Sïñ;<br />

-ss43õ-I--4-52Tl6119----=0-T-<br />

-EYFF-CR-EF-K-<br />

-5e546-1 4l3T- L-e,s zl - - 5-t--ó<br />

G-R<br />

-ÊÃ1 -rq<br />

oS 5 -S w-A r'1Þ- - - 5958 0- t - 4-t-3-T--I69-49 ++,<br />

GARTHIIYL?tlIDDLEt¡IARCH 5û5102 45 al 170 I 385 CFNTREWOOü 505?Ol 45 31 170 4ó 619<br />

-5-E toT' -41-TT-Tæ-I9-_---- 1{-7- ---Hf LtTõ-Þ'' RorSnRcF-- '--595-405-aÆ- 33 169 24<br />

ROXEURGH EAST<br />

FlAflÃru\,^L TIANAPOURI<br />

' --' ---__-<br />

575601 4' 34 L67 36 51 5 MID I)OMÉ<br />

585502 45 34 1ó8 30<br />

-ëx-Ë-nn-v=rA-R-F;Þ-u¡Err1¡r -EOó-6Õz 11 1r -iz6 T'Ì- --tI -<br />

6- LÕHÍHËR- 5-ft6401, -15-41- 16{21 42 3<br />

-DEíp-TTRË¡EI-O;Z-_- 45 4r -I:ÇE 5e --- ]3<br />

ruNROBIN '.q69Ú2 587101 45 44 168 7 5e<br />

R f LÞEñ r\Io .I 5 912tL 45 4t I ¿i9 r 2 Lg<br />

HINDON 1:ARM 5012itL 45 45 17û 12 62<br />

I{ENDONSIDE 5877Ü1 45 46 158 4+ 41<br />

9<br />

7<br />

êt<br />

9<br />

(,<br />

Water & soil technical publication no. 20 (1982)<br />

MUR{AV CRËEK<br />

T? rl<br />

3t<br />

2Ö<br />

I<br />

3<br />

4rc<br />

5612OL - 45 42-- L6{TT------37--ThATKAIA<br />

58?8ol 45 44 168 51 57 t2<br />

pt,rt'w;¡o -<br />

5o12t2 45 44 170 15 69 14-<br />

ELAC(t{tLJiìi STATITJN 57871Û 45 +6 16? 4Û ?0 I<br />

MüA trLAT' 5972ú? 45 46 1ó9 t7 41 3<br />

5l<br />

ât


N)<br />

o<br />

STATIoN NAr{gmLfï3---ffij<br />

NUIIE ER<br />

f.{ONOtlA I 5 7760 1<br />

IAIAROA HEAD 5077Û1_-<br />

ST PATRTCKS,DUNEOIN 588503<br />

tÞ_<br />

45<br />

45<br />

IULLIYAN__AAH 5_Q,95_o__3<br />

INVERI{AYITAIERI 5083i1<br />

41<br />

45<br />

47 L(r'| a7<br />

-<br />

4't tza 44 . _,<br />

4e t68 32<br />

1_9 _L7A _31__<br />

51 1?0 22<br />

-r, ----<br />

-NAf--TTrrlo¡¡<br />

NUI{B ER<br />

LAT. S LONG.E<br />

55 5 L:: ËLAT 50?001 45 47 t7O Z 4L j<br />

---19 -J. - -B4F-s- -J-!rN-EI-r-ç¡¡,t--._ ._ sea90l__.t.Js Jþ2__4_ 44 6<br />

46 7 I{HARÊ FLAÎ 5í}84ùa i{ +ç tiO zd -1rr 2r<br />

?? L6 _SAbI_YËRS 84Y 29góq1 45 !e_ IIO 3ó er 15<br />

51 ó Rsss cRÊ=K roe¡oi ¿t 5a i70- 30 - 8-Ìi4<br />

s B¡,rúo,r¡Lr eurnÃu 5alzo:- 45- il - Iio-It-- óo t2<br />

BEAUIIONT<br />

5eß402 45 52 foÞ ls<br />

DUNEDTN BTL. GAR,pENS 5085C2 45 52 t10 3L 61 4<br />

I{AHINERANGI DAII 59åi9ol 45 53<br />

_-_ LTNHOPE<br />

l¿ì9<br />

__ 5S841O 45 53 L68 ?7<br />

58 576<br />

tE:M,t= I{ËTHER<br />

I4r_ HI LL __ _____51 ee 0 l_ _!5__ 5 4 _ _ f_61 _ 57<br />

souTH RSRVR.,DUNEÐIN 50 e4g2- -4t 54-- L-lc- i - X? --5 --3!8I[SI-DErQU|!ED-IN -- -- 5-qe1g1- +t-54 L7o 21<br />

111 Zt r.tussÊL3uR6Hrt-lui,tÊtllN 509504 45 54.1?O 31 3t<br />

LAITRENCE 5ee60t -1E ss - r¿s +1 si tZ--<br />

KAHEKU 589óOt 45 tl tóg 40 4? 6<br />

5ee2o1 -ã-ffiö-ä--r-ä-<br />

LTNHUTE __ 5EB4IO 45 53 lóg 2Z 5g 6<br />

CAPE SAUNDERS LIGHT. 5A8702 45Ñ<br />

DUNEDIN A IRPORT<br />

5úe2AL 4' 56 l?O ¡.2- 42<br />

59eOt 7 16q<br />

RANKLEBURN '<br />

FOREST 599401 45<br />

EtslE_eu._B_u_sll_<br />

HENLEY _ 57_27ar<br />

5oetot--tt -tC -_iro 58 169 26<br />

_ qg, 5_9<br />

to i{ n<br />

_L67 46 46 5<br />

Lf LLBURN<br />

ô70óol 46 0 L67 40<br />

-ttÃttOEvll-f-E--<br />

546<br />

680801 aeoßor -i* +6 0 n -r^o-Zó lo8 4e +ã couof a-nir-r--- ozo¿or-aó__l -<br />

LOßA. STATION I<br />

ó8050. ó80501 16? _ 4ó I tó8 33<br />

n 627<br />

6û 9<br />

_ HA<br />

REABY<br />

rHOLA<br />

DOI{NS jggo_a__4é ___Þ<br />

6&0701 46 __<br />

Z<br />

l_r_?q 63 14<br />

768 46 39 4 TUAPEKA f.IOUTH ó9Ü5OI 46 2 169<br />

:ll5pF+icH'ra_L____ g!+!az_!q<br />

73<br />

3 Lþ7t3_<br />

395<br />

_2_c_ 8-<br />

EAST L-oqL_Sc_tlqpL<br />

GOR,5 6ß0903 46 __ _ __ó8qj_!_o_ 9þ _-4 I óg<br />

5<br />

29<br />

1ó8<br />

457<br />

57 t7 t TA IER I f,4OUÎH ó00201 +6 5 170 L2 486<br />

GoRE --<br />

457<br />

6E tO<br />

503<br />

¿sieor- ãe o--ioelð- ---E-T<br />

__-_681701 46 Ióß_ 45 43 4<br />

ó91e01 46 7 169 58 4g ?<br />

ts z<br />

gtQ!NS'UI-NI-0-N--<br />

--_---é,-q!!10-- 4é---e-<br />

PUYSEGUR POINT LIGHT.óó1601 46 i-_1ó6 --!6s 3?- 27 - 81 4<br />

HTNTON oarãoã ?¿ -ó---r-oe 20- - -lo -l<br />

3 orrrihli<br />

OT AUTAU 681002 -ro +o tót-õ---- 40 2<br />

P:åIE!=STCCK,T{An{ËRA s.6e¡5gl _19 !o róe 31 34 5 r{rNToN<br />

IIII9I^<br />

-Ð-_Ë_-ffi<br />

é!¡æl-tå. rI<br />

ó82810 46 ll -!é-8-2-g-----_{r<br />

ü¡-ïÂuRA<br />

1ó8 52 38 -¿<br />

3<br />

þ_ 68280l þ.1gllL _.rô _t_? L6g 52<br />

cHRYSTALLS eEÁcH -9I?F4óìr-rãa<br />

ó02101 + -:? 46 +-3- 12 -170 =!_ég -¿<br />

Þe__. _ 3? _ E _ c_LrNroN _<br />

37'<br />

þ?¿?ez _1þ- 12 LqeL?-- 4? 6_<br />

POURAKINO VALLEY 672elo 46 13 167 55 56 6<br />

HEOGEHOPE 682501 46 t3 1ó8 a? 4L5<br />

OlA}IUTI 6BZTOT- 4ó l4 l6s--to 36<br />

B A LC LUTHA<br />

44 4_._._PÊBBLY HILLS<br />

45 7 OREPUK I<br />

HOKONUI FI}RE ST<br />

68250? 46 t3 168 35 392<br />

6e27A2 46 t4 L69 45 --3t<br />

2<br />

68l6LZ tú I ó<br />

6727û2 46 1?<br />

683701 46 19 168 47<br />

INCHCLUIHA _i!!_.3 óe38o2 jL6___rB __f_Þ? 50 _ 52 ?.. _- - _E_D_rN-qaL_E<br />

333<br />

Water & soil technical publication no. 20 (1982)


pAHIA 6?3801 46 Zú t61. 42- 54 5 SLOPËDOI{N -- , 693ZLA 46 20 ló9 LZ 42 4<br />

rfËx-r-^rDÊR-_6ç4orõ-__=4;-7>-içÇ-ï- -- îi--1- - - _-<br />

GNNtrrãrï¡r<br />

- aal4ta- 4621--t6e n ----1î-t<br />

INVERCARGILL AIRpoRT ôB43cp" 46 25 ré,q 2Cj- 36 2 !l\yËÀc,A3GI!!- ó843Û2 25 168 Z? 7e 3<br />

ffi---6ñEdr--:4îæ-i;-¡t--Í.T'rr<br />

--=õ4iEi- 46ffi<br />

!,NA\,l Y ALLL I<br />

LÊ A A<br />

t¡tATAuRA I5LANDS óg4?10 46 z't lóg 45 4û 5 ot{AKA ó94{5û1 46 ?7 169 39 65 13<br />

-{qr¡¡r<br />

lluiqEl PgINI_ Lt9tlI: _ 6_?4?91_ 4þ_ CËNTRE ISLANIÌ LIGHT. ó74801 +6 28 ló7 51 45 5<br />

-ÃI{ÀRUA-<br />

?7 L69 49 ?)4<br />

685301 46 3r<br />

.ã¡¡äii-ilil-r-s---- ¿s5oof +e zz t6e 3 ---66<br />

168 22 373<br />

LT<br />

BUCKINGHAM RESERVE 695ZIO 46 33 16e l? 7C r?<br />

-oõ-e-fSf ¡Ho -nenf-t8ó4sr +a<br />

-<br />

-zs'<br />

oan,r¡rsre¡lET--isLAND oeçror 46 54 1ó8 I 50 2<br />

168 25 155<br />

Water & soil technical publication no. 20 (1982)


APPENDIX E<br />

Compadson of Regional Flood<br />

Estimation Method with TM61<br />

comparison because all catchments used here also were used<br />

in deriving <strong>the</strong> regional method.<br />

References<br />

mates on average by 4t/0,<br />

Table E'1 comparison of or estimatos with rM61 €stimates ($l and regional flood estimation estimates (efl.<br />

Region<br />

Number of<br />

Catchments<br />

Return<br />

Period<br />

T<br />

roi/q)<br />

Mean Std Max Min<br />

Dev<br />

(o+/q)<br />

Mean Std Max Min<br />

Dev<br />

Canterbury/<br />

Waitaki Basin 17 20t1, 2.11 1.19 6,01 1.10 1.06 0.36 1.A7 0.59<br />

Westland<br />

Northland<br />

2011, 0.76 0.1 5 0.89 0.52 0.96 0.22 1.32 0.68<br />

512) 0.56 0.18 0.88 0.38 o.94 0.23 1.16 0.60<br />

Note: (1) Estimates of elo and Ozo from Ogle (1g7gl.<br />

l2l Esrimates of Oi from Waugh fi 973).<br />

122<br />

Water & soil technical publication no. 20 (1982)


Appendix F<br />

Flood frequency analysis <strong>for</strong> Otago and<br />

Southland<br />

F.1 lntroduction<br />

At <strong>the</strong> time of developing <strong>the</strong> flood frequency curves <strong>for</strong><br />

<strong>the</strong> eight regions covering New Zealand, <strong>the</strong>re were only six<br />

relatively short flood records available <strong>for</strong> <strong>the</strong><br />

Otago/Southland region. This region's flood frequency<br />

curve was <strong>the</strong>re<strong>for</strong>e treated as provisional and was only extended<br />

to <strong>the</strong> 100-year return period; <strong>for</strong> <strong>the</strong> o<strong>the</strong>r regions<br />

<strong>the</strong> curves were drawn up to 200 years. The tentative nature<br />

of <strong>the</strong> analysis is best illustrated by <strong>the</strong> fact that one of <strong>the</strong><br />

records used was <strong>for</strong> <strong>the</strong> Pomahaka River at Burkes Ford<br />

(Station 75232) <strong>for</strong> <strong>the</strong> period 1963-1975. The flood peak<br />

<strong>for</strong> 1972 of 1088 mtls was omitted because it appe<strong>are</strong>d to<br />

be an extreme outlier, yet this peak has been exceeded three<br />

times over <strong>the</strong> period 1978-1980.<br />

The number of <strong>not</strong>ably large floods in <strong>the</strong> <strong>are</strong>a in <strong>the</strong><br />

period 1978-1980, and <strong>the</strong> availability of substantially more<br />

data, suggested that reassessment of flood frequencies in<br />

this <strong>are</strong>a was appropriate. This appendix gives <strong>the</strong> results<br />

of <strong>the</strong> reassessment, which has been completed just in time<br />

to be published as a supplement to <strong>the</strong> main study.<br />

F.2 Data collection<br />

With assistance of staff of <strong>the</strong> Otago and Southland Catchment<br />

Boards, annual maximum flows <strong>for</strong> stations with at<br />

least l0 years of reliable flow record were extracted. The<br />

catchments <strong>are</strong> listed in Table F.l and <strong>the</strong>ir locations <strong>are</strong><br />

indicated in Figure F.l. The flood peak data <strong>are</strong> given in<br />

Table F.2.<br />

Additional historical data were sought. <strong>These</strong> data took<br />

two <strong>for</strong>ms. The first was estimates of large floods which<br />

occurred be<strong>for</strong>e recording commenced and which were <strong>the</strong><br />

largest <strong>for</strong> a known period. For example, <strong>the</strong> estimated<br />

p"it of 220 m3/s in tÈe Leith on 19-20 March 192í is <strong>the</strong><br />

largest known in this <strong>are</strong>a since settlement, which is taken<br />

as dating from 1850. The second <strong>for</strong>m was when <strong>the</strong> largest<br />

recorded flood was also <strong>the</strong> largest known peak in a<br />

preceding interval. For example, <strong>the</strong> peak of 505 m',/s<br />

recorded on <strong>the</strong> Mak<strong>are</strong>wa River on 15 October 1978 is<br />

known <strong>not</strong> to have been exceeded since 1895.<br />

Sources of historical in<strong>for</strong>mation <strong>are</strong> "Hydrology Annuals"<br />

No. 3 No. 17 published by <strong>the</strong> Ministry of Works<br />

(1955-1969), and<br />

-<br />

"Floods in New Zealand (1920-1953)"<br />

published by <strong>the</strong> Soil Conservaton and Rivers Control<br />

Council (1957), supplemented by in<strong>for</strong>mation from catchment<br />

boa¡ds and some early newspaper reports. As early<br />

historical estimates <strong>are</strong> of uncertain accuracy, only data<br />

considered to be reliable were used.<br />

Annual maximum l2-hr duration lake inflows calculated<br />

from records of levels and outflows (Gilbert 1978) <strong>for</strong><br />

Hawea, Wanaka, Wakatipu and Te Anau were used. Local<br />

inflows to Manapouri were <strong>not</strong> used because <strong>the</strong>y <strong>are</strong><br />

calculated as Manapouri outflow, minus inflow from Te<br />

Anau, minus change in lake storage, and since inflow from<br />

Te Anau is 6690 of Manapouri outflow <strong>the</strong> residual local<br />

inflow is subject to large errors. Although <strong>the</strong> l2-hr maxima<br />

inflows <strong>are</strong> less than instantaneous maxima, <strong>the</strong><br />

reasonable assumption that <strong>the</strong> instantaneous maxima <strong>are</strong><br />

a constant ratio (say 1.2) of <strong>the</strong> l2-hr maxima suggests<br />

<strong>the</strong>se data can usefully supplement <strong>the</strong> maxima recorded on<br />

rivers <strong>for</strong> frequency analysis purposes.<br />

Flow records were also derived <strong>for</strong> two contributing<br />

<strong>are</strong>as in large catchments by subtracting, from downstream<br />

flows, <strong>the</strong> upstream flows lagged to allow <strong>for</strong> time of<br />

travel, Records of annual maxima were thus derived <strong>for</strong> <strong>the</strong><br />

Waiau River between Tuatapere and <strong>the</strong> Mararoa confluence,<br />

and <strong>the</strong> Clutha River between Clyde and <strong>the</strong><br />

Shotover and <strong>the</strong> three lakes. Because <strong>the</strong>se data <strong>are</strong> derived<br />

by differencing hydrographs, after making assumptions<br />

about <strong>the</strong> travel times of <strong>the</strong> upstream hydrograph, <strong>the</strong> errors<br />

in <strong>the</strong> estimated peaks <strong>are</strong> significantly greater than <strong>for</strong><br />

o<strong>the</strong>r records. They were <strong>the</strong>re<strong>for</strong>e <strong>not</strong> used in deriving <strong>the</strong><br />

regional curves; however, <strong>the</strong>y provide a useful independent<br />

check on <strong>the</strong> curves derived from <strong>the</strong> o<strong>the</strong>r data.<br />

Table F.1 L¡st of catchments.<br />

Number of<br />

Stat¡on<br />

Catchment number<br />

in Fig. 1<br />

Name of River and Recording Station<br />

Year<br />

Record<br />

starts<br />

Catchment<br />

atea<br />

(km2l<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

I I<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

73501<br />

74308<br />

74310<br />

74314<br />

74346<br />

75259<br />

75232<br />

77504<br />

77505<br />

7A502<br />

78607<br />

78625<br />

78633<br />

78803<br />

78906<br />

75276<br />

75253<br />

23<br />

24 84701<br />

Water of Le¡th at University Footbridge<br />

Taieri at Outram<br />

Taier¡ at Sutton<br />

Taieri at Patearoa-Paerau Bridge<br />

Loganburn at Paerau<br />

Fraser at Old Man Range<br />

Pomahaka at Burkes Ford<br />

Mataura at Gore<br />

Mataura at Parawa<br />

Waihopai at Kennington<br />

Oreti at Lumsden<br />

Otap¡ri at McBridges Bridge<br />

Mak<strong>are</strong>wa at Freezing Works Bridge<br />

Middle Creek at Otahuti<br />

Aparima at Dunrobin<br />

Lake Wakatipu inflow<br />

Lake Wanaka inflow<br />

Lake Hawea inflow<br />

Lake Te Anau inflow<br />

Shotover at Bowens Peak<br />

Manuherikia at Ophir<br />

1 964<br />

1 955<br />

1 961<br />

1 968<br />

1 967<br />

1 969<br />

1 962<br />

1 957<br />

1 956<br />

1 958<br />

1 957<br />

1 963<br />

1 955<br />

1 970<br />

1 963<br />

1927<br />

1 930<br />

1 931<br />

1 926<br />

1 968<br />

197 1<br />

Clutha tributaries above Clyde, and below<br />

Shotover and <strong>the</strong> lake outflows (see McKerchar,<br />

1981. Table 4.1) 1963<br />

Waiau tributa¡ies above Tuatapere and below<br />

Mararoa. {see McKerchar, 1981, Table 4.1} 1969<br />

Cleddau at M¡l<strong>for</strong>d 1964<br />

45<br />

4 705<br />

3 066<br />

738<br />

150<br />

122<br />

1 924<br />

3 465<br />

766<br />

152<br />

1 160<br />

108<br />

1 040<br />

27<br />

215<br />

3 133<br />

2 624<br />

1 384<br />

3 124<br />

1 088<br />

2 036<br />

3 839<br />

2 336<br />

155<br />

Water & soil technical publication no. 20 (1982)<br />

t23


Table F.2 Flood peak data.<br />

NEW OTAGO DATA<br />

NEW SOUTHTAND DATA<br />

3I TE 73501<br />

I.EI18 TT UTI9EESÍTY POOIBNIDG? sITE 15232<br />

POitñtKÀ À1 Do¡t(zs ¡oBD<br />

crrcHtBtT t8Et, 5Q Kü =<br />

tollBER oP ÀXtltÀL PEÀKS =<br />

IEIB PEÀI( IB¡I P¿TK<br />

CÀrCllAIl IREÀ¡ 5Q Klt = 47A5<br />

!0;8EF OF IIXûÀL PE¡ñS = 25<br />

IEI! PETK IEÀE<br />

45 ¡Àp RBFpREì¡cE = s16q:i63?2s<br />

17 P¡iFIoD 0P REc, = 196q-e0<br />

YETR PBTK YEÀR PET T<br />

1964 4.7 1965 6. t 1966 1,\ 196? 5.2<br />

1968 r 13 1969 8.5 1911. 39.6 1971 95. 6<br />

1972 65. I 1973 8.5 1974 51.8 tq?5 ta?, 9<br />

t976 46.7 1971 28.7 1978 49.4 19?9 23.5<br />

t9B0 1 30<br />

lBtf = 41.16 STD. DEv. = 39.9€ coEF. Op sKEs = 1.01Â<br />

tolBs:<br />

1. rflE t929 pElK, ESIltttTED tÎ 220 CUiECS, rtS THE LtRcESl<br />

ST¡CE SETTLEI'EIIT À¡TD TÀKET IS ÎIIE LÀRGÈsT Tll TfE PERIOD<br />

ts50-1980.<br />

sIîB 7¡308<br />

1955 10S5 1957<br />

'1960 181 ¡961<br />

1964 37.6 1965<br />

1968 845 1969<br />

1972 832 1973<br />

I 9?6 t 43 1977<br />

1980 2600<br />

Pr¡[<br />

2009<br />

12't0<br />

119<br />

152<br />

151<br />

326<br />

1ÀI8RI À1 OIITRÀñ<br />

llÀP REPEREIICE = S163:9337q(¡<br />

PERIoD 0P 8Ec. = 1955-F0<br />

YEÂR PBÀK TEÀR PEÀI(<br />

1958 425 1959 21Ã<br />

1962 205 1963 368<br />

1966 300 1961 19(<br />

1970 266 t97t 43f<br />

1914 864 19?5 J34<br />

1978 1133 1919 r¡Oo<br />

;!Àt = 593.2 STD. DEg. = 62t¡.5 Copp, Op SÍEc = 1.965<br />

tolE5:<br />

1. T_8!'l?qo-g_Err, rRE r868 pE¡t (Bslrt!llED À1 2179 coiEcsl<br />

rfD ÎE?.1957 PEÀi ¡ERE IIKEI rS ÎIIE 1ÍRN8 L¡RGEST rìI<br />

TI¡E PIRIOD 1858-1980.<br />

5I1E 7q3 10<br />

cllcfliliT À¡Er, sQ K; 3366<br />

xltllBtg OP ¡¡[0ÀL pEÄis = t8<br />

I'IR PgTf TEÀR PETK<br />

1961 06¡t 1962 108<br />

t966 56.6 1968 3OO<br />

1971 115 1972 207<br />

1975 96.2 1976 156<br />

1979 96-2 1980 800<br />

TIIERI tÎ S0110tl<br />

lllP EEPEnEICE - s15¡t:939092<br />

PeÂIOD oP REc, = t96l-90<br />

TPÀR PETi t¿ÀR PEÀX<br />

1963 t30 1e65 66.5<br />

1969 59.4 r97o 76. !<br />

1973 113 1974 311<br />

1911 67,9 19?8 ¿ü?<br />

t8¡¡ = 204.0 sTD, DEt. = 196.3 coEp. op siE3 = r.986<br />

tolEs:<br />

l. PB¡Ís, irssl¡c FoR 1964 rxD 196?.<br />

cÀTCHllELT tREA, S0 Klt = 1924 ilP REPEREItCg 5711.221472<br />

llullBEF oP Àf,tlûÀL PEI(S = tq PEnIoD oF R¡)c. = 1962-S0<br />

IETR PEÀK fEÀR PETI( IEÀR PETß PI¡f<br />

1962 1?6 1963 337 1964 96. I 'E¡¡ 1965 3lo<br />

1966 216 1967 467 t968 516 1969 2¡9<br />

't 970 2s5 1971 369 1972 t08? 1973 170<br />

t 97q 206 1975 32A 1916 201 1917 375<br />

t 978 1217 1979 352 1980 1210<br />

ÍEltl = 435,2 STD. DEV. = 353.6 COPF. op SiE¡ = 1.?tO<br />

ltotEs:<br />

1. Tfir 1978, 1980 ÀXD t972 pEtKS íERE TlFEL tS TEE Î[tBr<br />

LTRGPST TI THE PERTOD 1920-1980.<br />

s rlE 17504 tlTl0Sl lT coRt<br />

c^TcHiEtT rt8l, s0 ¡ü =<br />

llUllBER OP IUtaUÀL PEÀRs =<br />

IEIE PRIK<br />

1 957 1 047<br />

1962 586<br />

1966 352<br />

1970 252<br />

197r¡ 21O<br />

1 978 22f5<br />

TETE PE¡(<br />

1959 6CS<br />

1963 tt33<br />

1e61 656<br />

19?1 443<br />

t9?5 51C<br />

1979 52t)<br />

3q 65<br />

23<br />

766<br />

25<br />

llP REtEnutc? st70:013¡t3<br />

PERIoD oP EEc. = 1957-S0<br />

tEtR PEtß tzl¡ Pllf<br />

1960 tt52 1961 35t<br />

1964 260 1965 292<br />

1968 1290 t969 62a<br />

1912 121A 1973 2O1<br />

1916 453 1971 1300<br />

1980 1625<br />

ËEtl¡ = 6c2.3 stD. DEI. = 520.3 coEp. op sf,B¡ = t.59o<br />

ùtoTEs:<br />

1. rflE 1978, 19t3 (1700 cu;Ecsl rrD t98o pErxs tB¡E î¡ßE¡<br />

ls îfl¡ L^RGESÎ fIf TflE pFRTOD t870-1980,<br />

srlE 77505<br />

ctIcHllEN? ttEr, sQ ßÍ =<br />

llUllEER 0P rXXuÀL PEÀKS =<br />

PEIX IEIA<br />

YDT R<br />

1956<br />

1950<br />

t 961¡<br />

t 960<br />

197 2<br />

1916<br />

1 980<br />

PETK<br />

68 1957 !2\<br />

rc,t 1961 92<br />

117 1965 103<br />

276 1969 259<br />

214 1973 1 lC<br />

165 1977 266<br />

215<br />

rrT¡str Àr P¡llt¡<br />

ËtP REPEEE¡CE st5t:¡9t058<br />

PEDIoD 0P REc. = 1956-80<br />

IEIR PEÀÌ fBTÂ PIT¡<br />

t95S rq3 1959 2tt5<br />

1962 103 1963 55<br />

1 966 106 1967 292<br />

19 70 84 197t 2t¡<br />

197tt 93 1e75 136<br />

1978 590 t979 29t<br />

iEtü = 190.¡ STD. DEV. = "124,0 CoEp. o¡ srEt = 1.638<br />

SIlE 78501 ¡TIROPÀI TT ¡ETIII6IOI<br />

SIÍI ?131¡ 1ÀIEtr tÎ PtTEtROI-P¡lt¡u cÀrcflllFl¡T ÀREt, SO till = 152 nlP REFERE¡cr<br />

NUIBER O? = sl773t3t0¡5<br />

ÀTI'OÀL PEÀKS = 19 PERIoD 0P REc, - t95B-77<br />

c¡lcElt¡î rRElr SQ fr 738 iÀP BEPEfiEICI<br />

tUiBEn OF À¡lott. pEtÍS = St45:675374<br />

= l3 PEBIoD oP<br />

IEIR<br />

nEC.<br />

PFTK TE¡ R PEÀß<br />

= 1968-S0<br />

IETR Pttf( tEtR<br />

1958 Pttt<br />

tt.6 1959 26,6 1961 2q.1 1962<br />

IIIB PETf,<br />

1953 31.3<br />

2¡. t<br />

IEIß PEÀi<br />

t964<br />

1t68 PEII<br />

25.tt<br />

61.0 '1969<br />

IEIR PETI<br />

196<br />

IBAB<br />

5 39,1<br />

196? 1966 26.A<br />

56,0 19?0<br />

23. I 1968 t¡1,3<br />

65. 6<br />

1972<br />

30.9 1971<br />

1969 26.1 1970 25. O<br />

¡02.r¡ 1913 q6.0<br />

1971 17.7 7912 55. R<br />

197¡a<br />

1976<br />

55,3<br />

191<br />

1975<br />

3<br />

68.5<br />

19.8 1974 31. ó<br />

39.0 1971 69,9<br />

19?5<br />

't<br />

21.8 t9?6 30.7<br />

51.<br />

1980<br />

978 t 37. 5<br />

1917 ql.6<br />

1979 I<br />

205<br />

Ëxlt{ = 28.93 SrD, DEc. = 1C.û2 COEP, op S(Et = 0.9960<br />

iEl¡ = 76.07 SfD. DEt. = 47.67 COEP. oP SrEs = 1.98F<br />

sITe 7860" OF¡:îI T1 LOËSDEI<br />

s¡ ÎE 743¡6 LOGIXBoÀX tÎ PtERto<br />

CÀTCflll¡ll1 àRP^¡ SQ ßñ = 116C FÃp fiEpFRENCE = SrSO:lBr¡g62<br />

c¡lc8llrT rSEr¡ sQ l(r ùU;BEF = t50 llP REPERBICE<br />

OP lIilûAL ÞEIKS = 22 PERIOD OF RDC. = 1957-80<br />

¡0lBB¡ OF ¡lIÛÀL PBIÍS<br />

= Stqtt:62¡t217<br />

= t3 PEBIOD 0p nEc, = 1967-79 YEAR PfAK IFÀ8 PEÀK ÍNTR PRÀI( TEÀR PEI<br />

II¡g ÞE¡Í IE¡8 PE¡R IEAR PEÀX TEÀR 666 1e58<br />

f<br />

1957<br />

334<br />

ÞIÀt(<br />

1959 378 1960 271<br />

t957 5.48 t968 20.7<br />

't95|<br />

t969 12.2 19?O 352 1962 352<br />

22.9<br />

1963 183 1964 211<br />

19?r 35,5 1972 50.0 1973<br />

196 5<br />

21.7<br />

-lc<br />

197¡t 1 1q66 232<br />

15.6<br />

tc67 416 1968 352<br />

t975 26.4 19?6 1s,7 1977<br />

t969<br />

20.3 t97B 211 l97C 21C<br />

58.s<br />

19'11 t69 1912 139<br />

7yr9 1 8. 9<br />

1 975 765 1976 453 '1917 871 1978 1171<br />

197C 131 1980 I 10c<br />

lBlf . 24.91 STD. DEt. = trt.92 COEp. oF SßEr = 1.2ge ñE¡tl È 454. I 51r\. DRv. = 29Ê. I coFF. oF s(Ft = t.27tt<br />

Ìorts :<br />

1. TBE 1980 pEti oF 365 CUTECS<br />

NOTES 3<br />

tÀS OñIÎTED FFOil TltE<br />

ITTLISTS: I1 9Ts IT BITRETE oOT¡,IER 1. lIIF<br />

ÀIID T¡tE IYÀrLIEL!<br />

1C-8 ÀNTJ 198C PEIKS Y¡]FII ÌÀKE¡r ÀS lHf L¡RGEST I¡<br />

LpxGTft ot ¡EcoRD ¡rs fùstrFFlcrEilT TO Rltt¡L8<br />

THE PPFIOD<br />

REÀLISTIC<br />

1879-198i.<br />

TETIIEI¡ PEBIOD 1O BB ISS¡GIIBD 10 Iî.<br />

^ srtt 7a625 OlTÞIRT ÀT iCBRfDES BRIDGI<br />

PRÀZEF<br />

:l::__--- _ t::::<br />

IT OLD ItTN R¡IIGF<br />

c¡tc¡rrir tBEt, s0 [t = 180 ItP AEFEREIICE = S169:|t22516<br />

c¡fcfitBlT rREr, SQ Kü !ûIBEB<br />

= llÀP<br />

ol<br />

REF¡ll?Eilcr<br />

¡IlûrL PEÀIS 5143:03't485<br />

= 1B<br />

122<br />

PEAIOD OP REC. = 1963-80<br />

XUÚBER OP TT¡Of,L PEÀKS = 12 PERIoD 0r 8EC. = 1969-80 r'¡¡ PEIf, TET¡ PEÀK IETS PPÀK fEtS PEIX<br />

IE¡R PEÀT YEÀK PRTß 1965 31.2 1<br />

TETR 1963 tt2.3 196¡<br />

PEÀÍ<br />

29.1<br />

966<br />

YEIF<br />

30. 3<br />

PEI f,<br />

1969 23.4 1970 1911 t967<br />

19,3<br />

52,5 1968 85.5<br />

11,9 1969 60.0 1970 70.3<br />

1912<br />

'19t3 22.3<br />

1975 1971 43.5 1972 65.8<br />

16.2 1973<br />

1976<br />

25.9<br />

1<br />

31. rl t974 tq.2<br />

974<br />

12.7<br />

34.7<br />

1971 11.9 1919 1915<br />

1?,0 3q,2 1976 rt3.9<br />

t978 88.<br />

1977 90.2 1978 198<br />

O<br />

t980 26. 0<br />

1979' 52.8 1980 r15<br />

¡E¡i = 26.29 sTD. DEY. = 20,29 COFP, OF SÍF:C = 2,911 tE¡x = 61.3r¡ sÎD. DEÍ. = 41.93 COEP. oF SIEc = 2.28A<br />

tu<br />

Water & soil technical publication no. 20 (1982)<br />

a


786 33<br />

!lll::l- 1I-::TÏÏ-i:Î::<br />

cltcElExl lRBl, sQ fl = tOlO rrP nBFEREtrcE : s1?7:331130<br />

¡trlBB¡ oP lllûll. PEIRS = 24 PERIOD OP R¡c. = 195'80<br />

tEA¡ P¡Àf fSÀB PEÀT tEÀR PETK IETR PBIÍ<br />

1955 2rl 1957 175 1959 111 1960 216<br />

1961 156 1962 169 1963 201 1964 90.6<br />

1965 201 t965 81 1967 156 1968 395<br />

1969 r78 19t0 170 1911 200 1912 263<br />

1973 1l¡5 1974 136 19?5 195 1916 2\2<br />

1977 318 1978 505 1919 287 1980 434<br />

rr¡l = 223.0 sTD. DEv. = 103.0 coEF' ot sfEl = t'326<br />

lolBs ¡<br />

I. Tf,E 1978 T¡D'1980 PB¡TS CEIE TÀÍET ¡S lNE TUO LÀRGISÍ<br />

III lEE PE¡IOD 1895.1980.<br />

srrr 78803<br />

:I:3ï-::::I-"-ilÏ1I<br />

cttcErtrl tElr' sQ rl 27.4 ËÀP 8E?BR!¡cr s176:192268<br />

llttDE¡ or rflÛrl. PE¡[s = 10 PER¡oD o! REc. = 1970-79<br />

rllr Pltf tE¡B pBl[ IEIB PSTÍ IEI! PEÀT<br />

1970 3.16 1971 9.51 '1972 13.41 1973 l.?3<br />

19?¡ 1.55 1975 2.74 t9?6 3.60 1977 5. 1?<br />

197ø 1.82 1919 9.40<br />

;Elr = 5.ll STD. DEV. =<br />

tl.O2 COE!. o! srEÍ = 1.170<br />

¡PtEttt<br />

lT D0¡RoBlll<br />

IEIR PEÀI( IEIR PB¡K rElB PEIÍ ftlB Dltt<br />

1930 1037 1931 1832 1932 1210 1933 t588<br />

1934 1 106 1935 15rt0 193ó 1716 1937 llrt<br />

1 938 952 1939 1080 1940 1293 19t1 17t2<br />

1942 1889 t9¡t3 19rt3 t944 9¡r8 19t5 t93¡<br />

't9q6 2265 19q7 1 160 1948 3227 19¡9 2l7t<br />

1950 2867 l95t 975 1952 t¡459 t953 t5ó0<br />

1954 1261 1955 1700 1956 960 1957 :¡11ó<br />

t958 2022 1959 1255 't960 1 458 t961 1279<br />

1962 2004 1963 A27 196¡ r 163 1963 1936<br />

1966 1337 1967 30lr 196S 1854 1969 325a<br />

t970 1512 197 1 1 t5C 1972 1127 1973 1706<br />

1970 791,, 1975 2419 1976 t 104 1971 1169<br />

t9?8 3991 1919 3¡23<br />

ttEltl = 1829 sTD. DEV, = 841.9 coEt. Ol SiE¡ - 1.316<br />

IOl9S:<br />

1. TÍF II'PLOCS TERE DERTgED FÂOË [Àf¿ LEÍIL IID OOT'I.OI<br />

BECORDS USrilc r l2-800R rrtE rtrEBVlL.<br />

5ITE 9 I ?O LrÍE FtrEl rttlo¡<br />

CÀTcllllELT à88Àr S0 fl = r38q nlP ¡Elgnzlcr =<br />

ùUtlBER 0F l¡il0ll PEIKS = lt8 PEBIoD 0t nEc. .<br />

IETE P?TK<br />

193t 187<br />

1935 653<br />

I 93e 606<br />

19q¡ 599<br />

t 947 !rt2<br />

1951 502<br />

t955 619<br />

1959 367<br />

196:t 338<br />

1967 903<br />

1971 325<br />

1915 q6 t<br />

fETR<br />

1932<br />

193 6<br />

19¡t0<br />

t 9ll¡<br />

19C8<br />

1952<br />

t 956<br />

1960<br />

196¡r<br />

1968<br />

1912<br />

197 C<br />

PB¡K<br />

593<br />

503<br />

599<br />

332<br />

845<br />

157<br />

371<br />

561¡<br />

453<br />

¡r08<br />

552<br />

365<br />

IE¡ R<br />

1 933<br />

19 3?<br />

l94t<br />

1945<br />

1949<br />

't9 53<br />

1937<br />

19 61<br />

1 965<br />

1959<br />

1 973<br />

1917<br />

l93l-78<br />

PEtß rBtt p;lf<br />

539 193¡t 717<br />

l¡23 1936 60¡<br />

585 l9e2 62t<br />

540 19¡ó 926<br />

665 1950 7¡¡<br />

605 195¡ 373<br />

700 1958 556<br />

$15 1962 839<br />

ø23 t966 631<br />

1 r 36 1970 650<br />

cl?CElBIÎ rlsr, SQ Ír 215 llP rErrBBtc! s159:119827<br />

rulBlB O? I¡IU¡L Ptrfs = t8 PEEIoD ol ¡Ec. = 1963-80<br />

162 197¡t {36<br />

rB¡¡ PEIÍ IET¡ PEIf, IEIB PETf, tEtn Pllf<br />

t23 19?8 ltl¡<br />

1963 15.2 1964 1îs 1965 t43 1966 81<br />

1967 l7q 1968 131 1969 6 t. 6 t 970 10.2 ËEtù = 596.5 srD. DEv. = 197.5 coEP. oF sßP9 ' 0.7392<br />

1 971 6 1, 6 1972 8l¡.5 1973 11 1970 68<br />

t975 135 1976 t03 1977 169 rs76 53q ¡OTES :<br />

19?9 119 1980 196<br />

T. TflE IIPLOflS 3ENE DERIYED FßOI LTßE LEVFL IID OTîILO¡<br />

NECORDS USTf,G À 12-HO¡IR 1I'IE IIITESYTL.<br />

rEtI = 126.5 STD. DEt' = 113.7 CO!F. oP SKEI = 2.895<br />

fotlS !<br />

srlE 957C<br />

LÀr(E îE t¡lt lltlot<br />

1. tEE '1978 PttÍ CÀS Ttf,E[ tS tllE LlnCEsr rx rtlE PEFToD<br />

1914-1980.<br />

CtrCtËEf,T tREl, SO K¡ 3124 ülP BEFEREICE =<br />

l¡UliBEF OP ¡[iÛll PEÀxs = 5q PERIOD OP REc. = 1926-19<br />

NEW SOUTH ISLAND WEST COAST<br />

YEÀR PEIK<br />

PEÀK<br />

PEÀf, YEIR P'Tf<br />

1926 1q20 'EÀF 1921 1737 'EAR 1928 20 r6 1929 1500<br />

srlB<br />

9 1 l0<br />

Llt(E fltrlllP0 IftloS 1930 1500 1931 1285 1932 2511 1933 2604<br />

193ft 2365 1935 1609 1936 2608 193? 1¡20<br />

1938 l8lq 1939 260'Ì 1940 3499 194'1 2294<br />

cÀTCBllFxT ÀREt' sQ KË = 3133 llÀP REPERE¡CE =<br />

1942 1362 l9rrl 1935 194r¡ 20 rB 1905 2540<br />

NUiBER OF ¡xNUlL PEÀKS = 53 PEBIoD oF FEC' '<br />

1946 3C6l 'l9tt1 221 ''<br />

t9rr8 3¡a59 19¡9 1948<br />

1927-79 1950 2167 1951 2671 1952 lt4r¡ 1953 2865<br />

YEIR PEIK Y¡ÃF PEÀ¡( TDIR PETR f!I¡'B PEIT 195¡1 2942 1955 2C6C 1956 210U 1957 3512<br />

1927 1¡¡9t 192A 1855 1929 1?9lr 1930<br />

r 958 31105 1959 2¡t88 1960 2818 1961 1937<br />

75¡<br />

1931 1250 1932 929<br />

t962 tB80 1963 1166 1<br />

1933 792 193¡ l26t<br />

964 1723 1965 227e<br />

1935 199 1936 736 1937 648 1938 r061 1966 l6rrl 1967 3715 1968 2381 1969 2552<br />

1919 512 1940 1q90 19¡.1 1635 1942<br />

1970 226A 1971 2202 1912 2220 r9?3 1495<br />

10tt6<br />

1943 939 1944 669<br />

1974 19¡¡4 lq15 2426 19?6 20 19<br />

1945 1332 t9¡6 2799<br />

191't 2009<br />

1907 1288 l9q8 2118 1949 1866 1950 1463 1978 4839 19fs 4r¡38<br />

1 95f 1 094 1952 26qA 1953 11r¡5 19511 10?3<br />

1955 1C26 1956 759 19 57 2933 1958 20r5 ËElN = 2561.8 sÎD. DFv' = ?68. O COEF. OP sKE¡ = 0.9820<br />

1959 890 1960 1181 t961 1700 1962 It98<br />

1961 585 1964 t057 '1965 963 1966 t t¡2 l¡0TEs:<br />

1961 2CUi 1968 1869 1969 2254 1970 88r I. T8E INFI,O9S TE¡T DERI9ED ¡ROII LIÍE LPVgL AIID OOTPLOT<br />

r9?1 780 1912 1\29 1973 812 197¡ loTt<br />

RECOFDS ÛSIIIG À 12-IIOUR TIIIE I¡lERVAL.<br />

1975 2006 1916 1 138 1917 1 469 l97S 2¡60<br />

1979 26J2<br />

;Eltl = 1382 sTD. DEY. = 609.2 coBP. oF s(E¡ = 0.88{9 sIrD 75276<br />

saofoÍE8 tT BosElrs ÞErl<br />

l¡oTEs - I<br />

i. rue rt¡Lots IBRE DERTSED FRoË LÀiE rtYEL ¡lD ooTrlo¡ C¡lCErErT tREf,' SQ ß; = lC88 irp ¡EPlBEfcE = s132:589786<br />

RECOBDS OSII¡G T 12-HOUR TIIE IXIENYTL.<br />

TUTBER O! llf,tttl, PEIIS = 12 PERIOD oF REC. = 1968-?9<br />

IETB PEÀK IEIB PETK IETR PETI tEÀR PEÀÍ<br />

639<br />

srtB 9150<br />

LltrE Clllfl I¡FLOI 1968 l¡51 1969<br />

1970 369 191 1 328<br />

1972 00r¡ 1973 277 197¡a 528 1915 56c<br />

1976 r¡? 1 1911 508 1978 c18 1979 tt81<br />

cllcflüE¡Î ÀnEl, S0 Kll<br />

I'IP RE?EREf,CE =<br />

PERIOD OP REC. =<br />

167.5 COEP. O? SKEi = l.l¡06<br />

IOIBER O! I¡IIUÀL = 2624<br />

PEIÍS =50 r93O-?9 rEl¡ = 4C5.C SrD. DEY. r<br />

Water & soil technical publication no. 20 (1982)<br />

125


F.3 Analysis and results<br />

tatively placed with<br />

Region on <strong>the</strong> basis<br />

<strong>the</strong> hydrograph <strong>for</strong><br />

to <strong>the</strong> Taieri River<br />

Paerau and Loganburn at Paerau (Figure F. l0)<br />

Southland rivers (Figure F.9).<br />

-<br />

than <strong>the</strong><br />

(see section 3.1.6). Plots with similar shape were overlaid to<br />

<strong>for</strong>m combined plots.<br />

Flood frequency data thus plotted were found to lie in<br />

three groups:<br />

(a) peak lake inflows and Shotover floods;<br />

(b) Southland floods and <strong>the</strong> pomahaka floods;<br />

(c) East Otago floods.<br />

Group (a) closely resembled <strong>the</strong> South Island West Coast<br />

data<br />

Canterbury data<br />

(see<br />

<strong>the</strong>se two groups<br />

were<br />

I plots of <strong>the</strong> data<br />

<strong>the</strong>y<br />

Support <strong>for</strong> <strong>the</strong> differentiation of <strong>the</strong> lake inflows and<br />

Shotover from <strong>the</strong> o<strong>the</strong>r sites studied is also given by <strong>the</strong><br />

hydrographs (Figure F.8). <strong>These</strong> show that floods <strong>are</strong> frequent<br />

and occur at <strong>the</strong> same time <strong>for</strong> each catchment. Since<br />

<strong>the</strong> floods result from <strong>the</strong> same storms, it is an argument<br />

<strong>for</strong> each catchment having a similar shape in its flo;d frequency<br />

curve and <strong>for</strong> grouping <strong>the</strong>m toge<strong>the</strong>r. Also shown<br />

in Figure F.8 is <strong>the</strong> hydrograph <strong>for</strong> Cieddau at Mil<strong>for</strong>d.<br />

Finally,<br />

-<br />

<strong>the</strong> hydrographs (Figures F.8, F.9 F.lO) show<br />

that <strong>the</strong> majority of large floods in <strong>the</strong> decade l97l-19g0<br />

o-ccurred in <strong>the</strong> years 1978-1980. Figures <strong>for</strong> F.g, F.9, F.l0<br />

also show <strong>the</strong> wide extent of <strong>the</strong> October l97g flood which<br />

was <strong>the</strong> largest of <strong>the</strong> decade <strong>for</strong> many of <strong>the</strong> records.<br />

F.4 Gonclusion<br />

and <strong>the</strong> Manuherikia at Ophir (1971-1980) wirh rhe<br />

regional clrves (Figure F.7) shows <strong>the</strong> difficulty in determining<br />

which curve is appropriate. Central Otágo is ten_<br />

graphs (Figures F.8, F.9, F.l0)<br />

because <strong>the</strong> frequency of minor<br />

ach region but <strong>not</strong> across region<br />

ïable F.3 Co-ordinates fiom regional frequency curves.<br />

O2.33/O<br />

o5/o<br />

olo/o<br />

ozdo<br />

o5o/o<br />

orodo<br />

ozoo/o<br />

S.l. West<br />

Coast<br />

1.OO<br />

1.24<br />

1.45<br />

1.64<br />

1.89<br />

2.O8<br />

2.27<br />

Southland<br />

1.03<br />

1.46<br />

1.82<br />

2.16<br />

2.61<br />

2.94<br />

3.27<br />

sth<br />

Canterbury-<br />

Otago<br />

0.97<br />

1.51<br />

1.99<br />

2.48<br />

3.17<br />

3.73<br />

4.33<br />

Acknowledgements<br />

D. McMillan in compiling <strong>the</strong><br />

Miss K. Vollebregt in anatysing<br />

owledged.<br />

References<br />

Fitzharris, B.B.; Stewart, D; Harrison, W. l9g0: Contribution<br />

of snowmelt to <strong>the</strong> October l97g flood of <strong>the</strong><br />

Pomahaka and Fraser Rivers, Otago. Journal o!<br />

Hydrologlt (NZ) I9(2): 84-93.<br />

Gilbert, D.J. 1978: Calculating lake inflow. Journal o!<br />

Hydrologlt (NZ) I 7(I): 3943.<br />

Ministry of Works: Hydrology Annual. (No. 3, 1955 ...<br />

No. 17, 1969). Ministry of Works, Wellington.<br />

t2Á Water & soil technical publication no. 20 (1982)


c o<br />

E<br />

an^in<br />

o<br />

\'<br />

f¡l<br />

U)<br />

o<br />

oô<br />

^' s' r-<br />

: ô¡<br />

f¡¡<br />

o _ L \-zi<br />

,-l"-l'X<br />

\/'\<br />

þ<br />

-:<br />

t!<br />

.E .c,<br />

o<br />

F<br />

.=<br />

Itoø<br />

= o6<br />

at,<br />

| ; -r'-9-\-/<br />

-l¿-ì<br />

.'<br />

^,2<br />

.t ì.---.'{ ---<br />

t!--/<br />

\-'<br />

-r'---\-,-.<br />

" --b-.^,<br />

r\- -ti<br />

ffi r<br />

:' =


ét<br />

êt<br />

REOUCEO VßFIHTE<br />

2. 33 5 l0 ?0 50 t00 ?Do<br />

NETURN<br />

PEFIOD (TERRSI<br />

Fþurc F.2 Plot of normalised flood frequency data <strong>for</strong> lake inflows and Shotover River superimposed on <strong>the</strong> Wost Coast data given in<br />

Figure 3.13' (Circled points <strong>are</strong> lake inflows and Shotover floods with plotting position retuin peiiod greãt€rthan 20 years.l<br />

o<br />

o<br />

REDUCEO<br />

VNBIHTE I<br />

?.33 5 ¡0 20 s0 too 20D<br />

RETUB}'I PEBIOO (YEflRS)<br />

Fþure F.3 Plot of normal¡sed flood frequency data <strong>for</strong> <strong>the</strong> Pomahaka River and <strong>the</strong> southland R¡vers.<br />

t?ß<br />

Water & soil technical publication no. 20 (1982)


ct<br />

ct<br />

o<br />

ê<br />

o<br />

.25<br />

ñEDUCEO VRBIFTE<br />

2.33 5 t0 20 50<br />

RETUBN PERIOD (YERRSI<br />

100 200<br />

Figuo F.4 Plot of normalised flood frequency data <strong>for</strong> East Otago rivers (Taieri catchment and Leith) superimposed on <strong>the</strong> South Canterbury<br />

data given in Figure 3.1 5. (Circled points <strong>are</strong> Taier¡ catchment and Leith floods with plotting pos¡tion retum period of greater than 20<br />

years.)<br />

Qr/Q<br />

\q<br />

\þ)<br />

X<br />

y'x*<br />

o<br />

0 r.011 2.33 5 ]0 20 50 100 200<br />

RETURN PERIOD 1 (yrS)<br />

Frgurc F.5 Average points from Figures F,2 (ol, Figure F.3 {x) and Figure F.4 ( +). The fitred curves ars <strong>for</strong> (a} West Coast, (b) Southland,<br />

(cl Sor¡th Canteôury-Otago.<br />

Water & soil technical publication no. 20 (1982)<br />

t29


SOLITH<br />

I<br />

EA<br />

l')<br />

COAST<br />

soUTH CANTERBURY/oreco<br />

SOUTHLAND r l00km .<br />

E$r. F.6 Regions inferod from dots of flood frequency data.<br />

130<br />

Water & soil technical publication no. 20 (1982)


RETURN PERIOD T (Yrs)<br />

20<br />

Figure F.7 Frequency analysis of annual maxima derived <strong>for</strong> Clutha river tributar¡es above Clyde and below Shotover and <strong>the</strong> lakes, (x)<br />

1963-198O, Manuherikia (ol 1971-80, and Waiau Riv6r tr¡butar¡es above Tuatapere and below Mararoa (tr) 1969-1980. Regional frequency<br />

curves <strong>are</strong> also shown.<br />

I<br />

sHotovtx . uuxtils PK i3/5<br />

t<br />

cLE00Êu o Ë¡LFoRo sÛuNo il3/s<br />

LÊfiE HNKÂÍIPO INFLOH Í3lS<br />

Figurc F.8 Hydrographs of shotover, cleddau and l¡ke wakatipu inflow, 1 971 - 1 979.<br />

Water & soil technical publication no. 20 (1982)<br />

t3l


0tiftflt a itÉitut5 ü¡. il/5<br />

tg?t<br />

t9?¿<br />

l9 ?J<br />

i¡fÊ¡Erâ nI FflEEZtrc lis 88. ff3/5<br />

¡l<br />

f<br />

Flgure F.9 Hydrographs of two stations ¡n ü€ Soúhland region, l97l-l9gO.<br />

lfflti¡ Hr f(ltHH0H-PHtffHU iJ/5<br />

I<br />

l06PxBU8N nr PFESFU ¡3/S<br />

,å<br />

P-<br />

t8{uHE8lÍtF Êt oPttfi t9/5<br />

t<br />

lt?r lr?{ tE?! ¡9?6 ¡9?7 t¡76<br />

Fþure F.1O Hydrographs of three Orago stations, I9Zl-I9gO.<br />

a,<br />

\* 1; lr' P. D. llulbe¡¡ CoUu¡at Prlala, Wcllia¡oo, Nd ?Fl.d-lSll<br />

Water & soil technical publication no. 20 (1982)<br />

C0g6flE-6OO/¿V82R


1.<br />

2.<br />

I.IATER AND <strong>SOIL</strong> TECHNICAL PUBLICATIONS<br />

Liqu'id and waterborne wastes research in New Zealand ($t-OO¡ Salty<br />

Sampling of surface waters ($1-OO¡<br />

M Kings<strong>for</strong>d, J S Nielsen, A D Pritchard, C D Stevenson<br />

Davis L977<br />

I977<br />

3. l.later quaìity research in New Zealand 1976 ($1-OO) Saìly Davis<br />

4. Shotover River catchment. Report on sediment sources survey and<br />

of control , L975 (out of stock)<br />

5. Late Quaternary sedimentary processes at Ohiwa Harbour, eastern Bay of<br />

with speciâl reference- to property loss on Ohiwa ($1-OO¡ J G Gibb<br />

6. Recorded channe'l changes of <strong>the</strong> Upper [,laipawa River, Ruahine Range,<br />

New Zealand P J Grant (out of stock)<br />

-r.<br />

7. Effects of domestic wastewater disposal by land irri<br />

qua'lity of <strong>the</strong> central Canterbury P'lains ($1-OO<br />

G N Martin and M J Noonan<br />

feasibility<br />

gation on groundwater<br />

)<br />

L977<br />

1978<br />

P1 enty<br />

1978<br />

8. Magnitude and frequency of floods in <strong>the</strong> Northland-Auckland region and <strong>the</strong>ir<br />

application to urban flood design ($1-00) J R tlaugh<br />

9. Research and Survey annual review 1977 (out of stock) 1978<br />

10. The probìem of coasta'l erosion aìong <strong>the</strong> 'Goìd Coast', western l,lellington,<br />

New Zea'land ($t-sO¡ J G cibb<br />

11. The Waikato R'iver: A water resources study ($12-00)<br />

L2. A review of <strong>the</strong> habitat requirernents of fish in New Zealand rivers ($3-00)<br />

compi'led by D F Church, S F Davis, and M E U Taylor<br />

19 78<br />

1978<br />

L978<br />

1978<br />

L979<br />

1979<br />

13. The Ruahine Range: A situation review and proposals <strong>for</strong> integrated management<br />

of <strong>the</strong> Ruahine Range and <strong>the</strong> rivers affected by it ($S-OO¡<br />

A Cunningham and P W Strib'ling<br />

14. A Survey of New Zealand peat resources ($10-00) A Davoren<br />

15. Effects of urban land use on water quantity and quality: an an<strong>not</strong>ated<br />

b'ibì i ography ($S-OO¡ I Sirrners<br />

1978<br />

1978<br />

1980<br />

16. Research and Survey annual revjew 1978 (free) L979<br />

17. Investigations into <strong>the</strong> use of <strong>the</strong> bacterial species Bacillus stearo<strong>the</strong>rmophilus<br />

and Escherichia coli (HZS positive) as tracers of )<br />

LlllSÏñto=n -<br />

1980<br />

18. A review of scrne biolog'ical methods <strong>for</strong> <strong>the</strong> assessment of water quality wi th<br />

specia'l reference to New Zea'land. Part 1 ($f-OO¡<br />

L979<br />

19. The frequency of high intensity rainfalls in New Zealand. Part I<br />

A I Toml inson (free)<br />

1980<br />

20.<br />

21..<br />

22.<br />

23.<br />

F.egiona1 flood estímation in New Zealand. M E Beable and<br />

A I McKerchar ($8.00)<br />

Coasta'l hazard mapping as a p'lanning technique <strong>for</strong> l,Jaiapu County, East<br />

Coast, North Island, New Zealand ($5-00) ¡ g el¡¡<br />

A review of sqne bio'logica'l methods <strong>for</strong> <strong>the</strong> assessment of water<br />

quality with specia'l reference to New Zea]and Part II ($3.00)<br />

Hydrology of <strong>the</strong> catchments draining to <strong>the</strong> Pauatahanui Inìet<br />

R J Curry ($S.OO¡<br />

Water & soil technical publication no. 20 (1982)<br />

l-982<br />

1981<br />

1981<br />

1981


Water & soil technical publication no. 20 (1982)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!